
Geometrically Reductive Groups and
Finitely Generated Rings of Invariants

Bachelor Thesis
Sebastian Schlegel Mejia

September 27, 2017

Advisor: Prof. Dr. R. Pink
Department of Mathematics, ETH Zürich



i

Abstract

We discuss when rings of invariants of algebras over an algebraically closed field
are finitely generated. We prove Nagata’s Theorem, which states that geometri-
cally reductive groups have finitely generated rings of invariants. Along the way,
we introduce linear algebraic groups, their representations, and different reductivity
conditions.
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INTRODUCTION iii

Introduction

Consider the polynomial ring R := k[X1, . . . , Xn] over an algebraically closed field k and
a group G ⊂ GLn(k) acting on R by linear substitutions of the variables Xi. We want
to study the polynomials which are invariant under G. Observe that the set of invariant
polynomials is a subring of R, aptly named the ring of invariants RG. So we can describe
the invariants by finding generators of RG as a k-algebra. But first, it would be nice to
know if and when RG is finitely generated over k.

More generally, we want to answer the following question.

Question 0.1. What conditions on the group G ⊂ GLn(k) and the action of G on a
finitely generated k-algebra R are sufficient to guarantee that the ring of invariants RG is
finitely generated over k?

A linear algebraic group is a subgroup of GLn admitting the structure of an algebraic
variety compatible with its group law. Examples include GLn, SLn and finite groups. By
taking the Zariski-closure of G ⊂ GLn, we can assume our group G in Question 0.1 is a
linear algebraic group (see Section 2.3).

For the set of invariants to even be a sub-k-algebra, the group G should definitely act
via k-algebra automorphisms. Actually, the group G needs to learn some manners and
act nicer, namely rationally. Rational actions are actions which respect the additional
structure linear algebraic groups carry. An example of a rational action is the action by
linear substitutions of the opening paragraph. We assume for the rest of the introduction
that G is a linear algebraic group acting rationally on R.

A first answer to Question 0.1 was given by P. Gordan [4], who constructed a finite
set of generators for certain rings of invariants of SL2(C). Hilbert was able to improve
Gordan’s result to SLn(C) in his famous paper Über die Theorie der algebraische Formen
[6]. Hilbert’s idea was to construct a certain SLn(C)-equivariant projection R � RSLn(C),
called a Reynolds Operator, and then deduce finite generatedness with the help of his
Basissatz. Using this method we generalize Hilbert’s result to the following theorem (see
the beginning of Chapter 6).

Theorem 0.2 (Hilbert). If all nonzero finite dimensional rational representations of G
are semisimple, i.e., every subrepresentation has a G-stable linear complement, then the
ring of invariants RG is finitely generated over k.
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However, this is a weak statement in positive characteristic, as not many matrix groups
(not even SLn, GLn, or all finite groups!) over a field of positive characteristic can guarantee
the semisimplicity of their representations. So we define a weaker condition on G called
geometric reductivity. Geometric reductivity is sufficient for finite generation of finitely
generated rings of invariants, a fact first proved by Nagata in [11].

Theorem 0.3 (Nagata). If G is a geometrically reductive group, then the ring of invari-
ants RG is finitely generated over k.

In order to justify that Theorem 0.3 is indeed satisfactory, we should show that SLn

and GLn are geometrically reductive. Although this is beyond the scope of this thesis,
in Section 5.3 we outline a method of proving geometric reductivity for certain groups
including SLn and GLn.

For the most part we are guided by Chapters 1 and 2 of the book Invariant Theory
by T.Springer [15]. Inspiration from Chapter 4 in S. Mukai’s book An Introduction to
Invariants and Moduli [9] is scattered throughout (especially in the section on linear re-
ductivity). I was introduced to Nagata’s Theorem and linear algebraic groups in Chapter
3 of the book Lectures on Invariant Theory by I. Dolgachev [2]. Other sources of ideas are
mentioned in passing.

Prerequistes for this thesis are a good knowledge of commutative algebra and basic
algebraic geometry over an algebraically closed field. Previous exposure to representation
theory is helpful.

I would like to thank Prof. Richard Pink for supervising this thesis and for many
helpful discussions.
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Table 1: An Incomplete History of Finitely Generated Rings of Invariants

1868 Gordan proves finiteness for certain rings of invariants of SL2(C) [4]
1890 Hilbert proves finiteness for certain rings of invariants of SLn(C) [6]
1900 Hilbert poses his 14th problem, conjecturing finiteness for all sub-

groups G ⊂ GLn(C) acting by linear substitutions on a polyno-
mial [15, page 37]

1916 Noether proves finiteness for the case of finite groups, with a bound
on the number of generators [8, page 14]

1950s The theory of linear algebraic groups is developed leading to the
notion of linearly reductive groups and Theorem 0.2 [15, page 37]

1959 Nagata gives a counterexample to Hilbert’s 14th problem [15, page
37]

1964 Nagata proves finiteness for geometrically reductive groups [11]
1964 Oda proves SL2 is geometrically reductive in characteristic 2, a

consequence being that SL2 has finitely generated rings of invariants
in characterstic 2 [5, page 67]

1969 Seshadri proves that GL2 and SL2 are geometrically reductive in all
characteristics, a consequence being that SL2 has finitely generated
rings of invariants in all characterstics [5, page 67]

1975 Haboush proves that reductive groups are geometrically reduc-
tive, incidentally proving finiteness for many groups including
GLn(k), SLn(k) in any characteristic. [5]

1979 Popov proves equivalence of having finitely generated ring of invari-
ants with geometric reductivity [14]
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Conventions

Throughout k is an algebraically closed field. Everything is over k, in particular, all vector
spaces are over k.

The dual of a vector space V is denoted by V ∨ and its elements are called linear forms.
For a basis B = {bi}i of a vector space we denote the basis dual to B by B∨ = {b∨i }i.

A finite R-module is an R-module M admitting a surjective R-linear map Rn � M .
We never call such modules “finitely generated”.

All topological notions refer to the Zariski-topology.

All representations are finite dimensional.

All actions are left actions.

Facts are true statements we do not prove. This does not mean there is nothing to prove.
The reader might wish to verify facts for themselves.
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1 Some Commutative Algebra

The following facts, concerning finiteness properties of rings, are essential tools for proving
that rings of invariants are finitely generated.

Theorem 1.1 (Hilbert’s Basissatz). A ring R is noetherian if and only if the polyno-
mial ring R[X] is noetherian.

Corollary 1.2. Every finitely generated k-algebra is noetherian.

Proposition 1.3. For any Z>0-graded ring R =
⊕

d>0Rd the augmentation ideal R+ =⊕
d>0Rd is finitely generated if and only if R is a finitely generated R0-algebra.

Proof. First we assume R is finitely generated over R0. Let a1, . . . , an ∈ R+ be generators
of positive degree. Let x ∈ R+. Write x =

∑
i∈Z>0 λia

i1
1 · · · ainn for certain λi ∈ R0. Since x

lies in the augmentation ideal R+ and all λi have degree 0, we deduce that every nonzero
summand must contain a nonzero power of at least one of the ai. Hence, the element x
lies in (a1, . . . , an). Varying x, we get the equality R+ = (a1, . . . , an), proving the “if” part
of the proposition.

Conversely, assume R+ = (a1, . . . , an) for some a1, . . . , an ∈ R+. Let x ∈ R. Write
x = x+ + x0 for certain elements x+ ∈ R+ and x0 ∈ R0. The summand x+ is an R-linear
combination of the ai, say x+ =

∑n
i=1 xiai for certain xi ∈ R. Since the ai have positive

degree, we see that the xi have degree strictly smaller than x+. By induction on the degree,
we can assume, without loss of generality, that x+ is an R0-linear combination of the ai,
whence follows that x is a linear polynomial in the ai with coefficients in R0. Varying x
proves the “only if” part of the claim.

