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“A disparate-impact claim relying on a statistical disparity must fail if the plaintiff cannot 
point to a defendant's policy or policies causing that disparity.”

“A plaintiff who fails to allege facts at the pleading stage or produce statistical evidence 
demonstrating a causal connection cannot make out a prima facie case of disparate 
impact.”

“If the plaintiff cannot show a causal connection between the Department’s policy and a 
disparate impact—for instance, because federal law substantially limits the Department’s 
discretion—that should result in dismissal of this case.”

US Supreme Court, 2008

“To establish a disparate-treatment claim under this plain language, a plaintiff  
must prove that age was the “but-for” cause of the employer’s adverse decision.”

“A plaintiff must prove by a preponderance of the evidence (which may be direct or 
circumstantial), that age was the “but-for” cause of the challenged employer decision.”

US Supreme Court, 2015

Why Causality matters for Fair AI?



Lectures’ Outline
Lecture 1. Basics about fairness; Theory of Decomposing   
Variations; Fundamental Problem of Causal Fairness Analysis;          
Explainability Plane.


Lecture 2. The TV-family of causal fairness measures; Using 
contrastive measures in practice; Structure of the TV-family;  
Towards the Fairness Map.


Lecture 3. Implications of the Fairness Map; Identification and          
Estimation in practice; Connections to previous literature.


Lecture 4. CFA for Task 1 (Bias Detection), Task 2 (Fair Prediction),               
and Task 3 (Fair Decision-Making).


Lecture 5. CFA in general causal diagrams with arbitrary business     
necessity considerations (moving beyond a cluster diagram).
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Fairness Tasks (Big Picture)
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(unobserved reality)
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Empirical  
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Structural  
Measures

Dataset  
D

Tasks

Modeling & 
Domain Knowledge Data


CollectionLaw &  
Norms

Doctrines &  
 Social norms

Disparate Treatment

Disparate Impact

Business Necessity

1. Bias 
Detection2. Fair 

Prediction3. Fair 
Decision-
making

Section 1 
Figure 1.3



I. Causal Inference Basics  
(Recap)
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Structural Causal Model (SCM)
Definition: A structural causal model M is a 4-tuple 
<V, U, ℱ, P(u)>, where

• V = {V1,...,Vn} are endogenous (observed) variables;

• U = {U1,...,Um} are exogenous (latent, unobserved) 

variables;

• ℱ= {f1,..., fn} are functions determining each 

variables in Vi ∈ V, vi ← fi(pai, ui), Pai ⊂ Vi,Ui ⊂ U;

• P(u) is a distribution over the exogenous U.
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 Axiomatic characterization: Galles-Pearl, 1998;  
  Halpern, 1998. Survey: Bareinboim et al., 2020. 

https://link.springer.com/article/10.1023/A:1009602825894
https://dl.acm.org/doi/10.5555/2074094.2074118
https://causalai.net/r60.pdf


SCM - mechanisms & population
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unit u = (u1, …, uk)

space of units "

Evaluation of SCM :M
after  is fixed, the evaluation is deterministicu

distribution over units P(u)

Mechanisms ℱ Distribution P(u)

V1 ← f1(u1)
V2 ← f2(v1, u2)

⋮
Vk ← fk(v1, …, vk1

, uk)

= M



SCM M → Causal Diagram G
• Every SCM M induces a causal 

diagram G.

• Represented as a directed acyclic 

graph (DAG), where:

• Each Vi ∈ V is a node,

• There is an edge Vi ⟶ Vj if  

Vi ∈ Paj, and

• There is a bidirected edge  

Vi ⇠⇢ Vj if  Ui ⋂ Uj ≠ ∅.
10

D ← fd (A,B,U) 
E ← fe (C,U)

E

C

D

A B

ED

V = {A, B, C, D} 
U = {U} 



SCM M → Causal Diagram G
• Every SCM M induces a causal 

diagram G.

