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Introduction

In public key cryptography, one considers the following situation: Two parties A and
B wish to privately exchange information, but can only use a channel monitored by an
adversary for communication. Here is one possible solution to A and B’s problem: They
agree on a group G and an element g ∈ G of finite order. This information is publicly
known. Next, A randomly chooses an integer a and B randomly chooses an integer b; then
they compute ga respectively gb. Now A sends ga to B and B sends gb to A. Then both A
and B have access to the shared secret (gb)a = (ga)b.

The adversary monitoring the channel can find out this secret if she can solve the following
problem:

The discrete logarithm problem. Let G be a group and let g ∈ G be an element of
finite order n. Given a power h of g, the discrete logarithm problem is to find an exponent
x ∈ Z/(n) with gx = h.

For this reason, one is interested in groups for which no efficient way of solving the discrete
logarithm problem is known. One such class of groups is the groups of rational points on
elliptic curves over finite fields and, more generally, the groups of rational points on the
Jacobian varieties of hyperelliptic curves over finite fields.

By the Pohlig-Hellman Algorithm ([HPS08, Theorem 2.32]), solving the discrete logarithm
problem for an element g of order n is not significantly more difficult than solving it for
an element of order the largest power of a prime number dividing n. Therefore, one is
interested in knowing when groups suitable for public key cryptography have elements of
large prime order.

In their paper [GM00], Galbraith and McKee derive a conjecture ([GM00, Conjecture A])
on the probability that the number of rational points on an elliptic curve over a finite field
is prime. Castryck, Folsom, Hubrechts, and Sutherland rederive this conjecture ([CFHS12,
Conjecture 1]), which appears as Conjecture 2.5 below. They then go on to generalize it to
Jacobian varieties of hyperelliptic curves of genus 2 ([CFHS12, Conjectures 2 and 3], the
first of which appears below as Conjecture 3.10) and study several related questions.

This thesis is intended as an accessible discussion of the methods employed by the authors
of [CFHS12] to arrive at these conjectures. In Section 2, we treat the case of elliptic curves
in detail; in Section 3, we consider the case of genus 2 hyperelliptic curves.

Prerequisite for reading this thesis is a basic understanding of algebraic geometry. Further
necessary theory is summarized in Section 1. The most important results here are Propo-
sitions 1.2 and 1.4 and Theorems 1.5 (for Section 2) and 1.6 (for Section 3). To make
reading Section 2 on its own easier, separate references are given for the special case of
elliptic curves when possible.
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Notations and Conventions

Throughout, we will let p denote a prime number greater than 3.

For any prime number `, we denote the field with ` elements by F`, its algebraic closure
by F`, and the Galois group of the field extension F`/F` by Gal(F`/F`). We write µ` for
the group of `-th roots of unity of F`.

We denote affine n-space over a field K by An
K and projective n-space over K by PnK .

We write V (f1, . . . , fk) for the — not necessarily irreducible — affine algebraic variety
defined by polynomials f1, . . . , fk ∈ K[X1, . . . , Xn], and likewise write V (f1, . . . , fk) for the
projective variety defined by homogenous polynomials f1, . . . , fk ∈ K[X0, . . . , Xn]. In the
case n = 2, we denote the indeterminates by X, Y, Z instead of X0, X1, X2.

If V ⊂ PnK is an algebraic variety, we denote its base change with respect to the algebraic
closure K by V . We denote the K-valued points of V by V (K) and the K-valued points
of V by V (K).

Given a curve C ⊂ PnK , we denote its function field by K(C) and its local ring at a point
C by K[C]P .

We write R× for the group of units of a ring R.

The boldface letter P denotes probabilities.
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1 Preliminaries

1.1 Curves and their Jacobian Varieties

Let p be a prime number greater than 3. For an integer k > 3, let Hp
k denote the set of

squarefree degree k polynomials with coefficients in Fp.

Consider a polynomial f =
∑3

i=0 aiX
i in Hp

3. The projective closure E of the affine variety
V (Y 2−f) ⊂ A2

Fp is called an elliptic curve over Fp: Homogenize f to obtain a homogenous
polynomial

f ′ = a3X
3 + a2X

2Z + a1XZ
2 + a0Z

3

and set E := V (Y 2Z−f ′) ⊂ P2
Fp . The projective variety E is a one-dimensional irreducible

projective variety. That f is squarefree implies that E is smooth. In Section 2, we will
study the number #E(Fp) of rational points on E or Fp-valued points of E, that is the
number of morphisms SpecFp → E. The original equation Y 2 = f is called a Weierstrass
equation for E.

Let g > 2 be an integer. For a polynomial f in Hp
2g+1 or Hp

2g+2, the projective closure of
V (Y 2 − f) ⊂ A2

Fp is no longer smooth. However, it is possible to find a smooth projective

curve containing the affine part V (Y 2 − f) — see for example [Har77, Section I.6]. Such
a projective curve H is called a hyperelliptic curve over Fp. Like for elliptic curves, the
original equation Y 2 = f is called a Weierstrass equation for H.

We now introduce the notion of divisor, following Silverman’s book [Sil09]. Let C ⊂ PnFp
be a smooth curve and consider the base change C with respect to the algebraic closure
Fp; for example, C might be a hyperelliptic curve over Fp. A divisor on C is an element
of the divisor group Div(C) of C, which is the free abelian group generated by the closed
points P of C. That is, divisors are finite linear combinations∑

P

nP (P ), nP ∈ Z.

The degree of a divisor D =
∑

P nP (P ) is

deg(D) =
∑
P

nP ∈ Z.

Denote the subgroup of Div(C) consisting of all degree zero divisors by Div0(C).

Note that for every closed point P of C, the local ring Fp[C]P is a regular local noetherian
integral domain, and therefore is a discrete valuation ring (for example by [AM69, Propo-
sition 9.2]). Let ordP : Fp(C)→ Z ∪ {∞} be the corresponding normalized valuation. If a
function f ∈ Fp(C)× satisfies ordP (f) > 0, it is said to have a zero of order ordP (f) at P .
If f satisfies ordP (f) < 0, it is said to have a pole of order −ordP (f) at P .
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It turns out that every rational function f in Fp(C)× only has finitely many zeros and only
finitely many poles; see for example [Har77, Lemma I.6.5] for a proof of this. Thus, we can
associate to f a divisor

div(f) =
∑
P

ordP (f)(P ).

