On the Order of the Reduction of a Point on an Abelian Variety

Richard PINK*

November 27, 2003

Abstract

Consider a point of infinite order on an abelian variety over a number field. Then its reduction at any place v of good reduction is a torsion point. For most of this paper we fix a rational prime ℓ and study how the ℓ -part of this reduction varies with v. Under suitable conditions we prove various statements on this ℓ -part for all v in a set of positive Dirichlet density: for example that its order is a fixed power of ℓ , that its order is non-trivial for the reductions of finitely many points, or that its order is larger than a certain explicit value that varies with v.

By similar methods we prove that for all v in a set of positive Dirichlet density the reduction of a given abelian variety possesses no non-trivial supersingular abelian subvariety.

Mathematics Subject Classification: 14K15 (11R45)

Keywords: abelian varieties, rational points, reduction, Galois groups, density theorems

0 Introduction

Consider an abelian variety A over a number field K and a rational point of infinite order $a \in A(K)$. Then the reduction a_v of a at any place v of good reduction is defined over the finite residue field k_v and is therefore a torsion point. It is natural to ask how a_v varies with v. For most of this paper we fix a rational prime ℓ and study the ℓ -part of a_v . Since for $v \nmid \ell$ any ℓ -power torsion point over \bar{k}_v possesses a unique ℓ -power torsion lift to $A(\bar{K})$, one can try to translate this question into one over \bar{K} . The main player in this game is the group

$$\ell^{-\infty}(\mathbb{Z}a) := \{ x \in A(\bar{K}) \mid \exists n \ge 0 : \ell^n x \in \mathbb{Z}a \}.$$

This group is a natural extension of $\mathbb{Z}[1/\ell]$ with the group of ℓ -power torsion points

$$A[\ell^{\infty}] := \{ x \in A(\bar{K}) \mid \exists n \ge 0 : \ell^n x = 0 \}.$$

The latter group has been studied extensively by means of the Galois representation on the associated ℓ -adic Tate module $T_{\ell}(A)$. The former group also gives rise to a Tate module $T_{\ell}(A, a)$ which is an extension of $T_{\ell}(A)$ by \mathbb{Z}_{ℓ} . It is a special case of the Tate modules of 1-motives introduced by Deligne [7, §10.1]. Let $\Gamma_{\ell} \subset \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A))$ and $\tilde{\Gamma}_{\ell} \subset \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A, a))$ be the respective images of $\operatorname{Gal}(\bar{K}/K)$.

In Section 1 we review some known general facts about Γ_{ℓ} and its Zariski closure. We also prove in Corollary 1.7 that for all v in a set of positive Dirichlet density the

^{*}Dept. of Mathematics, ETH-Zentrum, CH-8092 Zürich, Switzerland, pink@math.ethz.ch

reduction of A possesses no non-trivial supersingular abelian subvariety. Although this statement has no direct relation with the results on a_v , the respective methods of proof have much in common.

General structural properties of Γ_{ℓ} are then discussed in Section 2. In particular we recall Theorem 2.8 from the Kummer theory of A which states that $\tilde{\Gamma}_{\ell}$ is an extension of Γ_{ℓ} by an open subgroup of $T_{\ell}(B)$, where B is the identity component of the Zariski closure of $\mathbb{Z}a$. This result is essentially due to Ribet [13], though in the case we need the proof was worked out only by Hindry [9, §2, Prop. 1].

In Section 3 we then show how the ℓ -part of a_v is determined by the action of the Frobenius element Frob_v on $\ell^{-\infty}(\mathbb{Z}a)$. Any question about this ℓ -part can thus be translated completely into a question on the group $\tilde{\Gamma}_{\ell}$.

In Section 4 we answer some of these questions. In all cases we prove that a certain behavior occurs for all places v of K in a set of Dirichlet density > 0. For example, in Corollary 4.3 we show that under mild conditions every power of ℓ occurs as the order of the ℓ -part of a_v . In Theorem 4.4 we prove that for finitely many given points a_i of infinite order, the ℓ -parts of their reductions $a_{i,v}$ can be made simultaneously non-trivial on a set of positive Dirichlet density. Theorem 4.7 generalizes this result in another direction: Let $f(T) \in \mathbb{Z}[T]$ be any polynomial which is a product of cyclotomic polynomials and a power of T. Let p_v denote the residue characteristic at v. Then for suitable ℓ , the ℓ -parts of all $f(p_v)a_{i,v}$ can be made simultaneously non-trivial on a set of positive Dirichlet density.

In the final section 5 we use these theorems to derive two density results on the $a_{i,v}$ which no longer refer to any particular prime ℓ . These results as well as Corollary 1.7 are needed in joint work with Damian Roessler [12] and provided the motivation for the present paper.¹ Theorem 5.1 can also be deduced from work by Wong [16] who, instead of studying when the ℓ -part of a_v is zero, considers the dual question of when a_v lies in $\ell \cdot A_v(k_v)$. Related questions are addressed in work by Corrales-Rodrigáñez and Schoof [6], Khare and Prasad [10], and Larsen [11].

1 The l-adic Galois group associated to an abelian variety

Let K be a number field and \overline{K} an algebraic closure of K. Consider an abelian variety A of dimension g over K and a rational prime ℓ . Then

$$A[\ell^{\infty}] := \{ x \in A(\bar{K}) \mid \exists n \ge 0 : \ell^n x = 0 \}$$

is a discrete group isomorphic to $(\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})^{2g}$ with a continuous action of $\operatorname{Gal}(\bar{K}/K)$. One usually describes this action via the ℓ -adic Tate module

$$T_{\ell}(A) := \operatorname{Hom}(\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}, A[\ell^{\infty}]) \cong \mathbb{Z}_{\ell}^{2g},$$

which possesses a continuous Galois representation

$$\rho_{\ell}: \operatorname{Gal}(\bar{K}/K) \longrightarrow \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \cong \operatorname{GL}_{2g}(\mathbb{Z}_{\ell}).$$

We are interested in its image $\Gamma_{\ell} := \rho_{\ell} (\operatorname{Gal}(\bar{K}/K))$, which is a compact subgroup of $\operatorname{GL}_{2g}(\mathbb{Z}_{\ell})$. Much can be said about Γ_{ℓ} by means of its Zariski closure $G_{\ell} \subset \operatorname{GL}_{2g,\mathbb{Q}_{\ell}}$. This is a linear algebraic group over \mathbb{Q}_{ℓ} with a natural faithful representation on the rational Tate module

$$V_{\ell}(A) := T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} \cong \mathbb{Q}_{\ell}^{2g}.$$

The following general facts are known about G_{ℓ} .

¹The author wishes to thank Damian Roessler for the very fruitful ongoing collaboration.

Theorem 1.1 (a) The action of G_{ℓ} on $V_{\ell}(A)$ is semisimple and the natural homomorphism

$$\operatorname{End}_{K}(A) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell} \longrightarrow \operatorname{End}_{\mathbb{Q}_{\ell},G_{\ell}}(V_{\ell}(A))$$

is an isomorphism.

- (b) G_{ℓ} is a reductive group.
- (c) Γ_{ℓ} is an open subgroup of $G_{\ell}(\mathbb{Q}_{\ell})$.

Proof. By the definition of G_{ℓ} the statements in (a) are equivalent to the corresponding ones with Γ_{ℓ} in place of G_{ℓ} , which were proved by Faltings [8, Th. 3–4]. Part (b) follows from the first statement in (a). Part (c) is a theorem of Bogomolov [4], [3]. q.e.d.

