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Abstract

Let ¢ be a Drinfeld A-module in special characteristic po over a finitely
generated field K. For any finite set P of primes p # po of A let I'p denote
the image of Gal(K*°?/K) in its representation on the product of the p-adic
Tate modules of ¢ for all p € P. We determine I'p up to commensurability.
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1 Introduction

Let IF, be the finite prime field with p elements. Let I be a finitely generated field
of transcendence degree 1 over F,,. Let A be the ring of elements of F' which are
regular outside a fixed place co of F. Let K be another finitely generated field
over F,, of arbitrary transcendence degree, and let ¢ : A — K{7} be a Drinfeld
A-module of rank r > 1 over K in special characteristic pg.

Let K*? C K denote a separable, respectively an algebraic closure of K. Then
for any place p # po, oo of F' the rational p-adic Tate module V() is a vector
space of dimension r over the completion F}, and it carries a natural continuous
representation of Gal(K*?/K) = Aut(K/K). For any non-empty finite set P of
places p # po, 0o of F we set Vp(p) := @,cp Vp(p), which is a free module over
Fp = @pe p Iy of rank r. We are interested in the combined representation

pp : Gal(K*P/K) — Autp, (Vp(¢)) = GL,(Fp)
and in particular in its image

I'p C GL,(Fp) = H GL,.(F}).
pepP

Furthermore let k denote the finite field of constants of K and k its algebraic closure
in K*P. Then Gal(k/k) is the free pro-cyclic group topologically generated by the
element Frob;, which acts on k by u — ul*l, and we have a natural short exact
sequence

1 — Gal(K®*P/Kk) — Gal(K*?/K) — Gal(k/k) — 1.
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We are equally interested in the image I'5°™ of Gal(K*®?/Kk). By construction
this is a closed normal subgroup of I'p and the quotient is pro-cyclic.

The aim of this article is to characterize these groups up to commensurability. The
corresponding problem for Drinfeld modules of generic characteristic was solved
in [10], where we showed that I'p is open in the general linear group if Endz () = A.
In special characteristic one cannot expect openness in GL,, because the image
of I'E°™ under the determinant is finite; hence the subgroup det(I'p) C Fp is
essentially pro-cyclic and thus cannot be open. The main job is therefore to describe
'E°™ N SL,. Of course this is interesting only in the case 7 > 1. The following
theorem achieves it in the case Endz () = A:

Theorem 1.1 Let ¢ : A — K{7} be a Drinfeld A-module of rank r > 1 over K
and in special characteristic po, such that Endg (@) = A. Then there exists a unique
subfield E C F with [F/E] < oo and the following properties. For every non-empty
finite set P of places # pg, 0o of F let QQ denote the set of places of E below those
in P. Then there exists an inner form Gg of GL, r, over Eg with derived group
GdQer such that:

(a) GdQer(EQ) NTE™ is open in both GdQer(EQ) and T%57™.
(b) There exists an element f € E* such that
72 (Gl () nTE™)

is an open subgroup of I'p, where ﬁ denotes the pro-cyclic subgroup of the
group of scalars in Gg(Eq) that is topologically generated by f.

A full answer must also characterize £ and G¢g and explain when and why E can
be smaller than F'. The reason is that Drinfeld modules obtained by restricting ¢
to subrings of A can have more endomorphisms than ¢. This phenomenon occurs
only in special characteristic, where endomorphism rings can be non-commutative.

Theorem 1.2 Let ¢ be as in Theorem 1.1. Then there exists a unique subfield
E C F with the following properties:

(a) The intersection B := EN A is infinite with quotient field E, and d := [F/E]
is finite.

(b) The restriction 1 := @|B is a Drinfeld B-module of rank rd whose endo-
morphism ring Endg () is an order in a central simple algebra over E of
dimension d?.

(¢) For every other infinite subring C C A we have Endj(¢|C) C Endg(¢).

Moreover, the field E is the same as in Theorem 1.1 and the group Gg is the
centralizer of Endg () ® g Eq in the algebraic group Autp, (Vo).

Unfortunately Theorem 1.2 does not lend itself well to explicit calculation, because
there are infinitely many candidates C' C A to consider. But our method yields the
following characterization of E by characteristic polynomials of Frobenius elements.
Let Ad denote the adjoint representation of GL,..

Theorem 1.3 Let ¢, E, and i be as in Theorems 1.1 and 1.2. Let X be an integral
scheme of finite type over Fp,, whose function field K' is a finite extension of K,
and over which ¢ has good reduction. Let ¥ be any set of closed points x € X of
Dirichlet density 1. Then each of the following subfields of F' coincides with E':



(a) If p # 2 or r # 2, the subfield generated by the traces of Ad(pp(Frob,)) for
allx € X.

(b) If p=1r =2, either the subfield generated by the traces of Ad(pp(Frob,)) for
all x € X, or the subfield generated by their square roots.

(¢) If End g (¢) = Endg/ (1), the subfield generated by the traces of pp(Frob,) for
allx € X.

Furthermore, these statements remain true when the traces are replaced by all coeffi-
cients of the characteristic polynomials of Ad(pp(Frob,)), respectively of pp(Frob,).

The above results are proved in Sections 2 through 5. In Section 2 we construct Eg
and G%er by group theory and obtain a close approximation to Theorem 1.1. Two
crucial ingredients, namely the fact that the image of I'p in GL,(F}) is Zariski dense
for every p € P, and the general description of Zariski dense compact subgroups of
SL.(Fp), were provided in previous articles [11], [9] by the same author. The fact
that Eg comes from a global subfield E C F' is proved in Section 3 with the help of
characteristic polynomials of Frobeniuses, which at the same time proves Theorem
1.3 (a) and (b). We also derive certain structural properties of E which imply in
particular that B := E'N A is infinite. This allows us to analyze the Drinfeld B-
module ¢ := @|B in Section 4. Using representation theory, the Tate conjecture
for ¢, and a subtle argument involving weights of ¢-motives that was also used in
[11], we succeed in establishing the one remaining cornerstone, Theorem 1.2 (b). In
Section 5 we combine the results of the preceding sections and prove the rest of the
above theorems. We also work out an explicit example.

The whole discussion so far concerns Drinfeld A-modules with End () = A. This
is not really a big restriction, because for every Drinfeld A-module ¢ one can select a
maximal commutative subring A € End g () and pass to the corresponding Drinfeld
A-module ¢, which satisfies Endz(¢) = A. Applying the above results to ¢ one
can obtain generalizations for arbitrary ¢ which do not involve ¢. This is done in
Section 6 for Theorems 1.1 and 1.2. The common feature in all these results is that
to ¢ we associate a new Drinfeld B-module v for a certain ring B, as in Theorem 1.2,
that governs the image of Galois and can be characterized by endomorphisms.

2 Group theoretic analysis

We keep the notations of the introduction. From here until the end of Section 5 we
impose the additional assumption

Endg(¢) = A.
The first crucial property of I'p was proved in [11, Thm. 1.1]:
Theorem 2.1 The image of I'p in GL,.(F}) is Zariski dense for every p € P.
Next we note:

Proposition 2.2 The following statements are equivalent:
(a) o is isomorphic over K to a Drinfeld module defined over a finite field.
(b) T5™ is finite.
(c) r=1.



