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Abstract:

The general problem underlying this article is to
give a qualitative classification of all compact sub-
groups Γ ⊂ GLn(F ), where F is a local field and n is
arbitrary. It is natural to ask whether Γ is an open
compact subgroup of H(E), where H is a linear alge-
braic group over a closed subfield E ⊂ F . We show
that Γ indeed has this form, up to finite index and
a finite number of abelian subquotients. When Γ is
Zariski dense in a connected semisimple group, we
give a precise openness result for the closure of the
commutator group of Γ. In the case char(F ) = 0 the
answers have long been known by results of Chevalley
and Weyl. The motivation for this work comes from
the positive characteristic case, where such results are
needed to study Galois representations associated to
function fields. We also derive openness results over
a finite number of local fields.
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0. Introduction

Consider a local field F , i.e. a topological field that is either complete with respect to
a non-trivial discrete valuation with finite residue field, or that is isomorphic to R or C.
Let n be a positive integer. The general problem underlying this article is to understand
the structure of a compact subgroup Γ ⊂ GLn(F ) in view of properties that are shared by
all open subgroups of Γ.

When char(F ) = 0, it has long been known that Γ is a real or p-adic Lie group. The
main reason for this is that the logarithm and the exponential series allow us to go back
and forth between GLn(F ) and its Lie algebra. By results of Chevalley in the p-adic case
(cf. [1] ch.II §7) and Weyl in the real case (cf. [9] Ch. 4, Th. 2.1), one finds that Γ is
in some sense essentially algebraic, to wit: the commutator subgroup of a suitable open
subgroup of Γ is open in an algebraic group over R resp. Zp.

In positive characteristic it is not possible to translate the problem into one of Lie
algebras, as in the p-adic case. What is worse, there is no subfield E ⊂ F such that Γ is a
priori an “E-adic” Lie group. Thus even the definition of an algebraic envelope, in which
Γ has a chance to be open, poses substantial difficulties.

As a first step, let G be the Zariski closure of Γ in the algebraic group GLn,F . This is
a linear algebraic group, which may be assumed connected after Γ is replaced by a suitable
open normal subgroup. The intersection of Γ with the maximal solvable normal subgroup
of G is a successive extension of at most n abelian groups and can be studied directly
without much difficulty. Thus, after dividing G by its maximal solvable normal subgroup,
it remains to study the hard case that G is connected adjoint. Write G as a direct product
of Weil restrictions

∏m
i=1RFi/FGi, where each Gi is an absolutely simple adjoint group

over a finite extension Fi of F . Then we can view Γ as a subgroup of
∏m
i=1Gi(Fi). Thus

we are led to the following, slightly more general question.

The Setup: For each 1 ≤ i ≤ m let Gi be an absolutely simple connected adjoint
group over a local field Fi. Let Γ ⊂

∏m
i=1Gi(Fi) be a compact subgroup whose image in

each factor Gi(Fi) is Zariski dense. The problem is to give a qualitative classification of
such Γ. Note that in this formulation the Fi need not be given as extensions of one and
the same local field, and the Zariski density is required only in each individual factor. We
need not even assume that the Fi have the same residue characteristic. In this situation
the following phenomena can force Γ to be small. First, some Gi might be defined already
over a closed subfield Ei ⊂ Fi, such that the image of Γ in Gi(Fi) consists of Ei-valued
points. Second, there might be an isomorphism of algebraic groups Gi ∼= Gj over a field
isomorphism Fi ∼= Fj , for i 6= j, such that the image of Γ is contained in the graph of
the resulting isomorphism Gi(Fi) ∼= Gj(Fj). Third, there are some additional pathologies
involving non-standard inseparable isogenies for certain root systems in characteristics 2
and 3. Any promising concept of algebraic envelope of Γ has to take all these phenomena
into account.

The use of (quite elementary) group schemes provides an elegant language for this
discussion. Changing notation with regard to the beginning of this introduction, let us
now consider the commutative semisimple ring F :=

⊕m
i=1 Fi. Then the individual Gi fit
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together to a group scheme G over F , such that G(F ) =
∏m
i=1Gi(Fi). It may happen

that there exists a semisimple closed subring E ⊂ F such that F is of finite type as
module over E, another fiberwise absolutely simple adjoint group scheme H over E, and
an isogeny ϕ : H×EF −→ G such that Γ ⊂ ϕ(H(E)). In fact, each of the above phenomena
corresponds to such a situation.

Definition 0.1: We say that (F,G,Γ) is minimal if and only if, for any such (E,H, ϕ),
we have E = F and ϕ is an isomorphism.

As long as (F,G,Γ) is not minimal, we may replace it by any triple (E,H, ϕ−1(∆))
violating Definition 0.1. In Section 3 we prove that this process stops and that the resulting
triple can be chosen canonically. This can then be viewed as the desired algebraic envelope
of Γ.

Going on, let G̃ denote the universal covering of G, i.e. consisting of the universal
coverings of the individual Gi. Then the commutator morphism of G̃ factors through a
unique morphism [ , ]∼ : G × G −→ G̃. Let Γ′ ⊂ G̃(F ) be the closure of the subgroup
generated by [Γ,Γ]∼. For (E,H, ϕ) as above, let ϕ̃ : H̃ ×E F −→ G̃ be the associated
isogeny of universal coverings. The following is the main result of this article.

Main Theorem 0.2:

(a) There exist (E,H, ϕ) as above such that ϕ has nowhere vanishing derivative and Γ′ is
the image under ϕ̃ of an open subgroup of H̃(E).

(b) The ring E in (a) is uniquely determined, and H and ϕ are unique up to unique
isomorphism.

(c) In particular, if (F,G,Γ) is minimal, then Γ′ is open in G̃(F ).

The reader should be aware that we do not assert that Γ is the image of an open
subgroup of H(E). Indeed, this can be proved only when the isogeny G̃→ G is separable.

When ϕ is an isomorphism, one can view H as a model of G over E. By the classifi-
cation of semisimple groups, ϕ must be an isomorphism over Fi unless the root system of
Gi possesses roots of different lengths for which the square of the length ratio is equal to
the characteristic of Fi. This can happen only in characteristics 2 and 3.

While the formulation of Main Theorem 0.2 was motivated by the peculiarities of
the positive characteristic case, it is a pleasant surprise that a single statement covers all
kinds of local fields, archimedean and non-archimedean of all characteristics alike. One
can view the content of Main Theorem 0.2 as a combination of the field case together
with a statement about the interaction between different simple factors. The following
consequence means that the algebraic structure of G̃ and F is inherent in the structure of
any open compact subgroup as topological group! This can be viewed as a generalization
of Weyl’s theorem on the algebraicity of compact real Lie groups.

Corollary 0.3: For each i = 1, 2 consider a local field Fi, an absolutely simple simply
connected group G̃i over Fi, and an open compact subgroup Γ̃i ⊂ G̃i(Fi). Let f : Γ̃1

∼−−→
Γ̃2 be an isomorphism of topological groups. Then there exists a unique isomorphism of
algebraic groups G̃1

∼−−→ G̃2 over a unique isomorphism of local fields F1
∼−−→ F2, such

that the induced isomorphism G̃1(F1)
∼−−→ G̃2(F2) extends f .
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Another special consequence of Main Theorem 0.2, stated in the framework of abstract
topological groups and thus with less conceptual ballast, is the following:

Corollary 0.4: Consider a connected adjoint group G over a local field F and a compact
Zariski-dense subgroup Γ ⊂ G(F ). Let Γ′ denote the closure of the commutator subgroup
of Γ. Then there exists a local field E of the same characteristic and the same residue
characteristic as F , a connected adjoint group H over E, with universal covering π : H̃ →
H, and an open compact subgroup ∆ ⊂ H̃(E), such that Γ′ ∼= π(∆) as topological groups.

Finally, the reduction steps at the beginning of this introduction imply:

Corollary 0.5: Consider a local field F , a positive integer n, and a compact subgroup
Γ ⊂ GLn(F ). Then there exist closed normal subgroups Γ3 ⊂ Γ2 ⊂ Γ1 of Γ such that

(a) Γ/Γ1 is finite.

(b) Γ1/Γ2 is abelian of finite exponent.

(c) There exists a local field E of the same characteristic and the same residue character-
istic as F , a connected adjoint group H over E, with universal covering π : H̃ → H,
and an open compact subgroup ∆ ⊂ H̃(E), such that Γ2/Γ3

∼= π(∆) as topological
group.

(d) Γ3 is a successive extension of ≤ n abelian groups.

Trace Characterization: In applying Main Theorem 0.2 it will be desirable to
determine the subring E in advance and to have a criterion for ϕ to be an isomorphism.
This can be achieved in most cases using traces of Γ in suitable representations of G. We
restrict ourselves here to a few general results; more detailed information can be deduced
from the results of Section 3. For any representation ρ of G on an F -module of finite type
we let Otr(ρ) ⊂ F be the closure of the subring generated by 1 and by tr(ρ(Γ)), and put

Eρ :=
{
x
y

∣∣ x, y ∈ Otr(ρ), y ∈ F
∗
}
⊂ F.

Proposition 0.6: Let (E,H, ϕ) be as in Main Theorem 0.2.

(a) Suppose that F is a field and that ρ is a non-constant irreducible representation occur-
ring as subquotient of the adjoint representation of G. Then we have either Eρ = E,
or the characteristic p of F is 2 or 3 and Eρ = {xp | x ∈ E}.

(b) Suppose that F is a field, and that ρ is a subquotient of the adjoint representation of
G. Then Eρ ⊂ E. In particular, if Eρ = F , then E = F .

(c) Suppose that Eρ = F for all nowhere constant fiberwise irreducible representations ρ
which occur as subquotients of the adjoint representation of G. Then E = F and ϕ is
an isomorphism.

Related Work: The results of this article are similar, but in some sense comple-
mentary, to those of Weisfeiler [13] concerning strong approximation. His main result, in
a special case (see [13] Th. 9.1 and Th. 10.2), concerns a finitely generated Zariski dense
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subgroup Γ of an absolutely simple group over a global field F , and under some additional
assumptions he obtains a theorem on simultaneous approximation by Γ at all but a finite,
sufficiently large, set S of places of F . The Main Theorem 0.2 above is complementary
to that result in that it can be applied to the remaining places. The methods of [13]
and the present article can be combined to obtain a strengthening of Weisfeiler’s theorem.
The author plans to deal with this in a subsequent paper. Sections 2–4 of this article,
which apply equally to the local and the global case, have been written already with that
application in mind.

Returning to the local case, the motivation for Main Theorem 0.2 originally came
from the study of Galois representations associated to function fields. The consequences
for Drinfeld modules in generic characteristic are discussed in Pink [10].

Sketch of the Proof: We indicate the method in the following special case of Main
Theorem 0.2.

Theorem 0.7: Consider an absolutely simple connected adjoint group G over a local
field F and a compact Zariski-dense subgroup Γ ⊂ G(F ). Assume that the adjoint rep-
resentation of G is irreducible. Then there exists a model H of G over a closed subfield
E ⊂ F , such that Γ is an open subgroup of H(E).

To begin with, let AdG denote the adjoint representation of G on its Lie algebra g.
Abbreviate A := EndF (g), and let B ⊂ A be the closure of the Z-subalgebra that is
generated by AdG(Γ). Using Burnside’s theorem our assumptions imply F · B = A. With
arguments mainly from linear algebra we deduce (cf. Section 2):

Lemma 0.8: B is an order in a simple algebra B ⊂ A with center E ⊂ F , such that the
natural homomorphism B ⊗E F −→ A is an isomorphism.

By construction we have AdG(Γ) ⊂ B∗, which allows us to define a model of G over E,
following Vinberg [12]. Namely, let B∗, resp. A∗, denote the multiplicative group of B,
resp. A, viewed as algebraic group over E, resp. over F . Then B∗ is a model of A∗, i.e.
we have a natural isomorphism B∗×E F ∼= A∗. Let H be the Zariski closure of AdG(Γ) in
B∗. Then H ×E F is the Zariski closure of AdG(Γ) in A∗, which is AdG(G) ∼= G since Γ is
Zariski dense and G is adjoint. By construction we now have Γ ⊂ H(E), and it remains to
show that this subgroup is open. Note that replacing (F,G) by (E,H) leaves B unchanged,
so that without loss of generality we may assume that B is open in A, and we must prove
that Γ is open in G(F ).

Next select a B-invariant OF -lattice Λ ⊂ g. Let π be a uniformizer inOF , and consider
the subgroups

∆n :=
{
g ∈ G(F )

∣∣ (AdG(g)− id)(Λ) ⊂ πnΛ
}

for all integers n ≥ 0. These principal congruence subgroups form a cofinal system of open
compact subgroups of G(F ). For all n ≥ m ≥ 0 we have a natural group isomorphism

∆n/∆n+m
∼= πnΛ/πn+mΛ ,
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obtained by truncating the logarithm and exponential series after the first order term (cf.
Section 6). Put Γn := Γ ∩∆n for all n, then by construction the subgroup

Γn/Γn+m ⊂ ∆n/∆n+m
∼= πnΛ/πn+mΛ

is invariant under B. Fix an integer r ≥ 1 so that πr · EndOF
(Λ) ⊂ B, and choose n ≥ 2r

with Γn 6= Γn+1. Setting m := 2r we deduce

Γn/Γn+2r ⊃ ∆n+r/∆n+2r .

In other words, we have
Γn+r/Γn+2r = ∆n+r/∆n+2r .

Repeating the argument inductively with n+ (i− 1)r in place of n, we find

Γn+ir/Γn+(i+1)r = ∆n+ir/∆n+(i+1)r

for all i ≥ 1. This implies Γn+r = ∆n+r, hence Γ is open in G(F ), thus finishing the proof
of Theorem 0.7.

In the general case of Main Theorem 0.2 all remaining problems are related to insepa-
rable isogenies which are not powers of Frobenius. As a consequence one has to juggle with
congruence subgroups with respect to several groups at the same time. Other difficulties
arise from the fact that the ring B may be smaller than an order in a model of EndF (g).
For an element γ̃ ∈ Γ′ to generate many new elements under conjugation by Γ, one needs
roughly that the logarithm of γ̃ is sufficiently far away from the invariant proper subspaces
of the Lie algebra. This can be achieved by applying a suitable inseparable isogeny, if
necessary, and by raising γ̃ to a large power to make it look more toric. For the relevant
technical details see Section 7.

Outline of the Article: Section 1 summarizes a number of mostly well-known facts
concerning linear algebraic groups over arbitrary fields and their adjoint representations.
To make it understandable to a wider audience this paper has been written with an effort
to avoid scheme-theoretic machinery as much as possible.

In Section 2 we prove some general results on the image of the group ring of Γ in
an algebraic representation ρ of G, where F , G, and Γ are as above. For any semisimple
representation one obtains an order in a semisimple central algebra over a suitable subring
Eρ ⊂ F . We also discuss reducible representations in a special case.

In Section 3 the results of Section 2 are applied to the semi-simplification of the adjoint
representation of G. The fundamental observation here is that the adjoint representation
automatically descends to any model of G over a subring, and that its behavior under
isogenies can also be described. Using these facts, we find the candidate for (E,H, ϕ) in
Main Theorem 0.2 and are able to characterize it as in Proposition 0.6.

The study of the adjoint representation is continued in Section 4, where we give a full
qualitative characterization of the image of the augmentation ideal of the group ring of Γ.
Here the difficulties arise from the fact that the adjoint representation may be far from
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semisimple in small positive characteristic. The results of this section yield a first order
approximation for the action of Γ on small neighborhoods of the identity in G(F ), thereby
finishing roughly the first half of the proof.

The next two sections set up the technical framework for working with congruence
subgroups of G(F ). This concerns only the non-archimedean case; the archimedean sum-
mands of F will be dealt with by a separate argument in the last section. First, in Section 5
we choose local parameters which are compatible with the action of Γ and with various
other maps that must be carried along. Any such choice determines a system of principal
congruence subgroups. In Section 6 we discuss the linearization of certain quotients of
these by means of the truncated logarithm map.

After all these preparations the proof of Main Theorem 0.2 culminates in Section 7.
Having disposed of the archimedean summands of F , we must show that Γ′ contains
a suitable principal congruence subgroup. The principle here is again to start with a
suitably generic element γ̃ ∈ Γ′ and to conjugate it around by Γ. This is the point where
the results of Section 4 play a crucial role. A number of influences have to be balanced out
against each other, such as the size of the action of Γ, the choice of γ̃, and the presence
of non-standard isogenies. This makes the whole argument a relatively delicate matter.
However, most of these technical details are necessary only in extreme cases.

The reader willing to avoid certain pathological cases in characteristics 2 and 3 will
benefit from substantial technical simplifications throughout the article, except in Sec-
tion 2. We briefly indicate these. Let us rule out the root systems of type Bn, Cn (for
n ≥ 1), and F4 in characteristic 2, and type G2 in characteristic 3. Then in Section 3 any
quasi-model is a model, and using the results of Section 2 one easily proves the existence
and uniqueness of minimal quasi-models with E = EαG , as in Vinberg [12]. The study in
Section 4 can also be cut down significantly, but it cannot be avoided completely when
the isogeny G̃→ G is not separable. In that section and the remaining ones all the special
arguments involving the isogeny G→ H and the Frobenius isogeny can be discarded. Al-
together, the amount of technical details should decrease by about a third. By contrast,
the generality of allowing F to be a finite direct sum of fields introduces no difficulties.

The proofs of the results mentioned in this introduction will be given at the end of
section 7.
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1. Linear Algebraic Groups: Notations and Well-Known Facts

In this section we summarize a number of mostly well-known facts concerning lin-
ear algebraic groups over an arbitrary field F and their adjoint representations. For the
fundamentals of linear algebraic groups we refer to Borel [1] and Humphreys [8].

Generalities: For any positive integer n let GLn,F denote the algebraic group over
F of all invertible square matrices of size n. By a linear algebraic group over F we mean
a reduced group scheme over F which is isomorphic to a Zariski closed algebraic subgroup
of GLn,F for some n. Important examples of linear algebraic groups are GLn,F itself, in
particular the multiplicative group Gm,F = GL1,F , and the additive group Ga,F .

Throughout this article we distinguish between a linear algebraic group G over F
and the group of its F -valued points G(F ). Among other things G determines the groups
of F ′-valued points G(F ′) for any overfield F ′ of F . Namely, realize G as the subgroup
of GLn,F given by certain equations in the coefficients of n × n-matrices. Then G(F ′)
consists of those invertible n × n-matrices over F ′ which satisfy the same equations, and
this description is independent of the embedding G ↪→ GLn,F .

For any field homomorphism τ : F ↪→ F ′ and any linear algebraic group G over F the
fiber product G ×F,τ F

′ in the sense of schemes defines a linear algebraic group over F ′.
When τ is the inclusion of a subfield, we abbreviate this as G ×F F ′. If G ⊂ GLn,F ,
this base extension is then given by the same equations as G, we only “forget” that the
coefficients of these equations lie in the subfield F ⊂ F ′.

Representations: For any finite dimensional F -vector space V we have the algebraic
group of automorphisms AutF (V ). Namely, any choice of basis identifies V with a standard
vector space F⊕n and AutF (V ) with GLn,F . A homomorphism of algebraic groups ρ :
G −→ AutF (V ) is called a representation of G on V , and then, equivalently, V is called
a G-module. The representation is called irreducible, resp. the G-module simple, if and
only if V 6= 0 and it possesses no G-submodule other than 0 and V itself. It is called
absolutely irreducible if and only if it is irreducible and the only G-equivariant F -linear
endomorphisms of V are the scalars F .

Lie Algebra: The tangent space of G at the identity element 1 is the Lie algebra
LieG. Consider the commutator morphism

(1.1) [ , ] : G×G −→ G, (g, h) 7→ [g, h] := ghg−1h−1.

Its total derivative at the identity element yields the Lie bracket [ , ] : LieG × LieG →
LieG. On the other hand consider the conjugation morphism

G×G −→ G, (g, h) 7→ [g, h] := ghg−1.