By Galois theory every open subgroup of Γ_{ℓ} corresponds to a finite extension of K within \bar{K} , and replacing K by that extension amounts to replacing Γ_{ℓ} by the corresponding subgroup. In particular, let G_{ℓ}° denote the identity component of G_{ℓ} . Then replacing Γ_{ℓ} by any open subgroup of $\Gamma_{\ell} \cap G_{\ell}^{\circ}$ has the effect of replacing G_{ℓ} by G_{ℓ}° ; and thereafter G_{ℓ} will be connected.

Now consider any finite place v of K and let p_v denote the characteristic of the finite residue field k_v . If $v \nmid \ell$ and A has good reduction at v, it is known that the restriction of ρ_ℓ to any inertia group above v is trivial. Let Frob_v be any element of a decomposition group at v which acts by taking $|k_v|^{\text{th}}$ powers modulo v. Then the conjugacy class of $\rho_\ell(\operatorname{Frob}_v)$ depends only on v and is known to be semisimple, and its characteristic polynomial on $V_\ell(A)$ is known to have coefficients in \mathbb{Z} and to be independent of ℓ .

Choose any semisimple element $t_v \in \operatorname{GL}_{2g}(\mathbb{Q})$ whose characteristic polynomial is equal to that of $\rho_{\ell}(\operatorname{Frob}_v)$. Let $T_v \subset \operatorname{GL}_{2g,\mathbb{Q}}$ be the Zariski closure of the subgroup generated by t_v . The construction implies that the identity component of T_v is a torus and its $\operatorname{GL}_{2g}(\mathbb{Q})$ -conjugacy class depends only on v. Following Serre [14] it is called the *Frobenius torus at* v. Moreover, for any $\ell \neq p_v$ there is a unique conjugate of T_{v,\mathbb{Q}_ℓ} by an element of $\operatorname{GL}_{2g}(\mathbb{Q}_\ell)$ which lies in G_ℓ , such that t_v is mapped to $\rho_\ell(\operatorname{Frob}_v)$. Serre [14, §5, pp.12–13] proves:

Theorem 1.2 If G_{ℓ} is connected, then for all places v in a set of Dirichlet density 1 the group T_v itself is a torus and $T_{v,\mathbb{Q}_{\ell}}$ is conjugate under $\operatorname{GL}_{2g}(\mathbb{Q}_{\ell})$ to a maximal torus of G_{ℓ} .

Corollary 1.3 There exists a set of rational primes ℓ of positive Dirichlet density for which G_{ℓ} splits over \mathbb{Q}_{ℓ} .

Proof. Let T_v be any Frobenius torus as in Theorem 1.2. Choose a finite extension F of $\overline{\mathbb{Q}}$ such that $T_{v,F}$ splits. Then the set of rational primes ℓ which split completely in F has positive Dirichlet density, and for each of them T_{v,\mathbb{Q}_ℓ} splits. Since T_{v,\mathbb{Q}_ℓ} is conjugate to a maximal torus of G_ℓ , this shows that G_ℓ splits. **q.e.d.**

Next any polarization of A induces a Galois equivariant perfect alternating pairing $V_{\ell}(A) \times V_{\ell}(A) \to \mathbb{Q}_{\ell}(1)$, where $\operatorname{Gal}(\bar{K}/K)$ acts on $\mathbb{Q}_{\ell}(1)$ through the cyclotomic character. It follows that Γ_{ℓ} is contained in the group of symplectic similitudes $\operatorname{CSp}_{2g}(\mathbb{Q}_{\ell})$. Let $\mu : \operatorname{CSp}_{2g} \to \mathbb{G}_m$ denote the multiplier map; then $\mu \rho_{\ell} : \operatorname{Gal}(\bar{K}/K) \to \mathbb{Z}_{\ell}^*$ is the cyclotomic character. The definition of G_{ℓ} implies that $G_{\ell} \subset \operatorname{CSp}_{2g,\mathbb{Q}_{\ell}}$; hence μ defines an algebraic character of G_{ℓ} .

Proposition 1.4 Consider a maximal torus S_{ℓ} of G_{ℓ} and any weight χ of S_{ℓ} on $V_{\ell}(A)$. Then μ and χ are \mathbb{Q} -linearly independent in the character group of S_{ℓ} .

Proof. The perfect pairing implies that there exists a weight χ^* of S_ℓ on $V_\ell(A)$ such that $\chi\chi^* = \mu$. Both χ and χ^* are non-trivial, because the corresponding Frobenius eigenvalues have complex absolute value > 1. Now by the Hodge-Tate decomposition there exists a cocharacter λ of S_ℓ whose weights on $V_\ell(A)$ are 0 and 1 and whose weight on $\mathbb{Q}_\ell(1)$ is 1; see for instance Serre [14, §5, pp.11–12]. For any such λ we have

$$\langle \chi, \lambda \rangle + \langle \chi^*, \lambda \rangle = \langle \chi \chi^*, \lambda \rangle = \langle \mu, \lambda \rangle = 1,$$

and one of the summands is 0 and the other 1. This implies that χ and χ^* cannot be non-zero rational multiples of each other. Since they are both non-trivial characters, they must be \mathbb{Q} -linearly independent. Equivalently χ and $\mu = \chi \chi^*$ are \mathbb{Q} -linearly independent, as desired. **q.e.d.**

Proposition 1.5 Suppose that $A = A_1 \times \ldots \times A_d$ for non-zero abelian varieties A_1, \ldots, A_d . Consider a maximal torus S_ℓ of G_ℓ . Then there exist weights χ_i of S_ℓ on $V_\ell(A_i)$ so that μ is \mathbb{Q} -linearly independent of χ_1, \ldots, χ_d .

Proof. By the Hodge-Tate decomposition, see [14, §5, pp.11–12], there exists a cocharacter λ of S_{ℓ} which on every $V_{\ell}(A_i)$ has the weights 0 and 1 with multiplicity dim A_i each, and whose weight on $\mathbb{Q}_{\ell}(1)$ is 1. So we can choose each χ_i such that $\langle \chi_i, \lambda \rangle$, the weight of the χ_i -eigenspace in the Hodge-Tate decomposition, is zero. Then for any weight χ which is a \mathbb{Q} -linear combination of the χ_i , we still have $\langle \chi, \lambda \rangle = 0$. But $\langle \mu, \lambda \rangle = 1$; hence μ is not a \mathbb{Q} -linear combination of the χ_i . **q.e.d.**

We finish this section with a first application of Proposition 1.4, which will not be used in the rest of the paper.

Theorem 1.6 If G_{ℓ} is connected, the set of finite places v of K where the reduction of A does not possess a non-trivial supersingular abelian subvariety has Dirichlet density 1.

Proof. By Theorem 1.2 it suffices to consider those places $v \nmid \ell$ of K for which $T_{v,\mathbb{Q}_{\ell}}$ is conjugate to a maximal torus S_{ℓ} of G_{ℓ} . Let v be such a place and suppose that the corresponding reduction A_v of A possesses a non-trivial supersingular abelian subvariety B_v . Then any eigenvalue of Frob_v on $V_{\ell}(B_v)$ has the form $\sqrt{|k_v|}$ times a root of unity, while the eigenvalue on $\mathbb{Q}_{\ell}(1)$ is $|k_v|$. Let χ be the weight of S_{ℓ} on $V_{\ell}(A)$ corresponding to that eigenvalue on $V_{\ell}(B_v) \subset V_{\ell}(A_v)$, and let n be the order of that root of unity. Then the values of χ^{2n} and μ^n on $\rho_{\ell}(\operatorname{Frob}_v)$ coincide. But by the construction of the Frobenius torus the element $\rho_{\ell}(\operatorname{Frob}_v)$ generates a Zariski dense subgroup of S_{ℓ} . Thus χ^{2n} and μ^n are equal as characters of S_{ℓ} , which contradicts their linear independence from Proposition 1.4. This shows that A_v does not possess a non-trivial supersingular abelian subvariety, as desired. **q.e.d.**

Corollary 1.7 Let A be an abelian variety over a number field K. Then there exists a finite extension L of K such that for all finite places of L in a set of Dirichlet density 1 the reduction of A does not possess a non-trivial supersingular abelian subvariety.