Proof. Clearly (a) implies (b). Next, since I'p/I'5™ is abelian, (b) implies that
an open subgroup of I'p is abelian, which by Theorem 2.1 shows (c). Thirdly the
moduli stack of Drinfeld A-modules of rank 1 and characteristic pg is finite over the
residue field of pg. Since that residue field is finite, every such Drinfeld module over
K is isomorphic to a Drinfeld module defined over a finite field. This proves the
remaining implication (¢)=-(a). q.e.d.

Proposition 2.3 Let det : GL, — G,, denote the determinant homomorphism.
ﬂlen det(T'5°™) s finite, and an open subgroup of det(T'p) is the pro-cyclic subgroup
% C F} topologically generated by a non-zero element f € A which has a pole at
oo and a zero at po and no other zeroes or poles.

Proof. By Anderson [1, §4.2] there exists a Drinfeld A-module ¢ over K of
characteristic po and of rank 1, such that V, (¢) = A"V, (¢) as Galois representations
for every prime p. Thus the groups det(I'5°™) and det(I'p) are simply the groups
I'E™ and I'p for ¢ instead of ¢. After replacing ¢ by ¢ we may therefore assume

that r = 1.

Next note that the desired assertions are invariant under replacing K by a finite
extension and ¢ by an isomorphic Drinfeld module. Thus by Proposition 2.2 we may
reduce ourselves to the case that ¢ is defined over the finite field k. Then 5™ =1,
and the eigenvalue of Froby on V,(¢) is an element f € F* which is independent
of p and possesses the other listed properties by [3, Prop. 2.1], [4, Thm. 3.2.3]. The
proposition follows from this. q.e.d.

In particular Proposition 2.3 describes the Galois groups completely in the case
r = 1. From here until the end of Section 5 we therefore assume

r>1.

Let T'%! denote the image of I'p in PGL,(Fp). Theorem 2.1 implies that its image
in PGL,(F}) is Zariski dense for every p € P. Let 'S’ denote the closure of the
commutator subgroup of I'p. The description [9, Thm. 0.2] of Zariski dense compact
subgroups yields:

Theorem 2.4 There exists a closed subring Ep C Fp and a model Hp of SL, r,,
over Ep such that

(a) Ep is a finite direct sum of local fields,

(b) Fp is a finitely generated Ep-module,

(c) T is contained in the adjoint group H3(Ep), and
(d) TET is an open subgroup of Hp(Ep).

Our job will be to determine Ep and Hp. In the rest of this section we first deter-
mine the precise relation of Hp(Ep) with I'p and I'5°™ up to commensurability.
Since at several points we want to replace K by a finite extension, we note:

Proposition 2.5 Ep and Hp do not change on replacing K by a finite extension.

Proof. Replacing K by a finite extension amounts to replacing F'}‘gd by an open
subgroup, say by F}‘gd’ . Without loss of generality we may assume it to be normal.
Its image in PGL,(Fy) is still Zariski dense for every p € P. Now the data (Ep, Hp)
amounts to what is called a minimal quasi-model of (Fp,PGL, p,,['%) following
[9, Def. 0.1, Thm. 3.6]. By [9, Cor. 3.8] it remains a minimal quasi-model when T'%!
is replaced by F"I"gd'. Thus Fp and Hp do not change, as desired. q.e.d.



Next we need some information on inertia. Let K, denote the completion of K with
respect to any valuation v. One says that ¢ has semi-stable reduction at v if ¢ is
isomorphic to a Drinfeld module ¢’ which has coefficients in the ring of integers O,
and whose reduction modulo the maximal ideal is a Drinfeld module ¢!, of some
rank 7, > 0 over the residue field k,. Every Drinfeld module acquires semi-stable
reduction over some finite extension of K,. One says that ¢ has good reduction at v
if one can achieve r, = r. In this case the inertia group at any place of K*°P above
v has trivial image in I'p.

If ¢ has semi-stable but not good reduction at v, the rank discrepancy is explained
by the local uniformization theorem. For this we view ¢/, as a Drinfeld module over
K, via any lift k, — K,. We let K, denote an algebraic closure of K, and view it
as an A-module via ¢,. The local uniformization theorem of Drinfeld [2, § 7] says
that there exists a locally free A-module A, C K, of rank  — r,, such that ¢ is
the ‘quotient of ¢!, by A,. It implies that for every p there is a natural short exact
sequence

(2.6) 0 — Vi(p,) — Va(p) — Ay ®a F, — 0

which is equivariant under the local Galois group Gal(K:°P/K,). This group acts
on A, through a finite quotient, because the action is continuous and the module
finitely generated over A. Note also that the action on V,(¢!) factors through the
Galois group of k,. We can thus deduce that an open subgroup of the inertia group
acts unipotently on V().

Proposition 2.7 Hp(Ep) contains an open subgroup of T'E°™.

Proof. By Theorem 2.4 (d) we have F?ger C Hp(Ep)NTp. Thus Hp(Ep)NTp is
a normal subgroup of I'p and the quotient Ap :=T'p/Hp(Ep)NTp is abelian. Let
AF™ denote the image of 5™ in Ap. We must prove that AF°™ is finite.

We first look at the ramification in AT°™. Consider any valuation v of K where ¢
has bad reduction. The above remarks show that some open subgroup of the inertia
group acts unipotently on V,(y) and hence on Vp(yp). Thus its image consists of
unipotent elements of GL,(Fp). Being unipotent, they lie already in SL,(Fp) =
Hp(Fp). Now any unipotent element of Hp(Fp) is defined over Ep if and only if
its image in H j%d (Fp) is defined over Ep. The latter property being guaranteed by
Theorem 2.4 (c), we deduce that the image of some open subgroup of the inertia
group at v is contained in Hp(Ep). It follows that the image in AF°™ of the inertia
group at v is finite.

Now as above let k denote the constant field of K. Let X be an integral proper
scheme over k with function field K. Since we may replace K by a finite extension,
by de Jong [7] we may apply an alteration to X to make it smooth. Let X C X be
an open dense scheme such that ¢ extends to a family of Drinfeld modules of rank
r over X (compare [11, §3]). Then the Galois representation factors through the
étale fundamental group $*(X). Now X ~\ X possesses only finitely many points
of codimension 1 in X, and each of these corresponds to a unique equivalence class
of valuations of K. Thus it follows that the subgroup AR ¢ A%°™ generated by
the images of the inertia groups at these valuations is finite. It suffices therefore
to prove that the quotient AS°™ := AS™/Alnert g finite. By the purity of the
branch locus [15] this group is a quotient of the étale fundamental group m$*(X})
of Xfc =X Xk /2‘

Next observe that AE™ is the quotient of two compact subgroups of GL,.(Fp).
Since Fp is a finite direct sum of local fields of positive characteristic p, every
compact subgroup of GL,(Fp) possesses an open pro-p subgroup. Thus the same



follows for A%°™. As AZ°™ is abelian, it must be the product of a finite group
with a pro-p group. It suffices therefore to prove that the maximal pro-p quotient
AZOM of AF™ is finite.

Now Ziﬁ °™ is a quotient of the maximal pro-p abelian quotient of the étale funda-
mental group ﬂ'ffp_ab (X5). Moreover this surjection is equivariant with respect to
the action of Froby. Since the action of Frob, on A%°™ is given by conjugation
within the abelian group Ap, the action on A%™ and hence on Ziﬁ o™ is trivial. It
follows that E*}ie °™ is a quotient of the group of coinvariants W‘léfp_ab ()_( 7)Frob, - But

this group is known to be finite by Katz and Lang [8, Thm. 2]; hence Ziﬁom is finite,
as desired. q.e.d.

