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1 Introduction

1 Introduction

A question that naturally arises while analysing plane curves is whether there exists a

rule as to how often certain curves intersect. In the Euclidean plane, the answer generally

seems to be negative, as it is easy to find many curves which do not intersect at all.

However, if the underlying field is algebraically closed, and the points at infinity are

included, the remarkable Theorem of Bézout comes into play.

Presumably first stated by Newton in 1665, and later famously known as Bézout’s The-

orem (1779), two projective plane curves of degrees n and m intersect at exactly nm

points counted with multiplicities. This result was presumed and applied for many years,

even though various geometers in the company of Maclaurin, Euler, Cramer and Bézout

himself, failed at providing a rigorous proof [4].

The introduction of the characteristic (Hilbert) function of a module by Hilbert in 1889 [5]

enabled the development of new tools for the study of projective geometry. By cleverly

defining the intersection multiplicity of algebraic varieties as did Severi [6] and Weil [7],

scholars of Hilbert’s and Emmy Noether’s found a rigorous proof of a generalization of

Bézout’s Theorem to higher dimensions as for example published by Van der Waerden [8]

in 1928.

These results are nicely summarized in the first chapter of the well-known book on alge-

braic geometry by Hartshorne [1], along the lines of which this thesis is set up. Inspired by

various noted books on algebraic geometry, namely Eisenbud’s [9] and Matsumura’s [10],

this thesis aims at providing a generalization of Bézout’s Theorem to the intersection of

a variety and a hypersurface in n-dimensional projective space.

Bézout’s Theorem turned out to be of great importance for the mathematical fields of

enumerative geometry and intersection theory. With its help, it is possible to find quite

short and direct proofs of various results stated long before a proof to Bézout’s Theorem

was found. As one of many applications, in Section 7 of this thesis Pascal’s Theorem

is introduced, which was published in 1640 in an essay [11]. The discussion of Pascal’s

Theorem, as an application of Bézout’s, was enlightened by Tao’s essays [12] and [13], as

well as Kunz’ book on plane algebraic curves [14].

Prerequisites are the elementary principles of commutative algebra, which can for in-

stance be found in Atiyah and Macdonald’s Introduction to Commutative Algebra [3], or

obtained by attending a lecture course as it was held in the fall semester of 2016 at ETH
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2 Basic Notions and Notations

Zurich by Richard Pink [2]. The most important results in this field, such as Hilbert’s

Basis Theorem, Krull’s Principal Ideal Theorem and Noether’s Normalization Theorem,

are employed hereafter. All notions and notations used are introduced in Section 2.

2 Basic Notions and Notations

The framework of the following pages is mainly the projective n-space over an algebraically

closed field k, which is denoted by Pn
k . It results from removing the origin from the affine

(n + 1)-space An+1
k , and taking it modulo the equivalence relation x ∼ λx for any unit

λ ∈ k×. The points in Pn
k are denoted by (x0 : . . . : xn), and S := k[X0, . . . , Xn] describes

its coordinate ring throughout.

Endowing S with its natural Z-grading by total degree, define S+ as the maximal ideal⊕
d>0

Sd of S such that S = k ⊕ S+. Furthermore, define the zero locus of any set T of

homogeneous elements in S+ as

V̄ (T ) := {p ∈ Pn
k | ∀f ∈ T : f(p) = 0}.

For any homogeneous ideal a in S+, define V̄ (a) := V̄ (T ) with T the set of homogeneous

elements in a. Furthermore, set V̄ (S) := V̄ (S+) = ∅. It is worth noting that since S

is a noetherian ring, any set of homogeneous elements T in S contains a finite subset

{f1, . . . , fr} such that V̄ (T ) = V̄ (f1, . . . , fr).

Any subset of Pn
k of the form V̄ (T ) will subsequently be referred to as a projective variety.

In particular, projective varieties need not be irreducible. The projective varieties form

the closed sets of the Zariski topology on Pn
k . Analogously, the affine varieties are the

closed sets of the Zariski topology on the affine n-space An
k . These are the zero loci V (Q)

of all possible subsets Q of A := k[X1, . . . , Xn].

The dimension of a variety always describes its dimension as a topological space, that

is to say the length of the longest chain of irreducible subspaces where indexing starts

at 0. The empty variety is set to have dimension −∞. An affine or projective variety of

dimension one is called an affine or projective curve. An affine or projective hypersurface

is a variety of dimension n− 1 in An
k and Pn

k respectively. Besides, a variety is said to be

irreducible, if it is nonempty and not the union of two proper closed subvarieties.
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3 The Dimension Theorems

For any subset Y of Pn
k , its homogeneous ideal in S is defined as

Ī(Y ) := ({f ∈ S+ | f homogeneous and ∀ p ∈ Y : f(p) = 0}) ,

and for any projective variety Y , its homogeneous coordinate ring is denoted by

S(Y ) := S/Ī(Y ).

The ideal in A induced by a subset X of An
k is denoted by I(X), and A(X) = A/I(X)

then describes the affine coordinate ring of an affine variety X.

As they are going to be of use later on, some basic properties of the zero locus and the

homogeneous ideal are included hereafter without proofs. For any homogeneous ideals

a, b ⊂ S+ and any subsets X, Y ⊂ Pn
k , the following equalities and equivalences hold:

(a) V̄ (a + b) = V̄ (a) ∩ V̄ (b)

(b) V̄ (a ∩ b) = V̄ (a · b) = V̄ (a) ∪ V̄ (b)

(c) V̄ (a) ⊂ V̄ (b)⇔ a ⊃ b

(d) Ī(X ∪ Y ) = Ī(X) ∩ Ī(Y ).

Note that the dimension of any affine variety is equal to that of its coordinate ring.

However, the dimension of any nonempty projective variety Y satisfies

dimY = dimS(Y )− 1.

This is due to the fact that as in the affine case, any longest chain of irreducible

subvarieties Y0 ( . . . ( Yr ⊂ Y of Y corresponds to a chain of prime ideals

0 = Ī(Y ) ⊂ Ī(Yr) ( . . . ( Ī(Y0) in S(Y ), but since 0 /∈ Pn
k , the homogeneous ideal of Y0

is not a maximal ideal in S(Y ). Therefore, the chain of prime ideals has to be extended

by S+/Ī(Y ) in order to be maximal in S(Y ).