Proof. Choose an arbitrary rational prime ℓ and a finite Galois extension L of K over which G_{ℓ} becomes connected, and apply Theorem 1.6. **q.e.d.**

2 The ℓ -adic Galois group associated to an abelian variety with a point

Now fix a rational point of infinite order $a \in A(K)$ and set

$$\ell^{-\infty}(\mathbb{Z}a) := \{ x \in A(\bar{K}) \mid \exists n \ge 0 : \ell^n x \in \mathbb{Z}a \}.$$

Then we have a natural short exact sequence of discrete groups

(2.1)
$$0 \longrightarrow A[\ell^{\infty}] \longrightarrow \ell^{-\infty}(\mathbb{Z}a) \xrightarrow{a \mapsto 1} \mathbb{Z}[1/\ell] \longrightarrow 0.$$

Any choice of a compatible system of ℓ -power roots of a determines a splitting λ : $\mathbb{Z}[1/\ell] \to \ell^{-\infty}(\mathbb{Z}a)$ satisfying $\lambda(1) = a$. We will call such a splitting special. Two special splittings differ by an element of

$$\operatorname{Hom}(\mathbb{Z}[1/\ell]/\mathbb{Z}, A[\ell^{\infty}]) \cong \operatorname{Hom}(\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell}, A[\ell^{\infty}]) = T_{\ell}(A).$$

By contrast, two general splittings differ by an element of

(2.2)

$$\operatorname{Hom}(\mathbb{Z}[1/\ell], A[\ell^{\infty}]) = \bigcup_{r \ge 0} \operatorname{Hom}(\mathbb{Z}[1/\ell] / \ell^{r} \mathbb{Z}, A[\ell^{\infty}])$$

$$\cong \bigcup_{r \ge 0} \ell^{-r} \operatorname{Hom}(\mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}, A[\ell^{\infty}])$$

$$= \bigcup_{r \ge 0} \ell^{-r} T_{\ell}(A) = V_{\ell}(A).$$

The sequence 2.1 is equivariant under the natural continuous action of $\operatorname{Gal}(\overline{K}/K)$, where the action on $\mathbb{Z}[1/\ell]$ is trivial. It is useful to describe this action via an associated Tate module. For this note that $\ell^{-\infty}(\mathbb{Z}a)/\mathbb{Z}a$ is isomorphic to $(\mathbb{Q}_{\ell}/\mathbb{Z}_{\ell})^{2g+1}$; hence

$$T_{\ell}(A, a) := \operatorname{Hom} \left(\mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}, \ell^{-\infty}(\mathbb{Z}a) / \mathbb{Z}a \right)$$

is isomorphic to \mathbb{Z}_{ℓ}^{2g+1} and sits in a short exact sequence

$$(2.3) 0 \longrightarrow T_{\ell}(A) \longrightarrow T_{\ell}(A, a) \longrightarrow \mathbb{Z}_{\ell} \longrightarrow 0.$$

Any special splitting of 2.1 determines a splitting of 2.3, i.e., an isomorphism $T_{\ell}(A, a) \cong T_{\ell}(A) \oplus \mathbb{Z}_{\ell}$. We will write any such decomposition in terms of column vectors. Then the natural Galois representation on $T_{\ell}(A, a)$ has the form

$$\tilde{\rho}_{\ell} = \begin{pmatrix} \rho_{\ell} & * \\ 0 & 1 \end{pmatrix} \colon \operatorname{Gal}(\bar{K}/K) \longrightarrow \begin{pmatrix} \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) & T_{\ell}(A) \\ 0 & 1 \end{pmatrix} \cong \begin{pmatrix} \operatorname{GL}_{2g}(\mathbb{Z}_{\ell}) & \mathbb{Z}_{\ell}^{2g} \\ 0 & 1 \end{pmatrix}.$$

The construction implies that left multiplication by the same matrices also describes the Galois action on $\ell^{-\infty}(\mathbb{Z}a) \cong A[\ell^{\infty}] \oplus \mathbb{Z}[1/\ell]$. We are interested in the image

$$\tilde{\Gamma}_{\ell} := \tilde{\rho}_{\ell} (\operatorname{Gal}(\bar{K}/K)) \subset \begin{pmatrix} \Gamma_{\ell} & T_{\ell}(A) \\ 0 & 1 \end{pmatrix}.$$

Letting $N_{\ell} := \tilde{\Gamma}_{\ell} \cap T_{\ell}(A)$ denote its intersection with the upper right corner, we obtain a natural short exact sequence

(2.4)
$$0 \longrightarrow N_{\ell} \longrightarrow \tilde{\Gamma}_{\ell} \longrightarrow \Gamma_{\ell} \longrightarrow 1.$$

As with Γ_{ℓ} we will study $\tilde{\Gamma}_{\ell}$ with the help of its Zariski closure \tilde{G}_{ℓ} , which is a linear algebraic group over \mathbb{Q}_{ℓ} with a natural faithful representation on

$$V_{\ell}(A,a) := T_{\ell}(A,a) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} \cong \mathbb{Q}_{\ell}^{2g+1}.$$

By construction we have a natural short exact sequence

$$0 \longrightarrow U_{\ell} \longrightarrow \tilde{G}_{\ell} \longrightarrow G_{\ell} \longrightarrow 1$$

where U_{ℓ} is an algebraic subgroup of the vector group $V_{\ell}(A)$. Since G_{ℓ} is reductive by Theorem 1.1 (b), the subgroup U_{ℓ} is simply the unipotent radical of \tilde{G}_{ℓ} .

Proposition 2.5 $\tilde{\Gamma}_{\ell}$ is open in $\tilde{G}_{\ell}(\mathbb{Q}_{\ell})$ and N_{ℓ} open in $U_{\ell}(\mathbb{Q}_{\ell})$.

Proof. By construction we have an inclusion of short exact sequences

All these groups can be viewed as ℓ -adic Lie groups, and by a theorem of Chevalley [5, Ch. II, Cor. 7.9] the Zariski density of $\tilde{\Gamma}_{\ell}$ implies

$$\left[\operatorname{Lie} \tilde{G}_{\ell}, \operatorname{Lie} \tilde{G}_{\ell}\right] \subset \operatorname{Lie} \tilde{\Gamma}_{\ell}.$$

On the other hand $V_{\ell}(A)$ does not contain the trivial representation of G_{ℓ} , because all Frobenius eigenvalues have complex absolute value > 1. Thus $U_{\ell} \cong \text{Lie } U_{\ell}$ does not contain the trivial representation of G_{ℓ} , which implies that

$$\operatorname{Lie} U_{\ell} = \left[\operatorname{Lie} \tilde{G}_{\ell}, \operatorname{Lie} U_{\ell}\right] \subset \left[\operatorname{Lie} \tilde{G}_{\ell}, \operatorname{Lie} \tilde{G}_{\ell}\right] \subset \operatorname{Lie} \tilde{\Gamma}_{\ell}.$$

Since moreover Lie $\Gamma_{\ell} = \text{Lie } G_{\ell}$ by Theorem 1.1 (c), we deduce that Lie $\tilde{\Gamma}_{\ell} = \text{Lie } \tilde{G}_{\ell}$. Thus $\tilde{\Gamma}_{\ell}$ is open in $\tilde{G}_{\ell}(\mathbb{Q}_{\ell})$, and therefore N_{ℓ} is open in $U_{\ell}(\mathbb{Q}_{\ell})$, as desired. **q.e.d.**