• Represented as a directed acyclic 

graph (DAG), where:

• Each Vi ∈ V is a node,

• There is an edge Vi ⟶ Vj if  

Vi ∈ Paj, and

• There is a bidirected edge  

Vi ⇠⇢ Vj if  Ui ⋂ Uj ≠ ∅.
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D ← fd (A,B,U) 
E ← fe (C,U)

D

A B

E

C

G

V = {A, B, C, D} 
U = {U} 



Counterfactuals’ Semantics
• Definition (Potential Response): Let X, Y ⊆ V.  

The potential response of Y to action do(X = x), 
denoted by Yx(u), is the solution for Y of the set 
of equations in the model Mx, where the equations 
of X are replaced with x (i.e. Yx(u)=YMx(u)).


• Definition (Counterfactual): Let X, Y ⊆ V. The 
counterfactual sentence “the value Y would have 
obtained, had X been x for unit U=u”  
is interpreted as the potential response Yx(u).

12



Observational & Counterfactual 
Distributions

• For counterfactual quantities, their distribution can be defined via the 
SCM , which induces a family of joint 
distributions over counterfactual events  for any 

: 
 

                


• A special case of this, when the subscripts  are empty, gives the 
so-called observational distribution. In that case, we simply consider a 
set of variables  and the observational distribution is defined by: 
 
                            

ℳ = ⟨V, U, ℱ, P(u)⟩
Yx, …, Zw

Y, Z, …, X, W ⊆ V

Pℳ(yx, …, zw) = ∑
u

1(Yx(u) = y, …, Zw(u) = z)P(u) .

x, …, z

Y ⊆ V

Pℳ(y) = ∑
u

1(Y(u) = y)P(u) .
13



Fairness Examples &  
Standard Fairness Model 
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D

X Y
Gender Admission


Outcome

Department 

of Choice

Example 1 (Berkeley admission). Students apply for university 
admission (Y), and choose specific departments to which they wish  
to join (D = 0 for sciences, D = 1 for arts & humanities). For the  
purpose of discrimination monitoring, gender is also recorded  
(X = 0 for male, X = 1 for female).

(Truth-Unobserved)

SCM  M* 
 
                
                       
                 
                

X ← fX(Ux)
D ← fD(X, UD)
Y ← fY(X, D, UY)
P(UX, UD, UY)

SCM  M* 
 
                
                       
                 
                

X ← fX(Ux)
D ← fD(X, UD)
Y ← fY(X, D, UY)
P(UX, UD, UY)

* Bickel, P., Eugene H, and J. William O’Connell.  “Sex bias in graduate admissions: Data from Berkeley.”  
Science 187.4175 (1975): 398-404.


SCM  M* 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + λX)
Y ← Bernoulli(0.1 + αX + βD)α
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Example 1 (Berkeley admission). Students apply for university 
admission (Y), and choose specific departments to which they wish to 
join (D = 0 for sciences, D = 1 for arts & humanities).  
For the purpose of discrimination monitoring, gender is also recorded  
(X = 0 for male, X = 1 for female).

• Data analysis reveals that


 

• A female applicant is predicted to have a 
lower probability of admission compared 
to a male applicant.


Q: Is this enough to conclude that 
female students at Berkeley were 
discriminated during admission?

TVx0,x1(Y ) = E [Y |x1] − E [Y |x0] < 0 D

X Y
Gender Admission


Outcome

Department 

of Choice
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SCM M* 
 

 
 

X ← Bernoulli(0.5 + λU)
Z ← *(40 + μU, σ2)
W ← Poisson(0.5 + αX + βZ)
Y ← Bernoulli(0.1 + δX + ηW + ϕZ)

W

X Y

Z

Race Recidivism

Prediction

Prior

Convictions

Age

Example 2 (COMPAS prediction). Northpointe are trying to predict 
whether a person will recidivate after being released (Y). Variable Z 
represents the age, W represents prior convictions, and X represents 
race (X = 0 for White-Caucasian, X = 1 for Non-White).