3 The Dimension Theorems

Even though the intersection of any family of varieties is again a variety, the intersection

of two irreducible projective varieties need not be irreducible. This can be shown by the

following example:
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3 The Dimension Theorems

Example 3.1. Consider the projective varieties Y = V̄ (x2 − yw) and Z = V̄ (xy − zw)

in P3
k. Then,

Y ∩ Z = V̄ (x2 − yw, xy − zw)

= V̄ (x(y2 − zx))

= V̄ (x) ∪ V̄ (y2 − zx).

Therefore, the intersection of Y and Z is the union of two closed subsets in P3
k, and as

such not irreducible.

However, it is possible to describe the irreducible components of the intersection of two

varieties in more detail.

Lemma 3.2. Let X, Y be two irreducible affine varieties of dimensions r, s in An
k . Then

the product X × Y is an irreducible affine variety of dimension r + s in A2n
k .

Proof. Note first that X × Y is closed in A2n
k as it is the zero locus of the ideal generated

by I(X) and I(Y ).

Suppose that X×Y is reducible and equal to A∪B with non-empty proper closed subsets

A and B of X × Y . Fix y ∈ Y and let Xy := X × {y}. Then, X is homeomorphic to Xy

via the map x 7→ (x, y) and thus, Xy is also irreducible. Since Xy = (A∩Xy)∪ (B ∩Xy),

it is clear that Xy has to lie in one of A or B. Define VA := {y ∈ Y | Xy ⊂ A} and VB

analogously. A is closed in X × Y and therefore A = V (f1, . . . , fr) for some polynomials

f1, . . . , fr ∈ k[X, Y ]. Then, VA is exactly the zero locus in Y of the set of polynomials

{fi(x0, y) | x0 ∈ X, 1 ≤ i ≤ r}. Hence, VA is closed in Y . Analogously, it follows that VB

is closed in Y .

Write Y = VA ∪ VB and then Y equals either VA or VB, because Y is irreducible. If

Y = VA, the product X × Y is equal to
⋃

y∈Y Xy ⊂ A and B = ∅. Symmetry shows that

X × Y is irreducible.

To show that dim(X × Y ) = dimX + dimY , note that it is equivalent to show that

dim(A(X × Y )) = dimA(X) + dimA(Y ). In addition, the tensor product A(X)⊗k A(Y )

is isomorphic to A(X × Y ) by (x⊗ y) 7→ xy.

By Noether Normalization, A(X) is integral over k[x1, . . . , xr] for x1, . . . , xr algebraically

independent over k and similarly, A(Y ) is integral over k[y1, . . . , ys]. So for any

x ∈ A(X), there exists an integer n and coefficients ai ∈ k[x1, . . . , xr] such that
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3 The Dimension Theorems

xn + an−1x
n−1 + . . .+ a0 = 0. For any y ∈ A(Y ), it follows that

(x⊗ y)n + an−1(x⊗ y)n−1 + . . .+ a0 = 0

and x ⊗ y is thus integral over k[x1, . . . , xr] ⊗ A(Y ). Similarly, it follows that all x ⊗ y
in A(X) ⊗ A(Y ) are integral over k[x1, . . . , xr] ⊗ k[y1, . . . , ys], which is isomorphic to a

polynomial ring in r+ s variables. As the Krull dimension is invariant under integral ring

extension, the dimension of A(X × Y ) is thereby equal to r + s. �

Proposition 3.3 (Affine Dimension Theorem). Let Y and Z be irreducible affine

varieties of respective dimensions r and s in An
k . Then every irreducible component of

Y ∩ Z is of dimension greater or equal to r + s− n.

Proof. First, suppose that Z = V (f) is an irreducible hypersurface and thus

s = dim(Z) = n− 1. If Y ⊂ Z, there is nothing to prove.

So assume Y 6⊂ Z and write Y = V (a) for a prime ideal a in k[X1, . . . , Xn]. As the

intersection of two varieties is also a variety, Y ∩Z possesses a decomposition into unique

irreducible components. In a noetherian ring, any ideal is decomposable, and so it follows

that the radical ideal I(Y ∩ Z) = Rad(a + (f)) can be uniquely decomposed into prime

ideals p1, . . . , pr, which are the minimal associated primes of a + (f). Those minimal

primes precisely correspond to the irreducible components V1, . . . , Vr of Y ∩Z. Let A(Y )

be the affine coordinate ring of Y . As prime ideals are preserved under projection, these

prime ideals are exactly the minimal prime ideals containing the principal ideal (f) in

A(Y ).

By Krull’s Principal Ideal Theorem, it follows that each such minimal prime ideal pi has

height one in A(Y ). As A(Y ) is finitely generated over a field and noetherian, the sum of

the height and the coheight of any prime ideal equals the dimension of A(Y ). Therefore,

A(Y )/pi has dimension r − 1. As A(Y )/pi is the coordinate ring of the corresponding

irreducible component Vi of Y ∩ Z, it follows that dim(Vi) = r − 1.

For the general case, consider the product Y × Z ⊂ A2n
k , which is an irreducible variety

of dimension r + s by Lemma 3.2.

Let ∆ be the diagonal {p× p | p ∈ An
k} ⊂ A2n

k . Then An
k is isomorphic to ∆ via the map

p 7→ p× p, and under this isomorphism, Y ∩Z corresponds to (Y ×Z)∩∆. Since ∆ has

dimension n, and since r+ s− n = (r+ s) + n− 2n, it is possible to reduce to the case of

the two varieties Y × Z and ∆ in A2n
k . With k[X1, . . . , Xn, Y1, . . . , Yn] as the coordinate
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3 The Dimension Theorems

ring of A2n
k , the diagonal ∆ can be written as V (X1 − Y1) ∩ . . . ∩ V (Xn − Yn), and ∆

is therefore the intersection of n irreducible hypersurfaces. An n-time application of the

special case concludes the proof. �

Definition 3.4. For any projective variety Y ⊂ Pn
k and the natural projection map

π : An+1
k r {0}� Pn

k , the affine cone over Y is defined as C(Y ) := π−1(Y ) ∪ {0}.

Lemma 3.5. Let Y be a projective variety and C(Y ) the affine cone over Y . Then,

(a) C(Y ) is an affine variety in An+1
k , with Ī(Y ) = I(C(Y )) in k[X0, . . . , Xn],

(b) for Y nonempty, C(Y ) is irreducible if and only if Y is,

(c) for Y nonempty, dim(C(Y )) = dim(Y ) + 1.