Proposition 2.8 (a) Hp(Ep) NTE°™ is open in both Hp(Ep) and '™,

(b) There exists an element f € A which has a pole at 0o and a zero at po and
no other zeroes or poles, such that the following holds. Let fZ denote the pro-
cyclic subgroup of the group of scalars F}5 that is topologically generated by f.
Then

72 (Hp(Ep) NTE™)

is an open subgroup of I'p.

Proof. Set 'y} := Hp(Ep)NT'H°™. By Proposition 2.7 this is an open subgroup
of I'&°™. On the other hand we have ') C T'5°™, because the quotient I'p/T'%°™
is pro-cyclic. But T'* is an open subgroup of Hp(Ep) by Theorem 2.4 (d); hence
so is 'Sy, proving (a).

Next choose any element o € Gal(K*®/K) whose image in Gal(k/k) is Froby. Con-
sider its images v € I'p and 72 € T'%!. Recall that by Galois and flat cohomology
applied to the short exact sequence 1 — (center of Hp) — Hp — H* — 1 the
cokernel of the natural homomorphism Hp(Ep) — H3}(Ep) is an abelian group
annihilated by r. Since v*¢ € H&(Ep) by Theorem 2.4 (c), we deduce that 4" = A\h
for a scalar A € F and an element h € Hp(Ep). As 24 Jies in a compact subgroup
of H3(Ep), the element h lies in a compact subgroup of Hp(Ep). Thus by (a)
some positive integral power h'™ lies in '™, Modifying ¢"™ by a suitable element
of Gal(K*®°P/ K'k) then yields an element 7 € Gal(K*°?/K) whose image in Gal(k/k)
is Frob;™ and whose image in I'p is v"™h~™"™ = A\™. This element is scalar, and
calling it g we find that g% - 5" is an open subgroup of T'p.

Finally ¢g" = det(g - id) topologically generates an open subgroup of det(I'p). Thus
by Proposition 2.3 some open subgroup of g"% has the form fZ for a non-zero element
J € A which has a pole at co and a zero at po and no other zeroes or poles. Then
fZ-TEE" is an open subgroup of I'p, and we are done. q.e.d.

3 Characteristic polynomials of Frobeniuses

This section is devoted to a first characterization of the ring Ep. In Theorem 3.4 we
will show that E'p is the completion of a certain subfield £ C F that is independent
of P. This subfield will be constructed using characteristic polynomials of Frobenius
elements. We also use Frobeniuses to derive certain structural properties of E.

For later use we note the following fact. For any subfield E’ C F we let E}, denote
the closure of E’ in Fp.

Proposition 3.1 Consider infinite subfields E', E" C F.



(a) Then E' C F is a finite extension.
(b) If EY, C E% for all P, then E" C E'.
(¢c) If EY, = E'% for all P, then B = E'.

Proof. (a) follows from the fact that F' is finitely generated of transcendence
degree 1 over F,,. To prove (b) consider the finite subextension £ C E'E” C F.
Choose any place q’ of E’ which does not lie below the place pg or oo of F'. Let P be
the set of places of F' above q'. Then E’% is simply the completion of E’ at q’, and
(E'E")p is the direct sum of the completions of E'E" at all places above q’. But the
assumption in (b) implies that (E'E")p = EpEY}, = E%. It follows that E'E"” = E’
and hence E” C E’, proving (b). Finally (b) implies (c¢) by symmetry. q.e.d.

Now consider any finite extension K’ of K. Let X be any integral scheme of finite
type over F,, with function field K’ over which ¢ has good reduction (compare [11,
§3]). For any closed point x € X we let Frob, € Gal(K®P/K’) be any element
of a decomposition group above z which acts by u +— ul®*! on the residue fields.
Recall [4, Thm. 3.2.3 b] that for every z € ¥ the characteristic polynomial of Frob,,
on V,(¢) has coefficients in F' and is independent of p. Thus the same holds for
the characteristic polynomial of pp(Frob,) on the free Fp-module Vp(p). Let Ad
denote the adjoint representation of GL,. Then the same follows again for the
characteristic polynomial of Ad(pp(Frob,)).

Consider any set 3 of closed points € X of Dirichlet density 1. (For the concept
of Dirichlet density in the case dim X > 1 see [10, Appendix BJ.)

Definition 3.2 (a) E"4(K’ %) is the subfield of F generated by the traces of
Ad(pp(Frob,)) for all x € X.

(b) EPad(K' %) is the subfield of F' generated by all coefficients of the character-
istic polynomials of Ad(pp(Frob,)) for all x € X.

Clearly E2d(K’ %) ¢ Ehd(K’ %), and these fields do not depend on P. But
they bear a close relation with Ep. For any commutative Fq-algebra B we set
B? .= {b? |be B}.

Proposition 3.3 (a) If p# 2 orr # 2, then for oll K', ¥, P we have

Etrad(K/, Z)P — EChad(K/, Z)P — EP

(b) If p=1r =2, then for all K', ¥, P we have

E% Cc B"Y(K',%)p C EMY(K' %)p C Ep.

(c) If p=1r =2, for every P there exist K' and ¥ such that
Etrad(K/, Z)P — EChad(K/, Z)P — E}QD

Proof. The adjoint representation Ad of GL, is an extension of the adjoint repre-
sentation Ad of PGL, with a trivial representation of dimension 1. Thus the fields
do not change if Ad is replaced by Ad. Now since H ad is a model of PGL, f,
over Fp, its adjoint representation is a model over Ep of the representation Ad. As
rad ¢ H34(Ep) by Theorem 2.4 (c), it follows that all the coefficients generating
Ehad(K’ 31 lie in Ep. In particular this implies that EMd(K’ ¥)p C Ep.

In the case p = r = 2 this can be strengthened as follows. By Proposition 2.8
there exists a finite extension K’ of K whose corresponding open subgroup of I'p



is contained in Fj - Hp(Ep). In the case p = r = 2 the representation Ad is,
as a representation of Hp, the extension of a trivial representation of dimension 1
with the twist by Froby of the standard representation of SLy. Now the standard
representation of Hp exists over Ep up to an inner twist, so the coefficients of
the characteristic polynomial of any element of Hp(Ep) in it lie in Ep. It follows
that all the coefficients generating EP*d(K’ %) lie in E%. In particular we have
Ehad(K! 3 p C E% in this case. This shows that (b) implies (c).

To prove the remaining inclusions in (a) and (b) note first that by Proposition 2.5
we may replace K by K’. Thus without loss of generality we may assume that
K' =K. Let Ogad C Fp denote the closure of the subring that is generated by the
traces of all elements of I'%! on the adjoint representation of H&l. Let E%2d denote
the total ring of quotients of O%24. Then [9, Prop. 3.10] implies that E%2d = Ep
in the case (a) and E% C E%2 C Ep in the case (b). On the other hand the
elements pp(Frob,) for z € ¥ form a dense subset of I'p by the Cebotarev density
theorem [10, Thm. B.9], because ¥ has Dirichlet density 1. Thus by approximation
we find that E'2d(K’ 3)p contains the trace of every element of I'sl. It follows
that E%ad ¢ Ead(K’ ) p, which together with the other stated inclusions proves
(a) and (Db). q.e.d.

