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ABSTRACT

To every compatible system of Galois representations of a global field K, there is as-

sociated a natural invariant K
conn

, the smallest extension of K over which the associated

algebraic monodromy groups become connected. We present a purely field-theoretic con-

struction of K
conn

for all Galois representations arising from cohomology.

0. Introduction

Let K be a global field, that is, a number field or a function field in one
variable over a finite field. Let X be a complete non-singular variety over K,
and k a non-negative integer. Let K̄ denote a separable closure of K and X̄ the
variety obtained from X by extension of scalars to K̄. Then the dimension N

of the `-adic étale cohomology groups Hk(X̄, Q`) is independent of `, and the
natural action of the Galois group Gal(K̄/K) corresponds, after choosing a basis,
to a continuous representation ρ`: Gal(K̄/K) → GLN (Q`). The Zariski closure
of im(ρ`) inside the algebraic group GLN,Q`

is called the algebraic monodromy
group. Denote it by G` and let G◦

` be its identity component.
In [9] and [10], Serre showed that the open normal subgroup ρ−1

` (G◦
` ) of

Gal(K̄/K) is independent of `. This is proved for the Tate modules of an abelian
variety in [10], but the argument works in general (cf. also [5]). If Kconn denotes
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the finite extension of K corresponding to this open subgroup, then by Serre’s
result Kconn is characterized uniquely as the smallest subextension of K̄ such
that the Zariski closure of ρ`(Gal(K̄/Kconn)) is connected for any fixed `, or
equivalently for all `. Letting K` denote the (usually infinite) extension of K

corresponding to the kernel of ρ`, it is clear from this property that Kconn ⊂ K`.
Serre asked [11] whether the field Kconn can be characterized purely in terms of
the K`, or, more precisely, whether the inclusion

Kconn ⊂
⋂
`>n

K`

is an equality for all n. We can answer a somewhat stronger question affirma-
tively:

Theorem 0.1: Let E be any finite extension of Q. Let L be a set of rational
primes which includes all those that split completely in E except a set of Dirichlet
density zero. Then

Kconn =
⋂
`∈L

K`.

The authors would like to thank the Hebrew University for its hospitality while
this work was carried out and J-P. Serre for his permission to reproduce Theorem
1.2 below.

1. Galois Representations and Maximal Tori

The representations ρ`: Gal(K̄/K) → GLN (Q`) associated with Hk(X̄, Q`)
form a strictly compatible system in the sense of Serre [6]. This means the
following. Let Σ denote the finite set of primes of K where X has bad reduction,
and consider any prime v 6∈ Σ of K and any rational prime ` that is not divisible
by v. Then it is known firstly that the restriction of ρ` to any decomposition
group at v is unramified. This property implies that ρ`(Frobv) determines a well-
defined conjugacy class in im(ρ`), and so its characteristic polynomial depends at
most on ` and v. Secondly it is known that the coefficients of this characteristic
polynomial, which a priori lie in Q`, are already in Z. Thirdly, as elements of Z[x],
the characteristic polynomials of ρ`(Frobv) can be compared, and they turn out
to be independent of `. We can (and will) therefore speak of “the characteristic
polynomial” or “the eigenvalues” of Frobv for any v 6∈ Σ.
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Since ρ` arises from cohomology, we have some additional information on the
eigenvalues of Frobv. Let pv be the characteristic and qv = pnv

v the cardinality
of the residue field of v.

Theorem 1.1: Let α ∈ Q̄∗ be any eigenvalue of Frobv.
(a) The absolute value of α in every complex embedding is q

k/2
v .

(b) α is a unit at any non-archimedean place not above pv.
(c) For any non-archimedean valuation w of Q̄ such that w(pv) > 0, the ratio

w(α)/w(qv) lies in the interval [0, k] and its denominator is less than or equal
to N .

Assertion (a) means that α is a qv-Weil number of weight k; this is a cele-
brated theorem of Deligne [2]. Assertion (b) follows easily from the fact that
α is an eigenvalue of ρ`(Frobv) which lies in a compact subgroup of GLN (Q`).
Concerning assertion (c), the fact that α is an algebraic integer together with
Poincaré duality imply that the ratio lies in the interval [0, k]. The denominator
estimate is a consequence of the fact that α is also an eigenvalue of Frobenius on
crystalline cohomology. This results from the properties of crystalline cohomol-
ogy as a “Weil cohomology”, mostly due to Berthelot; see for instance the survey
article by Illusie [3] 1.3 (c), and Katz-Messing [4]. We will need assertion (c) only
insofar as it implies that the number of possibilities for the ratio w(α)/w(qv) is
finite. In the number field case this can be seen without an appeal to crystalline
cohomology, because from the inequality nv ≤ [K : Q] and the rationality of the
characteristic polynomial one can easily deduce that the denominator of the ratio
is at most N · [K : Q].

