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1 Introduction

Let S be a mixed Shimura variety over the field of complex numbers C. By definition
an irreducible component of a mixed Shimura subvariety of S, or of its image under
a Hecke operator, is called a special subvariety of S.

Consider any irreducible closed subvariety Z ⊂ S. Since any intersection of special
subvarieties is a finite union of special subvarieties, there exists a unique smallest
special subvariety containing Z. We call it the special closure of Z and denote it by
SZ . We call the dimension of SZ the amplitude of Z, and the codimension of Z in
SZ the defect of Z. The defect measures how far Z is away from being special; in
particular Z is special if and only if its defect is zero. Moreover Z is called Hodge
generic if SZ is an irreducible component of S, that is, if Z is not contained in any
special subvariety of codimension > 0.

For any point s ∈ S the amplitude and the defect of {s} coincide and are called the
amplitude of s. The points of amplitude zero in S are precisely the special points
in S. Moreover s is called Hodge generic if {s} is Hodge generic.

Conjecture 1.1 Consider a mixed Shimura variety S over C, an integer d, and a
subset Ξ ⊂ S of points of amplitude ≤ d. Then any irreducible component Z of the
Zariski closure of Ξ has defect ≤ d.

Clearly this is equivalent to the following contrapositive version:

Conjecture 1.2 Consider a mixed Shimura variety S over C and an irreducible
closed subvariety Z. Then the intersection of Z with the union of all special subva-
rieties of S of dimension < dimSZ − dimZ is not Zariski dense in Z.

Moreover, since these conjectures are invariant under Hecke operators, one may
assume that SZ is an irreducible component of a mixed Shimura subvariety S′ of S.
Replacing S by S′ then leads to the following equivalent formulation:

Conjecture 1.3 Consider a mixed Shimura variety S over C and a Hodge generic
irreducible closed subvariety Z. Then the intersection of Z with the union of all
special subvarieties of S of codimension > dimZ is not Zariski dense in Z.

The aim of this note is to propose and explain these conjectures, and to relate
them to other conjectures and known results. Conjecture 1.1 for d = 0 is precisely
the André-Oort conjecture, which has been established in special cases or under
additional assumptions by Moonen [13] [14], André [1], Edixhoven [8], [9], [10],
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Edixhoven-Yafaev [11], and Yafaev [23], [24]; and an analogue by Breuer [5]. For
a recent survey see the Bourbaki talk by Noot [15]. (In [17] the author did not
comment on the relation of the André-Oort conjecture with applications and with
further problems, because he did not strive for completeness of that kind. But as a
nice application he should have mentioned the work of Cohen and Wüstholz [6] and
Cohen [7], who apply the case proved by Edixhoven-Yafaev [11] to transcendence
and special values of hypergeometric functions. For a more thorough survey see
Noot [15].)

In Section 3 we show that Conjecture 1.1 implies the conjecture on generalized Hecke
orbits from [17, Conj. 1.6]. In Section 5 we rephrase it in two ways for subvarieties
contained in a fiber of a Shimura family A → S of semiabelian varieties. The
resulting conjectures about subvarieties of semiabelian varieties have been studied
independently by Bombieri-Masser-Zannier [3], [4], Viada [22], Rémond-Viada [20],
and Ratazzi [18], [19], who proved different special cases. Both these conjectures
and the one from [17, Conj. 1.6] imply the Mordell-Lang conjecture, which is also
a theorem. Furthermore, in Section 6 we apply Conjecture 1.1 to subvarieties of
families of semiabelian varieties, obtaining in particular a relative version of the
Manin-Mumford conjecture, motivated by a question of André.

The author hopes that these correlations with other conjectures and results are
justification enough for the proposed conjectures. At least he found no trivial
counterexample, though the conjectures are numerically sharp by Propositions 2.1
and 6.4. Also, there is no discussion of possible strategies of proof, or of related
conjectures or generalizations involving height estimates or points of small height.

It is my pleasure to thank Daniel Bertrand, Bas Edixhoven, Marc Hindry, Ben
Moonen, Damian Roessler, and Evelina Viada for interesting conversations on the
subject.

2 Sharpness

Conjecture 1.1 is numerically sharp in the following sense.

Proposition 2.1 Consider a mixed Shimura variety S over C which possesses a
mixed Shimura subvariety of dimension d. Then there exists an irreducible closed
subvariety Z ⊂ S of defect d containing a Zariski dense set of points of amplitude
≤ d.