The divisors of this form are the principal divisors. By [Har77, Corollary II.6.10], every
principal divisor has degree zero. We can therefore take the quotient

Pic0(C) = Div0(C)
/
{div(f) | f ∈ Fp(C)×} ,

which is called the Picard group of C.

Consider the group action of Gal(Fp/Fp) on Div0(C) given by

γ

(∑
P

np(P )

)
=
∑
P

nP (γ(P )) for γ ∈ Gal(Fp/Fp).

Since this action maps principal divisors to principal divisors, it induces an action of
Gal(Fp/Fp) on Pic0(C). Denote by Pic0Fp(C) the subgroup of Pic0(C) that is fixed by this
action. It is the order of this group that we will study in Section 3.

To view Pic0Fp(C) from a different angle, we will need the notion of abelian variety — see
Chapter 4 of [CFA+06] for a more thorough discussion tailored to the case of elliptic and
hyperelliptic curves. The following definition is taken from [Sta17, Tag 0BF9]:

An abelian variety over a field K is a geometrically integral proper variety A over K
together with three morphisms: A multiplication m : A×KA→ A, an inversion i : A→ A,
and a morphism e : SpecK → A such that the K-valued points A(K) form an abelian
group with composition given by m, inversion given by i, and the neutral element given
by e.

All elliptic curves over Fp are abelian varieties over Fp (see [Sil09, Section III.2] for an
introduction).

For any abelian variety A over Fp, the base change A with respect to the algebraic closure
Fp is an abelian variety over Fp.

Theorem 1.1. Let H be a hyperelliptic curve of genus g over Fp. Then there exists an
abelian variety J of dimension g such that there are isomorphisms of groups

J(Fp) ∼= Pic0Fp(H) and J(Fp) ∼= Pic0(H).

Proof. See [CFA+06, Section 4.4.4]. �

This abelian variety J is called the Jacobian variety of H.
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1.2 Isogenies

We will only consider the following special case, following [CFA+06, Section 4.3.4]: Let A
be an elliptic curve over Fp or the Jacobian variety of a hyperelliptic curve over Fp, and
consider the base change A of A with respect to the algebraic closure Fp. Then an isogeny
from A to A is a surjective morphism ϕ : A→ A that is a group homomorphism.

For any integer N > 0, there is an isogeny

[N ] : A→ A, P 7→ P + . . .+ P (N times).

Its kernel, denoted A[N ], is called the N-torsion subgroup of A. Similarly, we can consider
the N -torsion subgroup A(Fp)[N ] of the Fp-valued points of A.

Proposition 1.2. For any prime number ` different from p,

A(Fp)[`] ∼= (Z/(`))2 dim(A).

Furthermore,
A(Fp)[p] ∼= (Z/(p))k

for some 0 6 k 6 dim(A).

Proof. For the case that A is an elliptic curve, see [Sil09, Corollary III.6.4]. For the case
that A is the Jacobian variety of a hyperelliptic curve, see [Mum70, Section II.6]. �

If A is an elliptic curve, then A(Fp)[`] ∼= (Z/(`))2; if A is the Jacobian variety of a genus g
hyperelliptic curve, then A(Fp)[`] ∼= (Z/(`))2g.

Another important isogeny is the Frobenius endomorphism Frob : A → A. On an affine
open subscheme

SpecFp[X1, . . . , Xn]/(f1, . . . , fk)

of A, it is given by the ring homomorphism with

X1 7→ Xp
1 , . . . , Xk 7→ Xp

k

that is the identity on Fp.

For any isogeny ϕ : A→ A, there is a corresponding injection of function fields

ϕ∗ : Fp(A)→ Fp(A).

This field extension consists of two finitely generated field extensions of Fp of the same
transcendence degree dim(A). It is therefore a finite field extension whose degree is called
the degree of ϕ and denoted by deg(ϕ).

The degrees of the two isogenies [N ] and Frob discussed above are N2 dim(A) and pdim(A), re-
spectively. We will only use this in the case that A is an elliptic curve, and thus dim(A) = 1.
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In this case, proofs can be found in [Sil09, Theorem III.6.2] respectively [Sil09, Proposition
II.2.11].

Let ϕ : A → A be an isogeny. A key tool used throughout this thesis is to consider
the linear transformation ϕ` induced by ϕ on the `-torsion subgroup A(Fp)[`] for prime
numbers ` different from p. Among its invariants are the trace tr(ϕ`) ∈ F`, the determinant
det(ϕ`) ∈ F`, and the characteristic polynomial charϕ` ∈ F`[X]. The next propositions
describe connections between properties of these invariants and properties of ϕ and A we
are interested in.

Proposition 1.3. We have

det(ϕ`) = (deg(ϕ) mod `).

Proof. For the case of elliptic curves, see [Sil09, Proposition III.8.6]. For the general case,
see [Mum70, Section 19, Theorem 4]. �

Proposition 1.4. Let ` be a prime number. Then ` divides the number of rational points
on A if and only if 1 is an eigenvalue of Frob`.

Proof. The key fact here is that the rational points on A are in 1-to-1-correspondence with
the Fp-valued points of A fixed by the Frobenius endomorphism.

Now suppose that 1 is an eigenvalue of Frob`. Then there exists a nontrivial element of
A(Fp)[`] fixed by Frob, and by Proposition 1.2, the number of such elements is divisible by
`. By the fact above, so is the order of A(Fp)[`].

Conversely, if ` divides the number of rational points on A, then in particular there exists
a nontrivial element of A(Fp)[`] fixed by Frob and 1 is an eigenvalue of Frob`. �

If E is an elliptic curve, then the linear transformation Frob` induced by Frob : E → E
satisfies

charFrob`(1) = (X2 − tr(Frob`)X + det(Frob`))(1) = 1− tr(Frob`) + p.

That is, ` divides the number of rational points on E if and only if tr(Frob`) is congruent
to (p+ 1) modulo `. For any (2× 2)-matrix M , we have

tr(M) = 1 + det(M)− det(I2 −M).

Therefore, by Proposition 1.3, there exists an integer whose reduction modulo ` is tr(Frob`)
for all `. It is called the trace of Frobenius of E.

We conclude this section with two results on bounds on the number of rational points:

Theorem 1.5 (Hasse). Let E be an elliptic curve over Fp. Then its number of rational
points is contained in the interval

[p+ 1− 2
√
p, p+ 1 + 2

√
p] = [(

√
p− 1)2, (

√
p+ 1)2].
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Proof. See [Sil09, Theorem V.1.1]. �

This interval is called the Hasse interval.

