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Abstract

Let ϕ be a Drinfeld A-module in special characteristic p0 over a finitely
generated field K. For any finite set P of primes p 6= p0 of A let ΓP denote
the image of Gal(Ksep/K) in its representation on the product of the p-adic
Tate modules of ϕ for all p ∈ P . We determine ΓP up to commensurability.
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1 Introduction

Let Fp be the finite prime field with p elements. Let F be a finitely generated field
of transcendence degree 1 over Fp. Let A be the ring of elements of F which are
regular outside a fixed place ∞ of F . Let K be another finitely generated field
over Fp of arbitrary transcendence degree, and let ϕ : A → K{τ} be a Drinfeld
A-module of rank r ≥ 1 over K in special characteristic p0.

Let Ksep ⊂ K̄ denote a separable, respectively an algebraic closure of K. Then
for any place p 6= p0, ∞ of F the rational p-adic Tate module Vp(ϕ) is a vector
space of dimension r over the completion Fp, and it carries a natural continuous
representation of Gal(Ksep/K) = Aut(K̄/K). For any non-empty finite set P of
places p 6= p0, ∞ of F we set VP (ϕ) :=

⊕

p∈P Vp(ϕ), which is a free module over
FP :=

⊕

p∈P Fp of rank r. We are interested in the combined representation

ρP : Gal(Ksep/K) −→ AutFP

(

VP (ϕ)
)

∼= GLr(FP )

and in particular in its image

ΓP ⊂ GLr(FP ) =
∏

p∈P

GLr(Fp).

Furthermore let k denote the finite field of constants of K and k̄ its algebraic closure
in Ksep. Then Gal(k̄/k) is the free pro-cyclic group topologically generated by the
element Frobk which acts on k̄ by u 7→ u|k|, and we have a natural short exact
sequence

1 −→ Gal(Ksep/Kk̄) −→ Gal(Ksep/K) −→ Gal(k̄/k) −→ 1.
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We are equally interested in the image Γgeom
P of Gal(Ksep/Kk̄). By construction

this is a closed normal subgroup of ΓP and the quotient is pro-cyclic.

The aim of this article is to characterize these groups up to commensurability. The
corresponding problem for Drinfeld modules of generic characteristic was solved
in [10], where we showed that ΓP is open in the general linear group if EndK̄(ϕ) = A.
In special characteristic one cannot expect openness in GLr, because the image
of Γgeom

P under the determinant is finite; hence the subgroup det(ΓP ) ⊂ F ∗
P is

essentially pro-cyclic and thus cannot be open. The main job is therefore to describe
Γgeom

P ∩ SLr. Of course this is interesting only in the case r > 1. The following
theorem achieves it in the case EndK̄(ϕ) = A:

Theorem 1.1 Let ϕ : A → K{τ} be a Drinfeld A-module of rank r > 1 over K
and in special characteristic p0, such that EndK̄(ϕ) = A. Then there exists a unique
subfield E ⊂ F with [F/E] <∞ and the following properties. For every non-empty
finite set P of places 6= p0, ∞ of F let Q denote the set of places of E below those
in P . Then there exists an inner form GQ of GLr,FP

over EQ with derived group
Gder

Q such that:

(a) Gder
Q (EQ) ∩ Γgeom

P is open in both Gder
Q (EQ) and Γgeom

P .

(b) There exists an element f ∈ E∗ such that

fZ ·
(

Gder
Q (EQ) ∩ Γgeom

P

)

is an open subgroup of ΓP , where fZ denotes the pro-cyclic subgroup of the
group of scalars in GQ(EQ) that is topologically generated by f .

A full answer must also characterize E and GQ and explain when and why E can
be smaller than F . The reason is that Drinfeld modules obtained by restricting ϕ
to subrings of A can have more endomorphisms than ϕ. This phenomenon occurs
only in special characteristic, where endomorphism rings can be non-commutative.

Theorem 1.2 Let ϕ be as in Theorem 1.1. Then there exists a unique subfield
E ⊂ F with the following properties:

(a) The intersection B := E ∩A is infinite with quotient field E, and d := [F/E]
is finite.

(b) The restriction ψ := ϕ|B is a Drinfeld B-module of rank rd whose endo-
morphism ring EndK̄(ψ) is an order in a central simple algebra over E of
dimension d2.

(c) For every other infinite subring C ⊂ A we have EndK̄(ϕ|C) ⊂ EndK̄(ψ).

Moreover, the field E is the same as in Theorem 1.1 and the group GQ is the
centralizer of EndK̄(ψ) ⊗B EQ in the algebraic group AutEQ

(

VQ(ψ)
)

.

Unfortunately Theorem 1.2 does not lend itself well to explicit calculation, because
there are infinitely many candidates C ⊂ A to consider. But our method yields the
following characterization of E by characteristic polynomials of Frobenius elements.
Let Ad denote the adjoint representation of GLr.

Theorem 1.3 Let ϕ, E, and ψ be as in Theorems 1.1 and 1.2. Let X be an integral
scheme of finite type over Fp, whose function field K ′ is a finite extension of K,
and over which ϕ has good reduction. Let Σ be any set of closed points x ∈ X of
Dirichlet density 1. Then each of the following subfields of F coincides with E:
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(a) If p 6= 2 or r 6= 2, the subfield generated by the traces of Ad(ρP (Frobx)) for
all x ∈ Σ.

(b) If p = r = 2, either the subfield generated by the traces of Ad(ρP (Frobx)) for
all x ∈ Σ, or the subfield generated by their square roots.

(c) If EndK̄(ψ) = EndK′(ψ), the subfield generated by the traces of ρP (Frobx) for
all x ∈ Σ.

Furthermore, these statements remain true when the traces are replaced by all coeffi-
cients of the characteristic polynomials of Ad(ρP (Frobx)), respectively of ρP (Frobx).

The above results are proved in Sections 2 through 5. In Section 2 we construct EQ

and Gder
Q by group theory and obtain a close approximation to Theorem 1.1. Two

crucial ingredients, namely the fact that the image of ΓP in GLr(Fp) is Zariski dense
for every p ∈ P , and the general description of Zariski dense compact subgroups of
SLr(FP ), were provided in previous articles [11], [9] by the same author. The fact
that EQ comes from a global subfield E ⊂ F is proved in Section 3 with the help of
characteristic polynomials of Frobeniuses, which at the same time proves Theorem
1.3 (a) and (b). We also derive certain structural properties of E which imply in
particular that B := E ∩ A is infinite. This allows us to analyze the Drinfeld B-
module ψ := ϕ|B in Section 4. Using representation theory, the Tate conjecture
for ψ, and a subtle argument involving weights of t-motives that was also used in
[11], we succeed in establishing the one remaining cornerstone, Theorem 1.2 (b). In
Section 5 we combine the results of the preceding sections and prove the rest of the
above theorems. We also work out an explicit example.

The whole discussion so far concerns Drinfeld A-modules with EndK̄(ϕ) = A. This
is not really a big restriction, because for every Drinfeld A-module ϕ one can select a
maximal commutative subring Â ⊂ EndK̄(ϕ) and pass to the corresponding Drinfeld
Â-module ϕ̂, which satisfies EndK̄(ϕ̂) = Â. Applying the above results to ϕ̂ one
can obtain generalizations for arbitrary ϕ which do not involve ϕ̂. This is done in
Section 6 for Theorems 1.1 and 1.2. The common feature in all these results is that
to ϕ we associate a new Drinfeld B-module ψ for a certain ring B, as in Theorem 1.2,
that governs the image of Galois and can be characterized by endomorphisms.

2 Group theoretic analysis

We keep the notations of the introduction. From here until the end of Section 5 we
impose the additional assumption

EndK̄(ϕ) = A.

The first crucial property of ΓP was proved in [11, Thm. 1.1]:

Theorem 2.1 The image of ΓP in GLr(Fp) is Zariski dense for every p ∈ P .

Next we note:

Proposition 2.2 The following statements are equivalent:

(a) ϕ is isomorphic over K̄ to a Drinfeld module defined over a finite field.

(b) Γgeom
P is finite.

(c) r = 1.
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Proof. Clearly (a) implies (b). Next, since ΓP /Γ
geom
P is abelian, (b) implies that

an open subgroup of ΓP is abelian, which by Theorem 2.1 shows (c). Thirdly the
moduli stack of Drinfeld A-modules of rank 1 and characteristic p0 is finite over the
residue field of p0. Since that residue field is finite, every such Drinfeld module over
K̄ is isomorphic to a Drinfeld module defined over a finite field. This proves the
remaining implication (c)⇒(a). q.e.d.