Proposition 1.4. Let R ⊂ S be an integral extension of k-algebras. If S is finitely gener-
ated over k, then R is finitely generated over k and S is a finite R-module.

Proof. Write S = k[b1, . . . , bn]. Let fi ∈ R[X] be monic polynomials such that fi(bi) = 0
for i = 1, . . . , n. Let A ⊂ R be the k-algebra finitely generated by the coefficients of all
the fi. The bi generate S as an A-algebra and S is integral over A. So S is a finite and
therefore noetherian A-module. In particular, S is finite over R. As a submodule of S, we
find R to be a finite A-module. It follows that R is finitely generated over k.

Theorem 1.5 (Emmy Noether). For any finitely generated k-algebra R which is an
integral domain, the integral closure R̃ of R in a finite field extenstion L of Quot(R) is a
finite R-module. In particular, R̃ is a finitely generated k-algebra.
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Proof. See Corollary 13.13 in [3, page 297]
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2 Linear Algebraic Groups

The goal of this chapter is to introduce linear algebraic groups, which are the groups we
will be dealing with.

2.1 Varieties without choosing coordinates

Not all vector spaces appearing in this thesis come with a canonical basis. So we want to
define varieties without choosing coordinates.

Let V be a finite dimensional vector space.

Definition 2.1. A polynomial function f on V is a map f : V → k such that for some
basis b1, . . . , bn and every vector v =

∑n
i=1 βibi ∈ V the value f(v) is a polynomial in

the coefficients βi, i.e., there exists a polynomial f̃(X1, . . . , Xn) ∈ k[X1, . . . , Xn] such that
f(
∑n

i=1 βibi) = f̃(β1, . . . , βn).

Polynomial functions do not care about our choice of basis.

Lemma 2.2. Let b1, . . . , bn and c1, . . . , cn be bases of V and f : V → k a map. Then for
all vectors v =

∑n
i=1 βibi =

∑n
j=1 γjcj ∈ V the value f(v) is a polynomial in the βi if and

only if it is a polynomial in the γj.

Proof. First we notice that, by symmetry, both directions are identical up to change of
notation. Suppose f(v) is a polynomial in the βi. Let M = (µij)16i,j6n ∈ GLn(k) be the
base change matrix changing (cj) to (bi). We have βi =

∑n
j=1 µijγj. The value f(v) is a

polynomial in the βi and each βi is a polynomial in the γj, hence f(v) is also a polynomial
in the γj.

Example 2.3. The determinant det : End(V )→ k is a polynomial function on the vector
space End(V ).

Definition 2.4. The coordinate ring k[V ] of the vector space V is the ring of polynomial
functions on V (with pointwise addition and multiplication).

Remark 2.5. A polynomial function f : V → k is homogenous of degree d if f(λv) =
λdf(v) for all λ ∈ k and v ∈ V . Setting k[V ]d as the set of all homogenous polynomial
functions of degree d definies the Z>0-grading k[V ] =

⊕
d>0 k[V ]d with k[V ]0 = k. For any
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basis b1, . . . , bn of V its dual basis b∨1 , . . . , b
∨
n ∈ V ∨ ∼= k[V ]1 is a set of degree 1 homogeneous

generators of the coordinate ring k[V ]. In summary, k[V ] is a finitely generated graded
k-algebra.

Fact 2.6. For every basis b1, . . . bn of V the ring homomorphism k[V ]→ Symk(V ∨) given
by the assignments b∨i 7→ b∨i is an isomorphism of graded rings.

Remark 2.7. A group G ⊂ GL(V ) acts on k[V ] by gf(v) := f(g−1v). Since g−1 corre-
sponds to a base change, we say that G acts on k[V ] by linear substituions. The ring of
invariants under linear substitutions is k[V ]G := {f ∈ k[V ] | ∀g ∈ G : gf = f}; its elements
are G-invariants.

Proposition-Definition 2.8. (i) For every ideal a ⊂ k[V ] the set V(a) = {v ∈ V | ∀f ∈
a : f(v) = 0} is the vanishing set of a. The vanishing sets of ideals of k[V ] are the
closed sets of the Zariski-topology on V .

(ii) An affine algebraic variety is a closed subset of V . Each affine algebraic variety
X := V(a) ⊂ V has a coordinate ring k[X] := k[V ]/a.

(iii) A standard open subset is an open subset of the form Df := {v ∈ V | f(v) 6= 0} for
some f ∈ k[V ]. Every standard open subset Df is an affine algebraic variety with
coordinate ring k[V ][f−1].

Proof. Omitted.

Remark 2.9. We endow all finite dimensional vector spaces with the Zariski-topology. In
particular, the vector space End(V ) carries the Zariski-topology.

Fact 2.10. Closed subsets of affine algebraic varieties are affine algebraic varieties.

Fact 2.11. Every finite subset of a finite dimensional vector space is closed.

Definition 2.12. Let W be a finite dimensional vector space. Let X ⊂ V and Y ⊂ W
be affine algebraic varieties. A map ϕ : X → Y is a morphism of algebraic varieties if
there exists a ring homomorphism ϕ[ : k[Y ]→ k[X] such that for every linear form l ∈ W∨

and every x ∈ X we have l(ϕ(x)) = ϕ[(l)(x). An isomorphism of algebraic varieties is a
morphism of algebraic varieties possessing a two sided inverse that is also a morphism of
algebraic varieties.

Fact 2.13. Let W be a finite dimensional vector space. Let X ⊂ V and Y ⊂ W be affine
algebraic varieties and let ϕ : X → Y be a morphism of algebraic varieties.

(i) For all x ∈ X the image ϕ(x) is equal to
∑n

i=1 ϕ
[(b∨i )(x) for any basis b1, . . . , bn of

W .

(ii) For every g ∈ k[Y ] we have g(ϕ(x)) = ϕ[(g)(x).

Proposition 2.14. Every morphism of algebraic varieties ϕ : X → Y is continuous.
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Proof. We show that for every ideal b ⊂ k[Y ] the preimage of the closed set V(b) ⊂ Y is
equal to the closed set V(ϕ[(b)k[X]). Let x ∈ ϕ−1(V(b)) and f ∈ ϕ[(b). Let g ∈ b such that
ϕ[(g) = f . We have f(x) = ϕ[(g)(x) = g(ϕ(x)) = 0. So x lies in V(ϕ[(b)k[X]). Varying
x shows the inclusion ϕ−1(V(b)) ⊂ V(ϕ[(b)k[X]). Furthermore, for all x ∈ V(ϕ[(b)k[X])
and for all g ∈ b we have g(ϕ(x)) = ϕ[(g)(x) = 0, yielding the other inclusion.

Fact 2.15. The general linear group GL(V ) is the standard open subset Ddet ⊂ End(V ).
In particular, GL(V ) is an affine algebraic variety with coordinate ring

k[GL(V )] ∼= k[{Xi,j}ni,j=1, det((Xij)i,j)
−1].

2.2 Definition

Definition 2.16. A linear algebraic group (over k) is a Zariski-closed subgroup of GL(V )
for some finite dimensional vector space V .

Special Case 2.17. If V is taken to be kn then we know End(V ) is canonically isomorphic
to Matn(k) = kn

2
. Similarly, we view a linear algebraic group G ⊂ GL(kn) as a matrix

group which is closed in GLn(k) ⊂ Matn(k).

Important Fact 2.18. Every linear algebraic group is an affine algebraic variety

Lemma 2.19. For any subgroup G ⊂ GL(V ) inversion G → G, g 7→ g−1 and multiplica-
tion by a fixed element G → G, g 7→ hg (or g 7→ gh) are homeomorphisms. Moreover, if
G is a linear algebraic group, then g 7→ g−1 and g 7→ hg are automorphisms of algebraic
varieties.

Proof. Since multiplication, resp. inversion, in G is the restriction of multiplication, resp.
inversion, in GL(V ) it suffices to consider G = GL(V ). By choosing a basis we further
reduce to G = GLn(k). Note that, by Proposition 2.14, all isomorphisms of algebraic
varieties are homeomorphisms.