Serre [8] (cf. also Chi [1] Th. 3.7) showed that the properties listed in Theorem
1.1 have the following remarkable consequence. For any v 6∈ Σ and any ` not
divisible by v let Hv,` ⊂ G` denote the Zariski closure of the subgroup generated
by the semisimple part of ρ`(Frobv).

Theorem 1.2: For any ` there exists a Zariski closed proper subvariety Y ⊂ G◦
`

such that Hv,` is a maximal torus of G◦
` whenever ρ`(Frobv) ∈ G◦

` \ Y .

For any ρ`(Frobv) ∈ G◦
` it is clear that Hv,` is contained in some maximal

torus of G◦
` . The main problem in Theorem 1.2 is that, as a subgroup of a

maximal torus, there are a priori infinitely many different possibilities for Hv,`.
This difficulty is overcome by using the valuation information to show that the
number of possibilities for the identity component is in fact finite and that the
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exponent of the group of connected components is bounded. For the convenience
of the reader we reproduce a version of Serre’s proof.

Proof: Fix a prime ` and consider some v 6∈ Σ not dividing `. We tacitly choose
a basis of Hk(X̄, Q`)⊗Q`

Q̄` for which the semisimple part of ρ`(Frobv) becomes
a diagonal matrix tv, say with entries α1, . . . , αN . Then Hv,` is identified with
a subgroup of the standard torus GN

m of invertible diagonal matrices. For every
non-archimedean valuation w of Q̄ set

(1.2.1) λv,w :=
(w(α1)

w(qv)
, . . . ,

w(αN )
w(qv)

)
.

Consider a character

χ: GN
m → Gm, (x1, . . . , xN ) 7→

N∏
i=1

xai
i .

Lemma 1.3: With definitions as above:
(a) The character χ is trivial on H◦

v,` if and only if, for all w,

(χ, λv,w) :=
N∑

i=1

ai ·
w(αi)
w(qv)

= 0.

(b) There is a positive integer n depending only on N , such that, if χ is trivial on
H◦

v,`, then χn is trivial on Hv,`.
(c) As v runs through all primes not in Σ and not dividing `, there are only finitely

many possibilities for the group Hv,` ×Q`
Q̄` up to conjugation by GLN (Q̄`).

Proof: By its definition as Zariski closure, Hv,` lies in the kernel of χ if and only
if tv does. Similarly, χ is trivial on H◦

v,` if and only if χ(tv) is a root of unity.
Now observe that

(χ, λv,w) =
w(χ(tv))
w(qv)

.

Hence for χ(tv) to be a root of unity, it is clearly necessary that these values be
zero. We must show that this is also sufficient. If they are zero, then χ(tv) is a
unit in the ring of all algebraic integers. On the other hand, by the Weil number
property, its absolute value in every complex embedding is the same. It follows
that this absolute value must be 1. Since the only algebraic numbers whose
absolute value at every archimedean or non-archimedean place is 1 are the roots
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of unity, this proves (a). For (b) we note that this root of unity lies in the splitting
field of the characteristic polynomial of Frobv which is of degree at most N ! over
Q. Thus its order can be bounded purely in terms of N , as desired. For (c) we
first note that Theorem 1.1 (b) and (c) implies that the number of possibilities
for the tuple (1.2.1) is finite. On the other hand, any Zariski closed subgroup of
GN

m is determined uniquely by the set of characters χ whose restrictions to this
subgroup are trivial. This, together with (a) and (b) implies (c). tu

Returning to Theorem 1.2, let r denote the dimension of any maximal torus
of G◦

` . Let Z ⊂ GN
m denote the union of all the possible subgroups Hv,` given by

Lemma 1.3 (c) whose dimension is strictly less than r. Then the subset Y ⊂ G◦
`

of all points whose semisimple part is conjugate under GLN to an element of Z is
a Zariski closed proper subset. Suppose that ρ`(Frobv) lies in G◦

` \Y . Then Hv,`

is contained in some maximal torus of G◦
` . If it is not itself a maximal torus, its

dimension must be strictly less than r. Then by construction Hv,` and hence tv

is contained in Z. This contradicts the assumption ρ`(Frobv) 6∈ Y , thus finishing
the proof. tu

Recall that an element t ∈ GLN (F ) for a field F is called neat if and only if
the subgroup of F̄ ∗ generated by the eigenvalues of t is torsion free. Theorem
1.2 has the following consequence.