Proposition 2.3 Let det : GLr → Gm denote the determinant homomorphism.
Then det(Γgeom

P ) is finite, and an open subgroup of det(ΓP ) is the pro-cyclic subgroup

fZ ⊂ F ∗
P topologically generated by a non-zero element f ∈ A which has a pole at

∞ and a zero at p0 and no other zeroes or poles.

Proof. By Anderson [1, § 4.2] there exists a Drinfeld A-module ψ over K of
characteristic p0 and of rank 1, such that Vp(ψ) ∼= ΛrVp(ϕ) as Galois representations
for every prime p. Thus the groups det(Γgeom

P ) and det(ΓP ) are simply the groups
Γgeom

P and ΓP for ψ instead of ϕ. After replacing ϕ by ψ we may therefore assume
that r = 1.

Next note that the desired assertions are invariant under replacing K by a finite
extension and ϕ by an isomorphic Drinfeld module. Thus by Proposition 2.2 we may
reduce ourselves to the case that ϕ is defined over the finite field k. Then Γgeom

P = 1,
and the eigenvalue of Frobk on Vp(ψ) is an element f ∈ F ∗ which is independent
of p and possesses the other listed properties by [3, Prop. 2.1], [4, Thm. 3.2.3]. The
proposition follows from this. q.e.d.

In particular Proposition 2.3 describes the Galois groups completely in the case
r = 1. From here until the end of Section 5 we therefore assume

r > 1.

Let Γad
P denote the image of ΓP in PGLr(FP ). Theorem 2.1 implies that its image

in PGLr(Fp) is Zariski dense for every p ∈ P . Let Γder
P denote the closure of the

commutator subgroup of ΓP . The description [9, Thm. 0.2] of Zariski dense compact
subgroups yields:

Theorem 2.4 There exists a closed subring EP ⊂ FP and a model HP of SLr,FP

over EP such that

(a) EP is a finite direct sum of local fields,

(b) FP is a finitely generated EP -module,

(c) Γad
P is contained in the adjoint group Had

P (EP ), and

(d) Γder
P is an open subgroup of HP (EP ).

Our job will be to determine EP and HP . In the rest of this section we first deter-
mine the precise relation of HP (EP ) with ΓP and Γgeom

P up to commensurability.
Since at several points we want to replace K by a finite extension, we note:

Proposition 2.5 EP and HP do not change on replacing K by a finite extension.

Proof. Replacing K by a finite extension amounts to replacing Γad
P by an open

subgroup, say by Γad
P

′. Without loss of generality we may assume it to be normal.
Its image in PGLr(Fp) is still Zariski dense for every p ∈ P . Now the data (EP , HP )
amounts to what is called a minimal quasi-model of (FP ,PGLr,FP

,Γad
P ) following

[9, Def. 0.1, Thm. 3.6]. By [9, Cor. 3.8] it remains a minimal quasi-model when Γad
P

is replaced by Γad
P

′. Thus EP and HP do not change, as desired. q.e.d.
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Next we need some information on inertia. Let Kv denote the completion of K with
respect to any valuation v. One says that ϕ has semi-stable reduction at v if ϕ is
isomorphic to a Drinfeld module ϕ′ which has coefficients in the ring of integers OKv

and whose reduction modulo the maximal ideal is a Drinfeld module ϕ′
v of some

rank rv > 0 over the residue field kv. Every Drinfeld module acquires semi-stable
reduction over some finite extension of Kv. One says that ϕ has good reduction at v
if one can achieve rv = r. In this case the inertia group at any place of Ksep above
v has trivial image in ΓP .

If ϕ has semi-stable but not good reduction at v, the rank discrepancy is explained
by the local uniformization theorem. For this we view ϕ′

v as a Drinfeld module over
Kv via any lift kv ↪→ Kv. We let K̄v denote an algebraic closure of Kv and view it
as an A-module via ϕ′

v. The local uniformization theorem of Drinfeld [2, § 7] says
that there exists a locally free A-module Λv ⊂ K̄v of rank r − rv, such that ϕ′ is
the ‘quotient of ϕ′

v by Λv’. It implies that for every p there is a natural short exact
sequence

(2.6) 0 −→ Vp(ϕ
′
v) −→ Vp(ϕ) −→ Λv ⊗A Fp −→ 0

which is equivariant under the local Galois group Gal(Ksep
v /Kv). This group acts

on Λv through a finite quotient, because the action is continuous and the module
finitely generated over A. Note also that the action on Vp(ϕ

′
v) factors through the

Galois group of kv. We can thus deduce that an open subgroup of the inertia group
acts unipotently on Vp(ϕ).

Proposition 2.7 HP (EP ) contains an open subgroup of Γgeom
P .

Proof. By Theorem 2.4 (d) we have Γder
P ⊂ HP (EP ) ∩ ΓP . Thus HP (EP ) ∩ ΓP is

a normal subgroup of ΓP and the quotient ∆P := ΓP /HP (EP )∩ΓP is abelian. Let
∆geom

P denote the image of Γgeom
P in ∆P . We must prove that ∆geom

P is finite.

We first look at the ramification in ∆geom
P . Consider any valuation v of K where ϕ

has bad reduction. The above remarks show that some open subgroup of the inertia
group acts unipotently on Vp(ϕ) and hence on VP (ϕ). Thus its image consists of
unipotent elements of GLr(FP ). Being unipotent, they lie already in SLr(FP ) =
HP (FP ). Now any unipotent element of HP (FP ) is defined over EP if and only if
its image in Had

P (FP ) is defined over EP . The latter property being guaranteed by
Theorem 2.4 (c), we deduce that the image of some open subgroup of the inertia
group at v is contained in HP (EP ). It follows that the image in ∆geom

P of the inertia
group at v is finite.

Now as above let k denote the constant field of K. Let X̄ be an integral proper
scheme over k with function field K. Since we may replace K by a finite extension,
by de Jong [7] we may apply an alteration to X̄ to make it smooth. Let X ⊂ X̄ be
an open dense scheme such that ϕ extends to a family of Drinfeld modules of rank
r over X (compare [11, § 3]). Then the Galois representation factors through the
étale fundamental group πét

1 (X). Now X̄ r X possesses only finitely many points
of codimension 1 in X̄, and each of these corresponds to a unique equivalence class
of valuations of K. Thus it follows that the subgroup ∆inert

P ⊂ ∆geom
P generated by

the images of the inertia groups at these valuations is finite. It suffices therefore
to prove that the quotient ∆̄geom

P := ∆geom
P /∆inert

P is finite. By the purity of the
branch locus [15] this group is a quotient of the étale fundamental group πét

1 (X̄k̄)
of X̄k̄ := X ×k k̄.

Next observe that ∆̄geom
P is the quotient of two compact subgroups of GLr(FP ).

Since FP is a finite direct sum of local fields of positive characteristic p, every
compact subgroup of GLr(FP ) possesses an open pro-p subgroup. Thus the same
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follows for ∆̄geom
P . As ∆̄geom

P is abelian, it must be the product of a finite group
with a pro-p group. It suffices therefore to prove that the maximal pro-p quotient
¯̄∆geom

P of ∆̄geom
P is finite.

Now ¯̄∆geom
P is a quotient of the maximal pro-p abelian quotient of the étale funda-

mental group πét
1,p-ab(X̄k̄). Moreover this surjection is equivariant with respect to

the action of Frobk. Since the action of Frobk on ∆geom
P is given by conjugation

within the abelian group ∆P , the action on ∆geom
P and hence on ¯̄∆geom

P is trivial. It

follows that ¯̄∆geom
P is a quotient of the group of coinvariants πét

1,p-ab(X̄k̄)Frobk
. But

this group is known to be finite by Katz and Lang [8, Thm. 2]; hence ¯̄∆geom
P is finite,

as desired. q.e.d.

Proposition 2.8 (a) HP (EP ) ∩ Γgeom
P is open in both HP (EP ) and Γgeom

P .

(b) There exists an element f ∈ A which has a pole at ∞ and a zero at p0 and

no other zeroes or poles, such that the following holds. Let fZ denote the pro-
cyclic subgroup of the group of scalars F ∗

P that is topologically generated by f .
Then

fZ ·
(

HP (EP ) ∩ Γgeom
P

)

is an open subgroup of ΓP .

Proof. Set Γgeom
P,H := HP (EP )∩Γgeom

P . By Proposition 2.7 this is an open subgroup

of Γgeom
P . On the other hand we have Γder

P ⊂ Γgeom
P , because the quotient ΓP /Γ

geom
P

is pro-cyclic. But Γder
P is an open subgroup of HP (EP ) by Theorem 2.4 (d); hence

so is Γgeom
P,H , proving (a).