The map g 7→ h−1g is the inverse of g 7→ hg. So to prove that the maps g 7→ hg,
h ∈ G are isomorphisms of algebraic varieties, it suffices to prove that the maps g 7→ hg
are morphisms.

For every g ∈ G the matrix coordinates of hg are linear combinations of the matrix
coordinates of g. Hence, the k-algebra homomorphism ϕ[ : k[GLn] → k[GLn] given by
Xij 7→ Xij ◦ (h·) is well-defined. Since Xij(hg) = ϕ[(Xij)(g), it follows from Fact 2.13 that
g 7→ hg is a morphism of algebraic varieties.

Since the map g 7→ g−1 is its own inverse, it suffices to show that it is a morphism.
The inverse of a matrix M ∈ GLn is given by det(M)−1Madj, where Madj is the adjunct
of M . Therefore, the matrix coordinates of g−1 are polynomials in det(g)−1 and the
matrix coordinates of g. So we obtain a k-algebra homomorphism k[GLn] → k[GLn] by
Xij 7→ Xij ◦ (·)−1. We conclude, as before, that g 7→ g−1 is a morphism.
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In fact, a group is linear algebraic if and only if it is an affine algebraic variety such that the
inversion map and multiplication are morphisms of algebraic varieties (see [7, page 63]).

Definition 2.20. Let G and H be linear algebraic groups. An algebraic group homomor-
phism G→ H is a group homomorphism which is a morphism of algebraic varieties.

Special Case 2.21. If G and H are closed matrix groups, then a group homomorphism
ϕ : G → H is an algebraic group homomorphism if and only if there exist polynomial
functions fij ∈ k[G] such that the matrix coordinate ϕ(g)ij is equal to fij(g) for all i, j.

2.3 Invariants cannot tell the difference between a

group and its closure

Let V be a finite dimensional vector space.

Proposition 2.22. The Zariski-closure G of a subgroup G ⊂ GL(V ) is a linear algebraic
group.

Proof. We have to show that G is closed under inversion and multiplication.
For all elements h ∈ G the set hG contains G and is Zariski-closed as the preimage of

a Zariski-closed set under the continuous map GL(V )→ GL(V ), g → h−1g (Lemma 2.19).
Since the Zariski-closure of G is minimal among all Zariski-closed sets containing G, we
have G ⊂ hG for all h ∈ G. Since we also have G ⊂ h−1G, we deduce the equality G = hG
for every h ∈ G. Altogether we conclude G = GG. Furthermore,

G = GG =
⋃
g∈G

Gg =
⋃
g∈G

Gg ⊃
⋃
g∈G

Gg
continuity

=
⋃
g∈G

Gg = GG.

Hence, the set G is closed under multiplication.
By continuity of inversion, for all Zariski-closed sets C ⊂ GL(V ) containing G the set

C−1 is also a Zariski-closed set containg G. Therefore, G ⊂ C−1 or, equivalently, G−1 ⊂ C
for all Zariski-closed sets C ⊂ GL(V ). The equality G−1 = G follows.

Proposition 2.23. The ring of invariants under linear substitutions k[V ]G of a subgroup

G of GL(V ) (see Remark 2.7) is equal to the ring of invariants k[V ]G of its closure G.

Proof. We have the inlcusion k[V ]G ⊂ k[V ]G because all elements invariant under G are
invariant under the smaller group G.

Note that the closure of a subset S ⊂ End(V ) is given by V(I(S)) for the ideal
I(S) := {f ∈ k[End(V )] | ∀g ∈ S : f(g) = 0}. Let f ∈ k[V ]G be a G-invariant and v ∈ V .
Consider the polynomial function f̂v : End[V ] → k, g 7→ gf(v) − f(v). Observe that f̂v
vanishes on G and is in I(G). Since G = V(I(G)), the function f̂v must also vanish on G
which is the same as saying gf(v) = f(v) for every g ∈ G. Varying v shows that f is a

G-invariant. Varying f shows the equality k[V ]G = k[V ]G.
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Remark 2.24. By adapting the proof, we can show that a function k[V ] is G-invariant if
and only if it is invariant under a Zariski-dense subset of G.

2.4 Examples

Example 2.25. The special linear group SL(V ) is equal to V(det−1) ⊂ GL(V ) and is
therefore a linear algebraic group.

Example 2.26. The multiplicative group of k is the linear algebraic group GL1(k). We
often denote the multiplicative group of k by k× or, if we want to emphasize its algebraic
structure, by Gm.

Example 2.27. The additive group of k is viewed as a linear algebraic group via the
obvious isomorphism to the matrix group

Ga :=

{(
1 λ
0 1

) ∣∣∣∣λ ∈ k} = V(X11 − 1, X21, X22 − 1) ⊂ SL2(k).

Example 2.28. A torus is a group isomorphic to a finite power of the multiplicative group
Gm. Tori are linear algebraic groups. Indeed,

Gn
m
∼= {diag(λ1, . . . , λn) |λi ∈ k×} = V({Xij | i 6= j}) ∩GLn(k).

Example 2.29 (Finite groups are linear algebraic). The symmetric group Sn is iso-
morphic to the group Pn of n × n permutation matrices. Cayley’s Theorem states that
every finite group is a subgroup of some Sn or, equivalently, of some Pn. So finite groups
are closed subgroups of GLn.
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3 Rational Representations

In this chapter we look at rational representations, which are representations of linear
algebraic groups that keep track of the additional algebraic data. Those familiar with
representation theory will recognize that many of the notions discussed here are the same
as those of abstract representations up to the adjective “rational”.

Fix a linear algebraic group G.

Definition 3.1. A rational representation of G is an algebraic group homomorphism ρ :
G→ GL(V ) for some finite dimensional vector space V .

Remark 3.2. A rational representation ρ : G→ GL(V ) induces a linear action on V . The
G-translates of a vector v ∈ V are elements of the G-orbit Gv := {ρ(g)(v) | g ∈ G} of v.
When introducing a rational representation ρ : G→ GL(V ) we often just specify the vector
space V instead of the homomorphism ρ. In this case the G-translates of a vector v are
written either as gv or gv.

Example 3.3. If G ⊂ GL(V ), then the inclusion G ↪→ GL(V ) is a rational representation.

Fact 3.4. Every representation of a finite group is rational.

Definition 3.5. Let V be a rational representation of G.
(i) A subset S ⊂ V is G-stable if the set GS :=

⋃
s∈S Gs lies in S.

(ii) A subrepresentation of V is a G-stable subspace.

Fact 3.6. Every subrepresentation of a rational representation is also a rational represen-
tation.

Example 3.7. For any rational representation V of G we space of invariants as V G :=
{v ∈ V | ∀g ∈ G : gv = v} = {v ∈ V |Gv = {v}}. Its elements are called (G-)invariants.
Every subset of V G is G-stable.

Definition 3.8. (i) A rational representation of G is simple if it has exactly two sub-
representations.

(ii) A rational representation of G is semisimple if every subrepresentation possesses a
G-stable linear complement.
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Fact 3.9. A rational representation is semisimple if and only if it is completely reducible,
i.e., if it can be written as a finite direct sum of simple subrepresentations.

Definition 3.10. A G-linear map is a linear map ϕ : V → W of rational representations
of G which is G-equivariant, i.e., ϕ(gv) = gϕ(v) for all g ∈ G and v ∈ V . A G-isomorphism
is a G-linear map possessing a G-linear two-sided inverse.

Fact 3.11. A G-linear map is a G-isomorphism if and only if it is an isomorphism of
vector spaces.

We create new rational representations from old ones by applying constructions from
linear algebra.. Let ρ : G→ GL(V ) be a rational representation.

