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Outline

The aim of the lecture course is the classification of finite commutative group
schemes over a perfect field of characteristic p, using the classical approach
by contravariant Dieudonné theory. The theory is developed from scratch;
emphasis is placed on complete proofs. No prerequisites other than a good
knowledge of algebra and the basic properties of categories and schemes are
required. The original plan included p-divisible groups, but there was no
time for this.
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Lecture 1

October 21, 2004

Notes by Egon Rütsche

§1 Motivation

Let A be a g-dimensional abelian variety over a field k, and let p be a prime
number. Let ksep ⊂ k̄ denote a separable, respectively algebraic closure of k.
For all n ≥ 0, define

A(k̄)[pn] := {a ∈ A(k̄) | pna = 0}.

Then the following holds:

A(k̄)[pn] ∼=
{ (

Z/pn
)⊕2g

if p 6= char(k)
(
Z/pnZ

)⊕h
if p = char(k),

where h is independent of n, and 0 ≤ h ≤ g.

Definition. The p-adic Tate module of A is defined by

TpA := lim
←−

A(k̄)[pn] .

Then we have the following isomorphisms

TpA ∼=
{

Z⊕2g
p if p 6= char(k)

Z⊕hp if p = char(k).

If p is not equal to the characteristic of k, we have a famous theorem, which
compares the endomorphisms of the abelian variety with those of the Tate
module.

Theorem (Tate conjecture for endomorphisms of abelian varieties).
If p 6= char(k) and k is finitely generated over its prime field, then the natural
homomorphism

End(A)⊗ Zp → EndZp[Gal(ksep/k)](TpA)

is an isomorphism.

Remark. This theorem was proven by Tate for finite k, by Faltings for
number fields, and by others in other cases.
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The Tate module can be considered as the first homology group of the
abelian variety. For this, assume that char(k) = 0 and embed k into the
complex numbers. Then the isomorphism A(C) ∼= (LieAC)/H1

(
A(C),Z

)

induces an isomorphism TpA ∼= H1

(
A(C),Z

)
⊗ Zp.

Let us now consider what happens if p is equal to the characteristic of k.
This gives us a motivation to consider finite group schemes and p-divisible
groups. For any positive integer m consider the morphism m · id : A→ A. It
is a finite morphism of degree m2g, so its scheme theoretic kernel A[m] is a
finite group scheme of degree m2g. We can write m · id as the composite of
the two maps

A diag−−−−→ A× . . .× A︸ ︷︷ ︸
m

Σ−−→ A .

Looking at the tangent spaces, we can deduce that the derivative of m · id
is again the endomorphism m · id on the Lie algebra of A. If p - m, this is
an isomorphism, which implies that the kernel of multiplication by m is an
étale group scheme. But if p divides m, the derivative is 0, and in this case
A[m] is non-reduced.

Taking m = pn for n→∞, we have the inclusions A[pn] ⊂ A[pn+1] ⊂ . . ..
The union of these finite group schemes is called the p-divisible group of A,
and is denoted by A[p∞]. Since theA[pn] contain arbitrarily large infinitesimal
neighbourhoods of 0, their union A[p∞] contains the formal completion of A
at 0. This shows that studying group schemes and p-divisible groups gives
us information on both the abelian variety and its formal completion.

The goal of this course is to present the basic theory and classification of
finite commutative group schemes over a perfect field. With this knowledge
it will be possible to study general p-divisible groups and to formulate and
understand the significance of an analogue of the above mentioned theorem
for the p-divisible group of an abelian variety in characteristic p. However,
there will be no mention of these further lines of developments in the course,
or even of p-divisible groups and abelian varieties, at all.

We finish this motivation with some examples of commutative group
schemes and finite subgroup schemes thereof:

Example. Define Gm,k := Spec k[T, T−1]. The multiplication is given by
(t, t′) 7→ t · t′. This group scheme is called the multiplicative group over k.
The homomorphism m · id : Gm,k → Gm,k is given by t 7→ tm. We want to
know its kernel, which is denoted by µµm,k. This is defined as the fiber product

2



in the following commutative diagram

Gm,k
m·id // Gm,k

µµm,k

OO

// Spec k .

1

OO

Since the fiber product corresponds to the tensor product of the associated
rings of functions, this diagram corresponds to the commutative diagram

k[T, T−1]

��

k[S, S−1]
Tm←pSoo

��
k[T ]/(Tm − 1) k.oo

Thus we get the equality µµm,k = Spec k[T ]/(Tm−1) with the group operation
(t, t′) 7→ t · t′. If p = char(k), we have T p

n − 1 = (T − 1)p
n

and therefore
µµpn,k

∼= Spec k[U ]/(Upn
) where U = T − 1. This is therefore a non-reduced

group scheme possessing a single point. Note that the group operation in
terms of the coordinate U is given by (u, u′) 7→ u+ u′ + u · u′.

Example. For comparison let Ga,k := Spec k[X] with the operation (x, x′) 7→
x+ x′ denote the additive group over k. Since (x+ x′)p

n
= xp

n
+ x′p

n
over k,

the finite closed subscheme Spec k[X]/(Xpn
) is a subgroup scheme of Ga,k.

Although its underlying scheme is isomorphic to the scheme underlying µµpn,k,
we will see later that these group schemes are non-isomorphic.

§2 Group objects in a category

The definition of an abstract group G includes a map G×G→ G. In order to
define group objects in a category, we need to make sense of ‘G×G’ in that
category, that is, we need products. For any two objects X,Z of a category,
we denote the set of morphisms Z → X by X(Z). Let C be a category with
arbitrary finite products. This means that the following two properties hold:

(i) For any two objects X, Y ∈ Ob(C ) there exists a triple consisting of
an object X × Y ∈ Ob(C ) and two morphisms πX : X × Y → X and
πY : X × Y → Y such that for any object Z ∈ Ob(C ) the natural map
of sets

(X × Y )(Z)→ X(Z)× Y (Z), ϕ 7→ (πX ◦ ϕ, πY ◦ ϕ)

is bijective.
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(ii) There exists a final object ∗ ∈ Ob(C ), that is, an object such that for
every Z ∈ Ob(C ) there exists a unique morphism Z → ∗.

Remark. If we have products of two objects, then by iterating we get prod-
ucts of more than two objects. Property (ii) is what comes out by requiring
the existence of an empty product. The existence of a product of just one
object is clear.

In (i) one easily shows that X × Y together with its two ‘projection
morphisms’ πX , πY is determined up to unique isomorphism. Any choice of
it is called the product of X and Y in C . Similarly, the final object ∗, and
therefore arbitrary finite products, are defined up to unique isomorphism.

Definition. A commutative group object in the category C is a pair consisting
of an object G ∈ Ob(C ) and a morphism µ : G× G → G such that for any
object Z ∈ Ob(C ) the map G(Z)×G(Z)→ G(Z), (g, g′) 7→ µ◦(g, g′) defines
a commutative group.

Let us check what associativity, commutativity, and the existence of an
identity and an inverse for all Z means.

Proposition. An object G and a morphism µ : G × G → G define a com-
mutative group object if and only if the following properties hold:

(i) (Associativity) The following diagram is commutative:

G×G×G
id×µ

��

µ×id // G×G
µ

��
G×G µ // G .

(ii) (Commutativity) The following diagram is commutative:

G×G
σ

��

µ // G

G×G ,
µ

;;wwwwwwwww

where σ is the morphism which interchanges the two factors.
(Deduce the existence of σ from the defining property of products!)

(iii) (Identity Element) There exists a morphism e : ∗ → G such that the
following diagram commutes:

∗×G
pr2 o

��

e×id // G×G
µ

yyssssssssss

G .
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(iv) (Inverse Element) There exists a morphism i : G → G such that the
following diagram commutes:

G×G id×i // G×G
µ

��
G //

diag

OO

∗ e // G ,

where e is the morphism from (iii).

Sketch of the proof. The ‘if’ part follows easily by taking Z-valued points.
For the ‘only if’ part:

(i) Take Z = G × G × G and apply the associativity in G(Z) to the
tautological element id ∈ (G×G×G)(Z) = G(Z)×G(Z)×G(Z).

(ii) Analogous with Z = G×G.

(iii) The morphism e : ∗ → G is defined as the identity element of G(∗).
For any Z consider the map G(∗) → G(Z) defined by composing a
morphism ∗ → G with the unique morphism Z → ∗. Clearly this map
is compatible with µ, so it is a group homomorphism and therefore
maps e to the identity element of G(Z). The commutativity of the
diagram can now be deduced by taking Z = G.

(iv) The morphism i : G → G is defined as the inverse in the group G(G)
of the tautological element id ∈ G(G). The rest is analogous to (iii).

Remark. The definition of group objects in a category is often given in
terms of the commutativity of the diagrams above. But both definitions have
their advantages. The first, functorial, definition allows us to automatically
translate all the usual formulas for groups into formulas for group objects.
For example, since the identity and inverse elements in an abstract group
are uniquely determined, we deduce at once that the morphisms e and i
are unique. The same goes for formulas such as (x−1)−1 = x and (xy)−1 =
y−1x−1. All these formulas for group objects can also be derived from the
second definition, but less directly.
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Lecture 2

October 28, 2004

Notes by Stefan Gille

§3 Affine group schemes

Let Rings be the category of commutative noetherian rings with 1, called the
category of unitary rings. Morphisms in this category are maps ϕ : R −→ S
which are additive and multiplicative and satisfy ϕ(1) = 1. The last condition
is important, but sometimes forgotten. As is well known the assignment
R 7−→ SpecR is an anti-equivalence of categories:

Rings ←→ aff.Sch ,

where aff.Sch denotes the category of affine schemes. Let R be in Rings.
An object A of Rings together with a morphism R −→ A in Rings is called
a unitary R-algebra. Equivalently A is an R-module together with two ho-
momorphisms of R-modules

R
e // A A⊗R A ,

µoo

such that µ is associative and commutative, i.e.,

µ(a⊗ a′) = µ(a′ ⊗ a) and

µ(a⊗ µ(a′ ⊗ a′′)) = µ(µ(a⊗ a′)⊗ a′′) ,

and e induces a unit, i.e.,

µ(e(1)⊗ a) = a.

We denote the category of unitary R-algebras by R-Alg. The above anti-
equivalence restricts to an anti-equivalence

R-Alg ←→ aff.R-Sch ,

where aff.R-Sch denotes the category of affine schemes over SpecR. The
object ∗ = SpecR is a final object in aff.R-Sch.

Definition. Let R be a unitary ring. An affine commutative group scheme
over SpecR is a commutative group object in the category of affine schemes
over SpecR.
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Convention. In the following all groups schemes are assumed to be affine
and commutative.

Let G = SpecA be such a group scheme over SpecR. The morphisms
associated with the group object G correspond to the following homomor-
phisms of R-modules:

(3.1) R
e

88 A

ι

FF
m

44

ε

xx
A⊗R A .

µ

vv

Here µ and e are the structure maps of the R-algebra A. The map m, called
the comultiplication, corresponds to the group operation G × G → G. The
map ε, called the counit, corresponds to the morphism ∗ −→ G yielding the
unit in G, and ι, the antipodism, corresponds to the morphism G −→ G
sending an element to its inverse.

The axioms for a commutative group scheme translate to those in the
following table. Here σ : A ⊗R A −→ A ⊗R A denotes the switch map

σ(a ⊗ a′) = a′ ⊗ a, and the equalities marked
!
= at the bottom right are

consequences of the others.

meaning axiom axiom meaning

µ associative µ ◦ (id⊗µ) = µ ◦ (µ ⊗ id) (m⊗ id) ◦m = (id⊗m) ◦m m coassociative

µ commutative µ ◦ σ = µ σ ◦m = m m cocommutative

e unit for µ µ ◦ (e(1) ⊗ id) = id (ε⊗ id) ◦m = 1⊗ id ε counit for m

m homomorphism m ◦ µ = (µ⊗ µ) ◦ (id⊗σ ⊗ id) ◦ (m ⊗m)

of unitary rings m(e(1)) = e(1)⊗ e(1) ε ◦ µ = ε⊗ ε ε homomorphism

ε⊗ e = id of unitary rings

ι homomorphism ι ◦ µ = µ ◦ (ι⊗ ι) m ◦ ι = (ι⊗ ι) ◦m (xy)−1 !
= x−1y−1

of unitary rings ι ◦ e = e ε ◦ ι = ε 1
!
= 1−1

ι coinverse for m e ◦ ε = µ ◦ (id⊗ι) ◦m
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Definition. An R-module A together with maps µ, ε, e, m, and ι satisfying
the above axioms is called an associative, commutative, unitary, coassocia-
tive, cocommutative, counitary R-bialgebra with antipodism, or shorter, a
cocommutative R-Hopf algebra with antipodism.

Definition. A homomorphism of group schemes Φ : G −→ H over SpecR is
a morphism in aff.R-Sch, such that the induced morphism G(Z) −→ H(Z)
is a homomorphism of groups for all Z in aff.R-Sch. For G = SpecA and
H = SpecB this morphism corresponds to a homomorphism of R-modules
φ : B −→ A making the following diagram commutative:

(3.2)

R
eA

88 A
mA

44

εA

xx
A⊗R A

µA

vv

R

id

eB

88 B
mB

44

εB

xx

φ

OO

B ⊗R B .

µB

vv

φ⊗φ

OO

Definition. The sum of two homomorphisms Φ,Ψ : G −→ H is defined by
the commutative diagram

(3.3)

G //

Φ+Ψ

��

G×G
Φ×Ψ

��
H H ×H ,oo

where the upper arrow is the diagonal morphism and the lower arrow the
group operation of H . We leave it to the reader to check that Φ + Ψ is a
homomorphism of group schemes.

The category of commutative affine group schemes over SpecR is additive.

§4 Cartier duality

We now assume that the group scheme G = SpecA is finite and flat over R,
i.e. that A is a locally free R-module of finite type. Let A∗ := HomR(A,R)
denote its R-dual. Dualizing the diagram (3.1), and identifying R = R∗ and
(A⊗R A)∗ = A∗ ⊗R A∗ we obtain homomorphisms of R-modules

(4.1) R

ε∗

77 A∗

ι∗

FF

µ∗
44

e∗

xx
A∗ ⊗R A∗ .

m∗

uu
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A glance at the self dual table above shows that the morphisms e∗, m∗, µ∗, ε∗,
and ι∗ satisfy the axioms of a cocommutative Hopf algebra with antipodism,
and therefore G∗ := SpecA∗ is a finite flat group scheme over SpecR, too.

Definition. G∗ is called the Cartier dual of G.

If Φ : G −→ H is a homomorphism of finite flat group schemes corre-
sponding to the homomorphism φ : B −→ A, the symmetry of diagram (3.2)
shows that φ∗ : A∗ −→ B∗ corresponds to a homomorphism of group schemes
Φ∗ : H∗ −→ G∗. Therefore Cartier duality is a contravariant functor from
the category of finite flat commutative affine group schemes to itself.

Moreover this functor is additive. Indeed, for any two homomorphisms
Φ,Ψ : G −→ H the equation (Φ+Ψ)∗ = Φ∗+Ψ∗ follows directly by dualizing
the diagram (3.3).

Remark. The Cartier duality functor is involutive. Indeed, the natural
evaluation isomorphism id −→∗∗ induces a functorial isomorphism G ' G∗∗.

§5 Constant group schemes

Let Γ be a finite (abstract) abelian group, whose group structure is written
additively. We want to associate to Γ a finite commutative group scheme
over SpecR. The obvious candidate for its underlying scheme is

G := “Γ× SpecR” :=
∐

γ∈Γ

SpecR ,

the disjoint union of |Γ| copies of the final object ∗ = SpecR in the category
aff.R-Sch. The group operation on G is defined by noting that

G×G ∼= “Γ× Γ× SpecR” :=
∐

γ,γ′∈Γ

SpecR ,

and mapping the leaf SpecR of G × G indexed by (γ, γ′) identically to the
leaf of G indexed by γ + γ′. One easily sees that this defines a finite flat
commutative group scheme over SpecR.

Definition. This group scheme is called the constant group scheme over R
with fiber Γ and denoted ΓR.

Let us work out this construction on the underlying rings. The ring of
regular functions on ΓR is naturally isomorphic to the ring of functions

RΓ := { f : Γ −→ R | f is a map of sets } ,
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whose addition and multiplication are defined componentwise, and whose
0 and 1 are the constant maps with value 0, respectively 1. The comulti-
plication m : RΓ −→ RΓ ⊗R RΓ ∼= RΓ×Γ is characterized by the formula
m(f)(γ, γ′) = f(γ + γ′), the counit ε : RΓ → R by ε(f) = f(1), and the
coinverse ι : RΓ → RΓ by ι(f)(γ) = f(−γ).

Next observe that the following elements {eγ}γ∈Γ constitute a canonical
basis of the free R-module RΓ:

eγ : Γ −→ R, γ′ 7−→
{

1 if γ = γ′

0 otherwise.

One checks that µ, ε, e, m, and ι are given on this basis by

µ(eγ ⊗ eγ′) =

{
eγ if γ = γ′

0 otherwise

ε(eγ) =

{
1 if γ = 0

0 otherwise

e(1) =
∑

γ∈Γ

eγ

m(eγ) =
∑

γ′∈Γ

eγ′ ⊗ eγ−γ′

ι(eγ) = e−γ

To calculate the Cartier dual of ΓR let {êγ}γ∈Γ denote the basis of (RΓ)∗

dual to the one above, characterized by

êγ(eγ′) =

{
1 if γ = γ′

0 otherwise.

