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Abstract

Consider a point of infinite order on an abelian variety over a number

field. Then its reduction at any place v of good reduction is a torsion point.

For most of this paper we fix a rational prime ` and study how the `-part

of this reduction varies with v. Under suitable conditions we prove various

statements on this `-part for all v in a set of positive Dirichlet density: for

example that its order is a fixed power of `, that its order is non-trivial for the

reductions of finitely many points, or that its order is larger than a certain

explicit value that varies with v.

By similar methods we prove that for all v in a set of positive Dirich-

let density the reduction of a given abelian variety possesses no non-trivial

supersingular abelian subvariety.
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0 Introduction

Consider an abelian variety A over a number field K and a rational point of infinite
order a ∈ A(K). Then the reduction av of a at any place v of good reduction is
defined over the finite residue field kv and is therefore a torsion point. It is natural
to ask how av varies with v. For most of this paper we fix a rational prime ` and
study the `-part of av. Since for v - ` any `-power torsion point over k̄v possesses a
unique `-power torsion lift to A(K̄), one can try to translate this question into one
over K̄. The main player in this game is the group

`−∞(Za) :=
{

x ∈ A(K̄)
∣

∣ ∃n ≥ 0 : `nx ∈ Za
}

.

This group is a natural extension of Z[1/`] with the group of `-power torsion points

A[`∞] :=
{

x ∈ A(K̄)
∣

∣ ∃n ≥ 0 : `nx = 0
}

.

The latter group has been studied extensively by means of the Galois representation
on the associated `-adic Tate module T`(A). The former group also gives rise to a
Tate module T`(A, a) which is an extension of T`(A) by Z`. It is a special case of the
Tate modules of 1-motives introduced by Deligne [7, §10.1]. Let Γ` ⊂ AutZ`

(

T`(A)
)

and Γ̃` ⊂ AutZ`

(

T`(A, a)
)

be the respective images of Gal(K̄/K).

In Section 1 we review some known general facts about Γ` and its Zariski closure.
We also prove in Corollary 1.7 that for all v in a set of positive Dirichlet density the
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reduction of A possesses no non-trivial supersingular abelian subvariety. Although
this statement has no direct relation with the results on av, the respective methods
of proof have much in common.

General structural properties of Γ̃` are then discussed in Section 2. In particular
we recall Theorem 2.8 from the Kummer theory of A which states that Γ̃` is an
extension of Γ` by an open subgroup of T`(B), where B is the identity component
of the Zariski closure of Za. This result is essentially due to Ribet [13], though in
the case we need the proof was worked out only by Hindry [9, §2, Prop. 1].

In Section 3 we then show how the `-part of av is determined by the action of the
Frobenius element Frobv on `−∞(Za). Any question about this `-part can thus be
translated completely into a question on the group Γ̃`.

In Section 4 we answer some of these questions. In all cases we prove that a certain
behavior occurs for all places v of K in a set of Dirichlet density > 0. For example,
in Corollary 4.3 we show that under mild conditions every power of ` occurs as the
order of the `-part of av. In Theorem 4.4 we prove that for finitely many given points
ai of infinite order, the `-parts of their reductions ai,v can be made simultaneously
non-trivial on a set of positive Dirichlet density. Theorem 4.7 generalizes this result
in another direction: Let f(T ) ∈ Z[T ] be any polynomial which is a product of
cyclotomic polynomials and a power of T . Let pv denote the residue characteristic
at v. Then for suitable `, the `-parts of all f(pv)ai,v can be made simultaneously
non-trivial on a set of positive Dirichlet density.

In the final section 5 we use these theorems to derive two density results on the ai,v

which no longer refer to any particular prime `. These results as well as Corollary
1.7 are needed in joint work with Damian Roessler [12] and provided the motivation
for the present paper.1 Theorem 5.1 can also be deduced from work by Wong [16]
who, instead of studying when the `-part of av is zero, considers the dual question
of when av lies in ` · Av(kv). Related questions are addressed in work by Corrales-
Rodrigáñez and Schoof [6], Khare and Prasad [10], and Larsen [11].

1 The `-adic Galois group associated to an abelian

variety

Let K be a number field and K̄ an algebraic closure of K. Consider an abelian
variety A of dimension g over K and a rational prime `. Then

A[`∞] :=
{

x ∈ A(K̄)
∣

∣ ∃n ≥ 0 : `nx = 0
}

is a discrete group isomorphic to (Q`/Z`)
2g with a continuous action of Gal(K̄/K).

One usually describes this action via the `-adic Tate module

T`(A) := Hom
(

Q`/Z`, A[`∞]
)

∼= Z2g
` ,

which possesses a continuous Galois representation

ρ` : Gal(K̄/K) −→ AutZ`
(T`(A)) ∼= GL2g(Z`).

We are interested in its image Γ` := ρ`

(

Gal(K̄/K)
)

, which is a compact subgroup of
GL2g(Z`). Much can be said about Γ` by means of its Zariski closure G` ⊂ GL2g,Q`

.
This is a linear algebraic group over Q` with a natural faithful representation on
the rational Tate module

V`(A) := T`(A) ⊗Z`
Q`

∼= Q2g
` .

The following general facts are known about G`.