Next choose any element σ ∈ Gal(Ksep/K) whose image in Gal(k̄/k) is Frobk. Con-
sider its images γ ∈ ΓP and γad ∈ Γad

P . Recall that by Galois and flat cohomology
applied to the short exact sequence 1 → (center of HP ) → HP → Had

P → 1 the
cokernel of the natural homomorphism HP (EP ) → Had

P (EP ) is an abelian group
annihilated by r. Since γad ∈ Had

P (EP ) by Theorem 2.4 (c), we deduce that γr = λh
for a scalar λ ∈ F ∗

P and an element h ∈ HP (EP ). As γad lies in a compact subgroup
of Had

P (EP ), the element h lies in a compact subgroup of HP (EP ). Thus by (a)
some positive integral power hm lies in Γgeom

P . Modifying σrm by a suitable element
of Gal(Ksep/Kk̄) then yields an element τ ∈ Gal(Ksep/K) whose image in Gal(k̄/k)
is Frobrm

k and whose image in ΓP is γrmh−m = λm. This element is scalar, and

calling it g we find that gZ · Γgeom
P,H is an open subgroup of ΓP .

Finally gr = det(g · id) topologically generates an open subgroup of det(ΓP ). Thus

by Proposition 2.3 some open subgroup of grZ has the form fZ for a non-zero element
f ∈ A which has a pole at ∞ and a zero at p0 and no other zeroes or poles. Then
fZ · Γgeom

P,H is an open subgroup of ΓP , and we are done. q.e.d.

3 Characteristic polynomials of Frobeniuses

This section is devoted to a first characterization of the ring EP . In Theorem 3.4 we
will show that EP is the completion of a certain subfield E ⊂ F that is independent
of P . This subfield will be constructed using characteristic polynomials of Frobenius
elements. We also use Frobeniuses to derive certain structural properties of E.

For later use we note the following fact. For any subfield E′ ⊂ F we let E′
P denote

the closure of E′ in FP .

Proposition 3.1 Consider infinite subfields E′, E′′ ⊂ F .
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(a) Then E′ ⊂ F is a finite extension.

(b) If E′′
P ⊂ E′

P for all P , then E′′ ⊂ E′.

(c) If E′′
P = E′

P for all P , then E′′ = E′.

Proof. (a) follows from the fact that F is finitely generated of transcendence
degree 1 over Fp. To prove (b) consider the finite subextension E′ ⊂ E′E′′ ⊂ F .
Choose any place q′ of E′ which does not lie below the place p0 or ∞ of F . Let P be
the set of places of F above q′. Then E′

P is simply the completion of E′ at q′, and
(E′E′′)P is the direct sum of the completions of E′E′′ at all places above q′. But the
assumption in (b) implies that (E′E′′)P = E′

PE
′′
P = E′

P . It follows that E′E′′ = E′

and hence E′′ ⊂ E′, proving (b). Finally (b) implies (c) by symmetry. q.e.d.

Now consider any finite extension K ′ of K. Let X be any integral scheme of finite
type over Fp with function field K ′ over which ϕ has good reduction (compare [11,
§ 3]). For any closed point x ∈ X we let Frobx ∈ Gal(Ksep/K ′) be any element
of a decomposition group above x which acts by u 7→ u|kx| on the residue fields.
Recall [4, Thm. 3.2.3 b] that for every x ∈ Σ the characteristic polynomial of Frobx

on Vp(ϕ) has coefficients in F and is independent of p. Thus the same holds for
the characteristic polynomial of ρP (Frobx) on the free FP -module VP (ϕ). Let Ad
denote the adjoint representation of GLr. Then the same follows again for the
characteristic polynomial of Ad(ρP (Frobx)).

Consider any set Σ of closed points x ∈ X of Dirichlet density 1. (For the concept
of Dirichlet density in the case dimX > 1 see [10, Appendix B].)

Definition 3.2 (a) Etrad(K ′,Σ) is the subfield of F generated by the traces of
Ad(ρP (Frobx)) for all x ∈ Σ.

(b) Echad(K ′,Σ) is the subfield of F generated by all coefficients of the character-
istic polynomials of Ad(ρP (Frobx)) for all x ∈ Σ.

Clearly Etrad(K ′,Σ) ⊂ Echad(K ′,Σ), and these fields do not depend on P . But
they bear a close relation with EP . For any commutative F2-algebra B we set
B2 := {b2 | b ∈ B}.

Proposition 3.3 (a) If p 6= 2 or r 6= 2, then for all K ′, Σ, P we have

Etrad(K ′,Σ)P = Echad(K ′,Σ)P = EP .

(b) If p = r = 2, then for all K ′, Σ, P we have

E2
P ⊂ Etrad(K ′,Σ)P ⊂ Echad(K ′,Σ)P ⊂ EP .

(c) If p = r = 2, for every P there exist K ′ and Σ such that

Etrad(K ′,Σ)P = Echad(K ′,Σ)P = E2
P .

Proof. The adjoint representation Ad of GLr is an extension of the adjoint repre-
sentation Ad of PGLr with a trivial representation of dimension 1. Thus the fields
do not change if Ad is replaced by Ad. Now since Had

P is a model of PGLr,FP

over EP , its adjoint representation is a model over EP of the representation Ad. As
Γad

P ⊂ Had
P (EP ) by Theorem 2.4 (c), it follows that all the coefficients generating

Echad(K ′,Σ) lie in EP . In particular this implies that Echad(K ′,Σ)P ⊂ EP .

In the case p = r = 2 this can be strengthened as follows. By Proposition 2.8
there exists a finite extension K ′ of K whose corresponding open subgroup of ΓP
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is contained in F ∗
P · HP (EP ). In the case p = r = 2 the representation Ad is,

as a representation of HP , the extension of a trivial representation of dimension 1
with the twist by Frob2 of the standard representation of SL2. Now the standard
representation of HP exists over EP up to an inner twist, so the coefficients of
the characteristic polynomial of any element of HP (EP ) in it lie in EP . It follows
that all the coefficients generating Echad(K ′,Σ) lie in E2

P . In particular we have
Echad(K ′,Σ)P ⊂ E2

P in this case. This shows that (b) implies (c).

To prove the remaining inclusions in (a) and (b) note first that by Proposition 2.5
we may replace K by K ′. Thus without loss of generality we may assume that
K ′ = K. Let Otrad

P ⊂ FP denote the closure of the subring that is generated by the
traces of all elements of Γad

P on the adjoint representation of Had
P . Let Etrad

P denote
the total ring of quotients of Otrad

P . Then [9, Prop. 3.10] implies that Etrad
P = EP

in the case (a) and E2
P ⊂ Etrad

P ⊂ EP in the case (b). On the other hand the
elements ρP (Frobx) for x ∈ Σ form a dense subset of ΓP by the Čebotarev density
theorem [10, Thm. B.9], because Σ has Dirichlet density 1. Thus by approximation
we find that Etrad(K ′,Σ)P contains the trace of every element of Γad

P . It follows
that Etrad

P ⊂ Etrad(K ′,Σ)P , which together with the other stated inclusions proves
(a) and (b). q.e.d.

Theorem-Definition 3.4 There exists a unique subfield E ⊂ F such that:

(a) F is a finite extension of E.

(b) EP is the closure of E in FP for every P .

(c) If p 6= 2 or r 6= 2, then for all K ′, Σ we have

Etrad(K ′,Σ) = Echad(K ′,Σ) = E.

(d) If p = r = 2, then for all K ′, Σ we have

E2 ⊂ Etrad(K ′,Σ) ⊂ Echad(K ′,Σ) ⊂ E,

and there exist K ′ and Σ such that

Etrad(K ′,Σ) = Echad(K ′,Σ) = E2.

Proof. Let C denote the collection of all subfields Etrad(K ′,Σ) and Echad(K ′,Σ)
for all K ′ and Σ. Consider any E′ ∈ C. If E′ were finite, Proposition 3.3 would
imply that EP is finite, contradicting Theorem 2.4 (b). Thus E′ is infinite. The
same follows for any other E′′ ∈ C.

Thus if p 6= 2 or r 6= 2, by Propositions 3.1 (c) and 3.3 (a) we can deduce that
E′′ = E′. Calling this field E, properties (a) and (b) follow from Propositions
3.1 (a) and 3.3 (a). This proves the theorem in the case (c).