Proof. (a) Let Y ⊂ Pn
k be a projective variety. For Y = ∅, the affine cone of Y is equal

to C(Y ) = {0}, which is an affine variety, and Ī(Y ) = Ī(∅) = S+ = I({0}) = I(C(Y )).

Now assume Y to be nonempty, and denote by T the subset of homogeneous elements of

S such that V̄ (T ) = Y . Letting S stand for the coordinate ring of An+1
k as well, it needs

to be shown that C(Y ) = V (T ).

Consider an element y′ ∈ C(Y ) = π−1(Y ) ∪ {0}. If y′ = 0, it follows that f(y′) = 0 for

any f ∈ T , as T does not contain any constant elements apart from zero. Now assume

y′ 6= 0 and choose a representative of π(y′) = (y0 : . . . : yn). Then y′ = λ · (y0, . . . , yn) for

some λ ∈ k× and consequently, for all f ∈ T ,

f(y′) = f(λ(y0, . . . , yn)) = λdegff((y0, . . . , yn)) = λdegff((y0 : . . . : yn)) = 0.

Hence C(Y ) ⊂ V (T ). Conversely, consider an element x ∈ An+1
k r{0} such that f(x) = 0

for all f ∈ T . As all f ∈ T are homogeneous, f(λx) = 0 for any λ ∈ k× and thus also

f(π(x)) = 0, so x ∈ C(Y ).

To show that Ī(Y ) = I(C(Y )), note first that I(C(Y )) is a homogeneous ideal. Besides,

as V (T ) = C(Y ), it follows that

Ī(Y ) = ({f ∈ S | f homog. and ∀ y ∈ Y : f(y) = 0})

= ({f ∈ S | f homog. and ∀ y′ ∈ C(Y ) : f(π(y′)) = 0})

= ({f ∈ S | f homog. and ∀ y′ ∈ C(Y ) : f(y′) = 0}) = I(C(Y )).
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4 The Hilbert Polynomial

(b) The projective variety Y is irreducible if and only if Ī(Y ) is a prime ideal properly

contained in S+, and the affine cone C(Y ) is irreducible if and only if I(C(Y )) is a prime

ideal. By (a), the equality Ī(Y ) = I(C(Y )) holds, and the statement follows.

(c) As discussed in Section 2, the dimension of the affine variety C(Y ) satisfies the equality

dimC(Y ) = dimS/I(C(Y )). By (a), it follows that dimC(Y ) = dimS/Ī(Y ), which

equals dimY + 1 again by Section 2. �

Theorem 3.6 (Projective Dimension Theorem). Let Y and Z be irreducible projective

varieties of respective dimensions r and s in Pn
k . Then, every irreducible component of

Y ∩ Z is of dimension greater or equal to r + s − n. Furthermore, if r + s − n ≥ 0, the

intersection is nonempty.

Proof. As Pn
k can be covered by open subsets Ui := Pn

k r V (Xi) for 0 ≤ i ≤ n that

are isomorphic to affine n-spaces, the first statement follows from the Affine Dimension

Theorem 3.3. As to the second claim, let C(Y ) and C(Z) be the cones over Y and Z in

An+1
k . From Lemma 3.5, it follows that C(Y ) and C(Z) have dimensions r + 1 and s+ 1

respectively. Furthermore, C(Y ) ∩ C(Z) 6= ∅, as both contain the origin of An+1
k . By the

Affine Dimension Theorem 3.3, the affine variety C(Y ) ∩ C(Z) has dimension greater or

equal to (r + 1) + (s+ 1)− (n+ 1) = r + s− n+ 1 > 0. Hence, the intersection of the

two cones contains some point apart from the origin, and thus Y ∩ Z 6= ∅. �

4 The Hilbert Polynomial

4.1 Numerical Polynomials

Definition 4.1. A numerical polynomial is a polynomial P ∈ Q[X] such that P (n) ∈ Z
for all n ∈ Z with n� 0.

Using the following basis of the vector space of rational polynomials significantly simplifies

the upcoming calculations with polynomials. Consider the binomial coefficient function(
X

r

)
=

1

r!
X(X − 1) · · · (X − r + 1)

7



4 The Hilbert Polynomial

for an arbitrary variable X and any natural number r. Note that
(
X
r

)
is a polynomial

of degree r. Therefore, B :=
((

X
r

)
, . . . ,

(
X
0

))
forms a basis of the vector space of rational

polynomials of degree less or equal to r.

Furthermore, it is useful to define the difference polynomial ∆Q of any polynomialQ ∈ Q[X]

as ∆Q(X) = Q(X + 1)−Q(X). The difference polynomial of any numerical polynomial

is clearly numerical itself. The difference polynomial of a basis element in B is

∆

(
X

r

)
=

(
X + 1

r

)
−
(
X

r

)
=

(
X

r − 1

)
.

These arguments already prove the following remark:

Remark 4.2. For any polynomial Q ∈ Q[X] with deg(Q) > 0, the difference polyno-

mial ∆Q is of degree deg(Q)− 1.

Proposition 4.3. (a) For any numerical polynomial P ∈ Q[X] of degree r ≥ 0 there

exist unique integers c0, . . . , cr, such that

P (X) = c0

(
X

r

)
+ c1

(
X

r − 1

)
+ . . .+ cr.

In particular P (n) ∈ Z for all n ∈ Z.

(b) Let f : Z→ Z be any function. If there exists a numerical polynomial Q(X) such that

the difference function ∆f = f(n + 1) − f(n) is equal to Q(n) for all n � 0, then

there exists a numerical polynomial P (X) such that f(n) = P (n) for all n� 0.

Proof. (a) The result follows by induction on the degree r of P , where the case r = 0

follows directly. Suppose thus that the claim holds for r− 1 and let c0, . . . , cr ∈ Q be the

rational coefficients of P ∈ Q[X] with respect to the basis B as defined above.

According to the calculations at the beginning of this section, the difference polynomial

of P is of the form

∆P (X) = c0

(
X

r − 1

)
+ c1

(
X

r − 2

)
+ . . .+ cr−1.

By induction, the coefficients c0, . . . , cr−1 of this numerical polynomial of degree r− 1 lie

in Z. Since
(
n
r

)
lies in Z for any integer n, it follows that P (n)− cr has to lie in Z as well.