1The author wishes to thank Damian Roessler for the very fruitful ongoing collaboration.
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Theorem 1.1 (a) The action of G` on V`(A) is semisimple and the natural ho-
momorphism

EndK(A) ⊗Z Q` −→ EndQ`,G`

(

V`(A)
)

is an isomorphism.

(b) G` is a reductive group.

(c) Γ` is an open subgroup of G`(Q`).

Proof. By the definition of G` the statements in (a) are equivalent to the corre-
sponding ones with Γ` in place of G`, which were proved by Faltings [8, Th. 3–4].
Part (b) follows from the first statement in (a). Part (c) is a theorem of Bogomolov
[4], [3]. q.e.d.

By Galois theory every open subgroup of Γ` corresponds to a finite extension of
K within K̄, and replacing K by that extension amounts to replacing Γ` by the
corresponding subgroup. In particular, let G◦

` denote the identity component of G`.
Then replacing Γ` by any open subgroup of Γ` ∩ G◦

` has the effect of replacing G`

by G◦
` ; and thereafter G` will be connected.

Now consider any finite place v of K and let pv denote the characteristic of the
finite residue field kv. If v - ` and A has good reduction at v, it is known that the
restriction of ρ` to any inertia group above v is trivial. Let Frobv be any element
of a decomposition group at v which acts by taking |kv|

th powers modulo v. Then
the conjugacy class of ρ`(Frobv) depends only on v and is known to be semisimple,
and its characteristic polynomial on V`(A) is known to have coefficients in Z and to
be independent of `.

Choose any semisimple element tv ∈ GL2g(Q) whose characteristic polynomial is
equal to that of ρ`(Frobv). Let Tv ⊂ GL2g,Q be the Zariski closure of the subgroup
generated by tv. The construction implies that the identity component of Tv is
a torus and its GL2g(Q)-conjugacy class depends only on v. Following Serre [14]
it is called the Frobenius torus at v. Moreover, for any ` 6= pv there is a unique
conjugate of Tv,Q`

by an element of GL2g(Q`) which lies in G`, such that tv is
mapped to ρ`(Frobv). Serre [14, §5, pp.12–13] proves:

Theorem 1.2 If G` is connected, then for all places v in a set of Dirichlet density 1
the group Tv itself is a torus and Tv,Q`

is conjugate under GL2g(Q`) to a maximal
torus of G`.

Corollary 1.3 There exists a set of rational primes ` of positive Dirichlet density
for which G` splits over Q`.

Proof. Let Tv be any Frobenius torus as in Theorem 1.2. Choose a finite extension
F of Q̄ such that Tv,F splits. Then the set of rational primes ` which split completely
in F has positive Dirichlet density, and for each of them Tv,Q`

splits. Since Tv,Q`
is

conjugate to a maximal torus of G`, this shows that G` splits. q.e.d.

Next any polarization of A induces a Galois equivariant perfect alternating pair-
ing V`(A) × V`(A) → Q`(1), where Gal(K̄/K) acts on Q`(1) through the cy-
clotomic character. It follows that Γ` is contained in the group of symplectic
similitudes CSp2g(Q`). Let µ : CSp2g → Gm denote the multiplier map; then

µρ` : Gal(K̄/K) → Z∗
` is the cyclotomic character. The definition of G` implies

that G` ⊂ CSp2g,Q`
; hence µ defines an algebraic character of G`.

Proposition 1.4 Consider a maximal torus S` of G` and any weight χ of S` on
V`(A). Then µ and χ are Q-linearly independent in the character group of S`.

3



Proof. The perfect pairing implies that there exists a weight χ∗ of S` on V`(A)
such that χχ∗ = µ. Both χ and χ∗ are non-trivial, because the corresponding
Frobenius eigenvalues have complex absolute value > 1. Now by the Hodge-Tate
decomposition there exists a cocharacter λ of S` whose weights on V`(A) are 0 and 1
and whose weight on Q`(1) is 1; see for instance Serre [14, §5, pp.11–12]. For any
such λ we have

〈χ, λ〉 + 〈χ∗, λ〉 = 〈χχ∗, λ〉 = 〈µ, λ〉 = 1,

and one of the summands is 0 and the other 1. This implies that χ and χ∗ cannot be
non-zero rational multiples of each other. Since they are both non-trivial characters,
they must be Q-linearly independent. Equivalently χ and µ = χχ∗ are Q-linearly
independent, as desired. q.e.d.

Proposition 1.5 Suppose that A = A1 × . . . × Ad for non-zero abelian varieties
A1, . . . , Ad. Consider a maximal torus S` of G`. Then there exist weights χi of S`

on V`(Ai) so that µ is Q-linearly independent of χ1, . . . , χd.

Proof. By the Hodge-Tate decomposition, see [14, §5, pp.11–12], there exists a
cocharacter λ of S` which on every V`(Ai) has the weights 0 and 1 with multiplicity
dimAi each, and whose weight on Q`(1) is 1. So we can choose each χi such that
〈χi, λ〉, the weight of the χi-eigenspace in the Hodge-Tate decomposition, is zero.
Then for any weight χ which is a Q-linear combination of the χi, we still have
〈χ, λ〉 = 0. But 〈µ, λ〉 = 1; hence µ is not a Q-linear combination of the χi. q.e.d.

We finish this section with a first application of Proposition 1.4, which will not be
used in the rest of the paper.