Example 3.12. Define the contragredient representation ρ∨ : G→ GL(V ∨) by

ρ∨(g)(l) := gl := l ◦ ρ(g−1)

for all g ∈ G and l ∈ V ∨. The representation ρ∨ is rational. If we let G act trivially on k,
then the G-invariants of V ∨ are precisely the G-linear forms.

Proof. By choosing a basis, we can assume GL(V ) = GLn(k). For every g ∈ G the matrix
ρ∨(g) is equal to (ρ(g)−1)t = ρ(g−1)t. Since ρ is a rational representation and inverting is
an automorphism of the algebraic variety G (Lemma 2.19), we conclude that the matrix
coordinates of ρ∨(g) are given by functions in k[G]. So ρ∨ is a rational representation.

If l ∈ (V ∨)G is a G-invariant linear form, then we have l(gv) = g−1
l(v) = l(v) = gl(v)

for all g ∈ G and v ∈ V , that is, l is G-linear. On the other hand, if l ∈ V ∨ is G-linear,
then gl(v) = l(g−1v) = g−1l(v) = l(v), that is, l is G-invariant.

Remark 3.13. We endow all dual spaces of rational representations with the contragre-
dient representation.

Example 3.14. Let σ : G → GL(W ) be an additional rational representation. Then the
vector space Homk(V,W ) is a rational representation, called the Hom-representation, via
the linear action of G given by gϕ := σ(g) ◦ϕ ◦ ρ(g−1). We might remember this definition
by writing ρ(g)(v) = gv and σ(g)(w) = gw and then noticing gϕ(v) = gϕ(g−1v) looks like
conjugation. The G-invariants of Homk(V,W ) are precisely the G-linear maps V → W .
Example 3.12 is really the special case Homk(V, k).

Example 3.15. Let U ⊂ V be a subrepresentation of V . There is a unique rational
representation ρV/U : G→ GL(V/U), the quotient representation, such that the projection
π : V � V/U is G-linear. The quotient representation ρV/U : G→ GL(V/U) is defined by
ρV/U(g)(v + U) := ρ(g)(v) + U for g ∈ G and v ∈ V .

Proof. By cleverly choosing bases of V and V/U we can assume that the matrix represen-
tation of ρV/U(g) is a block on the diagonal of the block-triangular matrix representation
of ρ(g). So the fact that ρ is an algebraic group homomorphism immediately implies that
ρV/U is also an algebraic group homomorphism. The proof of the G-linearity of V � V/U
and uniqueness are immediate verifications.



4. RATIONAL ACTIONS ON ALGEBRAS 10

4 Rational Actions on Algebras

Fix a linear algebraic group G and a finitely generated k-algebra R.

Definition 4.1. The group G acts rationally on R if it acts as a group of k-linear k-algebra
automorphisms and if R is a sum of finite dimensional rational representations Vi of G such
that the action of G on the Vi coincides with the action on R.

Fact 4.2. If G acts rationally on R, then the vector space spanned by the G-orbit of any
element a ∈ R is finite dimensional and every G-stable finite dimensional subspace V ⊂ R
is a rational representation.

Example 4.3 (Regular action). Let V be a rational representation of G. Define an
action α : G × k[V ] → k[V ] by gf(v) = f(g−1v) for v ∈ V and f ∈ k[V ]. The action
α preserves the grading on k[V ]: for all f ∈ k[V ]d, g ∈ G, v ∈ V , and λ ∈ k we have
gf(λv) = f(g−1λv) = f(λg−1v) = λd(gf(v)). Hence, the k-algebra k[V ] is the union of the
rational representations

⊕n
d=0 k[V ]d, n > 0. So α is a rational action, called the regular

action of G on k[V ].

Definition 4.4. Let G act rationally on R.
(i) An element x ∈ R is G-invariant if gx = x for all g ∈ G.

(ii) A subset B ⊂ R is G-stable if gb ∈ B for all b ∈ B.

(iii) The ring of invariants of R is the subring, denoted RG, of G-invariant elements of R.

Example 4.5. Let V be a rational representation of G. Since the regular action on k[V ]
respects the grading, we have k[V ]Gd = k[V ]d ∩ k[V ]G. Therefore, the ring of invariants
k[V ]G =

⊕
d>0 k[V ]Gd is Z>0-graded.

Definition 4.6. Let G act rationally on R and on a finitely generated k-algebra S. A
k-algebra homomorphism ϕ : R → S is a G-homomorphism if it is G-equivariant. A G-
isomorphism is a G-homomorphism with a G-equivariant two-sided inverse.

Fact 4.7. (i) The kernel of a G-homomorphism is G-stable.

(ii) If G acts rationally on R and a ⊂ R is a G-stable ideal, then there is a unique rational
action of G on R/a, given by g(a + a) := ga + a, such that the projection R � R/a
is G-equivariant.
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(iii) A G-homomorphism is a G-isomorphism if and only if it is an isomorphism of k-
algebras.

Proposition 4.8. If G acts rationally on R, then there exists a vector space V and a
surjective G-homomorphism k[V ∨] � R. In particular, the k-algebra R is G-isomorphic
to k[V ∨]/ ker(ϕ).

Proof. Let V ⊂ R be a finite dimensional G-stable subspace that generates R as a k-
algebra. (For example the space spanned by generators a1, . . . , an of R.) Note that
V ↪→ k[V ∨] and that G acts rationally on k[V ∨] via the regular action. The k-algebra
k[V ∨] is naturally isomorphic to the symmetric algebra Symk V =

⊕
d>0 Symd

k V and sat-
isfies a universal property. By this universal property, there exists a unique k-algebra
homomorphism ϕ : k[V ∨] → R such that ϕ|V is the inclusion V ↪→ R. Additionally, the
map ϕ|V is G-equivariant and V generates k[V ∨] as a k-algebra. Hence, the homomorphism
ϕ is a G-homomorphism and surjects onto R.
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5 Reductivity Conditions

In this chapter we define what a geometrically reductive group is. We motivate the defi-
nition by first studying groups whose nonzero rational representations are semisimple, the
so-called linearly reductive groups. Throughout the discussion we mention some groups
which do or do not satisfy the reductivity conditions.

5.1 Linearly reductive groups

Definition 5.1. A linear algebraic group G is linearly reductive if for every rational repre-
sentation V and every nonzero G-invariant vector v ∈ V G r {0} there exists a G-invariant
linear form l ∈ (V ∨)G that does not vanish at v, i.e., l(v) 6= 0.

Proposition 5.2. For any linear algebraic group G the following three statements are
equivalent.

(i) The group G is linearly reductive.

(ii) Every rational representation of G is semisimple.

(iii) For every surjective G-linear map ϕ : V � W of rational representations the induced
map of subspaces of invariants ϕ : V G → WG is surjective.

Proof. We show the sufficiently many implications “(i) =⇒ (ii)”, “(ii) =⇒ (iii)” and
“(iii) =⇒ (i)”.

We repeatedly use Examples 3.12, 3.14, and 3.15. Throughout the proof we identify
finite dimensional vectorspaces V with their double dual V ∨∨ := (V ∨)∨ via the canonical
isomorphism

eval : V ∼−−→ V ∨∨, v 7→ evalv : l 7→ l(v).

Moreover, if V is a rational representation of G and V ∨∨ is endowed with the contragredient
representation of V ∨, then this isomorphism is a G-isomorphism.

Let V be an arbitrary nonzero rational representation of G.

“(iii) =⇒ (i)”: Let G act trivially on k. Let v ∈ V G r {0} be a nonzero G-invariant.
Then evalv : V ∨ � k is a surjective G-equivariant linear form. Applying (iii) to evalv yields
the surjective map evalv : (V ∨)G � kG = k. A preimage l ∈ (V ∨)G of 1 ∈ k is a G-invariant
linear form which does not vanish at v.
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“(ii) =⇒ (iii)”: Let ϕ : V � W be a surjective G-linear map. Applying V ’s assumed
semisimplicity, we find a G-stable linear complement V ′ of ker(ϕ) ⊂ V . The representation
V ′ is G-isomorphic to W . Hence, the space of invariants (V ′)G is G-isomorphic to WG.
Since V G contains (V ′)G, we conclude that V G surjects onto WG.