Theorem 1.6. Let J be the Jacobian variety of a hyperelliptic curve over Fp of genus g.
Then its number of rational points is contained in the interval

[(
√
p− 1)2g, (

√
p+ 1)2g].

Proof. See [CFA+06, Corollary 5.79]. �

This interval is called the Hasse-Weil interval.

8



2 The Case of Elliptic Curves

In this section, we consider an elliptic curve E associated to a squarefree degree 3 polyno-
mial in Hp

3. We deduce a result by Lenstra ([Len87, Proposition 1.14]) that lets us estimate
the probability that the group of rational points on E has `-torsion for any prime number
` different from p. We use this to elaborate Galbraith and McKee’s derivation in [GM00,
Section 4] of their Conjecture 2.5 on the probability that E has a prime number of rational
points.

Let ` be a prime number different from p and consider the linear transformation of
E(Fp)[`] ∼= F2

` induced by the Frobenius endomorphism Frob : E → E. The matrix of
this transformation with respect to any ordered basis lies in

GL
(p)
2 (F`) := {F ∈ GL2(F`) | det(F ) = p}

by Proposition 1.3 and is called a matrix of Frobenius associated to E.

The group GL2(F`) acts on GL
(p)
2 (F`) by conjugation. Let FE denote the orbit of our

matrix of Frobenius. Thus the set FE consists of the matrices of Frobenius associated to
E with respect to all possible ordered bases of E(Fp)[`].

Now suppose that the polynomial defining E is chosen uniformly at random from Hp
3. Let

P(FE ⊂ C) denote the probability that FE is contained in a subset C of GL
(p)
2 (F`).

A crucial tool will be the following statement — called “Principle” in [CFHS12] for lack of
a published proof. See [CFHS12, Section 4.1] for a discussion of its validity.

Principle 2.1. There exist constants C ∈ R>0 and c ∈ Z>0 such that for all prime numbers
p > 3 and ` 6= p and for any union C of orbits of the action of GL2(F`) on GL

(p)
2 (F`), we

have ∣∣∣∣∣P(FE ⊂ C)−
#C

#GL
(p)
2 (F`)

∣∣∣∣∣ 6 C`c
√
p
. (1)

That is, as p goes to infinity, the probability that a matrix of Frobenius of E belongs to
a certain conjugacy class of GL

(p)
2 (F`) approaches the proportion of matrices belonging to

this conjugacy class.

In [GM00], Galbraith and McKee use a slightly different notion of randomness for choosing
an elliptic curve E, and in [CFHS12, Section 4.1], the same is true: Instead of taking
a polynomial f uniformly at random from Hp

3, they obtain E from a polynomial f =
X3 + AX +B, where the pair (A,B) is chosen uniformly at random from the set

{(A,B) ∈ F2
p | 4A3 + 27B2 6= 0}.

The quantity D = 4A3 +27B2 is the discriminant of the polynomial f ; thus f is squarefree
if and only if D 6= 0. Let Hp

3,m denote the set of squarefree monic degree 3 polynomials
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with coefficients in Fp and let Hp
AB denote the set of squarefree monic degree 3 polynomials

with coefficients in Fp whose degree 2 term vanishes. Define a map

Hp
3 → H

p
3,m, f 7→ α2f(X/α), where α is the leading coefficient of f,

and a “completing-the-cube” map

Hp
3,m → H

p
AB, (X3+a2X

2+a1X+a0) 7→
(
X − a2

3

)3
+a2

(
X − a2

3

)2
+a1

(
X − a2

3

)
+a0.

In this way, we can associate to each polynomial f ∈ Hp
3 a polynomial in Hp

AB. This
does not change the number of rational points on the associated curve E. Therefore, the
following lemma shows that the probability that E has a prime number of rational points
is not affected by whether we choose the defining polynomial from Hp

3 or from Hp
AB.

Lemma 2.2. The map Hp
3 → H

p
AB is surjective and all preimages under it have the same

size.

Proof. The map Hp
3 → H

p
3,m is given by

a3X
3 + a2X

2 + a1X + a0 7→ X3 + a2X
2 + a3a1X + a23a0.

The preimage of a polynomial X3 + b2X
2 + b1X + b0 consists of the p− 1 polynomials

a3X
3 + b2X

2 +
b1
a3
X +

b0
a23
, a3 ∈ F×p .

The map Hp
3,m → H

p
AB is given by

X3 + b2X
2 + b1X + b0 7→ X3 +

(
b1 −

b22
3

)
X + b0 +

2b32
27
− b2b1

3
.

Consider any polynomial f = X3+AX+B ∈ Hp
AB. A polynomialX3+b2X

2+b1+b0 ∈ Hp
3,m

lies in the preimage of f if and only if

b1 −
b22
3

= A and b0 +
2b32
27
− b2b1

3
= B.

For any choice of b2, there exists exactly one b1 satisfying the first equation. Having chosen
b2 and b1, there exists exactly one b0 satisfying the second equation. Therefore, there are
p polynomials in the preimage of f .

We conclude that the composition Hp
3 → H

p
AB is surjective and that all its preimages have

size (p− 1)p. �

Recall that ` denotes a prime number different from p. Let P(p, `) denote the probability
that for a polynomial chosen uniformly at random from Hp

3, the number of rational points
on the associated elliptic curve E is divisible by `. Using Principle 2.1 and the remark
following Proposition 1.4 we can approximate this probability by counting the number of
matrices in GL

(p)
2 (F`) with trace p + 1. The following lemma does this, in a slightly more

general form for use in Section 3 as well:
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Lemma 2.3. For any q ∈ F×` , there are precisely `3 − ` matrices in GL
(q)
2 (F`). Among

those, the number of matrices with trace q + 1 is{
`2 if `|q − 1,

`2 + ` if ` 6 | q − 1.

Proof. By Lemma 3.6, there are precisely (`2 − 1)(`2 − `) matrices in GL2(F`). Since

det : GL2(F`)→ F×` is a surjective group homomorphism, the set GL
(q)
2 (F`) consists of

(`2 − 1)(`2 − `)
`− 1

= `3 − `

matrices. Writing

F =

(
a b
c d

)
,

we will count the number of matrices F ∈ GL
(q)
2 (F`) with trace q + 1, that is, the number

of matrices satisfying

tr(F ) = a+ d = q + 1 and det(F ) = ad− bc = q.