Proposition 2.6 After replacing K by a suitable finite extension there exists a splitting of 2.1, not necessarily special, such that

$$\tilde{\Gamma}_{\ell} = \begin{pmatrix} \Gamma_{\ell} & N_{\ell} \\ 0 & 1 \end{pmatrix}.$$

Proof. Choose any Levi decomposition $\tilde{G}_{\ell} = G_{\ell} \ltimes U_{\ell}$ and consider the short exact sequence

$$(2.7) 0 \longrightarrow V_{\ell}(A) \longrightarrow V_{\ell}(A, a) \longrightarrow \mathbb{Q}_{\ell} \longrightarrow 0$$

deduced from 2.3 by tensoring with \mathbb{Q}_{ℓ} . As G_{ℓ} is reductive, acts trivially on \mathbb{Q}_{ℓ} , and non-trivially on every non-zero subspace of $V_{\ell}(A)$, the sequence 2.7 possesses a unique splitting that is invariant under the Levi subgroup G_{ℓ} . On the other hand take any splitting λ of 2.1. Then the induced splitting of 2.7 differs from the Levi invariant splitting by some element of $V_{\ell}(A)$. Changing λ by the same element thus shows that the Levi invariant splitting of 2.7 comes from some splitting of 2.1, though not necessarily from a special one. With respect to this splitting the decomposition $\tilde{G}_{\ell} = G_{\ell} \ltimes U_{\ell}$ is the same as that in terms of formal matrices

$$\tilde{G}_{\ell} = \begin{pmatrix} G_{\ell} & U_{\ell} \\ 0 & 1 \end{pmatrix}.$$

Finally Proposition 2.5 implies that

$$(G_{\ell}(\mathbb{Q}_{\ell}) \cap \tilde{\Gamma}_{\ell}) \ltimes (U_{\ell}(\mathbb{Q}_{\ell}) \cap \tilde{\Gamma}_{\ell})$$

is an open subgroup of $\tilde{G}_{\ell}(\mathbb{Q}_{\ell})$ and hence of $\tilde{\Gamma}_{\ell}$. After replacing K by the corresponding finite extension $\tilde{\Gamma}_{\ell}$ itself is such a semidirect product, as desired. **q.e.d.**

Theorem 2.8 Let B be the identity component of the Zariski closure of $\mathbb{Z}a$. Then N_{ℓ} is open in $T_{\ell}(B) \subset T_{\ell}(A)$ and we have $U_{\ell} = V_{\ell}(B) \subset V_{\ell}(A)$.

Proof. This is a special case of a theorem essentially due to Ribet [13] on the Kummer theory of A, itself depending on results of Faltings [8] and Serre [15] as well as the Mordell-Weil theorem, and following a method first used by Bashmakov [1]. The case we need was formulated by Bertrand [2, Th. 2] and worked out by Hindry [9, §2, Prop. 1].

We begin with two technical reductions required by this reference. First, as the Mordell-Weil group A(K) is finitely generated, the given element a is an integral multiple of an indivisible element $a' \in A(K)$. Replacing a by a' does not change B, and since $\ell^{-\infty}(\mathbb{Z}a) \subset \ell^{-\infty}(\mathbb{Z}a')$ is a subgroup of finite index prime to ℓ , it also changes neither $\tilde{\Gamma}_{\ell}$ nor N_{ℓ} nor U_{ℓ} . Thus without loss of generality we may, and do, assume that a itself is indivisible in A(K). Next let d be the number of connected components of the Zariski closure of $\mathbb{Z}a$. To prove the theorem we may, and do, replace K by its finite extension K(A[d]).

Now for any two integers $r \ge s \ge 0$ consider the finite quotients

Then the short exact sequence 2.4 maps onto a short exact sequence

$$0 \longrightarrow N_{\ell,r,s} \longrightarrow \widetilde{\Gamma}_{\ell,r,s} \longrightarrow \Gamma_{\ell,r} \longrightarrow 1$$

for some subgroup $N_{\ell,r,s} \subset T_{\ell}(A)/\ell^s T_{\ell}(A) \cong A[\ell^s]$. By [9, §2, Prop. 1] this group is a subgroup of $T_{\ell}(B)/\ell^s T_{\ell}(B) \cong B[\ell^s]$ whose index is bounded independently of r and s, provided that $r \ge \operatorname{ord}_{\ell}(d)$. Since N_{ℓ} is the projective limit of the $N_{\ell,r,s}$ as both r and s go to infinity, this implies that N_{ℓ} is an open subgroup of $T_{\ell}(B)$. The second statement follows from this and Proposition 2.5. **q.e.d.**

In particular, since a has infinite order by assumption, Theorem 2.8 implies that $N_{\ell} \neq 0$. Another direct consequence is:

Corollary 2.9 N_{ℓ} is open in $T_{\ell}(A)$ if and only if $U_{\ell} = V_{\ell}(A)$ if and only if $\mathbb{Z}a$ is Zariski dense in A.

3 The ℓ -part of the reduction at v

Now consider a place $v \nmid \ell$ of K where A has good reduction A_v . Then the restriction of $\tilde{\rho}_{\ell}$ to any inertia group above v is trivial, and so the conjugacy class of $\rho_{\ell}(\operatorname{Frob}_v)$ depends only on v. We will show how this conjugacy class determines the ℓ -part of the reduction $a_v \in A_v$ of our fixed point a.

First the condition $v \nmid \ell$ implies that the reduction map induces an isomorphism

$$A[\ell^{\infty}] \xrightarrow{\sim} A_v(\bar{k}_v)[\ell^{\infty}].$$

Consider the composite homomorphism

$$\kappa_v: \ \ell^{-\infty}(\mathbb{Z}a) \subset A(\bar{K}) \longrightarrow A_v(\bar{k}_v) \longrightarrow A_v(\bar{k}_v)[\ell^{\infty}] \cong A[\ell^{\infty}],$$

where the first arrow is reduction modulo v, the second one is the projection to the ℓ -part, and the isomorphism on the right is the inverse of the reduction map. By

construction its restriction to $A[\ell^{\infty}]$ is the identity, so κ_v induces a splitting of the sequence 2.1. It is important to note that κ_v does not in general correspond to a special splitting. Indeed, it does so if and only if $\kappa_v(a) = 0$, that is, if the ℓ -part of the reduction a_v vanishes.

By construction κ_v is equivariant under the action of Frob_v . Thus the following observation tells us that κ_v is completely determined by the element $\tilde{\rho}_{\ell}(\operatorname{Frob}_v) \in \tilde{\Gamma}_{\ell}$.

Proposition 3.1 For every place $v \nmid \ell$ of K where A has good reduction the homomorphism κ_v is the unique Frob_v-equivariant splitting of the sequence 2.1.

Proof. Any other Frob_{v} -equivariant splitting $\ell^{-\infty}(\mathbb{Z}a) \to A[\ell^{\infty}]$ differs from κ_{v} by a Frob_{v} -invariant element of $\operatorname{Hom}(\mathbb{Z}[1/\ell], A[\ell^{\infty}])$. By 2.2 the latter space is isomorphic to $V_{\ell}(A)$. Since all eigenvalues of Frob_{v} on $V_{\ell}(A)$ have complex absolute value > 1, its subspace of Frob_{v} -invariants is zero. Thus κ_{v} is the unique Frob_{v} -invariant splitting. q.e.d.