The dual maps are then given by the formulas

µ∗(êγ) = êγ ⊗ êγ
ε∗(1) = ê0

e∗(êγ) = 1

m∗(êγ ⊗ êγ′) = êγ+γ′

ι∗(êγ) = ê−γ

The formulas for m∗ and ε∗ show that (RΓ)∗ is isomorphic to the group ring
R[Γ] as an R-algebra, such that e∗ corresponds to the usual augmentation
map R[Γ] −→ R.
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Example. Let Γ := Z/Zn be the cyclic group of order n ∈ N. Then with
X := ê1 the above formulas show that (RΓ)∗ ∼= R[X]/(Xn − 1) with the
comultiplication µ∗(X) = X ⊗X. Thus we deduce that

( Z/Zn
R
)∗ ∼= µµn,R.

Example. Assume that p · 1 = 0 in R for a prime number p. Recall that
ααp,R = SpecA with A = R[T ]/(T p) and the comultiplication m(T ) = T ⊗1+
1⊗T . In terms of the basis {T i}0≤i<p all the maps are given by the formulas

µ(T i ⊗ T j) =

{
T i+j if i+ j < p

0 otherwise

ε(T i) =

{
1 if i = 0

0 otherwise

e(1) = T 0

m(T i) =
∑

0≤j≤i

(
i
j

)
· T j ⊗ T i−j

ι(T i) = (−1)i · T i

Let {ui}0≤i<p denote the dual basis of A∗. Then using the above formulas
one easily checks that the R-linear map A∗ −→ A sending ui to T i/i! is an
isomorphism of Hopf algebras. Therefore

(ααp,R)∗ ∼= ααp,R.

Proposition. For any field k of characteristic p > 0, the group schemes
Z/Zp

k
, µµp,k, and ααp,k are pairwise non-isomorphic.

Proof. The first one is étale, while both µµp,k = Spec k[X]/(Xp − 1) and
ααp,k = Spec k[T ]/(T p) are non-reduced. Although the underlying schemes of
the latter two are isomorphic, the examples above show that this is not the
case for their Cartier duals. The proposition follows.
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Lecture 3

November 4, 2004

Notes by Cory Edwards

§6 Actions and quotients in a category

Our goal is to define the notions of group actions and quotients in a general
category. Let C be a category with arbitrary finite products.

Definition. A (left) action of a group object G on an objectX is a morphism
m : G×X → X such that for all objects Z ∈ Ob(C ), the map

G(Z)×X(Z) = (G×X) (Z)
m◦( )−−−−−→ X(Z)

is a left action of the group G(Z).

We do not distinguish between the use of m for the group operation in G
and for the action of G on X.

Equivalent definition. A (left) action is equivalent to the commutativity
of the following two diagrams. The first expresses associativity of the action:

G×G×X
id×m

��

m×id // G×X
m

��
G×X m // X.

The second says that the unit element acts as the identity:

∗×X
pr2 o

��

e×id // G×X
m

yyssssssssss

X .

Now we turn our attention to quotients.

Definition. A morphism X → Y is G-invariant if and only if for all Z ∈
Ob(C ), the map

X(Z)
f◦()−−−−→ Y (Z)

is G-invariant.
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Fact. The G-invariance is equivalent to requiring the diagram

G×X
pr2

��

m // X

f

��
X

f // Y

to be commutative.

Definition. A categorical quotient of X by G is a G-invariant morphism
X π−−→ Y , such that for all objects Z and for all G-invariant morphisms
X f−−→ Z, there exists a unique morphism g : Y → Z such that f = g ◦ π.

Fact. If a categorical quotient exists, it is unique up to unique isomorphism.

We usually call Y the quotient, with the morphism π being tacitly in-
cluded, although it is really π that matters.

The categorical quotient is the only meaningful concept of quotient in
a general category, although it doesn’t necessarily have all of the “nice”
properties we would like. For examples see the following section.

Next, recall that a morphism X
f−−→ Y is a monomorphism if for all

Z ∈ Ob(C ), the map

Hom(Z,X)
f◦()−−−−→ Hom(Z, Y )

is injective. The morphism f is an epimorphism if for all objects Z, the map

Hom(Y, Z)
()◦f−−−−→ Hom(X,Z)

is injective.

Consider the morphism

λ : G×X (m,pr2)−−−−−→ X ×X,
which sends (g, x) to (gx, x). It is natural to call the action m free if λ is
a monomorphism. If X π−−→ Y is a categorical quotient and if C has fiber
products, there is a natural monomorphism X ×Y X −→ X × X, and one
shows (exercise!) that λ factors through a unique morphism

λ′ : G×X −→ X ×Y X.
Definition. Assume that the action is free. Then Y is called a good quotient
if λ′ is an isomorphism.

In the category of sets, the categorical quotient is simply the set of G-
orbits. An action is free if and only if all stabilizers are trivial, and in this
case the quotient is a good quotient.
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§7 Quotients of schemes by finite group schemes, part I

We will assume that all schemes are affine of finite type over a field k. We
are actually interested in finite schemes, but this added generality will not
make things any more difficult for the time being.

Let G = SpecR act on X = SpecA, i.e. m : A → R ⊗ A is a unitary k-
algebra homomorphism such that the duals of the above diagrams commute:

(m⊗ id) ◦m = (id⊗m) ◦m
(ε⊗ 1) ◦m = id.

Then a function a ∈ A = Hom(X,A1
k) is G-invariant if and only if

m(a) = 1⊗ a.

Set
B := AG := {a ∈ A | m(a) = 1⊗ a}

and Y := SpecB. By direct application of the definitions one obtains this
easy theorem:

Theorem. X → Y is a categorical quotient of X by G in the category of
affine schemes over k.

Example. Let G = Gm,k act on An
k by t(x1, . . . , xn) := (tx1, . . . , txn). Then

A = k[X1, . . . , Xn] implies that B = k, so we might write “An
k/Gm,k”=

Spec k. We use the quotes because this quotient does not have the nice
properties we desire. For example, its dimension is smaller than expected.
The reason for this is that the orbit structure for the action is “bad”: The
closure of every orbit contains the origin, and so every fiber of π contains the
origin; hence π is constant and Y is a point. Thus this quotient is not good.

Example. Now take U := Gm,k ×An−1
k , which is a G-invariant open subset

of An
k . Write

U = Spec k[x±1
1 , x2, . . . , xn] = Spec k

[
x±1

1 ,
x2

x1
, . . . ,

xn
x1

]
.

Then “U/Gm,k”= Spec k[x2

x1
, . . . , xn

x1
] ∼= An−1

k is a good quotient. In fact,

the union of copies of such An−1
k make up Pn−1

k , the categorical quotient of
An
k r {0} by Gm,k in the category of all schemes. But although U ⊂ An

k is
open, the induced morphism “U/Gm,k”−→“An

k/Gm,k” is no longer an open
embedding!

From now on let G be finite, and let π : X −→ Y be as above.

14



Theorem 7.1. (a) π : X −→ Y is finite and surjective.

(b) The topological space underlying Y is the quotient of X by the equiv-
alence relation induced by G.

(c) OY
∼−−→ (π∗OX)G.

Proof. (See [Mu70] Section 12, Theorem 1) The main point is to show that
every element a ∈ A is integral over B. For this we need to find a monic
equation satisfied by a. Define a norm map N : A→ A by

N(a) := Nm(R⊗A)/A(m(a)),

where we identify A with 1⊗A. The right side is defined as the determinant
over 1⊗A of the endomorphism “multiply by m(a)” of R⊗A, where we use
the fact that dimk R is finite.

Lemma. N(a) ∈ B.

Sketch of the proof. To show that N(a) is invariant under translation by
G(k), one notes simply that this translation induces an automorphism of A
that is compatible with the comultiplication m. In general, one must do the
same for translation by G(Z) for all Z, or equivalently for translation by the
universal element id ∈ G(G) after tensoring with another copy of R. The
proof is written out in [Mu70], pp. 112-3.

Lemma. A is integral over B.

Proof. We apply the previous lemma to X ×A1
k in place of X, where G acts

trivially on A1
k. For its coordinate ring A[T ] we deduce

N(A[T ]) ⊂ (A[T ])G = B[T ].

For all a ∈ A, the element

χa(T ) := N(T − a) = detA
(
(T −m(a) · id)|R⊗ A

)
∈ B[T ]

is a monic polynomial of degree dimk R. The identity map on A decomposes
as

A
m // R⊗ A ε⊗id //

m(a)

GG A

a

FF ,

where the self-maps denote multiplication by m(a) and a, respectively. Thus

χa(a) = detA
(
(id⊗a−m(a)) · id |R⊗A

)
= 0,

and so a is integral over B.
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Now we can prove (a). Suppose that A is generated by a1, . . . , an as a
k-algebra. Let C ⊂ B be the subalgebra generated by the coefficients of all
χai

(T ). Then A is integral over C. Thus A is of finite type as a C-module.
Since C is a finitely generated k-algebra, it is noetherian. Therefore the C-
submodule B ⊂ A is itself of finite type as a C-module. This implies that B
is a finitely generated k-algebra. Finally A is also a B-module of finite type.
Since B ⊂ A, the morphism X → Y is thus finite surjective, as desired.

We turn to (b). For x ∈ X, the image (as a set) of the mapG× {x} m−−→ X
is the G-orbit Gx of x. Using the commutative diagram for associativity, one
can show that any two distinct orbits are disjoint. Let Gx and Gy be two
disjoint orbits. After possibly interchanging x and y, none of the points in
Gx specializes to a point in Gy. In this case there exists a function a ∈ A
that vanishes identically on Gx but is invertible on Gy. This in turn implies
that N(a) ∈ B vanishes on π(x) but is invertible on π(y). Thus π separates
G-orbits. Since π is finite, hence closed, and is also continuous, this implies
that Y has the quotient topology, proving (b).

To show (c) note that for any open subset V ⊂ Y we have

(π∗OX)(V ) = OX

(
π−1(V )

)
= Hom

(
π−1(V ),A1

k

)
,

and a function f in this set is G-invariant if and only if m(f) = 1 ⊗ f .
Thus the subsheaf of all G-invariant functions (π∗OX)G is the kernel of the
homomorphism of sheaves

π∗OX → R⊗k π∗OX , f 7→ m(f)− 1⊗ f.

As these sheaves are coherent sheaves of OY -modules, the kernel is the co-
herent sheaf associated to the kernel of the homomorphism of B-modules

A −→ R⊗ A, a 7→ m(a)− 1⊗ a.

By definition this kernel is B; hence its associated sheaf is OY , as desired.
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Lecture 4

November 11, 2004

Notes by Nicolas Stalder

§8 Quotients of schemes by finite group schemes, part II

As before all schemes are supposed to be affine of finite type over a field k.
Let X = SpecA be an affine scheme with an action of a finite group scheme
G = SpecR, and let π : X −→ Y = SpecAG be the quotient map from the
preceding lecture.

Definition. The order of G is

|G| := dimk R.

Note that a constant finite group scheme Γk has order |Γ|.
Definition. The action of G on X is called free if the morphism

λ : G×X (m,pr2)−−−−−→ X ×X

is a closed embedding.

Theorem 8.1. If the action of G on X is free, the quotient map π : X −→ Y
is faithfully flat everywhere of degree |G|, and the morphism λ above is an
isomorphism.

Proof. For missing details, see [Mu70, pp. 115-6]. Set B := AG. Since every-
thing commutes with extension of k, we may assume that k is infinite. By
the preceding lecture we may also localize at any prime ideal of B. Thus we
may and do assume that B is local with infinite residue field. By assumption,
the ring homomorphism

λ : A⊗B A −→ R⊗k A
a⊗ a′ 7→ m(a) · (1⊗ a′)

is surjective. We must prove that λ is an isomorphism, and that A is locally
free over B of rank n := |G|.

We consider the source and the target of λ as A-modules via the action
on the second factor. Note that R⊗kA is a free A-module of rank n, and the
surjectivity of λ means that R ⊗k A is generated as an A-module by m(A).
Note also that m is B-linear by the calculation

m(ab) = λ(ab⊗ 1) = λ(a⊗ b) = m(a) · (1⊗ b)
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for all a ∈ A and b ∈ B; hence m(A) is a B-submodule of R⊗k A. We claim
that m(A) contains a basis of the free A-module R⊗k A. Indeed, since B is
local it suffices to prove this after tensoring everything with the residue field
of B, in which case it results from the following lemma:

Lemma 8.2. Consider an infinite field K, a finite dimensional K-algebra
A, a finitely generated free A-module F , and a K-subspace M ⊂ F that
generates F as an A-module. Then M contains a basis of F over A.

Proof. We prove this by induction on the rank of F . The case F = 0 being
trivial, suppose that F 6= 0 and choose a surjection ϕ : F � A. The as-
sumption implies that ϕ(M) is not contained in any maximal ideal p ⊂ A.
In other words M ∩ ϕ−1(p) is a proper subspace of M . Since K is infinite,
it is well-known that M possesses an element m that does not lie in any of
these finitely many subspaces. Then ϕ(m) generates A, and so m generates
a direct summand of F that is free of rank 1. By the induction hypothesis
applied to the image of M in F/Am we can find elements of M whose images
form a basis of F/Am over A. Thus these elements together with m form a
basis of F over A, as desired.

Now by the claim we can choose a1, . . . , an ∈ A such that the elements
m(a1), . . . , m(an) are a basis of R⊗kA over A. Thus we have an isomorphism
of A-modules

(8.3) A⊕n −→ R ⊗A, (αi)i 7→
n∑

i=1

m(ai) · (1⊗ αi).

Lemma 8.4. For all a, α1, . . . , αn ∈ A:

m(a) =
n∑

i=1

m(ai) · (1⊗ αi) ⇐⇒
(
a =

n∑

i=1

aiαi, and all αi ∈ B
)

Proof. The implication “⇐” follows directly from the definition of A⊗B A.
For the implication “⇒”, let us explain the idea in terms of points g of G and
x of X. The left hand side means: ∀g ∀x : a(gx) =

∑
ai(gx) ·αi(x). Because

of the isomorphy (8.3), the αi ∈ A are uniquely determined by this identity.
Replacing x by hx and g by gh−1 has the sole effect of replacing αi(x) by
αi(hx) in this identity. Letting h vary, we see that the αi are translation
invariant, i.e., that αi ∈ AG = B. The equation a =

∑
aiαi follows by

evaluation at g = 1.
This argument must of course be done with Z-valued points, or directly

with id ∈ G(G): see [Mu70, p. 116].
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Now for all a ∈ A, there exist unique αi ∈ A as on the left hand side of
Lemma 8.4. So there exist unique αi ∈ B as on the right hand side. This
means that the ai are a basis of A as a B-module, which is thus locally free
of rank n, and so faithfully flat. Also, it follows that the ai ⊗ 1 are a basis
of A ⊗B A as an A-module via the second factor, and since λ maps these
elements to a basis of R ⊗A, we deduce that λ is an isomorphism.

§9 Abelian categories

Let us recall some basic notions from the theory of categories (cf. also [We94]).

Definition. An additive category is a category A together with an abelian
group structure on each Hom(X, Y ), such that the composition map

Hom(Y, Z)×Hom(X, Y ) −→ Hom(X,Z)

is bilinear, and such that there exist arbitrary finite direct sums. (In partic-
ular, there is a zero object.)

Let X
f−−→ Y be a homomorphism in such an additive category A.

Definition. (a) A homomorphism K i−−→ X is called a kernel of f , if for
all Z ∈ A, the following sequence is exact:

0 −→ Hom(Z,K)
i◦( )−−−−→ Hom(Z,X)

f◦( )−−−−→ Hom(Z, Y ).

(b) A homomorphism Y
p−−→ C is called a cokernel of f , if for all Z ∈ A,

the following sequence is exact:

0 −→ Hom(C,Z)
( )◦p−−−−→ Hom(Y, Z)

( )◦f−−−−→ Hom(X,Z).

Fact. If a kernel (resp. a cokernel) of f exists, it is unique up to unique
isomorphism.

Notation. As usual, we will write ker f for the domain of the kernel of f ,
tacitly assuming the homomorphism i to be included. Same for coker f .

Assuming that all kernels and cokernels exist, we can construct two fur-
ther objects. The coimage of f is coim f := coker(ker f), whereas the image
of f is im f := ker(coker f). Furthermore, using the universal properties
of kernels and cokernels, we find a unique homomorphism coim f −→ im f ,
making the following diagram commutative:

ker f // X
f //

��

Y // coker f

coim f
∃! // im f

OO
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Definition. An additive categoryA is called an abelian category, if all kernels
and cokernels exist and all canonical homomorphisms coim f −→ im f are
isomorphisms.

Examples. The category of abelian groups, the category of modules over a
ring R, the category of sheaves of abelian groups on a topological space.

Fact. In an abelian category, all the usual diagram lemmas hold, for example
the Snake Lemma, the 5-Lemma, and the 3×3-Lemma.

§10 The category of finite commutative group schemes

In this subsection, we work in the category of finite commutative group
schemes over a field k. The aim is to show that this category is abelian.

Let f : G −→ H be a homomorphism of finite commutative group
schemes, and let φ : A ←− B be the corresponding homomorphism of Hopf
algebras. It may be checked that φ(B) is again a Hopf algebra, and thus,
setting G := Specφ(B), we may factor f as

G p−−→ G i−−→ H,

where G is again a finite commutative group scheme, and the morphisms are
homomorphisms. Note also that i is a closed embedding, since B −→ φ(B)
is surjective. Looking at the coordinate rings, we can see easily that i is a
monomorphism and p is an epimorphism, in the categorical sense.

Proposition 10.1. The kernel of f exists and is a closed subgroup scheme
of G.

Proof. If the kernel exists, then for all Z we have

Hom(Z, ker f) = ker
(
Hom(Z,G) −→ Hom(Z,H)

)

=




Z −→ G

∣∣∣∣∣∣

Z //

��

G
f��

∗ ε // H

commutes






= Hom(Z,G×H ∗)

In fact, the fibre product G ×H ∗, i.e., the scheme theoretic inverse image
in G of the unit section of H , is a closed subgroup scheme of G. Tracing
backwards, we see that it has the universal property of the kernel of f .