If p = r = 2, we begin with a field E′ ∈ C such that E′
P = E2

P , which exists by
Proposition 3.3 (c). Then for any other E′′ ∈ C Proposition 3.3 (b) implies that
(E′′

P )2 ⊂ E2
P = E′

P ⊂ E′′
P . Using Proposition 3.1 (b) we deduce that (E′′)2 ⊂ E′ ⊂

E′′. Now since E′ ⊂ E2
P ∩ F ⊂ F 2

P ∩ F = F 2, we have E′ = E2 for a subfield
E ⊂ F . By construction the closure of E2 in FP is E2

P , so the closure of E is EP .
On the other hand the resulting inclusions (E′′)2 ⊂ E2 ⊂ E′′ are equivalent to
E2 ⊂ E′′ ⊂ E, which proves the theorem in the case (d). q.e.d.

Proposition 3.5 Let q0 denote the place of E below the place p0 of F . Then p0 is
the unique place of F above q0.
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Proof. Consider any closed point x ∈ X and let αi for 1 ≤ i ≤ r denote the
eigenvalues of ρP (Frobx). Then the eigenvalues of Ad(ρP (Frobx)) are the ratios
αi/αj. Recall [3, Prop. 2.1], [4, Thm. 3.2.3 c, d] that the αi are algebraic over F ,
with valuation zero at all places not above p0 or ∞, and with some fixed valuation
at all places above ∞. Thus the ratios αi/αj are units at all places not above p0. It
follows that the coefficients of the characteristic polynomial of Ad(ρP (Frobx)) are
regular outside p0. Now as x varies, these coefficients generate the field E or E2,
which by Theorem 3.4 has transcendence degree 1 over Fp. Thus for some x, some
coefficient is transcendent. Being transcendent, it must have a pole at at least one
place q of E. It then has a pole at every place p of F above q. By the above remarks
this implies p = p0 and thus q = q0. In particular we deduce that p0 is the unique
place of F above q0, as desired. q.e.d.

Proposition 3.6 Let ∞̄ denote the place of E below the place ∞ of F . Then ∞ is
the unique place of F above ∞̄.

Proof. (Following a suggestion of Francis Gardeyn.) Recall that r > 1 by as-
sumption. Thus from Proposition 2.2 we know that ϕ is not isomorphic over K̄ to a
Drinfeld module defined over a finite field. On the other hand recall that the moduli
stack of Drinfeld A-modules of rank r is affine. Thus any compactification X̄ of X
possesses a point x̄ ∈ X̄ r X at which ϕ does not have potential good reduction.
After replacing K ′ by a finite extension we may suppose that ϕ has semi-stable
reduction at x̄, that is, that ϕ is isomorphic to a Drinfeld module ϕ′ which has
coefficients in the local ring OX̄,x̄ and whose reduction modulo the maximal ideal
is a Drinfeld module ϕ′

x̄ of some rank rx̄ > 0 over the residue field kx̄.

We may also specialize x̄ to a closed point of X̄. Then the action of Frobx̄ ∈
Gal(Ksep/K ′) on Vp(ϕ) is described by applying the exact sequence 2.6 to any val-
uation of K ′ centered on x̄. By [4, Thm. 3.2.3 b] its characteristic polynomial on
Vp(ϕ

′
x̄) has coefficients in F and is independent of p. The same holds for the char-

acteristic polynomial on Λx̄ ⊗A Fp, because the action comes from an action on Λx̄.
Together this implies that the characteristic polynomial of ρP (Frobx̄) has coeffi-
cients in F and is independent of p. Again the same follows for the characteristic
polynomial of Ad(ρP (Frobx̄)).

Lemma 3.7 The coefficients of the characteristic polynomial of Ad(ρP (Frobx̄)) lie
in E.

Proof. Let E′ be the subfield of F generated by E and the coefficients in question.
Then we must prove that the inclusion E ⊂ E′ is an equality. By Proposition 3.1 (c)
it suffices to show that EP = E′

P for all P . Now as ϕ has good reduction at almost
all places of K, the element ρP (Frobx̄) can be approximated by the images of
Frobeniuses at places of good reduction. Thus the coefficients of the characteristic
polynomial of Ad(ρP (Frobx̄)) can be approximated in FP by elements of E. It
follows that these coefficients lie in EP ; hence E′

P = EP , as desired. q.e.d.

Lemma 3.8 The characteristic polynomial of Ad(ρP (Frobx̄)) possesses a coeffi-
cient b which has a pole at ∞ and at most one other pole at p0.

Proof. Let αi for 1 ≤ i ≤ rx̄ denote the eigenvalues of ρP (Frobx̄). By [3, Prop. 2.1],
[4, Thm. 3.2.3 c, d] they are algebraic over F , with valuation zero at all places not
above p0 or ∞, and with some fixed negative valuation at all places above ∞. Let
ζj for rx̄ + 1 ≤ j ≤ r denote the eigenvalues of Frobx̄ on Λx̄, which are roots of
unity. Then the eigenvalues of Ad(ρP (Frobx̄)) are all possible ratios of the αi and ζj .
Among these only the ratios αi/ζj have a pole above ∞, and there are precisely
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n := rx̄(r − rx̄) of them. Let b denote the nth elementary symmetric polynomial
in the eigenvalues of Ad(ρP (Frobx̄)). This is one of the coefficients in question; in
particular it is an element of F . By construction the product of the αi/ζj is the
unique summand of b which has the largest pole above ∞. Thus b has a non-trivial
pole at ∞. On the other hand, all the αi and ζj are units at all places not above
p0 or ∞. Thus b can have at most one other pole at p0, as desired. q.e.d.

To finish the proof of Proposition 3.6 let b be as in Lemma 3.8. By Lemma 3.7 it
is an element of E. Since b has a pole at the place ∞ of F , it has a pole at the
corresponding place ∞̄ of E. Suppose now that F possesses another place p 6= ∞
above ∞̄. Then b has a pole at p, which by Lemma 3.8 is possible only for p = p0.
But then we have q0 = ∞̄ and thus p0 = ∞ by Proposition 3.5, a contradiction.
Therefore ∞ is the unique place of F above ∞̄, as desired. q.e.d.

Proposition 3.9 Let f be any element of F which has a pole at ∞ and a zero at
p0 and no other zeroes or poles. Then some positive integral power of f lies in E.

Proof. Since p0 6= ∞, Proposition 3.5 or 3.6 shows in particular that q0 6= ∞̄. Let
dq0

and d∞̄ denote the degrees of the corresponding residue fields over Fp. Then
D := d∞̄ · (q̄0) − dq0

· (∞̄) is a divisor of degree 0 on E. Since E is a function field
with finite residue field, some positive integral multiple of D is a principal divisor.
Thus there exists a function g ∈ E∗ which possesses a pole at ∞̄ and a zero at q0

and no other zeroes or poles.

Viewing g now as a function in F , Propositions 3.5 and 3.6 imply that g possesses
a pole at ∞ and a zero at p0 and no other zeroes or poles. Some positive integral
power of f has the same pole at ∞ as some positive integral power of g. The ratio
thus has no zero or pole outside p0. The product formula implies that the ratio
then has no zero or pole anywhere, so it lies in the constant field and is therefore
a root of unity. After enlarging the exponents we find that some positive integral
power of f is equal to some positive integral power of g. It is therefore an element
of E, as desired. q.e.d.

Proposition 3.10 There exists an element f ∈ E∗ such that

fZ ·
(

HP (EP ) ∩ Γgeom
P

)

is an open subgroup of ΓP , where fZ denotes the pro-cyclic subgroup of the group
of scalars in GLr(FP ) that is topologically generated by f .

Proof. Let f ∈ F ∗ be as in Proposition 2.8 (b). Then by Proposition 3.9 some
positive integral power fn lies in E. Since the statement of 2.8 (b) is preserved
under replacing f by fn, the assertion follows. q.e.d.

4 Restriction of scalars

In this section we analyze the subfield E ⊂ F by restricting the Drinfeld module ϕ
to subrings of A. Set d := [F/E]. The first observation is:

Proposition 4.1 The ring B := E ∩A is infinite with quotient field E.