Theorem 1.6 If G` is connected, the set of finite places v of K where the reduction
of A does not possess a non-trivial supersingular abelian subvariety has Dirichlet
density 1.

Proof. By Theorem 1.2 it suffices to consider those places v - ` of K for which Tv,Q`

is conjugate to a maximal torus S` of G`. Let v be such a place and suppose that
the corresponding reduction Av of A possesses a non-trivial supersingular abelian
subvariety Bv. Then any eigenvalue of Frobv on V`(Bv) has the form

√

|kv| times
a root of unity, while the eigenvalue on Q`(1) is |kv|. Let χ be the weight of S`

on V`(A) corresponding to that eigenvalue on V`(Bv) ⊂ V`(Av), and let n be the
order of that root of unity. Then the values of χ2n and µn on ρ`(Frobv) coincide.
But by the construction of the Frobenius torus the element ρ`(Frobv) generates a
Zariski dense subgroup of S`. Thus χ2n and µn are equal as characters of S`, which
contradicts their linear independence from Proposition 1.4. This shows that Av

does not possess a non-trivial supersingular abelian subvariety, as desired. q.e.d.

Corollary 1.7 Let A be an abelian variety over a number field K. Then there exists
a finite extension L of K such that for all finite places of L in a set of Dirichlet
density 1 the reduction of A does not possess a non-trivial supersingular abelian
subvariety.

Proof. Choose an arbitrary rational prime ` and a finite Galois extension L of K
over which G` becomes connected, and apply Theorem 1.6. q.e.d.
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2 The `-adic Galois group associated to an abelian

variety with a point

Now fix a rational point of infinite order a ∈ A(K) and set

`−∞(Za) :=
{

x ∈ A(K̄)
∣

∣ ∃n ≥ 0 : `nx ∈ Za
}

.

Then we have a natural short exact sequence of discrete groups

0 −→ A[`∞] −→ `−∞(Za)
a7→1

−−−−→ Z[1/`] −→ 0.(2.1)

Any choice of a compatible system of `-power roots of a determines a splitting
λ : Z[1/`] → `−∞(Za) satisfying λ(1) = a. We will call such a splitting special.
Two special splittings differ by an element of

Hom
(

Z[1/`]
/

Z, A[`∞]
)

∼= Hom
(

Q`/Z`, A[`∞]
)

= T`(A).

By contrast, two general splittings differ by an element of

Hom
(

Z[1/`], A[`∞]
)

=
⋃

r≥0

Hom
(

Z[1/`]
/

`rZ, A[`∞]
)

∼=
⋃

r≥0

`−r Hom
(

Q`/Z`, A[`∞]
)

=
⋃

r≥0

`−rT`(A) = V`(A) .

(2.2)

The sequence 2.1 is equivariant under the natural continuous action of Gal(K̄/K),
where the action on Z[1/`] is trivial. It is useful to describe this action via an asso-
ciated Tate module. For this note that `−∞(Za)/Za is isomorphic to (Q`/Z`)

2g+1;
hence

T`(A, a) := Hom
(

Q`/Z`, `
−∞(Za)/Za

)

is isomorphic to Z2g+1
` and sits in a short exact sequence

0 −→ T`(A) −→ T`(A, a) −→ Z` −→ 0.(2.3)

Any special splitting of 2.1 determines a splitting of 2.3, i.e., an isomorphism
T`(A, a) ∼= T`(A) ⊕ Z`. We will write any such decomposition in terms of column
vectors. Then the natural Galois representation on T`(A, a) has the form

ρ̃` =

(

ρ` ∗
0 1

)

: Gal(K̄/K) −→

(

AutZ`
(T`(A)) T`(A)
0 1

)

∼=

(

GL2g(Z`) Z2g
`

0 1

)

.

The construction implies that left multiplication by the same matrices also describes
the Galois action on `−∞(Za) ∼= A[`∞] ⊕ Z[1/`]. We are interested in the image

Γ̃` := ρ̃`

(

Gal(K̄/K)
)

⊂

(

Γ` T`(A)
0 1

)

.

Letting N` := Γ̃` ∩ T`(A) denote its intersection with the upper right corner, we
obtain a natural short exact sequence

0 −→ N` −→ Γ̃` −→ Γ` −→ 1.(2.4)

As with Γ` we will study Γ̃` with the help of its Zariski closure G̃`, which is a linear
algebraic group over Q` with a natural faithful representation on

V`(A, a) := T`(A, a) ⊗Z`
Q`

∼= Q2g+1
` .
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By construction we have a natural short exact sequence

0 −→ U` −→ G̃` −→ G` −→ 1

where U` is an algebraic subgroup of the vector group V`(A). Since G` is reductive
by Theorem 1.1 (b), the subgroup U` is simply the unipotent radical of G̃`.

Proposition 2.5 Γ̃` is open in G̃`(Q`) and N` open in U`(Q`).

Proof. By construction we have an inclusion of short exact sequences

0 // U`(Q`) // G̃`(Q`) // G`(Q`) // 1

0 // N`
//

S

Γ̃`
//

S

Γ`
//

S

1 .

All these groups can be viewed as `-adic Lie groups, and by a theorem of Chevalley
[5, Ch. II, Cor. 7.9] the Zariski density of Γ̃` implies

[

Lie G̃`, Lie G̃`

]

⊂ Lie Γ̃` .