(Truth-Unobserved)
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W

X Y

Z

Race Recidivism

Prediction

Prior

Convictions

Age

Example 2 (COMPAS prediction). Northpointe are trying to predict 
whether a person will recidivate after being released (Y). Variable Z 
represents the age, variable W represents prior convictions, and 
variable X represents race, (X = 0 for White-Caucasian, X = 1 for Non-
White).

• Data analysis reveals that


 

• The probability of being classified as 
high-risk to recidivate is higher in the 
Non-White group compared to the 
White-Caucasian group.


• Q: Can we conclude that Northpointe’s 
software has discriminated against the 
minority group? 

TVx0,x1(Y ) = E [Y |x1] − E [Y |x0] > 0
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SCM M* 
 

 
 

 

X ← Bernoulli(0.5 + λU)
Z ← *(40 + μU, σ2)
W1 ← Poisson(0.5 + α1X)
W2 ← Binomial(10,0.5 + α2X)
Y ← *(3 + δX + ηW + ϕZ,1)

Example 3 (Government Census). The US census data records a 
person’s yearly salary ( , in tens of thousands of $). The census also 
records age ( ), gender (  for male,  for female), education 
level ( ) and employment status ( ).

Y
Z X = 0 X = 1

W2 W2

W1

X Y

Z

W2
Education Employment

Age

Salary
Gender

(Truth-Unobserved)
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Example 3 (UCI Adult). The US census data records whether a person 
earns more than $50,000/year (Y). The census also records age (Z), 
gender (X = 0 for male, X = 1 for female), education level (W1) and 
employment status (W2 with 10 job types).

W1

X Y

Z

W2

Gender

Education Employment

Age

Salary

• Data analysis reveals that


 

• A female employee is predicted to have 
a lower chance of high income 
compared to a male employee.


• Q: Is this enough to conclude that 
female are systematically discriminated 
in various companies in the US?

TVx0,x1(Y ) = E [Y |x1] − E [Y |x0] < 0



The Emergence of the  
“Standard Fairness Model”
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W

X Y

Z

Protected

Attribute

Outcome

Mediators

Demographic variables

Berkeley

COMPAS

Census

Standard Fairness Model

Zhang & Bareinboim. “Fairness in Decision-Making - The Causal Explanation Formula.” Proc. of the 32nd AAAI Conference. 2018. 



(How to explain observed disparities  
found in the data in terms of the 

unobservable causal mechanisms?)
22

The Fundamental Problem  
of Causal Fairness Analysis 

(FPCFA) 



Active Mechanisms 

SpuriousDirect Indirect

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

TVx0, x1 = 14%

Data !

0.3
0.2
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0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

The Fundamental Problem of 
Causal Fairness Analysis
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Active Mechanisms 

SpuriousDirect Indirect

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

TVx0, x1 = 14%

Data !

0.3
0.2
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rv
ed

un
ob

se
rv

ed

0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

No!

The Fundamental Problem of 
Causal Fairness Analysis
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Active Mechanisms 

SpuriousDirect Indirect

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

SCM  M’ (hypothesized): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0.3X + 0 * D)

TVx0, x1 = 14%

Data !

0.3
0.2

ob
se

rv
ed

un
ob

se
rv

ed

0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

No!
M’ can generate


same data. 

The Fundamental Problem of 
Causal Fairness Analysis
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Active Mechanisms 

Spurious

Active Mechanisms 

Direct Indirect Direct Indirect Spurious

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

SCM  M’ (hypothesized): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0.3X + 0 * D)

TVx0, x1 = 14%

Data !

0.30.3
0.2
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rv
ed
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ed

0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

0

No! Yes!

The Fundamental Problem of 
Causal Fairness Analysis

`
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Active Mechanisms 

Spurious

Active Mechanisms 

Direct Indirect Direct Indirect Spurious

SCM  M* (truth): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0 * X + 0.3D)

SCM  M’ (hypothesized): 
 

 
 

X ← Bernoulli(0.5)
D ← Bernoulli(0.5 + 0.2X)
Y ← Bernoulli(0.1 + 0.3X + 0 * D)

TVx0, x1 = 14%

Data !