Proposition 10.2. The quotient H := H/G, given by Theorem 7.1, carries a
unique structure of group scheme such that π : H −→ H is a homomorphism.
Moreover, π is an epimorphism, and G = ker π.
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Proof. Let G act on H by left translation. This action is free, so Theorem 8.1
applies. To get the group structure, we consider the commutative diagram:

H ×H m //

π×π
�� ##GGGGGGGGG H

π

��

H ×H H

One checks that (H × H)/(G × G) ∼= H × H naturally as schemes. By
the universal property of this quotient, since the diagonal arrow is G × G-
invariant, we find a unique map H × H m−−→ H making the above square
commutative. Likewise, the morphisms ∗ ε−−→ H i−−→ H induce morphisms

∗ ε−−→ H i−−→ H. Also, the uniqueness part of the universal property can be
used every time to deduce thatm satisfies the axioms of a commutative group
structure for which π is a homomorphism. This proves the first sentence of
this Proposition.

By the construction of H as a quotient, π is an epimorphism. Next, the

morphism λ : G×H (m,pr2)−−−−−→ H ×H H is an isomorphism by Theorem 8.1.
Thus for all h ∈ H(Z) we have

h ∈ ker(π)(Z) ⇐⇒ π(h) = e ⇐⇒ ∃ g ∈ G(Z) : h = ge = g

which is true if and only if h ∈ G(Z). Therefore, ker(π) = G.

Proposition 10.3. (a) coker f exists and is isomorphic to H.

(b) im f is isomorphic to G.

Proof. Since f = i ◦ p and p is an epimorphism, we have coker f = coker i.
Moreover coker i = H by the universal property of the quotient, proving (a).
Part (b) follows from (a) together with Proposition 10.2.

Proposition 10.4. coim f is isomorphic to G.

Proof. A direct proof in greater generality is given in [Mu70, p. 119]. In
our case, it is easier to use Cartier duality. Since this is an antiequivalence
of categories, it interchanges kernels and cokernels, and hence images and
coimages. Also, clearly the diagram

G
f //

p
��?

??
??

??
H

G

i

??��������
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dualizes to the diagram

G∗ H∗
f∗oo

i∗}}{{
{{

{{
{{

G
∗

p∗

aaBBBBBBBB

Thus (coim f)∗ = im(f ∗) = G
∗
, and hence coim f = G.

Combining these four propositions, we deduce:

Theorem 10.5. The category of finite commutative group schemes over a
field k is abelian.

Theorem 10.6. (a) The following conditions are equivalent:

(i) f is a kernel.

(ii) f is a monomorphism.

(iii) ker f = 0.

(iv) φ is surjective.

(v) f is a closed embedding.

(b) The following conditions are equivalent:

(i) f is a cokernel.

(ii) f is an epimorphism.

(iii) coker f = 0.

(iv) φ is injective.

(v) f is faithfully flat.

Proof. For both items, the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) hold in
all abelian categories. In (a), the implication (iii) =⇒ (iv) results from
Proposition 10.4, the equivalence (iv) ⇐⇒ (v) is clear, and the direction
(v) =⇒ (i) follows from Proposition 10.2. In (b), the implication (i) =⇒
(v) results from Proposition 10.3 (a) and Theorem 8.1, the direction (v) =⇒
(iv) is clear, and the implication (iv) =⇒ (i) is a special case of Proposition
10.4.

Theorem 10.7. For any short exact sequence of finite group schemes

0 −→ G′ −→ G −→ G′′ −→ 0

we have |G| = |G′| · |G′′|.
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Proof. Combine Proposition 10.3 (a) with the faithful flatness of Theorem
8.1.

Theorem 10.8. For any field extension k′|k, the additive functor G 7→
G×k k′ is exact and preserves group orders.

Proof. Base extension commutes with fiber products; hence by the proof of
Proposition 10.1 also with kernels. It also commutes with Cartier duality,
and so (cf. the proof of Proposition 10.4) also with cokernels.

Note. Cartier duality is an exact functor, and we have used this already
several times.

Note. Theorems 10.5, 10.6 and 10.8 hold more generally in the category of
affine commutative group schemes over k, but are harder to prove. The main
problem in general is still the construction of quotients. For this, see [DG70].
Also, the inclusion of categories is exact, i.e., kernels and cokernels in the
smaller category remain the same in the bigger category.
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Lecture 5

November 18, 2004

Notes by Alexander Caspar

§11 Galois descent

Let k′/k be a finite Galois extension of fields with Galois group Γ. Let
k′[Γ] denote the twisted group ring of Γ over k′, that is, the set of formal
linear combinations

∑
γ∈Γ x

′
γ [γ] for x′γ ∈ k′, with coefficientwise addition

and the multiplication (x′[γ]) · (y′[δ]) = (x′ ·γ(y′))[γδ]. Note that giving a
left module over k′[Γ] is the same as giving a k′-vector space together with
a semilinear action by Γ, that is, an additive action satisfying γ(x′v′) =
γ(x′)γ(v′). Extension of scalars gives us a functor

(11.1) Veck = Modk −→Modk′[Γ], V 7→ V ⊗k k′,

where γ ∈ Γ acts on V ⊗k k′ via id⊗γ.

Theorem 11.2. This functor is an equivalence of categories.

Proof. We prove that the functor V ′ 7→ (V ′)Γ is a quasi-inverse. Indeed, the
natural isomorphism

(V ⊗k k′)Γ = V ⊗k (k′)Γ = V ⊗k k ∼= V

shows that the composite Veck → Modk′[Γ] → Veck is isomorphic to the
identity. For the other way around we consider the natural k′[Γ]-linear homo-
morphism

(V ′)Γ ⊗k k′ −→ V ′, v′ ⊗ x′ 7→ x′v′.

Claim. It is injective.

Proof. Assume that it is not, and let
∑r

i=1 v
′
i ⊗ x′i be a non-zero element in

the kernel with r minimal. Then r ≥ 1 and all v′i and all x′i are linearly
independent over k. In particular x′1 6= 0, so after dividing by x′1 we may
assume that x′1 = 1. Then for every γ ∈ Γ the element

r∑

i=2 (sic!)

v′i ⊗ (γ(x′i)− x′i) = γ
( r∑

i=1

v′i ⊗ x′i
)
−

r∑

i=1

v′i ⊗ x′i

again lies in the kernel. Thus the minimality of r and the linear independence
of the v′i imply that γ(x′i) = x′i. Thus all x′i ∈ k; hence

∑r
i=1 v

′
i ⊗ x′i =(∑r

i=1 v
′
ix
′
i

)
⊗ 1 = 0, and we get a contradiction.
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Consequence. dimk(V
′)Γ ≤ dimk′(V

′).

Claim. It is bijective.

Proof. It is enough to prove this when d := dimk′ V
′ is finite, because every

finite dimensional k′-subspace of V ′ is contained in a Γ-invariant one. Choose
a basis v′1, ..., v

′
d of V ′ over k′ and consider the surjective k′[Γ]-linear map

ϕ′ : W ′ := k′[Γ]⊕d → V ′,
(∑

γ

x′i,γ [γ]
)

i
7→
∑

i,γ

x′i,γ · γ(v′i).

Then the short exact sequence

0→ ker(ϕ′)→W ′ → V ′ → 0

induces a left exact sequence

0→ ker(ϕ′)Γ → (W ′)Γ → (V ′)Γ.

Now observe that k′[Γ] is a free k[Γ]-module; hence W ′ is one. Therefore

dimk(W
′)Γ =

dimkW
′

|Γ| =
[k′/k] · |Γ| · d

|Γ| = d|Γ|.

On the other hand, the above Consequence applied to ker(ϕ′) shows that

dimk ker(ϕ′)Γ ≤ dimk′ ker(ϕ
′) = d(|Γ| − 1).

Thus the left exactness implies that dimk(V
′)Γ ≥ d|Γ| − d(|Γ| − 1) = d. This

plus the injectivity shows the bijectivity.

This finishes the proof of Theorem 11.2.

Note. The functor (11.1), and hence the equivalence in Theorem 11.2, is
compatible with the tensor product (over k, respectively over k′). Therefore,
it extends to an equivalence for vector spaces with any additional multilinear
structures, such as that of an algebra or a Hopf-algebra (over k, resp. k′),
together with the appropriate homomorphisms. In particular we deduce:

Theorem 11.3. The base change functor X 7→ X ×k k′ induces an equiv-
alence from the category of affine schemes over k to the category of affine
schemes over k′ together with a covering action by Γ. The same holds for
the categories of affine group schemes, or of finite group schemes.

Note. By going to the limit over finite Galois extensions we deduce the same
for any infinite Galois extension k′/k with profinite Galois group Γ, provided
that the action of Γ on an affine scheme over k′ is continuous, in the sense
that the stabilizer of every regular function is an open subgroup of Γ.
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§12 Étale group schemes

Let ksep denote a separable closure of k.

Proposition 12.1. A finite group scheme G is étale iff Gksep is constant.

Proof. By definition a morphism of schemes is étale if and only if it is smooth
of relative dimension zero, i.e., if it is flat of finite type and the sheaf of relative
differentials vanishes. Since k is a field, G is automatically flat over k; hence
it is étale if and only if ΩG/k = 0. As the formation of ΩG/k is invariant
under base change, this is equivalent to ΩGksep/ksep = 0. This in turn means
that Gksep is reduced with all residue fields separable over ksep. But ksep is
separably closed; hence it is equivalent to saying that Gksep ∼=

∐
Spec ksep

as a scheme. The group structure on Gksep then corresponds to the group
structure on G(ksep) as in §5, yielding a natural isomorphism

Gksep ∼= G(ksep)
ksep

.

Theorem 12.2. The functor G 7→ G(ksep) defines an equivalence from the
category of finite étale group schemes over k to the category of continuous
finite Z[Gal(ksep/k)]-modules.

Proof. By the remark after Theorem 11.3 the base change functor G 7→ Gksep

induces an equivalence from the category of étale finite group schemes over
k to the category of étale finite group schemes over ksep together with a
continuous covering action by Gal(ksep/k). Proposition 12.1 implies that the
latter is equivalent to the category of continuous finite Galois-modules.

§13 The tangent space

Let G = SpecA be a finite commutative group scheme over k, and denote
by TG,0 the tangent space at the unit element 0.

Proposition 13.1. There is a natural isomorphism of k-vector spaces

TG,0 ∼= Hom(G∗,Ga,k),

where k acts on the right hand side through Ga,k.

Proof. The tangent space TG,0 is naturally isomorphic to the kernel of the
restriction map

G(Spec(k[t]/(t2)) −→ G(Spec k).
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This is the set of k-algebra homomorphisms A → k[t]/(t2) ∼= k ⊕ t k whose
first component is the counit ε. Such a homomorphism has the form ϕ = ε+tλ
for a homomorphism of k-vector spaces λ : A→ k, and the relations ϕ(ab) =
ϕ(a)ϕ(b) and ϕ(e(1)) = 1 making ϕ a homomorphism of k-algebras translate
into the relations λ(ab) = λ(a)ε(b)+ ε(a)λ(b) and λ(e(1)) = 0. In dual terms
we get the set of λ ∈ A∗ such that µ∗(λ) = λ⊗ε∗(1)+ε∗(1)⊗λ and e∗(λ) = 0.
But giving an element λ ∈ A∗ is equivalent to giving the homomorphism of k-
algebras k[T ]→ A∗ sending T to λ, which in turn corresponds to a morphism
` : G∗ = SpecA∗ → A1

k. The first condition on λ then amounts to saying
that ` is a group homomorphism, and the second condition to `(0) = 0. But
the latter is already a consequence of the former. This proves the bijectivity;
the k-linearity is left to the reader.

Theorem 13.2. All finite commutative group schemes over a field of char-
acteristic zero are étale.

Proof. Without loss of generality we can assume that k is algebraically closed.
Then the translation action of G(k) on G is transitive. Therefore it is enough
to prove étaleness at 0, that is, TG,0 = 0. By Proposition 13.1 we must show
that any homomorphism G∗ → Ga,k vanishes. Since its image is a finite
subgroup scheme of Ga,k, it suffices to show that any finite subgroup scheme
H ⊂ Ga,k vanishes.

For any such H , the group H(k) is a finite subgroup of Ga,k(k), the
additive group of k. Since this is a Q-vector space, it contains no non-
zero finite subgroup; hence H(k) = 0. Thus H is purely local, i.e. H =
Spec k[X]/(Xn) for some n ≥ 1. The fact that H is a subgroup scheme
means that the comultiplication X 7→ X ⊗ 1 + 1 ⊗ X on k[X] induces a
homomorphism k[X]/(Xn) −→ k[X]/(Xn)⊗k k[X]/(Xn). This means that

(X ⊗ 1 + 1⊗X)n =
n∑

m=1

(
n
m

)
·Xm ⊗Xn−m ∈ (Xn ⊗ 1, 1⊗Xn).

Here all binomial coefficients are non-zero in k, because k has characteristic
zero. Thus n = 1 and hence H = 0, as desired.

Proposition 13.3. For any field k of characteristic p > 0, the finite group
scheme ααp,k = Spec k[X]/(Xp) ⊂ Ga,k is simple.

Proof. Any proper subgroup scheme H ⊂ ααp,k has the form Spec k[X]/(Xn)
for some n < p. Thus all binomial coefficients

(
n
m

)
are non-zero in k for

0 < m < n, so as in the preceding proof we deduce that n = 1 andH = 0.
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Lecture 6

November 25, 2004

Notes by Charles Mitchell

§14 Frobenius and Verschiebung

Definition. The absolute Frobenius morphism σX : X → X of a scheme over
Fp is the identity on points and the map a 7→ ap on sections. Note that this
is functorial: for all morphisms ϕ : X → Y of schemes over Fp, the diagram

X
ϕ //

σX

��

Y

σY

��
X

ϕ // Y

commutes. Also, absolute Frobenius is compatible with products in the sense
that σX×Y = σX × σY .

For the following we fix a field k of characteristic p. All tensor products
and fiber products are taken over k, unless explicitly stated.

Definition. For any scheme X over Spec k define X(p) as the fiber product
and FX as the induced morphism in the following commutative diagram:

X σX

&&

%%

FX

&&M
M

M
M

M
M

X(p) //

��

X

��
Spec k

σSpec k // Spec k

FX is called the relative Frobenius morphism of X over Spec k.

Proposition 14.1. (a) FX is functorial inX: for all morphisms ϕ : X → Y
of schemes over k, the following diagram commutes:

X
FX //

ϕ

��

X(p) = X ⊗k,σ k
ϕ(p) = ϕ⊗id

��

Y
FY

// Y (p) = Y ⊗k,σ k
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(b) FX is compatible with products, i.e., the following diagram commutes:

X ×k Y
FX×Y **UUUUUUUUUUU
FX×FY // X(p) ×k Y (p)

(X ×k Y )(p)

o‖

(c) FX is compatible with base extensions k ↪→ k′, i.e., the following dia-
gram commutes:

Xk′
FX

k′ //

(FX)k′
''OOOOOOOOO (Xk′)

(p)

o‖

(X(p))k′

Corollary 14.2. For any group scheme G over k, the morphism FG : G →
G(p) is a homomorphism.

Now let G be a finite commutative group scheme over k. Then the Frobe-
nius morphism of G∗ induces a homomorphism FG∗ : G∗ → (G∗)(p) ∼= (G(p))∗.

Definition. The homomorphism VG : G(p) → G dual to FG∗ is called the
Verschiebung of G.

Frobenius and Verschiebung are thus two morphisms going in opposite
directions. It seems natural to attempt

(a) to extend the definition of the Verschiebung to arbitrary affine group
schemes, and

(b) to determine the composites VG ◦ FG and FG ◦ VG.

To achieve (a), we write G = SpecA and let SympA denote the p-th
symmetric power of A over k. We can then expand the definition of FG on
coordinate rings as the composite in the top line of the commutative diagram

x · ap [x(a⊗ · · · ⊗ a)]�oo a⊗ x�oo

A SympAoooo A⊗k,σ k? _oo

A⊗p
mult

ggggOOOOOOOOOOOOOO

OOOO

We claim that the formula on the upper right defines a k-linear homomorph-
ism. Indeed, only the additivity needs to be checked. But the mixed terms
in the expansion

x(a + b)⊗ · · · ⊗ (a+ b) = x(a⊗ · · · ⊗ a) + x(b⊗ · · · ⊗ b) + mixed terms
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can be grouped into orbits under the symmetric group Sp, and since the
length of each orbit is a multiple of p, the corresponding sums vanish in
SympA, proving the claim.

If A is finite-dimensional over k, we can take the above diagram for A∗

instead of A and dualize it over k to represent Verschiebung as the composite
in a commutative diagram

A
� � //
s�

comult &&MMMMMMMMMMMM (A⊗p)Sp
λA // //

_�

��

A⊗k,σ k

A⊗p

Here λA is the unique k-linear map taking any element x · (a ⊗ · · · ⊗ a) to
a ⊗ x. One easily verifies that this map exists for any k-vector space A,
so the above diagram can be constructed for any affine commutative group
scheme G = SpecA. It can be checked that the composite map A→ A⊗k,σ k
is a homomorphism of k-algebras compatible with the comultiplication. It
therefore corresponds to a homomorphism of group schemes VG : G(p) → G.

Definition. This VG is the Verschiebung for general G.

Proposition 14.3. (a) VG is functorial in G, i.e., the following diagram
commutes:

G(p)

ϕ(p)

��

VG // G

ϕ

��
H(p)

VH

// H

(b) VG is compatible with products, i.e., the following diagram commutes:

(G×H)(p) ∼=

VG×H ''PPPPPPPPPPPP
G(p) ×H(p)

VG×VH

��
G×H

(c) VG is compatible with base extensions, i.e., the following diagram com-
mutes:

(Gk′)
(p)

V(G
k′

)
%%LLLLLLLLLLL

∼= (G(p))k′

(VG)k′

��
G
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We are now in a position to tackle the above question (b).