Its derivative with respect to h, taken at h = 1, defines the adjoint representation

AdG : G→ AutF (LieG).

8



General Notions: The radical R(G) is the largest solvable connected normal alge-
braic subgroup of G. The group G is called semisimple if and only if its radical is trivial.
The derived group Gder ⊂ G is the linear algebraic subgroup generated by the image of
the commutator morphism (1.1). A connected semisimple group is called adjoint if and
only if its adjoint representation is faithful. More generally, if G is connected semisimple,
the image of G in the adjoint representation AdG : G→ AutF (LieG) is called the adjoint
group Gad. It is an adjoint semisimple group in its own right, although that is not entirely
obvious. The notions just explained are, like many others, invariant under base extension.
For instance, given G and any field extension F ⊂ F ′ we know that G is semisimple (resp.
adjoint) if and only if G×F F

′ has the same property.

Central Isogenies: (Cf. Borel-Tits [3] §2.) By definition an isogeny of connected
linear algebraic groups f : G → H is a surjective homomorphism with finite kernel. It
is called central if and only if the commutator morphism (1.1) of G factors through a
morphism H ×H → G. For example, for any connected semisimple group G the natural
homomorphism to its adjoint group G → Gad is a central isogeny. It has the universal
property that any central isogeny G → H induces an isomorphism on the adjoint groups
Gad ∼−−→ Had. At the other extreme, a connected semisimple group G is called simply
connected if and only if every central isogeny H → G is an isomorphism. For every
connected semisimple group G there exists a simply connected semisimple group G̃ and a
central isogeny π : G̃ −→ G, both unique up to unique isomorphism. This is called the
universal covering of G. By definition the commutator morphism of G̃ factors through a
morphism

(1.2) [ , ]∼ : G×G −→ G̃.

For any subgroup Γ ⊂ G(F ) we can therefore define the generalized commutator group
as the subgroup of G̃(F ) generated by [Γ,Γ]∼. Its image in G(F ) is, of course, the usual
commutator subgroup of Γ.

It is also interesting to look at the derivative of [ , ]∼ with respect to the second
argument. This is a morphism

(1.3) ÃdG : G −→ HomF (LieG,Lie G̃)

whose target is the vector space HomF (LieG,Lie G̃) viewed as an affine algebraic variety
over F . This morphism determines the adjoint representation of both G and G̃. For

instance, we easily calculate AdG = κ ◦ ÃdG, where κ is the morphism

(1.4)
κ : HomF (LieG,Lie G̃) −→ EndF (LieG),

f 7→ dπ ◦ f + id.

Simple Groups: A connected semisimple group over F is called simple if and only
if it is nontrivial and possesses no nontrivial connected proper normal algebraic subgroup.
The group G is called absolutely simple if and only if G ×F F

′ is simple for every field
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extension F ⊂ F ′. For the most part the study of connected semisimple groups reduces to
that of absolutely simple groups. Namely, suppose that G is adjoint or simply connected.
Then G is a direct product of simple groups, and each simple factor has the form RF ′/FH,
where RF ′/F denotes Weil restriction from a finite separable field extension F ⊂ F ′ and
H is an absolutely simple adjoint group over F ′. When F is separably closed, the adjoint
or simply connected semisimple groups over F are classified by their root systems. A
connected semisimple group is absolutely simple if and only if its root system is irreducible.
We shall abbreviate “absolutely simple connected adjoint semisimple” to “absolutely simple
adjoint”.

Inseparable Isogenies: An isogeny f : G −→ H is called separable (resp. totally
inseparable) if and only if the induced inclusion of function fields F (H) ↪→ F (G) is a
separable (resp. totally inseparable) field extension. Equivalently, f is separable if and
only if its derivative induces an isomorphism of Lie algebras, and it is totally inseparable if
and only if its kernel is supported only in the identity element of G. Note that an isogeny
may be both separable and totally inseparable, namely if and only if it is an isomorphism.

Every separable isogeny of connected semisimple groups is central. In the case char(F )
= 0 every isogeny is separable and hence central. Suppose that p := char(F ) > 0. Then
there exist both inseparable central isogenies and non-central ones. Let σ : F → F denote
the Frobenius endomorphism x 7→ xp. For any linear algebraic group G over F and any
integer n ≥ 0 put (σn)∗G := G×F,σn F . Then the morphism G→ G, defined by f 7→ fp

n

in any coordinate f over F , factors through a unique morphism Frobpn : G −→ (σn)∗G
that makes the following diagram commutative:

(1.5)

G //

((PPPPPPPPP

��

G

��

(σn)
∗
G

33ffffffffffffffffffff

||yy
yy

yy
yyy

y

SpecF //σn

SpecF

The morphism Frobpn is a totally inseparable isogeny, called the nth Frobenius isogeny.
When G is connected and non-commutative, and n ≥ 1, this isogeny is not central. The
composite of Frobenius isogenies is again a Frobenius isogeny.

Non-standard Isogenies: In a few special cases there exist totally inseparable isoge-
nies between connected semisimple groups which cannot be obtained from central isogenies
and Frobenius isogenies. The point is that the Frobenius isogeny Frobp itself can be fac-
tored in a non-trivial way. The resulting isogenies will be called non-standard.

Proposition 1.6: Let G be an absolutely simple adjoint group over F . Suppose that
p := char(F ) is positive and that the root system Φ of G possesses roots of different lengths
whose square length ratio is equal to p. Then the Frobenius isogeny Frobp of G factors
through totally inseparable isogenies

G
ϕ
−−→ G]

ϕ]

−−−→ σ∗G,
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such that neither ϕ nor ϕ] is an isomorphism. Here G] is another absolutely simple
adjoint group over F . If Φ] is its root system, the possibilities for (p,Φ,Φ]) are listed in
the following table.

p type of Φ type of Φ]

2 Bn (n ≥ 2) Cn
2 Cn (n ≥ 2) Bn
2 F4 F4

3 G2 G2

Proof: Suppose first that G splits over F , and fix a split maximal torus T ⊂ G. Let
Φs, resp. Φ` denote the set of short, resp. long roots in Φ. Then Φ] := Φ` t p · Φs

is again a root system. Let T ] be the quotient torus of T whose character group is the
Z-module generated by Φ]. Then there exists a split connected adjoint group G] over F
with maximal torus T ] and root system Φ]. The given isogeny T → T ] extends to an
isogeny ϕ : G→ G] (e.g., Takeuchi [11] Th. 5.4; the assumption that T splits is sufficient
there). The construction is such that the short root spaces in LieG are annihilated by dϕ,
while the long root spaces map isomorphically to the short root spaces in LieG].

Repeating this process with T ] the next root system is p ·Φ, so we can take T ]] = σ∗T
and G]] = σ∗G. The composite isogeny G→ σ∗G has zero derivative, so it factors through
Frobp ([1] Ch. V Ex. 17.5 (1)). In other words we have ϕ] ◦ϕ = ψ ◦Frobp for some isogeny
ψ : σ∗G −→ σ∗G. By construction ψ is the identity on σ∗T and on the root system p · Φ.
Thus it is an isomorphism ([1] Ch. V Prop. 22.4). After adjusting ϕ] by ψ−1 we have
ϕ] ◦ ϕ = Frobp, as desired.

When G is not split over F we first apply the above arguments to a split group G0 of
the same type. The Galois cocycle which twists G0 into G then can be used to twist all of
G0 → G]0 → σ∗G0, thus yielding the desired assertion in general.

For an alternative construction of G] note that the cases listed above are precisely
those where the adjoint representation of G possesses two Jordan-Hölder subquotients
corresponding to the short resp. the long roots (see below). Let k ⊂ LieG be the largest
G-invariant subspace containing the short root spaces but not the long root spaces. This
turns out to be a restricted Lie subalgebra in the sense of [1] Ch. I §3.1, and G] is nothing
but the quotient of G by k in the sense of [1] Ch. V Prop. 17.4. (Also, for an explicit
discussion of the orthogonal/symplectic case see Borel [1] §23.) �

Classification of Isogenies: All isogenies between connected semisimple groups can
be obtained from central isogenies, Frobenius isogenies, and the non-standard isogenies just
discussed. We shall make this assertion precise when G is adjoint.

Theorem 1.7: Let f : G→ H be an isogeny between two absolutely simple adjoint groups
over a field F of characteristic p.

(a) If p = 0, then f is an isomorphism.

11



(b) Suppose that p > 0 but that G possesses no non-standard isogenies. Then there exists
an integer n ≥ 0 and an isomorphism ψ : (σn)∗G ∼−−→ H such that f = ψ ◦ Frobpn .
If the derivative of f is non-zero, then n = 0 and f is an isomorphism.

(c) Suppose that G possesses non-standard isogenies and hence p > 0. Then there exists
an integer n ≥ 0 and an isogeny ψ : (σn)∗G −→ H with non-vanishing derivative
such that f = ψ ◦ Frobpn . Moreover, either ψ is an isomorphism or there exists an
isomorphism χ : (σn)∗G] ∼−−→ H such that ψ = χ ◦ ϕ where ϕ is the non-standard
isogeny introduced in Proposition 1.6.

Proof: Any homomorphism factors through Frobp whenever its derivative vanishes ([1]
Ch. V Ex. 17.5 (1)). By induction we can therefore reduce ourselves to the case df 6= 0.
When df is non-zero on all root spaces, then f is central ([1] Ch. V Prop. 22.4). Since
both groups are adjoint, f must then be an isomorphism, as desired. Otherwise ker(df) is
a G-invariant non-zero proper subspace of LieG containing some but not all root spaces.
Thus there is a non-standard isogeny ϕ : G → G]. Since H is adjoint, we easily find
that ker(df) = ker(dϕ). By [1] Ch. V Prop. 17.4 it follows that f = χ ◦ ϕ for an isogeny
χ : G] → H. By construction the derivative of χ induces an isomorphism on the short
root spaces, hence an isomorphism of root systems. Thus χ is a central isogeny ([1] Ch. V
Prop. 22.4), and therefore again an isomorphism, as desired. �

Let us note the following direct consequence.

Corollary 1.8: Consider isogenies G1
ϕ1
←−−− G

ϕ2
−−−→ G2 between absolutely simple adjoint

groups over a field F . Then one of them factors through the other, i.e. ϕ1 = ψ ◦ϕ2 for an
isogeny ψ : G2 → G1, or vice versa.

For non-adjoint groups we have, by Borel-Tits [3] Props. (2.24) and (2.26):

Proposition 1.9: Let ϕ : G→ H be an isogeny between connected semisimple groups.

(a) If G is simply connected, then ϕ factors uniquely as G → H̃ → H, where H̃ denotes
the universal covering of H.

(b) If H is adjoint, then ϕ factors uniquely as G→ Gad → H.

Structure of the Adjoint Representation: Consider an absolutely simple adjoint
group G over a field F , with universal covering G̃. Since the commutator morphism (1.1)
of G̃ factors through G, so does its adjoint representation. Thus, taking derivatives, the
isogeny G̃ → G induces a G-equivariant linear map between the associated Lie algebras
g̃ −→ g. We denote its kernel by z, its image by ḡ, and its cokernel by z∗. In short, we
have the exact sequences:

0 −→ z −→ g̃ −−−−−→ g

↘ ↗
ḡ

↗ ↘
0 0

−→ z∗ −→ 0

It will simplify the exposition to combine g̃ and g into a single representation.
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Proposition 1.10: There exists a representation ρ̂ of G on an F -vector space ĝ lying in
a commutative diagram of G-equivariant homomorphisms, in which all oblique lines are
exact:

0

##HH
HH

HH
H 0

0

##FF
FF

FF
F z

xx
xx

xx
x

xx
xx

xx
x

##FF
FF

FF
F z∗

IIIIII

IIIIII

::ttttttt
0

z

##FF
FF

FF
F ĝ

;;wwwwww

##
d$

GG
GG

GG
G z∗

;;wwwwwww

g̃

;;
di xxxxxxx

##GG
GG

GG
G g

::vvvvvvv

$$IIIIIII

0

;;xxxxxxx
g

;;vvvvvvv

$$II
II

II
I 0

0

;;vvvvvv
0

Proof: Put ĝ := g̃⊕ z∗, and let di : g̃ ↪→ ĝ be the inclusion in the first summand. Let d$
be the composite map ĝ = g̃⊕ z∗ � ḡ⊕ z∗ ∼= g, where the last step uses an arbitrary but

fixed splitting of F -vector spaces z∗ ↪→ g. For any g ∈ G we set ρ̂(g) := id+di◦ÃdG(g)◦d$,

where ÃdG is as in (1.3). A straightforward calculation shows that this defines a group
representation. The rest is clear from the construction. �

The following proposition classifies all G-submodules of ĝ. Let p := char(F ) and Φ
denote the root system of G.

Proposition 1.11:

(a) z and z∗ are constant representations of G of the same dimension. This common
dimension is greater than zero if and only if for Φ the index of the root lattice in the
weight lattice is divisible by p. It is greater than 1 if and only if p = 2 and Φ has type
Dn for some even integer n, and in that case the dimension is 2.

(b) Suppose that G does not have non-standard isogenies. Then ḡ is an absolutely ir-
reducible non-constant representation of G. Moreover, it is the unique simple G-
submodule of g and the unique simple quotient G-module of g̃. In other words, the
lattice of G-submodules of ĝ is given by the following graphs, where nodes correspond
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to G-submodules, given in ascending order from left to right:

dim(z) = 0  ◦ ◦
g

dim(z) = 1  ◦ ◦ ◦ ◦
z g z∗

dim(z) = 2  ◦

◦�������◦

◦oooooo◦

◦
OOOOOO◦

◦
??

??
??

?

◦

◦
??

??
??

?

◦

◦
OOO

OOO

◦

◦oooooo

◦

◦�������

◦

◦�������◦

◦oooooo◦

◦
OOOOOO◦

◦
??

??
??

?

◦

◦
??

??
??

?

◦

◦
OOOO

OO

◦

◦oooooo

◦

◦�������

◦ ◦
g

z︷ ︸︸ ︷ z∗︷ ︸︸ ︷

(c) Suppose that G possesses non-standard isogenies. Then g contains a unique simple
G-submodule, denoted ḡs, and g̃ has a unique simple quotient G-submodule, denoted
ḡ`. These two simple subquotients are pairwise inequivalent absolutely irreducible non-
constant representations of G. They are the only non-constant simple subquotients in
any Jordan-Hölder series of ĝ. The lattice of G-submodules is given by the following
graphs, depending on (p, type of Φ):

(2, F4)
(3, G2)

}
 ◦ ◦ ◦

gs g`

(2, Bn)
(2, Cn)

}
for n ≥ 2 even  ◦ ◦ ◦ ◦ ◦ ◦

z gs
dim = 1y g` z∗

(2, Bn) for n ≥ 3 odd  ◦ ◦ ◦

◦oooooooooooo ◦
??

??
??

?

◦

◦
??

??
??

? ◦oooooooooooo

z gs

g`

z∗ g`

z∗

(2, Cn) for n ≥ 3 odd  ◦

◦oooooooooooo◦

◦
??

??
??

?

◦

◦
??

??
??

?

◦

◦oooooooooooo

◦ ◦ ◦

gs

z gs

z

g` z∗

Proof: (a) is well-known. Most of the remaining assertions are stated and proved explicitly
in Hiss [6]; see also Hogeweij [7]. The rest is easily shown by the same arguments. To
give a rough sketch: Choose a maximal torus of G. First note that if a G-submodule of
ĝ contains the root space of a root α, then it contains the root spaces for the whole orbit
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of α under the Weyl group. It follows that in any Jordan-Hölder series of ĝ there are at
most two simple subquotients which possess a non-zero weight, and if there are two, then
they must correspond to the set of short roots and the set of long roots, respectively. Next
one uses well-known facts about Chevalley bases to determine the Lie bracket between any
two root spaces. This information, plus some explicit calculation, suffices to prove that
any G-submodule must be among those listed above. To see that the ones in (c) actually
exist, consider the derivative dϕ : g −→ g] of the non-standard isogeny ϕ : G→ G]. Since
dϕ is zero on a root space if and only if that root is long, we can indeed find ḡs and ḡ` in
the kernel, resp. the image of dϕ. The rest is again some explicit calculation. �

The most interesting part of the adjoint representation is ḡ. We denote the represen-
tation of G on it by αG. When G possesses non-standard isogenies, the interesting simple
subquotients of ĝ are ḡs and ḡ`. We denote the representations of G on these spaces by αGs
and αG` . To avoid cumbersome case distinctions we set αGs := αG` := αG whenever G does
not possess non-standard isogenies. The rationale behind this notation is that αGs (resp.
αG` ) is always the representation on that simple subquotient of ĝ which contains copies of
the root spaces for all roots of smallest (resp. greatest) possible length.

When ϕ : G → G] is the non-standard isogeny of Proposition 1.6 and g] denotes the
Lie algebra of G], the derivative dϕ induces an isomorphism ḡ`

∼−−→ ḡ]s. It follows that

αG`
∼= αG

]

s ◦ ϕ. Furthermore, recall that (G])] ∼= σ∗G and hence Lie(G])] ∼= g ⊗F,σ F .

Thus, by the same token, we obtain an isomorphism ḡ
]
`
∼= ḡs ⊗F,σ F and hence αG

]

` ◦ ϕ
∼=

Frobp ◦α
G
s .

Image in various representations: We shall need to know the image of G in
various subquotient representations of the adjoint representation. In most cases, but not
all, it will be enough to have this information for the irreducible subquotients.

Proposition 1.12:

(a) The representation αG is faithful unless p = 2 and Φ has type A1. In that case there
is a canonical isomorphism αG(G) ∼= σ∗G̃. In short, we have:

(p, type of Φ) αG(G)

6= (2, A1) G

= (2, A1) σ∗G̃

(b) Suppose that G possesses non-standard isogenies. Then the images of G under the
representations αGs and αG` are given by the following table:

(p, type of Φ) αGs (G) αG` (G)

(2, F4) G G]

(3, G2) G G]

(2, Bn) for n ≥ 3 G̃] G]

(2, C2) = (2, B2) G̃] σ∗G̃

(2, Cn) for n ≥ 3 G σ∗G̃
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(c) The representations of G on g̃ and on g are always faithful.

(d) Suppose that p = 2 and Φ has type Cn for some n ≥ 2. Let ϕ : G → G] be the
non-standard isogeny of Proposition 1.6, and ϕ̃ : G̃ → G̃] the associated isogeny of
their universal coverings. Let g` := im(dϕ) and g̃` := im(dϕ̃). Then the image of G
in its representation on g̃`, resp. on g`, is G].

Proof: (Sketch) This is straightforward to prove, using the same methods as Proposition
1.11. The main point is to look at the derivative of the given representation as a represen-
tation of the Lie algebra g, and to determine which root spaces act trivially. This follows
from well-known facts about Chevalley bases as in [6]. The information thus obtained
already determines the image of G up to central isogenies. The remaining information
results from looking directly at the weights in the given representation. By these methods,
one can easily determine the image of G in any given subquotient representation of ĝ. �

Terminology over Semisimple Commutative Rings: Now suppose that F is a
finite direct sum of fields

⊕m
i=1 Fi. We assume no relation between the summands Fi;

for example, they may have different characteristics. Scheme-theoretically SpecF is the
disjoint union

∐m
i=1 SpecFi. Thus an algebraic variety X over F is a disjoint union∐m

i=1Xi, where each Xi is an algebraic variety of Fi. We say that Xi is the fiber of X
over Fi. All concepts concerning algebraic varieties over a field extend to this more general
setting. For example, a linear algebraic group G over F is the same as a disjoint union∐m
i=1Gi of linear algebraic groups Gi over Fi.

Usually we say thatG has a certain property of algebraic groups if and only if each fiber
Gi has that property. However, in order to avoid confusion in the case of properties such as
“connected”, “(absolutely) simple”, and others, we shall often say “fiberwise connected”
etc. Constructions such as the derived group, the universal covering, the adjoint group of
G, and the concepts of homomorphisms and isogenies are also defined fiber by fiber.