We do this by first considering the number of such matrices for which ad = q, that is,
the number of matrices satisfying a + d = q + 1 and ad = q. The solutions to these two
equations are a = q, d = 1 and a = 1, d = q.

If ` 6 | q − 1, we therefore have two choices of a and d such that a + d = q + 1 and ad = q.
Then one of b and c must be zero and the other can be chosen freely. For the `− 2 choices
of a and d with ad = q, but a+ d 6= q + 1, there are exactly `− 1 ways to choose b and c.
In total, we get

2 · (1 + 2(`− 1)) + (`− 2) · (`− 1) = `2 + `

matrices in GL
(q)
2 (F`) with trace q + 1.

If, on the other hand, we have `|q − 1, there is only one choice of a and d such that
a+ d = q + 1 and ad = q. In total, we get

1 · (1 + 2(`− 1)) + (`− 1) · (`− 1) = `2

matrices in GL
(q)
2 (F`) with trace q + 1. �

Applying this lemma with q = p, we obtain the following result, proved (with better error
bounds) by Lenstra in [Len87, Proposition 1.14]:

Theorem 2.4 (Lenstra). There exist constants C ∈ R>0 and c ∈ Z>0 such that for all
prime numbers p > 3 and ` 6= p,∣∣∣∣P(p, `)− `

`2 − 1

∣∣∣∣ 6 C
`c
√
p

if `|p− 1,
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∣∣∣∣P(p, `)− 1

`− 1

∣∣∣∣ 6 C
`c
√
p

if ` 6 | p− 1.

Proof. Let C denote the union of all conjugacy classes of GL
(p)
2 (F`) of matrices with trace

p+ 1. Then the result immediately follows from inserting the formulas of Lemma 2.3 into
the inequality (1) of Principle 2.1. �

Lenstra’s result is a proven theorem. However, we will now use it heuristically to derive
the Conjecture 2.5 of Galbraith and McKee. A similar kind of reasoning is used for the
case of hyperelliptic curves in Section 3. Indeed, the derivations of all the conjectures in
[CFHS12] are of a similar nature.

Let P1(p) denote the probability that an integer n chosen uniformly at random from the
Hasse interval [p+ 1− 2

√
p, p+ 1 + 2

√
p] is prime. Approximate this probability by

∏
`6
√
p+1

P(` 6 | n) ≈
∏

`6
√
p+1

(
1− 1

`

)
, (2)

where the products range over all prime numbers ` 6
√
p+ 1 (the square root of the upper

endpoint of the Hasse interval). The symbol ≈ means equality in the limit as p tends to
infinity.

This approximation is not precise even asymptotically as p tends to infinity. Indeed,
Mertens’s third theorem ((15.) in [Mer74]) and the prime number theorem imply∏

`6
√
p+1

(
1− 1

`

)
≈ e−γ

log(
√
p)
≈ 2e−γP1(p),

where γ = 0.577... is the Euler-Mascheroni constant.

The idea now is to similarly approximate the probability P2(p) that the number of rational
points on an elliptic curve E, whose associated polynomial is chosen uniformly at random
from Hp

3, is prime. Following Lenstra’s theorem, this approximation is∏
6̀ |p−1

`6
√
p+1

(
1− 1

`− 1

) ∏
`|p−1
`6
√
p+1

(
1− `

`2 − 1

)
. (3)

We hope that in analogy to P1(p), this product will approach 2e−γP2(p) as p tends to
infinity, allowing us to approximate the quotient P2(p)/P1(p) by the quotient of (3) and
(2). That this assumption is reasonable is supported both by empirical evidence in favor
of the following conjecture ([GM00, Section 2], [CFHS12, Section 11]) and by the fact that
Galbraith and McKee give a second and independent derivation of it in [GM00, Section 3].
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Conjecture 2.5 (Galbraith-McKee). Define

cp :=
2

3
·
∏
`>2

(
1− 1

(`− 1)2

) ∏
`|p−1
`>2

(
1 +

1

(`+ 1)(`− 2)

)
, (4)

where the products range over all prime numbers ` satisfying the stated conditions. Then
with P1(p) and P2(p) as above, we have

lim
p→∞

(
(P2(p)/P1(p))

/
cp

)
= 1.

Derivation. As explained above, we start with approximating P2(p)/P1(p) by the quotient
of (3) and (2), that is,∏

6̀ |p−1
`6
√
p+1

(
1− 1

`−1

)∏
`|p−1
`6
√
p+1

(
1− `

`2−1

)
∏

`6
√
p+1

(
1− 1

`

) =

∏
6̀ |p−1

`6
√
p+1

(
`−2
`−1

)∏
`|p−1
`6
√
p+1

(
`2−`−1
`2−1

)
∏

`6
√
p+1

(
`−1
`

) .

The rest is algebraic manipulations: Pulling the factor corresponding to ` = 2 out of the
second product, we obtain

2

3
·

∏
6̀ |p−1

2<`6
√
p+1

(
`2 − 2`

(`− 1)2

) ∏
`|p−1

2<`6
√
p+1

(
`3 − `2 − `

(`+ 1)(`− 1)2

)
.

We eliminate the first product’s condition that ` 6 | p− 1 by multiplying the second product
with (`− 1)2/(`2 − 2`), obtaining

2

3
·

∏
2<`6

√
p+1

(
1− 1

(`− 1)2

) ∏
`|p−1

2<`6
√
p+1

(
1 +

1

(`+ 1)(`− 2)

)
.

Finally, taking the limit as p goes to infinity completes the derivation. �

We can approximate the number cp from (4) as follows: Since all factors of the first infinite
product are smaller than 1 and all factors of the second infinite product are greater than
1, a lower bound is given by 2/3 times the first product. An upper bound is obtained by
discarding the condition `|p− 1 for the second product.

Numerically evaluating these products shows that cp is contained in the interval
[0.44010, 0.61514]. This indicates a bias against a randomly chosen elliptic curve having a
prime number of rational points.
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3 Generalization to Genus 2 Curves

In this section, we consider a hyperelliptic curve H associated to a squarefree degree 6
polynomial in Hp

6. Let J denote the Jacobian variety of H. We deduce a result similar to
Lenstra’s Theorem 2.4 that will let us estimate the probability that the number of rational
points on J has `-torsion for any prime number ` different from p. We then use this to
derive an analog to Conjecture 2.5, namely Conjecture 3.10 ([CFHS12, Conjecture 2]).