Theorem 14.4. For any affine commutative group scheme G,

(a) VG ◦ FG = p · idG,

(b) FG ◦ VG = p · idG(p).

Proof. (a) By the above constructions, Frobenius and Verschiebung corre-
spond to the maps FA and VA in the following diagram:

A

VA

%%
//

comult &&MMMMMMMMMMMMM (A⊗p)Sp
� _

��

λA // A⊗σ,k k
FA

��
A⊗p mult

// A

The definition of λA implies that the right hand square commutes. In terms
of group schemes, this diagram becomes

G G(p)VGoo

G×p
mult

ddHHHHHHHHHH

G

FG

OO

diag
oo

p·idG

jjTTTTTTTTTTTTTTTTTTTTTTTT

where the composite is by definition p · idG.
(b) As Verschiebung is compatible with base change, we have (VG)(p) =

VG(p) . The functoriality of Frobenius thus implies that the diagram

G(p)
F

G(p) //

VG

��

G(p2)

(VG)(p) =V
G(p)

��
G

FG

// G(p)

commutes; its diagonal is already known by (a) to be p · idG(p).

Examples. • FG and VG are zero for G = αp,k.

• FG is zero and VG an isomorphism for G = µp,k.

• FG is an isomorphism for G = Z/nZ
k
.
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§15 The canonical decomposition

Let G be a finite commutative group scheme over k.

Proposition 15.1. The following are equivalent:

(i) Gksep is constant.

(ii) G is étale.

(iii) FG is an isomorphism.

Proof. The equivalence (i)⇔ (ii) has already been shown in Proposition 12.1.
To show (ii) ⇔ (iii), note that the group scheme G is étale iff its tangent
space at 0 is trivial. As the absolute and relative Frobenius morphisms are
zero on this tangent space, the étaleness of G is equivalent to FG being an
infinitesimal isomorphism, which — as FG is a bijection on points — is in
turn equivalent to FG being an isomorphism as such.

Dualizing Proposition 15.1 yields:

Proposition 15.2. The following are equivalent:

(i) Gksep is a direct sum of µni,ksep for suitable ni.

(ii) G∗ is étale.

(iii) VG is an isomorphism.

Proposition 15.3. The connected component G0 of the zero section in G is
a closed subgroup scheme, and G/G0 is étale.

Proof. Since the unique point in G0 is defined over the base field k, the
product G0×G0 over k is connected. It is also open in G×G; therefore it is
the connected component of zero in G×G. Thus the restriction to G0 ×G0

of the multiplication morphism G×G→ G factors through G0, showing that
G0 is a (closed) subgroup scheme of G.

To show that G/G0 is étale, we may assume without loss of generality
that k is algebraically closed. Then G decomposes as

∐
g∈G(k)G

0 · g and we
can infer that

G/G0 =
∐

g∈G(k)

Spec k,

which is the constant group scheme G(k)
k
, and therefore étale.

From now on we impose the standing
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Assumption. The field k is perfect.

Proposition 15.4. The reduced closed subscheme Gred ⊂ G with the same
support as G is a closed subgroup scheme, and the map (g, g′) 7→ g + g′

defines an isomorphism G0 ⊕Gred ∼→ G.

Proof. As k is perfect, all residue fields of Gred are separable over k, implying
that Gred × Gred ⊂ G × G is again reduced. Therefore the restriction to
Gred×Gred of the multiplication morphism G×G→ G factors through Gred,
showing that Gred is a (closed) subgroup scheme of G.

To prove the second assertion it suffices to show that the morphism
Gred → G/G0 is an isomorphism. Since the formation of both sides is com-
patible with base extension, we may assume that k is separably closed. Then
Gred → G/G0 is a bijective homomorphism between constant group schemes
and hence an isomorphism.

Example. Regard an inseparable field extension k′ = k( p
√
u) ) k. Set

Gi := Spec k[t]/(tp − ui) and define a group operation on G :=
∐p−1

i=0 Gi by

Gi ×Gj → Gi+j, (t, t′) 7→ tt′ if i+ j < p,

Gi ×Gj → Gi+j−p, (t, t′) 7→ tt′/u if i+ j ≥ p.

Then G0 = G0
∼= µµp,k, and we have a short exact sequence

0→ µµp,k → G→ Fp
k
→ 0.

This sequence is non-split, because Gi
∼= Spec k′ 6∼= G0 for i 6= 0.

Example. With k′/k as above, set Gi := Spec k[t]/(tp − iu) and define a
group operation on G :=

∐p−1
i=0 Gi by

Gi ×Gj → Gi+j, (t, t′) 7→ t+ t′.

Then G0 = G0
∼= ααp,k, and we have a short exact sequence

0→ ααp,k → G→ Fp
k
→ 0.

This sequence is non-split, because Gi
∼= Spec k′ 6∼= G0 for i 6= 0.

Definition. A finite commutative group scheme G is called local if G = G0

and reduced if G = Gred. It is called of x-y type if G is x and G∗ is y.

Theorem 15.5. There is a unique and functorial decomposition of G as

G = Grr ⊕Gr` ⊕G`r ⊕G``

where the direct summands are of reduced-reduced, reduced-local, local-
reduced, and local-local type, respectively.
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Proof. The decomposition G = G0 ⊕Gred is functorial in G, as both G0 and
Gred are. Applying this functoriality in turn to G∗ and dualizing back using
the equality (G⊕H)∗ = G∗ ⊕H∗ completes the proof.

Remark. The functoriality includes the fact that any homomorphism be-
tween groups of different types is zero. The decomposition is also invariant
under base extension.

Definition. The n-th iterates of Frobenius and Verschiebung are the com-
posite homomorphisms

F n
G : G

FG−→ G(p)
F

G(p)−→ . . . −→ G(pn),

V n
G : G(pn) −→ . . .

V
G(p)−→ G(p) VG−→ G.

We call FG nilpotent if F n
G = 0 for some n ≥ 0, and similarly for VG.

Proposition 15.6. We have the following equivalences:

(a) G is reduced-reduced ⇔ both FG and VG are isomorphisms.

(b) G is reduced-local ⇔ FG is an isomorphism and VG is nilpotent.

(c) G is local-reduced ⇔ FG is nilpotent and VG is an isomorphism.

(d) G is local-local ⇔ both FG and VG are nilpotent.

Proof. Consider the decomposition G = G0 ⊕ Gred from Proposition 15.4.
Since the maximal ideal at the unit element ofG0 is nilpotent, it is annihilated
by some power of the absolute Frobenius, and hence by the same power of the
relative Frobenius. Thus Frobenius is nilpotent on G0, while by Proposition
15.1 it is an isomorphism on Gred. From this it follows formally that G is
reduced, resp. local, if and only if FG is an isomorphism, resp. nilpotent.
Applying this to G∗ as well finishes the proof.

Note. By §12 we already understand Grr and Gr`, and by duality also G`r.
So the goal now is to understand G``. The problem is the complicated ex-
tension structure of such groups!

§16 Split local-local group schemes

(This section was actually presented on December 16, but logically belongs here.)

Proposition 16.1. There is a natural isomorphism End(ααp,k) ∼= k.
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Proof. There are natural homomorphisms k → End(ααp,k)→ k, the first rep-
resenting the multiplication action of k, the second the action on the tangent
space of ααp,k. Clearly their composite is the identity, so the second map is
surjective. On the other hand, consider an endomorphism ϕ ∈ End(ααp,k) with
dϕ = 0. Then kerϕ has a non-zero tangent space, so it is a non-zero sub-
group scheme of ααp,k. Since ααp,k is simple by Proposition 13.3, it follows that
kerϕ = ααp,k and hence ϕ = 0. This shows that the second map is injective.
We conclude that the two maps are mutually inverse isomorphisms.

Proposition 16.2. Any finite commutative group scheme G with FG = 0
and VG = 0 is isomorphic to a direct sum of copies of ααp,k.

Proof. In fact we will prove that G ∼= αα⊕np,k for n := dimk TG,0. For this write
G = SpecA and A = k ⊕ I, where I is the augmentation ideal. Then the
isomorphy TG,0 ∼= (I/I2)∗ implies that I is generated by n elements. On the
other hand, since FG = 0, we have ξp = 0 for every ξ ∈ I. In particular
I is nilpotent; hence its n generators generate A as a k-algebra. (This is
a standard result from commutative algebra, and a nice exercise!) Write
A = k[X1, . . . , Xn]/J and I = (X1, . . . , Xn)/J for some ideal J . ThenXp

i ∈ J
for all 1 ≤ i ≤ n, and therefore A is a quotient of k[X1, . . . , Xn]/(X

p
1 , . . . , X

p
n).

In particular |G| = dimk A ≤ pn.
Next note that for any homomorphism ϕ : G∗ → Ga,k, the functoriality

of Frobenius and the assumption VG = 0 imply that

FGa,k
◦ ϕ 14.1

= ϕ(p) ◦ FG∗ = ϕ(p) ◦ (VG)∗ = 0.

Thus ϕ factors through the kernel of FGa,k
, that is, through ααp,k. Taking

Proposition 13.1 into account, we find that

n = dimk TG,0 = dimk Hom(G∗,Ga,k) = dimk Hom(G∗, ααp,k).

We claim that there exists an epimorphism G∗ � αα⊕np,k . Indeed, suppose that

an epimorphism ψ : G∗ � αα⊕ip,k has been constructed for some 0 ≤ i < n.

Then the induced linear map ki ∼= Hom(αα⊕ip,k, ααp,k) ↪→ Hom(G∗, ααp,k) is a
proper embedding. Any homomorphism ϕ : G∗ → ααp,k not in the image
has a non-trivial restriction to kerψ, and since ααp,k is simple, the combined
homomorphism (ψ, ϕ) : G∗ → αα⊕ip,k ⊕ ααp,k is again an epimorphism. Thus
the claim follows by induction on i. Finally, by Cartier duality the claim
yields a monomorphism αα⊕np,k ↪→ G. By the above inequality |G| ≤ pn, this
monomorphism must be an isomorphism, finishing the proof.

Theorem 16.3. Every simple finite commutative group scheme of local-local
type is isomorphic to ααp,k.

Proof. Combine Propositions 15.6 (d) and 16.2.
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Lecture 7

December 2, 2004

Notes by Ivo Dell’Ambrogio

§17 Group orders

Recall from Theorem 15.5 that every finite commutative group scheme pos-
sesses a unique and functorial decomposition

G = Grr ⊕Gr` ⊕G`r ⊕G``

where the direct summands are of reduced-reduced, reduced-local, local-
reduced, and local-local type, respectively.

Theorem 17.1. (a) The group orders in the above decomposition are, re-
spectively: prime to p for Grr, and a power of p for Gr`, G`r and G``.

(b) (“Lagrange”) |G| · idG = 0.

Proof. The statements are invariant under base extension; hence we may as-
sume that k is separably closed. Recall that the group order is multiplicative
in any short exact sequence 0 → G′ → G → G′′ → 0. Similarly, if the
Lagrange equation holds for G′ and G′′, one easily shows that it also holds
for G. Therefore both statements reduce to the case of simple G.

If G is also reduced, then it must be the constant group scheme associated
to a simple finite commutative group, and therefore G ∼= Z/`Z for a prime `.
Its Cartier dual is then G∗ ∼= µµ`,k, which is reduced if and only if ` 6= p. This
determines the simple reduced group schemes up to isomorphism, and by
Cartier duality also those of local-reduced type. Taking Theorem 16.3 into
account, we deduce that the simple finite commutative group schemes over
a separably closed field up to isomorphism are the following:

Type Group Order

reduced-reduced Z/`Z ` 6= p

reduced-local Z/pZ p

local-reduced µµp,k p

local-local ααp,k p

In each case G is annihilated by its order, and the proposition follows.
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§18 Motivation for Witt vectors

Let R be a complete discrete valuation ring with quotient field of character-
istic zero, maximal ideal pR, and residue field k = R/pR. Then we can write
all elements of R as power series in p. In fact, for any given (set theoretic)
section s : k → R we have a bijection

∞∏

n=0

k −→ R, (xn) 7−→
∞∑

n=0

s(xn) · pn.

A natural problem is then to describe the ring structure of R in terms of the
coefficients xn. This of course depends on the choice of s, so the question is:
How can this be done canonically? For the following we shall again assume
that k is a perfect field.

Proposition 18.1. Let R be a complete noetherian local ring with perfect
residue field k of characteristic p and maximal ideal m. Then there exists a
unique section i : k → R with the equivalent properties:

(a) i(xy) = i(x)i(y) for all x, y ∈ k,

(b) i(x) = limn→∞ s(x
p−n

)p
n

for any section s and any x ∈ k.
The image i(x) is called the Teichmüller representative of x.

Proof. The main point is to show that the limit in (b) is well-defined. First
notice that for all n ≥ 1 and x, y ∈ R we have

x ≡ y mod mn ⇒ xp ≡ yp mod mn+1.

This is because with z := y − x ∈ mn the binomial formula implies that

yp − xp = (z + x)p − xp ∈ (zp, pz) ⊂ mn+1.

By induction on n we deduce for all n ≥ 0 and x, y ∈ R that

x ≡ y mod m ⇒ xp
n ≡ yp

n

mod mn+1.

Note also that the assumptions imply that R ∼= lim
←− n

R/mn.

Now consider any section s : k → R. Then for all x ∈ k and n ≥ 1 we have
s(xp

−n
)p ≡ s(xp

1−n
) mod m and therefore s(xp

−n
)p

n ≡ s(xp
1−n

)p
n−1

mod mn.
This shows that the sequence in (b) converges. If s′ : k → R is another
section, we have s(y) ≡ s′(y) mod m for all y ∈ k; hence s(xp

−n
)p

n ≡
s′(xp

−n
)p

n
mod mn+1 for all x ∈ k and n ≥ 0, and so the limits coincide.

Thus we have proved (b), and to prove that (b) is equivalent to (a) one
proceeds similarly.
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In order to reconstruct the ring R from k, the main problem is now to
describe its additive structure in terms of i. Once this is done, the multipli-
cation can be deduced from Proposition 18.1 (a) and the distributive law:

(∑

n

i(xn)p
n
)
·
(∑

m

i(ym)pm
)

=
∑

n,m

i(xnym)pn+m.

One may wonder here: Does the addition depend on further structural
invariants of R, or is it given by universal formulae? A hint towards the
second option is given by the fact that the addition in the ring of p-adic
integers Zp ⊂ R is already unique. Indeed the latter is the case, and the
problem is solved by the so-called ring of Witt vectors. This solution actually
turnes everything around and defines a natural ring structure on

∏∞
n=0 k

without prior presence of R. Notice that this produces a ring of characteristic
zero from a field of characteristic p!

The construction is related to the fact that, although the additive group
of the ring of power series k[[t]] is annihilated by p, its multiplicative group
of 1-units 1 + t · k[[t]] is torsion free! Thus some aspect of characteristic zero
is present in characteristic p.

The strategy is to first use power series over Q to produce some formulae
which—somewhat miraculously—turn out to be integral at p, and then to
reduce these formulae mod p.

§19 The Artin-Hasse exponential

Recall the Möbius function defined for integers n ≥ 1 by

µ(n) =

{
(−1)(number of prime divisors ofn) if n is square-free,
0 otherwise.

It is also characterized by the basic property

∑

d|n

µ(d) =

{
1 if n = 1,
0 otherwise.

Lemma 19.1. In 1 + t ·Q[[t]] we have the equality

exp(−t) =
∏

n≥1

(1− tn)µ(n)
n ,

where the factors are evaluated by the binomial series.
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Proof. Taking logarithms the equality follows from the calculation

∑

n≥1

µ(n)

n
log(1− tn) =

∑

n≥1

µ(n)

n

∑

m≥1

(
−t

nm

m

)

d=nm
= −

∑

d≥1

(∑

n|d

µ(n)
)td
d

= −t.

Note. On the right hand side above, all denominators come from the powers
of µ(n)

n
in the binomial series. The following definition will separate the p-part

of these denominators from the non-p-part. Observe that the localization Z(p)

is the ring of rational numbers without p in the denominator.

Definition. F (t) :=
∏

p-n

(1− tn)µ(n)
n ∈ 1 + t · Z(p)[[t]].

Lemma 19.2. F (t) = exp
(
−
∑

m≥0

tp
m

pm

)
.

Note. Thus we have the interesting situation that F (t) is a power series
without p in the denominators, but its logarithm has only powers of p in the
denominators, while of course the logarithm and exponential series have all
primes in their denominators. Insofar the definition of F (t) is not as artificial
as it might seem.

Proof. We again apply the logarithm:

logF (t) =
∑

p-n

µ(n)

n
· log(1− tn)

19.1
= −t−

∑

p|n

µ(n)

n
· log(1− tn)

n=mp
= −t−

∑

m

µ(mp)

mp
· log(1− tmp)

(∗)
= −t+

1

p

∑

p-m

µ(m)

m
log(1− tmp)

= −t+
1

p
logF (tp)

where (∗) uses the observation that if p|m, then mp is not square free and
hence µ(mp) = 0. The lemma follows by iterating this formula.
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Lemma 19.3. There exist unique polynomials ψn ∈ Z[x, y] such that:

F (xt) · F (yt) =
∏

n≥0

F
(
ψn(x, y) · tp

n)
.

Proof. Since the power series F (t) is congruent to 1 − t mod t2 and has
coefficients in Z(p), by successive approximation we find unique polynomials
λd ∈ Z(p)[x, y] such that

F (xt) · F (yt) =
∏

d≥1

F
(
λd(x, y) · td

)
.