To give a precise formula for $\kappa_v(a)$ we fix a special splitting λ of 2.1 and write

$$\tilde{\gamma}_v := \tilde{\rho}_\ell(\operatorname{Frob}_v) = \begin{pmatrix} \gamma_v & n_v \\ 0 & 1 \end{pmatrix}$$

with $\gamma_v = \rho_\ell(\operatorname{Frob}_v) \in \Gamma_\ell \subset \operatorname{GL}_{2g}(\mathbb{Z}_\ell)$ and $n_v \in T_\ell(A) \cong \mathbb{Z}_\ell^{2g}$. Since γ_v does not have the eigenvalue 1, we can invert the matrix γ_v – id over \mathbb{Q}_ℓ and thus define

$$m_v := (\gamma_v - \mathrm{id})^{-1} n_v \in V_\ell(A) \cong \mathbb{Q}_\ell^{2g}.$$

Let π_{ℓ} denote the natural composite homomorphism

$$V_{\ell}(A) \twoheadrightarrow V_{\ell}(A) / T_{\ell}(A) \cong A[\ell^{\infty}].$$

Proposition 3.2 We have $\kappa_v(a) = \pi_\ell(m_v)$. In particular the order of the ℓ -part of the reduction a_v is equal to the ℓ -part of the denominator of m_v .

Proof. The splitting λ induces a decomposition

$$V_{\ell}(A, a) = V_{\ell}(A) \oplus \mathbb{Q}_{\ell}$$

which, as usual, we write in terms of column vectors. A direct calculation then shows that the eigenspace of $\tilde{\gamma}_v$ on $V_\ell(A, a)$ for the eigenvalue 1 is generated by the vector

$$\begin{pmatrix} -m_v \\ 1 \end{pmatrix}.$$

Thus again with respect to the decomposition induced by λ the map

$$\mathbb{Z}[1/\ell] \longrightarrow \ell^{-\infty}(\mathbb{Z}a) = A[\ell^{\infty}] \oplus \mathbb{Z}[1/\ell],$$

$$x \mapsto \begin{pmatrix} -\pi_{\ell}(xm_{v}) \\ x \end{pmatrix}$$

defines a $\tilde{\gamma}_v$ -equivariant splitting of 2.1. The corresponding $\tilde{\gamma}_v$ -equivariant splitting in the other direction

$$A[\ell^{\infty}] \oplus \mathbb{Z}[1/\ell] = \ell^{-\infty}(\mathbb{Z}a) \longrightarrow A[\ell^{\infty}]$$

is given by

$$\begin{pmatrix} b \\ x \end{pmatrix} = \begin{pmatrix} b + \pi_{\ell}(xm_v) \\ 0 \end{pmatrix} + \begin{pmatrix} -\pi_{\ell}(xm_v) \\ x \end{pmatrix} \mapsto b + \pi_{\ell}(xm_v)$$

By Proposition 3.1 this map represents κ_v . Now since λ is a special splitting, the element $a = \lambda(1)$ corresponds to the vector

$$\begin{pmatrix} 0\\1 \end{pmatrix}$$

It follows that $\kappa_v(a) = \pi_\ell(m_v)$, as desired.

4 Density results for the ℓ -part of the reduction

In this section we derive several statements on the Dirichlet density of the set of places v at which the ℓ -part of the reduction of a has certain properties. For all these statements we can disregard the finite set S of places dividing ℓ or where A has bad reduction.

Theorem 4.1 Let A be an abelian variety over a number field K and $a \in A(K)$ a rational point of infinite order such that $\mathbb{Z}a$ is Zariski dense in A. Consider a rational prime and a point $b \in A[\ell^{\infty}]$. Then for all finite places v of K in a set of Dirichlet density > 0 the ℓ -part of the reduction of a is equal to the reduction of b.

Proof. Choose a special splitting of 2.1 and let U denote the set of elements

$$\tilde{\gamma} = \begin{pmatrix} \gamma & n \\ 0 & 1 \end{pmatrix} \in \tilde{\Gamma}_{\ell} \subset \begin{pmatrix} \operatorname{Aut}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) & T_{\ell}(A) \\ 0 & 1 \end{pmatrix}$$

satisfying det $(\gamma - \mathrm{id}) \neq 0$. Clearly this is an open subset of $\tilde{\Gamma}_{\ell}$. Next $\tilde{\gamma} \mapsto \pi_{\ell}((\gamma - \mathrm{id})^{-1}n)$ defines a continuous function from U to the discrete set $A[\ell^{\infty}]$. It is therefore locally constant; hence

$$U_b := \left\{ \tilde{\gamma} \in \tilde{\Gamma}_\ell \mid \det(\gamma - \mathrm{id}) \neq 0, \text{ and } \\ \pi_\ell ((\gamma - \mathrm{id})^{-1}n) = b \right\}$$

is an open subset of $\tilde{\Gamma}_{\ell}$.

Lemma 4.2 U_b is non-empty.

Proof. It suffices to show that the map

$$U \to V_{\ell}(A), \ \begin{pmatrix} \gamma & n \\ 0 & 1 \end{pmatrix} \mapsto (\gamma - \mathrm{id})^{-1}n$$

is surjective. This statement is invariant under conjugation by $V_{\ell}(A)$, and it suffices to prove it after replacing K by a finite extension. Thus using Proposition 2.6 we may without loss of generality assume that

$$\tilde{\Gamma}_{\ell} = \begin{pmatrix} \Gamma_{\ell} & N_{\ell} \\ 0 & 1 \end{pmatrix}.$$

The desired statement is then equivalent to

$$V_{\ell}(A) = \bigcup_{\substack{\gamma \in \Gamma_{\ell} \\ \det(\gamma - \operatorname{id}) \neq 0}} (\gamma - \operatorname{id})^{-1} N_{\ell}.$$

Now N_{ℓ} is open in $T_{\ell}(A)$ by Corollary 2.9; hence $\ell^r T_{\ell}(A) \subset N_{\ell}$ for some integer r. On the other hand, for every integer s > 0 there exists $\gamma \in \Gamma_{\ell}$ with $\det(\gamma - \mathrm{id}) \neq 0$

q.e.d.

such that $\gamma \equiv \operatorname{id} \operatorname{mod} \ell^s$. Indeed, any power $\rho_{\ell}(\operatorname{Frob}_v)^m$ for a place $v \notin S$ and m sufficiently divisible has these properties. For this element γ we then have

$$(\gamma - \mathrm{id})T_{\ell}(A) \subset \ell^{s}T_{\ell}(A) \subset \ell^{s-r}N_{\ell}$$

and hence

$$\ell^{r-s}T_{\ell}(A) \subset (\gamma - \mathrm{id})^{-1}N_{\ell}.$$

With $s \to \infty$ the desired equality follows.

Now take any element $\tilde{\gamma} \in U_b$. By openness there exists an open normal subgroup $\tilde{\Delta} \triangleleft \tilde{\Gamma}_{\ell}$ such that $\tilde{\gamma}\tilde{\Delta} \subset U_b$. As $\tilde{\Gamma}_{\ell}/\tilde{\Delta}$ is the Galois group of a finite extension of K, by the Cebotarev density theorem there exists a set of places $v \notin S$ of K of Dirichlet density > 0 for which

$$\tilde{\rho}_{\ell}(\operatorname{Frob}_{v}) \equiv \tilde{\gamma} \operatorname{mod} \tilde{\Delta}.$$

But for all these v we have $\tilde{\rho}_{\ell}(\operatorname{Frob}_{v}) \in U_{b}$, which by Proposition 3.2 implies $\kappa_{v}(a) = b$. By the definition of κ_{v} this means that the ℓ -part of the reduction of a is equal to the reduction of b, as desired. q.e.d.

Corollary 4.3 Let A be an abelian variety over a number field K and $a \in A(K)$ a rational point of infinite order such that $\mathbb{Z}a$ is Zariski dense in A. Consider a rational prime and an integer $r \ge 0$. Then for all finite places v of K in a set of Dirichlet density > 0 the ℓ -part of the reduction of a has order ℓ^r .