Theorem-Definition 3.4 There exists a unique subfield E C F such that:
(a) F is a finite extension of E.
(b) Ep is the closure of E in Fp for every P.
(c) If p#2 or r # 2, then for all K', ¥ we have

Etrad(Kl,E) — EChad(KI,E) - E.

(d) If p=r =2, then for all K', ¥ we have
E? c E™Y(K',%) Cc E"™(K'\Y) C E,
and there exist K' and ¥ such that
Emd(K %) = Erd(K' Y = B2

Proof. Let C denote the collection of all subfields E"24(K’ %)) and EP2d(K',Y)
for all K/ and 3. Consider any E’ € C. If E’ were finite, Proposition 3.3 would
imply that Ep is finite, contradicting Theorem 2.4 (b). Thus E’ is infinite. The
same follows for any other E” € C.

Thus if p # 2 or r # 2, by Propositions 3.1 (¢) and 3.3 (a) we can deduce that
E" = FE’. Calling this field E, properties (a) and (b) follow from Propositions
3.1 (a) and 3.3 (a). This proves the theorem in the case (c).

If p=r = 2, we begin with a field E’ € C such that Ej, = E%, which exists by
Proposition 3.3 (c¢). Then for any other E” € C Proposition 3.3 (b) implies that
(E%)? C E% = E», C EY. Using Proposition 3.1 (b) we deduce that (E”)? C E' C
E". Now since B/ C E%NF C FANF = F? we have E' = E? for a subfield
E C F. By construction the closure of E? in Fp is E%, so the closure of E is Ep.
On the other hand the resulting inclusions (E”)? C E? C E” are equivalent to
E? C E" C E, which proves the theorem in the case (d). q.e.d.

Proposition 3.5 Let qo denote the place of E below the place po of F'. Then pg is
the unique place of F above qg.



Proof. Consider any closed point z € X and let a; for 1 < i < r denote the
eigenvalues of pp(Frob,). Then the eigenvalues of Ad(pp(Frob,)) are the ratios
a;/cj. Recall 3, Prop.2.1], [4, Thm.3.2.3 ¢, d] that the a; are algebraic over F,
with valuation zero at all places not above pg or oo, and with some fixed valuation
at all places above co. Thus the ratios o;/a; are units at all places not above pg. It
follows that the coeflicients of the characteristic polynomial of Ad(pp(Frob,)) are
regular outside pg. Now as z varies, these coefficients generate the field E or E?,
which by Theorem 3.4 has transcendence degree 1 over F,,. Thus for some x, some
coefficient is transcendent. Being transcendent, it must have a pole at at least one
place q of E. It then has a pole at every place p of F' above q. By the above remarks
this implies p = pp and thus q = q¢. In particular we deduce that pg is the unique
place of F above g, as desired. q.e.d.

Proposition 3.6 Let 5o denote the place of E below the place oo of F'. Then oo is
the unique place of F' above 0.

Proof. (Following a suggestion of Francis Gardeyn.) Recall that » > 1 by as-
sumption. Thus from Proposition 2.2 we know that ¢ is not isomorphic over K to a
Drinfeld module defined over a finite field. On the other hand recall that the moduli
stack of Drinfeld A-modules of rank r is affine. Thus any compactification X of X
possesses a point Z € X ~ X at which ¢ does not have potential good reduction.
After replacing K’ by a finite extension we may suppose that ¢ has semi-stable
reduction at Z, that is, that ¢ is isomorphic to a Drinfeld module ¢’ which has
coefficients in the local ring O ; and whose reduction modulo the maximal ideal
is a Drinfeld module ¢’ of some rank rz; > 0 over the residue field kz.

We may also specialize Z to a closed point of X. Then the action of Frob; €
Gal(K®*P/K") on V, () is described by applying the exact sequence 2.6 to any val-
uation of K’ centered on . By [4, Thm.3.2.3b] its characteristic polynomial on
Vi (¢%) has coefficients in F' and is independent of p. The same holds for the char-
acteristic polynomial on Az ® 4 F},, because the action comes from an action on Az.
Together this implies that the characteristic polynomial of pp(Frobz) has coeffi-
cients in F' and is independent of p. Again the same follows for the characteristic
polynomial of Ad(pp(Frobz)).

Lemma 3.7 The coefficients of the characteristic polynomial of Ad(pp(Frobgz)) lie
in E.

Proof. Let E’ be the subfield of F' generated by E and the coefficients in question.
Then we must prove that the inclusion £ C E’ is an equality. By Proposition 3.1 (¢)
it suffices to show that Ep = E}, for all P. Now as ¢ has good reduction at almost
all places of K, the element pp(Frobz) can be approximated by the images of
Frobeniuses at places of good reduction. Thus the coefficients of the characteristic
polynomial of Ad(pp(Frobz)) can be approximated in Fp by elements of E. It
follows that these coefficients lie in Ep; hence E}; = F'p, as desired. q.e.d.

Lemma 3.8 The characteristic polynomial of Ad(pp(Frobz)) possesses a coeffi-
cient b which has a pole at oo and at most one other pole at pg.

Proof. Let «; for 1 < i < rz denote the eigenvalues of pp(Frobz). By [3, Prop. 2.1],
[4, Thm.3.2.3 ¢, d] they are algebraic over F', with valuation zero at all places not
above pg or oo, and with some fixed negative valuation at all places above co. Let
¢j for rz + 1 < j < r denote the eigenvalues of Frobz on Az, which are roots of
unity. Then the eigenvalues of Ad(pp(Frobz)) are all possible ratios of the a; and ;.
Among these only the ratios «;/¢; have a pole above co, and there are precisely



n = rz(r —rz) of them. Let b denote the n*® elementary symmetric polynomial
in the eigenvalues of Ad(pp(Frobz)). This is one of the coefficients in question; in
particular it is an element of F. By construction the product of the «;/¢; is the
unique summand of b which has the largest pole above co. Thus b has a non-trivial
pole at co. On the other hand, all the a; and (; are units at all places not above
po or co. Thus b can have at most one other pole at pg, as desired. q.e.d.

To finish the proof of Proposition 3.6 let b be as in Lemma 3.8. By Lemma 3.7 it
is an element of E. Since b has a pole at the place oo of F, it has a pole at the
corresponding place co of E. Suppose now that F' possesses another place p # oo
above co. Then b has a pole at p, which by Lemma 3.8 is possible only for p = py.
But then we have qo = 0 and thus pg = oo by Proposition 3.5, a contradiction.
Therefore co is the unique place of F' above o, as desired. q.e.d.

Proposition 3.9 Let f be any element of F which has a pole at oo and a zero at
po and no other zeroes or poles. Then some positive integral power of f lies in E.

Proof. Since py # oo, Proposition 3.5 or 3.6 shows in particular that qo # co. Let
dq, and dx denote the degrees of the corresponding residue fields over F,. Then
D :=dx - (qo) — dq, - (0) is a divisor of degree 0 on E. Since E is a function field
with finite residue field, some positive integral multiple of D is a principal divisor.
Thus there exists a function g € E* which possesses a pole at 5o and a zero at qq
and no other zeroes or poles.