Proof. Fix a mixed Shimura subvariety S′ ⊂ S of dimension d. After replacing S
and S′ by suitable finite coverings we may assume that both are smooth. We choose
a locally closed embedding S ↪→ PnC and construct Z as an irreducible component
of S ∩ L for a sufficiently general linear subspace L ⊂ PnC of codimension d.

On the one hand we can require that L meets S′ transversally at some point s′ ∈ Z.
It then also meets S transversally at s′, so that Z is smooth at s′ of codimension
d in S. On the other hand we may still vary L in a nonempty open subset of its
parameter space, so the possible subvarieties Z sweep out a nonempty open subset
of S. As the set of Hodge generic points in S is dense for the analytic topology,
we may therefore assume that Z contains a Hodge generic point. Then Z itself is
Hodge generic, and hence of defect d. (This can also be achieved using Bertini’s
theorem.) Let Ξ denote the set of points in Z of amplitude ≤ d, and Ξ its Zariski
closure in Z. To finish the proof, we must show that Ξ = Z.

For this let (P,X) be the mixed Shimura datum underlying S and (P ′, X ′) the
mixed Shimura subdatum underlying S′. Let X+ ⊂ X and X ′+ ⊂ X ′ ∩ X+

be connected components and Γ ⊂ P (Q) and Γ′ ⊂ P ′(Q) arithmetic subgroups,
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such that Γ\X+ and Γ′\X ′+ are the irreducible component of S, resp. of S′, that
contains Z. Let π : X+

� S denote the projection, write s′ = π(x′) for a point x′ ∈
X ′+, and let Z̃ denote the irreducible component of π−1(Z) containing x′. Then
X ′+ and Z̃ are complex analytic submanifolds of X+ of complementary dimension
that meet transversally in x′. Thus for any element p in a suitable open connected
neighborhood of the identityN ⊂ P (R), the translate pX ′+ meets Z̃ transversally in
a point x(p) near x′ which varies real analytically with p. If, in addition, p ∈ P (Q),
then π(pX ′+) is contained in a Hecke translate of S′, and so the point π(x(p)) ∈
π(pX ′+) ∩ Z has amplitude ≤ d. In other words, we have

{

π(x(p))
∣

∣ p ∈ P (Q) ∩N
}

⊂ Ξ.

Since P (Q) is dense in P (R), and π(x(p)) varies continuously with p, by taking
closures we deduce that

{

π(x(p))
∣

∣ p ∈ N
}

⊂ Ξ.

To prove that Ξ = Z it thus suffices to show that the subset x(N) := {x(p) | p ∈ N}
of Z̃ is not contained in any proper complex analytic subvariety of Z̃.

This is clear if P (R) acts transitively on X , because then pX ′+ for p ∈ N sweeps
out a whole neighborhood of x′ in X+, and so x(p) sweeps out a neighborhood
in Z̃. For the general case recall [12, Ch. IV, Prop. 1.3] that X+ can be realized
as an open subset of a flag variety X̌ associated to the complexified group P (C).
The action of P (R) on X+ extends to a transitive complex analytic action of P (C)
on X̌, which we can use to translate X ′+. As before, for any p in a suitable open
connected neighborhood of the identity Ň ⊂ P (C), the translate pX ′+ meets Z̃
transversally in a point x(p) near x′, which now varies complex analytically with p.
In other words, the real analytic function p 7→ x(p) on N extends to a complex
analytic function Ň → Z̃. Thus any complex analytic subvariety of Z̃ containing
x(N) also contains x(Ň ). On the other hand, the fact that pX ′+ for p ∈ Ň sweeps
out a whole neighborhood of x′ in X̌ implies that x(Ň ) contains a neighborhood
of x′ in Z̃. Thus any complex analytic subvariety of Z̃ containing x(N) contains a
neighborhood of x′. As Z̃ is irreducible, such a subvariety is equal to Z̃, as desired.

q.e.d.

3 Generalized Hecke orbits

A morphism between mixed Shimura varieties that is induced by a morphism be-
tween the underlying mixed Shimura data is called a Shimura morphism. A gen-
eralized Hecke operator on a mixed Shimura variety S consists of Shimura morph-

isms S
ϕ
←− S′ ψ

−→ S that are induced by automorphisms of the underlying mixed
Shimura data. The generalized Hecke orbit of a point s ∈ S is the union of the
subsets ψ(ϕ−1(s)) ⊂ S for all such diagrams (compare [17, §3]).