Proof. Recall that A is the ring of elements of F which are regular outside ∞.
Thus Proposition 3.6 implies that E ∩ A is the ring of elements of E which are
regular outside ∞̄. It is a standard fact that its quotient field is E. q.e.d.
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Let ψ : B → K{τ} denote the restriction of ϕ. This is a Drinfeld B-module of
rank rd. Consider any place q 6= q0, ∞̄ of E, and let P be the set of places of F
above q. Then Eq can be identified with the closure of E in FP , which by Theorem
3.4 coincides with the ring EP from the preceding sections. Moreover there is a
natural Gal(Ksep/K)-equivariant isomorphism VP (ϕ) ∼= Vq(ψ). In particular the
image of Gal(Ksep/K) on Vq(ψ) is equal to ΓP . By the Tate conjecture [12], [13],
[14] for the Drinfeld module ψ we have a natural isomorphism

(4.2) EndK′(ψ) ⊗B Eq
∼−−→ EndEq,Gal(Ksep/K′)

(

Vq(ψ)
)

for every finite extension K ′ ⊂ Ksep of K. We exploit this as follows:

Proposition 4.3 View Vq(ψ) as an algebraic representation of HP over Eq. Then

EndK̄(ψ) ⊗B Eq
∼−−→ EndEq,HP

(

Vq(ψ)
)

.

Proof. We show that both sides coincide with those in 4.2 for every sufficiently
large K ′. For the left hand side see Section 6. For the right hand side by Proposi-
tion 3.10 we can achieve that the image of Gal(Ksep/K ′) is contained in E∗

P ·HP (Eq).
On the other hand this image contains an open subgroup of HP (Eq) by Theorem
2.4 (d). Since equivariance is not affected by scalars, and every open subgroup of
HP (Eq) is Zariski dense in HP , the right hand sides are equal, as desired. q.e.d.

Next recall that HP is a model of SLr,FP
over Eq. Choose an algebraic closure

Ēq of Eq and an isomorphism HP ×Eq
Ēq

∼= SLr,Ēq
. Via this isomorphism V̄q :=

Vq(ψ) ⊗Eq
Ēq becomes a representation of SLr,Ēq

. Let W̄q := Ē⊕r
q denote the

standard representation of SLr,Ēq
and W̄ ∗

q its dual. Note that W̄ ∗
q
∼= W̄q if and only

if r = 2.

Proposition 4.4 V̄q is isomorphic to a direct sum of copies of W̄q and W̄ ∗
q .

Proof. Fix any p ∈ P and any minimal non-trivial HP -invariant Eq-subspace
U ⊂ Vp(ϕ). Then U is an irreducible representation of the reductive group HP , so
by representation theory U ⊗Eq

Ēq is a direct sum of irreducible representations of
HP ×Eq

Ēq whose equivalence classes are conjugate under outer automorphisms.
Now recall that we have an isomorphism HP ×Eq

Fp
∼= SLr,Fp

making Vp(ϕ) the
standard representation of SLr,Fp

. Since the natural homomorphism U ⊗Eq
Fp →

Vp(ϕ) is non-zero, it follows that the constituents of U ⊗Eq
Ēq are conjugate to the

standard representation under outer automorphisms. Thus they must be among
W̄q and W̄ ∗

q .

On the other hand the irreducibility of Vp(ϕ) over Fp implies that Vp(ϕ) is the sum
of the subspaces λU for all λ ∈ F ∗

p . It is thus the direct sum of some of them. It

follows that Vp(ϕ) ⊗Eq
Ēq is isomorphic to a direct sum of copies of W̄q and W̄ ∗

q .
Since Vq(ψ) is the direct sum of the spaces Vp(ϕ) for all p ∈ P , the proposition
follows. q.e.d.

Proposition 4.5 Let Ẽ denote the center of End◦
K̄(ψ) := EndK̄(ψ) ⊗B E.

(a) If V̄q is isotypic, then Ẽ = E.

(b) If V̄q is not isotypic, then Ẽ is a separable quadratic extension of E.

Proof. Suppose that V̄q
∼= W̄⊕n

q ⊕ (W̄ ∗
q )⊕n∗

, with n∗ = 0 if r = 2. Then

End◦
K̄(ψ) ⊗E Ēq

∼= EndK̄(ψ) ⊗B Ēq

4.3
∼= EndEq,HP

(

Vq(ψ)
)

⊗Eq
Ēq

∼= EndĒq,SLr,Ēq

(

V̄q

)

∼= Matn×n(Ēq) ⊕ Matn∗×n∗(Ēq).
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Its center is therefore

Ẽ ⊗E Ēq
∼=

{

Ēq if V̄q is isotypic, and

Ēq ⊕ Ēq if V̄q is not isotypic.

The proposition follows from this. q.e.d.

Proposition 4.6 The case (b) in Proposition 4.5 does not occur.

Proof. Suppose that V̄q is not isotypic and Ẽ is a separable quadratic extension
of E. This can happen only for r ≥ 3. Recall that End◦

K̄(ψ) is a central division

algebra over Ẽ, say of dimension n2. Then

End◦
K̄(ψ) ⊗E Ēq

∼= Matn×n(Ẽ ⊗E Ēq) ∼= Matn×n(Ēq)
⊕2,

so the proof of Proposition 4.5 shows that V̄q
∼= W̄⊕n

q ⊕ (W̄ ∗
q )⊕n. From ϕ we will

construct two new Drinfeld modules with Tate modules essentially isomorphic to
W̄q and W̄ ∗

q . Using weights of t-motives we will then show that the resulting duality
between them forces r ≤ 2, yielding a contradiction.

Lemma 4.7 There exist finite extensions B ⊂ Ã and K ⊂ K ′ ⊂ Ksep, Drinfeld
Ã-modules ϕ̃, ϕ̃′ : Ã → K ′{τ} of rank r, a place p̃ of F̃ := Quot(Ã) above q, and
an extension of Eq ↪→ Ēq to an embedding j : F̃p̃ ↪→ Ēq, such that

Vp̃(ϕ̃) ⊗F̃p̃,j Ēq
∼= W̄q and Vp̃(ϕ̃′) ⊗F̃p̃,j Ēq

∼= W̄ ∗
q

as representations of Gal(Ksep/K ′) over Ēq, up to twists by scalar characters with
values in Eq.

Proof. Let S be a finite set of places of Ẽ containing all those where End◦
K̄(ψ)

does not split. After enlarging S we may suppose that S is invariant under the
non-trivial automorphism σ ∈ Gal(Ẽ/E). Choose any separable field extension F̃
of Ẽ of degree n which possesses exactly one place above every place in S. Then
the two embeddings id, σ : Ẽ ∼−−→ Ẽ ↪→ End◦

K̄(ψ) can be extended to embeddings

i, i′ : F̃ ↪→ End◦
K̄(ψ). Set

Â := i−1
(

EndK̄(ψ)
)

∩ i′−1
(

EndK̄(ψ)
)

.

By construction this ring contains B. It is therefore infinite and its quotient field
is F̃ . Recall that EndK̄(ψ) is a subring of K̄{τ}. Composing its tautological
embedding with i, i′ therefore yields two homomorphisms ϕ̂, ϕ̂′ : Â→ K̄{τ}. These
are Drinfeld Â-modules extending ψ, except that the ring Â is not necessarily a
maximal order in F̃ . Let Ã denote the integral closure of Â in F̃ , and choose Drinfeld
Ã-modules ϕ̃, ϕ̃′ : Ã→ K̄{τ} whose restrictions to Â are isogenous to ϕ̂, ϕ̂′, as in
Section 6. Let P̃ be the set of places of F̃ above q. Then VP̃ (ϕ̃) ∼= VP̃ (ϕ̂) = Vq(ψ),

where the F̃P̃ -module structure is deduced from

F̃P̃
∼= F̃ ⊗E Eq ↪ i⊗id−−−−→ End◦

K̄(ψ) ⊗E Eq.

Thus VP̃ (ϕ̃) ⊗Eq
Ēq

∼= V̄q with the F̃P̃ ⊗Eq
Ēq-module structure deduced from

F̃P̃ ⊗Eq
Ēq

∼= F̃ ⊗E Ēq ↪ i⊗id−−−−→ End◦
K̄(ψ) ⊗E Ēq

∼= Matn×n(Ēq)
⊕2.

Since F̃ is separable of degree 2n over E, the left hand side is isomorphic to a direct
sum of 2n copies of Ēq, and its image in the matrix algebra is a maximal commu-

tative subalgebra. Choose any place p̃ ∈ P̃ and extend Eq ⊂ Ēq to an embedding
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j : F̃p̃ ↪→ Ēq. These choices amount to the selection of a simple summand of

F̃P̃ ⊗Eq
Ēq. This summand lands in one of the simple summands of Matn×n(Ēq)

⊕2,
say in that corresponding to W̄q. It follows that

Vp̃(ϕ̃) ⊗F̃p̃,j Ēq
∼= W̄q.

