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Introduction

The text at hand is a first look at the theory of fundamental groups of
schemes. As the name suggests, this theory has many similarities with
the theory of fundamental groups in topology. On the other hand, it also
encompasses classical Galois theory, thereby generalizing it to arbitrary
arithmetic schemes.

We briefly recall the topological theory. Let X be a connected topological
space, and let x P X be a point. Let Fx be the functor from the category
of covers of X to the category of sets which sends a cover Y Ñ X to its
fiber over x. Each fiber is a π1pX,xq-set via the monodromy action. If X
has a universal cover rX Ñ X, then Fx is represented by rX and factors
through an equivalence of categories between the category of covers of X
and the category of π1pX,xq-sets. In this way, π1pX,xq completely classifies
the covers of X. By the Yoneda Lemma, the automorphism group of Fx is
isomorphic to AutXp rXqop, which in turn is isomorphic to π1pX,xq. Hence
we recover the fundamental group of X as the automorphism group of Fx.

The fundamental group of a connected scheme S is defined using an
analogous framework. The first step is to identify the class of morphisms
replacing topological covers; these are the finite étale covers of S. The base
scheme S is equipped with a geometric base point s, i.e. a morphism from
the spectrum of an algebraically closed field. Working with geometric fibers,
we then construct a functor Fs from the category of finite étale covers of S
to the category of sets. Reversing the topological situation, the fundamental
group π1pS, sq of S with base point s is defined to be the automorphism
group of Fs.

After setting up the general theory, we discuss the classification theorem:
Fs induces an equivalence of categories with the category of finite continuous
π1pS, sq-sets. There are two aspects of the theory which facilitate this
discussion. Firstly, a special role is played by connected finite étale Galois
covers, which are those connected finite étale covers whose automorphism
group acts transitively on geometric fibers. Every finite étale cover is an
intermediate cover of a Galois cover, and we can describe automorphisms of
Fs as compatible families of automorphisms of the Galois covers. Secondly,
because of the finiteness condition placed on finite étale covers, Fs takes
values in the category of finite sets; hence π1pS, sq has a natural profinite
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structure. Chapter 3 develops the necessary notions for this point of view.
The analogy drawn above can be made precise using the axiomatic

framework of Galois categories, as developed by Grothendieck [1]. Although
we do not introduce this notion, it will be clear that the proofs only use
formal properties of finite étale covers and the functor Fs.

The second part of the text is devoted to the study of finite étale covers
of schemes which are locally of finite type over the complex numbers C.
We associate with such a scheme S a topological space San, called the
analytification of S, whose topology is obtained by gluing the topologies
locally inherited from the analytic topology on Cm. This construction is
functorial, and transforms finite étale covers of S into topological covers of
San. The natural question is now whether any topological cover of San arises
from a finite étale cover of S.

Perhaps surprisingly, this is the case. For smooth projective curves and
their associated compact Riemann surfaces, this question was already studied
by Riemann. Grothendieck [1] gave a proof in the general setting introduced
above. More precisely, the functor which maps a finite étale cover of S to
the associated topological cover of San with finite fibers is an equivalence
of categories. It follows formally, using the material developed in Chapter
3 and the classification theorem in the topological setting, that there is an
isomorphism of topological groups between the fundamental group of S and
the profinite completion of the fundamental group of San.

The author would like to thank Prof. Dr. Richard Pink for his patient
guidance, and Alexandre Puttick for helpful comments on an earlier version
of the text.
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Chapter 1

Finite Étale Morphisms

We define finite étale morphisms and explore some of their properties, start-
ing from the case where the base scheme is the spectrum of a field. The
development of the theory in this and the next chapter follows Lenstra [4,
Chapters 4 and 5] and Szamuely [7, Chapters 5.2 and 5.3].

1.1 Finite étale schemes over a field

Definition 1.1. Let k be a field. A k-algebra A is called étale over k if it is
isomorphic to a finite product of finite separable field extensions of k.

Proposition 1.2. Let k be a field, let Ω be an algebraically closed field con-
taining k, and let A be a k-algebra. The following conditions are equivalent:

(a) A is étale over k,

(b) Abk Ω is isomorphic to a finite product of copies of Ω,

(c) Abk Ω is reduced and finite-dimensional over Ω.

Proof. Assume first that (a) holds. Since the functor ´bk Ω preserves finite
products, we may assume that A is a finite separable field extension of k.
By the primitive element theorem, A is isomorphic over k to krT s{pfq for a
monic irreducible separable polynomial f P krT s. Let f “

śm
i“1pT ´ aiq be

its factorization in ΩrT s, where the factors T ´ ai are distinct because f is
separable. Then

krT s{pfq bk Ω –
m

ź

i“1

ΩrT s{pT ´ aiq – Ωm

by the Chinese Remainder Theorem.
It is clear that (b) implies (c). Assume now that (c) holds. Let m be the

dimension of A bk Ω over Ω. It coincides with the dimension of A over k,
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so A is finite-dimensional. Hence it is Artinian, which in turn implies that
it is isomorphic to a finite product of Artinian local k-algebras. Because
Abk Ω is reduced, so is A. Thus A is in fact isomorphic to a finite product
k1 ˆ ¨ ¨ ¨ ˆ kr of finite field extensions of k. Each ki is separable, because
ki bk Ω is reduced. Hence A is étale over k.

Proposition 1.3. If k is a field and A is an étale k-algebra, then the module
of relative differentials ΩA{k of A over k is zero.

Proof. By Proposition 1.2 and the compatibility of relative differentials with
base change, it suffices to consider the case where A “ km for a nonnegative
integer m. Let M be an A-module, and let d : A Ñ M be a k-derivation.
Denote by e1, . . . , em the canonical basis of A over k. Note that each ei
is idempotent; we claim that this implies dpeiq “ 0. Indeed, applying d
to both sides of the equation e2

i “ ei yields 2eidpeiq “ dpeiq. Multiplying
by ei on both sides turns this into 2eidpeiq “ eidpeiq, so eidpeiq “ 0. Thus
dpeiq “ 2eidpeiq “ 0. Because te1, . . . , emu spans A as a vector space over k,
it follows that d “ 0.

1.2 Finite locally free morphisms

Definition 1.4. A morphism of schemes ϕ : X Ñ S is called finite locally
free if it is affine and ϕ˚OX is a finite locally free OS-module.

Proposition 1.5. The image of a finite locally free morphism of schemes
ϕ : X Ñ S is open and closed.

Proof. Since ϕ is finite, ϕpXq is closed. Hence ϕpXq “ supppϕ˚OXq, which
is open because ϕ˚OX is finite locally free.

Corollary 1.6. If ϕ : X Ñ S is a finite locally free morphism of schemes to
a connected scheme S, then ϕ is surjective if and only if X is nonempty.

Proof. The image of ϕ is open and closed in S by Proposition 1.5. Since
S is connected, this means that ϕ is surjective if and only if its image is
nonempty.

Definition 1.7. Let ϕ : X Ñ S be a finite locally free morphism of schemes,
and let s P S be a point. Since ϕ is finite locally free, the stalk pϕ˚OXqs is
free of finite rank over OS,s. Its rank is called the degree of ϕ at s, and is
denoted by degspϕq.

Proposition 1.8. The degree of a finite locally free morphism of schemes
ϕ : X Ñ S is a locally constant function of s P S. If S is connected, then the
degree of ϕ is constant.
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Proof. Every point s P S has an open neighborhood U such that pϕ˚OXq|U
is free of rank degspϕq over OS |U . Then the stalk of ϕ˚OX at every point of
U is free of rank degspϕq over the stalk of OS at that point, so the degree of
ϕ is constant on U . The second assertion is a direct consequence of the first
assertion and the definition of connectedness.

Lemma 1.9. A finite locally free morphism of schemes ϕ : X Ñ S is an
isomorphism if and only if its degree at every point of S is 1.

Proof. Being an isomorphism is local on the target, and a ring homomorphism
A Ñ B is an isomorphism if and only if it makes B a free A-module of
rank 1.

1.3 Finite étale morphisms

Definition 1.10. A morphism of schemes ϕ : X Ñ S is called finite étale
if it is finite locally free and for every point s P S the fiber Xs of ϕ over s is
the spectrum of an étale κpsq-algebra, where κpsq denotes the residue field
of s. A surjective finite étale morphism X Ñ S is also called a finite étale
cover of S.

Let S be a scheme. We denote by Sch{S the category of S-schemes, and
by FinÉt{S its full subcategory whose objects are the finite étale morphisms
X Ñ S. A geometric point of S is a morphism of schemes s : SpecpΩq Ñ S,
where Ω is an algebraically closed field. The image of s consists of a single
point s; we say that s lies over s. The geometric fiber over s of a morphism
X Ñ S is Xs :“ X ˆS SpecpΩq.

Definition 1.11. Let S be a scheme, and let s : SpecpΩq Ñ S be a geometric
point. We view SpecpΩq as an S-scheme via s. The fiber functor associated
with s is the functor

Fs : FinÉt{S ÝÑ Set,

pX Ñ Sq ÞÝÑ MorSpSpecpΩq, Xq,

ψ ÞÝÑ px ÞÑ ψ ˝ xq.

Proposition 1.12. Let ϕ : X Ñ S be a finite étale morphism of schemes,
and let s : SpecpΩq Ñ S be a geometric point of S. Then FspXq is in natural
bijection with the underlying set of Xs.

Proof. By Proposition 1.2, all points of Xs are Ω-rational; hence the underly-
ing set of Xs is in natural bijection with MorΩpSpecpΩq, Xsq. The claim fol-
lows from the natural bijection MorΩpSpecpΩq, Xsq – MorSpSpecpΩq, Xq.