As P is a numerical polynomial, cr is therefore an integer. Furthermore P (n) ∈ Z for any

integer n.
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4 The Hilbert Polynomial

(b) If ∆f = 0, the zero polynomial serves as a suitable P . Else, let q0, . . . , qs be the

integer coefficients of Q with respect to B with s := deg(Q). Define another polynomial

P ∈ Q[X] as follows:

P (X) = q0

(
X

s+ 1

)
+ . . .+ qs

(
X

1

)
.

Then ∆P = Q, and therefore ∆(f − P )(n) = 0 for all n � 0 and P is a numerical

polynomial as well. Moreover, f−P is constant with qs+1 := (f − P )(n) = (f − P )(n+ 1)

for n� 0. Then P̃ := P + qs+1 is a suitable numerical polynomial satisfying f(n) = P̃ (n)

for all n� 0. �

4.2 The Multiplicity of a Module over a Minimal Prime Ideal

Let R be an arbitrary Z-graded ring and M a graded R-module with a decomposition

M =
⊕
d∈Z

Md. Note that the annihilator Ann(M) = {r ∈ R | r · M = 0} of M is a

homogeneous ideal in R. This is due to the fact that any r in Ann(M) also lies in

Ann(Md) for any d ∈ Z, and thus

(
n∑

i=1

ri

)
Md = 0, where r1, . . . , rn are the homogeneous

components of r. It follows that riMd = 0 for all 1 ≤ i ≤ n and hence all the homogeneous

components of r lie in Ann(M).

Lemma 4.4. For any short exact sequence of graded R-modules

0 −→M ′ i
↪−→M

p

−→→M ′′ −→ 0,

the following statements hold:

(i) Ann(M) ⊂ Ann(M ′) ∩ Ann(M ′′)

(ii) Ann(M ′) · Ann(M ′′) ⊂ Ann(M)

(iii) V̄ (Ann(M)) = V̄ (Ann(M ′)) ∪ V̄ (Ann(M ′′)).

Proof. (i) Let s lie in the annihilator of M and let m′ lie in M ′. Then,

i(sm′) = s · i(m′) = 0 and thus sm′ = 0, as i is injective. Consider now an element

m′′ ∈ M ′′. Since p is surjective, there exists an element m ∈ M , such that p(m) = m′′.

Hence sm′′ = s · p(m) = p(sm) = p(0) = 0. Thus, s lies in the intersection of the annihi-

lators of M ′ and M ′′.
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4 The Hilbert Polynomial

(ii) First consider homogeneous elements a ∈ Ann(M ′) and b ∈ Ann(M ′′). For anym ∈M ,

it follows that 0 = b · p(m) = p(bm). Thus, bm lies in the kernel of p and hence

also in the image of i. Choosing an m′ in M ′ with i(m′) = bm, it follows that

0 = i(am′) = a · i(m′) = abm, and thus ab lies in the annihilator of M . As all elements in

the product Ann(M ′) ·Ann(M ′′) are R-linear combinations of products of the elements in

Ann(M ′) and Ann(M ′′) and i and p are R-module-homomorphisms, the statement follows

by varying a and b.

(iii) Taking the projective varieties of the ideals on both sides of (a) and (b), and using

the fact that V̄ (p) ⊂ V̄ (q)⇔ p ⊃ q for any ideals p, q ⊂ R, the following inclusions hold:

V̄ (Ann(M ′)) ∪ V̄ (Ann(M ′′)) = V̄ (Ann(M ′) ∩ Ann(M ′′))

⊂ V̄ (Ann(M))

⊂ V̄ (Ann(M ′) · Ann(M ′′))

= V̄ (Ann(M ′)) ∪ V̄ (Ann(M ′′)).

Therefore V̄ (Ann(M)) = V̄ (Ann(M ′)) ∪ V̄ (Ann(M ′′)). �

Remark 4.5. It follows from Lemma 4.4 that for any graded R-module M and any

filtration of graded submodules 0 = M0 ⊂ . . . ⊂M r = M ,

Ann(M) ⊂
r⋂

i=1

Ann(M i/M i−1) and
r∏

i=1

Ann(M i/M i−1) ⊂ Ann(M).

Proof. If M = 0, the annihilator of M is equal to R, and thus the two statements hold.

Then, assume M 6= 0. Applied to the short exact sequences

0 −→M i−1 ↪−→M i −→→M i/M i−1 −→ 0

for 1 ≤ i ≤ r, Lemma 4.4 states that Ann(M i) ⊂ Ann(M i−1) ∩ Ann(M i/M i−1), and

similarly Ann(M i−1) · Ann(M i/M i−1) ⊂ Ann(M i). Using these relations r− 1 times and

the fact that M1 = M1/M0, the statements follow. �

Definition 4.6. For any graded module M , the twisted module M(l) with l ∈ Z is

formed by shifting the grading of M by exactly l places to the left, so M(l)d = Md+l for

all integers d.

Remark 4.7. Note that shifting a graded module leads to the following equality of

dimensions:

dim(M(l)d) = dim(Md+l).
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4 The Hilbert Polynomial

Definition 4.8. For any R-module M , the associated prime ideals of M are defined as

the associated prime ideals of the annhilator Ann(M) of M .

Proposition 4.9. Let M be a finitely generated graded module over a noetherian graded

ring R. Then, there exists a filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂ M r = M of graded

submodules such that for each 1 ≤ i ≤ r, the quotient is of the form M i/M i−1 ∼= (R/pi)(li),

where pi is a homogeneous prime ideal in R and li ∈ Z. For any such filtration, the ensuing

statements hold.

(a) Let q be a homogeneous prime ideal in R. Then q ⊃ Ann(M) if and only if q ⊃ pi

for some i. In particular, the minimal elements of the set {p1, . . . , pr} are exactly the

minimal associated prime ideals of M .

(b) For each minimal associated prime ideal p of M , the number of times p occurs in

the set {p1, . . . , pr} is equal to the length of Mp over the local ring Rp. Hence, it is

independent of the chosen filtration.

Proof. To prove the existence of a filtration with the desired properties, consider the set

S of graded submodules of M which admit such a filtration. The zero module does so

trivially, and therefore S is nonempty. As M is finitely generated, it is noetherian, so

there exists a maximal element M ′ ∈ S. Consider M ′′ := M/M ′. If M ′′ = 0, there is

nothing to prove. If not, consider the set of ideals

I := {Im = Ann(m) | m ∈M ′′ homogenous and m 6= 0}.