Taking logarithm on both sides and using Lemma 19.2, this formula is equiv-
alent to

−
∑

m≥0

(xp
m

+ yp
m

) · t
pm

pm
= −

∑

d≥1

∑

m≥0

λd(x, y)
pm · t

dpm

pm

= −
∑

e≥1

(∑

m≥0
pm|e

λe/pm(x, y)p
m

pm

)
· te.

Comparing coefficients, this shows that each λe is given recursively as a
polynomial over Z[1

p
] in x, y, and λe′ for certain e′ < e. Thus by induction

on e we deduce that λe lies in Z[1
p
][x, y]. Since a priori it is also in Z(p)[x, y],

we find that actually λe ∈ Z[x, y].
Moreover, suppose that λe 6= 0 for some e ≥ 1 which is not a power of p.

Then there exists a smallest e with this property, and for this e the above
formula shows that λe is a Q-linear combination of λp

m

e/pm for m > 0 with pm|e.
But all those terms vanish by the minimality of e, yielding a contradiction.
Therefore λe = 0 whenever e is not a power of p, and so the lemma follows
with ψn := λpn.

Now for any ring R we set

ΛR :=
∏

d≥1

A1
R = SpecR[U1, U2, · · · ].

This is a scheme over R, only not of finite type. Identifying sequences
(u1, u2, . . .) with power series 1 + u1t+ u2t

2 + . . . turns ΛR
∼= “1 + t ·A1

R[[t]]”
into a commutative group scheme over R by the usual multiplication of power
series

(1+u1t+u2t
2+. . .)·(1+v1t+v2t

2+. . .) = 1+(u1+v1)t+(u2+u1v1+v2)t
2+. . . .
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Lemma 19.3 suggests that products of the form
∏

n≥0 F (xn· tpn
) form a sub-

group of ΛR. For any ring R we let

WR :=
∏

n≥0

A1
R = SpecR[X0, X1, . . .]

and write points in it in the form x = (x0, x1, . . .).

Definition. The Artin-Hasse exponential is the morphism E given by

WZ(p)
−→ ΛZ(p)

, x 7→ E(x, t) :=
∏

n≥0

F (xn · tp
n

).

Proposition 19.4. There exists unique polynomials sn ∈ Z[x0, . . . , xn, y0,
. . . , yn] such that E(x, t) ·E(y, t) = E(s(x, y), t) with s = (s0, s1, . . .). More-
over, the morphism s : WZ×WZ →WZ defines the structure of a commuta-
tive group scheme over Z.

Proof. The first part is proved by successive approximation using Lemma
19.3. For the “moreover” part we must produce the unit section and the
inversion morphism of WZ. The former is defined as 0 = (0, 0, . . .) and
satisfies E(0, t) = 1. For the latter we first show by explicit calculation that

F (t)−1 =

{
F (−t) if p 6= 2,∏

n≥0 F
(
−tpn)

if p = 2,

taking logarithms and using Lemma 19.2. By successive approximation we
then find a unique morphism i : WZ → WZ satisfying E(x, t)−1 = E(i(x), t).
It remains to verify the group axioms for s, 0, and i, and that in turn can
be done over Z(p). But it is clear by construction that the Artin-Hasse ex-
ponential defines a closed embedding E : WZ(p)

↪→ ΛZ(p)
. Thus by the above

formulas relating E with s, 0, and i the desired group axioms follow at once
from those in ΛZ(p)

, finishing the proof.

The next proposition will not be needed in the sequel, but it serves as an
illustration of what is going on here.

Proposition 19.5. The morphism below is an isomorphism of group schemes:
∏

p-m

WZ(p)

∼−→ ΛZ(p)
, (xm)m 7→

∏

p-m

E(xm, t
m) =

∏

p-m
n≥0

F (xmn · tmp
n

).

Proof. Easy, using Proposition 19.4.

Note. One can show that WZ(p)
is an indecomposable group scheme over Z(p);

hence by Proposition 19.5 it can be regarded as the unique indecomposable
component of ΛZ(p)

up to isomorphism. This illustrates a certain canonicity
of WZ(p)

, independent of the precise choice of F in its construction.
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Lecture 8

December 9, 2004

Notes by Egon Rütsche

§20 The ring of Witt vectors over Z

In this section we show that the group scheme structure on WZ from Propo-
sition 19.4 is the addition for a certain ring scheme structure on WZ. Set

(20.1) Φ`(x) :=
∑̀

n=0

pnxp
`−n

n = xp
`

0 + pxp
`−1

1 + . . .+ p`x`.

Then using Lemma 19.1 we can rewrite

E(x, t) =
∏

n≥0

exp
(
−
∑

m≥0

(xnt
pn

)p
m

pm

)

= exp
(
−
∑

n,m≥0

pnxp
m

n ·
tp

n+m

pn+m

)
= exp

(
−
∑

`≥0

Φ`(x) ·
tp

`

p`

)
.

The relation in Proposition 19.4 becomes

logE(x, t) + logE(y, t) = logE(s(x, y), t),

which is equivalent to

−
∑

`≥0

Φ`(x)
tp

`

p`
−
∑

`≥0

Φ`(y)
tp

`

p`
= −

∑

`≥0

Φ`

(
s(x, y)

)tp`

p`
.

By equating coefficients, we deduce that Proposition 19.4 is equivalent to

Proposition 20.2. The above group law on WZ is the unique one for which
each Φ` : WZ −→

(
A1

Z,+
)

is a homomorphism.

Remark. We write this group law additively, i.e. s(x, y) =: x+ y.

Terminology. An element x = (x0, x1, . . .) ∈ W(R) is called a Witt vector,
and the x0, x1, . . . its components. The expressions Φ`(x) are called phantom
components. The reason for this is that over Z[1

p
], giving the x` is equivalent

to giving the Φ`(x), because we have an isomorphism

(20.3) WZ[ 1
p
] −→

∞∏

`=0

A1
Z[ 1

p
]
, x 7→

(
Φ`(x)

)
`
.
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But the expressions reduce to Φ`(x) ≡ xp
`

0 mod p, so only a “phantom” of
what was there remains.

Proposition 20.2 also generalizes as follows, with an independent proof:

Theorem 20.4. There are unique morphisms +, · : WZ×WZ −→WZ defin-
ing a unitary ring structure, such that each Φ` : WZ −→ A1

Z is a unitary ring
homomorphism (and + coincides with that from Propositions 19.4 and 20.2).

Remark. On Witt vectors + and · will always denote the above morphisms,
not the componentwise addition and multiplication.

Proof. The isomorphism (20.3) shows that the theorem holds over Z[1
p
]. To

prove it over Z we must show that + and ·, as well as the respective identity
sections and the additive inverse, are morphisms defined over Z. For + and
· this is achieved conveniently by Lemma 20.5 below. One easily checks that
0 = (0, 0, . . .) and 1 = (1, 0, 0, . . .) are the additive and multiplicative identity
sections. For the additive inverse the reader is invited to adapt Lemma 20.5.
Finally, once all morphisms are defined over Z, the ring and homomorphism
axioms over Z follow directly from those over Z[1

p
].

Lemma 20.5. For every morphism u : A1
Z×A1

Z −→ A1
Z there exists a unique

morphism v : WZ×WZ −→WZ such that for all ` ≥ 0 : Φ`◦v = u◦(Φ`×Φ`).

Proof. By the isomorphism (20.3) there exist unique v = (v0, v1, . . .) with
vn ∈ Z[1

p
][x0, . . . , xn, y0, . . . , yn] satisfying the desired relations. It remains

to show that vn ∈ A := Z[x0, . . . , y0, . . .]. Since Φ0(x) = x0, this is clear for
v0 = u(x0, y0). So fix n ≥ 0 and assume that vi ∈ A for all i ≤ n. For
any sequence x = (x0, x1, . . .) we will abbreviate xp = (xp0, x

p
1, . . .). Then the

definition (20.1) of Φ` implies that

Φn+1(x) = Φn(x
p) + pn+1xn+1.

Using this and the relation defining v we deduce that

Φn(v
p) + pn+1vn+1 = Φn+1(v)

def
= u

(
Φn+1(x),Φn+1(y)

)

= u
(
Φn(x

p) + pn+1xn+1,Φn(y
p) + pn+1yn+1

)
.

Here note that the right hand side and Φn(v
p) are already in A. Thus we

have pn+1vn+1 ∈ A and

pn+1vn+1 ≡ u
(
Φn(x

p),Φn(y
p)
)
− Φn(v

p) mod pn+1A

def
= Φn

(
v(xp, yp)

)
− Φn(v

p).(20.6)
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To evaluate this further recall that vi ∈ A for all 0 ≤ i ≤ n; hence

vi(x
p, yp) ≡ vi(x, y)

p mod pA.

This implies that

vi(x
p, yp)p

n−i ≡
(
vi(x, y)

p
)pn−i

mod pn−i+1A, hence

pivi(x
p, yp)p

n−i ≡ pi
(
vi(x, y)

p
)pn−i

mod pn+1A, and therefore

Φn

(
v(xp, yp)

)
≡ Φn(v

p) mod pn+1A.

Together with (20.6) we deduce that pn+1vn+1 ∈ pn+1A, and hence vn+1 ∈ A.
The lemma follows by induction on n.

Examples. We write s = (s0, s1, . . .) for the morphism +, and p = (p0, p1, . . .)
for the morphism ·. Using the relations Φ0(x) = x0 and Φ1(x) = xp0 + px1,
elementary calculation shows that

s0(x, y) = x0 + y0,

p0(x, y) = x0 · y0,

s1(x, y) = x1 + y1 +
1

p

(
xp0 + yp0 − (x0 + y0)

p
)

= x1 + y1 −
p−1∑

i=0

1

p

(
p

i

)
xi0y

p−i
0 ,

p1(x, y) = xp0y1 + x1y
p
0 + px1y1.

As one can see, the formulas are quickly becoming very complicated. One
should not use them directly, but think conceptually.

For use in the next section we note:

Proposition 20.7. The morphism τ : A1
Z −→ WZ, x 7→ (x, 0, . . .) is multi-

plicative, i.e., it satisfies τ(xy) = τ(x) · τ(y).
Proof. It is enough to check this over Z[1

p
], i.e., after applying each Φ`. But

Φ`

(
τ(x)

)
= xp

`
is obviously multiplicative.

Finally, we introduce Witt vectors of finite length n ≥ 1. For this recall
that the m-th components of x+ y and x · y and −x depend only on the first
m components of x and y. Thus the same formulas define a ring structure

on Wn,R :=
∏n−1

m=0 A1
R for any ring R, such that the truncation map

(20.8) WR −→ Wn,R, x 7→ (x0, . . . , xn−1)

is a ring homomorphism.
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§21 Witt vectors in characteristic p

From now on let k be a perfect field of characteristic p > 0. For any scheme
X over Fp we abbreviate Xk := X ×Spec Fp Spec k. Then there is a natural

isomorphism X
(p)
k
∼= Xk which turns the relative Frobenius of Xk into the

endomorphism σX× id of Xk, where σX denotes the absolute Frobenius of X.
Indeed, this follows from the definition of Frobenius from §14 and the fact
that the two rectangles in the following commutative diagram are cartesian:

Xk
σXk

&&

%%

FXk
= σX×id

&&NNNNNN

X
(p)
k = Xk

id×σSpec k //

��

Xk

��

pr1 // X

��
Spec k

σSpec k // Spec k // Spec Fp

In particular we can apply this to Wk = WFp×Spec Fp Spec k. Thus the Frobe-
nius and Verschiebung for the additive group of Wk become endomorphisms
satisfying F ◦ V = V ◦ F = p · id. The following proposition collects some of
their properties.

Proposition 21.1. (a) F
(
(x0, x1, . . .)

)
= (xp0, x

p
1, . . .).

(b) V
(
(x0, x1, . . .)

)
= (0, x0, x1, . . .).

(c) p · (x0, x1, . . .) = (0, xp0, x
p
1, . . .).

(d) F (x+ y) = (Fx) + (Fy).

(e) F (x · y) = (Fx) · (Fy).

(f) x · (V y) = V
(
(Fx) · y

)
.

(g) E
(
x · (V y), t

)
= E

(
(Fx) · y, tp

)
.

Remark. Part (b) is probably the reason why V is called Verschiebung.

Proof. (a), (d), and (e) are clear from the definition and functoriality of F .
(b) is equivalent to (c) by the relation p ·x = V Fx, because F : Wk →Wk is
an epimorphism. For (c) we cannot use the phantom components, because
we are in characteristic p > 0. Instead we use the Artin-Hasse exponential
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E(x, t) =
∏∞

n=0 F (xnt
pn

). Recall that it defines a homomorphism and a closed
embedding WZ(p)

→ ΛZ(p)
, and hence also Wk → Λk. Therefore

E(p · x, t) = E(x, t)p =

∞∏

n=0

F (xnt
pn

)p
(∗)
=

∞∏

n=0

F (xpnt
pn+1

)

=

∞∏

n=1

F (xpn−1t
pn

) = E
(
(0, xp0, x

p
1, . . .), t

)
,

where (∗) follows from the fact that we are working over k and that F has
coefficients in Z(p). This shows (c). Next, since F is an epimorphism, it
suffices to prove (f) for y = Fz. But for this it follows from the calculation

x · (V y) = x · (V Fz) = x · (p · z) = p · (x · z)

= V F (x · z) (e)
= V

(
(Fx) · (Fz)

)
= V

(
(Fx) · y

)
.

Finally, (g) results from

E
(
x · (V y), t

) (f)
= E

(
V
(
(Fx) · y

)
, t
) def. of E

= E
(
(Fx) · y, tp

)
.

Theorem 21.2. W(k) is a complete discrete valuation ring with uniformizer
p and residue field k.

Proof. Since k is perfect, we have pn W(k) = V n
(
W(k)

)
for all n ≥ 1.

By iterating Proposition 21.1 (b) this is also the kernel of the truncation
homomorphism W (k) → Wn(k) from (20.8). Thus W (k)/pnW (k) ∼= Wn(k)
and W (k)/pW (k) ∼= W1(k) ∼= k. Using this, by induction on n one shows
that Wn(k) is a W (k)-module of length n. Since clearly W (k) ∼= lim

←− n
Wn(k),

the theorem follows.

Theorem 21.3 (Witt). Let R be a complete noetherian local ring with
residue field k.

(a) There exists a unique ring homomorphism u : W(k) −→ R such that
the following diagram commutes:

W(k)
u //

""EE
EE

EE
R

����
��

�

k.

(b) If R is a complete discrete valuation ring with uniformizer p, then u is
an isomorphism.
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Proof. Recall that by Proposition 18.1 there are unique multiplicative sec-
tions

W(k) R

k.
τ

bbEEEEEE i

@@�����

Since u is also multiplicative, it must therefore satisfy the equation i = u ◦ τ.
By Proposition 20.7 we have τ(x) = (x, 0, . . .). In view of Proposition 21.1
(c) this implies that any element x = (x0, x1, . . .) ∈ W(k) has the power
series expansion

x = τ(x0) + p · τ(x1/p
1 ) + p2 · τ(x1/p2

2 ) + . . . .

So the ring homomorphism u must be given by

u(x) = i(x0) + p · i(x1/p
1 ) + p2 · i(x1/p2

2 ) + . . . .

In particular u is unique, but we must verify that this formula does define
a ring homomorphism. For this, let m be the maximal ideal of R, which
contains p, and calculate:

u(x) ≡ i(x0) + p · i(x1/p
1 ) + . . .+ pn · i(x1/pn

n ) mod mn+1,

= i(xp
−n

0 )p
n

+ p · i(xp−n

1 )p
n−1

+ . . .+ pn · i(xp−n

n )

= Φn

(
i(xp

−n

0 ), . . . , i(xp
−n

n )
)
.

It is enough to show that this defines a ring homomorphism W (k)→ R/mn+1

for any n, because R is complete noetherian and hence R = lim
←−

R/mn+1. Since
Frobenius defines a ring automorphism of W (k), this is equivalent to showing
that Φn

(
i(x0), . . . , i(xn)

)
defines a ring homomorphism W (k) → R/mn+1.

But Φn : W(R) → R is a ring homomorphism by the construction of Witt
vectors. Moreover, we have Φn(x0, . . . , xn) ∈ mn+1 if all xi ∈ m, by the
definition of Φn. Thus the composite homomorphism in the diagram

W(R)
Φn //

����

R

����
W(k) //___ R/mn+1

vanishes on the kernel of the left vertical map; hence it factors through a ring
homomorphism along the lower edge. The lower arrow is then given explicitly
by Φn

(
i(x0), . . . , i(xn)

)
mod mn+1 for any section i, in particular for the

canonical one. Therefore this defines a ring homomorphism, proving (a).
(b) follows from the fact that any homomorphism of complete discrete

valuation rings with the same uniformizer and the same residue field is an
isomorphism.
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Lecture 9

December 16, 2004

Notes by Richard Pink

(§16 was also presented on that day, but moved to its proper place in the text.)

§22 Finite Witt group schemes

From now on we abbreviate W := Wk, restoring the index k only when the
dependence on the field k is discussed. Also, we will no longer underline
points in W or in quotients thereof.

For any integer n ≥ 1 we let Wn
∼= W/V nW denote the additive group

scheme of Witt vectors of length n over k. Truncation induces natural epimor-
phisms r : Wn+1 � Wn, and Verschiebung induces natural monomorphisms
v : Wn ↪→ Wn+1, such that rv = vr = V . For any n, n′ ≥ 1 they induce a
short exact sequence

0 −→Wn′

vn

−→Wn+n′

rn′

−→Wn −→ 0.

(The exactness can be deduced from the fact that rn
′

possesses the scheme
theoretic splitting x 7→ (x, 0, . . . , 0), although we have not proved in this
course that the category of all affine commutative group schemes is abelian.)
Together with the natural isomorphism W1

∼= Ga, these exact sequences
describe Wn as a successive extension of n copies of Ga.

For any integers n, m ≥ 1 we let Wm
n denote the kernel of Fm on Wn.