0.30.3
0.2

ob
se

rv
ed

un
ob

se
rv

ed

0

Female applicants are 14% 
less likely of being accepted  

to the university than 
 their male counterparts!

Q: Is the university guilty of 

gender discrimination?

0

No!
!

Yes!
Don’t know!

The Fundamental Problem of 
Causal Fairness Analysis

`
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Legal Doctrines:  
Disparate Treatment & Impact
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• The most common legal doctrines found in the US, EU, and 
throughout the world are known as disparate treatment and 
disparate impact.  


• Disparate treatment is focused on how changes induced by the 
treatment, or the protected attribute X, affects the outcome Y.  
In words, how the decision-making criteria changes with X.  
In CI, this is represented by the notion known as “direct effect.”


• Disparate impact is related to how outcome Y behaves,  
and trying to understand disparities regardless of the treatment. 

• There are exceptions, & other central notions in legal settings include 

what is known as “business necessity” (see also “red lining”). 

• In general, most of the legal discussions revolve around showing 

specific causal links, depending on what is permitted or forbidden 
following society’s standards and expectations.



Legal Doctrines of Fairness
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Disparate Treatment

Disparate Impact

Business Necessity

Prohibits the use of the protected attribute in  
 the decision process. This is often written as  
“a similarly situated person who is not a member  
of the protected class would not have suffered  
the same fate”.

Disparate impact occurs when a facially neutral 
practice has an adverse impact on members of the 
protected group (the doctrine focuses on outcome 
fairness). Under this doctrine most commonly fall  
the cases in which discrimination is unintended or  
implicit (e.g., redlining).

Business necessity allows the usage of 
certain variables that are correlated with the 
outcome, due to their relevance to the 
business itself (e.g., PhD degrees in hightech 
companies).



Example: US Government Census
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W

X Y

Z

Gender Salary

Age, Nationality

Education,

Employment

• The observed disparity in  
  

           
 
could be explained in different ways, i.e.,

TV = E[Y ∣ male] − E[Y ∣ female]

(1) The salary decision is based on employee’ 
gender: .X → Y

(2) Decisions were based on education or 
employment: . X → W → Y

(3) Age or nationality are used to infer the 
person’s gender: .X ↔ Z → Y



Example: US Government Census
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W

X Y

Z

Gender Salary

Age, Nationality

Education,

Employment

• The observed disparity in  
  

           
 
could be explained in different ways, i.e.,

TV = E[Y ∣ male] − E[Y ∣ female]

(1) The salary decision is based on employee’ 
gender: .X → Y

(2) Decisions were based on education or 
employment: . X → W → Y

(3) Age or nationality are used to infer the 
person’s gender: .X ↔ Z → Y

(1) suggests a typical case of disparate treatment. 

(1+2+3) & the implied TV’s disparity suggest a disparate impact case. 



Example: US Government Census
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W

X Y

Z

Gender Salary

Age, Nationality

Education,

Employment

• The observed disparity in  
  

           
 
could be explained in different ways, i.e.,

TV = E[Y ∣ male] − E[Y ∣ female]

(1) The salary decision is based on employee’ 
gender: .X → Y

(2) Decisions were based on education or 
employment: . X → W → Y

(3) Age or nationality are used to infer the 
person’s gender: .X ↔ Z → Y

After a legal argument, the jury may be okay with Y’s variations due to  
education, but not okay with the variations due to gender or age.



Example: US Government Census
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W

X Y

Z

Gender Salary

Age, Nationality

Education,

Employment

• The observed disparity in  
  

           
 
could be explained in different ways, i.e.,

TV = E[Y ∣ male] − E[Y ∣ female]

(1) The salary decision is based on employee’ 
gender: .X → Y

(2) Decisions were based on education or 
employment: . X → W → Y

(3) Age or nationality are used to infer the 
person’s gender: .X ↔ Z → Y

After a legal argument, the jury may be okay with Y’s variations due to  
education, but not okay with the variations due to gender or age.