An F -module of finite type is the same as a direct sum V =
⊕m

i=1 Vi of finite dimen-
sional vector spaces Vi over Fi. A representation of G on V thus consists of a representation
of each Gi on Vi. More abstractly, the algebra EndF (V ) corresponds to a natural affine
algebraic variety over F , denoted EndF (V ), which has an algebra structure given by mor-
phisms of varieties over F . Giving a representation of G on V is then the same as giving
a homomorphism of linear algebraic groups G −→ AutF (V ) = EndF (V )∗.

Of particular importance is the adjoint representation AdG on the Lie algebra LieG =⊕m
i=1 LieGi. When G is a fiberwise absolutely simple adjoint group we shall be interested

especially in the subquotient representation αG` of AdG which in every fiber is given by

αGi

` defined above.

The group of F -valued points ofG is simplyG(F ) =
∏m
i=1Gi(Fi). When G is fiberwise

connected semisimple and G̃ denotes its universal covering, as in (1.2) the commutator
induces a morphism [ , ]∼ : G×G −→ G̃. The generalized commutator group of Γ is the
subgroup of G̃(F ) defined in the same way as above.

Let H =
∐n
j=1Hj be a linear algebraic group over another finite direct sum of fields

E =
⊕n

j=1 Ej. A ring homomorphism τ : E → F is required to map the unit element of
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E to that of F , thus making F into an E-algebra. Clearly, giving τ is equivalent to giving
a map {1, . . . , m} −→ {1, . . . , n}, i 7→ j(i) and a homomorphism τi : Ej(i) ↪→ Fi for every
1 ≤ i ≤ m. The base extension of H is then defined as

H ×E F =

m∐

i=1

Hj(i) ×Ej(i),τi
Ei.

An important example is the Frobenius isogeny. Let σ be the endomorphism of F which
on each simple summand Fi is the identity if char(Fi) = 0, and the Frobenius map x 7→ xp

if p = char(Fi) > 0. Then we have a canonical isogeny

(1.13) Frob : G −→ σ∗G = G×F,σ F

which is the identity in all fibers of characteristic zero, and the Frobenius isogeny in all
fibers of positive characteristic.
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2. Representations and Associated Rings

Before we begin let us clarify some general terminology. All rings in this article will
have a unit element and all homomorphisms of rings are required to map the unit element
to the unit element. In particular, any subring of a ring must contain the unit element of
the bigger ring, and the unit element must act as the identity on any module. According
to Bourbaki [2] §5, no. 1, Déf. 1, a ring A is called semisimple if and only if each left
A-module is a direct sum of simple modules. It is simple if and only if it is semisimple,
non-zero, and does not possess any two-sided ideals other than {0} and itself ([2] §5, no. 2,
Déf. 2). Any semisimple ring is a finite direct sum of simple rings ([2] §5, no. 3, Th. 1).
The center of a semisimple ring, and in particular any commutative semisimple ring, is
therefore a finite direct sum of fields. Actually, any semisimple ring that occurs in this
article will turn out to be of finite type as module over its center. In other words, we shall
be dealing only with finite direct sums of finite dimensional central simple algebras over
fields. However, this will not be entirely obvious from the construction.

In this section and the following ones we fix a commutative semisimple ring F , a
connected linear algebraic group G over F , and a fiberwise Zariski dense subgroup Γ ⊂
G(F ). As before we let F =

⊕m
i=1 Fi be the decomposition into simple summands, and

let Gi denote the fiber of G over Fi. Throughout, we impose one of the following two
conditions on F and Γ.

Assumption 2.1:

(a) Global case: Each Fi is a global field, i.e. a finite extension either of Q or of Fp(t)
for some prime p, and Γ is finitely generated.

(b) Local case: Each Fi is a local field, and Γ is compact.

Most of our definitions and theorems will have essentially the same form in both cases.
The main difference is that in the local case there will always be an additional topological
condition.

Definition 2.2: Consider a representation ρ of G on an F -module V of finite type.

(a) Bρ is (the closure of, in the local case) the subring of EndF (V ) that is generated by
ρ(Γ).

(b) Jρ is (the closure of, in the local case) the ideal of Bρ that is generated by the elements
ρ(γ)− id for all γ ∈ Γ. This is called the augmentation ideal of Bρ.

The first main result of this section is the following.

Theorem 2.3: Assume that ρ is fiberwise non-constant absolutely irreducible. We identify
F with the scalars in EndF (V ).

(a) There exists a unique smallest semisimple subring Eρ ⊂ F (closed, in the local case)
such that:

(i) F is of finite type as module over Eρ,

(ii) Bρ := Eρ · Bρ is semisimple with center Eρ, and

(iii) The natural homomorphism Bρ ⊗Eρ
F −→ EndF (V ) is an isomorphism.
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(b) Let Otr(ρ) ⊂ F be (the closure of, in the local case) the subring generated by tr(ρ(Γ)).
Then Eρ is the total ring of quotients of Otr(ρ).

(c) Let Oρ := F ∩ Bρ. Then Eρ is also the total ring of quotients of Oρ. The subring
Oρ ⊂ Eρ is finitely generated over Z in the global case, and open compact in the local
case. Moreover, Jρ and Bρ are finite type modules over Oρ, with finite index in each
other.

Note that in the local case (c) implies that Jρ ⊂ Bρ are open compact in Bρ. The
proof of Theorem 2.3 will be somewhat lengthy. We begin with the following technical
result on semisimple rings. Let us abbreviate A := EndF (V ).

Theorem 2.4: Consider a subring B ⊂ A (not necessarily an F -algebra) with the prop-
erties B · F = A and lengthB(V ) <∞. Let E denote the center of B. Then:

(a) E is contained in the center F of A.

(b) B is a semisimple ring.

(c) The natural homomorphism B ⊗E F −→ A is an isomorphism.

(d) F is of finite type as module over E.

Proof: By definition E commutes with F and B, and thus with B · F = A, whence (a).

For (b) we first show that V is a semisimple B-module. Let V =
⊕m

i=1 Vi be the
decomposition according to the decomposition of F into simple summands. It suffices to
show that each Vi is a semisimple B-module. Since it has finite length over B, it contains
a simple B-submodule 0 6= Wi ⊂ Vi. Consider the submodule F ·Wi =

∑
x∈F xWi of Vi.

By definition it is stable under B · F = A, hence it is equal to Vi. On the other hand,
as a sum of simple modules it is semisimple ([2] §3, no. 3, Prop. 7). We now know that
V is a faithful semisimple B-module of finite length. By [2] §5, no. 1, Prop. 4, any ring
possessing such a module is semisimple. This shows (b).

Next we prove (c). Let B =
⊕n

j=1Bj be the decomposition into simple summands
and let Ej denote the center of Bj . The inclusion E ↪→ F is then described by a map
{1, . . . , m} −→ {1, . . . , n}, i 7→ j(i) and a homomorphism τi : Ej(i) ↪→ Fi for every
1 ≤ i ≤ m. Decomposing the homomorphism in (d) according to the simple summands of
F , we must show that for every 1 ≤ i ≤ m the natural homomorphism

(2.5) Bj(i) ⊗Ej(i)
Fi −→ EndFi

(Vi)

is an isomorphism. Since B · F = A, this map is surjective, so its kernel is a proper
twosided ideal. But by [2] §7, exerc. 6 (c) the ring Bj(i) ⊗Ej(i)

Fi possesses no nontrivial
proper twosided ideals. Hence the homomorphism is also injective, and therefore is an
isomorphism. This proves (c).

Finally, since each EndFi
(Vi) has finite dimension over Fi, the isomorphy (2.5) implies

that each Bj has finite dimension over Ej. Therefore B is of finite type as E-module. Since
V is of finite type over B, it is thus also of finite type over E. Using any F -linear injection
F ↪→ V we can now deduce the same for F . This shows (d) and thus finishes the proof of
Theorem 2.4. �

Next we note the following algebro-geometric version of Burnside’s theorem.
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Lemma 2.6: For every sufficiently large positive integer n the morphism

G× . . .×G −→ A := EndF (V ), (g1, . . . , gn) 7→
∑n
j=1 ρ(gj)

is dominant.

Proof: Without loss of generality we may assume that F is a field. Let H denote the
image of G in A∗. Since ρ is nonconstant and G is connected, the Lie algebra of H is a
non-zero subspace of A. Since ρ is absolutely irreducible, the action of (g′, g) ∈ G×G on
A by a 7→ ρ(g′) · a · ρ(g−1) is also absolutely irreducible. Using the Zariski density of G(F )
it follows that for every sufficiently large n there exist g′j, gj ∈ G(F ) such that

A =
∑n
j=1 ρ(g

′
j) · (LieH) · ρ(g−1

j ).

Consider the morphism

H × . . .×H −→ A, (h1, . . . , hn) 7→
∑n
j=1 ρ(g

′
j) · hj · ρ(g

−1
j ).

By construction its derivative at (id, . . . , id) is surjective. Hence this morphism is dominant,
and so is the morphism in the lemma. �

Proof of Theorem 2.3 (a–b): This part of the theorem is essentially due to Vinberg.
It does not really depend on Assumption 2.1 and can be proved by the direct argument of
[12]. But since we shall need Theorem 2.4 for (c), we might as well use it here, too.

First note that Lemma 2.6 implies that tr(Bρ) ⊂ F is Zariski dense in the affine line
A1
F . This means that the image of tr(Bρ) and hence of Otr(ρ) in any simple summand Fi

is infinite. From this one easily deduces that

Etr(ρ) :=
{
x
y

∣∣ x, y ∈ Otr(ρ), y ∈ F
∗
}
⊂ F.

is semisimple and F is of finite type as module over Etr(ρ).

Now consider any subring Eρ ⊂ F satisfying the conditions in (a). From the isomor-
phism (a.iii) we deduce that tr(Bρ) ⊂ tr(Eρ · Bρ) = Eρ, and hence Otr(ρ) and Etr(ρ) are
contained in Eρ. To prove (a) and (b) it thus remains to show that Etr(ρ) satisfies the
conditions in (a). We already verified (a.i). This, in turn, implies that V is of finite type
as module over Btr(ρ) := Etr(ρ) · Bρ. On the other hand, by Burnside’s theorem (see, e.g.,
Curtis-Reiner [4] Th. 3.32), the absolute irreducibility of ρ, and the Zariski density of Γ,
we have Btr(ρ) · F = A. Thus, by Theorem 2.4, we deduce that Btr(ρ) is semisimple and
Btr(ρ) ⊗E F

∼−−→ A, where E denotes the center of Btr(ρ). From this it follows that

E
!
=tr(Btr(ρ)) = tr(Etr(ρ) · Bρ) = Etr(ρ) · tr(Bρ) = Etr(ρ).

Therefore Etr(ρ) satisfies the conditions in (a), as desired. �

To prove Theorem 2.3 (c) we must construct the ring Btr(ρ) internally from Bρ, instead
of just imposing the center Etr(ρ) from the outside. Until the end of the proof we shall
drop the subscript ρ, that is, we abbreviate B := Bρ, J := Jρ, Otr := Otr(ρ), E := Etr(ρ),
and B := Btr(ρ).
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Lemma 2.7: There exists an element b ∈ J with the following properties:

(a) It is regular semisimple in A.

(b) In the global case, none of its eigenvalues lies in a finite field.

(c) In the local case, all of its eigenvalues have norm < 1.

Proof: Put
b :=

∑n
j=1(ρ(γj)− id) ∈ J

for γ1, . . . , γn ∈ Γ and n� 0. By Lemma 2.6 the elements b thus obtained form a Zariski
dense subset of A. Now condition (a) can be achieved simply because it forbids only a
Zariski closed proper subset. The same is true for condition (b), if the eigenvalue is fixed.
But any eigenvalue lies in an extension of bounded degree of some Fi. Moreover, the
field of constants of any Fi of positive characteristic is itself finite. Thus any eigenvalue
in a finite field lies in a finite field of bounded order. Thus there are only finitely many
eigenvalues to be ruled out. Therefore condition (b) can be achieved. Finally, condition
(c) is automatic if all γj lie sufficiently close to the identity of Γ. �

In the following we fix the element b given by Lemma 2.7. We let R be (the closure
of, in the local case) the subring of EndF (V ) that is generated by b. Then

K := {y−1x | x ∈ R, y ∈ R ∩ A∗}

is a commutative semisimple ring, and V is of finite type as module over K.

Lemma 2.8: We have B = K · B = {y−1x | x ∈ B, y ∈ R ∩A∗}.

Proof: By construction K is contained in B. We first show that K · B is a subring.
For this consider x ∈ B and r ∈ R ∩ A∗. Note that A is of finite type as left K-module!
Consider the left K-submodule of A that is generated by the elements xri for all i ∈ Z. As
a submodule of a module of finite type, it is itself of finite type. Suppose this submodule
is generated by the elements xri for all ` ≤ i ≤ k. Then we have xr`−1 ∈

∑k
i=`K · xr

i.

Multiplying by r−` on the right hand side we deduce xr−1 ∈
∑k−`
i=0 K ·xr

i ⊂ K · B. In this
way, we have proved that B ·K ⊂ K · B. This implies that K · B is a ring.

Now recall that F ·K · B = F · B = A, and that, by construction, V is of finite type as
module over K · B. Thus we may apply Theorem 2.4 to this ring. If E′ denotes the center
of K · B, it follows that K · B = E′ · B. The parts (a) and (b) of Theorem 2.3, which are
already proved, now imply that E ⊂ E′. Thus we have B ⊂ K · B ⊂ B, as desired. �

Proof of Theorem 2.3 (c): First we consider the local case, which is now rather easy.
Observe that K · J = K · B = B, since b ∈ J . By construction R is a compact open
subring of K. As B is of finite type as left K-module, the left R-submodules J ⊂ B ⊂ B
are themselves open. On the other hand J and B are compact, because Γ is compact. It
follows that F ∩ B = E ∩ B is an open compact subring of E, that J ⊂ B are finitely
generated modules over E ∩ B, and that B/J is finite. This proves (c) in the local case.

21



In the remainder of the proof we consider the global case, which turns out to be more
involved. Recall that Otr denotes the subring of E that is generated by tr(ρ(Γ)). Let C
be the centralizer of b in B. This is a semisimple ring containing both K and E. Put
C := C ∩ B. Our job will be to compare the two rings C and Otr.

Lemma 2.9:

(a) Otr is a finitely generated Z-algebra.

(b) Otr · J ⊂ Otr · B are Otr-modules of finite type, with finite index in each other.

(c) C is a finitely generated Z-algebra.

Proof: Choose elements γ1, . . . , γn that generate Γ. Choose a system of generators of V
over F . Then Otr is contained in the subring of F that is generated by the coefficients
of all the γ±1

i . Of course, this ring is finitely generated. On the other hand, Assumption
2.1 implies that any subring of a finitely generated subring of F is itself finitely generated.
This proves (a).

For (b) choose x1, . . . , xn ∈ B such that B =
∑n
i=1 E · xi. Then x 7→ (tr(xxi))i

defines an injective homomorphism of E-modules B ↪→ E⊕n. By construction, the image
of Otr · Bρ lies in O⊕n

tr . Since Otr is noetherian, by (a), it follows that Otr · J ⊂ Otr · B
themselves are finitely generated. Since b ∈ J ∩K∗, the index must be finite. This proves
(b).

From (b) we can deduce that Otr · C is finitely generated as module over Otr. Using
(a) we find that this is a finitely generated Z-algebra. Again the same follows for the
subalgebra C, thus proving (c). �

In order to be able to construct sufficiently many elements of C, we need something
like a projector B � C. Note that the semisimplicity of b implies that B = C ⊕ [b, B].

Lemma 2.10: There exists an element Π ∈ EndE(B) with the properties:

(a) Π|[b,B] = 0,

(b) Π|C is multiplication by some element r ∈ R ∩K∗, and

(c) Π(B) ⊂ C.

Proof: Recall that B is a left K-module of finite type. The map adb : x 7→ [b, x] is an
endomorphism of this module which is an isomorphism on [b, B], and zero on C. Therefore
there is a polynomial F (X) ∈ K[X ] such that F (adb) is zero on [b, B] and the identity
on C. Let r ∈ R ∩ K∗ be the common denominator of the coefficients of F . Then the
coefficients of r · F (X) lie in R, and Π := r · F (adb) has all the desired properties. �
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Lemma 2.11: Consider a place w of C, lying above a non-archimedean place v of E.
Suppose that Otr contains an element which has a pole at v. Then C contains an element
which has a pole at w.

Proof: Assume that none of the elements in Π(B) has a pole at w. Let Φ denote the
composite map

B ⊗E Ev
Π⊗id
−−−−→ C ⊗E Ev −→→ Cw

`
−→→ Ev,

where ` is any non-zero Ev-linear form. The assumption implies that Φ(B) is contained
in a bounded subset of Ev. Choose elements x1, . . . , xn ∈ B such that B =

∑n
i=1 E · xi.

Then we have an injective homomorphism of Ev-modules

Ψ : B ⊗E Ev ↪−→ E⊕n
v , x 7→ (Φ(xxi))i.

By construction, the image of B lies in a bounded subset. Thus B acts faithfully on some
module of finite type over the valuation ring in Ev. It follows that the trace of any element
is v-adically integral, contrary to the assumption in the lemma. �

Let C̃ denote the normalization of the ring C. The preceding lemma has the following
crucial consequence.

Lemma 2.12: We have Otr ⊂ C̃.

Proof: Consider any element x ∈ Otr. Since x ∈ E ⊂ C, and C̃ is a Dedekind ring,
it suffices to show that x has no pole at any maximal ideal of C. This is guaranteed by
Lemma 2.11. �

Now we can finish the proof of Theorem 2.3 (c). Since C̃/C is finite, so is Otr/(Otr∩C).
Thus the total ring of quotients of Otr∩C is again E. The same also follows for the (possibly
larger) ring Oρ := F ∩ B = E ∩ C. As a subring of the finitely generated ring C (compare
Lemma 2.9 (c)) it is itself finitely generated. The remainder of Theorem 2.3 (c) follows
from Lemma 2.9 (b). �

Consequences of Theorem 2.3: Let Õρ denote the normalization of the ring Oρ in
Theorem 2.3. The arguments in the proof of Lemma 2.11 give the following characterization
of Õρ.

Corollary 2.13: Suppose that F is global, and consider a non-archimedean valuation v
of Eρ. Then v corresponds to a maximal ideal of Õρ if and only if Γ is v-adically bounded.

One important application of Theorem 2.3, in particular of its part (a.iii), is the
construction of a natural model of ρ(G) over the subring Eρ. Let Bρ denote the affine al-
gebraic variety over Eρ corresponding to Bρ, with its algebra structure given by morphisms
of varieties over Eρ. This is a model of Aρ over Eρ, i.e. we have a natural isomorphism
Bρ ×Eρ

F ∼= Aρ.
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Theorem 2.14: In the situation of Theorem 2.3 there is a unique algebraic subgroup
Gρ ⊂ B

∗
ρ such that

B∗
ρ ×Eρ

F ∼−−→ A∗
ρ

∪ ∪
Gρ ×Eρ

F ∼−−→ ρ(G) .

Under this isomorphism ρ(Γ) corresponds to a subgroup of Gρ(Eρ).

Proof: By construction ρ(Γ) is contained in the subgroup B∗
ρ ⊂ A

∗
ρ. Let Gρ be its Zariski

closure in B∗
ρ. Then Gρ ×Eρ

F maps isomorphically to the Zariski closure of ρ(Γ) in A∗
ρ.

By the Zariski density of Γ, the latter is just ρ(G). This shows the existence of Gρ, and
the uniqueness is obvious. �

We can also compare the rings Eρ and Õρ for suitable different choices of ρ. The
following special case will be enough for our purposes.

Proposition 2.15: Suppose that F is a field, and let ρ and α be two non-constant ab-
solutely irreducible representations of G such that α occurs as subquotient of the Lie algebra
of ρ(G). Then

(a) Eα ⊂ Eρ, and

(b) Õα ⊂ Õρ.