As above, truncation induces natural epimorphisms r : Wm
n+1 � Wm

n , and
Verschiebung induces natural monomorphisms v : Wm

n ↪→ Wm
n+1, such that

rv = vr = V . Similarly, the inclusion induces natural monomorphisms
i : Wm

n ↪→ Wm+1
n , and Frobenius induces natural epimorphisms f : Wm+1

n �

Wm
n , such that if = fi = F . For any n, n′, m, m′ ≥ 1 they induce short

exact sequences

0 −→Wm
n′

vn

−→Wm
n+n′

rn′

−→Wm
n −→ 0,

0 −→ Wm
n

im
′

−→ Wm+m′

n

fm

−→Wm′

n −→ 0.

Together with the natural isomorphism W 1
1
∼= ααp, these exact sequences

describe Wm
n as a successive extension of nm copies of ααp. For later use note

the following fact:

Lemma 22.1. Let G be a finite commutative group scheme with Fm
G = 0

and V n
G = 0. Then any homomorphism ϕ : G → Wm′

n′ with m′ ≥ m and
n′ ≥ n factors uniquely through the embedding im

′−mvn
′−n : Wm

n ↪→ Wm′

n′ .
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Proof. By the functoriality of Frobenius from Proposition 14.1, the assump-
tion implies that Fm

Wm′

n′

◦ ϕ = ϕ(pm) ◦ Fm
G = 0. Thus ϕ factors through the

kernel of Fm on Wm′

n′ , which is the image of im
′−m : Wm

n′ ↪→ Wm′

n′ . The
analogous argument with V n

G in place of Fm
G shows the rest.

We will show that all commutative finite group schemes of local-local
type can be constructed from the Witt group schemes Wm

n . The main step
towards this is the following result on extensions:

Proposition 22.2. For any short exact sequence 0 → Wm
n → G → ααp → 0

there exists a homomorphism ϕ making the following diagram commute:

0 // Wm
n

//
_�

iv

��

G //

ϕ
}}{{

{{
{{

{{
{

ααp // 0

Wm+1
n+1

Note. In more highbrow language this means that the homomorphism in-
duced by iv on the Yoneda Ext groups Ext1(ααp,W

m
n ) → Ext1(ααp,W

m+1
n+1 ) is

zero. I prefer to stay as down to earth as possible in this course.

Lemma 22.3. Proposition 22.2 holds in the case n = m = 1.

Proof. As a preparation let U denote the kernel of the epimorphism rf :
W 2

2 � W 1
1 = ααp. Then r and f induce epimorphisms

r′ : U � ker(f : W 2
1 � W 1

1 ) ∼= W 1
1 = ααp,

f ′ : U � ker(r : W 1
2 � W 1

1 ) ∼= W 1
1 = ααp,

which together yield a short exact sequence

0 −→ ααp = W 1
1

iv−→ U
(r′,f ′)−→ αα⊕2

p −→ 0.

Since F = V = 0 on ααp, one easily shows that FU and VU are induced from

k⊕2 ∼= Hom(αα⊕2
p , ααp) ↪→ Hom(U,U).

In fact, going through the construction one finds that FU and VU correspond
to the elements (0, 1) and (1, 0) of k⊕2, respectively. Essentially the proof
will show that U represents the universal extension of ααp with ααp.
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For any short exact sequence 0 → ααp → G
π→ ααp → 0 we define a group

scheme G′ such that the upper left square in the following commutative
diagram with exact rows and columns is a pushout:

0

��

0

��
0 // ααp //

��

G //

��

ααp // 0

0 // U //

(r′,f ′)
��

G′
π′

//

ρ′

��

ααp // 0

αα⊕2
p

��

αα⊕2
p

��
0 0

By looking at the induced short exact sequence

0 −→ ααp −→ G′
(π′,ρ′)−→ αα⊕3

p −→ 0

one shows as above that FG′ and VG′ are induced from

k⊕3 ∼= Hom(αα⊕3
p , ααp) ↪→ Hom(G′, G′).

In fact, comparison with the result for U shows that FG′ and VG′ correspond
to triples (x, 0, 1) and (y, 1, 0), respectively, for certain elements x, y ∈ k.
Define a subgroup scheme G′′ ⊂ G′ as the pullback in the following commu-
tative diagram with exact rows:

0 // ααp // G′ // αα⊕3
p

// 0

0 // ααp // G′′ //
� ?

OO

ααp //
� ?

(1,−y,−x)

OO

0

Then by construction one finds that FG′′ = 0 and VG′′ = 0. (In fact, G′′ is
just the right Baer linear combination of the extension G with the two basic
extensions W 1

2 and W 2
1 which enjoys this property.) Thus Proposition 16.2

implies that G′′ ∼= αα⊕2
p is split. This splitting yields an embedding ι : ααp ↪→ G′

satisfying π′ι = id, which in turn splits the extension 0→ U → G′ → ααp → 0.
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Finally, the resulting homomorphism G′ → U yields a composite arrow mak-
ing the following diagram commute:

ααp //
_�

��

Pp

iv

��

G
_�

��

rr

U
_�

��

G′oo

W 2
2

as asserted by Proposition 22.2.

Lemma 22.4. (a) Fix n ≥ 1. If Proposition 22.2 holds for this n and
m = 1, then it holds for this n and all m ≥ 1.

(b) Fix m ≥ 1. If Proposition 22.2 holds for this m and n = 1, then it
holds for this m and all n ≥ 1.

Proof. For any short exact sequence 0 → Wm
n → G → ααp → 0, define G′

such that the left square in the following commutative diagram with exact
rows is a pushout:

0 // Wm
n

//
_�

i

��

G //

ψ

��

ααp // 0

0 // Wm+1
n

// G′ // ααp // 0

As F = 0 on ααp, and Fm = 0 on Wm
n , one easily shows that Fm+1 = 0 on G.

Thus Fm+1 vanishes on Wm+1
n ⊕ G, and since G′ can be constructed as a

quotient thereof, also on G′. Consider the following commutative diagram
with exact rows, where the dashed arrows are not yet defined:

0 // Wm+1
n

//

F

��

f !! !!C
CC

CC
CC

C G′ //

F

��

F ′′

||y
y

y
y

y

F ′

tt

�
�




�
z

s
m

ααp //

F=0

��

0

Wm
n

N n

i

}}{{
{{

{{
{{

0 // Wm+1
n

//

Fm

��

G′(p) //

Fm

��

ααp // 0

0 // Wm+1
n

// G′(p
m+1)
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The dashed arrow F ′ is obtained from the fact that the upper right square
commutes and that F = 0 on ααp. Looking at the lower left part of the
diagram, the fact that Fm ◦ F = Fm+1 = 0 on G′ implies that F ′ factors
through the kernel of Fm on Wm+1

n . But this kernel is just the image of
Wm
n under i, which yields the dashed arrow F ′′ making everything commute.

Since the oblique arrow f is an epimorphism, the same holds a fortiori for F ′′.
Setting G′′ := kerF ′′ we obtain a commutative diagram with exact rows and
columns

0

��

0

��
0 // W 1

n
//

im

��
(∗)

G′′ //

��

ααp // 0

0 // Wm+1
n

//

f

��

G′ //

F ′′

��

ααp // 0

Wm
n

��

Wm
n

��
0 0

Here by diagram chasing we find that the square marked (∗) is a pushout. By
assumption we may apply Proposition 22.2 toG′′, obtaining a homomorphism
ϕ′′ making the upper triangle of the following Toblerone diagram commute:

W 1
n

//
_�

im

��

q�

iv ""EE
EE

EE
EE

G′′

��

ϕ′′

~~~~
~~

~~
~~

W 2
n+1
_�

im−1

��

Wm+1
n

//
q�

v ""EE
EE

EE
EE

G′

ϕ′

~~~
~

~
~

Wm+1
n+1

Since (∗) is a pushout, this commutative diagram can be completed by the
dashed homomorphism ϕ′ at the lower right. Altogether, the composite
homomorphism ϕ := ϕ′ψ : G → G′ → Wm+1

n+1 has the desired properties,
proving (a). The proof of (b) is entirely analogous, with V in place of F .
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Proof of Proposition 22.2. By Lemma 22.3 the proposition holds in the case
n = m = 1. By Lemma 22.4 (a) the proposition follows whenever n = 1, and
from this it follows in general by Lemma 22.4 (b). �

Proposition 22.5. Every commutative finite group scheme of local-local
type can be embedded into (Wm

n )⊕r for some n, m, and r.

Proof. To prove this by induction on |G|, we may consider a short exact
sequence 0→ G′ → G→ ααp → 0 and assume that there exists an embedding
ψ = (ψ1, . . . , ψr) : G′ ↪→ (Wm

n )⊕r. For 1 ≤ i ≤ r define Gi such that the
upper left square in the following commutative diagram with exact rows is a
pushout:

0 // G′ //

ψi

��

G //

��

ααp // 0

0 // Wm
n

//
_�

iv

��

Gi
//

zzv
v

v
v

v
ααp // 0

Wm+1
n+1

The dashed arrows, which exist by Proposition 22.2, determine an extension
of the composite embedding ivψ : G′ ↪→ (Wm+1

n+1 )⊕r to a homomorphism
G → (Wm+1

n+1 )⊕r. The direct sum of this with the composite homomorphism
G � ααp = W 1

1 ↪→ Wm+1
n+1 is an embedding G ↪→ (Wm+1

n+1 )⊕r+1.

Proposition 22.6. Every commutative finite group scheme G with Fm
G = 0

and V n
G = 0 possesses a copresentation (i.e., an exact sequence) for some r, s

0 −→ G −→ (Wm
n )⊕r −→ (Wm

n )⊕s .

Proof. By Proposition 22.5 there exists an embedding G ↪→ (Wm′

n′ )⊕r for
some n′, m′, and r. After composing it in each factor with the embedding iv :
Wm′

n′ ↪→Wm′+1
n′+1 , if necessary, we may assume that n′ ≥ n and m′ ≥ m. Then

Lemma 22.1 implies that the embedding factors through a homomorphism
G → (Wm

n )⊕r, which is again an embedding. Let H denote its cokernel.
Since Fm = 0 and V n = 0 on Wm

n , the same is true on (Wm
n )⊕r and hence

on H . Repeating the first part of the proof with H in place of G, we therefore
find an embedding H ↪→ (Wm

n )⊕s for some s. The proposition follows.
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Lecture 10

December 23, 2004

Notes by Nicolas Stalder

§23 The Dieudonné functor in the local-local case

Recall that k is a perfect field, W = Wk is the Witt group scheme over k,
Wn is the cokernel of V n on W , and Wm

n is the kernel of Fm on Wn. The
collection of allWm

n becomes a direct system via the homomorphisms v and i:

Wm
n

� � i //
� _

v

��

Wm+1
n � _

v
��

Wm
n+1

� � i // Wm+1
n+1

Let σ : W (k) −→ W (k) denote the ring endomorphism induced by F . (We
use a different letter to avoid confusion with F as an endomorphism of the
group scheme W !)

Definition. Let E be the ring of “noncommutative polynomials” over W (k)
in two variables F and V , subject to the following relations:

• F · ξ = σ(ξ) · F ∀ξ ∈W (k)

• V · σ(ξ) = ξ · V ∀ξ ∈W (k)

• FV = V F = p

Note that E is a free left, or right, module over W (k) with basis

{. . . , V 2, V, 1, F, F 2, . . .}.

Example. If k = Fp, then E = Zp[F, V ]/(FV − p) is a regular commutative
ring of Krull dimension 2. In all other cases, E is non-commutative.

Proposition 23.1. There exist unique ring homomorphisms E → Aut(Wm
n )

for all m,n such that F and V act as such and ξ ∈ W (k) acts through
multiplication by σ−n(ξ). Moreover, these actions of E are compatible with
the transition homomorphisms i and v of the direct system.

Proof. For any ξ ∈W (k) and x ∈W , the formulas in Proposition 21.1 imply
that F (ξx) = σ(ξ) · F (x) and ξ · V (x) = V (σ(ξ)x). On the other hand recall
that V ◦F = F◦V = p·id by Theorem 14.4. Thus there is a unique action of E
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on W , where F and V act as such and ξ ∈W (k) acts through multiplication
by itself. The above relations also imply that this action induces a unique
action of E on Wn and on Wm

n for all n and m. Moreover, the functoriality
of F and V shows that the homomorphisms i and r are equivariant.

However, since V = vr, the relation ξ · V (x) = V (σ(ξ)x) implies that
ξ ·v(x) = v(σ(ξ)x). Thus in order to turn v into an E-linear homomorphism,
we must modify the action of W (k) by an appropriate power of σ. This is
precisely what we accomplish by letting ξ act on Wm

n through multiplication
by σ−n(ξ). Then E acts compatibly on the whole direct system.

Definition. For any finite commutative group scheme G over k of local-local
type we define

M(G) := lim
−→
m,n

Hom(G,Wm
n ),

with its induced left E-module structure via the actions of E on the Wm
n .

Clearly this defines a left exact additive contravariant functor to the category
of left E-modules.

Theorem 23.2. The functor M induces an anti-equivalence of categories
{{

finite commutative
group schemes over
k of local-local type

}}
∼−→
{{

left E-modules of
finite length with
F and V nilpotent

}}
.

This “main theorem of contravariant Dieudonné theory in the local-local
case” is essentially a formal consequence of the results obtained so far. As a
preparation note that the action of E on Wm

n via Proposition 23.1 and the
embedding of Wm

n into the whole direct system induce homomorphisms of
left E-modules

Em
n := E/(EFm + EV n) −→ End(Wm

n ) −→M(Wm
n ).

Proposition 23.3. (a) These homomorphisms are isomorphisms.

(b) lengthW (k)M(G) = logp |G|.
Proof. As Wm

n ↪→ Wm′

n′ is a monomorphism for all n ≤ n′ and m ≤ m′, the
map End(Wm

n )→ M(Wm
n ) is injective. By Lemma 22.1 it is also surjective,

and hence bijective. Next Proposition 16.1 implies that

k
∼−→ E/(EF + EV )

∼−→ End(ααp)
∼−→M(ααp)

and hence (a) for m = n = 1. More generally, one easily checks that every
non-trivial E-submodule of Em

n contains the residue class of Fm−1V n−1 (com-
pare Proposition 23.9 below). Since the image of Fm−1V n−1 in End(Wm

n ) is
non-zero, we deduce that the map Em

n → End(Wm
n ) is injective.
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Before finishing the proof of (a), we prove (b), using induction on |G|.
The assertion is trivial when |G| = 1, and holds for G = ααp by the above.
Whenever |G| 6= 1 there exists a short exact sequence

0 −→ G′ −→ G −→ ααp −→ 0,

and we may assume that (b) holds for G′. The induced sequence

(23.4) 0←−M(G′)←−M(G)←−M(ααp)←− 0

is exact except possibly at M(G′). To prove the exactness there consider any
element of M(G′), say represented by a homomorphism ϕ : G′ → Wm

n for
some m,n. Consider the morphism of short exact sequences

0 // G′ //

ϕ

��

G //

��

ααp // 0

0 // Wm
n

// H // ααp // 0

where H is the pushout of the left hand square. Applying Proposition 22.2
to the lower exact sequence yields a homomorphism H → Wm+1

n+1 extending
the homomorphism iv : Wm

n → Wm+1
n+1 . The composite homomorphism G →

H → Wm+1
n+1 then defines an element of M(G) which maps to the given

element of M(G′). This proves that the sequence (23.4) is exact, and hence

lengthW (k)M(G) = lengthW (k)M(G′) + lengthW (k)M(ααp)

= logp |G′|+ logp |ααp|
= logp |G|,

proving (b).
Returning to (a) one directly calculates that lengthW (k)E

m
n = nm. By

(b) and the beginning of §22, we also have lengthW (k)M(Wm
n ) = nm. Thus

Em
n → End(Wm

n ) is an injective homomorphism of E-modules of equal finite
length; hence it is an isomorphism, finishing the proof of (a).

Lemma 23.5. The functor M is exact.

Proof. By construction it is left exact. For any exact sequence 0 → G′ →
G → G′′ → 0, Proposition 23.3 (b) and the multiplicativity of group orders
imply that the image of the induced map M(G) → M(G′) has the same
finite length over W (k) as M(G′) itself. Thus the map is surjective, and M
is exact.
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Lemma 23.6. If Fm
G = 0 and V n

G = 0, then Fm and V n annihilate M(G).
In particular, the functor M lands in the indicated subcategory.

Proof. The first assertion follows from the definition of M(G) and the func-
toriality of F and V , the second from the first and Proposition 23.3 (b).

Lemma 23.7. The functor M is fully faithful.

Proof. For givenG,H choosem, n such that Fm and V n annihilateG,H , and
abbreviate U := Wm

n . By Proposition 22.6, we may choose a copresentation

0 −→ H −→ U r −→ Us

for some r, s. By the exactness of M , we obtain a presentation of E-modules

0←−M(H)←−M(U)r ←−M(U)s.

Applying the left exact functors Hom(G,−) and HomE(−,M(G)), we obtain
a commutative diagram with exact rows

0 // Hom(G,H) //

M
��

Hom(G,U r) //

M
��

Hom(G,Us)

M
��

0 // HomE(M(H),M(G)) // HomE(M(U r),M(G)) // HomE(M(Us),M(G))

where the vertical arrows are induced by the functor M . We must prove that
the left vertical arrow is bijective. By the 5-Lemma it suffices to show that
the other vertical arrows are bijective. Since M is an additive functor, this
in turn reduces to direct summands of U r and Us. All in all, it suffices to
prove the bijectivity in the case that H = U = Wm

n . For this consider the
following commutative diagram:

Hom(G,Wm
n )

M //

��

HomE(M(Wm
n ),M(G))

o 23.3 (a)
��

M(G) HomE(Em
n ,M(G))

ϕ([1])←pϕoo

Here the left vertical arrow is simply that induced by the embedding of Wm
n

into the whole direct system; hence it is an isomorphism by Lemma 22.1.
The lower horizontal arrow is an isomorphism by Lemma 23.6. Thus the
upper horizontal arrow is an isomorphism, as desired.