“(i) =⇒ (ii)”: The idea for this implication is the following. We want a G-stable linear
complement of a proper subrepresentation U ⊂ V . Each linear complement is the image
of some linear section of the projection V � V/U , and if a linear section is G-equivariant,
then the image is G-stable. So all we need to do is find a G-linear section.

First we fix some notation. Let U ⊂ V be a proper subrepresentation. We combine
Examples 3.14 and 3.15 to obtain a rational representation Hom(V/U, V ). Let π : V � V/U
be the canonical projection and σ : V/U → V a linear section of π, i.e., σ ∈ Hom(V/U, V )
such that π ◦ σ = idV/U . Let T := spank(Gσ) be the subrepresentation of Hom(V/U, V )
spanned by the G-orbit of σ. Finally, let T ′ ⊂ T to be the subspace spanned by the set
{gσ − σ | g ∈ G}.

For every g ∈ G and v ∈ V we have

π ◦ (gσ − σ)(v + U) = π(gσ(g−1v + U))− π(σ(v + U)) =

= gπ(σ(g−1v + U))− π(σ(v + U)) = gg−1v − v + U = 0.

In other words, for every g ∈ G the image of gσ − σ is contained in the kernel of π. If σ
were in T ′ then π ◦ σ = 0, but this is impossible, because U is a proper subrepresentation
and thus idV/U 6= 0. So σ is in T r T ′ and T = T ′ + spank(σ). We legally choose a
nonzero linear form l : T → k such that l|T ′ = 0. The differences gl − l vanish on all of T ,
meaning that l is G-invariant. By invoking G’s linear reductivity, we find a G-invariant
vector τ ∈ TG = (T∨∨)G such that l(τ) 6= 0. We know τ cannot be in T ′, thus when we
write τ = aσ +

∑
g∈G ag(

gσ − σ) for some a, ag ∈ k, that is, as a k-linear combination of

σ and gσ − σ, we have a 6= 0. Replace τ with a−1τ . We check that the G-linear map
τ : V/U → V is a section of π. Indeed,

π ◦ τ = π ◦ τ = π ◦ (σ +
∑
g∈G

ag(
gσ − σ)) = π ◦ σ = idV/U .

Example 5.3. Let G be a finite group. It is known from the representation theory of
finite groups that if char(k) does not divide the order of G, then every nonzero finite
dimensional representation of G is semisimple or, equivalently, the group G is linearly
reductive. If char(k) divides G, then G need not be linearly reductive.

Theorem 5.4. Tori are linearly reductive.

Proof. First we prove that Gm is linearly reductive by showing that every rational repre-
sentation of Gm is semisimple.

By choosing a basis, it suffices to consider a rational representation ρ : Gm → GLn.
Since k[Gm] = k[X±1], for every t ∈ Gm the matrix coordinates of ρ(t) are equal to fij(t)
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for certain fij(X) ∈ k[X±1]. In particular, the matrix coordinates of ρ(t) are k-linear
combinations of integer powers of t. (Here we crucially use the rationality of ρ.) Choose
matrices Mi ∈ Matn(k), almost all equal to zero, such that ρ(t) =

∑
i∈Z t

iMi for all t ∈ Gm.
For all t, s ∈ Gm we have∑

i

tisiMi = ρ(ts) = ρ(t)ρ(s) =
∑
i,j

tisjMiMj. (5.1)

Exploiting the linear independence of the set of maps {t 7→ ti | i ∈ Z}, we deduce from
(5.1) the equality

si =
∑
j

sjMiMj (5.2)

for every i. Applying linear independence to (5.2) yields the matrix equalities

MiMj = 0 (5.3)

M2
i = Mi (5.4)

for every i and j. Set Vi := im(Mi) for every i. If a vector v is in the intersection Vi ∩ Vj,
then v = Mivi = Mjvj for some vi, vj ∈ V . Multiplying v with Mi yields

v = Mivi
(5.4)
= M2

i vi = Miv
(5.3)
= MiMjvi = 0.

Consequently we have Vi ∩ Vj = 0. Furthermore, every v ∈ V is equal to ρ(1)v =
∑

iMiv,
which lies in

⊕
i Vi. Since almost all Mi are zero, altogether we have shown that the

representation ρ is completely reducible or, equivilantely (Fact 3.9), that ρ is semisimple.

Now we show that if Gn−1
m is linearly reductive, then so is Gn

m. Whence the theorem
follows inductively. We view Gn

m as the group G of diagonal n × n-matrices, the group
Gn−1

m as the group H of diagonal matrices with first diagonal entry equal to 1, and Gm as
the group N of diagonal matrices with last (n− 1)-diagonal entries equal to 1. The groups
H and N are (normal) subgroups of G.

Let ϕ : V � W be a surjective G-linear map. Since H is assumed to be linearly
reductive, Proposition 5.2 (iii) tells us that the induced H-linear map ϕ′ : V H � WH is
surjective. Since G is commutative, the group N acts on V H and WH . Also, the map
ϕ′ : V H � WH is N -linear. We have already shown that N is linearly reductive, so the
induced map ϕ : (V H)N � (WH)N is surjective.

We claim (V H)N = V G. The G-invariants are also invariants of any subgroup of G,
so we have the inclusion V G ⊂ (V H)N . Let v ∈ (V H)N and g ∈ G. By definition of the
groups G, H and N , we find certain gN ∈ N and gH ∈ H such that g = gNgH . Hence
gv = gNgHv = gNv = v. Varying g and v the inclusion (V H)N ⊂ V G follows. Similarly, we
have (WH)N = WG.

Remark that, in addition to being surjective, the map ϕ : V G � WG agrees with ϕ.
So the statement (iii) in Proposition 5.2 is true for the group G = Gn

m.
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Example 5.5. Assume char(k) = 2. Consider the rational representation ρ : SL2(k) →
GL3(k) given by (

a b
c d

)
7→

1 ac bd
0 a2 b2

0 c2 d2

 .

From this block triangular form we deduce that ρ is reducible and that the subspace of k3

spanned by (1, 0, 0)t is G-stable. If ρ is semsimple, then there exists a basis of k3 such that
with regard to this basis ρ(g), g ∈ SL2(k), has block diagonal form with first block equal to
1 ∈ k. Since in characteristic 2 the expressions ac and bd are not linear polynomials in a2,
b2, c2 and d2, such a basis does not exist. Consequently, the group SL2(k) is not linearly
reductive.

Remark 5.6. Example 5.5 was taken from [10], where Nagata proves that in positive
characteristic the only connected linearly reductive groups are subgroups of tori.

5.2 Geometrically reductive groups

Definition 5.7. A linear algebraic group G is geometrically reductive if for every rational
representation V of G and every nonzero G-invariant vector v ∈ V G r {0} there exists a
nonconstant G-invariant homogeneous polynomial function f ∈ k[V ]Gd r k that does not
vanish at v, i.e., f(v) 6= 0.

Fact 5.8. Every linearly reductive group is geometrically reductive.

Proposition 5.9. All finite groups are geometrically reductive.

Proof. Let G be a finite group and V a representation of G. Let v ∈ V Gr{0} be a nonzero
G-invariant vector. Choose a linear form l ∈ V ∨ such that l(v) 6= 0. We check that the
G-invariant degree |G| homogeneous polynomial function f :=

∏
g∈G

gl is the one we want.
Indeed,

f(v) =
∏
g∈G

gl(v) =
∏
g∈G

l(g−1v)
v invariant

= l(v)|G| 6= 0.

Proposition 5.10. If char(k) = 0, then a linear algebraic group over k is geometrically
reductive if and only if it is linearly reductive.