Proof: Let Gρ be the model of ρ(G) over Eρ that is given by Theorem 2.14. The
assumptions imply that α descends to a representation on a subquotient of the Lie algebra
of Gρ. Hence tr(α(Γ)) ⊂ Eρ, which implies (a). Assertion (b) follows from (a) together
with Corollary 2.13. �

Reducible Representations: Now we turn to the study of Jρ for reducible repre-
sentations. We restrict our attention to the simplest kind of representation which is not
completely reducible, namely a non-split extension of two absolutely irreducible represen-
tations. Assume that F is a field and consider a short exact sequence of finite dimensional
non-zero F -vector spaces

0→ V ′ → V → V ′′ → 0.

Let ρ be a representation ofG on V which stabilizes V ′. We assume that the representations
ρ′, ρ′′ induced on V ′, V ′′ are absolutely irreducible, and that the sequence does not possess
a G-equivariant splitting. Let Aρ be the stabilizer of V ′ in EndF (V ). Its radical Rad(Aρ)
consists of those endomorphisms which annihilate both V ′ and V ′′. Thus we have a
canonical isomorphism Rad(Aρ) ∼= HomF (V ′′, V ′). Clearly, the subring Bρ of Definition
2.2 is contained in Aρ.
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Theorem 2.16: Suppose that ρ′ 6∼= ρ′′. Then we have

F ·
(
Rad(Aρ) ∩ Jρ

)
= Rad(Aρ).

Furthermore set

O :=




Oρ′ := F ∩ Bρ′ if ρ′′ is constant,
Oρ′′ := F ∩ Bρ′′ if ρ′ is constant,
Oρ′ · Oρ′′ if both ρ′ and ρ′′ are non-constant.

Then Rad(Aρ) ∩ Jρ is a O-module of finite type.

Proof: If F ·
(
Rad(Aρ) ∩ Jρ

)
is non-zero, we study it as a module under left and right

multiplication by Bρ · F . Note that the left action factors through the surjection Bρ ·F �
Bρ′ · F . The latter ring is equal to EndF (V ′). Indeed, this is obvious when ρ′ is the
constant representation of dimension 1, otherwise it is just the assertion of Theorem 2.3
(a.iii). Thus F ·

(
Rad(Aρ)∩Jρ

)
is a non-zero submodule of Rad(Aρ) under the left action

of EndF (V ′). By symmetry, it is also invariant under the right action of EndF (V ′′). Since
Rad(Aρ) is irreducible under the combination of these two actions, the equality follows.

Let us now assume that Rad(Aρ)∩Jρ = 0, and let ρss := ρ′⊕ ρ′′ denote the semisim-
plification of ρ.

Lemma 2.17: There exists an element in Jρss which acts as a scalar on V ′ and as a
different scalar on V ′′.

Proof: If ρ′′ is a constant representation, then ρ′ is non-constant and we have Jρss
∼−−→

Jρ′ . By Theorem 2.3 (c) there exists a non-zero element in F ∩ Jρ′ . Then its lift to Jρss
has all the desired properties. When ρ′ is constant, the result follows by symmetry.

When both ρ′ and ρ′′ are non-constant, we can view ρss as a nowhere constant ab-
solutely irreducible representation over F ⊕ F . Then by Theorem 2.3 (c) we can find the
desired element unless Eρss ⊂ F ⊕ F is contained in the diagonal. Suppose that this hap-
pens. Then Eρss is a subfield of F and Bρss is a simple algebra which maps isomorphically
to both Bρ′ and Bρ′′ . Thus V ′ and V ′′ are isomorphic simple modules over Bρss⊗Eρss F . It
follows that ρ′ and ρ′′ are equivalent F -linear representations of Γ. Since Γ is Zariski dense
in G, they are also equivalent as representations of G, contrary to the assumption. �

Continuing the proof of Theorem 2.16, we choose an element as in Lemma 2.17 and
lift it to an element e ∈ Jρ. By construction the commutator [e,Bρ] is contained in
Rad(Aρ)∩Jρ. Since this group was assumed to vanish, it follows that e commutes with Bρ.
Thus it commutes with Γ and, by Zariski density, with G. This implies that the eigenspace
decomposition of V under e is G-invariant, i.e. that the extension splits, contrary to the
assumption.

Concerning the rest of the theorem, it is clear that Rad(Aρ)∩Jρ is an O-module. By
Theorem 2.3 (c) and the construction of O both O · Bρ′ and O · Bρ′′ are finitely generated
O-modules. From the finite generation of Bρ as a ring we find that O · Bρ is also finitely
generated as module over O. Thus the same holds for the submodule Rad(Aρ) ∩ Jρ, as
desired. �

25



3. Minimal Quasi-Models of Semisimple Groups

Let F , G, and Γ be as in the preceding section. From now on we assume that G is
fiberwise absolutely simple adjoint. The main question in this section is how far we can
reduce the structure constants of G to semisimple subrings E ⊂ F in such a way that Γ
consists of E-rational points. The main tool for this will be the study of the action of Γ
in the adjoint representation of G. The results obtained in the process will also lay the
groundwork for later sections. In order to deal adequately with the effects of non-standard
isogenies, it is best to modify the usual concept of a model of G over a subring.

Definition 3.1: A weak quasi-model of (F,G,Γ) is a triple (E,H, ϕ) where

(a) E is a semisimple subring of F such that F is of finite type as module over E (and
which is closed in the local case),

(b) H is a fiberwise absolutely simple adjoint group over E, and

(c) ϕ is an isogeny H ×E F −→ G, such that

(d) Γ is contained in the subgroup ϕ(H(E)) ⊂ G(F ).

Definition 3.2: A quasi-model of (F,G,Γ) is a weak quasi-model (E,H, ϕ) of (F,G,Γ)
for which the derivative of ϕ vanishes nowhere.

Note that a quasi-model is very close to being a model over a subring in the usual
sense. Indeed, if the fibers of G do not possess non-standard isogenies, then it follows from
Theorem 1.7 that ϕ in Definition 3.2 is an isomorphism.

Note also that in these definitions the isogeny ϕ is totally inseparable, because H
is adjoint. Therefore the homomorphism H(E) ↪→ G(F ) is injective. Thus for any
(weak) quasi-model the group Γ is in bijection with the fiberwise Zariski dense subgroup
ϕ−1(Γ) ⊂ H(E). We are in a recursive situation since the triple (E,H, ϕ−1(Γ)) satisfies
the same assumptions as (F,G,Γ). For example, if (E′, H ′, ϕ′) is a weak quasi-model of
(E,H, ϕ−1(Γ)), then clearly (E′, H ′, ϕ◦ϕ′) is a weak quasi-model of (F,G,Γ). One should
be aware that the composite in this sense of two quasi-models is in general only a weak
quasi-model. This is one of the reasons for dealing with the latter at all. On the other
hand, every weak quasi-model gives rise to a quasi-model, as follows.

Proposition 3.3: For any weak quasi-model (E,H, ϕ) of (F,G,Γ) there exists a ring
endomorphism τ : F −→ F , which on each simple summand Fi is either the identity or
a power of Frobenius, and a quasi-model (E1, H1, ϕ1) of (F,G,Γ), such that E1 = τ(E).
Clearly, if τ is an isomorphism, then (E,H, ϕ) is already a quasi-model of (F,G,Γ).

Proof: Consider a simple summand Fi. If p := char(Fi) is zero, then dϕ is already non-
zero over Fi, and we can put τ |Fi

= id. Otherwise we know from Theorem 1.7 that over
Fi the isogeny ϕ is the composite of a Frobenius Frobpni for some ni ≥ 0 and an isogeny
with non-vanishing derivative. In that case we let τ |Fi

be the nth
i Frobenius map x 7→ xp

ni

for all x ∈ Fi. Then by construction ϕ is the composite of two isogenies

H ×E F
ψ
−−→ τ∗(H ×E F )

ϕ1
−−−→ G,
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where ψ is in each fiber either an isomorphism or a power of Frobenius, and where dϕ1

vanishes nowhere. By construction we get an isomorphism E ∼−−→ τ(E) =: E1 ⊂ F . Let
H1 denote the group over E1 corresponding to H via this isomorphism. Then we have

τ∗(H ×E F ) = (H ×E F )×F,τ F = H ×E,τ F = H1 ×E1
F.

It is now clear from the construction that (E1, H1, ϕ1) is a quasi-model of (F,G,Γ). �

The problem of how far the structure constants of G can be reduced is phrased in the
following definitions (compare Definition 0.1).

Definition 3.4: We say that (F,G,Γ) is minimal if and only if, for every weak quasi-model
(E,H, ϕ) of (F,G,Γ), we have E = F and ϕ is an isomorphism.

It is easy to show, though not obvious, that replacing the words “weak quasi-model”
by “quasi-model” in Definition 3.4 yields an equivalent definition. Since we shall not make
use of this fact, we leave out its proof.

Definition 3.5: A (weak) quasi-model (E,H, ϕ) of (F,G,Γ) is called minimal if and only
if (E,H, ϕ−1(Γ)) is minimal in its own right.

Note that this definition is phrased only as a relative minimality condition, not as
a universal property vis-à-vis all (weak) quasi-models. (It would have been possible, but
awkward, to do so). Thus both the existence and the uniqueness of minimal quasi-models
are by no means obvious.

Theorem 3.6: (a) There exists a minimal quasi-model (E,H, ϕ) of (F,G,Γ).

(b) The subring E ⊂ F in (a) is unique, and H and ϕ are determined up to unique
isomorphism.

Proof of Theorem 3.6 (a): We begin by showing that the subring E in a quasi-model
cannot become arbitrarily small.

Lemma 3.7: The number lengthE(F ) is finite and bounded independently of the quasi-
model (E,H, ϕ) of (F,G,Γ).

Proof: Consider the representation αH` of H defined in Section 1. Then there exists
a linear representation ρ of G such that αH` ⊗E F = ρ ◦ ϕ. Indeed, consider any simple
summand Fi of F . If ϕ is an isomorphism over Fi, then the corresponding direct summand
of ρ is just αGi

` . Otherwise, the summand is αGi
s . This gives the desired representation ρ,

and since there are only finitely many fibers Gi it also shows that the number of possibilities
for the isomorphy class of ρ is finite.

Let Eρ ⊂ F denote the subring associated to ρ by Theorem 2.3 (a). Recall that F has
finite length as module over Eρ. On the other hand we can apply the same constructions
to (E, F, ϕ−1(Γ)) and the representation αH` , yielding a subring EαH

`
⊂ E. Since the two

representations and compact subgroups correspond to each other, we have EαH
`

= Eρ,
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and hence Eρ ⊂ E. As there are only finitely many possibilities for Eρ, we deduce that
lengthE(F ) is bounded universally for all quasi-models of (F,G,Γ). �

Continuing with the proof of (a), we now choose a subring E0 ⊂ F such that there
exists a quasi-model of (F,G,Γ) of the form (E0, H0, ϕ0) and such that lengthE0

(F ) is as
large as possible. Afterwards among the quasi-models of the form (E0, H0, ϕ0) we select
one for which the number of simple summands of F where ϕ0 is not an isomorphism is as
large as possible. I claim that this is a minimal quasi-model.

To show this consider any weak quasi-model (E,H, ϕ) of (E0, H0, ϕ
−1
0 (Γ)). Then the

composite (E,H, ϕ0 ◦ ϕ) is again a weak quasi-model. Applying Proposition 3.3 to this
triple we obtain a ring endomorphism τ : F −→ F and a quasi-model (E1, H1, ϕ1) of
(F,G,Γ) such that E1 = τ(E). Then we have

lengthE0
(F ) ≤ lengthE(F ) = lengthτ(E)(τ(F )) ≤ lengthE1

(F ).

Since E0 was chosen such that lengthE0
(F ) is maximal among all quasi-models, these

inequalities are in fact equalities. This implies E = E0 and that τ is an isomorphism.
From Proposition 3.3 it follows that (E,H, ϕ0 ◦ ϕ) is already a quasi-model of (F,G,Γ).
Suppose that ϕ fails to be an isomorphism over some simple summand Fi of F . By the
classification of inseparable isogenies in Theorem 1.7 and the fact that the derivative of
ϕ0 ◦ϕ vanishes nowhere the map ϕ0 must be an isomorphism over Fi. Thus the number of
simple summands of F where ϕ0 ◦ ϕ is not an isomorphism is strictly greater than for ϕ0,
contradicting the choice of (E0, H0, ϕ0). Summarizing, we have proved that for any weak
quasi-model (E,H, ϕ) of (E0, H0, ϕ

−1
0 (Γ)) we have E0 = E and ϕ is an isomorphism. In

other words (E0, H0, ϕ
−1
0 (Γ)) is minimal, and hence (E0, H0, ϕ0) is a minimal quasi-model

of (F,G,Γ), as desired. This proves the existence part (a) of Theorem 3.6. �

The proof of the uniqueness part (b) is deferred to the end of this section. The
intervening results do not depend on it. Let us only note the following consequence of
uniqueness.

Corollary 3.8: Consider a normal subgroup Γ′ ⊂ Γ which is also fiberwise Zariski dense
in G. If (F,G,Γ) is minimal, then so is (F,G,Γ′).

Proof: Consider any minimal quasi-model (E,H, ϕ) of (F,G,Γ′). For any γ ∈ Γ let int(γ)
be the automorphism g 7→ γgγ−1 of G. Then (E,H, int(γ) ◦ ϕ) is another minimal quasi-
model of (F,G,Γ′). By Theorem 3.6 (b) there exists an automorphism ιγ of H, defined
over E, such that int(γ) ◦ϕ = ϕ ◦ ιγ . Since ϕ induces an isomorphism between the groups
of outer automorphisms of H and G, we find that ιγ is an inner automorphism. As H is
adjoint, it follows that ιγ = int(δ) for some δ ∈ H(E). It follows that γ = ϕ(δ) ∈ ϕ(H(E)),
that is, (E,H, ϕ) is a quasi-model of (F,G,Γ). By minimality of the latter, we have E = F
and ϕ is an isomorphism. Thus (F,G,Γ′) ∼= (E,H, ϕ−1(Γ′)) is minimal, as desired. �

In the rest of this section we analyze the minimal case. We begin with an easy but
useful projection property. Consider a direct summand F ′ of F ; we do not assume that

28



F ′ is simple. Let G′ be the part of G that lies over F ′, and let Γ′ denote the image of Γ
under the projection map G(F ) −→ G′(F ′). Then the triple (F ′, G′,Γ′) satisfies the same
assumptions as (F,G,Γ). We say that it is obtained by projection to the summand F ′.

Proposition 3.9: If (F,G,Γ) is minimal, then so is (F ′, G′,Γ′).

Proof: From any weak quasi-model (E′, H ′, ϕ′) of (F ′, G′,Γ′) we can construct a weak
quasi-model of (F,G,Γ), as follows. Write F = F ′ ⊕ F ′′ and put E := E′ ⊕ F ′′. Let H
be the linear algebraic group over E which coincides with H ′ over E′ and with G over
F ′′. Let ϕ : H ×E F −→ G be the isogeny which coincides with ϕ′ over F ′ and with the
identity over F ′′. Clearly (E,H, ϕ) is a weak quasi-model of (F,G,Γ). By the minimality
of (F,G,Γ) we have E = F and ϕ is an isomorphism. This implies that E′ = F ′ and ϕ′ is
an isomorphism. Hence (F ′, G′,Γ′) is minimal, as desired. �

Next we study the rings Eρ defined in the preceding section for various fiberwise
absolutely irreducible representations ρ obtained from the adjoint representation. First,
we look at a single irreducible subquotient.

Proposition 3.10: Suppose that (F,G,Γ) is minimal and that F is a field. Let ρ be a
non-constant absolutely irreducible representation of G which occurs as subquotient of the
adjoint representation of G. Then Eρ = F unless

• char(F ) = 2,

• the root system of G has type Cn for some n ≥ 1, and

• ρ is equivalent to the representation αG` defined in Section 1.

In that case Eρ is either equal to F or to F 2 := {x2 | x ∈ F}.

Proof: From Theorem 2.14 we have a model Gρ of ρ(G) over Eρ, such that ρ(Γ) corre-
sponds to a subgroup of Gρ(Eρ). When ρ is faithful, we obtain a quasi-model of (F,G,Γ)
of the form (Eρ, Gρ, . . .). In that case the minimality assumption implies Eρ = F , and we
are done. In the general case we have to argue more indirectly.

Lemma 3.11: Suppose that F is separable over Eρ. Then there exists an algebraic group
H over Eρ and an isomorphism ϕ : H ×Eρ

F ∼−−→ G such that Γ ⊂ ϕ(H(Eρ)).

Proof: Let H be the Zariski closure of Γ ⊂ G(F ) = (RF/Eρ
G)(E) inside RF/Eρ

G. By
the universal property of the Weil restriction the inclusion H ↪→ RF/Eρ

G corresponds to
a homomorphism ϕ : H ×Eρ

F −→ G. The condition on Γ being clear by construction,
it remains to prove that ϕ is an isomorphism. Let Ēρ denote a separable closure of Eρ.
Since F is a finite separable extension of Eρ, we have

(
RF/Eρ

G
)
×Eρ

Ēρ ∼=
∏

τ

G×F,τ Ēρ

where τ runs through HomEρ
(F, Ēρ). In particular RF/Eρ

G is a connected semisimple
group and the natural homomorphism

RF/Eρ
G −→ RF/Eρ

ρ(G) ∼= RF/Eρ
(Gρ ×Eρ

F )
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is a totally inseparable isogeny. By construction the image of H is the subgroup Gρ ⊂
RF/Eρ

(Gρ ×Eρ
F ). It follows that the map H −→ Gρ is a totally inseparable isogeny and

hence H is an absolutely simple connected semisimple group. It also follows that ϕ is an
isogeny. To show that it is an isomorphism note that we have a closed immersion

H ×Eρ
Ēρ ↪→

∏

τ

G×F,τ Ēρ.

The projection to each factor is an isogeny. By Corollary 1.8 one of these isogenies domi-
nates all the others. Since the total map is a monomorphism, one of these isogenies must
be an isomorphism. But then each of them is an isomorphism, and hence ϕ is one, as
desired. �

In the case of Lemma 3.11 the triple (Eρ, H, ϕ) is a quasi-model of (F,G,Γ), so the
minimality assumption implies Eρ = F , as desired.

Lemma 3.12: Suppose that F is not separable over Eρ. Set σ : x 7→ xp denote the
Frobenius endomorphism of F , where p := char(F ). Then there exists an absolutely simple
adjoint group H over E := {x ∈ F | xp ∈ Eρ} and a commutative diagram of isogenies

H ×E F
ϕ
−−→ G

Frobp

y
y

σ∗H ×E F
∼
−−→ ρ(G)ad

such that Γ ⊂ ϕ(H(E)).

Proof: Recall from Assumption 2.1 that F is either a global or a local field. Since F is
not separable over Eρ, it follows that σ−1 induces an isomorphism Eρ

∼−−→ E. Defining

H := (σ−1)∗Gad
ρ := Gad

ρ ×Eρ,σ−1 E,

we have a canonical isomorphism

σ∗H = H ×E,σ E ∼= Gad
ρ ×Eρ,id E,

and every Eρ-valued point of Gad
ρ lifts under Frobp to an E-valued point of H. By Propo-

sition 1.12 and Theorem 1.7 the Frobenius isogeny of G factors through ρ(G)ad. Consider
the composite isogeny

H ×E,σ F ∼= Gad
ρ ×Eρ,id F

∼
−−→ ρ(G)ad −→ σ∗G = G×F,σ F.

Identifying F through σ−1 with its inseparable extension F ′ of degree p, this corresponds
to an isogeny ϕ : H×E,idF

′ −→ G×F,idF
′ defined over F ′. By construction Γ is contained

in the image of H(E). Thus ϕ maps a Zariski dense subgroup of H(F ) to G(F ). It follows
that ϕ is already defined over F , and we are done. �
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In the case of Lemma 3.12 the triple (E,H, ϕ) is a weak quasi-model of (F,G,Γ).
From the minimality assumption we conclude that E = F and that ϕ is an isomorphism.
This means first of all that Eρ = F p. On the other hand we deduce that ρ(G)ad = σ∗G,
which by Proposition 1.12 occurs if and only if p = 2, the root system of G has type Cn
for some n ≥ 1, and ρ ∼= αG` . This finishes the proof of Proposition 3.10. �

Next we compare two irreducible subquotients of the adjoint representation of G.