In [17, Conj. 1.6] we formulated the following conjecture:

Conjecture 3.1 Let S be a mixed Shimura variety over C and Λ ⊂ S the gener-
alized Hecke orbit of a point s ∈ S. Let Z ⊂ S be an irreducible closed algebraic
subvariety such that Z ∩ Λ is Zariski dense in Z. Then Z is a weakly special sub-

variety of S, that is, there exist Shimura morphisms T ′ ϕ
←− T

i
−→ S and a point

t′ ∈ T ′, such that Z is an irreducible component of i(ϕ−1(t′)), or of its image under
a Hecke operator.

In [17, §§4–5] we showed that this implies the Mordell-Lang conjecture and the spe-
cial case of the André-Oort conjecture for the generalized Hecke orbit of a special
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point. We now show that it follows from the much neater statement of Conjec-
ture 1.1.

As a preparation we mention the following useful facts. It is known that the image
of a special subvariety under a Shimura morphism is again a special subvariety.
Dually, every irreducible component of the preimage of a special subvariety under
a Shimura morphism is again a special subvariety. From this one easily deduces the
following lemma:

Lemma 3.2 Let ϕ : S → S′ be a Shimura morphism, and Z an irreducible closed
subvariety of S. Then the image under ϕ of the special closure of Z is the special
closure of ϕ(Z).

Theorem 3.3 Conjecture 1.1 implies Conjecture 3.1.

Proof. Using Hecke operators we can move s to any connected component of S.
Thus we may assume that the special closure of {s} is an irreducible component of
a mixed Shimura subvariety T ′ ⊂ S. Then for any λ ∈ Λ the point (λ, s) ∈ S×T ′

lies in the transform of the diagonal diag(T ′) under a generalized Hecke operator
on S. This transform is a finite union of special subvarieties of dimension d. In
particular, it contains the special closure of {(λ, s)}, and so the amplitude of (λ, s)
is ≤ d. (In fact, Lemma 3.2 implies that it is equal to d, the amplitude of s.)

By applying Hecke operators we can also move Z to any connected component of S.
Thus we may assume that the special closure of Z×{s} in S×T ′ is an irreducible
component of a mixed Shimura subvariety T ⊂ S×T ′. Since by assumption Ξ :=
(Z×{s})∩ (Λ×{s}) is Zariski dense in Z×{s}, Conjecture 1.1 applied to Ξ ⊂ S×T ′

implies that dimT − dimZ ≤ d. On the other hand, Lemma 3.2 shows that the
composite morphism T ↪→ S×T ′

� T ′ is surjective. Being a Shimura morphism,
its fiber dimension is constant. As Z×{s} is contained in a fiber, we deduce that
dimZ ≤ dim T − dimT ′ = dimT − d. Together we find that dimZ = dimT − d,
which means that Z×{s} is an irreducible component of a fiber of T → T ′. Thus
Z is weakly special, as desired. q.e.d.

4 An auxiliary result

In the next section we will need the following result:

Proposition 4.1 For any semiabelian varieties B and C over C, there exists an
epimorphism of semiabelian varieties C̃ � C, such that for every epimorphism of
semiabelian varieties B � B′′ the induced map

Hom(C̃, B)⊗Z Q −→ Hom(C̃, B′′)⊗Z Q

is surjective.

When B is an abelian variety, this holds already for C̃ = C, because B′′ is an almost
direct summand of B. In the general case we will construct C̃ as an extension of C
by a torus.

Recall first that every semiabelian variety A lies in a short exact sequence 0→ T →
A→ Ā→ 0, where Ā is an abelian variety and T is a torus. The extension class is
an element

ξA ∈ Ext1(Ā, T ) ∼= Hom
(

X∗(T ),Ext1(Ā,Gm)
)

∼= Hom
(

X∗(T ), Ā∗
)

,

where X∗(T ) denotes the character group of T , and Ā∗ the abelian variety dual
to Ā. Moreover, the triple (Ā∗, X∗(T ), ξA) is unique up to unique isomorphism
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and functorial in A. Let S denote the category whose objects are triples (B,M,ϕ)
consisting of an abelian variety B over C, a finitely generated free Z-module M , and
a homomorphism of abstract groups ϕ : M → B, and where morphisms (B,M,ϕ)→
(C,N, ψ) are pairs of homomorphisms B → C and M → N making the following
diagram commute:

M
ϕ //

��

B

��
N

ψ // C

Then the category of semiabelian varieties over C is antiequivalent to S by the
contravariant functor A 7→ (Ā∗, X∗(T ), ξA). Thus Proposition 4.1 is equivalent to
the following statement about S:

Proposition 4.2 For any (B,M,ϕ) and (C,N, ψ), there exists a monomorphism
(C,N, ψ)→ (C̃, Ñ , ψ̃), such that for every monomorphism (B′,M ′, ϕ′)→ (B,M,ϕ)
the induced map

HomS

(

(B,M,ϕ), (C̃, Ñ , ψ̃)
)

⊗Z Q −→ Hom
(

(B′,M ′, ϕ′), (C̃, Ñ , ψ̃)
)

⊗Z Q

is surjective.