How to disentangle these variations within TV? 



The Attribution Problem
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indirect spuriousdirect
TV = E[Y ∣ male] − E[Y ∣ female]

On the one hand, we consider the  
observed statistical disparity:

Disparate 
Treatment

Disparate 
Impact

Business 
Necessity

On the other, we need to “ground” 
(or attribute) the variations to 

different legal doctrines”

But, we know that TV contains

variations

 This entanglement makes  
the attribution problem challenging!

⟹

Need a framework/measures  
that allow for the decomposition    

of the variations within TV
W

X Y

Z

W

X Y

Z

W

X Y

Z



Structural Fairness Measures 
• In order to underpin a more formal discussion amenable to ML, 

and motivated by the doctrines of disparate treatment & 
impact, we introduce the structural fairness measures.  
These will represent building blocks of more refined notions. 


A. Definition. Let  and  be the parents and ancestors of 
 in the causal diagram , respectively.  

For an SCM ,  is fair w.r.t.  in terms of: 
1. the direct effect ( , for short) if and only if , 
2. the indirect effect ( ) if and only if , 
3. spurious effect ( ) if and only if 

.

pa(Vi) an(Vi)
Vi -

M Y X
DE-fairX(Y ) X ∉ pa(Y )

IE-fairX(Y ) X ∉ an(pa(Y ))
SE-fairX(Y )

UX ∩ anGX(Y ) = ∅ ∧ an(X) ∩ anGX(Y ) = ∅
28



Structural Fairness Measures
• The structural measures represent idealized conditions in which 

discrimination can be thought about and articulated. 

• If we go back to the legal doctrines, we can start connecting 

disparate treatment and impact with the structural measures.

29

DE-fairX(Y ) IE-fairX(Y ) SE-fairX(Y )

SCM M *

TV-fairX(Y )

Truth

Structural

measures

Composite

measures

Disparate 
treatment

Can we use TV for  
disparate impact?

Disparate 
impact



Definition. Let  be a class of SCMs on which a structural 
criterion  and measures  and  are defined. 

• The measure  is said to be admissible w.r.t  if 
                   
                  

• The measure  is said to be more powerful than  if 
        
                     (i)  is admissible 
                    (ii) 

Ω
Q μ μ′ 

μ Q

∀ℳ ∈ Ω : Q(ℳ) = 0 ⟹ μ(ℳ) = 0.

μ′ μ

μ′ 

μ′ (ℳ) = 0 ⟹ μ(ℳ) = 0.

Admissibility & Power

30



Definition. Let  be a class of SCMs on which a structural 
criterion  and measures  and  are defined. 

• The measure  is said to be admissible w.r.t  if 
                   
                  

• The measure  is said to be more powerful than  if 
        
                     (i)  is admissible 
                    (ii) 

Ω
Q μ μ′ 

μ Q

∀ℳ ∈ Ω : Q(ℳ) = 0 ⟹ μ(ℳ) = 0.

μ′ μ

μ′ 

μ′ (ℳ) = 0 ⟹ μ(ℳ) = 0.

Admissibility & Power

30

Note: Power and Admissibility are the 
 analogues of necessity and sufficiency 

 for the corresponding fairness measures.



Decomposability
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Definition. Let  be a class of SCMs and  be a measure defined 
over it.  is said to be -decomposable if there exist measures  
 
                           

and where  is a non-trivial function vanishing at the origin, i.e., 

Ω μ
μ Ω

μ1, …, μk such that μ = f(μ1, …, μk),

f
f(0,…,0) = 0.

Note: decomposability can imply lack of admissibility 

variations in TV

μ
captures some subset 

variations

∃μ1, μ2, μ3

which are within  
and capture the 

same variations

μ



Admissibility, Power, Decomposability  
- Motivation

32

DE-fairX(Y ) IE-fairX(Y ) SE-fairX(Y )

SCM M *

TV-fairX(Y )

Truth

Structural

measures

Composite

measures

Atomic

measures  

(to be 
constructed)

Admissible!