Definition 1.13. Let ϕ : X Ñ S be a finite étale morphism of schemes, and
let s be a geometric point of S. The degree of ϕ at s is the degree of ϕ at
the point s over which s lies, and is denoted by degspϕq.
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Remark 1.14. Let ϕ : X Ñ S be a finite étale morphism of schemes, and
let s be a geometric point of S. It follows from Proposition 1.2 that the
degree of ϕ at s is equal to the number of points of Xs. By Proposition 1.12,
it is therefore also equal to the cardinality of FspXq.

Example 1.15. A locally closed embedding is finite étale if and only if it is
an open and closed embedding.

Example 1.16. Let K Ă L be a finite field extension. The corresponding
morphism SpecpLq Ñ SpecpKq is finite locally free of degree dimKpLq; it is
finite étale if and only if L is separable over K.

Example 1.17. Let A be a ring, and let f P ArT s be a monic polynomial
of degree m such that pf, Bf{BT q “ p1q in ArT s, where Bf{BT is the formal
derivative of f with respect to T . Because f is monic, ArT s{pfq is free of
rank m over A. If p is a prime ideal of A and Ω is an algebraic closure of its
residue field κppq, then ArT s{pfq bA Ω – Ωm as Ω-algebras by the Chinese
Remainder Theorem and the fact that f splits into distinct linear factors
over Ω. Hence the canonical morphism AÑ ArT s{pfq induces a finite étale
morphism of degree m on spectra.

Example 1.18. Let k be a field, let A “ krT, T´1s, and let Gm,k “ SpecpAq
be the multiplicative group over k. For every nonzero integer n, the morphism
of k-algebras ψn : AÑ A with ψnpT q “ Tn corresponds to a surjective finite
locally free morphism of schemes ϕn : Gm,k Ñ Gm,k. If n ą 0, then ψn is
isomorphic to the canonical morphism A Ñ ArU s{pUn ´ T q. The formal
derivative of Un ´ T with respect to U is nUn´1. If the characteristic of k
does not divide n, then pUn ´ T, nUn´1q “ pT q “ p1q in ArU s; hence ϕn is
finite étale of degree n by Example 1.17. If n ă 0, then ϕn is the composite
of ϕ´n and the automorphism ϕ´1. Provided that n is not divisible by the
characteristic of k, the morphism ϕn is also finite étale of degree ´n in that
case.

Example 1.19. Let k be a field, and let n ą 1 be an integer. Consider
the morphism of k-algebras ϑn : krT s Ñ krT s with ϑnpT q “ Tn, and the
corresponding morphism A1

k Ñ A1
k. The latter is finite locally free of degree

n, but not finite étale. Indeed, its fiber over the origin consist of a single
nonreduced point.

Example 1.20. Let p be a prime number, and let A be an Fp-algebra.
Given an element a P A, consider the polynomial f “ T p´T ´ a P ArT s and
the scheme X “ SpecpArT s{pfqq. The formal derivative of f with respect to
T is ´1, so the canonical morphism AÑ ArT s{pfq corresponds to a finite
étale morphism X Ñ SpecpAq of degree p by Example 1.17.
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1.4 Permanence properties

We now discuss permanence properties of finite locally free and finite étale
morphisms, such as being stable under composition and base change. As a
technical tool, we need the following algebraic result.

Proposition 1.21. Let A be a ring. For every A-module M the following
conditions are equivalent:

(a) M is finitely generated and projective,

(b) M is finitely presented and Mp is free for every p P SpecpAq,

(c) M is finite locally free.

Proof. We indicate the main steps in the proof, and refer to Lenstra [4,
Section 4.6] for a more complete explanation. That (a) implies (b) follows
from the fact that a finitely generated projective module over a local ring is
free. Suppose that M satisfies (b), and let p P SpecpAq. A straightforward
calculation shows that any basis of Mp over Ap lifts to a basis of Mf over
Af for some f P A r p. Hence M satisfies (c). Finally, in order to show
that (c) implies (a), first prove that M is finitely presented. Consequently,
the functors HomApM,´qf and HomAf

pMf , p´qf q are isomorphic for every
f P A. Since M is locally projective, it follows that M is projective.

Proposition 1.22. (a) The composite of two finite locally free morphisms
of schemes ϕ : X Ñ Y and ψ : Y Ñ Z is finite locally free.

(b) Let ϕ : X Ñ S and ψ : Y Ñ S be morphisms of schemes. If ϕ is finite
locally free, the so is the base change pr2 : X ˆS Y Ñ Y of ϕ by ψ.

Proof. Because affine morphisms are stable under composition and base
change, we may reduce to the affine case. Both assertions then follow
from the equivalence of conditions (a) and (c) in Proposition 1.21 and the
characterization of projective modules as direct summands of free modules.

Proposition 1.23. (a) The composite of two finite étale morphisms of
schemes ϕ : X Ñ Y and ψ : Y Ñ Z is finite étale.

(b) Let ϕ : X Ñ S and ψ : Y Ñ S be morphisms of schemes. If ϕ is finite
étale, the so is the base change pr2 : X ˆS Y Ñ Y of ϕ by ψ.

Proof. (a) The morphism ψ ˝ ϕ is finite locally free by Proposition 1.22. In
order to show that it is finite étale, we use Proposition 1.2. Let z P Z be a
point, let Ω be an algebraic closure of κpzq, and let z : SpecpΩq Ñ Z be the
resulting geometric point lying over z. We need to show that the geometric
fiber Xz is isomorphic to the spectrum of a finite product of copies of Ω.
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Note that Xz is naturally isomorphic to X ˆY Yz over Yz, so in particular
over Ω. Since ψ is finite étale, Yz is isomorphic over Ω to the spectrum of
a finite product of copies of Ω; since ϕ is finite étale and fiber products of
schemes commute with coproducts, so is Xz.

(b) The morphism pr2 is finite locally free by Proposition 1.22. As in the
proof of part (a), choose a point y P Y and a geometric point x : SpecpΩq Ñ Y
lying over y. We need to show, by Proposition 1.2, that the geometric fiber
pX ˆS Y qx is isomorphic to the spectrum of a finite product of copies of Ω.
Note that pX ˆS Y qx is naturally isomorphic to Xψ˝x “ X ˆS SpecpΩq over
Ω. Because ϕ is finite étale, Xψ˝x is isomorphic to the spectrum of a finite
product of copies of Ω by Proposition 1.2; the claim follows.

Corollary 1.24. Let ϕ : X Ñ Y and ψ : Y Ñ Z be finite locally étale
morphisms of schemes. If Y and Z are connected, then the degree of ψ ˝ϕ is
equal to the product of the degrees of ϕ and ψ.

Proof. See the proof of part (a) of the preceding proposition, which gives a
formula for the geometric fibers of ψ ˝ ϕ.

Remark 1.25. Let S be a scheme. For every finite family of schemes
X1, . . . , Xr which are finite étale over S, their coproduct

šr
i“1Xi in the

category Sch{S is finite étale over S. Hence it is also their coproduct in
the full subcategory FinÉt{S. The same thing is true for their product
X1 ˆS ¨ ¨ ¨ ˆS Xr by Proposition 1.23. Note that the fiber functor preserves
both finite coproducts and finite products.

Proposition 1.26. Let ϕ : X Ñ S be a finite étale morphism to a connected
scheme S.

(a) The number of connected components of X is less than or equal to the
degree of ϕ.

(b) Every connected component of X is open.

Proof. Assertion (b) is a purely topological consequence of (a), since the
degree of ϕ is finite. We now prove (a). Let s be a geometric point of S.
We induct on degspϕq, which is independent of the choice of s because S
is connected. If degspϕq “ 0, then X is empty; if degspϕq “ 1, then ϕ is
an isomorphism. Assume now that degspϕq ą 1. If X is connected, then
the claim holds. Otherwise X is the union of two disjoint nonempty open
and closed subsets U1 and U2. Being composites of finite étale morphisms,
the restrictions ϕ|U1 and ϕ|U2 are finite étale; hence they are surjective by
Corollary 1.6. Since Fs preserves coproducts, FspXq is the disjoint union of
the nonempty sets FspU1q and FspU1q. In particular the degrees of ϕ|U1 and
ϕ|U2 are strictly smaller than that of ϕ. By induction the claim holds for U1

and U2; but then it holds for X.
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Proposition 1.27. If ϕ : X Ñ S is a finite étale morphism, then the sheaf
of relative differentials ΩX{S of X over S is zero.

Proof. We may assume that X “ SpecpBq and S “ SpecpAq are affine, in
which case ΩX{S is the quasi-coherent OX -module associated with ΩB{A.
Since ϕ is of finite type, ΩB{A is finitely generated. Let q be a prime ideal
of B, and let p “ ϕpqq. By Nakayama’s Lemma, pΩB{Aqq “ 0 if and only if
ΩB{A bB κpqq “ 0. The latter is isomorphic to ΩBbAκppq{κppq bBbAκppq κpqq,
which is zero by Proposition 1.3. Thus ΩB{A “ 0.

Proposition 1.28. If ϕ : X Ñ S is a finite étale morphism, then the diago-
nal morphism ∆ϕ : X Ñ X ˆS X is an open and closed embedding.

Proof. Since ϕ is affine, it is separated, so ∆ϕ induces an isomorphism of
X with a closed subscheme Y of X ˆS X. We now wish to show that Y
is an open subscheme of X ˆS X. We may assume that X “ SpecpBq and
S “ SpecpAq are affine. Let I be the kernel of the codiagonal B bA B Ñ B.
It is finitely generated because B is finitely generated over A, and the
associated quasi-coherent ideal I of OXˆSX is the ideal of definition of Y .
The quotient I{I2 is isomorphic to ΩB{A, which is zero by Proposition 1.27.
Let p be a prime ideal of B bA B containing I. Then Ip is contained in the
unique maximal ideal of pB bA Bqp. Since I2

p “ Ip, we must have Ip “ 0 by
Nakayama’s Lemma. In other words, the stalk of I at every point y P Y is
trivial; because it is finitely generated, I vanishes on an open neighborhood
of y. Thus Y is an open subscheme of X ˆS X.