To prove this we will use the following surjectivity criterion:

Proposition 4.3 Let (B,M,ϕ) and (C,N, ψ) be such that h(ϕ(M)) ⊂ ψ(N) for all
homomorphisms h : B → C. Then for any monomorphism (B′,M ′, ϕ′)→ (B,M,ϕ)
the induced map

HomS

(

(B,M,ϕ), (C,N, ψ)
)

⊗Z Q −→ HomS

(

(B′,M ′, ϕ′), (C,N, ψ)
)

⊗Z Q

is surjective.

Proof. Consider a commutative diagram

M
ϕ // B

M ′
ϕ′

//

i

OO

`′

��

B′

j

OO

h′

��
N

ψ // C

whose upper half defines a monomorphism in S. This means that i is injective and
the kernel of j is finite. As j(B′) is an almost direct summand of B, there exist
a homomorphism h : B → C and a positive integer r, such that h ◦ j = rh′. On
the other hand, there exist a submodule M ′′ ⊂ M and a positive integer s, such
that sM ⊂ i(M ′)⊕M ′′ ⊂M . Since h(ϕ(M ′′)) ⊂ h(ϕ(M)) ⊂ ψ(N) by assumption,
and M ′′ is a free Z-module, we can find a homomorphism `′′ : M ′′ → N , such that
ψ ◦ `′′ = h ◦ ϕ|M ′′. If ` denotes the composite homomorphism

M
s·id
−−−−→ i(M ′)⊕M ′′ (r`′◦i−1, `′′)

−−−−−−−−−→ N,

we deduce the following diagram commutes everywhere:

M
ϕ //

`

%%

B

sh

yy

M ′
ϕ′

//

i

OO

sr`′

��

B′

j

OO

srh′

��
N

ψ // C
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This means that sr(h′, `′) : (B′,M ′, ϕ′)→ (C,N, ψ) is the homomorphism induced
by (sh, `) : (B,M,ϕ)→ (C,N, ψ), proving the desired surjectivity. q.e.d.

Proof of Proposition 4.2. Since Hom(B,C) and M are finitely generated Z-
modules and the evaluation map Hom(B,C) ×B → C is bilinear,

Λ :=
∑

h:B→C

h(ϕ(M))

is a finitely generated subgroup of C. Choose a surjective homomorphism π : F � Λ
from a finitely generated free Z-module F , and define (C̃, Ñ , ψ̃) by the commutative
diagram

N
ψ //

� _

(id,0)

��

C

id

��
N ⊕ F

(ψ,π) // C

Ñ
ψ̃ //

‖

C̃.

‖

Then by construction h(ϕ(M)) ⊂ ψ̃(Ñ ) for all homomorphisms h : B → C̃; hence
the desired surjectivity follows from Proposition 4.3. This also finishes the proof of
Proposition 4.1. q.e.d.

5 Subvarieties of semiabelian varieties

Now we discuss what the proposed conjectures mean for subvarieties of semiabelian
varieties. For any semiabelian variety A and any integer d we let A[>d] denote the
union of all algebraic subgroups of A of codimension > d. We are interested in the
following analog of Conjecture 1.3 that generalizes the Manin-Mumford conjecture:

Conjecture 5.1 Consider a semiabelian variety A over C and an irreducible closed
subvariety X of dimension d that is not contained in any proper algebraic subgroup
of A. Then X ∩A[>d] is not Zariski dense in X.

Next, a subgroup of finite rank of A is an abstract subgroup Γ ⊂ A such that
dimQ(Γ⊗Z Q) is finite. The following generalizes the Mordell-Lang conjecture:

Conjecture 5.2 Consider a semiabelian variety A over C, a subgroup of finite rank
Γ ⊂ A, and an irreducible closed subvariety X of dimension d that is not contained
in any translate of any proper algebraic subgroup of A. Then X ∩ (A[>d] +Γ) is not
Zariski dense in X.

Note that the two conjectures differ in both assumption and conclusion; hence none
of them is a direct consequence of the other.