Viewing g now as a function in F', Propositions 3.5 and 3.6 imply that g possesses
a pole at oo and a zero at pg and no other zeroes or poles. Some positive integral
power of f has the same pole at co as some positive integral power of g. The ratio
thus has no zero or pole outside pg. The product formula implies that the ratio
then has no zero or pole anywhere, so it lies in the constant field and is therefore
a root of unity. After enlarging the exponents we find that some positive integral
power of f is equal to some positive integral power of g. It is therefore an element
of F, as desired. q.e.d.

Proposition 3.10 There exists an element f € E* such that
fZ- (Hp(Ep) NT%E™)

is an open subgroup of I'p, where ﬁ denotes the pro-cyclic subgroup of the group
of scalars in GL,.(Fp) that is topologically generated by f.

Proof. Let f € F* be as in Proposition 2.8 (b). Then by Proposition 3.9 some
positive integral power f™ lies in E. Since the statement of 2.8 (b) is preserved
under replacing f by f™, the assertion follows. q.e.d.

4 Restriction of scalars

In this section we analyze the subfield E' C F' by restricting the Drinfeld module ¢
to subrings of A. Set d := [F'/E]. The first observation is:

Proposition 4.1 The ring B := E N A is infinite with quotient field E.

Proof. Recall that A is the ring of elements of ' which are regular outside co.
Thus Proposition 3.6 implies that £ N A is the ring of elements of E which are
regular outside co. It is a standard fact that its quotient field is E. q.e.d.
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Let ¢ : B — K{7} denote the restriction of ¢. This is a Drinfeld B-module of
rank rd. Consider any place q # o, co of F, and let P be the set of places of F'
above q. Then E, can be identified with the closure of E/ in Fp, which by Theorem
3.4 coincides with the ring Ep from the preceding sections. Moreover there is a
natural Gal(K*°P/K)-equivariant isomorphism Vp(p) = V,(¢0). In particular the
image of Gal(K*®?/K) on Vq(v) is equal to I'p. By the Tate conjecture [12], [13],
[14] for the Drinfeld module ¢ we have a natural isomorphism

(42) EndK/(’lb) Rp Eq —— Enqu,Gal(KSQP/K’) (‘/q (w))
for every finite extension K’ C K*P of K. We exploit this as follows:

Proposition 4.3 View V4 (¥) as an algebraic representation of Hp over Ey. Then

Endg (¢) ©5 Bq — Endg, u, (Va(¥)).

Proof. We show that both sides coincide with those in 4.2 for every sufficiently
large K’. For the left hand side see Section 6. For the right hand side by Proposi-
tion 3.10 we can achieve that the image of Gal(K®P/K") is contained in E}-Hp(Eq).
On the other hand this image contains an open subgroup of Hp(Ey) by Theorem
2.4 (d). Since equivariance is not affected by scalars, and every open subgroup of
Hp(E,) is Zariski dense in Hp, the right hand sides are equal, as desired. q.e.d.

Next recall that Hp is a model of SL,, Fp over Ej. Choose an algebraic closure
Eq of Eq and an isomorphism Hp x g, Eq = SL,. g, . Via this isomorphism V; :=
Va(¥) @, E4 becomes a representation of SL, g, Let Wy = EgBT denote the
standard representation of SL,. 5 and Wy its dual. Note that Wy = W if and only
if r =2.

Proposition 4.4 Vq is isomorphic to a direct sum of copies of Wq and W;.

Proof. Fix any p € P and any minimal non-trivial Hp-invariant Eq-subspace
U C Vu(¢). Then U is an irreducible representation of the reductive group Hp, so
by representation theory U ® g, Eq is a direct sum of irreducible representations of
Hp x g, Eq whose equivalence classes are conjugate under outer automorphisms.
Now recall that we have an isomorphism Hp x g, F, = SL, r, making V,(¢) the
standard representation of SL; r,. Since the natural homomorphism U ®g, F, —
Vu () is non-zero, it follows that the constituents of U ® g, Ey are conjugate to the
standard representation under outer automorphisms. Thus they must be among
Wq and W;

On the other hand the irreducibility of V;,(¢) over F}, implies that V() is the sum
of the subspaces AU for all A € Fy. It is thus the direct sum of some of them. It
follows that V},(¢) ®g, E, is isomorphic to a direct sum of copies of W, and Wq* .
Since V() is the direct sum of the spaces V,(p) for all p € P, the proposition
follows. g.e.d.

Proposition 4.5 Let E denote the center of End% (¢)) := Endg (¢) ®p E.
(a) If V4 is isotypic, then E=E.
(b) Iff/q s not isotypic, then Eisa separable quadratic extension of E.
Proof. Suppose that V4 = W™ @ (W;)@”*, with n* = 0 if r = 2. Then

End% (¥) ®p By = Endg(y) ®p Eq

oo
w

= Enqu»HP (VYq (lﬂ)) ®Eq Eq
= Enqu ,SLT’ 5q (‘/q)
= Matan(Eq) (&) Matn* Xn* (Eq)
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Its center is therefore

. _ Eq if Vq is isotypic, and
E®pEq = = P T . .
Eq, @ E, if Vg is not isotypic.
The proposition follows from this. q.e.d.

Proposition 4.6 The case (b) in Proposition 4.5 does not occur.

Proof. Suppose that \_/q is not isotypic and Eis a separable quadratic extension
of E. This can happen only for » > 3. Recall that End% (¢) is a central division
algebra over E, say of dimension n%. Then

End%(¢) @ Eq =2 Mat,n(E ®p Eq) = Mat,xn(Eq)®?,

so the proof of Proposition 4.5 shows that V & qua" S (W;)®". From ¢ we will
construct two new Drinfeld modules with Tate modules essentially isomorphic to
Wq and V_Vq* Using weights of t-motives we will then show that the resulting duality
between them forces r < 2, yielding a contradiction.

Lemma 4.7 There exist finite extensions B C A and K C K’ C K*°P, Drinfeld
A-modules ¢, ¢ © A — K'{1} of rank v, a place p of F := Quot(A) above q, and
an extension of Eq — Eq to an embedding j : Fy — Ey, such that

Vi (@) ®F; j E, =2 W, and Vs (') ®F; j E, VV;

as representations of Gal(K*®/K') over Ey, up to twists by scalar characters with
values in Fy.

Proof. Let S be a finite set of places of E containing all those where End% (1))
does not split. After enlarging S we may suppose that S is invariant under the
non-trivial automorphism ¢ € Gal(E/E). Choose any separable field extension F'
of E of degree n which possesses exactly one place above every place in S. Then
the two embeddings id, o : F - E < End%(¢)) can be extended to embeddings
i,i': F < End% (). Set

A:=i"Y(Endg(¥)) Ni' " (Endg ().