Proposition 1.29. Let ϕ : X Ñ S and ψ : Y Ñ X be morphisms of schemes.
If ϕ ˝ ψ and ϕ are finite étale, then so is ψ.

Proof. The graph morphism Γψ : Y Ñ Y ˆS X is the base change of the
diagonal morphism ∆ϕ by ψ ˆS idX , and ψ “ pr2 ˝ Γψ. As the diagonal
morphism is an open and closed embedding by Proposition 1.28, it is finite
étale. But then so is Γψ, since finite étale morphisms are stable under base
change by Proposition 1.23. Similarly, pr2 is finite étale as the base change of
ϕ˝ψ by ϕ. Thus ψ is finite étale as a composite of finite étale morphisms.

Proposition 1.30. Let Y be a connected S-scheme, and let ϕ1, ϕ2 : Y Ñ X
be S-morphisms to a finite étale S-scheme X. If there exists a nonempty
S-scheme T and an S-morphism ψ : T Ñ Y such that ϕ1 ˝ ψ “ ϕ2 ˝ ψ, then
ϕ1 “ ϕ2.

Proof. Denote by eqpϕ1, ϕ2q the equalizer of ϕ1 and ϕ2 in the category of
S-schemes. The following diagram is easily checked to be cartesian:

eqpϕ1, ϕ2q Y

X X ˆS X,

j

pϕ1,ϕ2q

∆
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where ∆ is the diagonal morphism of X over S, j is the canonical embedding,
and eqpϕ1, ϕ2q Ñ X is the composite ϕ1 ˝ j “ ϕ2 ˝ j. Since ∆ is an open
and closed embedding by Proposition 1.28, so is j. But Y is connected
and eqpϕ1, ϕ2q is nonempty by assumption, which means that j must be an
isomorphism. Thus ϕ1 “ ϕ2.
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Chapter 2

Galois Covers

2.1 Galois covers

Having introduced finite étale morphisms, we now study their automorphism
groups.

Construction 2.1. Given a finite étale morphism X Ñ S and a geometric
point s of S, there is a canonical left action of AutSpXq on FspXq. Namely,
f P AutSpXq acts on x P FspXq by f ¨ x :“ Fspfqpxq.

Proposition 2.2. Let X Ñ S be a connected finite étale cover, and let s
be a geometric point of S. Then the left action of AutSpXq on FspXq as
defined in Construction 2.1 is free, and the cardinality of AutSpXq is less
than or equal to the degree of ϕ.

Proof. Suppose that f P AutSpXq and x P FspXq are such that Fspfqpxq “ x.
Then f ˝ x “ idX ˝ x, so f “ idX by Proposition 1.30. Hence the action is
free. Since X Ñ S is surjective, there is a point x P FspXq. We have the
injective map

AutSpXq ãÑ FspXq, g ÞÑ Fspgqpxq;

hence the cardinality of AutSpXq is at most that of FspXq. The second
assertion follows from this and the natural bijection between FspXq and Xs,
see Proposition 1.12.

Proposition 2.3. Let ϕ : X Ñ S be a connected finite étale cover. Then
the following conditions are equivalent:

(a) The order of AutSpXq is equal to the degree of ϕ,

(b) AutSpXq acts transitively on FspXq for every geometric point s of S,

(c) AutSpXq acts transitively on FspXq for one geometric point s of S.
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Proof. Assume first that (a) holds. Let s be a geometric point of S, and
let x P FspXq be a lift of s. By Proposition 2.2, the action of AutSpXq on
FspXq is free, so the map

u : AutSpXq Ñ FspXq, g ÞÑ Fspgqpxq

is injective. Because the degree of ϕ is equal to the cardinality of FspXq,
the map u is a bijection. Therefore (a) implies (b). Since S is nonempty,
(b) implies (c). Suppose that (c) holds, so AutSpXq acts transitively on
FspXq for a geometric point s of S. Choose a lift x P FspXq and define u as
above. Because the action of AutSpXq on FspXq is free and transitive, u is
a bijection. Hence (a) follows.

Definition 2.4. A morphism of schemes X Ñ S is called a connected finite
étale Galois cover if it is a connected finite étale cover and satisfies the
equivalent conditions of Proposition 2.3.

Remark 2.5. Given a finite étale morphism of schemes X Ñ S and a
geometric point s of S, one can also consider the left action of AutSpXq
on Xs arising by base change of its left action on X. Under the bijection
between Xs with FspXq from Proposition 1.12, it corresponds to left action
of AutSpXq on Fs.

Example 2.6. If K is a field, then a connected finite étale Galois cover of
SpecpKq is a morphism SpecpLq Ñ SpecpKq corresponding to a finite Galois
extension K Ă L.

Example 2.7. Let us reexamine Example 1.18. Let n be a positive integer
not divisible by the characteristic of k, let A “ B “ krT, T´1s, and view B
as an A-algebra via ψn. There is an isomorphism of groups

u : AutApBq „ÝÑ µnpkq, f ÞÑ fpT q{T,

where µnpkq denotes the group of nth roots of unity in k. Hence the corre-
sponding connected finite étale cover ϕn : Gm,k Ñ Gm,k is Galois if and only
if k contains a primitive nth root of unity.

Proof. Any f P AutApBq satisfies ψn˝f “ ψn, so fpT qn “ Tn. Hence fpT q{T
is an nth root of unity in k. We construct an inverse v of u. Given ζ P µnpkq,
define vpζq to be the morphism of k-algebras krT, T´1s Ñ krT, T´1s sending
T to ζT . Then ψn ˝ vpζq “ ψn, since

ψnpvpζqpT qq “ pζT q
n “ Tn.

The map v is clearly a group homomorphism and an inverse of u. The last
assertion follows from the above isomorphism and Proposition 2.3.

10



Proposition 2.8. If ϕ : X Ñ S is a connected finite étale Galois cover, then
every S-endomorphism of X is an automorphism.

Proof. Let s be a geometric point of S, let x P FspXq be a lift of s, and
let f be an S-endomorphism of X. Because ϕ is Galois, there exists an
S-automorphism g of X such that Fspgqpxq “ Fspfqpxq. But then g “ f by
Proposition 1.30.

Definition 2.9. Let ϕ : X Ñ S be a finite étale cover. An intermediate
cover of ϕ is a factorization X Ñ Z Ñ S of ϕ. A morphism of intermediate
covers pX Ñ Z Ñ Sq Ñ pX Ñ Z 1 Ñ Sq is a morphism Z Ñ Z 1 such that
the diagram

X

Z Z 1

S

commutes.

As in Galois theory, there is a correspondence between intermediate covers
of a connected finite étale Galois cover and subgroups of its automorphism
group. In order to state the correspondence, we need to introduce quotients
of schemes by groups of automorphisms.

2.2 Quotients of schemes

Definition 2.10. Let C be a category, let X be an object of C, and let G
be a subgroup of AutpXq. A quotient of X by G is an object GzX of C

together with a universal G-invariant morphism π : X Ñ GzX, i.e. for every
G-invariant morphism ψ : X Ñ Y there is a unique morphism ψ1 : GzX Ñ Y
satisfying ψ1 ˝ π “ ψ.

Remark 2.11. If X Ñ S is a morphism in C and G is a subgroup of
AutSpXq such that the quotient GzX exists, then X Ñ S factors through
the canonical morphism X Ñ GzX.

Remark 2.12. Let X “ SpecpAq be an affine scheme, and let G be a
subgroup of AutpAq. The functor Spec induces a bijection of G with a
subgroup G1 of AutpXq. Denote by AG the ring of invariants of the canonical
left action of G on A. The affine scheme SpecpAGq together with the
morphism X Ñ SpecpAGq corresponding to the inclusion AG Ă A is a
quotient of X by G1 in the category of affine schemes.

11



Construction 2.13. Let X be a scheme, and let G be a subgroup of AutpXq.
Consider the quotient space GzX, whose points are the orbits of the points of
X under the canonical left action of G, and let π : X Ñ GzX be the canonical
projection. Since π˚OX “ π˚g˚OX for every g P G, there is a canonical right
action of G on π˚OX . Defining OGzX to be the sheaf of G-invariant sections
of π˚OX , we obtain the ringed space pGzX,OGzXq.

Proposition 2.14. Let ϕ : X Ñ S be an affine morphism of schemes, and
let G be a finite subgroup of AutSpXq. Then the ringed space GzX as defined
in Construction 2.13 is an S-scheme, and is a quotient of X by G in the
category Aff{S of schemes which are affine over S.

Proof. See Szamuely [7, Proposition 5.3.6] for the first assertion, and Lenstra
[4, Paragraph 5.18] for the second.

Proposition 2.15. Let ϕ : X Ñ S be a finite étale morphism of schemes,
and let G be a subgroup of AutSpXq. Let X Ñ GzX be a quotient of X by
G in Aff{S. Then both morphisms in the factorization X Ñ GzX Ñ S of ϕ
are finite étale.

Proof. See Lenstra [4, Proposition 5.20].

Corollary 2.16. Let ϕ : X Ñ S be a finite étale morphism of schemes, and
let G be a subgroup of AutSpXq. Then a quotient of X by G in the category
FinÉt{S exists.

Proof. This is immediate from Proposition 2.15, because FinÉt{S is a full
subcategory of Aff{S.

Proposition 2.17. Let ϕ : X Ñ S be a finite étale morphism of schemes,
let G be a subgroup of AutSpXq, and let Z Ñ S be a morphism of schemes.
Then the canonical morphism GzpXˆSZq Ñ pGzXqˆSZ is an isomorphism.

Proof. See Lenstra [4, Proposition 5.21].

Proposition 2.18. Let ϕ : X Ñ S be a connected finite étale cover, and
let G be a subgroup of AutSpXq. Then X

π
ÝÑ GzX Ñ S is a connected

intermediate cover of ϕ, and AutGzXpXq “ G.