Lemma 23.8. The functor M is essentially surjective.
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Proof. Let N be a left E-module of finite length with F and V nilpotent.
Suppose that Fm and V n annihilate N . Then there exists an epimorphism
of E-modules (Em

n )⊕r � N for some r. Its kernel is again annihilated by Fm

and V n; hence there exists a presentation

(Em
n )⊕s ϕ−−→ (Em

n )⊕r −→ N −→ 0.

Since Em
n = M(Wm

n ) and M is fully faithful, we see that ϕ = M(ψ) for a

unique homomorphism (Wm
n )⊕r

ψ−−→ (Wm
n )⊕s. Setting G(N) := ker(ψ), the

5-Lemma shows that N ∼= M(G(N)).

Piecing together the above results, we see that Theorem 23.2 is proven.

Proposition 23.9. “ lim
−→m,n

Wm
n ” is the injective hull of ααp in the associated

category of ind-objects.

Proof. It is injective, because Hom(−, “ lim
−→m,n

Wm
n ”) = M(−) is an exact

functor. To show that is a hull, we must prove that any non-trivial sub-
group scheme G ⊂ Wm

n contains im−1vn−1(W 1
1 ) ∼= ααp. For this note first

that Wm
n , and hence G, is an extension of copies of ααp. In particular there

exists a monomorphism ααp ↪→ G. On the other hand, Lemma 22.1 implies
that im−1vn−1 induces an isomorphism Hom(ααp,W

1
1 )
∼→ Hom(ααp,W

m
n ). Thus

im−1vn−1(W 1
1 ) is the only copy of ααp inside Wm

n , and so this copy must be
contained in G, as desired.

Remark. For any abelian category C with an injective cogenerator I one has
a faithful exact contravariant functorX 7→ HomC(X, I) to the category of left
modules over EndC(I). If C is artinian, i.e., if every object has finite length,
one can show that this defines an anti-equivalence of categories from C to
the category of left modules of finite length over EndC(I). Above we have
essentially done this for the category of finite commutative group schemes
annihilated by Fm and V n, with I = Wm

n and EndC(I) = Em
n , and then

taken the limit over all m,n.

Remark. Instead of the contravariant functor M above, one can define a
covariant functor G 7→ lim

−→m,n
Hom(Wm

n , G) landing in right E-modules,

where the Wm
n are viewed as an inverse system with transition epimor-

phisms r and f , and on which the action of W (k) must be defined differ-
ently. The “main theorem of covariant Dieudonné theory in the local-local
case” is then the direct analogue of Theorem 23.2 and can be proved sim-
ilarly. It can also be deduced from Theorem 23.2 itself by showing that
N 7→ lim

−→m,n
HomE(N,Em

n ) defines an antiequivalence between left and right

E-modules of finite length with F and V nilpotent.
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Lecture 11

January 13, 2005

Notes by Ivo Dell’Ambrogio

§24 Pairings and Cartier duality

Logically, this section could have followed right after §4. Let G, G′ and H
be commutative group schemes over a scheme S.

Definition. A morphism G′ ×S G→ H of schemes over S is called bilinear
if it is additive in each factor, or equivalently, if for every scheme T over S
the induced map G′(T )× G(T ) → H(T ) is bilinear in the usual sense. The
group of such bilinear morphisms will be denoted by BilinS(G

′ ×S G,H).

Definition. Denote by HomS(G,H) the contravariant functor

SchS → Ab, T 7→ HomS(G,H)(T ) := HomT (GT , HT ).

If it is representable, the representing group scheme over S will also be de-
noted by HomS(G,H).

Note. One can show that HomS(G,H) is representable whenever G is finite
and flat over S. Unfortunately, the detailed study of BilinS(G

′×S G,H) and
HomS(G,H) is beyond the scope of this course because of time constraints.

Proposition 24.1 (Adjunction formula). There exists an isomorphism

BilinS(G
′ ×S G,H) ∼= HomS(G

′,HomS(G,H)),

which is functorial in all variables. This of course determines HomS(G,H)
up to natural isomorphism.

Proof. By definition giving a morphism ϕ : G′ → HomS(G,H) is equivalent
to giving a homomorphism ϕ′ : G′×SG −→ G′×SH of group schemes over G′.
Thus ϕ′ must be a morphism of schemes over S whose first component is the
projection to G′ and whose second component is a morphism ψ : G′×SG→ H
that is additive in G. Moreover, one easily checks that ϕ is additive if and
only if ψ is additive in G′. This sets up the desired bijection, and one easily
checks that it is a group isomorphism and functorial in all variables.

Definition. A bilinear morphism β : G′×SG→ H is nondegenerate at G′ if,
for all T → S and all 0 6= g′ ∈ G′(T ), the homomorphism β(g′,−) : GT → HT

is nontrivial. One similarly defines the notion nondegenerate at G.
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Note. It is clear that β is nondegenerate at G′ if and only if the associated
homomorphism G′ → HomS(G,H) is a monomorphism.

Proposition 24.2. If G is finite flat over S, there is a functorial isomorphism
HomS(G,Gm,S) ∼= G∗, and in particular HomS(G,Gm,S) is representable.

Proof. For all schemes T over S we must construct a natural isomorphism
HomT (GT ,Gm,T ) ∼= G∗(T ). By passing to an affine covering of T it suffices
to do this when T itself is affine. After replacing G→ S by GT → T , we may
also assume that T = S. As usual, we then write S = SpecR, G = SpecA,
and G∗ = SpecA∗, where A∗ = HomR(A,R). By definition, HomS(G,Gm,S)
is the group of morphisms ϕ : G→ Gm,S of schemes over S such that the left
hand side of the following diagram commutes:

G×S G m //

ϕ×ϕ
��

G

ϕ

��

S
εoo

1}}{{
{{

{{
{{

Gm,S ×S Gm,S
m // Gm,S

Since every homomorphism maps the unit element to the unit element, the
whole diagram then commutes. Next, these morphisms are in bijection to
morphisms ϕ : G→ A1

S of schemes over S such that

G×S G m //

ϕ×ϕ
��

G

ϕ

��

S
εoo

1����
��

��
��

A1
S ×S A1

S
m // A1

S

commutes; in fact, every such ϕ : G → A1
S automatically lands inside Gm,S,

because for every point g of G we have ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(ε) = 1,
showing that ϕ(g) is invertible. These morphisms in turn correspond to
R-algebra homomorphisms R[T ]→ A such that

A⊗ A A
moo ε // R

R[T ]⊗ R[T ]

OO

R[T ]

OO

T⊗T←pToo
T 7→1

::tttttttttt

commutes. But giving an R-algebra homomorphism R[T ]→ A is equivalent
to giving the image a of T , so we obtain a bijection to the set

{
a ∈ A

∣∣ m(a) = a⊗ a, ε(a) = 1
}
.
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By biduality A ∼= A∗∗ we can identify this with the set

{
α ∈ HomR(A∗, R)

∣∣ ∀`, `′∈A∗ : α(m∗(`⊗`′)) = α(`) ·α(`′), α(ε∗(1)) = 1
}
.

Finally, these conditions say precisely that α : A∗ → R is a homomorphism
of R-algebras, i.e., corresponding to a point in G∗(S). The additivity and
functoriality are left to the reader.

Proposition 24.3. If G′ and G are both finite flat over S, then a bilinear
morphism β : G′ ×S G → Gm,S is nondegenerate at G′ and G if and only if
its adjoint G′ → HomS(G,Gm,S) = G∗ is an isomorphism.

Proof. We have seen that β is nondegenerate at G′ if and only if its adjoint
ϕ : G′ → G∗ is a monomorphism. Similarly, β is nondegenerate at G if
and only if its adjoint (after having swapped G′ and G!) ϕ′ : G → G′∗ is
a monomorphism. After the conscientious reader has checked that ϕ′ = ϕ∗,
she will see that the second fact is equivalent to ϕ being an epimorphism.

§25 Cartier duality of finite Witt group schemes

From this section onwards we will again work over a perfect field k of charac-
teristic p > 0. Our aim is to construct natural isomorphisms (W n

m)∗ ∼= Wm
n

for allm and n and to describe their relation with the action of E and with all
transition maps. The existence of an isomorphism (W n

m)∗ ∼= Wm
n alone can

be proved without the following technicalities, merely by characterizing Wm
n

up to isomorphism by a few simple properties. This makes a nice exercise
for the interested reader.

By Proposition 24.3 it suffices to construct a nondegenerate pairing Wm
n ×

W n
m → Gm,k, and for this we use the multiplication of Witt vectors. Recall

our notation Wn = W/V nW and Wm
n = ker(Fm|Wn). For all n and m

consider the morphisms

τmn : Wm
n →W, (x0, . . . , xn−1) 7→ (x0, . . . , xn−1, 0, 0, . . .).

Their images form a system of infinitesimal neighborhoods of 0 inside W ,
and we are interested in the formal scheme Ŵ :=

⋃
n,m τ

m
n (Wm

n ). Its points
over any k-algebra R are the elements x ∈ W (R) such that all components
xi are nilpotent and almost all are zero.

Lemma 25.1. (a) Addition in W induces a morphism Ŵ × Ŵ → Ŵ .

(b) Multiplication in W induces a morphism W × Ŵ → Ŵ .

In other words, Ŵ (R) is an ideal in W (R) for all R.
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Proof. The phantom component Φn(x) = xp
n

0 + pxp
n−1

1 + · · · + pnxn is an
isobaric polynomial of degree pn, if we set deg(xi) = pi. Recall that addition
in W is given by x + y = s = (s0, s1, . . .), where the si are polynomials in
Z[x, y] characterized by Φn(s) = Φn(x) + Φn(y), this last being the usual
addition. Thus Φn(s) is isobaric of degree pn when deg(xi) = deg(yi) = pi,
which in turn implies by induction that sn is isobaric of degree pn. Plugging
in any x, y ∈ Ŵ (R), we deduce that si(x, y) is nilpotent for all i and that it
is zero for i� 0. This proves (a).

For (b) we similarly note that multiplication in W is given by x · y = p
= (p0, p1, . . .), where Φn(p) = Φn(x) · Φn(y). One finds that pn ∈ Z[x, y]
is isobaric of degree pn when deg(yi) = pi and deg(xi) = 0, and then one
concludes with the same argument.

Note. Lemma 25.1 (a) defines an additive group structure on the formal

scheme Ŵ , making it a “group formal scheme”, that is, a group object in the
category of formal schemes. However, the morphisms τmn : Wm

n → Ŵ are no

group homomorphisms and their images no group subschemes, so Ŵ should
not be confused with the ind-object “ lim

−→m,n
Wm
n ” from Proposition 23.9!

Lemma 25.2. (a) The Artin-Hasse exponential induces a group homomorph-

ism Ŵ → Gm,k, x 7→ E(x, 1).

(b) For all x ∈W (R) and y ∈ Ŵ (R), we have E
(
(V x) ·y, 1

)
= E

(
x ·(Fy), 1

)
.

(c) For all n ≥ 1, all x, x′ ∈ W (R) with the same image in Wn(R), and all

y ∈ Ŵ (R) such that F ny = 0, we have E(x · y, 1) = E(x′ · y, 1).

Proof. (a) By definition E(x, t) =
∏

n≥0 F (xnt
pn

) ∈ 1 + tZ[x][[t]], where

F (t) = 1 − t ± · · · ∈ 1 + tZ(p)[[t]]. Thus for any x ∈ Ŵ (R) the series
E(x, t) is actually a polynomial in t with constant term 1. In particular it
can be evaluated at t = 1, yielding an element E(x, 1) ∈ Gm(R). Thus the
morphism in question is defined, and it is a homomorphism because E itself
defines a group homomorphism from W = Wk to the multiplicative group
scheme Λk = “1 + tA1

k[[t]]”.
(b) follows from Proposition 21.1 (g) by setting t = 1.
(c) By assumption x − x′ maps to zero in Wn(R), so it must be of the

form x− x′ = V nz for some z ∈W (R). Thus x = x′ + V nz. We deduce that

E
(
xy, 1

)
= E

(
(x′+V nz)y, 1

)
= E

(
x′y+(V nz)y, 1

)
= E

(
x′y, 1

)
·E
(
(V nz)y, 1

)
,

where we have also used the distributive law in W , Lemma 25.1, and the
homomorphy of E. But (b) implies that the last factor is

E
(
(V nz)y, 1

)
= E(z(F ny), 1) = 1,

since F ny = 0 by assumption.
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Theorem 25.3. For all n,m ≥ 1 there is a well-defined nondegenerate bi-
linear morphism

Wm
n ×W n

m → Gm,k, (x, y) 7→ 〈x, y〉 := E
(
τmn (x) · τnm(y), 1

)
,

and it satisfies the following relations:
(a) 〈x, y〉 = 〈y, x〉,
(b) 〈vx, y〉 = 〈x, fy〉,
(c) 〈rx, y〉 = 〈x, iy〉,
(d) 〈V x, y〉 = 〈x, Fy〉,
(e) 〈ξx, y〉 = 〈x, ξy〉 for all ξ ∈W (k).

In particular, its adjoint is a canonical isomorphism Wm
n
∼→ (W n

m)∗.

Proof. Lemmas 25.1 (b) and 25.2 (a) imply that the morphism is well-defined.
To see that it is bilinear, consider any x, x′ ∈ Wm

n (R) and y ∈W n
m(R). Then

τmn (x+x′) and τmn (x)+τmn (x′), even though they might be different in Ŵ (R),
have the same image in Wn(R). Thus using Lemma 25.2 (a) and (c) one
directly computes that 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉, as desired.

The same reasoning with τmn (ξx) and ξ · τmn (x) works for (e), and with
τmn (rx) and τmn+1(x) for x ∈ Wm

n+1(R) it works for (c). Part (b) results from
the calculation

〈vx, y〉 = E
(
τmn+1(vx) · τn+1

m (y), 1
)

= E
(
(V τmn (x)) · τn+1

m (y), 1
)

25.2 (b)
= E

(
τmn (x) · (Fτn+1

m (y)), 1
)

= E
(
τmn (x) · τnm(fy), 1

)
= 〈x, fy〉

for any x ∈ Wm
n (R) and y ∈ W n+1

m (R). Moreover, (a) is obvious, and (d)
follows from (b) and (c) and the relations V = rv and F = fi from §22.

It remains to prove nondegeneracy, and for this we begin with the case
n = m = 1. Since W 1

1 = ααp is simple, it suffices to prove that the pairing is
nontrivial. But in this case we have

〈x, y〉 = E
(
τ 1
1 (x) · τ 1

1 (y), 1
) 20.7

= E
(
τ 1
1 (xy), 1

)
= F (xy) = 1− xy ± . . . ,

which is not identically 1 for (x, y) in ααp × ααp, as desired.
The general case can be deduced from this in two ways. One way is to

perform induction over n and m, by relating the short exact sequences from
the beginning of §22 and their Cartier duals, using the adjunctions in (b)
and (c), and then applying the five lemma. Another way is to first show that
every non-zero subgroup scheme G ⊂ Wm

n contains im−1vn−1(W 1
1 ). Indeed,

this follows at once from Lemma 22.1 and the fact that G must possess a
subgroup scheme isomorphic to ααp ∼= W 1

1 . By symmetry, it is then enough to
show that 〈−,−〉 is non-trivial on im−1vn−1(W 1

1 ) ×W n
m, which follows from

the special case n = m = 1 by (b) and (c).
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Lecture 12

Januar 28, 2005

Notes by Alexander Caspar

§26 Duality and the Dieudonné functor

Let k be a perfect field of characteristik p > 0 and W (k) its ring of Witt
vectors, and consider the torsion W (k)-module

T := W (k)
[

1
p

]
/W (k).

Proposition 26.1. The functor

N 7→ N∗ := HomW (k)(N, T )

defines an anti-equivalence from the category of finite length W (k)-modules
to itself, and there is a functorial isomorphism

N ∼= (N∗)∗.

Proof. The biduality homomorphism N → (N∗)∗ is obtained by resolving the
evaluation pairing N×N∗ → T . It suffices to prove that this homomorphism
is an isomorphism; everything else then follows. Since the functor is addi-
tive, and every N is a direct sum of cyclic modules, it suffices to prove the
isomorphy in the case N = W (k)/pnW (k). But that is straightforward.

We denote by σ the endomorphism of T that is induced by F , the Frobe-
nius on W (k). Let E be the ring of “noncommutative polynomials” over
W (k) in the two variables F and V with the relations as defined in §23. For
any left E-module N we define maps F, V : N∗ → N∗ by

` 7→ F`, n 7→ (F`)(n) := σ(`(V n)),

` 7→ V `, n 7→ (V `)(n) := σ−1(`(Fn)).

As F is σ-linear and V is σ−1-linear with respect to W (k), the twists by σ±1

on the right hand side are precisely those necessary to make F` and V ` again
W (k)-linear. One easily calculates that together with the usual W (k)-action
on N∗, this turns N∗ into a left E-module.

Proposition 26.2. The functor N 7→ N∗ defines an anti-equivalence from
the category of finite length left E-modules to itself, and there is a functorial
isomorphism

N ∼= (N∗)∗.
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Proof. This is a direct consequence of Proposition 26.1.

The aim of this section is to show:

Theorem 26.3. For any local-local commutative group scheme G there is a
functorial isomorphism of E-modules

M(G∗) ∼= M(G)∗.

Note. The idea behind the proof is to reduce the general case to the case
G = W n

n and to use the isomorphism (W n
n )∗ ∼= W n

n from Theorem 25.3.