Proof. Apply Theorem 4.1 to any point $b \in A[\ell^{\infty}]$ of order ℓ^r . (This was also partly proved by Khare and Prasad [10, §5, Lemma 4–5]. q.e.d.

Theorem 4.4 For $1 \le i \le d$ let A_i be an abelian variety over a number field K and $a_i \in A_i(K)$ a rational point of infinite order. Let ℓ be a rational prime. Then for all finite places v of K in a set of Dirichlet density > 0 the ℓ -part of the reduction of a_i is non-trivial for every i.

Proof. We apply the results of the preceding sections to $A := A_1 \times \ldots \times A_d$ and $a := (a_1, \ldots, a_d)$. Let $pr_i : A \to A_i$ denote the projection to the *i*th factor. Then as in the proof of Theorem 4.1

$$U' := \left\{ \tilde{\gamma} \in \tilde{\Gamma}_{\ell} \mid \begin{array}{c} \det(\gamma - \mathrm{id}) \neq 0, \text{ and} \\ \forall i : \operatorname{pr}_{i} \pi_{\ell} \big((\gamma - \mathrm{id})^{-1} n \big) \neq 0 \end{array} \right\}$$

is an open subset of $\tilde{\Gamma}_{\ell}$, and it suffices to prove:

Lemma 4.5 U' is non-empty.

Proof. We may replace K by a finite extension. Thus using Proposition 2.6 we may without loss of generality assume that there exists $m \in V_{\ell}(A)$ such that

$$\tilde{\Gamma}_{\ell} = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \Gamma_{\ell} & N_{\ell} \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -m \\ 0 & 1 \end{pmatrix} = \left\{ \begin{pmatrix} \gamma & n - (\gamma - \mathrm{id})m \\ 0 & 1 \end{pmatrix} \middle| \begin{array}{c} \gamma \in \Gamma_{\ell} \\ n \in N_{\ell} \end{array} \right\}.$$

We must therefore find $\gamma \in \Gamma_{\ell}$ and $n \in N_{\ell}$ such that $\det(\gamma - \mathrm{id}) \neq 0$ and

$$\operatorname{pr}_{i} \pi_{\ell} \left((\gamma - \operatorname{id})^{-1} n - m \right) = \operatorname{pr}_{i} \pi_{\ell} \left((\gamma - \operatorname{id})^{-1} \left(n - (\gamma - \operatorname{id}) m \right) \right) \neq 0$$

for all i. This second condition is equivalent to

$$\operatorname{pr}_i((\gamma - \operatorname{id})^{-1}n) \not\equiv \operatorname{pr}_i(m) \mod T_\ell(A_i).$$

q.e.d.

Take any integer r so that $\ell^r m \in T_{\ell}(A)$. Then it suffices to have

$$\ell^r \operatorname{pr}_i((\gamma - \operatorname{id})^{-1}n) \notin T_\ell(A_i).$$

With $n = (n_1, \ldots, n_d) \in N_\ell$ this is equivalent to

(4.6)
$$\ell^r n_i \notin (\gamma - \mathrm{id}) T_\ell(A_i).$$

Now by functoriality the image $\operatorname{pr}_i(N_\ell) \subset T_\ell(A_i)$ is the unipotent part of the ℓ -adic Galois group attached to (A_i, a_i) . As a_i has infinite order, this image is nontrivial by Theorem 2.8. Since any finite number of non-trivial linear inequalities in a free \mathbb{Z}_ℓ -module can be simultaneously satisfied, we may therefore select $n = (n_1, \ldots, n_r) \in N_\ell$ such that all $n_i \neq 0$. Then clearly 4.6 holds for any suitable $\gamma \in \Gamma_\ell$ that is sufficiently close to the identity. This proves that U' is non-empty, as desired. **q.e.d.**

Theorem 4.7 For $1 \leq i \leq d$ let A_i be an abelian variety over a number field Kand $a_i \in A_i(K)$ a rational point of infinite order. Then there exists a set of rational primes ℓ of Dirichlet density > 0 with the following property. Let $f(T) \in \mathbb{Z}[T]$ be any polynomial which is a product of cyclotomic polynomials and a power of T. For any finite place v of K let p_v denote the characteristic of the residue field and $a_{i,v}$ the reduction of a_i . Then for all finite places v of K in a set of Dirichlet density > 0 the ℓ -part of $f(p_v)a_{i,v}$ is non-trivial for every i.

Proof. We apply the results of the preceding sections to $A := A_1 \times \ldots \times A_d$ and $a := (a_1, \ldots, a_d)$. By Corollary 1.3 there exists a set of rational primes ℓ of positive Dirichlet density for which the associated algebraic monodromy group G_{ℓ} splits over \mathbb{Q}_{ℓ} . We will prove the theorem for any such ℓ .

Let $\mu : G_{\ell} \to \mathbb{G}_{m,\mathbb{Q}_{\ell}}$ be the multiplier character and let $\mathrm{pr}_i : A \to A_i$ denote the projection to the i^{th} factor. As in the proof of Theorem 4.1

$$U_{f} := \left\{ \tilde{\gamma} \in \tilde{\Gamma}_{\ell} \left| \begin{array}{c} \det(\gamma - \mathrm{id}) \neq 0, \text{ and} \\ \forall i : f(\mu(\gamma)) \operatorname{pr}_{i} \pi_{\ell} \big((\gamma - \mathrm{id})^{-1} n \big) \neq 0 \end{array} \right\} \right.$$

is an open subset of Γ_{ℓ} .

Lemma 4.8 U_f is non-empty.

Proof. As in the proof of Lemma 4.5, after replacing K by a finite extension we may assume that

$$\tilde{\Gamma}_{\ell} = \left\{ \begin{pmatrix} \gamma & n - (\gamma - \mathrm{id})m \\ 0 & 1 \end{pmatrix} \middle| \begin{array}{c} \gamma \in \Gamma_{\ell} \\ n \in N_{\ell} \end{array} \right\}$$

for some $m \in V_{\ell}(A)$. We must therefore find elements $\gamma \in \Gamma_{\ell}$ and $n \in N_{\ell}$ such that $\det(\gamma - \mathrm{id}) \neq 0$ and

 $f(\mu(\gamma)) \operatorname{pr}_i \pi_\ell ((\gamma - \operatorname{id})^{-1} n - m) \neq 0$

for every i. This second condition is equivalent to

$$f(\mu(\gamma))\operatorname{pr}_i((\gamma-\operatorname{id})^{-1}n) \not\equiv f(\mu(\gamma))\operatorname{pr}_i(m) \mod T_\ell(A_i).$$

Taking any integer r so that $\ell^r m \in T_{\ell}(A)$, it suffices to have

(4.9)
$$\ell^r f(\mu(\gamma)) \operatorname{pr}_i((\gamma - \operatorname{id})^{-1} n) \notin T_\ell(A_i).$$

Now by the assumption on ℓ there exists a split maximal torus $S_{\ell} \subset G_{\ell}$. Every character χ of S_{ℓ} is then defined over \mathbb{Q}_{ℓ} . For any representation W of S_{ℓ} let $\operatorname{pr}_{\chi} : W \twoheadrightarrow W_{\chi}$ denote the projection to the weight space associated to χ . Recall from Proposition 2.5 that N_{ℓ} is open in U_{ℓ} , which is an algebraic representation of G_{ℓ} and hence of S_{ℓ} . Thus $N_{\ell,\chi} := V_{\ell}(A)_{\chi} \cap N_{\ell}$ is open in the weight space $U_{\ell,\chi}$. For every χ we want to select an element $n_{\chi} \in N_{\ell,\chi}$ such that for all i we have $\operatorname{pr}_i(n_{\chi}) \neq 0$ whenever $\operatorname{pr}_i(U_{\ell,\chi}) \neq 0$. This is possible, because any finite number of non-trivial linear inequalities in a free \mathbb{Z}_{ℓ} -module can be simultaneously satisfied. We will show the desired assertions with $n := \sum_{\chi} n_{\chi} \in N_{\ell}$ and a suitable element $\gamma \in S_{\ell}(\mathbb{Q}_{\ell}) \cap \Gamma_{\ell}$. To satisfy 4.9 it suffices to have

$$\forall i \; \exists \chi : \; \ell^r f(\mu(\gamma)) \operatorname{pr}_i((\gamma - \operatorname{id})^{-1} n_\chi) \; \notin \; \operatorname{pr}_\chi(T_\ell(A_i)).$$