Proof. The first part follows from Proposition 2.15. Since π is G-invariant, we
have G Ă AutGzXpXq. The degree of finite étale morphisms is multiplicative
by Corollary 1.24, so π has degree equal to the order G. Hence we must have
G “ AutGzXpXq by Proposition 2.2.

Proposition 2.19. A connected finite étale cover ϕ : X Ñ S is Galois if
and only if the canonical morphism AutSpXqzX Ñ S is an isomorphism.
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Proof. Let s be a geometric point of S. The morphism AutSpXqzX Ñ S is
an isomorphism if and only if it is of degree 1. By Proposition 2.17, we have
AutSpXqzXs – pAutSpXqzXqs. Hence the degree of AutSpXqzX Ñ S is 1
if and only if AutSpXq acts transitively on Xs. By Remark 2.5, this is the
case if and only if AutSpXq acts transitively on FspXq.

2.3 Galois correspondence

Theorem 2.20 (Galois correspondence). Let ϕ : X Ñ S be a connected
finite étale Galois cover. The assignments

pX Ñ Z Ñ Sq ÞÝÑ AutZpXq

pX Ñ HzX Ñ Sq ÐÝ [ H.

extend to an equivalence of categories between the category of intermediate
covers of ϕ and the category of subgroups of AutSpXq.

Proof. Given a morphism of intermediate covers

pX Ñ Z Ñ Sq Ñ pX Ñ Z 1 Ñ Sq,

the inclusion AutZpXq Ă AutZ1pXq holds. Conversely, an inclusion H Ă H 1

among subgroups of AutSpXq yields a factorization X Ñ HzX Ñ H 1zX of
the canonical morphism X Ñ H 1zX, which is readily seen to be a morphism
of intermediate covers

pX Ñ HzX Ñ Sq Ñ pX Ñ H 1zX Ñ Sq.

That these constructions are inverse to each other is immediate from Propo-
sitions 2.18 and 2.19.

Proposition 2.21. Let ϕ : X Ñ S be a connected finite étale Galois cover,
and let

X
π
ÝÑ Z

ψ
ÝÑ S

be an intermediate cover of ϕ such that ψ is a connected finite étale Galois
cover. Then there is surjective group homomorphism

u : AutSpXq Ñ AutSpZq

with kernel AutZpXq.

Proof. Let s be a geometric point of S, and let x P FspXq be a lift of s.
Given f P AutSpXq, we want to find upfq P AutSpZq making the diagram

X X

Z Z

f

π π

upfq
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commute. By Proposition 1.30, this is equivalent to

FspupfqqpFspπqpxqq “ Fspπ ˝ fqpxq.

Since ψ is Galois, there exists a unique such upfq. By uniqueness of upfq,
the resulting map u : AutSpXq Ñ AutSpZq is a group homomorphism. Now
let us show that u is surjective. Note that Fspπq is surjective. Because ϕ
is Galois, this implies that for every g P AutSpZq there exists f P AutSpXq
such that Fspπ ˝ fqpxq “ Fspg ˝ πqpxq. Then upfq “ g by construction, so
u is surjective. The kernel of u consists of those f P AutSpXq satisfying
π “ π ˝ f , i.e. f P AutZpXq.

Example 2.22. By Examples 1.16 and 2.6, the Galois correspondence for a
Galois extension K Ă L is a special case of Theorem 2.20.

Example 2.23. We return to Example 2.7. Assume that there exists a
primitive nth root of unity ζ in k. Then the automorphism group of ψn is
cyclic with generator vpζq, and its subgroups are generated by powers of vpζq.
Let H be such a subgroup, say generated by vpζqd for a divisor d of n. Denote
by H 1 the corresponding group of automorphisms of Gm,k. By Remark 2.12,
H 1zGm,k is given by the spectrum of AH . The latter consist of all Laurent
polynomials f “

řr
i“´r aiT

i such that fpζdT q “ f , i.e. ai is nonzero only

if di is divisible by n. Hence AH “ krTn{d, T´n{ds. The intermediate cover
Gm,k Ñ H 1zGm,k Ñ Gm,k of ϕn corresponds to the canonical factorization
A Ñ AH Ă A of ψn. Its isomorphism class is the same as that of the
intermediate cover

Gm,k Gm,k Gm,k.
ϕn{d ϕd

By Theorem 2.20, every connected intermediate cover of ϕn lies in such an
isomorphism class.

We now show that every connected finite étale cover of S is an intermediate
cover of a connected finite étale Galois cover of S. The proof is taken from
Szamuely [7, Proposition 5.3.9].

Proposition 2.24 (Galois closure). Let ϕ : X Ñ S be a connected finite
étale cover. Then there exists a connected finite étale Galois cover P Ñ S
which factors through ϕ.

Proof. Let s be a geometric point of S, and let m be the degree of ϕ. Choose
an enumeration FspXq “ tx1, . . . , xmu. We denote by Xm the m-fold product
X ˆS ¨ ¨ ¨ ˆS X. By the universal property of the fiber product, there is a
natural bijection

u : FspX
mq „ÝÑ FspXq

m, x ÞÑ ppr1 ˝ x, . . . ,prm ˝ xq.

14



Let x be the element of FspX
mq corresponding to px1, . . . , xmq under u, and

let P be the connected component of Xm over which x lies. Let π be the
composite of the embedding P ãÑ Xm with the projection pr1 : Xm Ñ X.
By Proposition 1.23, both π and ϕ ˝ π are finite étale.

We now show that the image of FspP q in FspXq
m consists of tuples with

pairwise distinct entries. Suppose that there exists x1 P FspP q such that
upx1q “ px11, . . . , x

1
mq has entries x1i “ x1j for distinct indices i and j. By

Proposition 1.30, this implies that the projections pri,prj : P Ñ X are equal.
Since the entries of upxq are pairwise distinct, this is impossible.

We prove that every x1 P FspP q lies in the AutSpP q-orbit of x. By the
above, upx1q “ pxσp1q, . . . , xσpmqq for a permutation σ P Spt1, . . . ,muq. This
permutation induces an automorphism f of Xm by permuting the factors.
Then fpP q is a connected component of X; the point p P P over which x1

lies is contained in both P and fpP q, so we must have fpP q “ P . Hence f
restricts to an automorphism f 1 of P such that Fspf

1qpxq “ x1.

Corollary 2.25. Let S be a connected scheme, let s be a geometric point of
S, let ϕ : X Ñ S be a finite étale cover, and let x P FspXq. There exists a
connected finite étale Galois cover P Ñ S, an S-morphism π : P Ñ X, and
p P FspP q such that Fspπqppq “ x.

Proof. Let Z be the connected component of X over which x lies. It is open
and closed by Proposition 1.26, so the canonical embedding j : Z ãÑ X is
finite étale. Applying Proposition 2.24 to ϕ ˝ j yields a connected finite étale
Galois cover P Ñ S which factors through a finite étale cover π1 : P Ñ Z.
Define π “ j ˝ π1. Since Fspπ

1q is surjective, x lies in the image of Fspπq.
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Chapter 3

Profinite groups

3.1 Continuous group actions

A left action of a topological group G on a set E without a topology is called
continuous if the corresponding map G ˆ E Ñ E is continuous, where E
is equipped with the discrete topology. This is the case if and only if the
stabilizer of every x P E is open in G.

Remark 3.1. If E is finite and the symmetric group SpEq is equipped with
the discrete topology, then an action GˆE Ñ E is continuous if and only if
the corresponding group homomorphism GÑ SpEq is continuous.

3.2 Profinite groups

By a cofiltered diagram in a category C we mean a functor P : IÑ C, where I

is a small cofiltered category. In order to simplify our notation, we will write
i P I for i P ObpIq. A topological group G is called profinite if it is a limit
of a cofiltered diagram of finite discrete topological groups. In particular
G is quasi-compact, Hausdorff, and totally disconnected. Profinite groups
form a full subcategory of TopGrp, the category of topological groups. The
inclusion functor from profinite to topological groups has a left adjoint, which
we construct in several steps.

Construction 3.2. Let G be a topological group. Define I to be the
category whose objects are the open normal subgroups of G of finite index,
with a unique morphism M Ñ N if M Ă N , and no morphism from M to N
otherwise. With the obvious composition of morphisms, I is a small cofiltered
category. There is a functor P : I Ñ TopGrp that maps an object M of
I to the finite discrete quotient group G{M . Given a morphism M Ñ N
in I, define P pM Ñ Nq to be the unique morphism G{M Ñ G{N that is
compatible with the projections from G. The profinite completion pG of G is
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the limit of P ; it is a profinite group, and comes with a natural morphism
ηG : GÑ pG.

Lemma 3.3. The image of ηG is dense in pG.

Proof. Let h “ phMMqMPI be an element of pG, and let U “ h kerpprN q be a
fundamental open neighborhood of h; see Lemma 3.4. Then ηGphN q P U , so
ηGpGq is dense in pG.

Lemma 3.4. Let G be the limit of a cofiltered diagram P : IÑ TopGrp of
finite discrete groups. For every i P I, denote by pri : GÑ P piq the canonical
projection. The open normal subgroups kerppriq of G form a fundamental
system of open neighborhoods of the identity element e P G.

Proof. Let U be an open neighborhood of e in G. By definition of the topology
of the limit, there is a nonnegative integer m and objects ip1q, . . . , iprq P I

such that
Şr
k“1 kerppripkqq is an open neighborhood of e in U . Because I is

cofiltered, there exists j P I such that there is a morphism j Ñ ipkq in I for
every k P t1, . . . , ru. Then kerpprjq is an open neighborhood of e in U .

Proposition 3.5. The assignment G ÞÑ pG extends to a functor from the
category of topological groups to the category of profinite groups.