As mentioned at the beginning of this section, each Im is a homogeneous ideal. Further-

more, Im 6= R, as m is nonzero. Since R is noetherian, every nonempty collection of ideals

possesses a maximal element, and therefore so does I.

Claim. Any maximal element Im of I is a prime ideal.

Proof of the claim. Let a, b ∈ R with ab ∈ Im and b /∈ Im. Thus abm = 0, but bm 6= 0,

and it is to be shown that a lies in Im. As sbm = bsm = b · 0 = 0 for any s ∈ Im, it

follows that Im ⊂ Ibm. Since Im is maximal, Im = Ibm. By assumption ab lies in Im, so

abm = 0 and therefore a ∈ Ibm = Im. �

Therefore, p := Im is a homogeneous prime ideal of R. Let m have degree l. Then the

module N ⊂M ′′ generated by m is isomorphic to (R/p)(−l). This can be easily seen by

11



4 The Hilbert Polynomial

identifying m+M ′ in N with 1 + p in (R/p)(−l).
Let N ′ ⊂ M be the inverse image of N under the projection map M −→→ M/M ′. Then

M ′ ⊂ N ′, and N ′/M ′ ∼= (R/p)(−l). So N ′ also admits a filtration of the required type.

This contradicts the maximality of M ′ and therefore M/M ′ = 0, and so M = M ′, which

proves the existence of the filtration.

(a) By assumption Ann(M i/M i−1) = Ann((R/pi)(li)), which is equal to pi. Therefore, it

is enough to show the equivalence q ⊃ Ann(M)⇔ q ⊃ Ann(M i/M i−1) for some i.

To do so, suppose given a filtration of M as above, and that q is a homogenous prime

ideal of R. If the annihilator of M lies in q, then Remark 4.5 states that also the product

of the annhilators of the factor modules M i/M i−1 lies in q. Since q is a prime ideal, at

least one of the factors of the said product has to lie in q. Conversely, if the annihilator

of M i/M i−1 lies in q for some 1 ≤ i ≤ r, then it follows directly that Ann(M) has to lie

in q as well, since Ann(M) ⊂
r⋂

i=1

Ann(M i/M i−1) according to Remark 4.5, and hence the

statement follows.

(b) Let p be a minimal associated prime ideal of M , and consider the localization Mp

of M at p. By (a), the prime ideal p is minimal in the set {p1, . . . , pr}, and thus

M i
p/M

i−1
p
∼= (R/pi)p = 0 for any i, if pi 6= p. This is due to the fact that pi ∩ (R \ p) 6= ∅,

and then some elements of pi are inverted under the localization. When pi = p however,

M i
p/M

i−1
p
∼= (R/p)p = Quot(R/p) ([2] §2). For any submodule M i−1 ( N ⊂ M i, the

quotient N/M i−1 then maps isomorphically onto a prime ideal of Quot(R/p), and thus

N has to be equal to M i. This shows that Mp is an Rp-module of length equal to the

number of times p occurs in the set {p1, . . . , pr}. �

Definition 4.10. For p a minimal prime of a graded R-module M , the multiplicity µp(M)

of M at p is defined to be the length of Mp over Rp.

4.3 The Hilbert–Serre Theorem

Consider again the graded ring S = k[X0, . . . , Xn].

Definition 4.11. The Hilbert function ϕM of a graded module M over S is defined as

ϕM(l) = length(Ml), l ∈ Z.

12



4 The Hilbert Polynomial

Theorem 4.12 (Hilbert–Serre). Let M be a finitely generated graded S-module. There

exists a unique polynomial PM ∈ Q[Z] such that ϕM(l) = PM(l) for all l � 0. Further-

more, deg(PM) = dim(V̄ (AnnM)). In particular, ϕM(l) <∞ for all integers l.

Definition 4.13. The polynomial PM is called the Hilbert polynomial of M .

Remark 4.14. For any short exact sequence of graded S-modules,

0 −→M ′ ↪−→M −→→M ′′ −→ 0,

the respective Hilbert functions satisfy the equality ϕM = ϕM ′ + ϕM ′′ .

Proof. Consider the short exact sequence from above. For the Hilbert functions of the

graded S-modules, it follows that ϕM ′ + ϕM ′′ = ϕM , due to the additivity of the length

of modules in short exact sequences ([2] §7). �

Remark 4.15. The leading coefficient of the Hilbert polynomial of any graded S-module

is always non-negative, if it exists.

Proof. Suppose the Hilbert polynomial PN of a graded S-module N exists. As

PN(l) = ϕN(l) = length(Nl) ≥ 0 for any integer l� 0, the leading coefficent of the Hilbert

polynomial PN must be greater or equal to 0. �

Proof of the theorem. If M = 0, the corresponding polynomial is PM = 0, and it follows

that deg(PM) = dim(V̄ (S)) = dim(AnnM), where by convention the zero-polynomial is

of degree −∞ and the empty set is of dimension −∞. Thus, assume M 6= 0, and consider

anew the short exact sequence of graded S-modules

0 −→M ′ ↪−→M −→→M ′′ −→ 0.

Lemma 4.4 states that V̄ (AnnM) = V̄ (AnnM ′) ∪ V̄ (AnnM ′′), and therefore,

dim(V̄ (AnnM)) = max{dim(V̄ (AnnM ′)), dim(V̄ (AnnM ′′))}.

Consequently and by Remarks 4.14 and 4.15, if the theorem holds for M ′ and M ′′, it also

holds for M with PM = PM ′ + PM ′′ .

By Proposition 4.9, M has a filtration 0 = M0 ⊂M1 ⊂ . . . ⊂M r = M , with quotients of

13



4 The Hilbert Polynomial

the form (S/pi)(li) where pi are homogeneous prime ideals and li ∈ Z. Consider for any

1 ≤ i ≤ r the short exact sequence

0 −→M i−1 ↪−→M i −→→M i/M i−1 −→ 0,

and note that M1 = M1/M0 ∼= (S/p1)(l1). The previous reasoning implies that the proof

can be reduced to the case M ∼= (S/p)(l) for p a homogeneous prime ideal of S and

l ∈ Z. As the shift l corresponds to a change of variables z 7→ z+ l, it is sufficient to only

consider M = S/p.