On the other hand V`(A) does not contain the trivial representation of G`, because
all Frobenius eigenvalues have complex absolute value > 1. Thus U`

∼= LieU` does
not contain the trivial representation of G`, which implies that

Lie U` =
[

Lie G̃`, LieU`

]

⊂
[

Lie G̃`, Lie G̃`

]

⊂ Lie Γ̃` .

Since moreover Lie Γ` = Lie G` by Theorem 1.1 (c), we deduce that Lie Γ̃` = Lie G̃`.
Thus Γ̃` is open in G̃`(Q`), and therefore N` is open in U`(Q`), as desired. q.e.d.

Proposition 2.6 After replacing K by a suitable finite extension there exists a
splitting of 2.1, not necessarily special, such that

Γ̃` =

(

Γ` N`

0 1

)

.

Proof. Choose any Levi decomposition G̃` = G` nU` and consider the short exact
sequence

0 −→ V`(A) −→ V`(A, a) −→ Q` −→ 0(2.7)

deduced from 2.3 by tensoring with Q`. As G` is reductive, acts trivially on Q`,
and non-trivially on every non-zero subspace of V`(A), the sequence 2.7 possesses a
unique splitting that is invariant under the Levi subgroup G`. On the other hand
take any splitting λ of 2.1. Then the induced splitting of 2.7 differs from the Levi
invariant splitting by some element of V`(A). Changing λ by the same element
thus shows that the Levi invariant splitting of 2.7 comes from some splitting of
2.1, though not necessarily from a special one. With respect to this splitting the
decomposition G̃` = G` n U` is the same as that in terms of formal matrices

G̃` =

(

G` U`

0 1

)

.

Finally Proposition 2.5 implies that
(

G`(Q`) ∩ Γ̃`

)

n
(

U`(Q`) ∩ Γ̃`

)

is an open subgroup of G̃`(Q`) and hence of Γ̃`. After replacing K by the corre-
sponding finite extension Γ̃` itself is such a semidirect product, as desired. q.e.d.
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Theorem 2.8 Let B be the identity component of the Zariski closure of Za. Then
N` is open in T`(B) ⊂ T`(A) and we have U` = V`(B) ⊂ V`(A).

Proof. This is a special case of a theorem essentially due to Ribet [13] on the
Kummer theory of A, itself depending on results of Faltings [8] and Serre [15] as well
as the Mordell-Weil theorem, and following a method first used by Bashmakov [1].
The case we need was formulated by Bertrand [2, Th. 2] and worked out by Hindry
[9, §2, Prop. 1].

We begin with two technical reductions required by this reference. First, as the
Mordell-Weil group A(K) is finitely generated, the given element a is an integral
multiple of an indivisible element a′ ∈ A(K). Replacing a by a′ does not change B,
and since `−∞(Za) ⊂ `−∞(Za′) is a subgroup of finite index prime to `, it also
changes neither Γ̃` nor N` nor U`. Thus without loss of generality we may, and do,
assume that a itself is indivisible in A(K). Next let d be the number of connected
components of the Zariski closure of Za. To prove the theorem we may, and do,
replace K by its finite extension K(A[d]).

Now for any two integers r ≥ s ≥ 0 consider the finite quotients

Γ̃`
// //

��
��

Γ̃`,r,s

��
��

⊂ GL2g(Z/`rZ) n T`(A)/`sT`(A)

��
��

Γ`
// // Γ`,r ⊂ GL2g(Z/`rZ).

Then the short exact sequence 2.4 maps onto a short exact sequence

0 −→ N`,r,s −→ Γ̃`,r,s −→ Γ`,r −→ 1

for some subgroup N`,r,s ⊂ T`(A)/`sT`(A) ∼= A[`s]. By [9, §2, Prop. 1] this group
is a subgroup of T`(B)/`sT`(B) ∼= B[`s] whose index is bounded independently of
r and s, provided that r ≥ ord`(d). Since N` is the projective limit of the N`,r,s as
both r and s go to infinity, this implies that N` is an open subgroup of T`(B). The
second statement follows from this and Proposition 2.5. q.e.d.

In particular, since a has infinite order by assumption, Theorem 2.8 implies that
N` 6= 0. Another direct consequence is:

Corollary 2.9 N` is open in T`(A) if and only if U` = V`(A) if and only if Za is
Zariski dense in A.

3 The `-part of the reduction at v

Now consider a place v - ` of K where A has good reduction Av. Then the restriction
of ρ̃` to any inertia group above v is trivial, and so the conjugacy class of ρ`(Frobv)
depends only on v. We will show how this conjugacy class determines the `-part of
the reduction av ∈ Av of our fixed point a.

First the condition v - ` implies that the reduction map induces an isomorphism

A[`∞]
∼

−−→ Av(k̄v)[`∞].

Consider the composite homomorphism

κv : `−∞(Za) ⊂ A(K̄) −→ Av(k̄v) −→ Av(k̄v)[`∞] ∼= A[`∞],

where the first arrow is reduction modulo v, the second one is the projection to the
`-part, and the isomorphism on the right is the inverse of the reduction map. By
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construction its restriction to A[`∞] is the identity, so κv induces a splitting of the
sequence 2.1. It is important to note that κv does not in general correspond to a
special splitting. Indeed, it does so if and only if κv(a) = 0, that is, if the `-part of
the reduction av vanishes.