Proof. Let ϕ : GÑ H be a morphism of topological groups. For every open
normal subgroup N of H of finite index, ϕ´1pNq is an open normal subgroup
of G of finite index. The family of morphisms

pGÑ G{ϕ´1pNq ãÑ H{N,

where the first morphism is the canonical projection, induces a morphism
pϕ : pGÑ pH by the universal property of the limit. The diagram

G pG

H pH

ηG

ϕ pϕ

ηH

commutes; since the image of G Ñ pG is dense by Lemma 3.3 and pG is
Hausdorff, this uniquely characterizes pϕ. It follows that

G ÞÝÑ pG,

ϕ ÞÝÑ pϕ

is a functor.

Proposition 3.6. A topological group G is profinite if and only if ηG is an
isomorphism.
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Proof. The condition is clearly sufficient, so we only need to prove necessity.
Suppose that G is a profinite group. The kernel of ηG is trivial by Lemma 3.4
and the fact that G is Hausdorff. Because G is quasi-compact and pG is
Hausdorff, ηG is a closed map. Its image is also dense by Lemma 3.3, so it is
a homeomorphism.

Proposition 3.7. The profinite completion of a topological group G has
the following universal property: given a profinite group H and a morphism
ϕ : GÑ H, there exists a unique morphism ϕ1 : pGÑ H such that ϕ “ ϕ1˝ηG.

Proof. By Proposition 3.5 there exists a unique morphism pϕ : pGÑ pH such
that pϕ ˝ ηG “ ηH ˝ ϕ. Since ηH is an isomorphism, the claim follows.

It follows formally that the functor G ÞÑ pG is left adjoint to the inclusion
functor from profinite groups to topological groups.

Corollary 3.8. Let G be a profinite group, and let H be a closed subgroup
of G, equipped with the induced topology. Then H is a profinite group.

Proof. We apply Proposition 3.6. Since H is quasi-compact and pH is Haus-
dorff, the morphism ηH is closed and surjective. Consider the commutative
diagram

H pH

G pG,

ηH

j pj

ηG

where j is the inclusion. Since ηG is an isomorphism and j is injective, ηH is
injective. Thus it is an isomorphism.

Proposition 3.9. Let G be a topological group. There is a natural isomor-
phism of categories between the category of finite continuous G-sets and the
category of finite continuous pG-sets.

Proof. Let E be a finite set. By Remark 3.1, continuous left actions of G on E
are in natural bijection with morphisms GÑ SpEq. By Proposition 3.7, these
are in natural bijection with morphisms pGÑ SpEq. Applying Remark 3.1
again yields the desired isomorphism on objects. The correspondence on
morphisms is immediate.

3.3 Automorphism groups of functors

Construction 3.10. Let C be a small category, and let F : CÑ FinSet be
a functor to the category of finite sets. For every E P C, equip AutpF pEqq
with the discrete topology. Let I be the category whose objects are the

18



finite subsets of ObpCq, with a unique morphism AÑ A1 if A1 Ă A, and no
morphism from A to A1 otherwise. Consider the cofiltered diagram

P : I ÝÑ TopGrp,

A ÞÝÑ
ź

EPA

AutpF pEqq,

which sends a morphism AÑ A1 to the canonical projection

ź

EPA

AutpF pEqq Ñ
ź

E1PA1

AutpF pE1qq.

Then
ś

EPC AutpF pEqq is a limit of P , so in particular a profinite group.
Note that AutpF q is a closed subgroup of this product, because the groups
AutpF pEqq are Hausdorff. We equip AutpF q with the induced topology,
which makes it a profinite group by Corollary 3.8.

Proposition 3.11. In the situation of Construction 3.10, the canonical left
action of AutpF q on E is continuous for every E P C.

Proof. The left action AutpF q ˆ E Ñ E factors as

AutpF q ˆ E AutpF pEqq ˆ E E,
prEˆidE

where the second map is the canonical left action of AutpF pEqq on E. This
action is continuous because the topology of AutpF pEqq is discrete; the map
prE ˆ idE is continuous by definition of the topology of AutpF q.

Proposition 3.12. For every topological group G, the category FinCont-G-Set
of finite continuous G-sets is essentially small, i.e. equivalent to a small
category.

Proof. Let E be a finite continuous G-set, and let E1, . . . , Er be its G-orbits.
For every i P t1, . . . , ru, choose xi P Ei and denote by Ui its stabilizer. Since
Ui is open, the canonical left action of G on G{Ui is continuous. Since Ei
is a transitive G-set, the map g ÞÑ g ¨ xi induces an isomorphism between
G{Ui and Ei. Hence E is isomorphic to

šr
i“1G{Ui. Such G-sets form a

set, so FinCont-G-Set has a full subcategory whose inclusion functor is an
equivalence of categories.

Whenever necessary, e.g. when applying Construction 3.10, we replace
FinCont-G-Set by the full subcategory described in the preceding proof.

Proposition 3.13. Let G be a profinite group, and let

U : FinCont-G-Set Ñ FinSet
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be the forgetful functor. Endow AutpUq with the topology from Construc-
tion 3.10. There is a natural isomorphism of topological groups

u : G „ÝÑ AutpUq

mapping g P G to the automorphism upgq of U whose component at E P C is

upgqE : UpEq Ñ UpEq, x ÞÑ g ¨ x.

Proof. Because the morphisms in FinCont-G-Set are G-equivariant maps,
u is well-defined. It follows from the definition of a left action that u is a
group homomorphism.

We now construct an inverse of u. For every open normal subgroup M
of G we have the continuous map

AutpUq Ñ G{M, f ÞÑ fG{M pMq.

The family of these maps is compatible with the projection G{N 1 Ñ G{N
for every inclusion N 1 Ă N among open normal subgroups of G, so it induces
a continuous map

v : AutpUq Ñ pG.

Since AutpUq is quasi-compact and pG is Hausdorff, v is closed. It is immediate
from the respective constructions that v ˝ u “ ηG, which is an isomorphism
by Proposition 3.6. Hence pη´1

G ˝ vq ˝ u “ idG.
It remains to show that u˝pη´1

G ˝vq “ idAutpUq. Let f be an automorphism
of U , and let M be an open normal subgroup of G. For every g P G there is
a G-equivariant map

ωg : G{M Ñ G{M, g1M ÞÑ g1gM.

This is well-defined because M is normal. Since f is a morphism of functors,

fG{M pgMq “ fG{M pωgpMqq “ ωgpfG{M pMqq “ fG{M pMqgM.

Hence fG{M is just left-multiplication by fG{M pMq. By construction of u
and v, this implies

upη´1
G pvpfqqqG{M “ fG{M .

In order to finish the proof, it suffices to show that f is already determined
by the components fG{N , where N ranges over all open normal subgroups of
G. Let E be a finite continuous G-set. By Proposition 3.12, we may suppose
that E is of the form

šr
i“1G{Hi for open subgroups Hi of G. Denote by j

the inclusion of G{Hi into E. Since f is a morphism of functors,

fE |G{Hi
“ fE ˝ Upjq “ Upjq ˝ fG{Hi

.

Hence we further reduce to the case that E “ G{H for an open subgroup H
of E. By Lemma 3.4, H contains a normal open subgroup N of G. Then
the diagram
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UpG{Nq UpG{Hq

UpG{Nq UpG{Hq

fG{N fG{H

commutes, so fG{H can be recovered from fG{N . Thus u˝pη´1
G ˝vq “ idAutpUq,

as desired.
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Chapter 4

Fundamental Group

4.1 Definition

Fix a scheme S and a geometric point s of S. In order to avoid set-theoretic
difficulties, we prove that FinÉt{S is essentially small. Whenever necessary,
we replace FinÉt{S by the full subcategory described in the proof.

Proposition 4.1. The category FinÉt{S is essentially small.

Proof. Up to isomorphism, a finite locally free morphism X Ñ S is deter-
mined by

(a) an affine open covering pViqiPI of S consisting of pairwise distinct sets,

(b) a nonnegative integer mi for every i P I,

(c) the structure of an OSpViq-algebra on every module OSpViq
mi ,

(d) and gluing data for the schemes Ui :“ SpecpOSpViq
miq, i.e. open sub-

schemes Uij Ă Ui for all i, j P I and S-isomorphisms ϕij : Uij „ÝÑ Uji
satisfying the cocycle conditions.

The schemes obtained by this process form a set, which implies that the
category of finite locally free morphisms X Ñ S is essentially small. Hence
so is the full subcategory of finite étale morphisms X Ñ S.

Definition 4.2. The fundamental group of S with base point s is defined
to be the automorphism group of Fs, equipped with the topology from Con-
struction 3.10, and is denoted by π1pS, sq.

4.2 Profinite structure of the fundamental group

From now on, we assume that the base scheme S is connected.
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Definition 4.3. Let C be a category. A functor F : CÑ Set is called pro-
representable if there exists a cofiltered diagram P : IÑ C together with an
isomorphism of functors

colim
iPI

MorCpP piq,´q „ÝÑ F.

If this is the case, then we say that P pro-represents F .

Construction 4.4. We construct a cofiltered diagram pro-representing Fs.
The index category I is a subcategory of FinÉt{S whose objects are the
connected finite étale Galois covers of S. For every i P I, choose pi P Fspiq.
Given i, j P I, there is at most one S-morphism ϕij : iÑ j satisfying

Fspϕijqppiq “ pj .

We define MorIpi, jq “ tϕiju if ϕij exists, and MorIpi, jq “ H otherwise.
Denote the inclusion functor IÑ FinÉt{S by P .

Given i, j P I, the canonical morphism P piqˆSP pjq Ñ S is finite étale. By
Corollary 2.25, there exists k P I and an S-morphism π : P pkq Ñ P piqˆSP pjq
such that Fspπqppkq “ ppi, pjq. Composing π with the respective projections,
we obtain morphisms k Ñ i and k Ñ j in I. Hence I is cofiltered.