We start with the isomorphisms from Proposition 23.3 (a)

(26.4) En
n := E/(EF n + EV n) ∼= End(W n

n ) ∼= M(W n
n ).

We denote the residue class of e ∈ E in En
n by [e].

Note that En
n is an algebra quotient of E, that is noncommutative in

general. We will always consider En
n as a left E-module. Multiplication on

the right by any e ∈ E induces an endomorphism of left E-modules, which we
denote by ρe : En

n → En
n . Recall that by definition any ξ ∈W (k) acts on W n

n

through multiplication by σ−n(ξ); we denote this endomorphism by µσ−n(ξ) :
W n
n →W n

n . For the later use we observe that under the isomorphisms (26.4)
the following endomorphisms correspond:

(26.5)

action on
∖

of ξ ∈W (K) F V

M(W n
n ) M(µσ−n(ξ)) M(F ) M(V )

o‖

End(W n
n ) ( ) ◦ µσ−n(ξ) ( ) ◦ F ( ) ◦ V

o‖

En
n ρξ ρF ρV

Next we determine the relation with the epimorphism fr : W n+1
n+1 → W n

n .

Lemma 26.6. The following diagram commutes:

M(W n
n ) � � M(fr) // M(W n+1

n+1 )

End(W n
n ) � � iv◦( )◦fr //

o

End(W n+1
n+1 )

o

En
n

� � [p]: [e] 7→[pe] //

o

En+1
n+1 .

o
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Proof. The top square commutes, because iv : W n
n ↪→ W n+1

n+1 induces the
transition map in the direct system defining M . For the bottom square,
since all arrows are E-module homomorphisms, it suffices to prove the com-
mutativity for the generator [1]. But this follows from:

id
� // ivfr = V F = p · id

[1]
_

OO

� // [p].
_

OO

By the self-duality (W n
n )∗ ∼= W n

n and the isomorphisms 26.4, Theorem
26.3 in the special case G = W n

n amounts to an isomorphism of left E-
modules (En

n)
∗ ∼= En

n . Our next job is to construct such an isomorphism
directly. First we decompose En

n as a left W (k)-module as

(26.7) En
n =

⊕

|i|<n

W (k)/pn−|i|W (k) ·
{

[F |i|], i ≥ 0,

[V |i|], i ≤ 0.

We define a left W (k)-bilinear pairing

〈 , 〉n : En
n ×En

n → T,

by setting
〈[F i], [F i]〉n := 〈[V i], [V i]〉n := [p−(n−i)],

for any 0 ≤ i ≤ n and mapping all the other pairs of generators to zero.

Lemma 26.8. This is a symmetric, perfect bilinear pairing of left W (k)-
modules, and it satisfies the following relations for all e, e′ ∈ E and ξ ∈ W (k):

(a) 〈[Fe], [e′]〉n = σ (〈[e], [V e′]〉n)

(b) 〈[eF ], [e′]〉n = 〈[e], [e′V ]〉n
(c) 〈[eξ], [e′]〉n = 〈[e], [e′ξ]〉n
(d) 〈[pe], [e′]〉n+1 = 〈[e], [e′]〉n

Proof. The first statement follows directly from the construction. It is enough
to prove the remaining formulas when e and e′ are W (k)-multiples of classes
of generators. For example, for α, β ∈W (k) and 0 ≤ i ≤ n we have

〈[FαF i], [βF i+1]〉n = 〈[σ(α)F i+1], [βF i+1]〉n = [σ(α)βp−(n−i−1)] and
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σ
(
〈[αF i], [V βF i+1]〉n

)
= σ

(
〈[αF i], [σ−1(β)pF i]〉n

)
= σ

(
[ασ−1(β)pp−(n−i)]

)
,

which are equal. Together with similar calculations this proves (a). (b) is
proved in the same way, except that no twist by σ occurs, because F and
V are multiplied from the right. What happens in (c) is illustrated by the
typical case:

〈[F iξ], [F i]〉n = 〈[σi(ξ)F i], [F i]〉n = [σi(ξ)p−(n−i)]

= 〈[F i], [σi(ξ)F i]〉n = 〈[F i], [F iξ]〉n.

Finally, (d) is also straightforward.

Lemma 26.9. The pairing 〈 , 〉n induces a left E-linear isomorphism

En
n
∼= (En

n)
∗.

Proof. By the first assertion of Lemma 26.8 only the compatility with F and
V needs to be checked. But that follows at once from 26.8 (a), from the
symmetry of the pairing, and the definition of the action of F and V on
(En

n)∗.

Now we can construct the isomorphism in Theorem 26.3. Fix a local-local
G and take any n � 0 such that F n and V n annihilate G. Then they also
annihilate G∗ and M(G∗) and M(G)∗. We obtain the following sequence of
isomorphisms

M(G∗) ∼= Hom(G∗,W n
n )

25.3∼= Hom(G∗, (W n
n )∗)

Cartier duality∼= Hom(W n
n , G)

23.2∼= HomE(M(G),M(W n
n ))

26.4∼= HomE(M(G), En
n)

26.2∼= HomE((En
n)∗,M(G)∗)

26.9∼= HomE(En
n ,M(G)∗)

evaluate at [1]∈En
n∼= {` ∈M(G)∗|F n` = V n` = 0}

= M(G)∗.

Clearly the composite isomorphism is functorial in G. It remains to show
that it is E-linear and independent of n. To prove that it is E-linear we trace
the action through the whole sequence of isomorphisms:
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action on
∖

of ξ ∈W (K) F V explanation

Hom(G∗,W n
n ) µσ−n(ξ) ◦ ( ) F ◦ ( ) V ◦ ( )

o‖ Theorem 25.3 (a,d,e)
Hom(G∗, (W n

n )∗) µ∗σ−n(ξ) ◦ ( ) V ∗ ◦ ( ) F ∗ ◦ ( )
o‖

Functoriality of
Cartier duality

Hom(W n
n , G) ( ) ◦ µσ−n(ξ) ( ) ◦ V ( ) ◦ F

o‖ Functoriality of M
HomE(M(G),M(W n

n )) M(µσ−n(ξ)) ◦ ( ) M(V ) ◦ ( ) M(F ) ◦ ( )
o‖ Table (26.5)

HomE(M(G), En
n) ρξ ◦ ( ) ρV ◦ ( ) ρF ◦ ( )

o‖
Functoriality of ( )∗

from Lemma 26.2
HomE((En

n)∗,M(G)∗) ( ) ◦ ρ∗ξ ( ) ◦ ρ∗V ( ) ◦ ρ∗F
o‖ Lemma 26.8 (b,c)

HomE(En
n ,M(G)∗) ( ) ◦ ρξ ( ) ◦ ρF ( ) ◦ ρV
o‖

explicit calculation,
see below

M(G)∗ ξ F V

The explicit calculation verifying the last step is the commutativity of the
following diagram for any ϕ ∈ HomE(En

n ,M(G)∗) and any e ∈ E:

ϕ � //
_

��

ϕ( · e)
_

��
ϕ([1]) � // e · ϕ([1]) = ϕ([e]).

Finally, the following commutative diagram gives the independence of n:

Hom(G∗,W n
n ) � � iv◦(·) //

o

Hom(G∗,W n+1
n+1 )

o Theorem 25.3 (b,c)

Hom(G∗, (W n
n )∗) � � (fr)∗◦(·) //

o

Hom(G∗, (W n+1
n+1 )∗)

o
Functoriality of
Cartier duality

Hom(W n
n , G) � � (·)◦fr //

o

Hom(W n+1
n+1 , G)
o Functoriality of M

HomE(M(G),M(W n
n )) � � M(fr)◦(·) //

o

HomE(M(G),M(W n+1
n+1 ))

o Lemma 26.6
HomE(M(G), En

n) � � [p]◦() //

o

HomE(M(G), En+1
n+1)

o Functoriality of ( )∗

HomE((En
n)∗,M(G)∗) � � (·)◦[p]∗ //

o

HomE((En+1
n+1)

∗,M(G)∗)
o Lemma 26.8 (d)

HomE(En
n ,M(G)∗) � � (·)◦[1] //

o

HomE(En+1
n+1 ,M(G)∗)
o evaluation at [1]

M(G)∗
id // M(G)∗
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Lecture 13

February 03, 2005

Notes by Stefan Gille

§27 The Dieudonné functor in the étale case

Let E act on Wn from the left hand side, where F and V act as such and
ξ ∈ W (k) through multiplication by σ−n(ξ). Then the monomorphisms
v : Wn ↪→ Wn+1 are E-equivariant (compare Prop. 23.1). Also, the Wm

n

form a fundamental system of infinitesimal neighborhoods of zero in all Wn.
Thus for G local-local the functor M of §23 can be described equivalently
as M(G) = lim

−→ n
Hom(G,Wn). Using this latter description we now prove a

similar result for reduced-local groups:

Theorem 27.1. The functor G 7−→ M(G) = lim
−→ n

Hom(G,Wn) induces an
anti-equivalence of categories:

{{
finite commutative
étale group schemes
over k of p-power order

}}
∼−→
{{

left E-modules of
finite length with
F an isomorphism

}}
.

Moreover, lengthW (k)M(G) = logp |G|.
Remark. The target category can be identified with the category of finite
length W (k)-modules N together with a σ-linear automorphism F : N → N ,
because V is determined by the relation V = pF−1.

Remark. In [DG70] and [Fo77] the above theorem is proved jointly with the
local-local case and using the same kind of reductions. But it also ties up
nicely with descent and Lang’s theorem, which have an independent interest,
and which I want to describe.

Theorem 27.2 (Lang’s Theorem). Let k be an algebraically closed field
of positive characteristic. Let G be a connected algebraic group of finite type
over k, and F : G→ G a homomorphism with dF = 0. Then the map

G(k) −→ G(k), g 7−→ g−1 · F (g)

is surjective.

Proof. For any g ∈ G(k) the morphismG→ G, h 7→ h−1gF (h) has derivative
− id everywhere, which is surjective; hence this morphism is dominant. As
G is connected, the image contains an open dense subset Ug ⊆ G. The same
holds in particular with g = 1. It follows that Ug∩U1 6= ∅, and therefore there
exist h, h̃ ∈ G(k) with h−1gF (h) = h̃−1F (h̃). Thus g = hh̃−1F (h̃)F (h)−1 =
(h̃h−1)−1 · F (h̃h−1), as desired.
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Proposition 27.3. Let k be an algebraically closed field of positive charac-
teristic. Let N be a W (k)-module of finite length together with a σ-linear
automorphism F : N → N . Then

NF := {n ∈ N |Fn = n }

is a finite commutative p-group, and the natural homomorphism

W (k)⊗Zp N
F −→ N , x⊗ n 7−→ xn

is an isomorphism. In particular lengthW (k)N = logp |NF |.

Proof. Consider first the special case N = Wn(k) with F = σ. In this case
we have

NF = Wn(k
F ) = Wn(Fp) = Z/pnZ,

from which the claim obviously follows. The same follows for direct sums
of modules of this type. In the general case, the proposition amounts to
showing that every N is isomorphic to such a direct sum, because the desired
isomorphism W (k)⊗Zp N

F → N is equivariant with respect to σ⊗ id on the
source and F on the target.

To identify N with such a direct sum, we begin with any isomorphism of
W (k)-modules

ϕ :

r⊕

i=1

Wni
(k)

∼−→ N.

Via this the endomorphism ring

EndW (k)N
∼=

r⊕

i,j=1

Wmin{ni,nj} , k

can be viewed as a unitary ring scheme over k. As a scheme it is isomorphic
to an affine space of some dimension over k; in particular it is irreducible.
Its group of units G := AutW (k)N is an open subscheme in it; hence G is a
connected algebraic group over k. The given σ-linear automorphism F then
has the form ϕgσϕ−1 for some g ∈ G(k). By Lang’s theorem applied to the
Frobenius on G we can write g = h−1 · σ(h) for some h ∈ G(k). Thus

F = ϕh−1σ(h)σϕ−1 = (ϕh−1)σ(hϕ−1) = (ϕh−1)σ(ϕh−1)−1 ,

which means that ϕh−1 is the desired F -equivariant isomorphism.
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Proof of Theorem 27.1 for k algebraically closed: In this case the source
category is equivalent to the category of finite commutative p-groups Γ, and
the functor gives:

Γ 7−→ Γk 7−→ lim
−→
n

Hom(Γk,Wn) .

The latter group is equal to lim
−→ n

Hom(Γ,Wn(k)), which in turn is isomorphic
to

Hom
(
Γ,W (k)

[
1
p

]
/W (k)

) ∼= W (k)⊗Zp Hom(Γ,Qp/Zp).

We note that Hom(Γ,Qp/Zp) is the Pontrjagin dual of Γ, and the action
of F corresponds to the action of σ ⊗ id on W (k) ⊗Zp Hom(Γ,Qp/Zp). By
Proposition 27.3 this gives the desired anti-equivalence and the formula for
the length.

Proof of Theorem 27.1 in general: Let k̄ be an algebraic closure of k. Then
we have (anti-)equivalences of categories:

{{
finite commutative
étale group schemes
over k of p-power order

}}
G 7→M(G) //

∼= G 7→Gk̄

��











finite length W (k)-
modules with a σ-linear
automorphism F





















finite commutative étale
group schemes over k̄ of
p-power order with a con-
tinuous Gal(k̄/k)-action










∼=

Gk̄ 7→M(Gk̄)
//











finite length W (k̄)-mod-
ules with a σ-linear auto-
morphism F and a con-
tinuous Gal(k̄/k)-action










.

N 7→NGal(k̄/k)∼=

OO

In fact, the vertical arrows are equivalences by descent, and the lower hori-
zontal arrow is an anti-equivalence by Theorem 27.1 for k̄, where it is proven
already, and the functoriality of M( ) under automorphisms of k̄. Since

M(Gk̄)
Gal(k̄/k) = lim

−→
n

Hom(Gk̄,Wn,k̄)
Gal(k̄/k) = lim

−→
n

Hom(G,Wn) = M(G),

the whole diagram commutes, and therefore the upper horizontal arrow is
an anti-equivalence, too. Finally the formula for the length is preserved by
descent, because

lengthW (k)M(G) = lengthW (k̄)W (k̄)⊗W (k) M(G) = lengthW (k̄)M(Gk̄) ,

and we are done.
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Caution. In general lengthW (k)M(G) 6= lengthEM(G), although for local-
local G the equality does hold. The point is that all simple local-local G have
order p, but not the simple étale ones.

Example. Let G(k̄) ∼= Frp with an irreducible action of the absolute Galois
group Gal(k̄/k). Then M(G) must be a simple E-module, i.e., we have
M(G) ∼= kr with an irreducible F -action.

§28 The Dieudonné functor in the general case

Recall from Theorems 15.5 and 17.1 that any finite commutative group
scheme of p-power order has a unique decomposition

G = Gr` ⊕ G`r ⊕ G`` .

In §23 and §27 we have already defined M(G``) and M(Gr`). Since G∗`r is of
reduced-local type, we can define:

(28.1) M(G) := M(Gr`) ⊕ M(G∗`r)
∗ ⊕ M(G``) .

By construction this is a finite length left E-module, and by combining The-
orem 27.1 and Propositions 23.3 (b) and 26.2, we deduce that

lengthW (k)M(G) = logp |G|.

Also, F and V are nilpotent on M(G``), and F is an isomorphism on M(Gr`).
Since FV = p in E, it follows that V is nilpotent on M(Gr`). The same holds
for M(G∗`r), and so V is an isomorphism and F is nilpotent on M(G∗`r)

∗. In
fact, such a decomposition exists for any finite length E-module:

Lemma 28.2. Every finite length left E-module has a unique and functorial
decomposition

M = Mr` ⊕ M`r ⊕ M``

where F is isom. nilpot. nilpot.

where V is nilpot. isom. nilpot.

Proof. The images of F n : M → M form a decreasing sequence of E-sub-
modules of M . Since M has finite length, this sequence stabilizes, say with
F nM = M ′ for all n � 0. Then F : M ′ → M ′ is an isomorphism; hence
M ′ ∩ ker(F n|M) = 0; and so by looking at the length we find that M =
M ′ ⊕ ker(F n|M). Repeating the same with V on ker(F n|M) we obtain the
desired decomposition. Uniqueness and functoriality are clear.
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Recall from Theorem 26.3 that there is a functorial isomorphism M(G∗``)
∼=

M(G``)
∗. By construction this isomorphism extends to G. Altogether we

have now proven:

Theorem 28.3. The functorM defined by (28.1) induces an anti-equivalence
of categories

{{
finite commutative
group schemes over
k of p-power order

}}
∼−→
{{

left E-modules
of finite length

}}
.

Moreover lengthW (k)M(G) = logp |G|, and there is a functorial isomorphism
M(G∗) ∼= M(G)∗.

Note. The definition M(G`r) := M(G∗`r)
∗ looks somewhat artificial and

cheap. But it is a fact that often one does need special arguments for G`r or
Gr`. Nevertheless Fontaine [Fo77] uses a uniform definition of M(G) for all
cases, basically using a combination of the Wn with the formal group scheme
Ŵ from §25.

In principle, since M is an equivalence of categories, all properties of G
can be read off from M(G). We end with an example:

Proposition 28.4. There is a natural isomorphism

TG,0 ∼=
(
M(G)/FM(G)

)∗
.

Proof. It suffices to show this in each of the cases G = Gr`, G`r, and G``. In
the first case TG,0 = 0 and F is an isomorphism on M(G), and so both sides
vanish. In the other two cases we have by Proposition 13.1

TG,0 ∼= Hom(G∗,Ga,k) = Hom(G∗,W1) .

Since M(G∗) = lim
−→ n

Hom(G∗,Wn) and W1 = ker(V |Wn) for all n ≥ 1, the
latter is

ker(V |M(G∗)) = ker(V |M(G)∗) = coker(F |M(G))
∗,

as desired.
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