By construction this ring contains B. It is therefore infinite and its quotient field
is F. Recall that EndK(w) is a subring of K{r}. Composmg its tautological
embedding with 4, i’ therefore yields two homomorphisms ¢, ¢’ : A — K{r}. These
are Drinfeld A- modules extending 1, except that the ring A is not necessarily a
maximal order in F'. Let A denote the integral closure of Ain F, and choose Drinfeld
A-modules @, ¢ : A — K{r} whose restrictions to A are isogenous to ¢, ¢/, as in
Section 6. Let P be the set of places of F above q. Then V(@) = V(@) = Vy(1),

where the FP -module structure is deduced from
s 2 Fop By <99 End% () @ B
Thus V(@) ®5, Eq =V, with the F ®p, Eq-module structure deduced from
ng ®Eq Eq = F@E E o i®id | End% (’l/)) ®F Eq = Matan(Eq)€B2

Since F is separable of degree 2n over F, the left hand side is isomorphic to a direct
sum of 2n copies of Fy, and its image in the matrix algebra is a maximal commu-
tative subalgebra. Choose any place p € P and extend E, C Eq to an embedding
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J: Fﬁ — Eq. These choices amount to the selection of a simple summand of
Fz®p, Eq. This summand lands in one of the simple summands of Mat,, scn (Eq)®2,
say in that corresponding to Wy. It follows that

Vi (@) ®@p, 5 Ea = Wy.

In particular ¢ has rank » = dim V_Vq. The same arguments apply to ¢’ in place of @.
Since ¢ must be replaced by i’ and ¢'|F = o interchanges the two simple summands
of Mat,xn(Eq)®?, we deduce that

Vi (') Qf; .5 Ey = W;

Now take any sufficiently large finite extension K C K’ C K*°P over which ¢, ¢’
are defined and such that the image of Gal(K*? /K") is contained in Ej - Hp(Eq) by
Proposition 3.10. Then the above isomorphisms are equivariant under Gal(K%°P/K")
up to twists by scalar characters with values in Fj, as desired. q.e.d.

In particular we deduce:

Lemma 4.8 (a) The Zariski closure of the image of Gal(K*®/K') in the group
Au’c}s'3 (%(@)) = GL,(Fj) contains SLr,F,—,f and

(b) V5(@') = Vi(@)* @ x for some scalar character x of Gal(K*P/K").

Proof. (a) follows from Lemma 4.7 and the corresponding property of W,. The
analogue of (b) over an algebraic closure of Fﬁ also follows from Lemma 4.7. Since
the twisting character x takes values in Eq C Fﬁ, the isomorphism already exists
over Fﬁ, as desired. q.e.d.

Lemma 4.9 For every field extension L of Z:}, there exists up to scalar multiples
ezactly one Gal(K®°P /K')-equivariant endomorphism of Vi (@)* ®F, V(@) ®p, L
of rank 1.

Proof. Note that this statement is not affected by scalar twists. For any field L
let W := L®" denote the standard representation of H := SL,. 1. Then in view
of Lemma 4.8 we must prove that up to scalar multiples there exists exactly one
H-equivariant endomorphism of W* ® W of rank 1. The image of any such endo-
morphism is an H-invariant subspace of dimension 1. As H is connected semisimple,
it must act trivially on this subspace. Thus the desired assertion is equivalent to

dimL HOHlH(W* XL VV,L) = dlmL HOHlH(L,W* Xr W) =1.

But these equalities follow at once from the absolute irreducibility of W.  q.e.d.

The rest of the proof proceeds as in [11, Lem. 7.1], using the properties of A-motives
collected in [11, §5]. Let My, My be the A-motives over K corresponding to the
Drinfeld modules ¢, ¢’ by [11, Prop.5.7], and set M := Mz @ Mg . Then [11,
Prop. 5.8, 5.5] shows that

as representations of Gal(K*P/K') over F;. Thus Lemma 4.9 implies that for every

field extension L of Fj there exists up to scalar multiples exactly one Gal(K™P/K')-
equivariant endomorphism of V(M) ®p L of rank 1. Applying [11, Prop. 5.6] to

M’ = M we deduce that this endomorphism comes from an endomorphism h of
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the A-motive M. Let N C M denote its image. Then V5 (V) is the image of the
endomorphism Vi (h) of V(M) of rank 1; hence N is an A-motive of rank 1. On
the other hand Mg, Mgz are pure A-motives of weight % by [11, Prop. 5.7]; hence
M and N are pure A-motives of weight % Thus [11, Prop. 5.3] implies that % €.
Since that is impossible for r» > 3, this finishes the proof of Proposition 4.6. q.e.d.

Since F is a maximal commutative subalgebra of End% (¢), Propositions 4.5 and
4.6 together imply:

Proposition 4.10 End% (¢) is a central simple algebra over E of dimension d>.

5 Proof of the main results

We will now combine the results of the preceding sections to prove the theorems in
the introduction. Let P be any non-empty finite set of places # pg, oo of F. Let
Q be the set of places of E below those in P, and P the set of places of F above
those in Q). Since Ep, E5 are the closures of E in Fp, Iz by Theorem 3.4, both of
them can be identified with Eq := qeq Eq- Note that the inclusion P C P yields

~

natural surjections Fs — Fp and Vo(¢) =2 Va(p) - Vp(p).

Let G be the centralizer of End g (¢)® g Eq in the algebraic group Autp,, (Vo(v)) =
GLg4r, B, - Since Endg (v) ® g Eq is a form over Eq of the algebra of d x d-matrices
and Vg(¢) is a free Eg-module of rank rd, the algebraic group G¢ is an inner
form of GL,, g,. Moreover Gg still acts faithfully on the quotient Vp(y), so we can
identify it with a subgroup of the algebraic group Autg,, (Vp(p)). Let GdQer denote
the derived group of Gg.

Proof of Theorem 1.1. The assertions for P follow from those for P by projection.
Thus after replacing P by P we may assume that Vp(p) = Vgo(1). Let K' C
K®°P be any finite extension of K such that Endz(¢) = Endg (¢)). Then the
image of Gal(K*®**P/K") is an open subgroup of I'p which is contained in Gg(Eq).
Now Theorem 2.4 implies that every open subgroup of I'p contains a Zariski dense
subgroup of Hp. Thus Hp C G, and since these are forms of SL, g, and GL; g,
respectively, we must have Hp = GdQer. Now the assertions 1.1 (a) and (b) are
simply restatements of Propositions 2.8 (a) and 3.10.

It remains to show that the subfield E C F' is uniquely characterized by the prop-
erties 1.1 (a) and (b). Let B’ C F be any other field with these properties. Let E
denote the closure of E’ in Fp. Recall from Proposition 2.5 that any open subgroup
of T'p yields the same ring Ep. Thus by the uniqueness [9, Thm. 0.2] of the ring Ep
associated to any open subgroup of I'p we have E}, = Ep. As this holds for all P,
Proposition 3.1 (¢) implies that E' = E, as desired. q.e.d.

Proof of Theorem 1.2. Properties (a) and (b) follow from Propositions 4.1 and 4.10,
and the description of Gg was part of the construction above.

To prove (c) consider any infinite subring C' C A. Let E’ denote the center of
End% (p|C). Set B’ := E' N A and consider the Drinfeld B’-module ¢’ := ¢|B’.
Then End g (¢|C) commutes with ¢ for all b’ € B’; hence Endz (¢|C) = End z (¢).
Now End% (¢) is a central division algebra over E’ of dimension (d')?, where d’ :=
[F'//E']. Let Q" be the set of places of £ below those in P; then Ep, is the closure
of E' in Fp. Let Gf, be the centralizer of End (¢') @ gr Efy, in the algebraic group
ME&?/ (Vor () = Ger/,Eéz/- As with Gq we find that G, is an inner form of
GL; over Eg, that acts faithfully on Vp (), such that Gg, (Eg,) contains an open
subgroup of I'p. Recall from Proposition 2.5 that passing from I'p to any open
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subgroup does not change the ring Fp. Thus the uniqueness [9, Thm. 3.6] of the
minimal quasi-model of (Fp, PGL,. p,,T%!) implies that Ep C E%. As this holds
for all P, Proposition 3.1 (b) then shows that £ C E’. This implies that B C B’
and therefore Endz (¢|C) = Endg (v') C Endg (), proving 1.2 (c).