3.1 The Weil Pairing and Symplectic Matrices

For a prime number ` different from p, consider the group µ` of `-th roots of unity of F`.
There exists a pairing

e` : J(Fp)[`]× J(Fp)[`]→ µ`

on the `-torsion-subgroup of J(Fp), called the Weil pairing, with the following properties:

(i) Bilinearity: For all P, P1, P2, Q,Q1, Q2 ∈ J(Fp)[`], we have

e`(P1 + P2, Q) = e`(P1, Q)e`(P2, Q) and

e`(P,Q1 +Q2) = e`(P,Q1)e`(P,Q2).

(ii) It is alternating: For all P ∈ J(Fp)[`], we have e`(P, P ) = 1.

(iii) Nondegenerateness: For every 0 6= P ∈ J(Fp)[`], there exists some Q ∈ J(Fp)[`] with
e`(P,Q) 6= 1.

(iv) Galois invariance: For all γ ∈ Gal(Fp/Fp) and all P,Q ∈ J(Fp)[`], we have

e`(γ(P ), γ(Q)) = γ(e`(P,Q)).

See [Mum70, Section 20]. A Weil pairing E(Fp)[`] × E(Fp)[`] → µ` also exists for elliptic
curves E; for a discussion of this, see [Sil09, Section III.8].

We now review the notion of symplectic matrices.

Consider the matrix

Ω =

(
02 I2
−I2 02

)
∈ Mat4×4(F`).

For d ∈ F×` , the matrices

GSp
(d)
4 (F`) := {M ∈ GL4(F`) |MTΩM = dΩ}

are called d-symplectic matrices. The 1-symplectic matrices Sp4(F`) := GSp
(1)
4 (F`) form

a group under matrix multiplication and are just called symplectic matrices. The union
GSp4(F`) of all GSp

(d)
4 (F`) also forms a group, called the group of symplectic similitudes.
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Lemma 3.1. The group GSp4(F`) is generated by Sp4(F`) and the matrices

∆d =

(
I2 02

02 dI2

)
∈ Mat4×4(F`), d ∈ F×` .

Proof. The matrices ∆d are contained in GSp
(d)
4 (F`) by an easy direct calculation. Now

take any symplectic similitude, say M ∈ GL
(d)
4 (F`). Then

(M∆1/d)
TΩ(M∆1/d) = ∆T

1/d(M
TΩM)Ω1/d = d(∆T

1/dΩ∆1/d) = Ω,

so M = (M∆1/d)∆d is a product of a symplectic matrix M∆1/d and a matrix ∆d. �

A consequence of this lemma is that GSp4(F`) acts on any set of similitudes GSp
(d)
4 (F`) by

conjugation.

We return to the situation of the Jacobian variety J of a hyperelliptic curve H associated
to a polynomial in Hp

6.

For a prime number ` different from p, consider the Weil pairing

e` : J(Fp)[`]× J(Fp)[`]→ µ`.

For any primitive root of unity ζ ∈ µ`, there is a group isomorphism

Z/(`)→ µ`, d 7→ ζd.

Composing its inverse with the Weil pairing gives a bilinear, alternating, and nondegenerate
pairing

ωζ : J(Fp)[`]× J(Fp)[`]→ F`.

Since this pairing depends on the choice of primitive root of unity ζ, we include ζ in the
notation. A pair (V, ω), where V is a F`-vector space and ω is a bilinear, alternating, and
nondegenerate pairing V × V → F`, is called a symplectic F`-vector space.

As in Section 2, we will consider the linear transformation J(Fp)[`] → J(Fp)[`] induced
by the Frobenius endomorphism Frob : J → J . However, as opposed to considering the
matrices of Frobenius with respect to all possible ordered bases, we will restrict ourselves
to considering matrices of Frobenius with respect to so-called Darboux or symplectic bases
of J(Fp)[`] ∼= F4

` . An ordered basis is called Darboux or symplectic basis with respect to
ωζ if the matrix of ωζ is Ω with respect to this basis.

Lemma 3.2. An ordered basis (P1, P2, Q1, Q2) of J(Fp)[`] is a Darboux basis with respect
to ωζ if and only if

e`(P1, P2) = e`(Q1, Q2) = e`(P1, Q2) = e`(P2, Q1) = 1 and

e`(P1, Q1) = e`(P2, Q2) = ζ.

15



Proof. Since the pairing ωζ is alternating, its matrix with respect to any ordered basis has
zeros on the main diagonal. Furthermore, we have e`(P,Q) = e`(Q,P )−1, so ωζ(P,Q) =
−ωζ(Q,P ) for all P,Q ∈ J(Fp)[`]. Thus, an ordered basis is a Darboux basis if and only
if the matrix of ωζ with respect to it coincides with Ω in the six entries above the main
diagonal. But this corresponds exactly to the six conditions given in the lemma. �

Given a d-dimensional linear subspace U of a symplectic Fp-vector space (V, ω) with ordered
basis (P1, . . . , Pd), consider the linear subspace

Uω := {P ∈ V | for all Q ∈ U : ω(P,Q) = 0}. (5)

Since Uω is the kernel of the full rank linear map

V → Fdp, P 7→ (ω(P, P1), . . . , ω(P, Pd)), (6)

it is (dim(V )− d)-dimensional. We clearly have (Uω)ω ⊂ U , and by dimensional reasoning
conclude that (Uω)ω = U . In the special case that U ∩ Uω = {0}, we call U a symplectic
subspace. In this case, V is a direct sum of U and Uω. Equivalently, ω restricted to U is
still nondegenerate.

In the following lemma, we will apply the concept of symplectic subspaces to the case of
the 4-dimensional symplectic vector space (J(Fp)[`], ωζ).

Lemma 3.3. There exists a Darboux basis of J(Fp)[`] with respect to ωζ.

Proof. The proof is adapted from [Gos06, Section 1.2].

Pick an arbitrary point 0 6= P1 ∈ J(Fp)[`]. Since ωζ is nondegenerate, we can pick another
point Q1 ∈ J(Fp)[`] with ωζ(P1, Q1) = 1.

Let U be the subspace of J(Fp)[`] spanned by P1 and Q1. Since ωζ(P1, Q1) = 1, we have
U ∩ Uωζ = {0}, that is, U is a symplectic subspace of J(Fp)[`]. Thus J(Fp)[`] is a direct
sum of U and Uωζ , so the restriction of ωζ to Uωζ is again nondegenerate.