These conjectures are the outgrowth of the work of several people. In most of
the known results one assumes that X is a curve (so that d = 1) which is not
contained in any translate of any proper algebraic subgroup of A, and that X and
A are defined over Q̄. One then shows that X ∩ A[>1] is finite, i.e., one proves
the conclusion of Conjecture 5.1 under the stronger condition of Conjecture 5.2.
Bombieri, Masser, and Zannier [3, Thm. 2] achieve this whenever A is a torus, and
in [4] they extend it to an arbitrary base field of characteristic zero. Viada [22]
achieves it when A = Eg for a CM elliptic curve E. Ratazzi [18], [19], building on
the strategy of Rémond [21], obtains the same result when A = Bn for a simple CM
abelian variety B. Furthermore, Rémond and Viada [20, Thm. 1.7, Thm. 1.6] prove
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Conjectures 5.1 and 5.2 themselves whenever A = Eg for a CM elliptic curve E
and X ⊂ A is a curve defined over Q̄. The cited articles contain several further
results in the direction of the above conjectures; in particular they contain various
height estimates for points in X ∩ A[>d] or in X ∩ (A[>d] + Γ). The general case
of the above conjectures is formulated with the Manin-Mumford and Mordell-Lang
conjectures in mind, although any definite results are lacking.

In the rest of this section we will prove that Conjectures 5.1 and 5.2 are equivalent
and that they both are consequences of Conjecture 1.3. The equivalence is proved
by generalizing the method of Rémond and Viada [20, Prop. 4.2].

Theorem 5.3 Conjecture 5.1 implies Conjecture 5.2.

Proof. Let A, Γ, X , d be as in 5.2. Fix a maximal sequence of linearly independent
elements a1, . . . , ar ∈ Γ, and let C denote the Zariski closure of the subgroup of
Ar that is generated by the point a := (a1, . . . , ar). After multiplying all ai by a
suitable positive integer, if necessary, we may assume that C is connected and hence
a semiabelian subvariety of Ar.

Consider the semiabelian variety B := A × C and its irreducible closed subvariety
Y := X × {a} of dimension d. We claim that Y is not contained in any proper
algebraic subgroup of B. Indeed, since X is irreducible and not contained in any
translate of any proper algebraic subgroup of A, the differences of elements of X
generate A. Thus the differences of elements of Y generate A × {0}, and so any
algebraic subgroup H of B containing Y must also contain A× {0}. On the other
hand, the projection of H to the second factor contains the element a, which by
construction generates a Zariski dense subgroup of C. ThereforeH = A×C, proving
the claim.

Applying Conjecture 5.1 to B, Y , d, we can now deduce that Y ∩B[>d] is not Zariski
dense in Y . To prove that X ∩ (A[>d] + Γ) is not Zariski dense in X , it therefore
suffices to show the inclusion

(5.4)
(

X ∩ (A[>d] + Γ)
)

×{a} ⊂ Y ∩B[>d].

For this let x = g + γ ∈ X for elements g ∈ G and γ ∈ Γ, where G is an algebraic
subgroup of A of codimension > d. Choose integers n > 0 and n1, . . . , nr such
that nγ = n1a1 + . . . + nrar. Then we have nγ = ϕ(a) for the homomorphism
ϕ := (n1, . . . , nr) : A

r → A. Within B we therefore have

(nx, na) = (ng + nγ, na) = (ng + ϕ(a), na) = (ng, 0) + (ϕ, n)(a),

which shows that

(x, a) ∈ H := n−1
(

G×{0}+ (ϕ, n)(C)
)

.

Clearly dimH = dimG + dimC, and hence codimB H = codimAG > d. Thus
(x, a) ∈ Y ∩B[>d], proving (5.4), as desired. q.e.d.

Theorem 5.5 Conjecture 5.2 implies Conjecture 5.1.

Proof. Let A, X , d be as in 5.1. As X is connected, the differences of all elements
of X generate a connected algebraic subgroup of A. Let B denote this semiabelian
subvariety; then X ⊂ B + a for some element a ∈ A (for instance in X). Fix such
an element; then Y := X−a is an irreducible closed subvariety of B of dimension d.
Then B is also generated by the differences of all elements of Y , which implies that
Y is not contained in any translate of any proper algebraic subgroup of B.
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Let C denote the identity component of the Zariski closure of the subgroup of A
that is generated by a. Choose an integer n > 0, such that na ∈ C. Let κ : C̃ � C
be the epimorphism furnished by Proposition 4.1, and fix an element c̃ ∈ C̃ with
κ(c̃) = na. Since Hom(C̃, B) is a finitely generated Z-module, so is the subgroup

Γ0 :=
{

ϕ(c̃)
∣

∣ ϕ ∈ Hom(C̃, B)
}

of B. Thus its division group

Γ :=
{

b ∈ B
∣

∣ ∃m ∈ Z>0 : mb ∈ Γ0

}

is a subgroup of finite rank of B. Applying Conjecture 5.2 to B, Γ, Y , d, we can
therefore deduce that Y ∩ (B[>d] + Γ) is not Zariski dense in Y . To prove that
X ∩A[>d] is not Zariski dense in X , it therefore suffices to show the inclusion

(5.6) X ∩A[>d] ⊂
(

Y ∩ (B[>d] + Γ)
)

+ a.