By construction κv is equivariant under the action of Frobv. Thus the following
observation tells us that κv is completely determined by the element ρ̃`(Frobv) ∈ Γ̃`.

Proposition 3.1 For every place v - ` of K where A has good reduction the homo-
morphism κv is the unique Frobv-equivariant splitting of the sequence 2.1.

Proof. Any other Frobv-equivariant splitting `−∞(Za) → A[`∞] differs from κv

by a Frobv-invariant element of Hom
(

Z[1/`], A[`∞]
)

. By 2.2 the latter space is
isomorphic to V`(A). Since all eigenvalues of Frobv on V`(A) have complex absolute
value > 1, its subspace of Frobv-invariants is zero. Thus κv is the unique Frobv-
invariant splitting. q.e.d.

To give a precise formula for κv(a) we fix a special splitting λ of 2.1 and write

γ̃v := ρ̃`(Frobv) =

(

γv nv

0 1

)

with γv = ρ`(Frobv) ∈ Γ` ⊂ GL2g(Z`) and nv ∈ T`(A) ∼= Z2g
` . Since γv does not

have the eigenvalue 1, we can invert the matrix γv − id over Q` and thus define

mv := (γv − id)−1nv ∈ V`(A) ∼= Q2g
` .

Let π` denote the natural composite homomorphism

V`(A) � V`(A)
/

T`(A) ∼= A[`∞].

Proposition 3.2 We have κv(a) = π`(mv). In particular the order of the `-part
of the reduction av is equal to the `-part of the denominator of mv.

Proof. The splitting λ induces a decomposition

V`(A, a) = V`(A) ⊕ Q`

which, as usual, we write in terms of column vectors. A direct calculation then
shows that the eigenspace of γ̃v on V`(A, a) for the eigenvalue 1 is generated by the
vector

(

−mv

1

)

.

Thus again with respect to the decomposition induced by λ the map

Z[1/`] −→ `−∞(Za) = A[`∞] ⊕ Z[1/`] ,

x 7→

(

−π`(xmv)
x

)

defines a γ̃v-equivariant splitting of 2.1. The corresponding γ̃v-equivariant splitting
in the other direction

A[`∞] ⊕ Z[1/`] = `−∞(Za) −→ A[`∞]

is given by

(

b
x

)

=

(

b + π`(xmv)
0

)

+

(

−π`(xmv)
x

)

7→ b + π`(xmv) .
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By Proposition 3.1 this map represents κv. Now since λ is a special splitting, the
element a = λ(1) corresponds to the vector

(

0
1

)

.

It follows that κv(a) = π`(mv), as desired. q.e.d.

4 Density results for the `-part of the reduction

In this section we derive several statements on the Dirichlet density of the set of
places v at which the `-part of the reduction of a has certain properties. For all
these statements we can disregard the finite set S of places dividing ` or where A
has bad reduction.

Theorem 4.1 Let A be an abelian variety over a number field K and a ∈ A(K)
a rational point of infinite order such that Za is Zariski dense in A. Consider a
rational prime and a point b ∈ A[`∞]. Then for all finite places v of K in a set of
Dirichlet density > 0 the `-part of the reduction of a is equal to the reduction of b.

Proof. Choose a special splitting of 2.1 and let U denote the set of elements

γ̃ =

(

γ n
0 1

)

∈ Γ̃` ⊂

(

AutZ`
(T`(A)) T`(A)
0 1

)

satisfying det(γ − id) 6= 0. Clearly this is an open subset of Γ̃`. Next γ̃ 7→
π`

(

(γ − id)−1n
)

defines a continuous function from U to the discrete set A[`∞].
It is therefore locally constant; hence

Ub :=

{

γ̃ ∈ Γ̃`

∣

∣

∣

∣

det(γ − id) 6= 0, and
π`

(

(γ − id)−1n
)

= b

}

is an open subset of Γ̃`.

Lemma 4.2 Ub is non-empty.

Proof. It suffices to show that the map

U → V`(A),

(

γ n
0 1

)

7→ (γ − id)−1n

is surjective. This statement is invariant under conjugation by V`(A), and it suffices
to prove it after replacing K by a finite extension. Thus using Proposition 2.6 we
may without loss of generality assume that

Γ̃` =

(

Γ` N`

0 1

)

.

The desired statement is then equivalent to

V`(A) =
⋃

γ∈Γ`

det(γ−id) 6=0

(γ − id)−1N` .

Now N` is open in T`(A) by Corollary 2.9; hence `rT`(A) ⊂ N` for some integer r.
On the other hand, for every integer s > 0 there exists γ ∈ Γ` with det(γ − id) 6= 0
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such that γ ≡ id mod `s. Indeed, any power ρ`(Frobv)m for a place v 6∈ S and m
sufficiently divisible has these properties. For this element γ we then have

(γ − id)T`(A) ⊂ `sT`(A) ⊂ `s−rN`

and hence
`r−sT`(A) ⊂ (γ − id)−1N`.

With s → ∞ the desired equality follows. q.e.d.