We can therefore choose P2 and Q2 in Uωζ with ωζ(P2, Q2) = 1, and

ωζ(P1, P2) = ωζ(Q1, Q2) = ωζ(P1, Q2) = ωζ(P2, Q1) = 0.

Together with ωζ(P1, Q1) = 1, this implies that the matrix of ωζ with respect to the ordered
basis (P1, P2, Q1, Q2) is Ω. �

With respect to a Darboux basis, the linear transformation of J(Fp)[`] induced by the

Frobenius endomorphism has a p-symplectic matrix F ∈ GSp
(p)
4 (F`): Using the Galois

invariance of the Weil pairing, we have

e`(Frob(P ),Frob(Q)) = Frob(e`(P,Q)) = e`(P,Q)p

for all P,Q ∈ J(Fp)[`]. But that is to say

ωζ(Frob(P ),Frob(Q)) = pωζ(P,Q),

so F satisfies F TΩF = pΩ.
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3.2 Generalization of the Random Matrix Principle

We have seen that we can associate to a hyperelliptic curve H with Jacobian variety
J a p-symplectic matrix of Frobenius F ∈ GSp

(p)
4 (F`) with respect to a Darboux basis

(using Lemma 3.3). We can further associate to H the orbit FH of F in GSp
(p)
4 (F`) under

GSp4(F`)-conjugation. The following lemma shows that this orbit is independent of the
choices we have made in constructing F .

Lemma 3.4. The orbit FH is independent of the choice of Darboux basis and of the choice
of primitive root of unity ζ ∈ µ` used in the definition of the pairing ωζ.

Proof. First, suppose that we choose a different Darboux basis with respect to the pairing
ωζ . Then the matrices of ωζ with respect to these bases are related by conjugation by a
symplectic matrix.

Next, suppose that we choose a different primitive root of unity ζd, where d ∈ F×p , instead
of ζ. If (P1, P2, Q1, Q2) is a Darboux basis with respect to ωζ , then (P1, P2, dQ1, dQ2) is a
Darboux basis with respect to ωζd by Lemma 3.2 and bilinearity of the Weil pairing. The
matrix of base change from (P1, P2, dQ1, dQ2) to (P1, P2, Q1, Q2) is ∆d. Therefore, a matrix
of Frobenius with respect to a Darboux basis and the pairing ωζd is always related to a
matrix of Frobenius with respect to a Darboux basis and the pairing ωζ by conjugation by
∆d.

Since Sp4(F`) and the matrices ∆d are contained in GSp
(p)
4 (F`), we are done. �

Suppose that the polynomial defining the curve H is chosen uniformly at random from
Hp

6. Denote the probability that the orbit FH is contained in a subset C of GSp
(p)
4 (F`) by

P(FH ⊂ C).

We will make use of the following analog of Principle 2.1. Again, see [CFHS12, Section
4.2] for a discussion of its validity.

Principle 3.5. There exist constants C ∈ R>0 and c ∈ Z>0 such that for all prime numbers
p > 3 and ` 6= p and for any union C of orbits of the action of GSp4(F`) on GSp

(p)
4 (F`),

we have ∣∣∣∣∣P(FH ⊂ C)−
#C

#GSp
(p)
4 (F`)

∣∣∣∣∣ 6 C`c
√
p
. (7)

In Section 2, we estimated the probability that the group of rational points on an elliptic
curve has `-torsion by counting the number of matrices of Frobenius with trace p + 1.
Proposition 1.4 is also applicable to our current situation: The number of rational points
on J is divisible by ` if and only if the characteristic polynomial of the linear transforma-
tion Frob` : J(Fp)[`] → J(Fp)[`] induced by the Frobenius endomorphism evaluated at 1
vanishes.
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By Principle 3.5, we can therefore estimate the probability that J has `-torsion by counting
the proportion of matrices in GSp

(p)
4 (F`) whose characteristic polynomial evaluated at 1

is zero, that is, the proportion of matrices in GSp
(p)
4 (F`) that have 1 as an eigenvalue. In

Proposition 3.9, we will determine this proportion using a recursive argument. To this end,
let

Q(p, `, r)

denote the proportion of matrices in GSp
(p)
2r (F`) that have 1 as an eigenvalue, where r ∈

{1, 2}.

We will also need closed-form formulas for the numbers of invertible and symplectic ma-
trices over F`:

Lemma 3.6. We have

#GLg(F`) = `(g
2−g)/2

g∏
j=1

(`j − 1) and #Sp2g(F`) = `g
2

g∏
j=1

(`2j − 1).

Proof. The number of matrices in GLg(F`) is the same as the number of ordered bases of
Fg` . There are `g−1 ways to choose the first vector of such a basis. Having chosen the first
vector, there are (`g − `) ways to choose the second vector of such a basis and so on. In
total, we get

#GLg(Fp) =

g∏
j=1

(`g − `j−1) =

g∏
j=1

`j−1
g∏
j=1

(`j − 1) = `(g
2−g)/2

g∏
j=1

(`j − 1).

Similarly, the number of matrices in Sp2g(F`) is the same as the number of ordered bases
of Fg` that are Darboux bases with respect to the form

ω : Fg` × Fg` → F`, (P,Q) 7→ P TΩQ.

Write (P1, . . . , Pg, Q1, . . . , Qg) for such a basis. There are `2g−1 ways to choose P1. Having
chosen P1, the vector Q1 must satisfy P T

1 ΩQ1 = 1, which leaves `2g−1 choices. If V is the
subspace spanned by P1 and Q1, the remaining basis elements must lie in V ω, which is
(2g − 2)-dimensional. Continuing in this manner, we get

#Sp2g(F`) =

g∏
j=1

`2j−1
g∏
j=1

(`2j − 1) = `g
2

g∏
j=1

(`2j − 1).

�

A matrix M ∈ Matr×r(F`) is called unipotent if M − Ir is nilpotent. Since a matrix
in Matr×r(F`) is nilpotent if and only if its characteristic polynomial is Xr, a matrix
M ∈ Matr×r(F`) is unipotent if and only if charM = (X − 1)r.
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Lemma 3.7. The number of unipotent matrices in Sp2(F`) is `2. The number of unipotent
matrices in Sp4(F`) is `8.

Proof. Since Sp2(F`) = SL2(F`), the unipotent matrices in Sp2(F`) are precisely the matri-
ces similar to

I2 =

(
1 0
0 1

)
or U :=

(
1 1
0 1

)
.