For this let x ∈ X ∩G for an algebraic subgroup G of A of codimension > d. Then
X ⊂ x + B ⊂ G + B, which by the assumption on X implies that G + B = A.
Consider the projection

π : A = G+B � G+B/G ∼= B/G ∩B =: B′′.

Applying Proposition 4.1 to the homomorphism π|C : C → B′′ yields a homomorph-
ism ψ and a positive integer m making the following diagram commute. The right
hand side indicates the effect on the element c̃:

C
mπ|C // B′′ na � // mnπ(a)

C̃

κ

OOOO

ψ // B

π|B

OOOO

c̃
_

OO

� // ψ(c̃)
_

OO

Since ψ(c̃) ∈ Γ0 by the construction of Γ0, we find that mnπ(a) ∈ π(Γ0). Back
on A this means that mna ∈ G + Γ0. By the construction of Γ this implies that
a ∈ G′ + Γ with G′ := (mn)−1G. From this we deduce that

y := x− a ∈
(

G− (G′ + Γ)
)

∩ Y ⊂ (G′ + Γ) ∩B = (G′ ∩B) + Γ.

On the other hand, the equality G+B = A implies that G′ +B = A, which shows
that G′ ∩B is an algebraic subgroup of B with

codimB(G′ ∩B) = codimAG
′ = codimAG > d.

Thus y ∈ Y ∩ (B[>d] + Γ), proving (5.6), as desired. q.e.d.

The link between Conjecture 5.1 and those from the introduction involves a special
kind of Shimura morphism π : A → S of mixed Shimura varieties, which is a
family of semiabelian varieties, such that the group structure is given in terms of
Shimura morphisms, as in [17, Rem. 2.13]. We call such a family a Shimura family
of semiabelian varieties.

Every semiabelian variety over C is isomorphic to the fiber As over a point s ∈ S
for such a family. Moreover, using Hecke operators the point s can be moved to any
connected component of S. Thus we may assume that the special closure of {s} is
an irreducible component of a mixed Shimura subvariety S′ ⊂ S. After replacing
A→ S by π−1(S′)→ S′, which is again a Shimura family of semiabelian varieties,
we may therefore assume that S′ = S. Then s is Hodge generic in S.
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Theorem 5.7 Conjecture 1.3 implies Conjecture 5.1. More precisely, consider a
Shimura family of semiabelian varieties π : A→ S, and let As denote the fiber above
a Hodge generic point s ∈ S. Then Conjecture 1.3 for subvarieties of A that are
contained in As is equivalent to Conjecture 5.1 for subvarieties of As.

Proof. Since s is Hodge generic in S, every semiabelian subvariety of As extends
to a Shimura family of semiabelian subvarieties over a finite covering of S. Since
translation by any torsion point of As also extends to a Shimura morphism over a
finite covering of S, we deduce that any translate of a semiabelian subvariety of As
by a torsion point is an irreducible component of T ∩As for some special subvariety
T ⊂ A. Conversely, for any special subvariety T ⊂ A, every irreducible component
of T ∩As is a translate of a semiabelian subvariety of As by a torsion point. In other
words, the irreducible components of all algebraic subgroups of As are precisely the
irreducible components of T ∩As for all special subvarieties T ⊂ A.

Moreover, if T ∩As is non-empty, we have s ∈ π(T ). As π(T ) is a special subvariety
of S, it must then be the irreducible component of S that contains s. The morphism
from T to this irreducible component is then surjective with constant fiber dimen-
sion, which implies that the codimension in As of every irreducible component of
T ∩As is equal to the codimension of T in S.

Now consider any irreducible closed subvarietyX of As of dimension d. Then by the
above remarks X is contained in a proper algebraic subgroup of As if and only if it
is contained in a special subvariety of A of codimension > 0. Thus X ⊂ As satisfies
the assumptions of Conjecture 5.1 if and only if X ⊂ A satisfies the assumptions of
Conjecture 1.3.

On the other hand, since X is contained in As, the above remarks show that its
intersection with the union of all algebraic subgroups of As of codimension > d is
equal to its intersection with the union of all special subvarieties of S of codimension
> d. Both conjectures assert that this intersection is not Zariski dense in X ; hence
they are equivalent in this case. q.e.d.