Proof. Let G be a geometrically reductive group and V a rational representation. Let w ∈
V Gr{0} be a nonzero invariant and f ∈ k[V ]Gd be a nonconstant homogeneous G-invariant
polynomial function which does not vanish at w. We can write for any v1, . . . , vn ∈ V and
λ1, . . . , λd ∈ k

f(λ1v1 + . . .+ λdvd) =
∑

i1+...+id=d

λi11 · · ·λ
id
d fi1,...,id(v1, . . . , vd) (5.5)
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such that each function fi1,...,id : V d → k, (v1, . . . , vd) 7→ fi1,...,id(v1, . . . , vd) is multihomo-
geneous of multidegree (i1, . . . , id), i.e., f(λ1v1, . . . , λdvd) = λi11 · · ·λ

id
d f(v1, . . . , vd) for all

λ1, . . . , λd ∈ k, and the function f1,...,1 is multilinear.
Plugging v1 := . . . := vd := v into (5.5) yields∑

i1+...+id=d

λi11 · · ·λ
id
d fi1,...,id(v, . . . , v) =

∑
i1+...+id=d

fi1,...,id(λ1v, . . . , λdv)

= f(λ1v + . . .+ λdv)

= (λ1 + . . .+ λd)
df(v)

= (λd1 + . . .+ d!λ1 · · ·λd)f(v).

By comparing coefficients of the monomials λi11 · · ·λinn , we deduce the equality

f1,...,1(v, . . . , v) = d!f(v) (5.6)

for all v ∈ V . Define l : V → k by l(v) := f1,...,1(v, w, . . . , w). The multilinearity of
f1,...,1 implies that l is a linear form. Since f is G-invariant and the action of G re-
spects the multidegree, the function f1,...,1 is G-invariant, i.e., we have gf1,...,1(v1, . . . , vn) :=
f1,...,1(g

−1v1, . . . , g
−1vn) = f1,...,1(v1, . . . , vn). The G-invariance of w and f1,...,1 imply that l

is G-invariant. Note that d! 6= 0 because char(k) = 0. So we have

l(w)
(5.6)
= d!f(w) 6= 0.

Varying w and V shows that G is linearly reductive.

This proof is inspired by the basic properties of polarisation, a concept from Classical
Invariant Theory (see [8, page 34]).

5.3 Outlook: A criterion for geometric reductivity

To show that groups such as SL(V ) and GL(V ) are geometrically reductive, we use facts
about reductive groups. In particular, we apply Haboush’s Theorem (Theorem 5.14), which
asserts that every reductive group is geometrically reductive. We do not give proofs of these
facts. See [7] for a thorough introduction to reductive groups. Proposition 5.18 and its
proof are taken from [13].

Let G be a linear algebraic group.

Definition 5.11. A unipotent element of a linear algebraic group G ⊂ GL(V ) is an ele-
ment which is the sum of the identity and a nilpotent endomorphism of V .

Proposition-Definition 5.12. (i) A largest connected normal solvable subgroup of G
exists and is called the radical of G and is denoted by rad(G).

(ii) The subgroup of unipotent elements in rad(G) is normal in G and is called the
unipotent radical of G and is denoted by radu(G).
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Definition 5.13. (i) A semisimple group is a nontrivial linear algebraic group with
trivial radical.

(ii) A reductive group is a nontrivial linear algebraic group with trivial unipotent radical.

Theorem 5.14 (Haboush [5]). Every reductive group is geometrically reductive.

Theorem 5.15 (Miyata, Nagata [12]). Every geometrically reductive group is reduc-
tive.

Lemma 5.16. Let G be a linear algebraic group and N ⊂ G a normal closed subgroup.
For every rational representation V of G the subspace of N-invariants V N is a subrepre-
sentation of V

Proof. Let v ∈ V N and g ∈ G and n ∈ N . Then for all n ∈ N we have

ngv = g (g−1ng)︸ ︷︷ ︸
∈N

v = gv.

Hence, gv is N -invariant and lies in V N . So V N is G-stable.

Lemma 5.17. The subspace of invariants V radu(G) of any nonzero finite dimensional rep-
resentation V of the unipotent radical radu(G) is nonzero.

Proof. Consider a unipotent element u = 1 + ϕu ∈ radu(G). Then for all v ∈ V we have
uv = v+ϕu(v). Since the kernel of ϕu is nonempty there must be a vector v fixed by u. So
we would need to find a vector which is simultaneaously killed by all ϕu, for u ∈ radu(G).
Doing this requires hard facts from representation theory. See [7, page 112] for a theorem
which implies this lemma.

Proposition 5.18. If a linear algebraic group G possesses a simple faithful representation
ρ : G ↪→ GL(V ) then G is reductive.

Proof. The hard work is done by Lemma 5.17. The unipotent radical radu(G) is normal.
Therefore, the space V radu(G) is a nonzero subrepresentation of V . Since V is simple we
must have V = V radu(G). So radu(G) acts trivially on V , that is, ρ(radu(G)) = {idV }.
Since ρ is faithful, it follows that radu(G) is trivial.

Together, Proposition 5.18 and Theorem 5.14 give us a method of proving geometric
reductivity.

Example 5.19 (SL(V ) and GL(V ) are geometrically reductive). The group SL(V )
acts faithfully on V . For every pair of vectors v, v′ ∈ V there exists an element g ∈ SL(V )
such that gv ∈ spank(v′). In particular, no proper nonzero subspace can be SL(V )-stable.
Therefore V is a simple representation of SL(V ). Now, Proposition 5.18 tells us that SL(V )
is reductive and, by Haboush’s Theorem, geometrically reductive. The same argument
shows that GL(V ) is geometrically reductive.
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6 Nagata’s Theorem and its Proof

First, we prove two special cases of finiteness: finite groups and linearly reductive groups.
Then, using a lot of commutative algebra, we stitch together the ideas of the simpler cases
to create the proof of Nagata’s Theorem, Theorem 6.5.

The proof of Theorem 6.3 is taken from [8]. The proof of Theorem 6.5 follows the
argument in the original paper [11] with the help of recreations in [2, page 43] and [15, page
24].

Proposition 6.1. If a finite group G acts rationally on a finitely generated k-algebra R,
then the ring of invariants RG is a finitely generated k-algebra.

Proof. For every x ∈ R the monic G-invariant polynomial fx(X) :=
∏

g∈G(X−gx) vanishes

at x. Hence the ring extenstion RG ⊂ R is integral. We conclude, by Proposition 1.4, that
RG is finitely generated over k.

Lemma 6.2. For every rational representation V of a linearly reductive group G there
exists a unique G-linear projection π : k[V ] � k[V ]G such that π(hf) = hπ(f) for every
invariant h ∈ k[V ]G and polynomial f ∈ k[V ]. This projection is called a Reynolds-
Operator.

Proof. Consider the rational representations Vn :=
⊕n

d=0 k[V ]d. Applying G’s linear re-
ductivity, we choose G-stable linear complements V ′n of the subspaces of G-invariants
V G
n =

⊕n
d=0 k[V ]Gd ⊂ Vn. Let πn : Vn � Vn/V

′
n
∼= V G

n be the canonical G-linear pro-
jections. Observe that for n < m the projections πn and πm agree on Vn. We get a linear
projection π : k[V ]� k[V ]G which agrees with πn on Vn by defining π(f) := πdeg(f)(f) for
every f ∈ k[V ].

Choose N large enough such that hf ∈ VN . Write f = πN(f) + f ′ for some f ′ ∈ V ′N .
We have π(hf) = πN(hπN(f) + hf ′) = hπ2

N(f) + 0 = hπ(f). So π is the desired Reynolds-
Operator. Uniqueness follows from the fact that any such projection must agree with πn
on Vn.

Theorem 6.3. If a linearly reductive group G acts rationally on a finitely generated k-
algebra, then the ring of invariants RG is a finitely generated k-algebra.