As n_{χ} is an eigenvector of γ for the eigenvalue $\chi(\gamma) \in \mathbb{Z}_{\ell}$, this element is equal to

$$\frac{\ell^r f(\mu(\gamma))}{\chi(\gamma) - 1} \cdot \operatorname{pr}_i(n_{\chi})$$

Fix an integer s so that for all i and χ with $pr_i(n_{\chi}) \neq 0$ we have

 $\operatorname{pr}_i(n_{\chi}) \notin \ell^s \operatorname{pr}_{\chi}(T_\ell(A_i)).$

By construction this affects all pairs (i, χ) with $\operatorname{pr}_i(U_{\ell,\chi}) \neq 0$. Thus it suffices to prove the following assertion, from which the n_{χ} have vanished.

Sublemma 4.10 There exists an element $\gamma \in S_{\ell}(\mathbb{Q}_{\ell}) \cap \Gamma_{\ell}$ satisfying det $(\gamma - id) \neq 0$ such that for every *i* there exists a character χ with $\operatorname{pr}_{i}(U_{\ell,\chi}) \neq 0$ and

$$\operatorname{ord}_{\ell}(\chi(\gamma) - 1) \geq r + s + \operatorname{ord}_{\ell}(f(\mu(\gamma))).$$

Proof. For every i let $B_i \subset A_i$ be the identity component of the Zariski closure of $\mathbb{Z}a_i$. Applying Proposition 1.5 to $B := B_1 \times \ldots \times B_d$ shows that there exist weights χ_i of S_ℓ on $V_\ell(B_i) \subset V_\ell(A_i)$ so that μ is \mathbb{Q} -linearly independent of χ_1, \ldots, χ_d . The functoriality and Theorem 2.8 together imply that $\operatorname{pr}_i(U_\ell) = V_\ell(B_i)$. Since the projection map pr_i is S_ℓ -equivariant, we deduce that

$$\operatorname{pr}_i(U_{\ell,\chi_i}) = V_\ell(B_i)_{\chi_i} \neq 0.$$

It remains to find an element $\gamma \in S_{\ell}(\mathbb{Q}_{\ell}) \cap \Gamma_{\ell}$ with $\det(\gamma - \mathrm{id}) \neq 0$ and for all i

(4.11)
$$\operatorname{ord}_{\ell}(\chi_{i}(\gamma) - 1) \geq r + s + \operatorname{ord}_{\ell}(f(\mu(\gamma))).$$

The inequality 4.11 means that $\chi_i(\gamma)$ is much closer to the identity than $\mu(\gamma)$. To be precise let us first shrink Γ_ℓ so that Γ_ℓ acts trivially on $T_\ell(A) / \ell^2 T_\ell(A)$. Then for every element $\gamma \in S_\ell(\mathbb{Q}_\ell) \cap \Gamma_\ell$ we have $\mu(\gamma) \equiv 1 \mod \ell^2$. On the other hand choose an integer k > 0 such that all non-zero roots of f(T) are roots of unity of order dividing k and have multiplicity $\leq k$. Then after multiplying f(T) by some more cyclotomic polynomials we may assume that $f(T) = T^{k'}(T^k - 1)^k$ for some $k' \geq 0$. A standard calculation now shows that

$$\operatorname{ord}_{\ell}(f(\mu(\gamma))) = k' \cdot \operatorname{ord}_{\ell}(\mu(\gamma)) + k \cdot \operatorname{ord}_{\ell}(\mu(\gamma)^{k} - 1)$$

= $k \cdot \operatorname{ord}_{\ell}(k) + k \cdot \operatorname{ord}_{\ell}(\mu(\gamma) - 1).$

Setting $t := r + s + k \cdot \operatorname{ord}_{\ell}(k)$ we thus need to find an element $\gamma \in S_{\ell}(\mathbb{Q}_{\ell}) \cap \Gamma_{\ell}$ with $\operatorname{det}(\gamma - \operatorname{id}) \neq 0$ and for all i

(4.12)
$$\operatorname{ord}_{\ell}(\chi_{i}(\gamma)-1) \geq t+k \cdot \operatorname{ord}_{\ell}(\mu(\gamma)-1).$$

To achieve this let S_{ℓ}^1 denote the identity component of $\operatorname{Ker}(\mu|S_{\ell})$, which is a subtorus of codimension 1. Since μ is \mathbb{Q} -linearly independent of χ_1, \ldots, χ_d and S_{ℓ} splits over \mathbb{Q}_{ℓ} , there exists a subtorus S_{ℓ}^2 of dimension 1 inside $\bigcap_{i=1}^d \operatorname{Ker}(\chi_i|S_{\ell})$ on which μ is non-trivial. We will take $\gamma = \gamma_1 \gamma_2$ with $\gamma_1 \in S_{\ell}^1(\mathbb{Q}_{\ell}) \cap \Gamma_{\ell}$ and $\gamma_2 \in S_{\ell}^2(\mathbb{Q}_{\ell}) \cap \Gamma_{\ell}$. Then the left hand side of 4.12 depends only on γ_1 , while the right hand side depends only on γ_2 .

Theorem 1.1 (c) implies that Γ_{ℓ} contains an open subgroup of $S_{\ell}(\mathbb{Q}_{\ell})$. Thus if we first select any non-trivial γ_2 , the inequality 4.12 will hold for every γ_1 that is sufficiently close to the identity. Furthermore, none of the weights of S_{ℓ} on $V_{\ell}(A)$ is zero, e.g., by Proposition 1.4. Thus in any neighborhood of the identity γ_1 can be chosen such that $\gamma = \gamma_1 \gamma_2$ does not have the eigenvalue 1 on $V_{\ell}(A)$, which means that $\det(\gamma-id) \neq 0$. Thus all requirements can be simultaneously satisfied, finishing the proof of Sublemma 4.10 and hence of Lemma 4.8. **q.e.d.**

Now we return to the proof of Theorem 4.7. Since $U_f \subset \tilde{\Gamma}_\ell$ is a non-empty open subset, as in the proof of Theorem 4.1 we conclude that there exists a set of places $v \notin S$ of K of Dirichlet density > 0 for which $\tilde{\rho}_\ell(\operatorname{Frob}_v) \in U_f$. We may also assume that the associated residue fields k_v have prime order, because the remaining places form a set of Dirichlet density 0. For these places we have $\mu \rho_\ell(\operatorname{Frob}_v) = |k_v| = p_v$. The definition of U_f and Proposition 3.2 thus imply that $f(p_v) \operatorname{pr}_i \kappa_v(a) \neq 0$ for every *i*. By the definition of κ_v this means that the ℓ -part of $f(p_v)a_{i,v}$ is non-trivial for every *i*, as desired. **q.e.d.**

Remark 4.13 Theorem 4.7 is not true in general for every rational prime ℓ , even for a single abelian variety A and a single rational point $a \in A(K)$. For a counterexample suppose that A is an elliptic curve with complex multiplication over K. Then $\operatorname{End}_{K}(A)$ is an order in an imaginary quadratic number field F, and for any rational prime ℓ the image of Galois is an open compact subgroup of $(F \otimes \mathbb{Q}_{\ell})^*$. Thus G_{ℓ} splits over \mathbb{Q}_{ℓ} if and only if ℓ splits in F, and in this case the proof of Theorem 4.7 goes through.