To prove the theorem, use induction on the coheight of p. If p = (X0, . . . , Xn), then

M ∼= k and thus all elements of M are of degree zero. Hence, ϕM(l) = 0 for l > 0, so

PM = 0 is again the corresponding polynomial, and additionally deg(PM) = dim(V̄ (p)).

If p 6= (X0, . . . , Xn), consider Xi /∈ p and the short exact sequence

0 −→M
·Xi
↪−→M −→→M/Xi ·M −→ 0.

Then, ϕM/Xi·M(l) = ϕM(l)− ϕM(l − 1) = (∆ϕM)(l − 1). On the other hand,

V̄ (Ann(M/XiM)) = V̄ (Ann( (S/p)/(Xi) ))

= V̄ (Ann(S/(p + (Xi)) )

= V̄ (p + (Xi)) = V̄ (p) ∩ V̄ (Xi).

As V̄ (p) 6⊂ V̄ (Xi) by the choice of Xi and by the Projective Dimension Theorem 3.6, it

follows that dim(V̄ (Ann(M/XiM ))) = dim(V̄ (p))− 1 = dim(V̄ (Ann M))− 1.

By the induction hypothesis, ϕM/XiM(l) = PM/XiM(l) for l � 0, where PM/XiM is a

polynomial of degree equal to the dimension of V̄ (Ann(M/XiM)). It follows by Proposi-

tion 4.3 that ϕM is also equal to a polynomial PM for all integers large enough. Remark 4.2

implies furthermore that taking the difference polynomial decreases the degree by one,

and therefore deg(PM) = dim(V̄ (p)) = dim(V̄ (AnnM)). �

Remark 4.16. For any short exact sequence of graded S-modules,

0 −→M ′ ↪−→M −→→M ′′ −→ 0,

the equality PM = PM ′ + PM ′′ is satisfied by the corresponding Hilbert polynomials, as

established in the proof above. In particular, deg(PM) = max{deg(PM ′), deg(PM ′′)},
which follows by Remark 4.15.
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5 The Degree of a Projective Variety

Definition 5.1. For any projective variety Y ⊂ Pn
k of dimension r ≥ 0, the Hilbert

polynomial PY of Y is defined to be the Hilbert polynomial of its homogeneous coordinate

ring S(Y ). The degree of Y is defined to be r! times the leading coefficient of PY . Moreover,

the degree of the empty projective variety is set to −∞.

Proposition 5.2. The Hilbert polynomial of Y is a polynomial of degree r.

Proof. Since S(Y ) = S/Ī(Y ), the annihilator of S(Y ) is equal to Ī(Y ). Therefore,

V̄ (Ann(S(Y ))) = V̄ (Ī(Y )) = Y = Y . It follows by the Theorem of Hilbert–Serre 4.12

that deg(PY ) = dim(V̄ (AnnM)) = dim(Y ) = r. �

Proposition 5.3. (a) For any nonempty projective variety Y ⊂ Pn
k , the degree of Y is a

positive integer.

(b) Let Y be a nonempty projective variety with a decomposition into projective varieties

Y1 and Y2, i.e. Y = Y1 ∪ Y2. Suppose that Y1 and Y2 have the same dimension r, and

that dim(Y1 ∩ Y2) < r. Then deg Y = deg Y1 + deg Y2.

(c) degPn
k = 1.

(d) For any projective hypersurface H ⊂ Pn
k whose ideal is generated by a homogeneous

polynomial f , the degree of H is equal to the degree of f .

Proof. (a) Since Y is nonempty, PY is a nonzero polynomial of degree r := dimY . By

Proposition 4.3, deg Y = c0 where c0
r!

is the leading coefficient of PY and c0 an integer.

By Remark 4.16, it follows that c0 is positive.

(b) Consider the sequence

0 −→ S/Ī(Y )
i−→ S/Ī(Y1)⊕ S/Ī(Y2)

p−→ S/(Ī(Y1) + Ī(Y2)) −→ 0

where i sends any element s+ Ī(Y ) to (s+ Ī(Y1), s+ Ī(Y2)), and p sends

(x+ Ī(Y1), y + Ī(Y2)) onto their difference x − y + (Ī(Y1) + Ī(Y2)). The kernel of i is

equal to the intersection Ī(Y1) ∩ Ī(Y2), which is equal to Ī(Y1 ∪ Y2) = Ī(Y ) by the basic

properties of the homogeneous ideal. Hence, i is injective. Furthermore, all the elements

in S/Ī(Y1)⊕S/Ī(Y2) which lie in the image of i are pairs of residue classes of elements of

S that share a residue class in S/Ī(Y ). Therefore, the image of i is exactly the kernel of

15



6 The Intersection Theorem and Bézout

p, and as p is clearly surjective, the sequence is exact.

Remark 4.16 implies that

PS/Ī(Y ) = PS/Ī(Y1)⊕S/Ī(Y2) − PS/(Ī(Y1)∩Ī(Y2)).

The same fact is applicable to the natural split sequence

0 −→ S/Ī(Y1) ↪−→ SĪ(Y1)⊕ S/Ī(Y2) −→→ S/Ī(Y2) −→ 0,

and thus PS/Ī(Y1)⊕S/Ī(Y2) = PS/Ī(Y1) + PS/Ī(Y2). On the other hand, the projective variety

V̄ (Ī(Y1) + Ī(Y2)) = Y1 ∩ Y2 is of smaller dimension than Y by assumption. Hence,

PY1∩Y2 has degree < r. Therefore, the leading coefficient of PY is the sum of the leading

coefficients of PY1 and PY2 .

(c) The Hilbert polynomial of Pn
k is PS. For l > 0, the dimension of the components Sl is

equal to
(
l+n
n

)
, which follows by counting the possible ways to form a monomial of degree

d in n+ 1 variables. Therefore, ϕS(l) =
(
l+n
n

)
for l > 0, and so PS(z) =

(
z+n
n

)
, which is of

degree n. The leading coefficient of PS is thus equal to 1
n!

and so degPS = 1.

(d) Set d := deg(f), and consider the following short exact sequence of graded S-modules

0 −→ S(−d)
·f
↪−→ S −→→ S/(f) −→ 0

where the multiplication by f is an injective graded homomorphism, for S is an integral

domain. Hence, for l ∈ Z, it follows that ϕS/(f)(l) = ϕS(l) − ϕS(l − d). Therefore, the

Hilbert polynomial of H can be written as

PH(z) =

(
z + n

n

)
−
(
z − d+ n

n

)
=

d

(n− 1)!
zn−1 + . . . .