Proof. We first prove the theorem for R = k[V ] for some rational representation V of
G. In this case, we have a Reynolds-Operator, call it π : k[V ] � k[V ]G. Consider the
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augmentation ideal of the ring of invariants RG
+ =

⊕
d>0 k[V ]Gd . By Hilbert’s Basissatz, the

ideal a ⊂ R generated by RG
+ ⊂ R is finitely generated. Choose homogeneous generators

f1, . . . , fn ∈ RG
+ of a. For all h ∈ RG

+ we have h =
∑

i aifi for some ai ∈ R and

h = π(h) =
∑
i

π(ai)︸ ︷︷ ︸
∈RG

fi,

thus h ∈
∑

i fiR
G. Hence the fi generate RG

+ as an ideal of RG. Using Proposition 1.3 we
deduce that RG is finitely generated over RG

0 = k.
Now let R be arbitrary. By Proposition 4.8, there exists a surjective G-homomorphism

k[V ] � R. Using linear reductivity in the form of Proposition 5.2 (iii), we conclude that
the induced map k[V ]G � RG is surjective. Since we already proved that k[V ]G is finitely
generated, it follows that RG is finitely generated.

Lemma 6.4 (Main Step). Let G be a geometrically reductive group acting rationally on
the finitely generated k-algebras R and S. If ϕ : R � S is a surjective G-homomorphism,
then the induced map of invariants ϕ : RG → SG is integral. Additionally, if G is linearly
reductive, then ϕ : RG → SG is surjective.

Proof. It suffices to show that for all invariants b ∈ SG there exists a positive integer d > 0
such that bd ∈ ϕ(RG). This clearly holds for b = 0, so we assume for the rest of the proof
that b 6= 0.

Let a ∈ R be a preimage of b. Consider the vector space V spanned by the G-orbit of
a. The vector space V is finite dimensional because G acts rationally on R. Since b is an
invariant, we have ϕ(ga− a) = gb− b = 0 for all g ∈ G or, in other words, ga− a ∈ ker(ϕ)
for all g ∈ G. Set U := V ∩ ker(ϕ) and observe that U is G-stable as the intersection
of two G-stable sets. Choose a basis a1, . . . , an of U . Since b 6= 0, its preimage a is not
in U . Furthermore, the expression ga = ga − a + a shows that every G-translate lies in
U + span(a). In summary, the set {a, a1, . . . , an} is a basis of V .

We claim that a∨ : V → k is a G-invariant linear form. Note that a∨ vanishes on U .
Let v ∈ V . We can write v = λa+ u for certain λ ∈ k and u ∈ U . For all g ∈ G we have

ga∨(v) = a∨(g−1v) = a∨(λg−1a+ g−1v′).

Using the G-invariance of U we have

ga∨(v) = a∨(λg−1a) = a∨(λa+ λ(g−1a− a)︸ ︷︷ ︸
∈U

) = a∨(λa) = a∨(v),

which shows our claim.
We use G’s geometric reductivity to get a nonconstant homogeneous G-invariant poly-

nomial f ∈ k[X,X1, . . . , Xn]Gd = k[V ∨]Gd such that f(a∨) = f(1, 0, . . . , 0) 6= 0. By
scaling f , we can assume that f is monic in the variable X. Therefore, the difference
f(a, a1, . . . , an) − ad lies in the ideal (a1, . . . , an), which itself is contained in ker(ϕ). We
have

bd = ϕ(ad) = ϕ(ad + f(a, a1, . . . , an)− ad) = ϕ(f(a1, . . . , an)).
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Because f is G-invariant, the integer d does the job.
If G is linearly reductive, then we can take d = 1 and surjectivity follows.

It is worth comparing the above proof to the proof of Proposition 5.2.

Theorem 6.5. If a geometrically reductive group G acts rationally on the finitely generated
k-algebra S, then the ring of invariants SG is a finitely generated k-algebra.

Proof. Applying Proposition 4.8, we reduce to the case S = k[V ]/b for some G-stable ideal
b ⊂ S.

Step 1. Assume b is homogeneous.

Consider the set of ideals

S1 :=

{
a′ ⊂ k[V ]

∣∣∣∣ a′G-stable homogenous ideal with b ⊂ a′,
(k[V ]/a′)G not finitely generated over k

}
.

Showing that SG is finitely generated over k is the same as showing that S1 is empty.
Assume, by contradiction, that S1 is not empty. As a nonempty set of ideals of a noetherian
ring, the set S1 has a maximal element a. Let R be the graded k-algebra k[V ]/a. We obtain
a contradiction by showing that the ring of invariants RG is finitely generated.

Claim 1. For every nonzero G-stable homogenous ideal a′ ⊂ R the ring RG/(a′ ∩ RG) is
finitely generated over k and (R/a′)G is a finite RG/(a′ ∩RG)-module.

The maximality of a implies the finite generatedness of (R/a′)G over k. Lemma 6.4
implies that the extension RG/(a′ ∩ RG) ⊂ (R/a′)G is integral. Applying Propositon 1.4
we deduce that RG/(a′ ∩ RG) is finitely generated over k and that (R/a′)G is a finite
RG/(a′ ∩RG)-module, which proves Claim 1.

Assume that R is an integral domain. Let f ∈ RG be a homogeneous invariant of
positive degree d. SinceR is an integral domain and f 6= 0, all x ∈ R satisfying g(fx)−fx =
0 for all g ∈ G are G-invariant. Equivalently, we have fR ∩ RG = fRG. By Claim 1, the
ring RG/(fR∩RG) = RG/fRG is finitely generated over k. From Proposition 1.3 we know
that RG

+/fR
G is finitely generated over k, say by the elements f1 + fRG, . . . , fn + fRG.

Hence RG
+ is generated by the finitely many elements f, f1, . . . , fn. Using Proposition 1.3,

we deduce the finite generatedness of RG over RG
0 = k. This is a contradiction to a ∈ S1.

Now assume that R has zero divisors. If there is no invariant zero divisor, then we may
procced as in the previous paragraph. So we choose an invariant zero divisor f ∈ RG. We
can choose f to be homogeneous. Indeed, if there is an invariant zero divisor, then it can
be written as the sum of homogeneous invariants, which must be zerodiviors. Furthermore,
since R0 = k and f is a zero divisor, the degree of f is positive.

Consider the annihilator Ann(f) := {x ∈ R|fx = 0}, which is a homogeneous ideal.
As f is G-invariant, for all x ∈ Ann(f) we have fgx = gfgx = g(fx) = 0. So Ann(f) is G-
stable. By Claim 1, we know that (R/Ann(f))G is a finite R1 := RG/Ann(f)∩RG-module
and that both R1 and R2 := RG/fR ∩RG are finitely generated k-algebras.
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Let A ⊂ RG be the k-algebra generated by representatives of generators of both R1

and R2. Since A surjects onto R1, the ring (R/Ann(f))G is integral over A/Ann(f) ∩ A.
So (R/Ann(f))G is a finite A/Ann(f) ∩A-module. Choose representatives b1, . . . , bn ∈ R
of A/Ann(f) ∩ A-module generators of (R/Ann(f)). Observe that gbi − bi + Ann(f) = 0
for all i and g ∈ G, which implies that fbi is G-invariant for all i.

We claim that RG is finitely generated over A. Let x ∈ RG. The ring A surjects
onto R2. Choose an a ∈ A such that x = a mod fR. Let r ∈ R such that x − a = fr.
The G-invariance of x− a implies that the difference r− gr annihilates f or, equivalently,
r + Ann(f) ∈ (R/Ann(f))G. Since (R/Ann(f))G is a finite A/Ann(f) ∩ A-module, we
write r + Ann(f) =

∑
i aibi + Ann(f) for some ai ∈ A. Hence x = a +

∑
i aifbi and,

therefore, the element x lies in A[fb1, . . . , fbn]. Varying x proves our claim. As A is a
finitely generated k-algebra, it follows that RG is a finitely generated k-algebra, which is a
contradiction to a ∈ S1. We have done Step 1.

Step 2. The general case.