In particular ϕ̃ has rank r = dim W̄q. The same arguments apply to ϕ̃′ in place of ϕ̃.

Since i must be replaced by i′ and i′|Ẽ = σ interchanges the two simple summands
of Matn×n(Ēq)

⊕2, we deduce that

Vp̃(ϕ̃′) ⊗F̃p̃,j Ēq
∼= W̄ ∗

q .

Now take any sufficiently large finite extension K ⊂ K ′ ⊂ Ksep over which ϕ̃, ϕ̃′

are defined and such that the image of Gal(Ksep/K ′) is contained in E∗
q ·HP (Eq) by

Proposition 3.10. Then the above isomorphisms are equivariant under Gal(Ksep/K ′)
up to twists by scalar characters with values in Eq, as desired. q.e.d.

In particular we deduce:

Lemma 4.8 (a) The Zariski closure of the image of Gal(Ksep/K ′) in the group
AutF̃p̃

(

Vp̃(ϕ̃)
)

∼= GLr(F̃p̃) contains SLr,F̃p̃
, and

(b) Vp̃(ϕ̃
′) ∼= Vp̃(ϕ̃)∗ ⊗ χ for some scalar character χ of Gal(Ksep/K ′).

Proof. (a) follows from Lemma 4.7 and the corresponding property of W̄q. The

analogue of (b) over an algebraic closure of F̃p̃ also follows from Lemma 4.7. Since

the twisting character χ takes values in Eq ⊂ F̃p̃, the isomorphism already exists

over F̃p̃, as desired. q.e.d.

Lemma 4.9 For every field extension L of F̃p̃ there exists up to scalar multiples
exactly one Gal(Ksep/K ′)-equivariant endomorphism of Vp̃(ϕ̃)∗ ⊗F̃p̃

Vp̃(ϕ̃
′)∗ ⊗F̃p̃

L

of rank 1.

Proof. Note that this statement is not affected by scalar twists. For any field L
let W := L⊕r denote the standard representation of H := SLr,L. Then in view
of Lemma 4.8 we must prove that up to scalar multiples there exists exactly one
H-equivariant endomorphism of W ∗ ⊗L W of rank 1. The image of any such endo-
morphism is anH-invariant subspace of dimension 1. AsH is connected semisimple,
it must act trivially on this subspace. Thus the desired assertion is equivalent to

dimL HomH

(

W ∗ ⊗L W,L
)

= dimL HomH

(

L,W ∗ ⊗L W
)

= 1.

But these equalities follow at once from the absolute irreducibility of W . q.e.d.

The rest of the proof proceeds as in [11, Lem. 7.1], using the properties of A-motives
collected in [11, § 5]. Let Mϕ̃, Mϕ̃′ be the Ã-motives over K corresponding to the
Drinfeld modules ϕ̃, ϕ̃′ by [11, Prop. 5.7], and set M := Mϕ̃ ⊗ Mϕ̃′ . Then [11,
Prop. 5.8, 5.5] shows that

Vp̃(ϕ̃)∗ ⊗F̃p̃
Vp̃(ϕ̃

′)∗ ∼= Vp̃(Mϕ̃) ⊗F̃p̃
Vp̃(Mϕ̃′) ∼= Vp̃(M)

as representations of Gal(Ksep/K ′) over F̃p̃. Thus Lemma 4.9 implies that for every

field extension L of F̃p̃ there exists up to scalar multiples exactly one Gal(Ksep/K ′)-
equivariant endomorphism of Vp̃(M) ⊗F̃p̃

L of rank 1. Applying [11, Prop. 5.6] to

M ′ = M we deduce that this endomorphism comes from an endomorphism h of

13



the Ã-motive M . Let N ⊂ M denote its image. Then Vp̃(N) is the image of the

endomorphism Vp̃(h) of Vp̃(M) of rank 1; hence N is an Ã-motive of rank 1. On

the other hand Mϕ̃, Mϕ̃′ are pure Ã-motives of weight 1
r by [11, Prop. 5.7]; hence

M and N are pure Ã-motives of weight 2
r . Thus [11, Prop. 5.3] implies that 2

r ∈ Z.
Since that is impossible for r ≥ 3, this finishes the proof of Proposition 4.6. q.e.d.

Since F is a maximal commutative subalgebra of End◦
K̄(ψ), Propositions 4.5 and

4.6 together imply:

Proposition 4.10 End◦
K̄(ψ) is a central simple algebra over E of dimension d2.

5 Proof of the main results

We will now combine the results of the preceding sections to prove the theorems in
the introduction. Let P be any non-empty finite set of places 6= p0, ∞ of F . Let
Q be the set of places of E below those in P , and P̃ the set of places of F above
those in Q. Since EP , EP̃ are the closures of E in FP , FP̃ by Theorem 3.4, both of

them can be identified with EQ :=
⊕

q∈Q Eq. Note that the inclusion P ⊂ P̃ yields
natural surjections FP̃ � FP and VQ(ψ) ∼= VP̃ (ϕ) � VP (ϕ).

LetGQ be the centralizer of EndK̄(ψ)⊗BEQ in the algebraic group AutEQ

(

VQ(ψ)
)

∼=
GLdr,EQ

. Since EndK̄(ψ)⊗B EQ is a form over EQ of the algebra of d× d-matrices
and VQ(ψ) is a free EQ-module of rank rd, the algebraic group GQ is an inner
form of GLr,EQ

. Moreover GQ still acts faithfully on the quotient VP (ϕ), so we can
identify it with a subgroup of the algebraic group AutEQ

(

VP (ϕ)
)

. Let Gder
Q denote

the derived group of GQ.

Proof of Theorem 1.1. The assertions for P follow from those for P̃ by projection.
Thus after replacing P by P̃ we may assume that VP (ϕ) = VQ(ψ). Let K ′ ⊂
Ksep be any finite extension of K such that EndK̄(ψ) = EndK′(ψ). Then the
image of Gal(Ksep/K ′) is an open subgroup of ΓP which is contained in GQ(EQ).
Now Theorem 2.4 implies that every open subgroup of ΓP contains a Zariski dense
subgroup of HP . Thus HP ⊂ GQ, and since these are forms of SLr,EQ

and GLr,EQ

respectively, we must have HP = Gder
Q . Now the assertions 1.1 (a) and (b) are

simply restatements of Propositions 2.8 (a) and 3.10.

It remains to show that the subfield E ⊂ F is uniquely characterized by the prop-
erties 1.1 (a) and (b). Let E′ ⊂ F be any other field with these properties. Let E′

P

denote the closure of E′ in FP . Recall from Proposition 2.5 that any open subgroup
of ΓP yields the same ring EP . Thus by the uniqueness [9, Thm. 0.2] of the ring EP

associated to any open subgroup of ΓP we have E′
P = EP . As this holds for all P ,

Proposition 3.1 (c) implies that E′ = E, as desired. q.e.d.

Proof of Theorem 1.2. Properties (a) and (b) follow from Propositions 4.1 and 4.10,
and the description of GQ was part of the construction above.

To prove (c) consider any infinite subring C ⊂ A. Let E′ denote the center of
End◦

K̄(ϕ|C). Set B′ := E′ ∩ A and consider the Drinfeld B′-module ψ′ := ϕ|B′.
Then EndK̄(ϕ|C) commutes with ϕb′ for all b′ ∈ B′; hence EndK̄(ϕ|C) = EndK̄(ψ′).
Now End◦

K̄(ψ′) is a central division algebra over E′ of dimension (d′)2, where d′ :=
[F/E′]. Let Q′ be the set of places of E′ below those in P ; then E′

Q′ is the closure
of E′ in FP . Let G′

Q′ be the centralizer of End◦
K̄(ψ′)⊗E′ E′

Q′ in the algebraic group

AutE′

Q′

(

VQ′(ψ′)
)

∼= GLrd′,E′

Q′
. As with GQ we find that G′

Q′ is an inner form of

GLr over E′
Q′ that acts faithfully on VP (ϕ), such that G′

Q′ (E′
Q′) contains an open

subgroup of ΓP . Recall from Proposition 2.5 that passing from ΓP to any open
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subgroup does not change the ring EP . Thus the uniqueness [9, Thm. 3.6] of the
minimal quasi-model of (FP ,PGLr,FP

,Γad
P ) implies that EP ⊂ E′

P . As this holds
for all P , Proposition 3.1 (b) then shows that E ⊂ E′. This implies that B ⊂ B′

and therefore EndK̄(ϕ|C) = EndK̄(ψ′) ⊂ EndK̄(ψ), proving 1.2 (c).