We retain the diagram P and the points pi for the rest of this chapter.
The following proof is taken from Szamuely [7, Proposition 5.4.6].

Proposition 4.5. The cofiltered diagram P defined in Construction 4.4
pro-represents Fs.

Proof. For every i P I there is a morphism of functors

ηi : MorSpP piq,´q Ñ Fs

whose component at an object X of FinÉt{S is

pηiqX : MorSpP piq, Xq Ñ FspXq, g ÞÑ Fspgqppiq.

For every morphism ϕij : iÑ j in I we have ηi ˝MorSpϕij ,´q “ ηj , since

Fspg ˝ ϕijqppiq “ Fspgqppjq

for every g P MorSpP piq, Xq. The universal property of

G :“ colim
iPI

MorSpP piq,´q

yields a unique morphism η : GÑ Fs induced by the morphisms ηi.
We construct an inverse of η. Given a finite étale cover X Ñ S and

x P FspXq, there exists i P I and an S-morphism π : P piq Ñ X such that

Fspπqppiq “ x
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by Corollary 2.25. Let ϑX : FspXq Ñ GpXq be the map that sends x to the
equivalence class of π; it is well-defined because I is cofiltered. We claim
that ϑX is an inverse of ηX . On the one hand, we have

pηX ˝ ϑXqpxq “ Fspπqppiq “ x;

hence ηX ˝ ϑX is the identity map. On the other hand, if π1 : P pi1q Ñ X
represents an element of GpXq, then

pϑX ˝ ηXqprπ
1sq “ ϑXpFspπ

1qppi1qq “ rπ
1s.

Note that ϑX is natural in X, so we have a morphism of functors ϑ : Fs Ñ G
with component ϑX at X. It follows from the above calculations that ϑ is
the desired inverse of η.

Given a group G, we write Gop for the group with the same underlying
set and the opposite group law; it is naturally isomorphic to G via x ÞÑ x´1.

Construction 4.6. Let ϕij : i Ñ j be a morphism in the category I, i.e.
P pjq Ñ S is an intermediate connected finite étale Galois cover of P piq Ñ S.
By Proposition 2.21, there is a surjective group homomorphism

uij : AutSpP piqq
op Ñ AutSpP pjqq

op;

it maps gi P AutSpP piqq
op to the unique gj P AutSpP pjqq

op satisfying

gj ˝ ϕij “ ϕij ˝ gi.

Note that uii is the identity and ujk ˝ uij “ uik for all i, j, k P I, so we have
a functor

I ÝÑ TopGrp,

i ÞÝÑ AutSpP piqq
op,

ϕij ÞÝÑ uij ,

where the finite groups AutSpP piqq
op are equipped with the discrete topology.

Proposition 4.7. There is an isomorphism of topological groups

u : π1pS, sq „ÝÑ lim
iPI

AutSpP piqq
op

induced by the morphisms

ui : π1pS, sq Ñ AutSpP piqq
op

such that
Fspuipfqqppiq “ fP piqppiq

for every f P π1pS, sq.
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Proof. We construct an inverse w of u. As in the proof of Proposition 4.5,
denote by G the functor colimiPI MorSpP piq,´q and by η the isomorphism
G „ÝÑ Fs. The diagram

i ÞÝÑ MorSpP piq,´q

is the composite of P with the contravariant Yoneda embedding

P piq ÞÝÑ MorSpP piq,´q

and AutpP qop “ limiPI AutSpP piqq
op, so there is a canonical group homomor-

phism
v : lim

iPI
AutSpP piqq

op Ñ AutpGq.

Let w be the composite of v with

AutpGq „ÝÑ π1pS, sq, h ÞÑ η ˝ h ˝ η´1.

Let us check that u and w are inverse to each other. Given f P π1pS, sq,
let X Ñ S be a finite étale morphism of schemes, and x P FspXq. By
Corollary 2.25, there exists i P I and an S-morphism π : P piq Ñ X such that
Fspπqppiq “ x. Then

wpupfqqXpxq “ wpupfqqXpFspπqppiqq

“ FspπqpwpupfqqP piqppiqq

“ FspπqpfP piqppiqq

“ fXpFspπqppiqq

“ fXpxq.

Hence pw ˝ uqpfq “ f . On the other hand, starting out with an element
g “ pgiqiPI of limiPI AutSpP piqq

op, we have

Fspuipwpgqqqppiq “ wpgqP piqppiq

“ pη ˝ vpgq ˝ η´1qP piqppiq

“ ηP piqpvpgqP piqpridP piqsqq

“ ηP piqpgiq

“ Fspgiqppiq;

by Proposition 1.30, this implies uipwpgqq “ gi.
Thus u is a bijective group homomorphism. It is also continuous, because

each ui is continuous. Since π1pS, sq is quasi-compact and limiPI AutSpP piqq
op

is Hausdorff, u is also a closed map. Hence it is a homeomorphism.

The following technical result shows that the morphisms ui are surjective.
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Lemma 4.8. Let G be the limit of a cofiltered diagram P : IÑ TopGrp of
quasi-compact Hausdorff topological groups with surjective transition mor-
phism. Suppose moreover that between any two objects of I there are only
finitely many parallel morphisms. Then the projection prj : G Ñ P pjq is
surjective for every j P I.

Proof. Let hj P P pjq. For every i P I, define Ei to be the subset of
ś

i1PI P pi
1q

consisting of all elements pgi1qi1PI such that gj “ hj and P pϕqpgiq “ gi1 for
every i1 P I and every morphism ϕ : i Ñ i1. Then pr´1

j phjq “
Ş

iPIEi, and
each Ei is closed because the groups P pi1q are Hausdorff. Since

ś

i1PI P pi
1q

is quasi-compact, it suffices to show that the family pEiqiPI has the finite
intersection property. To prove that each Ei is nonempty, use that I is
cofiltered, that there are only finitely many parallel morphisms between any
two objects of I, and that the transition morphisms are surjective. Given
finitely many objects ip1q, . . . , iprq of I, there exists l P I such that there is
a morphism l Ñ ipkq in I for every k P t1, . . . , ru. Then El is contained in
Şr
k“1Eipkq, so the latter is nonempty.

4.3 Classification theorem

Let f be an automorphism of Fs, and let ψ : X Ñ Y be a morphism in
FinÉt{S. Then fY ˝ Fspψq “ Fspψq ˝ fX , i.e. Fspψq is π1pS, sq-equivariant.
Thus Fs factors through the functor

Fibs : FinÉt{S ÝÑ FinCont-π1pS, sq-Set,

pX Ñ Sq ÞÝÑ FspXq,

ψ ÞÝÑ Fspψq.

Proposition 4.9. The group π1pS, sq acts transitively on FspXq for every
connected finite étale cover X Ñ S.

Proof. Let π : Q Ñ X be a Galois closure of X Ñ S, and q P FspQq. We
show that every point of FspXq lies in the orbit of x :“ Fspπqpqq. Given
x1 P FspXq, let q1 P FspQq be such that Fspπqpq

1q “ x1. Since π is Galois,
it has an automorphism h taking q to q1. Combining Proposition 4.7 with
Lemma 4.8, we see that h can be lifted to π1pS, sq, i.e. there exists f P π1pS, sq
such that fQpqq “ q1. Since f is a morphism of functors, we have

fXpxq “ fXpFspπqpqqq

“ FspπqpfQpqqq

“ x1.

Hence π1pS, sq acts transitively on FspXq.

We are now in a position to prove that the fundamental group of S clas-
sifies its finite étale covers. More precisely, we have the following statement:
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Theorem 4.10. The functor Fibs : FinÉt{S Ñ FinCont-π1pS, sq-Set is
an equivalence of categories.

Proof. We begin by checking that Fibs is faithful. Let ψ1, ψ2 : X Ñ Y be
morphisms in FinÉt{S such that Fspψ1q “ Fspψ2q. Let j : Z ãÑ X be the
embedding of a connected component of X. Then Fspψ1 ˝ jq “ Fspψ2 ˝ jq, so
ψ1 ˝ j “ ψ2 ˝ j by Proposition 1.30. Since this is the case for every connected
component of X, we deduce ψ1 “ ψ2.

Now let us show that Fibs is full. Let X Ñ S and Y Ñ S be finite étale
morphisms, and let ω : FspXq Ñ FspY q be a π1pS, sq-equivariant map. Since
Fs preserves finite coproducts, it suffices to consider the case where X is
connected. Let Y1, . . . , Yr be the connected components of Y . Then FspY q
is canonically isomorphic to

šr
i“1 FspYiq, and each FspYiq is a transitive

π1pS, sq-set by Proposition 4.9. As FspXq is transitive for the same reason,
ω factors through FspYiq for some i P t1, . . . , ru. Hence we may assume
that X and Y are connected. Choose a point x P FspXq. Since π1pS, sq
acts transitively on FspXq and FspY q, the map ω is already determined by
y :“ ωpxq. Arguing as in Construction 4.4, we find a connected finite étale
Galois cover QÑ S, a point q P FspQq, and S-morphisms πX : QÑ X and
πY : QÑ Y satisfying

FspπXqpqq “ x and FspπY qpqq “ y.

We claim that πY factors through πX . For every h P AutXpQq, there exists
f P π1pS, sq such that fQpqq “ Fsphqpqq by an argument as in the proof of
Proposition 4.9. Straightforward calculations using naturality of f and the
definition of x show that

FspπY ˝ hqpqq “ FspπY qpqq.

By Proposition 1.30, this implies πY ˝ h “ πY . Since X together with πX is
a quotient of Q by AutXpQq, there exists a unique S-morphism ψ : X Ñ Y
such that πY “ ψ ˝ πX . By construction, Fspψqpxq “ y, so Fspψq “ ω.