Proposition 3.13: Suppose that F is a direct sum of two fields F1⊕F2 and that the pro-
jection to each summand (Fi, Gi, pri(Γ)) is minimal. For each i let ρi be a non-constant
absolutely irreducible representation of Gi which occurs as subquotient of the adjoint rep-
resentation of Gi. Put ρ := ρ1 ⊕ ρ2 as representation of G over F . Then we have either

(a) Eρ = Eρ1 ⊕ Eρ2 , or

(b) there exists a quasi-model (E,H, ϕ) of (F,G,Γ) such that E is a field, ϕ is an iso-
morphism, and ρ = ρ0 ◦ ϕ for a representation ρ0 of H.

Proof: By construction Eρ is a subring of F whose image in each Fi is equal to Eρi
.

Thus if Eρ is not a field, we have the case (a). Let us assume that Eρ is a field; we must
then prove (b). Note that the projection maps induce isomorphisms πi : Eρ

∼−−→ Eρi
, and

by Proposition 3.10 the latter is equal to Fi or F 2
i . Also recall that by Theorem 2.14 we

have an algebraic group Gρ over Eρ and an isomorphism

Gρ ×Eρ
F ∼−−→ ρ(G)

under which ρ(Γ) corresponds to a subgroup of Gρ(Eρ). For each fiber this amounts to an
isomorphism

Gρ ×Eρ,πi
Fi

∼−−→ ρi(Gi).

First suppose that F1
∼←−− Eρ

∼−−→ F2. Then the literal analogue of Lemma 3.11
shows everything except that ρ descends to H. But this last assertion follows at once from
the fact that by construction ρ comes from a representation of Gρ and that the isogeny
G −→ ρ(G) descends to an isogeny H −→ Gρ.

Next consider the case that F 2
1

∼←−− Eρ
∼−−→ F 2

2 . This time the literal analogue
of Lemma 3.12 shows everything except that ρ descends to H. But now we know that
ρi ∼= αGi

` for both i = 1, 2, so ρ descends to ρ0 := αH` , as desired.

Finally we treat the case F1
∼←−− Eρ

∼−−→ F 2
2 (the fourth case then follows by sym-

metry). As in the proof of Lemma 3.12 we have an isomorphism

Gad
ρ ×Eρ,σ−1◦π2

F2
∼−−→ G2 .

Since π1 : Eρ → F1 is an isomorphism, we deduce an isogeny

G1 ×F1,σ−1◦π2◦π
−1
1
F2

ρad1

y
ρ1(G1)

ad ×F1,σ−1◦π2◦π
−1
1
F2

∼←−− Gad
ρ ×Eρ,σ−1◦π2

F2
∼−−→ G2 .
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By construction this isogeny maps pr1(Γ) to pr2(Γ), so it is part of a quasi-model of
(F2, G2, pr2(Γ)). By the minimality assumption it must therefore be an isomorphism. On
the other hand, by Section 1 the group ρ2(G2) is not adjoint, so neither is Gρ, nor ρ1(G1).
Since G2 is adjoint, the isogeny cannot be an isomorphism. This contradiction finishes the
proof. �

It is now easy to look at the irreducible subquotients of the adjoint representation
of G altogether. Recall that some fibers may have two different interesting irreducible
subquotients.

Proposition 3.14: Consider the algebra

F ′ :=
m⊕

i=1

{
Fi ⊕ Fi if Gi possesses non-standard isogenies,
Fi if Gi does not possess non-standard isogenies

over F =
⊕m

i=1 Fi, and the representation of G×F F
′

ρ :=

m⊕

i=1

{
αGi
s ⊕ α

Gi

` if Gi possesses non-standard isogenies,
αGi if Gi does not possess non-standard isogenies.

Suppose that (F,G,Γ) is minimal. Then

Eρ =
m⊕

i=1

{
E
α

Gi
s
⊕ E

α
Gi
`

if Gi possesses non-standard isogenies,

EαGi if Gi does not possess non-standard isogenies.

Proof: By Theorem 2.3 (a) the ring Eρ is a finite direct sum of fields, and we must show
that the decompositions into simple summands of Eρ and F ′ correspond to each other.
Suppose not. Then there is a simple summand Eρ,0 of Eρ which is not contained in a
simple summand of F ′. Select two simple summands of F ′ such that Eρ,0 injects into each
of them. There are two cases, in each of which we shall establish a contradiction.

Suppose first that these two simple summands of F ′ lie above two different simple
summands Fi, Fj of F . By projecting everything to Fi ⊕ Fj and applying Proposition 3.9
we may assume without loss of generality that F = F1 ⊕ F2. Now Proposition 3.13 (b)
yields a quasi-model of (F,G,Γ) which contradicts the minimality assumption.

Suppose that the two simple summands of F ′ lie above the same simple summand
Fi of F . By projecting everything to Fi and applying Proposition 3.9 we may assume
without loss of generality that F is a field. Then (F ′, G×F F

′,Γ) together with ρ satisfy
the conditions of Proposition 3.13. If (E,H, ϕ) is the quasi-model and ρ0 the representation
provided by Proposition 3.13 (b), we find that by construction ρ0 is equivalent to both αHs
and αH` . Since these two representations are inequivalent, we have reached a contradiction.

�

The preceding results now make it easy to prove the uniqueness of minimal quasi-
models.
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Proof of Theorem 3.6 (b): Consider two minimal quasi-models (E1, H1, ϕ1) and
(E2, H2, ϕ2) of (F,G,Γ). We must prove that E1 = E2 and that there exists a unique
isomorphism ψ : H1

∼−−→ H2, defined over E, such that ϕ1 = ϕ2 ◦ ψ. In fact, the
uniqueness of ψ is obvious once it exists.

Let us first assume that F is a field. Then for each µ = 1, 2 the representation

αGs descends to the representation ρµ = α
Hµ
s or = α

Hµ

` of Hµ. Put ρ := ρ1 ⊕ ρ2 as
representation of H1tH2 over E1⊕E2. Then the triple

(
E1⊕E2, H1tH2, (ϕ1×ϕ2)

−1(Γ)
)

together with ρ satisfies the assumptions of Proposition 3.13. By construction, we have
Eρ ⊂ diag(F ) ⊂ F ⊕ F . Thus we must have the case (b) of Proposition 3.13, i.e. there is
a quasi-model (E,H, ϕ) of

(
E1 ⊕ E2, H1 tH2, (ϕ1 × ϕ2)

−1(Γ)
)

such that E is a field and
ρ descends to a representation of H. By projection to each summand and the minimality
assumption the induced maps E ↪→ Eµ and H ×E Eµ −→ Hµ must be isomorphisms. In
particular,

(
E,H, ϕ−1(ϕ1×ϕ2)

−1(Γ)
)

itself is minimal, which by Proposition 3.10 implies
that Eρ is equal to E or to E2. Since Eρ is contained in the diagonal diag(F ), it follows
easily that E ⊂ diag(F ) as well. This shows that E1 = E2 and that the two maps
E ∼−−→ Eµ are the same. The isomorphism ψ is obtained from the two isomorphisms
H ×E Eµ −→ Hµ.

Now we consider the general case. From Proposition 3.9 and the field case just proved
we deduce that the images of E1, E2 in any given simple summand Fi of F are equal,
and that ϕ1 is an isomorphism over Fi if and only if ϕ2 has that property. This implies
that there is a subquotient representation ρ of the adjoint representation of G such that

ρ ◦ ϕµ ∼= α
Hµ

` ⊗Eµ
F for both µ = 1, 2. From Proposition 3.14 it follows that each Eµ

is totally inseparable over Eρ. Since both Eµ have the same image in each Fi, one easily
deduces that E1 = E2. Finally, the isomorphism ψ is constructed by combining the given
isomorphisms for all simple summands of E1 = E2. �
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4. The Augmentation Ideal in the Adjoint Representation

We keep the notations and assumptions of the preceding section. The aim of this
section is to give a full qualitative characterization of the augmentation ideal Jρ defined
in Definition 2.2 (b), where ρ is the adjoint representation of one of several groups related
to G. Here we assume that (F,G,Γ) is minimal. From Proposition 3.14, together with
Theorem 2.3, we already have the best possible result for the semisimplification of the
adjoint representation. Thus the problem will be to characterize certain nilpotent elements
in Jρ.

To set up the framework, we fix another fiberwise absolutely simple adjoint group H
over F and an isogeny ϕ : G→ H with nowhere vanishing derivative. Let G̃ and H̃ denote
their universal coverings. Then we have a commutative diagram of isogenies

(4.1)

G̃
ϕ̃
−−→ H̃

π

y
yω

G
ϕ
−−→ H .

Recall from Proposition 1.10 that the Lie algebras g̃ := Lie G̃ and g := LieG fit together
to a single representation ĝ. Let ĥ be the analogous representation combining h̃ := Lie H̃
and h := LieH. Then we have a commutative diagram

g̃
dϕ̃
−−−→ h̃

∩

↓
∩

↓

ĝ ĥ

d$↓↓ ↓↓

g
dϕ
−−−→ h .

Let ρ̂ denote the representation of G on ĥ. Let σ : F → F and Frob : G → σ∗G be as
in (1.13). When ϕ is not an isomorphism, a certain part of the representation ρ̂ factors
through Frob.

Proposition 4.2: There is a natural commutative diagram with exact rows

0 −→ im(dϕ̃) −→ h̃ −→ ker(dϕ̃)⊗F,σ F −→ 0
‖ ∩ ∩

0 −→ im(dϕ̃) −→ ĥ −→ ker(dϕ ◦ d$)⊗F,σ F −→ 0y ↓↓ ↓↓
0 −→ im(dϕ) −→ h −→ ker(dϕ)⊗F,σ F −→ 0 .

Proof: In the first and the third line, the horizontal maps on the right hand side are the
derivatives of the homomorphisms H̃ −→ σ∗G̃ and H −→ σ∗G, taking into account the
natural isomorphisms Lieσ∗G ∼= (LieG)⊗F,σ F and Lieσ∗G̃ ∼= (Lie G̃)⊗F,σ F . The exact-
ness follows, for instance, by a straightforward case-by-case analysis using the information
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in Proposition 1.11. The same remarks apply to the second line. For instance, one shows
that the term on the left of the second line is the smallest submodule of ĥ which contains
the subquotient ḡ` if ϕ is an isomorphism, and the subquotient ḡs otherwise. One also
checks easily that the quotient injects into ĝ⊗F,σ F . The rest is left to the reader. �

The following definition collects all the qualitative information about the augmenta-
tion ideal Jρ̂ that is available so far. As before we write Gi for the fiber of G over Fi. Let

ḡi, ḡi,s, and ḡi,` be the representation spaces of αGi , αGi
s , and αGi

` , respectively.

Definition 4.3: Let Jρ̂ be the set of all x ∈ EndF (ĥ) satisfying the following conditions:

(a) x maps each G-invariant F -submodule of ĥ into itself,

(b) x annihilates each G-invariant F -subquotient of ĥ on which G acts trivially,

(c) x maps the subspace ker(dϕ ◦ d$)⊗F,σ σ(F ) of ker(dϕ ◦ d$)⊗F,σ F into itself, and

(d) for each simple summand Fi with char(Fi) = 2 and for which the root system of Gi
has type Cn for some n ≥ 1, the endomorphism of ḡi,` induced by x lies in B

α
Gi
`

.

Recall that (F,G,Γ) is assumed to be minimal. Therefore, taking into account Propo-
sition 3.10, this definition shows that Jρ̂ is a σ(F )-module. Clearly, we have Jρ̂ ⊂ Jρ̂. The
main result of this section is the following theorem.

Theorem 4.4: There is a subring O′ ⊂ F with the following properties:

(a) O′ is finitely generated in the global case, resp. open compact in the local case,

(b) the total ring of quotients of O′ is F ,

(c) Jρ̂ is a module of finite type over σ(O′), and

(d) σ(F ) · Jρ̂ = Jρ̂.

In the local case the theorem is equivalent to saying that Jρ̂ is open compact in Jρ̂.

Proof: First we show (a–c). Let Rad(Jρ̂) denote the radical of Jρ̂, that is the kernel of
the action of Jρ̂ in the semisimplification ρ̂ss of ρ̂. Let OαH

`
be as in Theorem 2.3, and

let Õ be its normalization in F . From Proposition 2.15 we see that for each non-constant
irreducible subquotient ρ′ of ρ̂, defined over a simple summand Fi of F , the image of Õ in
Fi is of finite type as module over Oρ′ . Therefore there is a subring O′ ⊂ Õ of finite index
such that Jρ̂ modulo Rad(Jρ̂) is a σ(O′)-module. By Theorem 2.3 (c) this module is of
finite type. In the proof of (d) below we shall show that

(4.5) σ(F ) ·
(
Rad(Jρ̂)

n ∩ Jρ̂
)

= Rad(Jρ̂)
n

for all n ≥ 0. On the successive quotients Rad(Jρ̂)
n/Rad(Jρ̂)

n+1 the left and right action
of Jρ̂ factors through Jρ̂/Rad(Jρ̂). Therefore by downward induction on n we easily deduce
that Rad(Jρ̂)

n ∩ Jρ̂ is a σ(O′)-module for all n, provided that O′ is made a little smaller
at each step when necessary. The fact that this module is finitely generated is proved just
as in Theorem 2.16. This shows assertions (a–c) modulo Equation (4.5).
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Coming to the proof of (d), we first show that

(4.6) σ(F ) · Jρ̂ ≡ Jρ̂ modulo Rad(Jρ̂).

This assertion concerns only the representation ρ̂ss. By Definition 4.3 (b) we may discard
all those simple subquotients on which G acts trivially. The remaining simple subquotients
are precisely those listed in Proposition 3.14, except for the fact that the subquotients ḡi,s
that do not occur in im(dϕ̃) are replaced by their pullback via Frobenius ḡi,s ⊗Fi,σ Fi.
This fact is accounted for by Definition 4.3 (c). Moreover, Definition 4.3 (d) takes care of
the symplectic case of Proposition 3.10. Thus the equation (4.6) follows from Theorem 2.3
and Proposition 3.14.

Next we reduce everything to an equation modulo the square of the radical. Suppose
that we know

(4.7) σ(F ) ·
(
Rad(Jρ̂) ∩ Jρ̂

)
≡ Rad(Jρ̂) modulo Rad(Jρ̂)

2.

By induction on n we find that

σ(F ) ·
(
Rad(Jρ̂)

n ∩ Jρ̂
)
≡ Rad(Jρ̂)

n modulo Rad(Jρ̂)
n+1

for all n ≥ 1. By (4.6) the same holds for n = 0. Thus by downward induction on n we
deduce (4.5) for all n. For n = 0 this is just the assertion of Theorem 4.4 (d).

It remains to prove Equation (4.7). For this we first look at all subquotients of ĥ

which are non-trivial extensions of two irreducible representations. The precise form of
the result will depend on where in ĥ this subquotient occurs. The following result will
cover all cases.

Lemma 4.8: Let 0→ V ′ → V → V ′′ → 0 be a non-trivial extension of G-modules where
V ′ and V ′′ are absolutely irreducible. Assume that one of the following two conditions
holds:

(a) V is a subquotient of ĥ but not of ker(dϕ ◦ d$)⊗F,σ F .

(b) V is a subquotient of ker(dϕ ◦ d$).

Let ρ denote the representation of G on V , and Aρ the stabilizer of V ′ in EndF (V ). Then

σ(F ) ·
(
Rad(Aρ) ∩ Jρ

)
= Rad(Aρ).

Proof of Equation (4.7): Here I advise the gentle reader to view the representation

as written in terms of block matrices adapted to a Jordan-Hölder series of ĥ. The part
over each Fi has length at most 5, so that scribbling a few small matrices can be of great
help in visualizing the argument. First, we see at once that Rad(Jρ̂)/Rad(Jρ̂)

2 is a direct
sum of its images on various subquotients which are extensions of length 2. Consider the
decomposition of Rad(Jρ̂)/Rad(Jρ̂)

2 into isotypic components under the simultaneous left
and right action of Jρ̂/Rad(Jρ̂). By (4.6) it suffices to prove that σ(F ) ·

(
Rad(Jρ̂) ∩ Jρ̂

)

surjects onto each isotypic component.
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If the isotypic component arises from exactly one subquotient of ĥ of length 2, the
surjectivity follows directly from Lemma 4.8. Indeed, this is obvious in the case of Lemma
4.8 (a); and in the case (b) the only difference is that one has to apply an extra tensor
product ⊗F,σF .

Suppose that the isotypic component comes from more than one extension of length 2.
By the list in Proposition 1.11 this happens only for a fiber with char(Fi) = 2 and where
the root system of Gi has type Dn for some even integer n. In that case we are looking
at an extension of ḡi with two copies of the trivial representation of dimension 1. Since
that extension does not split even partially, the surjectivity again follows from Lemma 4.8.
This proves Equation (4.7) modulo Lemma 4.8. �

Proof of Lemma 4.8: Since the extension is non-trivial, both V ′ and V ′′ must be vector
spaces over the same simple summand of F . After projecting to that summand and using
Proposition 3.9 we may suppose without loss of generality that F is a field. Let ρ′, ρ′′

denote the representation of G on V ′, resp. V ′′. Since the extension is non-trivial and G is
semisimple, at least one of ρ′, ρ′′ is a non-constant representation. As every non-constant
irreducible subquotient occurs only once in ĥ or ĝ, we deduce that ρ′ 6∼= ρ′′. From Theorem
2.16 we now obtain that

(4.9) F ·
(
Rad(Aρ) ∩ Jρ

)
= Rad(Aρ).

We need the same equation with F replaced by σ(F ). Recall that Rad(Aρ)∩Jρ is a module
over the ring O defined in Theorem 2.16. Thus, if Quot(O) = F , we have σ(F ) · O =
F , which directly implies the desired strengthening of (4.9). Thus in the remainder of
the proof we assume that Quot(O) 6= F . Then each of Eρ′ and Eρ′′ (defined whenever
the corresponding representation ρ′ resp. ρ′′ is non-constant) is a proper subfield of F .
By classifying the possible cases, the following sublemma extracts some useful common
features.

Sublemma 4.10: If Quot(O) 6= F , we must have:

(a) char(F ) = 2,

(b) Quot(O) = σ(F ),

(c) the group ρ(G) is adjoint, and

(d) the representation ρ does not factor through Frobenius.

Proof: Suppose first that ρ′ is constant. Since ker(dϕ ◦ d$) does not have a non-zero
constant representation as a quotient, we must be in the case (b) of Lemma 4.8. Thus ρ′′

is a non-constant subquotient of ĝ. Since Eρ′′ 6= F , we must be in the symplectic case of
Proposition 3.10, with ρ′′ ∼= αG` and Eρ′′ = σ(F ). If rank(G) = 1, the second diagram in
Proposition 1.11 (b) shows that V ∼= g̃. Then ρ is faithful, by Proposition 1.12 (c), and
all the desired assertions are proved. If rank(G) > 1, the relevant diagram in Proposition
1.11 (c) shows that V ∼= g̃` and hence ρ(G) ∼= G] in the notation of Proposition 1.12 (d).
Again all assertions are proved in this case.
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Suppose that ρ′ is non-constant. In each of the cases of Lemma 4.8 this must be a
subquotient of ĝ. Therefore we are again in the symplectic case of Proposition 3.10; this
time with ρ′ ∼= αG` and Eρ′ = σ(F ). If rank(G) = 1, as above we find V ∼= g and that ρ is
faithful, whence the lemma. Otherwise the relevant diagrams in Proposition 1.11 (c) leave
two cases. If ρ′′ is constant, then V ∼= g` and hence again ρ(G) ∼= G] in the notation of
Proposition 1.12 (d). If ρ′′ is non-constant, then ϕ must be a non-standard isogeny and
V ∼= h̄. By Proposition 1.12 (a) the representation of H on h̄ is faithful, so that again we
obtain ρ(G) ∼= G]. Thus the sublemma is proved in all cases. �

The rest of the proof of Lemma 4.8 follows the same principle as that of Proposi-
tion 3.10. Namely, assuming that Lemma 4.8 is false we shall construct a quasi-model of
(F,G,Γ) which violates the minimality condition. The method for constructing a model
over a subring follows that of Theorem 2.14, except that now the ring is no longer semi-
simple.