Corollary 1.4: For a set of primes v of Dirichlet density 1, if v splits in Kconn,
then ρ`(Frobv) is neat for any ` not divisible by v.

Proof: By strict compatibility the neatness property does not depend on `. Thus
we may apply Theorem 1.2 to any fixed `, noting that ρ`(Frobv) must be neat
whenever it comes to lie in G◦

` \Y . As a closed subgroup of GLN (Q`), the image
of ρ` may be regarded as an `-adic analytic subvariety of the affine space AN2

.
As it is Zariski-dense in G`, its intersection with Y is an analytic subvariety of
lower dimension. It follows from [7] §3 that in the limit as r → 0, the proportion
of balls in im(ρ`) of radius r which contain a point in Y tends to zero. Therefore,
the set of v such that ρ`(Frobv) ∈ Y has Dirichlet density zero. tu

2. The Behavior of Algebraic Eigenvalues at Different Primes `

Consider a collection of elements t` ∈ GLN (Q̄`) for all but finitely many ratio-
nal primes ` such that the set of eigenvalues of t` consists of algebraic numbers
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and is independent of `. Here we use a fixed embedding Q̄ ↪→ Q̄` for each `.
Forgetting finitely many primes ` we suppose that the eigenvalues are units at all
primes above `. Then the closed subgroup 〈t`〉 ⊂ GLN (Q̄`) generated by t` in the
`-adic topology is the direct product of a pro-`-group with a finite cyclic group of
order prime to `. We are asking what the prime-to-` parts have in common as `

varies. Although we really only need Corollary 2.2, to understand better what is
going on we study the problem in slightly greater generality. Fix a finite set P of
rational primes, and for any abelian group A and any rational prime p let np(A)
denote the order of the p-power torsion part of A. Let M denote the subgroup
of Q̄∗ generated by the eigenvalues of the t`. Let E be any finite extension of Q.

Proposition 2.1: For all ` for which t` is defined and all p 6= ` we have
np(〈t`〉) ≥ np(M). On the other hand, there exists a set of primes ` 6∈ P of
positive Dirichlet density satisfying

(a) ` splits completely in E, and

(b) np(〈t`〉) = np(M) for each p ∈ P .

Corollary 2.2: Suppose that the t` are neat, i.e. that M is torsion free. Then
there is a set of primes ` 6∈ P of positive Dirichlet density satisfying

(a) ` splits completely in E, and

(b) every continuous homomorphism from 〈t`〉 to a finite group of order p ∈ P is
trivial.

Proof: Let t′` denote the component of t` in the prime-to-` factor of 〈t`〉. The
torsion part of M consists of roots of unity, so it is finite cyclic of some order n.
For any prime p, the p-part of n is just np(M), and there exists a multiplicative
linear combination of the eigenvalues of t` which is a root of unity of precise order
np(M). If p 6= `, then the same is true for the eigenvalues of t′`. This implies that
the order of t′` is divisible by np(M), proving the first assertion of Proposition
2.1. If we replace all t` by tn` and consequently M by its subgroup Mn, then
both sides of the equation in Proposition 2.1 (b) decrease by the same factor,
namely by np(M). Thus it suffices to prove the remaining assertion after the
replacement has been made, i.e. under the assumption that M is torsion free.

Enlarge E so that it contains M . For any positive integer n let µn denote
the group of roots of unity of order n in Ē, and E(µn) the extension of E

generated by them. We suppose that E contains µp for every p ∈ P . Then the
field E(µpn ,Mp−n

) generated by all pn-th roots of elements of M is a Galois
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extension of E of p-power order, for any p ∈ P . By Proposition 2.3 below, the
field E(µpn+1 ,Mp−n

) is strictly larger whenever n is sufficiently large. Note that
its degree over E(µpn ,Mp−n

) is equal to p. Now fix some large n and let E′ be
the compositum of the fields E(µpn ,Mp−n

) for all p ∈ P . Then E′(µpn+1) still
has degree p over E′ for each p ∈ P , and in particular these extensions of E′

are all disjoint. The Čebotarev density theorem implies that the set of primes `

which split completely in E′ but not in any of the fields E′(µpn+1) has positive
Dirichlet density.