Hence, degH = d. �

6 The Intersection Theorem and Bézout

The previous sections provide the complete set-up needed to prove the main result of

this thesis: a generalization of Bézout’s Theorem to the intersection of an irreducible

projective variety with an irreducible hypersurface in n-dimensional projective space.

Let Y ⊂ Pn
k be an irreducible projective variety of dimension r, and let H be an irre-

ducible hypersurface not containing Y . Then, by the Projective Dimension Theorem,

Y ∩H = Z1 ∪ . . . ∪ Zs, where the Zi are irreducible varieties of dimension r − 1. Let pi

be the homogeneous prime ideal of Zi.
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6 The Intersection Theorem and Bézout

Definition 6.1. The intersection multiplicity of Y and H along Zi is defined as

ι(Y,H;Zi) := µpi

(
S/(Ī(Y ) + Ī(H))

)
where µpi is the multiplicity defined in 4.10.

Remark 6.2. The annihilator of the module M = S/(Ī(Y ) + Ī(H)) is Ī(Y ) + Ī(H),

and the corresponding projective variety V̄ (Ī(Y ) + Ī(H)) is equal to Y ∩H. Therefore,

Ī(Y ) + Ī(H) ⊂ Ī(Y ∩H) ⊂ pi and so, pi is a minimal associated prime of M , and thus

the intersection multiplicity is well-defined.

Theorem 6.3. Let Y be an irreducible projective variety of dimension greater or equal

to 1 in Pn
k , and let H be an irreducible hypersurface not containing Y . Let Z1, . . . , Zs be

the irreducible components of Y ∩H. Then

s∑
i=1

ι(Y,H;Zi) · degZi = (deg Y )(degH).

Proof. Let f be the irreducible homogeneous polynomial in S with V̄ (f) = H, and denote

the degree of f by d. To simplify the notation, set M := S/(Ī(Y ) + Ī(H)) and consider

the following sequence of graded S-modules

0 −→ (S/Ī(Y ))(−d)
·f−→ S/Ī(Y )

p−→M −→ 0.

The multiplication by f is a graded homomorphism, as f · (S/Ī(Y ))(−d)l ⊂ (S/Ī(Y ))l

for any non-negative integer l. It is also injective, since f is not a zero divisor in S and

f does not lie in Ī(Y ) by assumption. Its image is the residue class of Ī(H) in S/Ī(Y ).

For the sequence to be exact, p projects the homogeneous coordinate ring of Y onto the

module (S/Ī(Y ))/Ī(H). This module is equal to M , because for any ring R and any two

ideals a, b ⊂ R, the following equality holds:

(R/a)
/

(b(R/a)) = R/(a + b).

Regarding the Hilbert polynomials of the modules in the sequence above, Remarks 4.16

and 4.7 imply that

PM(z) = PY (z)− PY (z − d). (?)

In particular, the leading coefficient of the right hand side equals the one of the left hand

side.
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6 The Intersection Theorem and Bézout

Let Y have dimension r and degree e. Then, the leading coefficient of PY is e
r!

and hence

the right hand side of (?) is equal to

e

r!
zr + . . .−

( e
r!

(z − d)r + . . .
)

=
de

(r − 1)!
zr−1 + . . . .

Note that by Proposition 5.3, deg(H) = d, and therefore

de

(r − 1)!
=

deg(Y ) · deg(H)

(r − 1)!
. (??)

To determine the leading coefficient of PM , examine the module M . By Proposition 4.9,

the module M has a filtration of submodules 0 = M0 ⊂M1 ⊂ . . . ⊂M t = M , the quo-

tients M i/M i−1 of which are of the form (S/qi)(li) for qi a homogeneous ideal in S and

an integer li. Applying Remark 4.16 to the short exact sequence

0 −→M i−1 ↪−→M i −→→M i/M i−1 −→ 0

for all 1 ≤ i ≤ t, it follows that PM =
t∑

i=1

Pi, where Pi denotes the Hilbert polynomial

of (S/qi)(li) and of the corresponding projective variety V̄ (qi). Note that the shift li does

not affect the leading coefficient of Pi, as it only shifts the variable.

Denoting the dimension of V̄ (qi) by ri and its degree by fi , it follows that

Pi(z) =
fi
ri!
zri + . . . .

Since only the leading coefficient of PM is of interest, the polynomials Pi of degree smaller

than r − 1 can be ignored. For any qj which is not minimal in {q1, . . . , qt}, there exists

a qi such that qi ( qj, and thus V̄ (qi) ) V̄ (qj), and by the Hilbert–Serre Theorem 4.12

also deg(Pi) > deg(Pj). Thus, the remaining ’Pi’s are exactly the ones for which the

associated prime ideal qi is a minimal associated prime of M . Denote them by p1, . . . , ps,

and note that by definition, these are exactly the minimal prime ideals over the annihilator

of M , which is equal to Ī(Y )+Ī(H). The corresponding projective variety V̄ (Ī(Y )+Ī(H))

is equal to the intersection of V̄ (Ī(Y )) = Y , and V̄ (Ī(H)) = H.

Hence, q1, . . . , qs are exactly the prime ideals corresponding to the irreducible components

Z1, . . . , Zs of Y ∩ H. According to Proposition 4.9, each of the irreducible components

occurs exactly µpj(M) times in the set of minimal associated primes of M . Furthermore,

by the Projective Dimension Theorem 3.6, all of these have dimension ≥ r − 1. As H

does not contain Y , the dimension of the intersection satisfies dim(Y ∩H) < dim(Y ) = r,
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and so dim(Zi) = r − 1 for all 1 ≤ i ≤ s. Thus, the degree of Y ∩ H can be computed

using Proposition 5.3:

deg(Y ∩H) =
s∑

j=1

ι(Y,H;Zj) · degZj.

The leading coefficient of PM is then(
s∑

j=1

ι(Y,H;Zj) · degZj

)/
(r − 1)!

Comparing with the equation (??), the result follows. �

Corollary 6.4 (Bézout’s Theorem). Let Y and Z be distinct irreducible curves in P2
k of

respective degrees d and e. Let Y ∩ Z be the set of points {P1, . . . , PS}. Then

s∑
j=1

ι(Y, Z;Pj) = de.