The centralizer of U with respect to the action of GL2(F`) by conjugation is the matrices{(
a b
0 a

)∣∣∣∣ a ∈ F×` , b ∈ F`
}
.

Thus, the number of matrices similar to U is

#GL2(F`)
`(`− 1)

=
`(`− 1)(`2 − 1)

`− 1
= `2 − 1

and, adding I2, the result follows.

We do not give a proof for the number of unipotent matrices in Sp4(F`). Proofs can be
found in [Ful00, Corollary 1] and [Hum95, Section 8.14]. �

Proposition 3.8. The proportion Q(p, `, 2) of matrices in GSp
(p)
4 (F`) that have 1 as an

eigenvalue is 
`(`4 − `− 1)

(`4 − 1)(`2 − 1)
if `|p− 1,

`2 − 2

(`2 − 1)(`− 1)
if ` 6 | p− 1.

Proof. The proof is adapted from Lemmas 3.1 and 3.2 of the paper [AH03] by Achter and
Holden, who use ideas from Section 3 of Chavdarov’s paper [Cha97]. Similar ideas are used
in [CFHS12, Section 5]. We divide the proof into several steps.

Step 1: Suppose that F ∈ GSp
(p)
4 (F`). We have

charF = det(F T −XI4) = det(F TΩ− X
p
F TΩF )/ det(Ω)

= det(−1
p
XF T ) det(ΩF − p

X
Ω)/ det(Ω)

= det(−1
p
XF T )charF ( p

X
),

so for any a ∈ F×` , the algebraic multiplicities of a and p/a are the same. In particular, the
algebraic multiplicities of 1 and p are the same, and if p is congruent to 1 modulo `, this
algebraic multiplicity is an even number. In any case, we can write charF as a product of
(X − 1)r(X − p)r for some r ∈ {0, 1, 2} and a polynomial that does not have 1 or p as a
zero.
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Step 2: For r ∈ {1, 2}, consider the sets of matrices

S(r) := {F ∈ GSp
(p)
2r (F`) | charF = (X − 1)r(X − p)r}.

In [AH03, Lemma 3.1], formulas for #S(r) are given for arbitrary r. For reasons of self-
containedness, we instead indicate an elementary way of arriving at formulas for the cases
r ∈ {0, 1}, following [CFHS12, Lemma 3] and [Cha97, Lemma 3.3].

Using the Jordan-Chevalley decomposition (see [Hum72, Section 4.2] for a reference that
assumes — as we may — that charF splits into linear factors), we can write any F ∈ S(r)

uniquely as a sum of a semisimple matrix Fs ∈ GSp
(p)
2r (F`) with charFs = charF and a

nilpotent matrix Fn such that Fs and Fn commute. Hence we can write F uniquely as a
commuting product of the semisimple matrix Fs and a unipotent matrix Fu := I2r+F

−1
s Fn.

We claim that the action by conjugation of Sp2r(F`) on these semisimple matrices Fs is
transitive. To this end, consider the symplectic vector space (F2r

p , ω), where ω is given by

(P,Q) 7→ P T

(
0r Ir
−Ir 0r

)
Q.

As in Lemma 3.3, we can find a symplectic basis of F2r
p : Choose an eigenvector P1 of Fs

corresponding to the eigenvalue 1. Then choose another eigenvector Q1 with ω(P1, Q1) = 1;
if λ is the eigenvalue corresponding to Q1, then

p = ω(FsP1, FsQ1) = λω(P1, Q1) = λ.

If r = 2, do this procedure again to complete a basis of F2r
p . In any case, we have shown

that Fs is related to the diagonal matrix

∆ := diag(1, . . . , 1︸ ︷︷ ︸
r times

, p, . . . , p︸ ︷︷ ︸
r times

) ∈ S(r)

by conjugation by a symplectic matrix. In particular, the action of Sp2r(F`) by conjugation
on the Fs is transitive.

Step 3: We want to show that

#S(1) =

{
`2 if `|p− 1,

`2 + ` if ` 6 | p− 1,

#S(2) =

{
`8 if `|p− 1,

`8 + `7 + `6 + `5 if ` 6 | p− 1.

The formulas for `|p − 1 follow immediately from Lemma 3.7, since the only semisimple
matrix Fs with characteristic polynomial (X − 1)2r is the identity.
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For the case ` 6 | p− 1, consider the transitive action of Sp2r(F`) on the semisimple matrices
Fs by conjugation. All the Fs lie in the orbit of the diagonal matrix ∆. Therefore, the
total number of matrices Fs obtained from some F ∈ S(r) is

#Sp2r(F`)/#C(∆),

where C(∆) is the centralizer of ∆. The matrices in GL2r(F`) commuting with ∆ are the
matrices {(

M1 0
0 M2

)∣∣∣∣ M1,M2 ∈ GLr(F`)
}
.

Considering only symplectic matrices among these, we find

C(∆) =

{(
M 0
0 (M−1)T

)∣∣∣∣ M ∈ GLr(F`)
}
. (8)

Next, we determine the number of possible unipotent matrices Fu for fixed Fs. This is
the number of unipotent symplectic matrices commuting with a certain Fs, say with ∆ for
simplicity.

We are looking for the number of matrices as in (8) with characteristic polynomial (X−1)2r,
that is, the number of matrices in GLr(F`) with characteristic polynomial (X−1)r. If r = 1,
there is only one such matrix; if r = 2, there are `2 such matrices by Lemma 3.7.

This yields the desired formulas

#S(1) =
`(`2 − 1)

`− 1
= `2 + `,

#S(2) =
`4(`2 − 1)(`4 − 1)

`(`− 1)(`2 − 1)
`2 = `5(`3 + `2 + `+ 1) = `8 + `7 + `6 + `5.

Step 4: Next, we count the number of matrices F ∈ GSp
(p)
4 (F`) that have 1 as an eigenvalue.