We want to show that the set

S2 :=

{
a′ ⊂ k[V ]

∣∣∣∣ a′G-stable ideal with b ⊂ a′,
(k[V ]/a′)G not finitely generated over k

}
is empty. By contradiction assume S2 is not empty and pick a maximal element a. Set
R := k[V ]/a. As before, we find a contradiction by showing that RG is finitely generated
over k.

Claim 2. For all nonzero G-stable ideals a′ ⊂ R the ring RG/(a′∩RG) is finitely generated
over k and (R/a′)G is a finite RG/(a ∩RG)-module.

The proof is analagous to that of Claim 1.

If RG contains zero diviors, then we argue as in Step 1 by dropping the word “homo-
geneous” and replacing references to Claim 1 with references to Claim 2.

Assume thatRG is an integral domain. By Lemma 6.4, the surjectiveG-homomorphism
k[V ]� R induces the integral extension

R′ := k[V ]G/(a0 ∩ k[V ]G) ↪→ RG.

Applying Step 1 to the graded ring k[V ] proves that R′ is finitely generated over k. Let K
be the quotient field of RG and let K ′ be the quotient field of R′.

We claim that K is a finitely generated field extension of k. Consider the multiplicative
subset U ⊂ R of all nonzero zero divisors in R. (In the case that R is an integral domain,
the ring U−1R is the quotient field of R.) Choose a maximal ideal m ⊂ U−1R. All nonzero
invariants of R are not zero divisors. Hence, the nonzero invariants are units in U−1R. In
particular, we have RG∩m = (0). Consequently, K is a subfield of the field L := U−1R/m.
As the quotient field of the finitely generated k-algebra R/m, the field L is finitely generated
as a field over k. It follows that K is finitely generated as a field over K ′.
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Since R′ ⊂ RG is integral, the field extension K/K ′ is algebraic and, therefore, finite.
Applying Noether’s Theorem, Theorem 1.5, we find that the integral closure R̃′ of R′ in
K is finitely generated over k. Use Proposition 1.4 together with the fact that RG ⊂ R̃′ is
an integral extension to conclude that RG is finitely generated over k. This is our desired
contradiction.

Remark 6.6. The assumption that G is geometrically reductive is only used when apply-
ing Lemma 6.4.

Remark 6.7. Nagata’s Theorem guarantees existence of a finite generating set but does
not tell us how to find such a set. In the book Computational Invariant Theory, Harm
Derksen and Gregor Kemper [1] discuss algorithms and their implementation for finding
generating sets in different situations such as when G is finite, linearly reductive, or geo-
metrically reductive.

Remark 6.8. By a theorem of Popov [14], a linear algebraic group is geometrically re-
ductive if and only if for every finitely generated k-algebra R on which G acts rationally
the rings of invariants RG is finitely generated over k.

We conclude with some fun examples of finite generating sets of certain rings of invari-
ants. The examples are taken from [8, pages 4-8].

Example 6.9. A standard example of a finitely generated ring of invariants is the ring
of symmetric functions k[X1, . . . , Xn]Sn = k[s1, . . . , sn], where the sr are the elementary
symmetric functions, that is, sr =

∑
16i1<...<ir6n

Xi1 · · ·Xir .

Example 6.10. Let GLn(k) act by conjugation on Matn(k). Then k[Matn(k)]GL(V ) =
k[s1, . . . , sn], where si ∈ k[Matn(k)] such that for all A ∈ Matn(k) we can write the char-
acteristic polynomial of A as det(X · Idn−A) = XN +

∑n
i=1(−1)nsi(A)Xn−i. Furthermore,

the si(A) are the elementary symmetric functions in the eigenvalues of A.

Proof. We claim that the invariant polynomial functions f ∈ k[Matn(k)]GLn(k) are deter-
mined by their values on diagonal matrices. Since f is invariant under conjugation, it
suffices to show that the set of diagonalizable matrices is Zariski-dense in Matn(k) (Re-
mark 2.24). Note that the open set

⋂n
i,j=1DXii−Xjj

of matrices with pairwise distinct entries
in their diagonals is dense in Matn(k). In particular, every upper triangular matrix has an
open neighborhood containing a diagonalizable matrix. Every matrix is conjugate to an
upper triangular matrix because we are working over an algebraically closed field. Since
conjugation is Zariski-continuous, we have proved our claim.

Let D ⊂ Matn(k) be the subset of diagonal matrices. An invariant function f ∈
k[Matn(k)]GLn is symmetric in the entries of the diagonal. Hence f |D : D → k is a symmet-
ric function in the eigenvalues of D and, by Example 6.9, of the form g(s1, . . . , sn) for some
polynomial g ∈ k[Y1, . . . , Yn]. By the previous paragraph, we conclude f = g(s1, . . . , sn).

For every rational representation V of a linear algebraic group G we define a rational
representation G→ GL(V ⊕ V ∨) by g(v, l) := (gv, gl).
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Example 6.11. Let the torus T := Gn
m act on V := kn as the group of invertible diagonal

n × n-matrices. The ring of invariants k[V ⊕ V ∨]T is equal to k[e∨1 e
∨∨
1 , . . . , e∨ne

∨∨
n ], where

e1, . . . , en is the standard basis of V .

Proof. We identify k[V ⊕ V ∨] = k[x1, . . . , xn, y1, . . . yn] =: R via the T -isomorpihsm given
by e∨i 7→ xi and e∨∨j 7→ yj, where the action of T on R is given by diag(a1, . . . , an)xi = a−1i xi
and diag(a1, . . . , an)yj = ajyj. We want to use the fact that the action of T preserves
the multidegree. Let f ∈ R be multihomogenous of degree (d1, . . . , dn, c1, . . . , cn). Then
diag(a1, . . . , an)f = (a−d11 · · · a−dnn )(ac11 · · · acnn )f for all a1, . . . , an ∈ k. Hence, the element f
is T -invariant if and only if d1 = c1, . . . , dn = cn. The equality k[xi, yj]

T = k[x1y1, . . . , xnyn]
follows.

Example 6.12. Let V be a finite dimensional vector space. Consider the linear form
〈·, ·〉 : V ⊕V ∨ → k, (v, l) 7→ 〈v, l〉 := l(v). The ring of invariants k[V ⊕V ∨]GL(V ) is equal to
k[〈·, ·〉]. This is a special case of the First Fundamental Theorem for GL(V ) (see [8, §2])
which describes the GL(V )-invariants of k[V n ⊕ (V ∨)m].

Proof. First we check that 〈·, ·〉 is G-invariant. Indeed, for all g ∈ GL(V ) we have g〈v, l〉 =
gl(gv) = l(g−1gv) = 〈v, l〉. We get the inclusion k[〈·, ·〉] ⊂ k[V ⊕ V ∨]GL(V )

Consider the standard open set U := D〈·,·〉 ⊂ V ⊕ V ∨. Let w ∈ V r {0} be a nonzero
vector. For every (v, l) ∈ U choose gv,l ∈ GL(V ) such that gv,l(v, l) = (w, 〈v, l〉w∨). Let

f ∈ k[V ⊕ V ∨]GL(V )
d be a homogenous invariant of degree d. For all (v, l) ∈ U we have

f(v, l) = g−1v,l f(v, l) = f(gv,l(v, l)) = f(w, 〈v, l〉w∨) =

= f(
〈v, l〉
〈v, l〉

w, 〈v, l〉w∨) = 〈v, l〉df(
1

〈v, l〉
w,w∨).

We have written f |U as the product of a power of 〈·, ·〉 and a rational function f ′ :=
f( 1
〈·,·〉w,w

∨) ∈ k[〈·, ·〉−1], where deg(f ′) > −d. This implies that on the open subset U the

function 〈·, ·〉 divides f or f is constant. Since U is Zariski-dense in V ⊕ V ∨, we deduce
f ∈ k[〈·, ·〉]. We have shown the inclusion k[V ⊕ V ∨]GL(V ) ⊂ k[〈·, ·〉].
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