Sublemma 4.11: Suppose that the assertion of Lemma 4.8 is false. Set Bρ := σ(F )·Bρ ⊂
Aρ. Then the canonical homomorphism Bρ ⊗σ(F ) F −→ Aρ is an isomorphism.

Proof: First we look at the semisimplification of Aρ. Since ρ′ and ρ′′ are not equivalent,
the image of Bρ in Aρ/Rad(Aρ) is isomorphic to the direct sum of its images in EndF (V ′)
and in EndF (V ′′). From Sublemma 4.10 (b) we already know that this image is a model
of Aρ/Rad(Aρ) over σ(F ). This is seen directly when ρ′ resp. ρ′′ is constant; otherwise
we use Theorem 2.3 (a.iii).

Next choose an element e ∈ Bρ which acts as two different scalars on V ′ and V ′′.
Decomposing Aρ under left and right multiplication by e we easily find that

Rad(Bρ) := Rad(Aρ) ∩Bρ = σ(F ) ·
(
Rad(Aρ) ∩ Jρ

)
.

To finish the proof it thus suffices to show that the homomorphism

(4.12) Rad(Bρ)⊗σ(F ) F −→ Rad(Aρ)

is an isomorphism. We know already that it is surjective. Let S ⊂ EndF (Rad(Aρ))
denote the σ(F )-subalgebra generated by left and right multiplication by all elements of
Bρ. Since F · Bρ � Aρ/Rad(Aρ), we easily find that F · S = EndF (Rad(Aρ)). It follows
that Rad(Aρ) is an S-module of length at most 2. Now by construction Rad(Bρ) is a
non-zero S-submodule, and by assumption it is a proper submodule. This implies that
lengthS(Rad(Bρ)) = 1 and lengthS(Rad(Aρ)) = 2. Finally, from Sublemma 4.10 (a) we
infer that dimσ(F )(F ) = 2. This shows that the homomorphism (4.12) is a surjective
homomorphism between two S-modules of length 2. Therefore it is an isomorphism, as
desired. �

To finish the proof of Lemma 4.8 let us assume that the assertion is false. Then both
preceding sublemmas apply. Note that by construction we have ρ(Γ) ⊂ B∗

ρ . Therefore we
can argue as in Theorem 2.14, obtaining a linear algebraic group Gρ over σ(F ) and an
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isomorphism Gρ×σ(F )F
∼−−→ ρ(G) such that ρ(Γ) corresponds to a subgroup of Gρ(σ(F )).

By Sublemma 4.10 the group Gρ is adjoint, and the Frobenius isogeny of G factors through
an isogeny ρ(G) −→ σ∗G which is not an isomorphism. Thus, following the procedure of
Lemma 3.12, we obtain a quasi-model (F,Gρ ×σ(F ),σ−1 F, . . .) of (F,G,Γ) in which the
isogeny is not an isomorphism. This contradicts the minimality of (F,G,Γ). This finishes
the proof of Lemma 4.8 and thus of Theorem 4.4. �

Consequences of Theorem 4.4: We formulate two special results that will be
needed later on. To fix notations, let τ be the endomorphism of F which on each simple
summand Fi is the identity if ϕ is an isomorphism over Fi, and equal to the Frobenius
endomorphism σ otherwise. Clearly the first and the last line in Proposition 4.2 remains
exact when σ is replaced by τ . Define τ(F )-submodules W̃ ⊂ h̃ and W ⊂ h so that the
following diagrams have exact rows:

(4.13)

0 −→ im(dϕ̃) −→ h̃ −→ ker(dϕ̃)⊗F,τ F −→ 0∥∥ ∪ ∪

0 −→ im(dϕ̃) −→ W̃ −→ ker(dϕ̃)⊗F,τ τ(F ) −→ 0

(4.14)
0 −→ im(dϕ) −→ h −→ ker(dϕ)⊗F,τ F −→ 0∥∥ ∪ ∪
0 −→ im(dϕ) −→ W −→ ker(dϕ)⊗F,τ τ(F ) −→ 0 .

The homomorphism dω induces a map W̃ → W , and Jρ̂ can be interpreted as a τ(F )-

submodule of Homτ(F )(W, W̃ ). In the following, we let O′ ⊂ F be the subring given
by Theorem 4.4. By a τ(O′)-lattice in a τ(F )-module of finite type we mean a finitely
generated τ(O′)-submodule which generates the total space over τ(F ). In the same sense,
the main content of Theorem 4.4 is that Jρ̂ is a σ(O′)-lattice in Jρ̂.

For the first special result we consider the quotient module h̃� h̄` given by Proposition
1.11, and let W̄` denote the image of W̃ in h̄`. Let ρ̃ denote the representation of G on h̃.

Lemma 4.15: Let Jρ̃ be the image of Jρ̂ in EndF (h̃). Then we have
(
Homτ(F )(W̄`, W̃ ) ∩ Jρ̃

)
· τ(F ) = Homτ(F )(W̄`, W̃ ).

Proof: Since everything decomposes according to the simple summands of F , we may
assume that F is a field. Suppose first that ϕ is an isomorphism. Then by construction
we have W̃ = h̃ = g̃ and W̄` = h̄` = ḡ`, and the latter is the unique irreducible quotient
module of the former. Going through Definition 4.3, we find that Homτ(F )(W̄`, W̃ ) ⊂ Jρ̃,
except in the symplectic case of Definition 4.3 (d). In that case, the weaker statement of
the lemma still follows, using the equality BαG

`
· F = EndF (ḡ`) of Theorem 2.3 (a.iii).

If ϕ is not an isomorphism, we have τ = σ and W̄`
∼= ḡs ⊗F,σ σ(F ). Going through

Definition 4.3 it is straightforward to see that Homσ(F )(W̄`, W̃ ) ⊂ Jρ̃. This proves Lemma
4.15. �

Since the image of Jρ̂ in EndF (W̃ ) is just Jρ̃, from Theorem 4.4 we now immediately
obtain:
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Corollary 4.16: Homτ(F )(W̄`, W̃ ) ∩ Jρ̃ generates a τ(O′)-lattice in Homτ(F )(W̄`, W̃ ).

The second corollary concerns the following quotient module of h. It suffices to define
it fiber by fiber, so let us suppose that F is a field. Then, in the notation of Proposition
1.11, we set

(4.17) h`t :=





z∗ if char(F ) = 2 and the root system of H
has type Cn for some n ≥ 1; otherwise:

dψ(h) if H has a non-standard isogeny ψ : H → H],
h if it does not.

Here the index ` stands for “long roots” and the index t for “torus”. The reason is this:
Recall that the weight 0 subspace of h comes from a maximal torus. Let θ : h � h`t
denote the canonical projection. If H does not have non-standard isogenies, then h`t is the
smallest quotient module of h such that the weight 0 subspace still injects into h`t. If H
has a non-standard isogeny ψ : H → H], then h`t is the smallest quotient module of dψ(h)
such that the weight 0 subspace of dψ(h) injects into h`t. This property will be important
later on.

Let W`t be the image of W in h`t.

Lemma 4.18: We have
Homτ(F )(W`t, W̃ ) ⊂ Jρ̂.

Proof: This is proved in the same way as Lemma 4.15, by going through Definition 4.3
and the cases of Proposition 1.11. �

Using Theorem 4.4 we deduce:

Corollary 4.19: Jρ̂ contains a τ(O′)-lattice in Homτ(F )(W`t, W̃ ).
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5. Local Parameters

In this section and the next two we consider the local case. We also assume that F
is non-archimedean, i.e. it is a finite direct sum of non-archimedean local fields. Let G
be a linear algebraic group over F . The aim of this section is to set up the framework
for studying the profinite structure of congruence subgroups of G(F ). In order to speak
of principal congruence subgroups we must choose local parameters of G at the identity
section. We shall also discuss homomorphisms and commutator maps between various
groups, which requires that the choices of local parameters are compatible with each other
in a certain sense. The present section is devoted to finding such local parameters for the
groups G, G̃, etc. that were discussed in the preceding section. Our arguments will be kept
at a rather elementary level, avoiding Bruhat-Tits theory, and all of them work essentially
fiber-by-fiber over F .

Let us denote the identity section of G by 1. Let ÔG,1 denote the completion of the
affine ring of G with respect to the ideal defining the identity section. If Gi denotes the
fiber of G over a simple summand Fi, then ÔG,1 is just the direct sum of the completed

local rings ÔGi,1 of the individual fibers. Moreover we have ÔGi,1
∼= Fi[[xi,1, . . . , xi,ni

]]
for any system xi,1, . . . , xi,ni

of local parameters of Gi at 1. Note that the morphism
d : G×F G −→ G, (g, h) 7→ gh−1 induces an F -algebra homomorphism

(5.1) d∗ : ÔG,1 −→ ÔG,1⊗̂F ÔG,1 ,

where ⊗̂F denotes the completed tensor product. The image of any xi,j is then a power
series in the variables xi,k ⊗ 1 and 1⊗ xi,k for all 1 ≤ k ≤ ni.

Let O be the maximal compact subring of F . This is, of course, just the direct sum
of the valuation rings Oi ⊂ Fi. We are interested in local parameters for which the above
power series have coefficients in O. Giving such local parameters amounts essentially to
giving a structure of G over O in a very small neighborhood of the identity. The most
natural terminology for this is that of formal schemes (cf. Hartshorne [5] Ch. II §9).
The reader should not feel deterred by our use of formal schemes, since we shall need
only their most elementary properties and the arguments below will consist only of easy
manipulations of power series.

Definition 5.2: A smooth formal model (over O) of G is a formal scheme G = Spf R
where R is an O-subalgebra of ÔG,1 such that

(a) there exists a system xi,1, . . . , xi,ni
of local parameters of each Gi at 1 such that R =⊕m

i=1Oi[[xi,1, . . . , xi,ni
]], and

(b) the homomorphism d∗ induces a homomorphism R −→ R⊗̂OR. In other words, the
morphism d corresponds to a morphism of formal schemes G×OG −→ G, which makes
G into a smooth formal group scheme over O.

Consider a smooth formal model G over O of G. The Lie algebra of G is the relative
tangent space at the identity element. Clearly, in terms of the local parameters of Definition
5.2 (a) we have

LieG =
m⊕

i=1

ni⊕

j=1

Oi ·
( ∂

∂xi,j

∣∣∣
1

)
.
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This is an O-lattice in LieG, that is, a finitely generated O-submodule with F · (LieG) =
LieG.

Let ϕ : G → H be a homomorphism of linear algebraic groups over F . If we are
given smooth formal models G = Spf R of G and H = Spf S of H, then ϕ induces a
homomorphism of formal group schemes G → H if and only if its transpose ϕ∗ : ÔH,1 −→

ÔG,1 induces an algebra homomorphism S → R. Looking at the derivative we find that
a necessary condition for this is that dϕ maps the lattice LieG to the lattice LieH. The
induced homomorphism G → H will be denoted again by ϕ, whenever it exists.

Let us take up the situation of Section 3. Thus G is now a fiberwise absolutely simple
adjoint group over F , and Γ is a fiberwise Zariski dense compact subgroup of G(F ). Let
π : G̃→ G denote the universal covering of G.

Proposition 5.3: There exist smooth formal models G of G and G̃ of G̃ such that

(a) π extends to a homomorphism G̃ → G, and

(b) for every γ ∈ Γ the morphism [γ, ]∼ : G→ G̃ of (1.2) extends to a morphism G → G̃.

Note that, as a consequence, the morphism π ◦ [γ, ]∼ extends to a morphism G → G,
and hence the conjugation action of Γ on G extends to an action on G. Likewise [γ, ]∼ ◦ π
defines an extension of the conjugation action on G̃ to G̃.

Proof: There are several aspects to take care of. First we observe that all fibers over F
can be considered separately. Thus, for the purposes of this proof we may and do suppose
that F is a field. We use the following “Ansatz”: Fix local parameters ξ1, . . . , ξn of G, and
local parameters ξ̃1, . . . , ξ̃n of G̃. Fix a uniformizing element t ∈ O, and put xi := t−Nξi
and x̃i := t−N ξ̃i for all i and some integer N . Let

G̃ := Spf O[[x̃1, . . . , x̃n]],

G := Spf O[[x1, . . . , xn]].

We shall show that G̃ and G have all the desired properties, provided that the ξi and ξ̃i
satisfy certain conditions that are detailed below, and that N is sufficiently large. We shall
also show that the conditions on the ξi and ξ̃i can indeed be met. Consider the O-lattices

Λ =

n⊕

i=1

O ·
( ∂

∂ξi

∣∣∣
1

)
⊂ LieG,

Λ̃ =

n⊕

i=1

O ·
( ∂

∂ξ̃i

∣∣∣
1

)
⊂ Lie G̃.

If G̃ and G are smooth formal models, we clearly have Lie G̃ = tN Λ̃ and LieG = tNΛ.
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Lemma 5.4: For any N � 0, both G̃ and G are smooth formal models of G̃ resp. of G.

Proof: We concentrate on G, the proof for G̃ being exactly the same. Consider the
homomorphism (5.1)

d∗ : F [[ξ1, . . . , ξn]] −→ F [[ξ1 ⊗ 1, . . . , ξn ⊗ 1; 1⊗ ξ1, . . . , 1⊗ ξn]].

Since the ξi are algebraic functions on G, and d∗ comes from an algebraic morphism, the
image of ξi is a power series fi which is the expansion of an algebraic function. It is
known that the coefficients of such a power series are bounded by a linear function of the
total degree. For a precise formulation let us write a monomial in the form ξj ⊗ ξk with
multi-indices j and k. This term has total degree |j + k|, where | | denotes the sum over
all entries in a multi-index. Then there exists an integer M ≥ 0 such that for all i, j,

and k the coefficient of ξj ⊗ ξk in fi has t-adic valuation ≥ −M · (|j + k|+ 1). Rewriting
everything in terms of the variables xi, we obtain

d∗xi = t−N · fi
(
tNx1 ⊗ 1, . . . , 1⊗ tNxn

)
.

Here the coefficient of xj ⊗ xk has t-adic valuation

≥ N · (|j + k| − 1)−M · (|j + k|+ 1).

Taking N ≥ 3M , this is

≥M ·
(
3 · (|j + k| − 1)− (|j + k|+ 1)

)

= M ·
(
2 · |j + k| − 4

)

≥ 0

provided that |j + k| ≥ 2. Thus for all N � 0, the coefficients of all terms of total degree
≥ 2 lie in O. On the other hand the group axioms imply that

fi(ξ1 ⊗ 1, . . . , 1⊗ ξn) ≡ ξi ⊗ 1− 1⊗ ξi modulo terms of degree ≥ 2.

It follows that

d∗xi ≡ xi ⊗ 1− 1⊗ xi modulo terms of degree ≥ 2.

Thus all coefficients lie in O, as desired. �
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Lemma 5.5: Suppose that dπ : Lie G̃ → LieG maps Λ̃ to Λ. Then for any N � 0 the
isogeny π extends to a homomorphism G̃ → G.

Proof: Consider the image of ξi under the homomorphism

π∗ : F [[ξ1, . . . , ξn]] −→ F [[ξ̃1, . . . , ξ̃n]].

This is a power series gi which is the expansion of an algebraic function of the ξ̃j . The
image of xi is then

π∗xi = t−N · gi
(
tN x̃1, . . . , t

N x̃n
)
.

The same argument as in the proof of Lemma 5.4 shows that for this series the coefficients
of all terms of total degree ≥ 2 lie in O, whenever N is sufficiently large. On the other
hand, the coefficients of the linear terms are the same as those on the Lie algebra. Since
we already know that Lie G̃ = tN Λ̃ and LieG = tNΛ, these coefficients lie in O if and only
if dπ(Λ̃) ⊂ Λ. �

Next recall that the derivative of [γ, ]∼ : G → G̃ is the homomorphism ÃdG(γ) :
LieG −→ Lie G̃ of (1.3). A necessary condition for Proposition 5.3 (b) is that this homo-
morphism maps Λ to Λ̃.

Lemma 5.6: Suppose that ÃdG(Γ)(Λ) ⊂ Λ̃ ⊂ (dπ)−1(Λ). Then for any given N � 0, the
morphisms [γ, ]∼ extend to morphisms G → G̃ for all γ ∈ Γ.

Proof: If we had to deal with only finitely many elements γ ∈ Γ, we could proceed directly
as in the proof of Lemma 5.5. But in order to account for all of Γ at once we must replace
Γ by something larger which has the structure of an algebraic variety over O.

Working first over F , recall from (1.3) and (1.4) that AdG = κ◦ÃdG. Since AdG(G) ⊂

AutF (LieG), this shows that ÃdG(G) is contained in the open subvariety

U := κ−1
(
AutF (LieG)

)
⊂ HomF (LieG,Lie G̃).

In fact, ÃdG must be a closed embedding G ↪→ U , because AdG is one. Summarizing, we
have a commutative diagram

G ↪
ÃdG
−−−−→ U ⊂ HomF (LieG,Lie G̃)

κ

y κ

y
AutF (LieG) ⊂ EndF (LieG) .

Next, we repeat these constructions over O, using the chosen lattices. For a start,
HomO(Λ, Λ̃) is an affine scheme over O whose generic fiber is HomF (LieG,Lie G̃). The
assumption of Lemma 5.5 (a) implies that κ extends to a morphism HomO(Λ, Λ̃) −→
EndO(Λ). Consider the affine open subscheme U := κ−1

(
AutO(Λ)

)
⊂ HomO(Λ, Λ̃), and let
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H be the Zariski closure of ÃdG(G) in U . This is an affine scheme over O, say H = SpecB
for an O-algebra B. Summarizing, we have another commutative diagram

H ⊂ U ⊂ HomO(Λ, Λ̃)

κ

y κ

y
AutO(Λ) ⊂ EndO(Λ) .

These constructions imply that ÃdG(Γ) ⊂ H(O). Indeed, the assumption in Lemma

5.6 shows that ÃdG(γ) is an O-valued point of HomO(Λ, Λ̃). Therefore AdG(γ) stabilizes
Λ. Since the same holds for γ−1 in place of γ, it follows that AdG(γ) ∈ AutO(Λ), and

hence ÃdG(γ) ∈ U(O). By the definition of H this point already lies in H(O), as desired.

Recall that, by construction, ÃdG induces an isomorphism G ∼−−→ H×O F . In other

words H is a model of G over O. Since we have ÃdG(Γ) ⊂ H(O), to prove the lemma it
suffices to show that the generalized commutator morphism [ , ]∼ : G×F G −→ G̃ extends
to a morphism H×O G −→ G̃ whenever N is sufficiently large.

With this setup we can now proceed as above. The generalized commutator morphism
corresponds to an F -algebra homomorphism

F [[ξ̃1, . . . , ξ̃n]] −→ (F · B)[[ξ1, . . . , ξn]].

The image of ξ̃i is a power series in B ⊗O

(
F [[ξ1, . . . , ξn]]

)
which represents an algebraic

function. Thus, writing the image of x̃i as a power series in the xj , the same argument as
in the proof of Lemma 5.4 shows that the coefficients of all terms of total degree ≥ 2 lie
in O, whenever N � 0. For the linear terms it suffices to look at the Lie algebras. Here
the integrality follows from

H ⊂ HomO(Λ, Λ̃)

= HomO(tNΛ, tN Λ̃)

= HomO(LieG,Lie G̃),

as desired. �

To finish the proof of Proposition 5.3 we must show that the local parameters ξi and
ξ̃i can be chosen in such a way that the conditions of Lemma 5.5 and Lemma 5.6 are
satisfied. Since these conditions depend only on Λ and Λ̃, we may first select these lattices.
Clearly the local parameters can then be chosen accordingly. Thus it remains to prove the
following lemma.