This shows that the field F constructed above has all the desired properties. For
the uniqueness note first that C' = B is one possible choice in 1.2 (¢). Thus this
property implies that End z () is the union of the rings End z (¢|C) for all C' C A,
which determines Endj(¢) uniquely. This in turn determines E by 1.2 (b), as
desired. q.e.d.

Proof of Theorem 1.3. Assertions (a) and (b) in both versions are restatements of
Theorem 3.4. It remains to prove (c). Let K’ and ¥ be as in Theorem 1.3. Let
E'(K')Y) C E"(K',X) be the subfields of F' generated by the traces, respectively
by all coefficients of the characteristic polynomials, of pp(Frob,) for all x € ¥. As
in Section 3 we let (_)p denote the closure in Fp.

Lemma 5.1 Under the conditions in 1.8 (c¢) we have
E"(K',Y)p = ENK',X)p = Ep = Eq.

Proof. Let I, C I'p be the open subgroup corresponding to K’. For 1.3 (c)
we assume that Endz(¢) = Endg/ (), which by the construction of G¢ implies
that I, C Gg(Eq). Now as G is an inner form of GL,, g, all coefficients of the
characteristic polynomial in the standard representation correspond to algebraic
morphisms G — A%EQ defined over FEq. It follows that the coefficients of the

characteristic polynomials of all pp(Frob,) lie in Eg. Therefore E"(K',¥)p C Eg.

On the other hand the Frobeniuses pp(Frob,) for z € ¥ form a dense subset of I,
because ¥ has Dirichlet density 1. Thus E¥(K’,¥)p is the total ring of quotients
of the closure of the subring of Fp generated by the traces of all elements of I',. By
[9, Thm. 2.14] this implies that I is contained in a model of GL, over the subring
EY(K',%)p. In particular (I'5)2¢ is contained in a model of PGL,, which by the
uniqueness [9, Thm. 3.6] of the minimal quasi-model of (Fp, PGL, f,, %) implies

that Ep C E"(K',Y)p. q.e.d.
From Lemma 5.1 and Proposition 3.1 (c) we deduce that E*(K’,%) = E}(K',¥) =
E, proving 1.3 (c). q.e.d.

We finish this section with an explicit example. It turns out that the description
of E by characteristic polynomials of Frobeniuses in the adjoint representation is
the most practical one, because it does not involve passage to an a priori unknown
finite extension K’.

Example 5.2 Let F' := Fy(t) and A := Fy[t] and K := Fp2(z) with t and x
transcendent over IF,,. Consider the Drinfeld module ¢ : A — K{7} of rank 3 with
oy =7 +73. Then:

(a) Endg(p) = A.
(b) E=TF,(t?) and B =F,[t?].

(¢) Endg(p|B) is the non-commutative polynomial ring F2{t} with toc = aPt for
all a € Fpe.

Proof. If (a) fails, choose a maximal commutative subring A C End & () and let

¢ : A — K{r} be its tautological embedding. Let d > 1 be the rank of A over A
and ' the rank of ¢. Then dr’ is the rank of ¢, which is 3; hence " = 1. Thus
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Proposition 2.2 implies that ¢ is isomorphic over K to a Drinfeld module defined
over a finite field. By restriction the same follows for ¢, so there exists y € K*
such that y~ 1oy = yP~ Lo 4+ y?"~173 has coefficients in F,. But this implies that
2P’ Pl = (yp=1g)P"+p+1 /yp° =1 and hence z lies in F,, contrary to the assumption.
This proves (a).

Next consider any element v € F,2. Then ¢ has good reduction at the place z = u
of K. We calculate

Pz = (z7+73)2 = xp+172+(x+xp3)74+7'6 = vr? +wrt + 7% mod (x — u),

where v := uPT! € F, and w := u + W =u+uP € F,,. Since the residue field at
u is IF)2, the associated Frobenius acts like 72 and its characteristic polynomial is
vX +wX? + X3 — 2. If A1, A2, A3 denote its roots in an extension of F, we find

that A A2 + A As 4+ Ao
Z)\—Z_:()\1+)\2+)\3)' 12 113 243 _ Uw_
ij 7

M hs 12

By Theorem 3.4 this is an element of E. Any choice of u # 0 with w = u +uP # 0
therefore implies that t? € E.

In particular C' := F,[t?] is contained in B := E N A. Since ¢ contains only
even powers of 7, the ring Endg(¢|C) contains both F,2 and ¢; and hence the
non-commutative polynomial ring F,2{¢;} = F,2{t} described in (c). By Theorem
1.2 (c) it follows that F,2{y;} C Endg(¢|B). Thus F2{y;} commutes with the
subring B, which means that B is contained in the center of F2{¢;}. But this
center is Fps2] 2 C; hence B C C and therefore B = C. This implies (b).

Finally note that A is a maximal commutative subalgebra of Endz(¢|B) by (a),
and of rank 2 over B. Thus End z(¢|B) is a B-order in a central quaternion algebra
over . But it already contains F2{¢;}, which is a maximal order. Thus the two
orders are equal, proving (c). q.e.d.

6 Drinfeld modules with non-scalar endomorphisms

In this section we discuss the consequences of the preceding results for a Drinfeld
module ¢ : A — K{7} in special characteristic with an arbitrary endomorphism
ring Endj (). We begin by reviewing some basic properties of endomorphism rings.

By K{7} we denote the non-commutative polynomial ring in one variable over K,
where 7 satisfies the commutation relation 7u = uP7 for all v € K. A ring homo-
morphism ¢ : A — K{7}, a — ¢, is a Drinfeld module if and only if its image does
not lie in K C K{r}. For any overfield L of K the endomorphism ring Endy () is
the set of elements of L{7} which commute with ¢, for all @ € A. The map ¢ then
defines an embedding A — Endy () which makes Endy(p) a finitely generated
torsion free A-module. Moreover Endj (¢) := Endy(¢) ®4 F is a division algebra
of finite dimension over F' (cf. [2, §2]) and all endomorphisms over L are defined
already over a finite separable extension of K (cf. [5, Prop.4.7.4, Rem.4.7.5]). In
particular we have Endz(¢) = Endgser(¢) = Endg-(¢) for some separable finite
extension K’ of K.

Now consider any infinite commutative subring A C End z(p) and let ¢ : A —
K {7} denote its tautological embedding. This is a Drinfeld A-module, except that
A is not necessarily a maximal order in its quotient field. But that is only a small
problem, because most results about Drinfeld modules carry over directly to this
more general case, as in Hayes [6]. One can also modify ¢ by a suitable isogeny,
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as follows. Let A denote the integral closure of A in its quotient field. Then by [6,
Prop. 3.2] there exists a Drinfeld module ¢ : A — K{7} such that @|A is isogenous
to ¢, that is, there exists a non-zero h € K{T} such that h¢s = @4 h for all a € A.
Let F denote the common quotient field of A and A. Then after tensoring with F
the isogeny h induces an isomorphism End% (¢) = Endj ().