Now take any element γ̃ ∈ Ub. By openness there exists an open normal subgroup
∆̃ / Γ̃` such that γ̃∆̃ ⊂ Ub. As Γ̃`/∆̃ is the Galois group of a finite extension of K,
by the Cebotarev density theorem there exists a set of places v 6∈ S of K of Dirichlet
density > 0 for which

ρ̃`(Frobv) ≡ γ̃ mod ∆̃.

But for all these v we have ρ̃`(Frobv) ∈ Ub, which by Proposition 3.2 implies κv(a) =
b. By the definition of κv this means that the `-part of the reduction of a is equal
to the reduction of b, as desired. q.e.d.

Corollary 4.3 Let A be an abelian variety over a number field K and a ∈ A(K)
a rational point of infinite order such that Za is Zariski dense in A. Consider a
rational prime and an integer r ≥ 0. Then for all finite places v of K in a set of
Dirichlet density > 0 the `-part of the reduction of a has order `r.

Proof. Apply Theorem 4.1 to any point b ∈ A[`∞] of order `r. (This was also
partly proved by Khare and Prasad [10, §5, Lemma 4–5]. q.e.d.

Theorem 4.4 For 1 ≤ i ≤ d let Ai be an abelian variety over a number field K and
ai ∈ Ai(K) a rational point of infinite order. Let ` be a rational prime. Then for
all finite places v of K in a set of Dirichlet density > 0 the `-part of the reduction
of ai is non-trivial for every i.

Proof. We apply the results of the preceding sections to A := A1 × . . . × Ad and
a := (a1, . . . , ad). Let pri : A → Ai denote the projection to the ith factor. Then
as in the proof of Theorem 4.1

U ′ :=

{

γ̃ ∈ Γ̃`

∣

∣

∣

∣

det(γ − id) 6= 0, and
∀i : pri π`

(

(γ − id)−1n
)

6= 0

}

is an open subset of Γ̃`, and it suffices to prove:

Lemma 4.5 U ′ is non-empty.

Proof. We may replace K by a finite extension. Thus using Proposition 2.6 we
may without loss of generality assume that there exists m ∈ V`(A) such that

Γ̃` =

(

1 m
0 1

)

·

(

Γ` N`

0 1

)

·

(

1 −m
0 1

)

=

{(

γ n − (γ − id)m
0 1

)
∣

∣

∣

∣

γ ∈ Γ`

n ∈ N`

}

.

We must therefore find γ ∈ Γ` and n ∈ N` such that det(γ − id) 6= 0 and

pri π`

(

(γ − id)−1n − m
)

= pri π`

(

(γ − id)−1
(

n − (γ − id)m
)

)

6= 0

for all i. This second condition is equivalent to

pri

(

(γ − id)−1n
)

6≡ pri(m) mod T`(Ai).
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Take any integer r so that `rm ∈ T`(A). Then it suffices to have

`r pri

(

(γ − id)−1n
)

6∈ T`(Ai).

With n = (n1, . . . , nd) ∈ N` this is equivalent to

`rni 6∈ (γ − id)T`(Ai).(4.6)

Now by functoriality the image pri(N`) ⊂ T`(Ai) is the unipotent part of the `-adic
Galois group attached to (Ai, ai). As ai has infinite order, this image is non-
trivial by Theorem 2.8. Since any finite number of non-trivial linear inequalities
in a free Z`-module can be simultaneously satisfied, we may therefore select n =
(n1, . . . , nr) ∈ N` such that all ni 6= 0. Then clearly 4.6 holds for any suitable
γ ∈ Γ` that is sufficiently close to the identity. This proves that U ′ is non-empty,
as desired. q.e.d.

Theorem 4.7 For 1 ≤ i ≤ d let Ai be an abelian variety over a number field K
and ai ∈ Ai(K) a rational point of infinite order. Then there exists a set of rational
primes ` of Dirichlet density > 0 with the following property. Let f(T ) ∈ Z[T ] be
any polynomial which is a product of cyclotomic polynomials and a power of T . For
any finite place v of K let pv denote the characteristic of the residue field and ai,v

the reduction of ai. Then for all finite places v of K in a set of Dirichlet density
> 0 the `-part of f(pv)ai,v is non-trivial for every i.

Proof. We apply the results of the preceding sections to A := A1 × . . . × Ad

and a := (a1, . . . , ad). By Corollary 1.3 there exists a set of rational primes ` of
positive Dirichlet density for which the associated algebraic monodromy group G`

splits over Q`. We will prove the theorem for any such `.

Let µ : G` → Gm,Q`
be the multiplier character and let pri : A → Ai denote the

projection to the ith factor. As in the proof of Theorem 4.1

Uf :=

{

γ̃ ∈ Γ̃`

∣

∣

∣

∣

det(γ − id) 6= 0, and
∀i : f(µ(γ)) pri π`

(

(γ − id)−1n
)

6= 0

}

is an open subset of Γ̃`.

Lemma 4.8 Uf is non-empty.

Proof. As in the proof of Lemma 4.5, after replacing K by a finite extension we
may assume that

Γ̃` =

{(

γ n − (γ − id)m
0 1

)
∣

∣

∣

∣

γ ∈ Γ`

n ∈ N`

}

for some m ∈ V`(A). We must therefore find elements γ ∈ Γ` and n ∈ N` such that
det(γ − id) 6= 0 and

f(µ(γ)) pri π`

(

(γ − id)−1n − m
)

6= 0

for every i. This second condition is equivalent to

f(µ(γ)) pri

(

(γ − id)−1n
)

6≡ f(µ(γ)) pri(m) mod T`(Ai).