This shows that the field E constructed above has all the desired properties. For
the uniqueness note first that C = B is one possible choice in 1.2 (c). Thus this
property implies that EndK̄(ψ) is the union of the rings EndK̄(ϕ|C) for all C ⊂ A,
which determines EndK̄(ψ) uniquely. This in turn determines E by 1.2 (b), as
desired. q.e.d.

Proof of Theorem 1.3. Assertions (a) and (b) in both versions are restatements of
Theorem 3.4. It remains to prove (c). Let K ′ and Σ be as in Theorem 1.3. Let
Etr(K ′,Σ) ⊂ Ech(K ′,Σ) be the subfields of F generated by the traces, respectively
by all coefficients of the characteristic polynomials, of ρP (Frobx) for all x ∈ Σ. As
in Section 3 we let ( )P denote the closure in FP .

Lemma 5.1 Under the conditions in 1.3 (c) we have

Etr(K ′,Σ)P = Ech(K ′,Σ)P = EP = EQ.

Proof. Let Γ′
P ⊂ ΓP be the open subgroup corresponding to K ′. For 1.3 (c)

we assume that EndK̄(ψ) = EndK′(ψ), which by the construction of GQ implies
that Γ′

P ⊂ GQ(EQ). Now as GQ is an inner form of GLr,EQ
, all coefficients of the

characteristic polynomial in the standard representation correspond to algebraic
morphisms GQ → A1

EQ
defined over EQ. It follows that the coefficients of the

characteristic polynomials of all ρP (Frobx) lie in EQ. Therefore Ech(K ′,Σ)P ⊂ EQ.

On the other hand the Frobeniuses ρP (Frobx) for x ∈ Σ form a dense subset of Γ′
P ,

because Σ has Dirichlet density 1. Thus Etr(K ′,Σ)P is the total ring of quotients
of the closure of the subring of FP generated by the traces of all elements of Γ′

P . By
[9, Thm. 2.14] this implies that Γ′

P is contained in a model of GLr over the subring
Etr(K ′,Σ)P . In particular (Γ′

P )ad is contained in a model of PGLr, which by the
uniqueness [9, Thm. 3.6] of the minimal quasi-model of (FP ,PGLr,FP

,Γad
P ) implies

that EP ⊂ Etr(K ′,Σ)P . q.e.d.

From Lemma 5.1 and Proposition 3.1 (c) we deduce that Etr(K ′,Σ) = Ech(K ′,Σ) =
E, proving 1.3 (c). q.e.d.

We finish this section with an explicit example. It turns out that the description
of E by characteristic polynomials of Frobeniuses in the adjoint representation is
the most practical one, because it does not involve passage to an a priori unknown
finite extension K ′.

Example 5.2 Let F := Fp(t) and A := Fp[t] and K := Fp2(x) with t and x
transcendent over Fp. Consider the Drinfeld module ϕ : A→ K{τ} of rank 3 with
ϕt = xτ + τ3. Then:

(a) EndK̄(ϕ) = A.

(b) E = Fp(t
2) and B = Fp[t

2].

(c) EndK̄(ϕ|B) is the non-commutative polynomial ring Fp2{t} with tα = αpt for
all α ∈ Fp2 .

Proof. If (a) fails, choose a maximal commutative subring Â ⊂ EndK̄(ϕ) and let
ϕ̂ : Â ↪→ K̄{τ} be its tautological embedding. Let d > 1 be the rank of Â over A
and r′ the rank of ϕ̂. Then dr′ is the rank of ϕ, which is 3; hence r′ = 1. Thus
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Proposition 2.2 implies that ϕ̂ is isomorphic over K̄ to a Drinfeld module defined
over a finite field. By restriction the same follows for ϕ, so there exists y ∈ K̄∗

such that y−1ϕty = yp−1xτ + yp3−1τ3 has coefficients in F̄p. But this implies that

xp2+p+1 = (yp−1x)p2+p+1/yp3−1 and hence x lies in F̄p, contrary to the assumption.
This proves (a).

Next consider any element u ∈ Fp2 . Then ϕ has good reduction at the place x = u
of K. We calculate

ϕt2 = (xτ + τ3)2 = xp+1τ2 + (x+ xp3

)τ4 + τ6 ≡ vτ2 +wτ4 + τ6 mod (x− u),

where v := up+1 ∈ Fp and w := u + up3

= u + up ∈ Fp. Since the residue field at
u is Fp2 , the associated Frobenius acts like τ2 and its characteristic polynomial is
vX + wX2 + X3 − t2. If λ1, λ2, λ3 denote its roots in an extension of F , we find
that

∑

i,j

λi

λj
= (λ1 + λ2 + λ3) ·

λ1λ2 + λ1λ3 + λ2λ3

λ1λ2λ3
=

−vw

t2
.

By Theorem 3.4 this is an element of E. Any choice of u 6= 0 with w = u+ up 6= 0
therefore implies that t2 ∈ E.

In particular C := Fp[t
2] is contained in B := E ∩ A. Since ϕt2 contains only

even powers of τ , the ring EndK̄(ϕ|C) contains both Fp2 and ϕt and hence the
non-commutative polynomial ring Fp2{ϕt} ∼= Fp2{t} described in (c). By Theorem
1.2 (c) it follows that Fp2{ϕt} ⊂ EndK̄(ϕ|B). Thus Fp2{ϕt} commutes with the
subring B, which means that B is contained in the center of Fp2{ϕt}. But this
center is F[ϕt2 ] ∼= C; hence B ⊂ C and therefore B = C. This implies (b).

Finally note that A is a maximal commutative subalgebra of EndK̄(ϕ|B) by (a),
and of rank 2 over B. Thus EndK̄(ϕ|B) is a B-order in a central quaternion algebra
over E. But it already contains Fp2{ϕt}, which is a maximal order. Thus the two
orders are equal, proving (c). q.e.d.

6 Drinfeld modules with non-scalar endomorphisms

In this section we discuss the consequences of the preceding results for a Drinfeld
module ϕ : A → K{τ} in special characteristic with an arbitrary endomorphism
ring EndK̄(ϕ). We begin by reviewing some basic properties of endomorphism rings.

By K{τ} we denote the non-commutative polynomial ring in one variable over K,
where τ satisfies the commutation relation τu = upτ for all u ∈ K. A ring homo-
morphism ϕ : A→ K{τ}, a 7→ ϕa is a Drinfeld module if and only if its image does
not lie in K ⊂ K{τ}. For any overfield L of K the endomorphism ring EndL(ϕ) is
the set of elements of L{τ} which commute with ϕa for all a ∈ A. The map ϕ then
defines an embedding A ↪→ EndL(ϕ) which makes EndL(ϕ) a finitely generated
torsion free A-module. Moreover End◦

L(ϕ) := EndL(ϕ) ⊗A F is a division algebra
of finite dimension over F (cf. [2, § 2]) and all endomorphisms over L are defined
already over a finite separable extension of K (cf. [5, Prop. 4.7.4, Rem. 4.7.5]). In
particular we have EndK̄(ϕ) = EndKsep(ϕ) = EndK′(ϕ) for some separable finite
extension K ′ of K.

Now consider any infinite commutative subring Â ⊂ EndK̄(ϕ) and let ϕ̂ : Â →
K̄{τ} denote its tautological embedding. This is a Drinfeld Â-module, except that
Â is not necessarily a maximal order in its quotient field. But that is only a small
problem, because most results about Drinfeld modules carry over directly to this
more general case, as in Hayes [6]. One can also modify ϕ̂ by a suitable isogeny,
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as follows. Let Ã denote the integral closure of Â in its quotient field. Then by [6,
Prop. 3.2] there exists a Drinfeld module ϕ̃ : Ã→ K̄{τ} such that ϕ̃|Â is isogenous
to ϕ̂, that is, there exists a non-zero h ∈ K̄{τ} such that h ϕ̂â = ϕ̃â h for all â ∈ Â.
Let F̃ denote the common quotient field of Â and Ã. Then after tensoring with F̃
the isogeny h induces an isomorphism End◦

K̄(ϕ̂) ∼= End◦
K̄(ϕ̃).

Moreover, let P̃ be the set of places of F̃ above those in P . Then VP̃ (ϕ̃) ∼= VP̃ (ϕ̂) =

VP (ϕ), where the F̃P̃ -module structure on the latter is induced by

F̃P̃
∼= Ã⊗A FP ↪→ EndK̄(ϕ) ⊗A FP ↪→ EndFP

(

VP (ϕ)
)

.

All this is equivariant under Gal(Ksep/K ′) for any sufficiently large K ′; hence the
image of Gal(Ksep/K ′) on VP (ϕ) coincides with that on VP̃ (ϕ̃).