Lemma 5.7: There exist O-lattices Λ ⊂ LieG and Λ̃ ⊂ Lie G̃, such that

ÃdG(Γ)(Λ) ⊂ Λ̃ ⊂ (dπ)−1(Λ).

Proof: Take any AdG(Γ)-stable lattice Λ ⊂ LieG. Then we have ÃdG(Γ)(Λ) ⊂ (dπ)−1(Λ),
and any lattice Λ̃ lying between these two submodules does the job. This finishes the proof
of Proposition 5.3. �
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Generalization: We shall need to generalize these results by taking into account
a further isogeny. Let ϕ : G → H, H̃, etc. be as in (4.1). As in (4.13) ff. let τ
be the endomorphism of F which on each simple summand Fi is the identity if ϕ is an
isomorphism over Fi, and equal to the Frobenius endomorphism σ otherwise. Consider
the isogeny G→ τ∗G which is the identity over Fi if ϕ is an isomorphism over Fi, and the
Frobenius isogeny otherwise. By Theorem 1.7 this isogeny factors through ϕ, and the same
holds for the universal coverings. Thus we can enlarge the diagram (4.1) to a commutative
diagram of isogenies

(5.8)

G̃
ϕ̃
−−→ H̃

ψ̃
−−→ τ∗G̃

π

y ω

y
yτ∗π

G
ϕ
−−→ H

ψ
−−→ τ∗G .

The desired generalization of Proposition 5.3 goes as follows.

Proposition 5.9: There exist smooth formal models G, G̃, H, H̃ of G, G̃, H, H̃, such
that

(a) the morphisms π, ω, ψ, and ψ̃ extend to homomorphisms in the following commutative
diagram

G̃ H̃
ψ̃
−−→ τ∗G̃

π

y ω

y
yτ∗π

G H
ψ
−−→ τ∗G ,

(b) the derivatives dψ : LieH −→ Lie(τ∗G) and dψ̃ : Lie H̃ −→ Lie(τ∗G̃) have O-torsion
free cokernel, and

(c) for every γ ∈ Γ the morphisms [γ, ]∼ : G → G̃ and H → H̃ extend to morphisms
G → G̃ and H → H̃.

Proof: As in the proof of Proposition 5.3 we may assume that F is a field. When ϕ is an
isomorphism, we take G and G̃ as in Proposition 5.3, and choose the corresponding smooth
formal models for H and H̃. Then there is nothing new to prove. So let us assume that ϕ
is not an isomorphism, in which case p := char(F ) is positive and τ = σ. As before, the
important point is to choose suitable lattices in the Lie algebras of all groups in question.

Lemma 5.10: There exist O-lattices Λ ⊂ LieG, Λ̃ ⊂ Lie G̃, M ⊂ LieH, and M̃ ⊂ Lie H̃,
such that

(a) the derivatives of π, ω, ψ, and ψ̃ induce homomorphisms

Λ̃ M̃
dψ̃
−−−→ τ∗Λ̃ = Λ̃⊗O,τ O

dπ

y dω

y
yτ∗(dπ)

Λ M
dψ
−−−→ τ∗Λ = Λ⊗O,τ O ,
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(b) the cokernels of the maps dψ̃ and dψ in (a) are O-torsion free, and

(c) ÃdG(Γ)(Λ) ⊂ Λ̃ and ÃdH(ϕ(Γ))(M) ⊂ M̃.

Proof: The lattices must be chosen inside the F -vector spaces

Lie G̃ Lie H̃
dψ̃
−−−→ τ∗(Lie G̃) = (Lie G̃)⊗F,τ F

dπ

y dω

y
yτ∗(dπ)

LieG LieH
dψ
−−−→ τ∗(LieG) = (LieG)⊗F,τ F .

Take any AdG(Γ)-stable lattice Λ ⊂ LieG. Next choose an ÃdH(ϕ(Γ))-stable lattice
M ⊂ (dψ)−1(τ∗Λ). As in Lemma 5.7 we can then find a lattice

ÃdH(ϕ(Γ))(M) ⊂ M̃ ⊂ (dω)−1(M).

We easily calculate that

(dψ̃)(M̃) + ÃdG(Γ)(Λ) ⊂ (dπ)−1(Λ),

so that we can also find a lattice Λ̃ between these two submodules. The lattices thus
constructed satisfy all conditions except possibly (b). Consider an integer r ≥ 0 such
that tr annihilates the O-torsion of both (τ∗Λ)/dψ(M) and (τ∗Λ̃)/dψ̃(M̃). Then after
replacing M by (dψ)−1(τ∗Λ)∩ t−rM and M̃ by (dψ̃)−1(τ∗Λ̃)∩ t−rM̃ one easily checks that
all conditions hold. �

The construction of smooth formal models now follows the same Ansatz as in the
proof of Proposition 5.3. We choose local parameters ξ1, . . . , ξn of G such that

Λ =

n⊕

i=1

O ·
( ∂

∂ξi

∣∣∣
1

)
⊂ LieG,

and local parameters ξ̃i, ηi, η̃i of G̃, H, H̃ respectively, which satisfy the analogous relation
vis-à-vis the lattices Λ̃, M, and M̃. Next we put xi := t−Nξi, x̃i := t−N ξ̃i, yi := t−pNηi,
and ỹi := t−pN η̃i. Note that the new parameters have a different scaling factor! Finally,
we let

G̃ := Spf O[[x̃1, . . . , x̃n]],

G := Spf O[[x1, . . . , xn]],

H̃ := Spf O[[ỹ1, . . . , ỹn]],

H := Spf O[[y1, . . . , yn]].

Then the proof of Proposition 5.3 already shows everything except the assertions concern-
ing the extensions of ψ and ψ̃. We discuss ψ, the proof for ψ̃ being exactly the same. The
transpose of ψ is a homomorphism

ψ∗ : F [[ξ1, . . . , ξn]]⊗F,τ F −→ F [[η1, . . . , ηn]].
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If the image of ξi ⊗ 1 is the power series hi, the image of xi ⊗ 1 = (t−Nξi)⊗ 1 = ξi⊗ t
−pN

is equal to
ψ∗(xi ⊗ 1) = t−pN · hi

(
tpNy1, . . . , t

pNyn
)
.

The same argument as in the proof of Lemma 5.4 shows that for this series the coefficients
of all terms of total degree ≥ 2 lie in O, whenever N is sufficiently large. For the linear
terms we look at the Lie algebras, which turn out to be LieH = tpNM and Lie τ∗G =
τ∗(LieG) = τ∗(tNΛ) = tpN · τ∗Λ. Now Lemma 5.10 (a) and (b) implies that dψ induces a
homomomorphism LieH −→ Lie τ∗G with O-torsion free cokernel. In particular the linear
coefficients are in O, proving Proposition 5.9 (a). At the same time this shows (b), and
we are done. �
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6. Principal Congruence Subgroups and the Truncated Logarithm Map

Let O ⊂ F be as in the preceding section, that is, F is a non-archimedean local
commutative semisimple ring and O is its maximal compact subring. Consider a linear
algebraic group G over F , and fix a smooth formal model G over O of G. This determines
a collection of principal congruence subgroups of G(F ). In this section we discuss the
linearization of certain quotients of these by means of a truncated logarithm map. Recall
that in characteristic zero the logarithm and the exponential series allow us to go back and
forth between a Lie group and its Lie algebra. But in arbitrary characteristic we can use
only the terms of degree ≤ 1 in these series. This is why we obtain natural isomorphisms
only between suitable subquotients. The definition and the properties of these isomor-
phisms are rather straightforward. We first discuss these things for an arbitrary group G.
Later on we specialize to the situation of the preceding sections.

Let m denote the radical of O, that is the direct sum of the maximal ideals mi of the
local rings Oi.

Definition 6.1: For any open ideal a ⊂ m we set

G(a) := ker
(
G(O) −→ G(O/a)

)
.

In other words, this is the set of those points in G(O) on which all local parameters
have values in a. It is a normal subgroup of G(O) and open in G(F ). When a runs through
a cofinal system of open ideals, then G(a) runs through a cofinal system of neighborhoods
of the identity. These groups are called principal congruence subgroups. The following
proposition introduces the truncated logarithm map.

Proposition 6.2:

(a) For any open ideals a2 ⊂ b ⊂ a ⊂ m there exists a canonical group isomorphism

loga/b : G(a)/G(b) ∼−−→ (LieG)⊗O (a/b) .

(b) For any open ideals a2 ⊂ b ⊂ a ⊂ m and a′2 ⊂ b′ ⊂ a′ ⊂ m such that b′ ⊂ b and
a′ ⊂ a, the following diagram commutes, where the vertical maps are the obvious ones:

G(a′)/G(b′)
log

a′/b′

−−−−−−→ (LieG)⊗O (a′/b′)y
y

G(a)/G(b)
log

a/b

−−−−−→ (LieG)⊗O (a/b) .

(c) Let H be a smooth formal model over O of another linear algebraic group H. Consider
a morphism ϕ : G → H, which may or may not be a group homomorphism. Then the
following diagram commutes:

[g] ∈ G(a)/G(b)
log

a/b

−−−−−→ (LieG)⊗O (a/b)y [ϕ]

y
ydϕ⊗id

[ϕ(g)] ∈ H(a)/H(b)
log

a/b

−−−−−→ (LieH)⊗O (a/b) .
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Proof: We may decompose everything according to the simple summands of F . Thus
without loss of generality we may assume that F is a field. Then any choice of local
parameters x1, . . . , xn of G determines a homeomorphism

G(a) ∼−−→ a⊕n, g 7→ (x1(g), . . . , xn(g)).

Consider the map
G(a) −→ (LieG)⊗O (a/b),

g 7→
n∑

i=1

( ∂

∂xi

∣∣∣
1

)
⊗ [xi(g)].

Since the group structure of G is given by power series with coefficients in O, all terms of
degree ≥ 2 are subsumed in a2 ⊂ b. Therefore this is a group homomorphism. Clearly it
is surjective with kernel G(b), so it induces the desired isomorphism in (a). If we compare
this map with that defined by another system of local parameters, the terms of degree
≥ 2 again appear only in b. Thus one easily calculates that the map is independent of
the choice of the xi. This proves (a). A similar calculation proves (c). Finally, part (b) is
obvious from the construction. �

Next we discuss the behavior of truncated logarithm maps under Frobenius isogenies.
Let τ be an endomorphism of F which on each Fi is either the identity or the Frobenius
endomorphism (provided that char(Fi) > 0). Consider the isogeny Φ : G→ τ∗G which over
each Fi is the identity or the Frobenius isogeny depending on whether τ is an isomorphism
over Fi or not. Clearly Φ extends to a homomorphism G → τ∗G, by the same definition
as in (1.5).

Proposition 6.3:

(a) Consider an open ideal a′ ⊂ m and set a := τ(a′)O. Then Φ induces an isomorphism

G(a′) ∼−−→ Φ(G(F )) ∩ (τ∗G)(a) .

(b) Consider open ideals a′2 ⊂ b′ ⊂ a′ ⊂ m and set a := τ(a′)O and b := τ(b′)O. Then
the following diagram commutes

G(a′)/G(b′)
log

a′/b′

−−−−−−→ (LieG)⊗O (a′/b′)

[Φ]

yo o

yid⊗τ

Φ(G(F )) ∩ (τ∗G)(a)
Φ(G(F )) ∩ (τ∗G)(b)

∼
−−−−−−→ (LieG)⊗O,τ

(
τ(a′)/τ(b′)

)

∩ ∩

(τ∗G)(a)/(τ∗G)(b)
log

a/b

−−−−−→ (Lie τ∗G)⊗O (a/b) .

Proof: As in Proposition 6.2 this is an easy calculation in terms of explicit local parame-
ters.

�
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Let us now take up the situation of Proposition 5.9. By Proposition 6.2 we have for
all open ideals a2 ⊂ b ⊂ a ⊂ m a commutative diagram

(6.4)

H̃(a)/H̃(b)
log

a/b

−−−−−→ (Lie H̃)⊗O (a/b)

[ω]

y
ydω

H(a)/H(b)
log

a/b

−−−−−→ (LieH)⊗O (a/b) .

Moreover, the action of any γ ∈ Γ yields a commutative diagram

(6.5)

H̃(a)/H̃(b)
log

a/b

−−−−−→ (Lie H̃)⊗O (a/b)[
[ϕ(γ), ]∼

]x
xÃdH(ϕ(γ))

H(a)/H(b)
log

a/b

−−−−−→ (LieH)⊗O (a/b) .

Next we want to get a hold on the subquotients of ϕ(G(F )) determined by the con-
gruence subgroups of H(O). Let W̃ ⊂ h̃ and W ⊂ h be as in (4.13) and (4.14). Then
Λ̃ := W̃ ∩ (Lie H̃) and Λ := W ∩ (LieH) are τ(O)-lattices in W̃ resp. in W .

Proposition 6.6: Consider open ideals a′2 ⊂ b′ ⊂ a′ ⊂ m and set a := τ(a′)O and
b := τ(b′)O. Then we have commutative diagrams

H̃(a)/H̃(b)
log

a/b

−−−−−→ (Lie H̃)⊗O (a/b)
∪ ∪

ϕ̃(G̃(F )) ∩ H̃(a)

ϕ̃(G̃(F )) ∩ H̃(b)
↪−−−−−→ Λ̃⊗τ(O)

(
τ(a′)/τ(b′)

)

and

H(a)/H(b)
log

a/b

−−−−−→ (LieH)⊗O (a/b)
∪ ∪

ϕ(G(F )) ∩H(a)
ϕ(G(F )) ∩H(b)

↪−−−−−→ Λ⊗τ(O)

(
τ(a′)/τ(b′)

)
.

Proof: The proof is the same for both diagrams. Let us do the second one. Using
Proposition 6.3 we obtain a commutative diagram

H(a)/H(b) //
loga/b

∼

(LieH)⊗O (a/b)

++VVVVVVVVV

(Lieσ∗G)⊗O (a/b)

ϕ(G(F )) ∩H(a)
ϕ(G(F )) ∩H(b)

((QQQQQQ

?�

OO

Λ⊗σ(O)

(
σ(a′)/σ(b′)

)

((RRRRRRRRRRR

?�

OO

Frob(G(F )) ∩ (σ∗G)(a)
Frob(G(F )) ∩ (σ∗G)(b)

//∼
(LieG)⊗O,σ

(
σ(a′)/σ(b′)

)
.

?�

OO
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Here the condition in Proposition 5.9 (b) implies that the four objects on the right hand
side form a cartesian subdiagram. Thus we obtain the desired factorization. The map is
injective because loga/b is an isomorphism. �

Now consider a closed subgroup Γ̃ ⊂ G̃(F ). To analyze the subquotients of Γ̃ in-
duced by the filtration of H̃(F ) by principal congruence subgroups we make the following
definition.

Definition 6.7: Consider open ideals b′ ⊂ a′ and b ⊂ a as in Proposition 6.6. We say
that condition Fulla′/b′ holds if and only if

loga/b

( ϕ̃(Γ̃) ∩H(a)

ϕ̃(Γ̃) ∩H(b)

)
= Λ̃⊗τ(O)

(
τ(a′)/τ(b′)

)
.

From Proposition 6.6 we deduce the following openness criterion.

Corollary 6.8: Consider a cofinal system of open ideals m ⊃ a′0 ⊃ a′1 ⊃ . . . satisfying

a′n+1 ⊃ a′n
2

for all n ≥ 0. Set a0 := τ(a′0)O. Suppose that Fulla′

n/a
′

n+1
holds for all n ≥ 0.

Then
ϕ̃(G̃(F )) ∩ H̃(a0) ⊂ ϕ̃(Γ̃).

In particular, Γ̃ is open in G(F ).
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7. The Main Theorem

Let (F,G,Γ) be as in Section 3. We consider the local case, i.e. we make Assumption
2.1 (b). The aim of this section is to relate the concept of minimality of Definition 3.4 with
that of topological openness. We begin with the easy part. Let π : G̃→ G be the universal
covering of G, and let Γ′ ⊂ G̃(F ) denote the closure of the generalized commutator group
of Γ.

Proposition 7.1: If Γ′ is open in G̃(F ), then (F,G,Γ) is minimal.

Proof: Consider any weak quasi-model (E,H, ϕ) of (F,G,Γ), and let ϕ̃ : H̃ ×E F −→ G̃
be the isogeny of universal coverings induced by ϕ. Applying the universal property of
the Weil restriction to ϕ̃ we obtain a homomorphism ϕ′ : H̃ → RF/EG̃ of algebraic
groups over E. Taking E-valued points our assumption implies that the image of the map
H̃(E) → (RF/EG̃)(E) = G̃(F ) is open. This can only happen when the morphism ϕ′ is
a local isomorphism at some point of H(E). Therefore we must have E = F and that ϕ
itself is an isomorphism. �

The converse can be phrased in slightly greater generality.

Main Theorem 7.2: Suppose that (F,G,Γ) is minimal. Consider any compact subgroup
Γ̃ ⊂ G̃(F ) which is fiberwise Zariski dense and normalized by Γ. Then Γ̃ is open in G̃(F ).

Corollary 7.3: Suppose that (F,G,Γ) is minimal. Then Γ′ is an open subgroup of G̃(F ).

The proof of the Main Theorem will cover the rest of this section. Throughout we
shall assume that (F,G,Γ) is minimal. We begin with a few reduction steps.

Proposition 7.4: Suppose that each simple summand Fi of F is archimedean. Then

(a) Fi = R for all i,

(b) Γ̃ = G̃(F ), and

(c) Γ̃ is connected.

Proof: Suppose first that F is a field. As Γ̃ is compact, it is contained in a compact real
form of G̃. By the minimality assumption it follows that F = R. Next, by a theorem of
Weyl (cf. [9] Ch. 4, Th. 2.1) any compact subgroup of GLn(R) is the group of R-valued
points of an algebraic subgroup. Thus the Zariski density of Γ̃ implies that Γ̃ = G̃(F ).
Observe also that, since G̃ is connected, the identity component G̃(F )◦ is still Zariski dense.
Again by Weyl’s theorem it follows that G̃(F )◦ = G̃(F ). This proves the proposition when
F is a field.

In the general case the projection property Proposition 3.9 proves both (a) and that
the map Γ̃ −→ G̃i(Fi) is surjective for every i. Look at the map to the adjoint group
Γ̃ −→ G(F ) =

∏m
i=1Gi(Fi). It is known that each Gi(Fi) is a simple group. Thus the map

can fail to be surjective only if the image in Gi(Fi)×Gj(Fj) is the graph of an isomorphism
Gi(Fi) ∼= Gj(Fj) for suitable i 6= j. Again by Weyl’s theorem this isomorphism must be
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algebraic, contradicting the minimality condition. Thus the total map is surjective. Going
back to G̃(F ) by generalized commutators, we find that Γ̃ = G̃(F ), proving (b). At last,
(c) now follows from the field case together with (b). �

Lemma 7.5: To prove Main Theorem 7.2 it suffices to consider the case when all Fi are
non-archimedean with the same residue characteristic.