We do this separately for the two possible algebraic multiplicities of 1 that can occur. Write
charF as a product of (X − 1)r(X − p)r and a polynomial that does not have 1 as a zero.
First, we claim that for r = 1, there are

#Sp4(F`)
#Sp2(F`)#Sp2(F`)

#S(1)
(

#Sp2(F`)−Q(p, `, 1)#Sp2(F`)
)

(9)

matrices in GSp
(p)
4 (F`). To explain this, again consider the symplectic vector space

(F4
p, ω). Given F , we can decompose F4

p into two F -invariant 2-dimensional subspaces:
The eigenspaces for eigenvalues 1 and p, whose direct sum we denote by U , and Uω. Con-
versely, a decomposition of F4

p into two 2-dimensional symplectic subspaces U and Uω

together with p-symplectic matrices acting on U and Uω gives rise to a matrix F of the
form we are considering.
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We can now explain (9): The first factor in (9) is the number of ways of writing F4
p as

a direct sum of two 2-dimensional symplectic subspaces. The second factor counts by
definition of S(r) the number of ways F can act on U , and the third factor counts the
number of ways F can act on Uω. This concludes the case r = 1.

For r = 2, there are exactly #S(2) matrices in GSp
(p)
4 (F`) by definition of S(r).

Step 5: Dividing the sum of (9) and #S(2) by #Sp4(F`) we obtain

Q(p, `, 2) =
#S(1)

#Sp2(F`)
(1−Q(p, `, 1)) +

#S(2)

#Sp4(F`)

=
#S(1)

#Sp2(F`)

(
1− #S(1)

#Sp2(F`)

)
+

#S(2)

#Sp4(F`)
.

Plugging in our formulas for #S(1) and #S(2) and the formula for the order of the sym-
plectic group from Lemma 3.6 finishes the proof. �

Proposition 3.8 and Principle 3.5 yield the generalization of Lenstra’s Theorem 2.4 we want:
Let P(p, `) denote the probability that for a polynomial chosen uniformly at random from
Hp

6, the number of rational points on the Jacobian variety J of the associated hyperelliptic
curve is divisible by `.

Proposition 3.9. There exist constants C ∈ R>0 and c ∈ Z>0 such that for all prime
numbers p > 3 and ` 6= p,∣∣∣∣P(p, `)− `(`4 − `− 1)

(`4 − 1)(`2 − 1)

∣∣∣∣ 6 C
`c
√
p

if `|p− 1,

∣∣∣∣P(p, `)− `2 − 2

(`2 − 1)(`− 1)

∣∣∣∣ 6 C
`c
√
p

if ` 6 | p− 1.

Proof. Let C denote the union of all conjugacy classes of GSp
(p)
4 (F`) of matrices that have

1 as an eigenvalue. Then the result immediately follows from inserting the formulas of
Proposition 3.8 into the inequality (7) of Principle 3.5. �

We are now ready to derive the analog of the Galbraith-McKee conjecture for hyperelliptic
curves defined by polynomials in Hp

6. Let P1(p) denote the probability that an integer n
chosen uniformly at random from the Hasse-Weil interval [(

√
p− 1)4, (

√
p + 1)4] is prime.

Let P2(p) denote the probability that the Jacobian variety of a hyperelliptic curve over Fp,
whose associated polynomial is chosen uniformly at random from Hp

6, has a prime number
of rational points.

Conjecture 3.10. Define

cp :=
38

45
·
∏
`>2

(
1− `2 − `− 1

(`2 − 1)(`− 1)2

) ∏
`|p−1
`>2

(
1 +

`4 − `3 − `− 2

(`3 − 2`2 − `+ 3)(`2 + 1)(`+ 1)

)
, (10)
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where the products range over all prime numbers ` satisfying the stated conditions. Then
with P1(p) and P2(p) as above, we have

lim
p→∞

(
(P2(p)/P1(p))

/
cp

)
= 1.

Derivation. This is similar to the derivation of Conjecture 2.5: Following Proposition 3.9,
we approximate P2(p) by∏

6̀ |p−1
`6(
√
p+1)2

(
1− `2 − 2

(`2 − 1)(`− 1)

) ∏
`|p−1

`6(
√
p+1)2

(
1− `(`4 − `− 1)

(`4 − 1)(`2 − 1)

)
(11)

and as before approximate P1(p) by ∏
`6(
√
p+1)2

(
1− 1

`

)
. (12)

Now, a calculation entirely analogous to the one found in the derivation of Conjecture 2.5
shows that the quotient of (11) and (12) satisfies

∏
6̀ |p−1

`6(
√
p+1)2

(
1− `2 − 2

(`2 − 1)(`− 1)

) ∏
`|p−1

`6(
√
p+1)2

(
1− `(`4 − `− 1)

(`4 − 1)(`2 − 1)

) ∏
`6(
√
p+1)2

(
1− 1

`

)−1

=
38

45

∏
`<2

6(
√
p+1)2

(
1− `2 − `− 1

(`2 − 1)(`− 1)2

) ∏
`|p−1

2<`6(
√
p+1)2

(
1 +

`4 − `3 − `− 2

(`3 − 2`2 − `+ 3)(`2 + 1)(`+ 1)

)
.

Taking the limit as p goes to infinity yields (10).

There is, however, one subtlety: Since p < (
√
p + 1)2, we need to consider the case ` = p

as well now.

By Proposition 1.2, we have J(Fp)[p] ∼= (Fp)k for some k ∈ {0, 1, 2}. Choosing an ordered
basis for J(Fp)[p], we once again get a matrix of Frobenius in GLk(Fp), and, varying this
basis, a conjugacy class FH with respect to GLk(Fp)-conjugation. Let P(FE ⊂ C) denote
the probability that k = 2 and that FH is contained in a subset C of GL2(Fp). In analogy to
Principles 2.1 and 3.5, we will make use of the following statement. See [CFHS12, Section
10] for a discussion of its validity.

Principle 3.11. There exist constants C ∈ R>0 and c ∈ Z>0 such that for all prime
numbers p > 3 and any union C of orbits of the action of GL2(Fp) on itself,∣∣∣∣P(FH ⊂ C)−

#C
#GL2(Fp)

∣∣∣∣ 6 Cpc
√
p
.
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By Lemma 2.3, the proportion of matrices in GL2(Fp) that have 1 as an eigenvalue goes
to zero as p goes to infinity. By Principle 3.11, we conclude that the probability that the
number of rational points on J is no multiple of p approaches 1 as p goes to infinity, which
justifies ignoring the influence of p-torsion. �

As we did for Conjecture 2.5, we can give a numerical approximation for the number cp
from (10). It is contained in the interval [0.63987, 0.79890] — the probability that the
Jacobian variety of a randomly chosen hyperelliptic curve has a prime number of rational
points is a bit higher than the probability that a randomly chosen elliptic curve has a prime
number of rational points.
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