Taking any integer r so that `rm ∈ T`(A), it suffices to have

`rf(µ(γ)) pri

(

(γ − id)−1n
)

6∈ T`(Ai).(4.9)
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Now by the assumption on ` there exists a split maximal torus S` ⊂ G`. Every
character χ of S` is then defined over Q`. For any representation W of S` let
prχ : W � Wχ denote the projection to the weight space associated to χ. Recall
from Proposition 2.5 that N` is open in U`, which is an algebraic representation of
G` and hence of S`. Thus N`,χ := V`(A)χ ∩ N` is open in the weight space U`,χ.
For every χ we want to select an element nχ ∈ N`,χ such that for all i we have
pri(nχ) 6= 0 whenever pri(U`,χ) 6= 0. This is possible, because any finite number of
non-trivial linear inequalities in a free Z`-module can be simultaneously satisfied.
We will show the desired assertions with n :=

∑

χ nχ ∈ N` and a suitable element
γ ∈ S`(Q`) ∩ Γ`. To satisfy 4.9 it suffices to have

∀i ∃χ : `rf(µ(γ)) pri

(

(γ − id)−1nχ

)

6∈ prχ

(

T`(Ai)
)

.

As nχ is an eigenvector of γ for the eigenvalue χ(γ) ∈ Z`, this element is equal to

`rf(µ(γ))

χ(γ) − 1
· pri(nχ).

Fix an integer s so that for all i and χ with pri(nχ) 6= 0 we have

pri(nχ) 6∈ `s prχ

(

T`(Ai)
)

.

By construction this affects all pairs (i, χ) with pri(U`,χ) 6= 0. Thus it suffices to
prove the following assertion, from which the nχ have vanished.

Sublemma 4.10 There exists an element γ ∈ S`(Q`)∩Γ` satisfying det(γ−id) 6= 0
such that for every i there exists a character χ with pri(U`,χ) 6= 0 and

ord`

(

χ(γ) − 1
)

≥ r + s + ord`

(

f(µ(γ))
)

.

Proof. For every i let Bi ⊂ Ai be the identity component of the Zariski closure of
Zai. Applying Proposition 1.5 to B := B1 × . . .×Bd shows that there exist weights
χi of S` on V`(Bi) ⊂ V`(Ai) so that µ is Q-linearly independent of χ1, . . . , χd. The
functoriality and Theorem 2.8 together imply that pri(U`) = V`(Bi). Since the
projection map pri is S`-equivariant, we deduce that

pri(U`,χi
) = V`(Bi)χi

6= 0.

It remains to find an element γ ∈ S`(Q`) ∩ Γ` with det(γ − id) 6= 0 and for all i

ord`

(

χi(γ) − 1
)

≥ r + s + ord`

(

f(µ(γ))
)

.(4.11)

The inequality 4.11 means that χi(γ) is much closer to the identity than µ(γ). To
be precise let us first shrink Γ` so that Γ` acts trivially on T`(A)

/

`2T`(A). Then for
every element γ ∈ S`(Q`) ∩ Γ` we have µ(γ) ≡ 1 mod `2. On the other hand choose
an integer k > 0 such that all non-zero roots of f(T ) are roots of unity of order
dividing k and have multiplicity ≤ k. Then after multiplying f(T ) by some more
cyclotomic polynomials we may assume that f(T ) = T k′

(T k − 1)k for some k′ ≥ 0.
A standard calculation now shows that

ord`(f(µ(γ))) = k′ · ord`

(

µ(γ)
)

+ k · ord`

(

µ(γ)k − 1
)

= k · ord`(k) + k · ord`

(

µ(γ) − 1
)

.

Setting t := r + s+ k · ord`(k) we thus need to find an element γ ∈ S`(Q`)∩Γ` with
det(γ − id) 6= 0 and for all i

ord`

(

χi(γ) − 1
)

≥ t + k · ord`

(

µ(γ) − 1
)

.(4.12)
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To achieve this let S1
` denote the identity component of Ker(µ|S`), which is a

subtorus of codimension 1. Since µ is Q-linearly independent of χ1, . . . , χd and
S` splits over Q`, there exists a subtorus S2

` of dimension 1 inside
⋂d

i=1 Ker(χi|S`)
on which µ is non-trivial. We will take γ = γ1γ2 with γ1 ∈ S1

` (Q`) ∩ Γ` and
γ2 ∈ S2

` (Q`) ∩ Γ`. Then the left hand side of 4.12 depends only on γ1, while the
right hand side depends only on γ2.

Theorem 1.1 (c) implies that Γ` contains an open subgroup of S`(Q`). Thus if
we first select any non-trivial γ2, the inequality 4.12 will hold for every γ1 that is
sufficiently close to the identity. Furthermore, none of the weights of S` on V`(A) is
zero, e.g., by Proposition 1.4. Thus in any neighborhood of the identity γ1 can be
chosen such that γ = γ1γ2 does not have the eigenvalue 1 on V`(A), which means
that det(γ−id) 6= 0. Thus all requirements can be simultaneously satisfied, finishing
the proof of Sublemma 4.10 and hence of Lemma 4.8. q.e.d.