If ℓ does not split in F, we will show that the theorem is false. It is known that for every finite place $v \notin S$ with $|k_v| = p_v$ the element $\alpha_v := \rho_\ell(\operatorname{Frob}_v)$ is an algebraic integer in F with $\alpha_v \bar{\alpha}_v = p_v$ and that the cardinality of $A_v(k_v)$ is equal to $(\alpha_v - 1)(\bar{\alpha}_v - 1)$. In particular the integer $(\alpha_v - 1)(\bar{\alpha}_v - 1)$ annihilates the reduction of a. Now the fact that F has only one prime above ℓ implies that

$$\operatorname{ord}_{\ell}(\alpha_v - 1) = \operatorname{ord}_{\ell}(\bar{\alpha}_v - 1) \leq \operatorname{ord}_{\ell}(\alpha_v \bar{\alpha}_v - 1) = \operatorname{ord}_{\ell}(p_v - 1).$$

Thus with $f(T) := (T-1)^2$ we deduce that

 $\operatorname{ord}_{\ell}((\alpha_{v}-1)(\bar{\alpha}_{v}-1)) \leq 2 \cdot \operatorname{ord}_{\ell}(p_{v}-1) = \operatorname{ord}_{\ell}(f(p_{v})).$

This implies that $f(p_v)$ annihilates the ℓ -part of the reduction of a. Since this is so for every $v \notin S$, we conclude that in this example Theorem 4.7 is true precisely for ℓ in a set of Dirichlet density 1/2.

5 Density results for the full reduction

In this section we derive some consequences of the density results of the preceding section which no longer refer to any particular prime ℓ .

Theorem 5.1 For $1 \leq i \leq d$ let A_i be an abelian variety over a number field Kand $a_i \in A_i(K)$ a rational point. Assume that for all finite places v of K in a set of Dirichlet density 1 the reduction of at least one a_i is annihilated by a power of the residue characteristic p_v . Then at least one $a_i = 0$. **Proof.** Suppose that some a_i is a torsion point of order n. If n = 1, we are done. Otherwise the order of the reduction of a_i at any finite place $v \nmid n$ is still n, and therefore not a power of p_v . Thus after removing A_i and a_i from the list the assumptions still hold. After iterating this we may assume that all a_i have infinite order; we must then derive a contradiction. Select any rational prime ℓ . Then by Theorem 4.4 for all finite places $v \nmid \ell$ of K in a set of Dirichlet density > 0 the ℓ -part of the reduction of every a_i is non-trivial. In particular, these reductions are not annihilated by a power of p_v , contradicting the given assumption. **q.e.d.**

Remark 5.2 Damian Roessler pointed out to the author that Theorem 5.1 can also be deduced from a theorem of Wong [16]. To sketch this set $A := A_1 \times \ldots \times A_d$. For any prime ℓ let $\Gamma_{\ell,1}$ denote the image of $\operatorname{Gal}(\overline{K}/K)$ in its action on the ℓ -torsion subgroup $A[\ell]$. By a theorem of Serre, which for example follows from [15, Th. 2], the group cohomology $H^1(\Gamma_{\ell,1}, A[\ell])$ vanishes for all $\ell \gg 0$. We temporarily fix any such $\ell > d$.

The assumptions in Theorem 5.1 imply that for all v in a set of Dirichlet density 1 the reduction of at least one a_i has trivial ℓ -part. Since multiplication by ℓ induces an automorphism on the prime-to- ℓ part of $A_v(k_v)$, the reduction of a_i then lies in $\ell A_v(k_v)$. Wong [16, Th. 2] deduces from this that at least one a_i is contained in $\ell A(K)$. Since this is true for every $\ell \gg 0$, and the Mordell-Weil group A(K) is finitely generated, this implies that at least one a_i is torsion. As in the proof of 5.1 we now deduce that at least one $a_i = 0$, as desired.

Theorem 5.3 For $1 \leq i \leq d$ let A_i be an abelian variety over a number field Kand $a_i \in A_i(K)$ a rational point. Let $f(T) \in \mathbb{Z}[T]$ be any polynomial which is a product of cyclotomic polynomials and a power of T. For any finite place v of K let p_v denote the characteristic of the residue field and $a_{i,v}$ the reduction of a_i . Assume that for all finite places v of K in a set of Dirichlet density 1 at least one $a_{i,v}$ is annihilated by $f(p_v)$. Then at least one a_i is a torsion point.

Proof. Suppose that every a_i has infinite order. Then by Theorem 4.7 there exists a rational prime ℓ such that for all finite places v of K in a set of Dirichlet density > 0 the ℓ -part of every $f(p_v)a_{i,v}$ is non-trivial. In particular, these $a_{i,v}$ are not annihilated by $f(p_v)$, contradicting the given assumption. Thus the order of at least one a_i is finite. **q.e.d.**

References

- Bashmakov, M.: The cohomology of abelian varieties over a number field. Russian Math. Surveys 27 (6) (1977), 25–70.
- Bertrand, D.: Galois representations and transcendental numbers. New advances in transcendence theory (Durham, 1986), Cambridge: Cambridge Univ. Press (1988), 37–55.
- Bogomolov, F. A.: Points of finite order on abelian varieties. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 782–804, 973 = Math. USSR Izvestija 17 (1981), 55-72.
- [4] Bogomolov, F. A.: Sur l'algébricité des représentations l-adiques. C. R. Acad. Sci. Paris Sér. A-B 290, no. 15 (1980) A701–A703.
- [5] Borel, A.: Linear Algebraic Groups. GTM 126, New York etc.: Springer (1991).

- [6] Corrales-Rodrigáñez, C., Schoof, R.: The Support Problem and Its Elliptic Analogue. J. Number Th. 64 (1997), 276–290.
- [7] Deligne, P.: Théorie de Hodge, III. Publ. Math. IHES 44 (1974), 5–77.
- [8] Faltings, G.: Finiteness Theorems for Abelian Varieties over Number Fields. Arithmetic Geometry, G. Cornell, J. H. Silverman (Eds.), New York etc.: Springer (1986), 9–27.
- [9] Hindry, M.: Autour d'une conjecture de Serge Lang. Invent. math. 94 (1988), 575–603.
- [10] Khare, C., Prasad, D.: Reduction of Homomorphisms mod p and algebraicity. Preprint (18 p.) arXiv:math.NT/0211004 v1 1 Nov 2002.
- [11] Larsen, M. J.: The Support Problem For Abelian Varieties. *Preprint* (7 p.) arXiv:math.NT/0211118 v3 28 Feb 2003.
- [12] Pink, R., Roessler, D.: A Conjecture of Beauville and Catanese Revisited. *Preprint* November 27, 2003, 13p.
- [13] Ribet, K.: Kummer theory on extensions of abelian varieties by tori. Duke Math. J. 46 No. 4 (1979), 745–761.
- [14] Serre, J.-P.: Lettre à Ken Ribet du 1/1/1981. Oeuvres vol. IV, Berlin etc.: Springer (2000), 1–17.
- [15] Serre, J.-P.: Résumé des cours de 1985–1986. Annuaire du Collège de France (1986), 95–99 = Oeuvres vol. IV, Berlin etc.: Springer (2000), 33–37.
- [16] Wong, S.: Power Residues on Abelian Varieties. Manuscripta math. 102 (2000) 129–137.