Proof. Note that a point P is a projective variety of dimension zero and thus has a constant

Hilbert polynomial. Furthermore, the homogeneous coordinate ring of P is isomorphic

to k with the trivial grading, and hence dim(k0) = 1 and dim(ki) = 0 for all i > 0.

Thereby, P has Hilbert polynomial 1 and hence degree 1. The claim follows by applying

Theorem 6.3. �

Remark 6.5. The proof above extends to the case in which Y and Z are reducible curves,

provided they have no common irreducible component. The points of intersection are then

exactly the intersection points of all the irreducible components.

7 An Application of Bézout: Pascal’s Theorem

The Theorem of Bézout is of great importance in the mathematical field of enumerative

geometry and thus has many geometric applications. One of many, Pascal’s Theorem

concerned with the intersection points of opposite sides of a hexagon embedded in a conic

section is introduced and proved, using mainly Bézout.

Hereafter, any curve of degree one in P2
k is called a line, and one of degree two or three

a quadric or cubic. In particular, lines, quadrics, and curves are allowed to be reducible.
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A conic is the intersection of the surface of a cone with a plane. In the Euclidean plane,

conics can be classified as ellipses, hyperbolas and parabolas. Embedded into the complex

projective plane P2
C however, these three types become equivalent under basis change, and

it is then unnecessary to treat them separately.

Lemma 7.1. Let Q be a quadric in P2
C. Choose six arbitrary distinct points on Q such

that no four of them are collinear.

(a) If three of the points P1, . . . , P6 are collinear, the remaining three are collinear as well,

and Q is the union of two lines; otherwise Q is irreducible.

(b) Q is uniquely determined by any five of the points P1, . . . , P6.

Proof. (a) Let P1, . . . , P6 be six distinct points onQ such that no four of them are collinear.

If P1, P2, P3 lie on a common line L, the intersection of L and Q contains at least three

points. By Bézout’s Theorem 6.4, it follows that Q and L therefore share an irreducible

component, and thus L ⊂ Q. Consequently, Q is the union of two lines L ∪ L′. As no

four points of P1, . . . , P6 are collinear by assumption, the points P4, P5, P6 cannot lie on L.

Therefore, the points P4, P5, P6 lie on L′ and are thereby collinear.

If no three points of P1, . . . , P6 are collinear and Q is the union of two lines L ∪ L′, at

most two points lie on the lines L and L′ each. Then, there exist integers 1 ≤ i < j ≤ 6

such that Pi, Pj 6∈ L ∪ L′ = Q. This is a contradiction.

(b) Let Q′ be another quadric containing any five of the points P1, . . . , P6 and assume Q

to be irreducible. Then the intersection Q∩Q′ contains at least five points and thus they

share an irreducible component by Bézout. It immediately follows that Q = Q′.

If Q is reducible, Q is decomposable into two distinct lines L ∪ L′. The assertion (a)

implies that exactly three points of P1, . . . , P6 lie on each line L and L′, and therefore

Q′ intersects at least one line in more than two points, say L. It follows by Bézout that

L ⊂ Q′ and therefore, Q′ is decomposable into two distinct lines L and L′′. By (a),

the remaining two intersection points of Q′ and Q thus lie on L′′. Therefore, L′′ and L′

intersect at at least two points. They coincide by Bézout, and hence Q = Q′. �

Proposition 7.2. Consider two cubic curves in the complex projective plane P2
C inter-

secting at exactly nine distinct points. If six of them lie on a quadric, the remaining three

intersection points are collinear.
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Proof. Let X = V̄ (f) and Y = V̄ (g) be the two cubics, and denote their points of

intersection by X ∩ Y = {P1, . . . , P9}. As X ∩ Y contains exactly nine points, it follows

by Bézout’s Theorem 6.4 that X and Y share no irreducible component. Furthermore,

no four of the nine points in X ∩ Y are collinear, otherwise both X and Y would have

more than three intersection points with some line and by Bézout, this line then would

lie in the intersection of X and Y , which contradicts the finiteness of X ∩ Y . Similarly,

no seven of the intersection points lie on a common quadric. Otherwise, X and Y would

have more than six intersection points with some quadric, which then had to be contained

in both X and Y by Bézout. This is again a contradiction to the finiteness of X ∩ Y .

Let Q be a quadric containing P4, . . . , P9.

In case Q has no common irreducible component with either X or Y , it is possible to

choose an arbitrary point P on Q which does not lie in X ∩ Y . As then neither f nor

g is zero at P , set λ := f(P )
g(P )

, which is a unit in C. Consider now the linear combination

h := f − λg, and Z := V̄ (h) the cubic curve it describes in P2
C. Then Z intersects Q

in at least seven points {P, P4, . . . , P9}, and thus, by Bézout, Z shares an irreducible

component with Q.

Assume this component to be a line. By Lemma 7.1, it follows that Q is the union of two

lines, say L1 ∪L2 with L1 ⊂ Z such that three of the points P4 . . . , P9 lay on the one line

and the remaining three on the other. Therefore, Z is the union of a quadric Q′ and L1,

with Q′ ∩L2 containing three distinct points. By Bézout, L2 ⊂ Q′ and the whole quadric

Q lies in Z. Hence, Q ⊂ Z regardless of the irreducibility of Q.

It follows that Z = Q ∪ L for some line L. All points in the intersection of X and Y

also clearly lie in Z. As argued above, no seven of the intersection points X ∩ Y lie on a

quadric, and therefore none of the three remaining intersection points P1, P2, P3 lies on Q.

Hence, {P1, P2, P3} ⊂ L.

If Q shares an irreducible component with X or Y , it follows by the argumentation above

that Q completely lies in the said cubic. As previously, it follows that P1, P2, P3 are

collinear. �

In the special case in which the two cubic curves in Proposition 7.2 are both the union of

three lines and the quadratic curve is a conic, the Theorem of Pascal follows.

Corollary 7.3 (Pascal’s Theorem). Consider six arbitrary distinct points on a conic which

are joined by line segments in any order to form a hexagon. Then the lines containing

opposite sides of this hexagon intersect at three collinear points.
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7 An Application of Bézout: Pascal’s Theorem

Definition 7.4. The line in Pascal’s Theorem 7.3 is called the Pascal line.

A

B

C

D
E

F

An example of the situation described in Pascal’s Theorem 7.3 depicted in the Euclidean

plane. The Pascal line is pictured in orange.
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