6 Subvarieties of families of semiabelian varieties

For any family of semiabelian varieties B → X we denote the fiber over a point
x ∈ X by Bx. For any integer d we set

B[>d] :=
⋃

x∈X

B[>d]
x .

In other words b ∈ B[>d] if and only if b is contained in an algebraic subgroup of
codimension > d of its fiber. The following is a relative version of Conjecture 5.1.

Conjecture 6.1 Consider an algebraic family of semiabelian varieties B → X
over C and an irreducible closed subvariety Y ⊂ B of dimension d that is not
contained in any proper closed subgroup scheme of B → X. Then Y ∩B[>d] is not
Zariski dense in Y .

Next, assume that X is irreducible, so that the relative dimension dim(B/X) of
B → X is constant. Then for any d < dim(B/X), the subset B[>d] contains all
torsion points of all fibers of B → X . Thus the following is a consequence of
Conjecture 6.1.

Conjecture 6.2 Consider an algebraic family of semiabelian varieties B → X over
an irreducible variety over C, and an irreducible closed subvariety Y ⊂ B. Assume
that Y is not contained in any proper closed subgroup scheme of B → X, and that
it contains a Zariski dense subset of torsion points. Then dim Y ≥ dim(B/X).
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Note that when X is a point, the conclusion is equivalent to Y = B; hence this case
of Conjecture 6.2 is equivalent to the Manin-Mumford conjecture.

For another interesting special case suppose that Y is the image of a section β :
X → B. If β does not factor through a proper closed subgroup scheme, but meets
torsion points on a Zariski dense subset of X , Conjecture 6.2 asserts that dimX ≥
dim(B/X). This is motivated by a result of André for elliptic pencils [2, p. 12].

Theorem 6.3 Conjecture 1.3 implies Conjecture 6.1.

Proof. Let Y ⊂ B → X be as in Conjecture 6.1. Let first X ′ denote the closure
of the image of Y in X . Then after replacing B → X by its pullback to X ′, we may
assume that Y → X is dominant. In particular X is then irreducible.

Next we claim that Conjecture 6.1 is invariant under pullback by unramified finite
Galois coverings X ′ → X . The essential point for this is to show that if Y ×X X ′

is contained in a proper closed subgroup scheme G′ of B ×X X ′ → X ′, then Y is
contained in a proper closed subgroup scheme of B → X . To prove this let H ′ be
the intersection of all Galois conjugates of G′. Then by étale descent H ′ = H×XX

′

for a proper closed subgroup scheme H of B → X that contains Y , as desired.

Now after replacing X by a suitable unramified Galois covering over which B → X
acquires a sufficiently high level structure, there exists a cartesian diagram

Y ⊂ B

��

ψ // A

��
X

ϕ // S

where A→ S is a Shimura family of semiabelian varieties. After applying a Hecke
operator on S we may assume that the special closure of ϕ(X) in S is an irreducible
component of a mixed Shimura subvariety S′. We can then replace A → S by its
pullback to S′, after which ϕ(X) is Hodge generic in S.

Next let Z denote the Zariski closure of ψ(Y ) in A. Recall that Y is not contained
in any proper closed subgroup scheme of B → X . Since the special subvarieties of A
that dominate S are precisely the translates of semiabelian subschemes by torsion
points, it follows that Z is Hodge generic in A.

On the other hand, the irreducible components of all algebraic subgroups of a fiber
As of A → S are precisely the irreducible components of the intersections of As
with all special subvarieties of A (compare the proof of Theorem 5.7). Thus every
algebraic subgroup of As of codimension > d is contained in a special subvariety of

A of codimension > d. It follows that A[>d] =
⋃

s∈S A
[>d]
s is contained in the union

of all special subvarieties of A of codimension > d.

Since d = dimY ≥ dimZ, Conjecture 1.3 now implies that Z ∩A[>d] is not Zariski
dense in Z. Using ψ

(

Y ∩B[>d]
)

⊂ Z ∩A[>d], it follows that Y ∩B[>d] is not Zariski
dense in Y , as desired. q.e.d.

Like Conjecture 1.1, Conjecture 6.1 is numerically sharp in a precise sense. Note
that Conjecture 6.1 always reduces to the case that Y dominates X , which then
implies that dimY ≥ dimX .