Finally, let us show that Fibs is essentially surjective. Let E be a finite
continuous π1pS, sq-set. Decomposing E into its π1pS, sq-orbits and using
the fact that Fibs preserves finite coproducts, we may assume that E is
a transitive π1pS, sq-set. Then E is isomorphic to π1pS, sq{H for an open
subgroup H of π1pS, sq of finite index. Let i P I be such that kerpuiq Ă H,
see Lemma 3.4, and let U “ uipHq. Consider the π1pS, sq-equivariant map

ω : π1pS, sq Ñ FspP piqq, f ÞÑ fP piqppiq,

which is surjective by Proposition 4.9. If f P π1pS, sq, then ω´1pUωpfqq
consist of all g P π1pS, sq for which there exists h P H such that

gP piqppiq “ FspuiphqqpfP piqppiqq,
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since AutSpP piqq acts on FspP piqq via Fs. But

FspuiphqqpfP piqppiqq “ pf ˝ hqP piqppiq,

so pf˝hq´1˝g P kerpuiq and therefore g P fH. This shows ω´1pUωpfqq Ă fH;
the reverse inclusion is immediate. Hence ω induces an isomorphism of
π1pS, sq-sets

π1pS, sq{H „ÝÑ UzFspP piqq.

Since
UzFspP piqq – FspUzP piqq

by Proposition 2.17, this implies E – FspUzP piqq.
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Chapter 5

Analytic Topology

The material in this chapter is adapted from Neeman [6, Chapter 4]. From
now on we work in the category Sch{C of schemes over the field of complex
numbers C. Recall that for every scheme X locally of finite type over C there
is a natural bijection between the set XpCq of C-rational points of X and
the set of closed points of X; the bijection maps a morphism SpecpCq Ñ X
to the unique point in its image.

Construction 5.1. Let X be an affine scheme of finite type over C. Choose
a closed embedding ϕ : X ãÑ Am

C ; it induces an injective map

ϕpCq : XpCq ãÑ Am
C pCq, t ÞÑ ϕ ˝ t.

Denote by um the natural bijection Am
C pCq

„ÝÑ Cm. We equip Cm with the
analytic topology, and XpCq with the initial topology induced by um ˝ ϕpCq;
the resulting topological space is denoted by Xan. As a formal consequence
of the fact that the analytic topology on Cm is finer than the Zariski topology,
it follows that the topology of Xan is finer than the induced topology. Hence
the canonical map Xan Ñ X is continuous.

Proposition 5.2. The topology of Xan is independent of ϕ.

Proof. Let ϕ : X ãÑ Am
C and ψ : X ãÑ An

C be closed embeddings, with
corresponding surjective morphisms of C-algebras

α : CrX1, . . . , Xms OXpXq and β : CrY1, . . . , Yns OXpXq.

For every i P t1, . . . ,mu, choose a polynomial pi P CrY1, . . . , Yns such that
αpXiq “ βppiq. Let

ω : CrX1, . . . , Xms CrY1, . . . , Yns

be the morphism of C-algebras with ωpXiq “ pi. Then β ˝ ω “ α, so passing
to spectra we have the commutative diagram

29



X Am
C

X An
C.

ϕ

idX Specpωq

ψ

Now pass to C-rational points; SpecpωqpCq : An
CpCq Ñ Am

C pCq corresponds
to the map

Cn Ñ Cm, y ÞÑ pp1pyq, . . . , pmpyqq,

which is continuous with respect to the analytic topologies. By commutativity
of the above diagram, the topology on XpCq induced by ϕ is coarser than
the topology induced by ψ. Since the argument is symmetric in ϕ and ψ,
the claim follows.

Definition 5.3. Let X be a scheme locally of finite type over C. We define
the analytic topology on XpCq to be the final topology with respect to the
canonical injective maps Uan ãÑ XpCq, where U ranges over all affine open
subschemes of X. The resulting topological space is denoted by Xan and is
called the analytification of X.

Remark 5.4. Since the analytic topology on the affine open subschemes is
finer than the induced topology, the canonical map Xan Ñ X is continuous.

Construction 5.5. The assignment X ÞÝÑ Xan extends to a functor from
the category of schemes locally of finite type over C to the category of
topological spaces, which we call the analytification functor. In fact, equipping
Cm with the sheaf of holomorphic functions, Xan locally inherits the structure
of a ringed space. Thus Xan becomes an analytic space; see Grothendieck [2,
Définition 2.1]. Given a morphism f : X Ñ Y , we have

fan : Xan Ñ Y an, t ÞÑ f ˝ t.

Continuity of fan in the affine case follows by drawing a diagram as in the
proof of Proposition 5.2, replacing the upper X by Y and idX by f . The
general case can then be reduced to this, because continuity is local.

Instead of defining the analytic topology as the final topology with respect
to all embeddings of affine open subschemes, we could choose an affine open
covering and try to glue the analytic topologies of the members of the covering.
The next two results show that this procedure works and yields the same
topology.

Lemma 5.6. Let X be an affine scheme of finite type over C. For every
f P OXpXq, the canonical open embedding i : Dpfq ãÑ X of the distinguished
open subscheme Dpfq induces an open embedding ian : Dpfqan ãÑ Xan.

Proof. Suppose first that X “ Am
C with coordinates X1, . . . , Xm. Given

f P CrX1, . . . , Xms, we have the commutative diagram
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Am
C

Dpfq Am`1
C ,

i

j

π

where j embeds Dpfq as the closed subscheme V pfXm`1 ´ 1q of Am`1
C ,

and π is the projection onto the first m coordinates. Passing to C-rational
points and using the bijections uk : Ak

CpCq
„ÝÑ Ck, we need to show that the

projection
V pfpxqxm`1 ´ 1q Ñ Cm, px, xm`1q ÞÑ x

from the vanishing locus V pfpxqxm`1 ´ 1q Ă Cm`1 is an open embedding
for the complex topologies; but this is clear, as it induces a homeomorphism
with the open subspace

pCmqf :“ tx P Cm | fpxq ‰ 0u Ă Cm.

In the general case, choose a closed embedding X ãÑ Am
C correspond-

ing to a surjective morphism α : CrX1, . . . , Xms OXpXq. Let g P α´1pfq.
By the universal property of localization, there is a unique morphism
β : CrX1, . . . , Xmsg Ñ OXpXqf such that the diagram

CrX1, . . . , Xms OXpXq

CrX1, . . . , Xmsg OXpXqf

α

β

commutes, where the unlabeled morphisms are the canonical ones. Since α
is surjective, so is β. Passing to spectra, then to C-rational points and using
the first step, we obtain the commutative diagram

Cm Xan

pCmqg Dpfqan,

ian

where all morphisms except for ian are known to be embeddings; hence ian is
also an embedding. Its image corresponds to the intersection of Dpfq with the
set of closed points of X, so we conclude that ian is an open embedding.

Proposition 5.7. Let X be a scheme locally of finite type over C, and let
j : U ãÑ X be the embedding of an affine open subscheme. The associated
continuous map jan : Uan Ñ Xan is an open embedding.

Proof. The map jan is injective, and its image is the inverse image of the
open set U under the canonical continuous map c : Xan Ñ X. It remains to
show that jan is an open map. Let A be an open subset Uan; we need to
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show that for every affine open subscheme V of X, the inverse image B of
cpjanpAqq under the map V an Ñ X is an open subset of V an. Take a point
x P B, and let W be an affine open neighborhood of cpxq in U X V which is
simultaneously distinguished in U and V . By Lemma 5.6, we have canonical
open embeddings W an ãÑ Uan and W an ãÑ V an. Hence B is open at x.

Lemma 5.8. Let X Ñ S and Y Ñ S be morphisms of schemes locally of
finite type over C. The natural bijection

u : pX ˆS Y qpCq „ÝÑ XpCq ˆSpCq Y pCq, t ÞÑ ppr1 ˝ t,pr2 ˝ tq.

induces a homeomorphism pX ˆS Y q
an „ÝÑ Xan ˆSan Y an.

Proof. Because of the gluing construction of fiber products and Proposi-
tion 5.7, we may assume that X, Y , and S are affine. Choosing appropriate
generators of the corresponding rings, we find a closed embedding χ : S ãÑ Al

C

as well as closed embeddings ϕ : X ãÑ Am
C and ψ : Y ãÑ An

C with m ě l and
n ě l fitting into commutative diagrams

X Am
C

S Al
C

ϕ

χ

and

Y An
C

S Al
C,

ψ

χ

where the morphisms Am
C Ñ Al

C and An
C Ñ Al

C are the projections. Then
ϕ ˆχ ψ can be used to define the analytic topology on pX ˆS Y qpCq by
Proposition 5.2. The claim follows from naturality of u.

A continuous map ϕ : X Ñ Y of topological spaces is separated if the
diagonal of X ˆY X is closed. Equivalently, any two distinct points of X
lying over the same point of Y have disjoint open neighborhoods in X.

Proposition 5.9. Let ϕ : X Ñ S be a morphism of schemes locally of finite
type over C. If ϕ is a separated morphism of schemes, then ϕan is a separated
continuous map.

Proof. Denote by ∆ the diagonal morphism X Ñ X ˆS X, which is a closed
embedding since ϕ is separated. The diagonal map

δ : Xan Ñ Xan ˆSan Xan, t ÞÑ pt, tq

is the composite of ∆an with the homeomorphism u from Lemma 5.8. By
Remark 5.4, the image of ∆an is closed in pX ˆS Xq

an. Hence the image of
δ, which is precisely the diagonal of Xan ˆSan Xan, is closed.

Proposition 5.10. A scheme X locally of finite type over C is connected if
and only if its analytification Xan is connected.