Using this we can extend Theorems 1.1 and 1.2 as follows:

Theorem 6.1 Let ϕ : A → K{τ} be a Drinfeld A-module in special characteris-
tic p0, which is not isomorphic over K̄ to a Drinfeld module defined over a finite
field. Let Z denote the center of End◦

K̄(ϕ). Write [Z/F ] = d and dimZ End◦
K̄(ϕ) =

e2. Then
r′ := rank(ϕ)/de > 1.

Moreover there exists a unique subfield E ⊂ Z with [Z/E] < ∞ and the following
properties. For every non-empty finite set P of places 6= p0, ∞ of F let P̃ denote
the set of places of Z above those in P , and Q the set of places of E below those
in P̃ . Then EQ ⊂ ZP̃

∼= Z⊗F FP acts naturally on VP (ϕ) and there exists an inner
form GQ of GLr′ over EQ acting on VP (ϕ) such that:

(a) Gder
Q (EQ) ∩ Γgeom

P is open in both Gder
Q (EQ) and Γgeom

P .

(b) There exists an element f ∈ E∗ such that

fZ ·
(

Gder
Q (EQ) ∩ Γgeom

P

)

is an open subgroup of ΓP , where fZ denotes the pro-cyclic subgroup of the
group of scalars in GQ(EQ) that is topologically generated by f .

Proof. We apply the above reduction to the case that Â is any maximal commu-
tative subring of EndK̄(ϕ). The definition of endomorphisms then implies that

End◦
K̄(ϕ̃) ∼= End◦

K̄(ϕ̂) ∼= CentEnd◦

K̄
(ϕ)(Â ) = F̃

and thus EndK̄(ϕ̃) = Ã. Note also that [F̃ /F ] = de, so the rank of ϕ̃ is r′ :=
rank(ϕ)/de. If ϕ̃ were isomorphic over K̄ to a Drinfeld module defined over a finite
field, then so would ϕ̂ and hence ϕ. Thus Proposition 2.2 shows that r′ > 1. In
particular we can apply the earlier results to the Drinfeld module ϕ̃.

Let E ⊂ F̃ be the subfield associated to ϕ̃ by Theorem 1.1. Set B̃ := E ∩ Ã and
ψ̃ := ϕ̃|B̃. Then applying Theorem 1.2 (b) and (c) to ϕ̃ with A ⊂ Ã in place of
C ⊂ A we deduce that End◦

K̄(ϕ) ∼= End◦
K̄(ϕ̃|A) ⊂ End◦

K̄(ψ̃) and that the center of
the latter is E. Thus E commutes with End◦

K̄(ϕ), which shows that E ⊂ Z. The
other stated properties of E follow directly from Theorem 1.1.

Only the uniqueness of E is not yet guaranteed, because the construction depends
on the choice of Â. But any subfield E with the stated properties also has the
properties in Theorem 1.1 for the Drinfeld Ã-module ϕ̃. It is therefore unique by
Theorem 1.1, as desired. q.e.d.
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Theorem 6.2 Let ϕ be as in Theorem 6.1. Then there exists a unique subfield E
of the center Z of End◦

K̄(ϕ) with the following properties:

(a) The intersection B := E ∩ EndK̄(ϕ) is infinite with quotient field E, and
[Z/E] is finite.

(b) The tautological embedding ψ : B → K̄{τ} is a Drinfeld B-module (except
that B is not necessarily a maximal order in E) whose endomorphism ring
EndK̄(ψ) is an order in a central simple algebra over E.

(c) For any other infinite commutative subring C ⊂ EndK̄(ϕ) let χ : C → K̄{τ}
denote the tautological embedding. Then EndK̄(χ) ⊂ EndK̄(ψ).

Moreover, the field E is the same as in Theorem 6.1 and the group GQ is the
centralizer of EndK̄(ψ) ⊗B EQ in the algebraic group AutEQ

(

VQ(ψ)
)

.

Proof. Let Â, ϕ̂, Ã, ϕ̃, F̃ , E be as above. Then GQ has the given description and
Theorem 1.2 implies:

(ã) The intersection B̃ := E ∩ Ã is infinite with quotient field E, and d := [F/E]
is finite.

(b̃) The restriction ψ̃ := ϕ̃|B̃ is a Drinfeld B̃-module whose endomorphism ring
EndK̄(ψ̃) is an order in a central simple algebra over E.

(c̃) For every other infinite subring C̃ ⊂ Ã we have EndK̄(ϕ̃|C̃) ⊂ EndK̄(ψ̃).

Set B := E∩EndK̄(ϕ) = E∩Â. Since Â ⊂ Ã has finite index, so does B ⊂ B̃; hence

(ã) implies (a). Next ψ := ϕ̂|B is a Drinfeld module isogenous to ψ̂|B, except that B
is not necessarily a maximal order in E. Since any isogeny induces an isomorphism
of endomorphism rings up to finite index, we find that (b̃) implies (b). Similarly (c̃)
implies that for every infinite subring C ⊂ Â we have End◦

K̄(ϕ̂|C) ⊂ End◦
K̄(ψ). In

particular EndK̄(ϕ̂|C) ⊂ End◦
K̄(ϕ̂|C) commutes with the center B of EndK̄(ψ) ⊂

End◦
K̄(ψ), hence:

(ĉ) For every infinite subring C ⊂ Â we have EndK̄(ϕ̂|C) ⊂ EndK̄(ψ).

This is already a part of the remaining property (c), but only for subrings of Â.
However, the field E is independent of the choice of Â by Theorem 6.1. Thus for
any infinite commutative subring C ⊂ EndK̄(ϕ) we can simply choose Â to be a
maximal commutative subring of EndK̄(ϕ) containing C; hence (ĉ) implies (c) in
general.

We have thus shown that the subfield E from Theorem 6.1 has all the stated prop-
erties. For the uniqueness note that C = B is one possible choice in (c). Thus (c)
implies that EndK̄(ψ) is the union of the rings EndK̄(χ) for all C, which determines
EndK̄(ψ) uniquely. This in turn determines E by (b), as desired. q.e.d.

To interpret the above theorem further let us say that a Drinfeld A-module ϕ
and a Drinfeld C-module χ are brothers if and only if ϕa and χc commute for all
a ∈ A and c ∈ C. Then ψ from 6.2 (b) is a brother of ϕ, and 6.2 (c) says that
EndK̄(χ) ⊂ EndK̄(ψ) for all other brothers of ϕ. Thus ψ is a brother of ϕ with a
unique maximal endomorphism ring. Since EndK̄(ψ) can be larger than EndK̄(ϕ),
one can ask whether one obtains yet more endomorphisms from brothers of ψ. The
following strengthening of property 6.2 (c) shows that this is not the case. In other
words applying Theorem 6.2 to ψ in place of ϕ simply yields ψ again.

Proposition 6.3 In the situation of Theorem 6.2 we also have:
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(c+) For any infinite commutative subring C ⊂ EndK̄(ψ) let χ : C → K̄{τ} denote
the tautological embedding. Then EndK̄(χ) ⊂ EndK̄(ψ).

Proof. Theorem 6.2 (b) implies that the center of EndK̄(ψ) is B. Thus applying
Theorem 6.2 to ψ in place of ϕ (or to ϕ|B1 for any integrally closed infinite subring
B1 ⊂ B) yields an infinite subring B′ ⊂ B which among other properties satisfies:

(c′) For any infinite commutative subring C ⊂ EndK̄(ψ) let χ : C → K̄{τ} denote
the tautological embedding. Then EndK̄(χ) ⊂ EndK̄(ψ|B′).

Since EndK̄(ψ|B′) ⊂ EndK̄(ψ) by 6.2 (c), this proves (c+). q.e.d.

We finish with a criterion for when E = F :

Proposition 6.4 In the situation of Theorem 6.1 we have E = F if and only if:

(a) the center of EndK̄(ϕ) is A, and

(b) for any infinite commutative subring C ⊂ A we have EndK̄(ϕ|C) ⊂ EndK̄(ϕ).

Proof. If E = F , these properties follow directly from Theorem 6.2. Conversely
assume (a) and (b). Then (a) implies E ⊂ F . We can therefore apply (b) with
C = B to deduce that EndK̄(ψ) ⊂ EndK̄(ϕ). But the reverse inclusion follows from
Theorem 6.2 (c) with C = A, so we have equality. Taking centers we deduce from
(a) and 6.2 (b) that B = A and thus E = F , as desired. q.e.d.
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