Moreover, let P be the set of places of I above those in P. Then V3(p) = Vi (¢) =
Vp(p), where the Fz-module structure on the latter is induced by

Fp = A®a Fp — Endg(p) ©4 Fp < Endp, (Vp(p)).

All this is equivariant under Gal(K®P/K"’) for any sufficiently large K'; hence the
image of Gal(K*®/K') on Vp(p) coincides with that on Vj(@).

Using this we can extend Theorems 1.1 and 1.2 as follows:

Theorem 6.1 Let ¢ : A — K{7} be a Drinfeld A-module in special characteris-
tic po, which is not isomorphic over K to a Drinfeld module defined over a finite
field. Let Z denote the center of End% (). Write [Z/F] = d and dimy Endj (@) =
e2. Then

r’:= rank(p)/de > 1.

Moreover there exists a unique subfield E C Z with [Z/E] < oo and the following
properties. For every non-empty finite set P of places # py, oo of F' let P denote
the set of places of Z above those in P, and Q the set of places of E below those
in P. Then Eg C Zp = Z®r Fp acts naturally on Vp(p) and there exists an inner
form Gg of GL,» over Eg acting on Vp(p) such that:

(a) GdQer(EQ) NITE™ is open in both GdQer(EQ) and T%57™.
(b) There exists an element f € E* such that

77 - (G5 (E) NTE™)

is an open subgroup of I'p, where ﬁ denotes the pro-cyclic subgroup of the
group of scalars in Gg(Eq) that is topologically generated by f.

Proof. We apply the above reduction to the case that A is any maximal commu-
tative subring of End g (¢). The definition of endomorphisms then implies that

End%(¢) = End%(p) = Centguas (o)(4) = F

and thus Endz(¢) = A. Note also that [F/F] = de, so the rank of @ is 7/ :=
rank(y)/de. If ¢ were isomorphic over K to a Drinfeld module defined over a finite
field, then so would ¢ and hence ¢. Thus Proposition 2.2 shows that ' > 1. In
particular we can apply the earlier results to the Drinfeld module .

Let E C F be the subfield associated to ¢ by Theorem 1.1. Set B := EN A and
¢ := @|B. Then applying Theorem 1.2 (b) and (c) to ¢ with A C A in place of
C C A we deduce that End% () = End% (¢|A) € End%(¢)) and that the center of
the latter is E. Thus E commutes with End%(gp), which shows that £ C Z. The
other stated properties of E follow directly from Theorem 1.1.

Only the uniqueness of E is not yet guaranteed, because the construction depends
on the choice of A. But any subfield E with the stated properties also has the
properties in Theorem 1.1 for the Drinfeld A-module . It is therefore unique by
Theorem 1.1, as desired. q.e.d.
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Theorem 6.2 Let ¢ be as in Theorem 6.1. Then there exists a unique subfield E
of the center Z of End% () with the following properties:

(a) The intersection B := E N Endg(p) is infinite with quotient field E, and
[Z/E] is finite.

(b) The tautological embedding v : B — K{7} is a Drinfeld B-module (except
that B is not necessarily a mazimal order in E) whose endomorphism ring
Endj(v) is an order in a central simple algebra over E.

(c) For any other infinite commutative subring C C Endg () let x : C — K{r}
denote the tautological embedding. Then Endg(x) C Endg (v).

Moreover, the field E is the same as in Theorem 6.1 and the group Ggq is the
centralizer of Endg (¢) ®p Eq in the algebraic group Autp,, (Vo (v)).

Proof. Let A, D, A, P, F, E be as above. Then Gq has the given description and
Theorem 1.2 implies:

(3) The intersection B := E N A is infinite with quotient field E, and d := [F/E]
is finite.

(b) The restriction ¥ := @|B is a Drinfeld B-module whose endomorphism ring

Endg (1) is an order in a central simple algebra over E.
(¢) For every other infinite subring C' C A we have Endg (5|C) C Endg (¢).

Set B := ENEndz(¢) = ENA. Since A C A has finite index, so does B C B; hence
(a) implies (a). Next ¢ := ¢|B is a Drinfeld module isogenous to 1| B, except that B
is not necessarily a maximal order in E. Since any isogeny induces an isomorphism
of endomorphism rings up to finite index, we find that (b) implies (b). Similarly ()
implies that for every infinite subring C' C A we have End% (¢|C) C End% (¢). In
particular Endz (¢|C) C End% (¢|C) commutes with the center B of Endg(¢) C

End% (), hence:
(¢) For every infinite subring C' C A we have Endg(4|C) C Endg (¢).

This is already a part of the remaining property (c), but only for subrings of A.
However, the field E is independent of the choice of A by Theorem 6.1. Thus for
any infinite commutative subring C' C Endz(¢) we can simply choose A to be a
maximal commutative subring of Endg (p) containing C; hence (&) implies (c) in
general.

We have thus shown that the subfield F from Theorem 6.1 has all the stated prop-
erties. For the uniqueness note that C' = B is one possible choice in (¢). Thus (c)
implies that End gz (¢) is the union of the rings End z (x) for all C, which determines
End (¢0) uniquely. This in turn determines E by (b), as desired. q.e.d.

To interpret the above theorem further let us say that a Drinfeld A-module ¢
and a Drinfeld C-module x are brothers if and only if ¢, and x. commute for all
a € A and ¢ € C. Then ¢ from 6.2 (b) is a brother of ¢, and 6.2 (c) says that
Endgz(x) € Endjz(v) for all other brothers of ¢. Thus ¢ is a brother of ¢ with a
unique maximal endomorphism ring. Since End () can be larger than End (),
one can ask whether one obtains yet more endomorphisms from brothers of ¢. The
following strengthening of property 6.2 (¢) shows that this is not the case. In other
words applying Theorem 6.2 to v in place of ¢ simply yields ¢ again.

Proposition 6.3 In the situation of Theorem 6.2 we also have:
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(ct) For any infinite commutative subring C C Endg () let x : C — K{7} denote
the tautological embedding. Then Endg(x) C Endg ().

Proof. Theorem 6.2 (b) implies that the center of Endg(v) is B. Thus applying
Theorem 6.2 to 1 in place of ¢ (or to ¢|By for any integrally closed infinite subring
B; C B) yields an infinite subring B’ C B which among other properties satisfies:

(¢') For any infinite commutative subring C' C End g (¢) let x : C — K{7} denote
the tautological embedding. Then End g (x) C Endjz (¢|B’).

Since End g (¢|B’) C End g (¢) by 6.2 (c), this proves (c*). q.e.d.

We finish with a criterion for when £ = F"

Proposition 6.4 In the situation of Theorem 6.1 we have E = F if and only if:
(a) the center of Endg () is A, and

(b) for any infinite commutative subring C C A we have End g (¢|C) C End g (p).

Proof. If E = F, these properties follow directly from Theorem 6.2. Conversely
assume (a) and (b). Then (a) implies E C F. We can therefore apply (b) with
C' = B to deduce that End z(¢) C Endg (). But the reverse inclusion follows from
Theorem 6.2 (¢) with C = A, so we have equality. Taking centers we deduce from
(a) and 6.2 (b) that B = A and thus F = F, as desired. q.e.d.
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