Now we return to the proof of Theorem 4.7. Since Uf ⊂ Γ̃` is a non-empty open
subset, as in the proof of Theorem 4.1 we conclude that there exists a set of places
v 6∈ S of K of Dirichlet density > 0 for which ρ̃`(Frobv) ∈ Uf . We may also assume
that the associated residue fields kv have prime order, because the remaining places
form a set of Dirichlet density 0. For these places we have µρ`(Frobv) = |kv| = pv.
The definition of Uf and Proposition 3.2 thus imply that f(pv) pri κv(a) 6= 0 for
every i. By the definition of κv this means that the `-part of f(pv)ai,v is non-trivial
for every i, as desired. q.e.d.

Remark 4.13 Theorem 4.7 is not true in general for every rational prime `, even
for a single abelian variety A and a single rational point a ∈ A(K). For a coun-
terexample suppose that A is an elliptic curve with complex multiplication over K.
Then EndK(A) is an order in an imaginary quadratic number field F , and for any
rational prime ` the image of Galois is an open compact subgroup of (F ⊗ Q`)

∗.
Thus G` splits over Q` if and only if ` splits in F , and in this case the proof of
Theorem 4.7 goes through.

If ` does not split in F , we will show that the theorem is false. It is known that
for every finite place v 6∈ S with |kv| = pv the element αv := ρ`(Frobv) is an
algebraic integer in F with αvᾱv = pv and that the cardinality of Av(kv) is equal to
(αv −1)(ᾱv −1). In particular the integer (αv −1)(ᾱv −1) annihilates the reduction
of a. Now the fact that F has only one prime above ` implies that

ord`(αv − 1) = ord`(ᾱv − 1) ≤ ord`(αvᾱv − 1) = ord`(pv − 1).

Thus with f(T ) := (T − 1)2 we deduce that

ord`

(

(αv − 1)(ᾱv − 1)
)

≤ 2 · ord`(pv − 1) = ord`

(

f(pv)
)

.

This implies that f(pv) annihilates the `-part of the reduction of a. Since this is so
for every v 6∈ S, we conclude that in this example Theorem 4.7 is true precisely for
` in a set of Dirichlet density 1/2.

5 Density results for the full reduction

In this section we derive some consequences of the density results of the preceding
section which no longer refer to any particular prime `.

Theorem 5.1 For 1 ≤ i ≤ d let Ai be an abelian variety over a number field K
and ai ∈ Ai(K) a rational point. Assume that for all finite places v of K in a set
of Dirichlet density 1 the reduction of at least one ai is annihilated by a power of
the residue characteristic pv. Then at least one ai = 0.
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Proof. Suppose that some ai is a torsion point of order n. If n = 1, we are
done. Otherwise the order of the reduction of ai at any finite place v - n is still n,
and therefore not a power of pv. Thus after removing Ai and ai from the list the
assumptions still hold. After iterating this we may assume that all ai have infinite
order; we must then derive a contradiction. Select any rational prime `. Then by
Theorem 4.4 for all finite places v - ` of K in a set of Dirichlet density > 0 the
`-part of the reduction of every ai is non-trivial. In particular, these reductions are
not annihilated by a power of pv, contradicting the given assumption. q.e.d.

Remark 5.2 Damian Roessler pointed out to the author that Theorem 5.1 can also
be deduced from a theorem of Wong [16]. To sketch this set A := A1× . . .×Ad. For
any prime ` let Γ`,1 denote the image of Gal(K̄/K) in its action on the `-torsion
subgroup A[`]. By a theorem of Serre, which for example follows from [15, Th. 2],
the group cohomology H1(Γ`,1, A[`]) vanishes for all ` � 0. We temporarily fix any
such ` > d.

The assumptions in Theorem 5.1 imply that for all v in a set of Dirichlet density 1
the reduction of at least one ai has trivial `-part. Since multiplication by ` induces
an automorphism on the prime-to-` part of Av(kv), the reduction of ai then lies
in `Av(kv). Wong [16, Th. 2] deduces from this that at least one ai is contained
in `A(K). Since this is true for every ` � 0, and the Mordell-Weil group A(K) is
finitely generated, this implies that at least one ai is torsion. As in the proof of 5.1
we now deduce that at least one ai = 0, as desired.

Theorem 5.3 For 1 ≤ i ≤ d let Ai be an abelian variety over a number field K
and ai ∈ Ai(K) a rational point. Let f(T ) ∈ Z[T ] be any polynomial which is a
product of cyclotomic polynomials and a power of T . For any finite place v of K let
pv denote the characteristic of the residue field and ai,v the reduction of ai. Assume
that for all finite places v of K in a set of Dirichlet density 1 at least one ai,v is
annihilated by f(pv). Then at least one ai is a torsion point.

Proof. Suppose that every ai has infinite order. Then by Theorem 4.7 there
exists a rational prime ` such that for all finite places v of K in a set of Dirichlet
density > 0 the `-part of every f(pv)ai,v is non-trivial. In particular, these ai,v are
not annihilated by f(pv), contradicting the given assumption. Thus the order of at
least one ai is finite. q.e.d.
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