Proof: Let p1, . . . , pn be the pairwise distinct residue characterics occurring in F . Write
F =

⊕n
ν=0 F(ν), where F(ν) contains all non-archimedean summands with residue charac-

teristic pν if ν > 0, resp. all archimedean summands if ν = 0. Let G̃(ν) be the part of G̃

that lies over F(ν), and Γ̃(ν) the image of Γ̃ in G̃(ν)(F(ν)). It is enough to prove that the
image of the map

(7.6) Γ̃ −→
∏n
ν=0 Γ̃(ν)

is open. For this first note that Γ̃(0) is connected, by Proposition 7.4 (c). Therefore any

open subgroup of Γ̃ surjects onto Γ̃(0). By the compactness of Γ̃ it follows that the identity

component Γ̃◦ surjects onto Γ̃(0). Since Γ̃(ν) is totally disconnected for all ν > 0, the

identity component Γ̃(0) lies only in the archimedean summand. This shows already that

Γ̃ is the direct product of Γ̃(0) with some closed subgroup Γ̃(>0) ⊂
∏n
ν=1 Γ̃(ν). On the other

hand, observe that we are allowed to replace Γ̃ by arbitrarily small open subgroups. Thus
after shrinking it we may assume that its image Γ̃(ν) is a pro-pν -group for every ν > 0. As
the pν are pairwise distinct, the map (7.6) is then bijective. �

In the rest of the proof, we assume that all Fi are non-archimedean with the same
residue characteristic p. Sooner or later we have to begin constructing elements of Γ̃. The
only possible starting point is to choose some sufficiently generic element. We cannot
do essentially better than taking γ̃ ∈ Γ̃ regular semisimple and sufficiently close to the
identity. The last point will be made precise below; apart from that, such an element will
be fixed throughout the rest of this section.

Let us first outline the remaining arguments. Let m ⊂ O ⊂ F be as in the preceding
section. Suppose we are given suitable local parameters for G̃, that is, a smooth formal
model G̃ over O. Then γ̃ lies in a unique smallest principal congruence subgroup G̃(a). By
the truncated logarithm map of Proposition 6.2 it will correspond to a primitive element
log(γ̃) ∈ (Lie G̃)⊗O (a/a2). Under favorable circumstances, the action of Γ generates many
new elements from log(γ̃). If

(7.7) (Lie G̃)⊗O (b/a2) ⊂ AdG̃(Γ) · log(γ̃)

for some open ideal a2 ⊂ b ⊂ a, it follows that elements of Γ̃ fill out the whole quotient
group G̃(b)/G̃(a2). If we can show that b/a2 is not too small, we can use the same method
to prove inductively that Γ̃ fills out the quotient groups G̃(an)/G̃(an+1) for a cofinal system
of open ideals a1 ⊃ a2 ⊃ . . .. Then it follows that Γ̃ contains G̃(a1), and we are done.
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The problem with this Ansatz is that the action of Γ on Lie G̃ may be too small. If Γ
does not act irreducibly on Lie G̃, and log(γ̃) lies too close to a proper invariant subspace,
then the subgroup (7.7) will be too small. The only possible remedy regarding γ̃ is to
replace it by some large power γ̃p

n

, hoping that its position is then under better control.
But in the fibers of G̃ which possess non-standard isogenies that prescription is not always
enough. It may be necessary to alter the whole system of principal congruence subgroups
and logarithm maps. This can be achieved by choosing an isogeny ϕ̃ : G̃→ H̃ and working
inside H̃. If the choice of ϕ̃ is adapted to the given element γ̃, all obstacles will be removed.

The right choices are made as follows. Set s := π(γ̃) ∈ G(F ). This element is regular
semisimple, so the identity component of its centralizer is a maximal torus S ⊂ G. Let Φi
be the root system of a fiber Gi with respect to S. Fix a valuation vi on Fi and extend it to
an algebraic closure F̄i. For each α ∈ Φi we are interested in the eigenvalue α(s) ∈ F̄i. By
choosing γ̃ close to the identity, we can make vi(α(s)− 1) arbitrarily large. In particular
we may, and do, assume that

vi
(
α(s)− 1

)
>

{
0 if char(Fi) = p,
vi(p) if char(Fi) = 0,

for all i and α. This assumption guarantees that

(7.8) vi
(
α(sp

n

)− 1
)

=

{
pn · vi(α(s)− 1) if char(Fi) = p,
n · vi(p) + vi(α(s)− 1) if char(Fi) = 0.

We shall not need any further condition on s. Later on we shall see that the “position of
log(sp

n

)” depends mainly on the values (7.8), when n is large.

Next we must choose suitable ϕ : G → H, H̃, etc. as in (4.1). For any choice
T := ϕ(S) is a maximal torus of H containing t := ϕ(s). Let Hi denote the fiber of H over
Fi, and let Ψi be the root system of Hi with respect to T . When Hi possesses non-standard
isogenies, let Ψ•

i ⊂ Ψi denote the set of short roots for • = s, resp. long roots for • = s,
and put

v•i := min
{
vi(α(t)− 1)

∣∣ α ∈ Ψ•
i

}
.

Lemma 7.9: Given γ̃ as above, the choice of H and ϕ : G → H can be made such that
v`i < 2 · vsi for all fibers Hi which possess non-standard isogenies.

Proof: If Gi does not have non-standard isogenies, there is nothing to prove. Otherwise
let Φ•

i ⊂ Φi denote the set of short roots for • = s, resp. long roots for • = s, and set

u•i := min
{
vi(α(s)− 1)

∣∣ α ∈ Φ•
i

}
.

If u`i < 2 · usi , we can take Hi = Gi and ϕ = id. Otherwise we are forced to take the

non-standard isogeny ϕ : Gi −→ G]i =: Hi. Recall from Proposition 1.6 that then Ψs
i = Φ`i

and Ψ`
i = p ·Φsi . Taking into account the fact that char(Fi) = p in this non-standard case,

we deduce that vsi = u`i and v`i = p · usi . Therefore

v`i = p · usi ≤
p

2
· u`i =

p

2
· vsi < 2 · vsi ,
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since p ≤ 3 < 4 whenever there is a non-standard isogeny. This proves the lemma. �

In the rest of the proof ϕ : G → H etc. will be fixed, subject to the condition in
Lemma 7.9. Let O be the maximal compact subring of F . We fix τ : F → F and smooth
formal models G, G̃, H, and H̃ as in Proposition 5.9. For each n ≥ 0 let a′n ⊂ O be the
smallest ideal such that tp

n

∈ H(an), where an := τ(a′n)O. As n goes to infinity, a′n runs
through a cofinal system of open ideals. Let W ⊂ h be as in (4.14), and consider the
τ(O)-lattice Λ := W ∩ (LieH) as in Proposition 6.6. Then

(7.10) logan/a2
n
(tp

n

) ∈ Λ⊗τ(O)

(
τ(a′n)/τ(a

′
n
2
)
)
.

Let θ : h� h`t be as in (4.17). Then Λ`t := θ(Λ) is a lattice in W`t := θ(W ). It is possible
that θ

(
logan/a2

n
(tp

n

)
)

is more divisible than the element (7.10). But not too much! Namely,

let b′n be the smallest ideal satisfying a′n
2
⊂ b′n ⊂ a′n such that

(7.11) θ
(
logan/a2

n
(tp

n

)
)
∈ Λ`t ⊗τ(O)

(
τ(b′n)/τ(a

′
n
2
)
)
,

and let bn := τ(b′n)O.

Lemma 7.12: Fix any open ideal c′ ⊂ O. Then a′n
2
⊂ b′nc

′ for all n� 0.

Proof: All fibers over F can be considered separately, hence we may assume that F is
a field. For the duration of this proof we shall drop the index i in Ψi, etc. In the case
char(F ) = 0 the adjoint representation of H is irreducible, so that W`t = W and Λ`t = Λ.
Therefore we have b′n = a′n, which is enough since this ideal goes to 0 as n → ∞. So we
may assume that char(F ) = p.

Let F̃ ⊂ F̄ be the finite extension of F that is generated by the eigenvalues α(t) for all
roots α ∈ Ψ. Let Õ be the normalization of O in F̃ . We want to replace everything by its
base extension to Õ. For instance, LieH is replaced by Lie(H×O Õ) = (LieH)⊗O Õ, and
so on. We find easily that the ideals a′nÕ resp. b′nÕ have the analogous defining property
as a′n and b′n. Since we shall not use the minimality assumption in this proof, we may now
assume that F̃ = F . In other words T splits over F .

Choose a basis ∆ = {α1, . . . , αr} of Ψ. Then we have T = SpecF [α±1
i |

r
i=1], and

T := Spf O[[d−1(αi − 1)|ri=1]] is a smooth formal model of T for any given 0 6= d ∈ O.
As in Lemma 5.5 we find that the inclusion T ↪→ H extends to a homomorphism T → H
whenever d is sufficiently small. Now let d ⊂ m be the ideal generated by the elements
α(t)− 1 for all α ∈ Ψ. As ∆ is a basis of Ψ, this is the same as the ideal generated by the
elements αi(t)−1 for 1 ≤ i ≤ r. Thus for all n� 0 we have tp

n

∈ T (d−1dp
n

) ⊂ H(d−1dp
n

).
Since tp

n

6∈ H(τ(m)an) by the definition of an, we deduce that τ(m)an ⊂ d−1dp
n

for all
n� 0.

For bn we need a relation in the other direction. Suppose first that H does not
have non-standard isogenies. Then θ induces an injective map LieT ↪→ h`t, and hence
Lie T ↪→ Λ`t. Choose an element 0 6= e ∈ O which annihilates the torsion of Λ`t/LieT .
Then (7.11) implies

e · logan/a2
n
(tp

n

) ∈ Lie T ⊗O (bn/a
2
n),
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where now the logarithm is taken in T . This means that tp
n

∈ T (e−1bn). By the definition
of T we obtain the relation d−1dp

n

⊂ e−1bn. Altogether we now have the inclusions
τ(m)an ⊂ d−1dp

n

⊂ e−1bn ⊂ e−1an. This means that bn differs from an only by a
bounded amount. Since an goes to 0 as n→∞, the desired assertion follows.

In the presence of non-standard isogenies a slightly modified argument applies. Let
ψ : H → H] be the isogeny of Proposition 1.6, and set T ] := ψ(T ). By the definition
of h`t, the image of LieT in LieT ] injects into h`t. Repeating the above argument with
the logarithm of ψ(t)p

n

∈ T ] ⊂ H], we find that d−1d
pn

` ⊂ e−1bn for all n � 0, where
0 6= e ∈ O is fixed and d` ⊂ m is the ideal generated by the elements α(ψ(t))− 1 for all
roots α of H]. Now recall from Proposition 1.6 that the short roots of H] are in one-to-one
correspondence with the long roots of H. Since every root in a root system is an integral
linear combination of short roots, we find that d` is the ideal generated by α(t)− 1 for all
long roots α of H. Likewise, d is the ideal generated by α(t)− 1 for all short roots of H.
Thus from the choice in Lemma 7.9 we deduce that d2 $ d`. Altogether we find, in terms
of fractional ideals, that

a2
n

bn
⊂

(τ(m)−1d−1dp
n

)2

ed−1d
pn

`

=
1

edτ(m)2
·
(d2

d`

)pn

,

for all n � 0, where the right hand side goes to 0 as n → ∞. This finishes the proof of
Lemma 7.12. �

To prove Main Theorem 7.2 it now remains to combine all the information collected
so far. Let W̃ ⊂ h̃ be as in (4.13), and consider the τ(O)-lattice Λ̃ := W̃ ∩ (Lie H̃) as in
Proposition 6.6. The following two lemmas do not depend on each other.

Lemma 7.13: For any open ideal d′ ⊂ O there exists an open ideal a′ ⊂ d′ such that
condition Fulla′/a′d′ of Definition 6.7 holds.

Proof: By Corollary 4.19 there exists an open ideal c′ ⊂ O such that

Homτ(O)(Λ`t, cΛ̃) ⊂ Jρ̂,

where c := τ(c′)O. Thus from the definition of b′n we obtain

c ·
(
Λ̃⊗τ(O)

(
τ(b′n)/τ(a

′
n
2
)
))

= Homτ(O)(Λ`t, cΛ̃) · logan/a2
n
(tp

n

)

⊂ Jρ̂ · logan/a2
n
(tp

n

)

⊂ Λ̃⊗τ(O)

(
τ(a′n)/τ(a

′
n

2
)
)

for all n ≥ 0. By Lemma 7.12 we may choose n � 0 such that a′n
2
⊂ b′nc′d′. Using (6.5)

we find that

Λ̃⊗τ(O)

(
τ(b′nc

′)/τ(a′n
2
)
)
⊂ logan/a2

n

( ϕ̃(Γ̃) ∩H(an)

ϕ̃(Γ̃) ∩H(a2
n)

)
.

Now Proposition 6.6 implies condition Fullb′

nc′/a′

n
2 . Setting a′ := b′nc′, the lemma follows.

�
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Lemma 7.14: For any open ideal c′ ⊂ m there exists an integer ` ≥ 1 such that, for any
open ideal a′ ⊂ c′

`+1
, the condition Fulla′/a′c′` implies Fulla′c′/a′c′`+1.

Proof: Let Λ̄` be the image of Λ̃ in W̄`. This is a τ(O)-lattice. Let c := τ(c′)O. Since
c′ ⊂ m, Corollary 4.16 implies that

(7.15) Homτ(O)(Λ̄`, c
`Λ̃) ⊂

(
Homτ(O)(Λ̄`, cΛ̃) ∩ Jρ̃

)
· τ(O)

for any large enough integer ` ≥ 1. We shall prove that any such choice of ` does the
job. Consider any open ideal a′ as in the lemma, and set a := τ(a′)O. Then we have a
commutative diagram with exact columns:

(7.16)

0 0y y

logac`/ac`+1

(
ϕ̃(Γ̃) ∩H(ac`)

ϕ̃(Γ̃) ∩H(ac`+1)

)
⊂ Λ̃⊗τ(O)

(
τ(a′c′

`
)/τ(a′c′

`+1
)
)

y y

loga/ac`+1

(
ϕ̃(Γ̃) ∩H(a)

ϕ̃(Γ̃) ∩H(ac`+1)

)
⊂ Λ̃⊗τ(O)

(
τ(a′)/τ(a′c′

`+1
)
)

y y

loga/ac`

(
ϕ̃(Γ̃) ∩H(a)

ϕ̃(Γ̃) ∩H(ac`)

)
= Λ̃⊗τ(O)

(
τ(a′)/τ(a′c′

`
)
)

y y
0 0

Note that Homτ(O)(Λ̄`, cΛ̃)∩Jρ̃ annihilates the term on the upper right of Diagram (7.16).
Therefore we have

Λ̃⊗τ(O)

(
τ(a′c′

`
)/τ(a′c′

`+1
)
)

= Homτ(O)(Λ̄`, c
`Λ̃) ·

(
Λ̃⊗τ(O)

(
τ(a′)/τ(a′c′

`+1
)
))

(7.15)
⊂

(
Homτ(O)(Λ̄`, cΛ̃) ∩ Jρ̃

)
· τ(O) ·

(
Λ̃⊗τ(O)

(
τ(a′)/τ(a′c′

`+1
)
))

=
(
Homτ(O)(Λ̄`, cΛ̃) ∩ Jρ̃

)
·
(
Λ̃⊗τ(O)

(
τ(a′)/τ(a′c′

`+1
)
))

!
=

(
Homτ(O)(Λ̄`, cΛ̃) ∩ Jρ̃

)
· loga/ac`+1

( ϕ̃(Γ̃) ∩H(a)

ϕ̃(Γ̃) ∩H(ac`+1)

)

⊂ loga/ac`+1

( ϕ̃(Γ̃) ∩H(a)

ϕ̃(Γ̃) ∩H(ac`+1)

)
.

It follows that the first inclusion in Diagram (7.16) is in fact an equality. By the 5-Lemma
the same holds for the middle inclusion. In other word, the condition Fulla′/a′c′`+1 holds.
This directly implies the desired condition Fulla′c′/a′c′`+1 . �

To finish the proof of Main Theorem 7.2, take any open ideal c′ ⊂ m and let ` ≥ 1
be as in Lemma 7.14. By Lemma 7.13 there exists an open ideal a′ ⊂ c′

`+1
such that the
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condition Fulla′/a′c′`+1 holds. In particular, condition Fulla′/a′c′` is true. By induction on
n ≥ 0, using Lemma 7.14, we find that condition Fulla′c′n/a′c′n+` holds for all n ≥ 0. In
particular we know that Fulla′c′n/a′c′n+1 is true for all n ≥ 0. From Corollary 6.8 it follows

that Γ̃ is open in G(F ), as desired. This finishes the proof of Main Theorem 7.2. �

Proof of Main Theorem 0.2: In the situation of Main Theorem 0.2, let (E,H, ϕ)
be a quasi-model of (F,G,Γ) in the sense of Definition 3.1. Let H̃ → H be the universal
covering of H, and ϕ̃ : H̃ ×E F −→ G̃ the lift of ϕ. Let Γ′ ⊂ G̃(F ) be the closure of
the generalized commutator group of Γ. Then ϕ̃−1(Γ′) is the closure of the generalized
commutator group of ϕ−1(Γ). By Proposition 7.1 and Corollary 7.3 this subgroup is open
in H̃(E) if and only if (E,H, ϕ) is minimal in the sense of Definition 3.5. The existence and
uniqueness of such (E,H, ϕ) is guaranteed by Theorem 3.6. This proves Main Theorem
0.2. �

Proof of Corollary 0.3: For each i = 1, 2 let Γ′
i be the closure of the commutator

group of Γ̃i, and Gi the adjoint group of G̃i. Let Γ ⊂ G1(F1) × G2(F2) be the image
of the graph of the isomorphism f . Then the closure Γ′ of the generalized commutator
group of Γ is just the graph of the isomorphism Γ′

1
∼−−→ Γ′

2 induced by f . Let (E,H, ϕ)
be a minimal quasi-model of (F1 ⊕ F2, G1 t G2,Γ). By Corollary 7.3 the group Γ′ is an
open subgroup of ϕ̃(H̃(E)). Thus the map H̃(E) −→ G̃i(Fi) is a local isomorphism for
each i = 1, 2. It follows that both E → Fi and H̃ → G̃i are isomorphisms. This yields
the desired isomorphism in Corollary 0.3. Its uniqueness follows from the uniqueness of
minimal quasi-models. �

Proof of Corollary 0.4: As in the introduction write G as a direct product of Weil
restrictions

∏m
i=1RFi/FGi, where each Gi is an absolutely simple adjoint group over a finite

separable extension Fi of F . Let G′ be the algebraic group over F ′ :=
⊕m

i=1 Fi whose fiber
over each Fi is Gi. We can then view Γ as a subgroup of G′(F ′) and apply Main Theorem
0.2 to (F ′, G′,Γ). Let (E′, H ′, ϕ′) be the resulting quasi-model. As E′ is a finite direct
sum of local fields of the same characteristic and the same residue characteristic, we can
identify each simple summand with a finite separable extension of a fixed local field E.
The Weil restriction H := RE′/EH

′ is then a connected adjoint group over E, and its

universal covering H̃ is the Weil restriction of the universal covering H̃ ′ of H ′. By Main
Theorem 0.2 (a) the closure of the commutator subgroup of Γ is isomorphic to the image
of some open compact subgroup of H̃ ′(E′) ∼= H̃(E), as desired. �

Proof of Proposition 0.6: We must show that the characterizations are correct for
a minimal quasi-model of (F,G,Γ). In the situation of Proposition 0.6 (a) suppose first
that ρ is in the image of dϕ : (LieH) ⊗E F −→ LieG. Then the assertion follows from
Proposition 3.10. Otherwise ϕ is not an isomorphism, so p := char(F ) is equal to 2 or
3, and ρ corresponds to the representation Frobp ◦α

H
s . Now Proposition 3.10 implies that

EαH
s

= E, hence Eρ = {xp | x ∈ E}, as desired.
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In particular, Proposition 0.6 (a) says that tr(ρ(Γ)) ⊂ E for every non-constant irre-
ducible subquotient representation of LieG. Since the same assertion is obvious for any
constant representation, it is true for every subquotient of LieG. This implies Proposition
0.6 (b).

At last, in the situation of Proposition 0.6 (c) we consider the same representation ρ
as in the proof of Lemma 3.7. It occurs inside LieG, but also comes from a representation
inside LieH. Therefore we have F = Eρ ⊂ E. To prove the isomorphy of ϕ we can reduce
ourselves to the case that F is a field. If ϕ is not an isomorphism, then p := char(F )
is positive and αG` ◦ ϕ

∼= Frobp ◦α
H
s . Thus F = EαG

`
⊂ {xp | x ∈ E} $ F , which is a

contradiction. Now everything is proved. �
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