Proposition 6.4 Consider an algebraic family of semiabelian varieties B → X
over an irreducible algebraic variety over C, which possesses a closed subgroup
scheme of constant fiber codimension d over X, such that d ≥ dimX. Then there
exists an irreducible closed subvariety Y ⊂ B of dimension d, which dominates X
and is not contained in any proper closed subgroup scheme of B → X, such that
Y ∩B[>d−1] is Zariski dense in Y .
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Proof. It suffices to construct Y over a Zariski open dense subset of X and
then take its closure. Thus after shrinking X we may assume that X is affine and
smooth, and that B → X is globally an extension of an abelian scheme by a torus.
As B → X is quasiprojective, we may then choose a locally closed embedding
B ↪→ PnC. We set c := dimB − d and construct Y as an irreducible component of
B ∩ L for a sufficiently general linear subspace L ⊂ PnC of codimension c.

Fix a closed subgroup scheme B′ ⊂ B of constant fiber codimension d over X .
After shrinking X , if necessary, we may assume that B′ → X is smooth. Since
dimB′ = dimB − d = c, we can require that L meets B′ transversally at some
isolated point b′. Then it also meets B transversally at b′; hence Y is smooth of
dimension d at b′.

On the other hand, fix any point x0 ∈ X . Since dimBx0
= dimB − dimX ≥

dimB−d = c, we can also require that L meets the fiber Bx0
transversally at some

point b0 ∈ Bx0
. Then L, and hence Y , meets all nearby fibers, which shows that Y

dominates X .

Moreover, under the stated requirements we may still vary L in a nonempty open
subset of its parameter space, so the possible intersections Y ∩ Bx0

sweep out a
nonempty open subset ofBx0

. We may therefore also assume that b0 is not contained
in any proper algebraic subgroup of Bx0

. Assume this and suppose that Y is
contained in a closed subgroup scheme G of B; we then claim that G = B. For
this let U be an open dense subset of X over which G is flat. Let C be a smooth
irreducible curve in X which contains x0 and meets U , and let H be the closure
of G ×X (U ∩ C) in G ×X C. Since C is a smooth curve, H → C is then flat. As
Y → X is smooth at b0, so is Y ×XC → C; hence b0 ∈ H∩Bx0

. By the assumption
on b0 this implies that Bx0

⊂ H . By flatness, it follows that H = B×X C. Thus G
is generically equal to B. Being closed, it is therefore equal to B, as desired. This
shows that Y is not contained in any proper closed subgroup scheme of B → X .

It remains to prove that Ξ := Y ∩B[>d−1] is Zariski dense in Y . We will show this
without any further requirements on L. Let V denote the relative tangent bundle
of B → X at the zero section and π : V → B the exponential map. We then have a
natural short exact sequence

0 −→ Λ −→ V
π
−→ B −→ 0,

where Λ is a local system of finitely generated free Z-modules on X , embedded
fiberwise discretely into V . Abbreviate B̃′ := π−1(B′) and Ỹ := π−1(Y ) and select
a point v ∈ π−1(b′). Then B̃′ and Ỹ are complex analytic submanifolds of V of
complementary dimension that meet transversally in v.

Let x denote the base point in X below b′. Then for any sufficiently small analytic
local section t of V → X near x, the translate B̃′ + t is a small perturbation of B̃′

and meets Ỹ transversally in a unique point v(t) near v which varies analytically
with t. If, in addition, t is a (locally constant) section of Λ⊗Z Q ⊂ V , then mt is a
section of Λ for some integer m > 0, and so π(B̃′ + t) is contained in the subgroup
scheme m−1(B′) ⊂ B of fiber codimension d over X . Under these conditions we
then have π(v(t)) ∈ Ξ.

Let Ξ denote the Zariski closure of Ξ in Y . As Λ ⊗Z Q is dense in Λ ⊗R R for the
usual topology, and π(v(t)) varies continuously with t, by taking closures we deduce
that π(v(t)) ∈ Ξ for any sufficiently small locally constant section t of Λ⊗ZR near x.

Moreover, let χ : Λ⊗Z C � V denote the homomorphism induced by the embedding
Λ ↪→ V , and consider the map u 7→ π(v(χ(u))) ∈ B for all sufficiently small
locally constant sections u of Λ ⊗Z C near x. This map is complex analytic, and
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its restriction to the real subspace Λ⊗Z R factors through the complex subvariety
Ξ ⊂ B. Therefore we also have π(v(χ(u))) ∈ Ξ for all sufficiently small u.

But since χ is surjective, the translates B̃′ + χ(u) for all such u sweep out a whole
neighborhood of v in V . Thus v(χ(u)) sweeps out a neighborhood of v in Ỹ . There-
fore the points π(v(χ(u))) ∈ Ξ sweep out a neighborhood of b′ in the irreducible
variety Y , which proves that Ξ = Y , as desired. q.e.d.
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