Proof. See Grothendieck [1, Exposé XII, Proposition 2.4].
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Chapter 6

Comparison Theorem

6.1 Topological theory

Let X be a connected topological space, and let x P X be a point. A cover
of X is a continuous map ϕ : Y Ñ X such that every point x P X has an
evenly covered open neighborhood, i.e. an open neighborhood U in X such
that ϕ´1pUq is a disjoint union of open subsets of Y each of which is mapped
homeomorphically onto U by ϕ. Note that we do not assume that ϕ is
surjective. As for schemes, we define a fiber functor Fx from the category
Cov{X of covers of X to the category of sets. It maps a cover ϕ : Y Ñ X
to the fiber ϕ´1pxq, and a morphism of covers, i.e. a continuous map over
X, to the induced map on the fibers. A universal cover of X is a simply
connected cover of X; it exists for example if X is locally contractible.

Theorem 6.1. If X has a universal cover, then the fiber functor Fx induces
an equivalence of categories

Cov{X » π1pX,xq-Set,

which sends a cover to its fiber over x equipped with the monodromy action.

Proof. See Szamuely [7, Theorem 2.3.4].

We view π1pX,xq as a discrete topological group, and denote its profinite
completion by pπ1pX,xq.

Corollary 6.2. If X has a universal cover, then Fx induces an equivalence
of categories

FinCov{X » FinCont-pπ1pX,xq-Set.

Proof. The equivalence of categories from Theorem 6.1 restricts to an equiv-
alence of categories

FinCov{X » Fin-π1pX,xq-Set.

Since π1pX,xq is discrete, every finite π1pX,xq-set is continuous. Now apply
Proposition 3.9.
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6.2 Analytification of finite étale covers

We again work in the category Sch{C. Fix a connected scheme S locally of
finite type over C and a geometric point s P San. As a first step toward the
comparison theorem, we prove that the analytification of a finite étale cover
of S is a cover of San with finite fibers.

Definition 6.3. A morphism of affine schemes X Ñ Y is called standard
étale if it is isomorphic to a morphism of the form SpecpBq Ñ SpecpAq with

B “ pArY s{pgqqh

for g P ArY s monic and h P ArY s{pgq such that Bg{BY becomes invertible in
pArY s{pgqqh.

Theorem 6.4. A morphism of schemes ϕ : X Ñ Y is finite étale if and only
if it is finite and for every point x P X there exist affine open neighborhoods
U of x and V of ϕpxq such that ϕpUq Ă V and ϕ|U : U Ñ V is standard
étale.

Proof. See Milne [5, Chapter I, Theorem 3.14].

Lemma 6.5. Let f1, . . . , fr P CrX1, . . . , Xms and g P CrX1, . . . , Xm, Y s be
such that

Bg

BY
px, yq P C

is invertible at a point px, yq of the vanishing locus V pf1, . . . , fr, gq Ă C
mˆC.

Then the projection

π : V pf1, . . . , fr, gq Ñ V pf1, . . . , frq, px1, y1q ÞÑ x1

is a homeomorphism at px, yq.

Proof. Consider the holomorphic map

F : Cm ˆ CÑ C, px1, y1q ÞÑ gpx1, y1q,

which satisfies V pf1 . . . , frqXF
´1p0q “ V pf1, . . . , fr, gq. Since pBg{BY qpx, yq

is invertible, the Implicit Function Theorem applies. Thus there are open sets
U Ă Cm and V Ă C satisfying px, yq P U ˆ V together with a holomorphic
map G : U Ñ V such that pU ˆV qXF´1p0q is the graph of G. In particular,
the restriction of π to

pU ˆ V q X V pf1, . . . , fr, gq Ñ U X V pf1, . . . , frq

has the inverse x1 ÞÑ px1, Gpx1qq. Hence π is a homeomorphism at px, yq.
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Proposition 6.6. Let ϕ : X Ñ Y be a morphism of affine schemes of finite
type over C. If ϕ is standard étale, then its analytification ϕan : Xan Ñ Y an

is a local homeomorphism.

Proof. Assume that X “ SpecpBq and Y “ SpecpAq are as in Definition 6.3.
As Y is of finite type over C, we can replace A by CrX1, . . . , Xms{pf1, . . . , frq
for certain f1, . . . , fr P CrX1, . . . , Xms. Lifting g to CrX1, . . . , Xm, Y s, we
may assume

B “ pCrX1, . . . , Xm, Y s{pf1, . . . , fr, gqqh

for h P CrX1, . . . , Xm, Y s{pf1, . . . , fr, gq such that Bg{BY becomes invertible
in B. Then ϕan corresponds to the composite

V pf1, . . . , fr, gqh V pf1, . . . , fr, gq V pf1, . . . , frq,
π

where π is as in Lemma 6.5. Because of our assumption on Bg{BY and h,
pBg{BY qpxq is invertible at every point x P V pf1, . . . , fr, gqh. Combining
Lemma 6.5 with Lemma 5.6 shows that ϕan is a local homeomorphism.

The degree of a continuous map ϕ : X Ñ Y of topological spaces at a
point y P Y is the cardinality of the fiber ϕ´1pyq.

Proposition 6.7. Let ϕ : X Ñ Y be a separated continuous map of topolog-
ical spaces. If ϕ is a local homeomorphism with finite fibers whose degree is
a locally constant function of y P Y , then ϕ is a cover.

Proof. Let y be a point of Y , and let ϕ´1pyq “ tx1, . . . , xmu be an enumera-
tion of the fiber of ϕ over y. If it is empty, then y has an open neighborhood
whose inverse image under ϕ is empty, because the degree of ϕ is locally con-
stant. Hence we may assume that ϕ´1pyq is nonempty. Since ϕ is separated,
there are pairwise disjoint open neighborhoods U1, . . . , Um of x1, . . . , xm in X.
After shrinking them, we may assume that there exists an open neighborhood
V of y on which the degree of ϕ is constant and such that each Ui maps
homeomorphically onto V . Then V is an evenly covered open neighborhood
of y, because ϕ´1pV q “ U1 Y ¨ ¨ ¨ Y Um.

Proposition 6.8. If ϕ : X Ñ S is a finite étale morphism, then its analyti-
fication ϕan : Xan Ñ San is a cover with finite fibers.

Proof. The map ϕan is a local homeomorphism by Propositions 6.3 and 6.6,
and separated by Proposition 5.9. Its fibers are in bijection with geometric
fibers of ϕ, so they are finite and their cardinality is locally constant. The
claim follows from Proposition 6.7.
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6.3 Comparison theorem

Conversely, every cover of San with finite fibers arises as the analytification of
a finite étale cover. This is a much deeper result, which was already studied
by Riemann in the case of smooth projective curves and their associated
compact Riemann surfaces.

Theorem 6.9. The functor

FinÉt{S ÝÑ FinCov{San,

pX Ñ Sq ÞÝÑ pXan Ñ Sanq,

ψ ÞÝÑ ψan

is an equivalence of categories.

Proof. See Grothendieck [1, Exposé XII, Théorème 5.1].

Using this theorem, we are now going to compare the fundamental group
of S with the topological fundamental group of San. In order to use the
topological theory, we need the following result.

Theorem 6.10. The topological space San is locally contractible.

Proof. As a special case of Hironaka [3, Theorem 1], San locally admits the
structure of a simplicial complex, so it is locally contractible.

Theorem 6.11. There is an isomorphism of topological groups

pπ1pS
an, sq „ÝÑ π1pS, sq.

Proof. We have the following diagram:

FinÉt{S FinCov{San

Set FinCont-pπ1pS
an, sq-Set,

Fs

A
»

T»

U

where Fs is the fiber functor, A is the analytification functor, T is the
equivalence of categories from Corollary 6.2, and U is the forgetful functor.
If ϕ : X Ñ S is a finite étale cover, then pϕanq´1psq coincides with FspXq.
Hence U ˝ T ˝A “ Fs, i.e. the above diagram commutes. Since T ˝A is an
equivalence of categories, it induces an equivalence ´ ˝ pT ˝Aq between the
category of set-valued functors on FinCont-pπ1pS

an, sq-Set and the category
of set-valued functors on FinÉt{S. Explicitly, ´ ˝ pT ˝Aq is given by

F ÞÝÑ F ˝ pT ˝Aq,

pf : F Ñ Gq ÞÝÑ f ˝ idT˝A,
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where f ˝ idT˝A is the horizontal composite of idT˝A and f . Thus we have
an isomorphism of topological groups

AutpUq „ÝÑ AutpFsq, f ÞÑ f ˝ idT˝A.

Composing this with the isomorphism of topological groups

pπ1pS
an, sq „ÝÑ AutpUq

from Proposition 3.13 yields the claim.

Before departing from the reader, we give some applications of the results
in this chapter.

Example 6.12. Let S be the affine line over C; then San is homeomorphic
to C. Because every cover of a simply connected topological space is trivial,
Theorem 6.9 implies that every finite étale morphism X Ñ S is isomorphic
to one of the form

šn
i“1 S Ñ S for some nonnegative integer n. In particular,

π1pS, sq is trivial.

Example 6.13. Continuing the story of Example 1.18, let S be the mul-
tiplicative group over C. Its analytification San is homeomorphic to the
subspace Cr t0u of C, so π1pS

an, sq – Z. By Theorems 6.9 and 6.1, we have
FinÉt{S » Fin-π1pS

an, sq-Set. Up to isomorphism, every finite transitive
Z-set is of the form Z{pnq for some nonzero integer n. It follows that every
connected finite étale cover of S is isomorphic to ϕn for some nonzero integer
n. An arbitrary finite étale morphism X Ñ S is a finite coproduct of such
covers.

Example 6.14. Let S “ P1
C r t0, 1,8u be the projective line minus three

points. Its analytification San is homeomorphic to Cr t0, 1u, so π1pS
an, sq is

a free group on two generators. Equip π1pS
an, sq with the discrete topology.

By Proposition 3.7, morphisms from pπ1pS
an, sq to a profinite group H are in

natural bijection with morphisms π1pS
an, sq Ñ H. Such morphisms in turn

correspond to elements of H ˆH. Hence pπ1pS
an, sq is a free profinite group

on two generators.
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