We claim that these primes have the desired properties. Indeed, the complete
splitting of ` in E′ implies that the eigenvalues of t` lie in (Q∗

` )
pn

for any p ∈ P .
Since they are also units at `, they are contained in (Z∗

` )
pn

. On the other hand
we have arranged matters such that ` splits completely in Q(µpn) but not in
Q(µpn+1), which means that pn is the highest power of p dividing `−1. It follows
that the p-part of any element of (Z∗

` )
pn

is trivial. Thus the p-part of 〈t`〉 is
trivial for any p ∈ P , as desired. tu

Proposition 2.3: Consider a finite extension E of Q, a finitely generated
torsion free subgroup M ⊂ E∗, and a rational prime p. Then for any sufficiently
large integer n we have

µpn+1 6⊂ E(µpn ,Mp−n

).

Proof: For the sake of brevity, we work at the finite level, but it is not difficult
and may be more natural, to work at the level of Zp-extensions.

We enlarge E so that it contains µp, and also µ4 if p = 2. Among other things
this ensures that the Galois group over E of the extension E(µp∞) generated by
all p-power roots of unity is topologically cyclic, say generated by an element σ.

Lemma 2.4: If µpn+1 6⊂ E, then

(E(µpn)∗)pn

∩ E∗ = (E∗)pn

.

Proof: Consider x ∈ E(µpn)∗ such that xpn ∈ E. Then σ(x)/x is a pn-th root
of unity. Choose a p-power root of unity ζ such that σ(ζ)/ζ = σ(x)/x. Then
y := x/ζ is fixed by σ, in other words, y ∈ E∗. This implies that

ζ = x/y ∈ E(µpn)∗ ∩ µp∞ = µpn
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under the assumption in the lemma. We conclude that xpn

= ypn ∈ (E∗)pn

, as
desired. tu

Now choose a compatible system of p-power roots of unity, that is, for each
n ≥ 0 a root of unity ζn ∈ Ē∗ of precise order pn such that ζp

n+1 = ζn. Suppose
that ζn+1 ∈ E(µpn ,Mp−n

). By Kummer theory, for n ≥ 1,

ζn+1 ∈ Mp−n

· E(µpn)∗.

Taking pn-th powers we deduce

ζ1 ∈ M · (E(µpn)∗)pn

.

Since both ζ1 and M are contained in E, we in fact have

ζ1 ∈ M ·
(
(E(µpn)∗)pn

∩ E∗).
Now Lemma 2.4 implies

(2.4.1) ζ1 ∈ M · (E∗)pn

whenever n is sufficiently large. Recall that E∗ is the product of its (finite)
torsion subgroup with a free abelian group of infinite rank. Thus the saturation

M sat := {x ∈ E∗| ∃m ≥ 1 : xm ∈ M}

of M is a direct factor of E∗ and finitely generated, and the equation (2.4.1)
reduces to

ζ1 ∈ M · (M sat)pn

.

Since for large enough n the p-primary part of M sat/M is annihilated by pn, this
implies ζ1 ∈ M . But this is impossible since M is torsion free. tu
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3. Proof of Theorem 0.1

Suppose that Kconn is properly contained in
⋂

`∈L K`. Since this intersection is
Galois over K, there exists a subfield L which is finite Galois over K and contains
Kconn properly. By the definition of K` the natural surjection Gal(K̄/K) →
Gal(L/K) factors through ρ` for every ` ∈ L.

Fix an element σ ∈ Gal(L/Kconn) of prime order p. By the Čebotarev density
theorem we can choose a prime v 6∈ Σ of K, unramified in L, such that the image
of Frobv in Gal(L/K) is conjugate to σ. The order of this image is then equal
to p. By Corollary 1.4 we can also achieve that ρ`(Frobv) is neat for any ` not
divisible by v.

Now we apply Corollary 2.2 to the elements t` := ρ`(Frobv). Since L contains
all primes that split completely in E except a set of Dirichlet density 0, we can
find a prime p 6= ` ∈ L satisfying Corollary 2.2 (b). That is, every continuous
homomorphism from the closed subgroup 〈ρ`(Frobv)〉 to a group of order p is
trivial. But this contradicts the choice of v, and Theorem 0.1 is proved. tu
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