Decomposable!

⟹ ⟹ ⟹

⟹ ⟹ ⟹

Powerful 
as possible!…… …

IE measure 1 SE measure 1DE measure 1

DE measure k IE measure k SE measure k



Fundamental Problem of Causal 
Fairness Analysis (FPCFA)

33

Definition. Let  be a fairness measure defined over a space of SCMs 
. Let  be a collection of structural fairness criteria. The 

Fundamental Problem of Causal Fairness Analysis is to find a 
collection of measures  such that the following properties are 
satisfied: 

μ
Ω Q1, …, Qk

μ1, …, μk

(iii)  are as powerful as possible.μ1, …, μk

(i)  is decomposable w.r.t. μ μ1, …, μk

(ii)  are admissible w.r.t. the structural fairness          
criteria 

μ1, …, μk
Q1, Q2, …, Qk

Decomposability

Admissibility

Power

what is our toolkit for solving FPCFA?
Section 3.1 

Definition 3.6



The Anatomy of  
Contrastive Measures

34

A contrast compares the outcome  of individualsY

who coincide with the observed event  
 versus , in the factual world,E1 E0

and whose values, possibly counterfactually,

were intervened on following  versus .C1 C0

Definition. A contrast is any quantity of the form 

 
 

where  are observed (factual) events and 
   are counterfactual events to which the outcome  responds.

P(yC1
∣ E1) − P(yC0

∣ E0) .

E0, E1
C0, C1 Y

Section 3.2



Contrastive Measures:  
Factual vs. Counterfactual Basis

35

Theorem. Any contrast  can be decomposed 
into its factual and counterfactual components: 

P(yC1
∣ E1) − P(yC0

∣ E0)

difference arising from 
counterfactuals  

used to capture the causal 
influence of  on .

C0, C1

X Y

difference arising from events 
 

used to capture non-causal  
(spurious) influences of  on .

E0, E1

X Y

P(yC1
∣ E1) − P(yC0

∣ E1)

counterfactual contrast

+ P(yC0
∣ E1) − P(yC0

∣ E0)

factual contrast

.

We 
normally 

think of 
 as 

including .
C0, C1, E0, E1

X



Structural Basis Expansion I

36

Theorem (continued). Whenever , any counterfactual contrast 
 admits the following structural basis expansion

E0 = E1 = e
P(yC1

∣ E = e) − P(yC0
∣ E = e)

For a specific unit ,  

Y’s response to 

the transition C0 → C1.

U = u Population of units  
consistent with the 

factual evidence E=e.

∑
u

[yC1
(u) − yC0

(u)]

unit-level difference

P(u ∣ E = e)
posterior

.



Contrastive Measures:  
Factual vs. Counterfactual Basis

37

Theorem. Any contrast  can be decomposed 
into its factual and counterfactual components: 

P(yC1
∣ E1) − P(yC0

∣ E0)

difference arising from 
counterfactuals  
used to capture causal 
influences of  on .

C0, C1

X Y

difference arising from events 
 

used to capture non-causal 
influences of  on .

E0, E1

X Y

P(yC1
∣ E1) − P(yC0

∣ E1)

counterfactual contrast

+ P(yC0
∣ E1) − P(yC0

∣ E0)

factual contrast

.
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Theorem (continued). Whenever  , any factual contrast 
 admits the following structural basis expansion: 

 

C0 = C1 = c
P(yc ∣ E1) − P(yc ∣ E0)

∑
u

yc(u)
⏟

unit outcome

[P(u ∣ E1) − P(u ∣ E0)
posterior difference

] .

Baseline outcome  
for a fixed unit .U = u

Difference in posteria of how 
 likely unit  is selected  

under events  vs. .
U = u

E0 E1

- We will be mostly interested in contrasts w/ ,  
 so that  represents causal pathways.

C = x
X = x



Theorem (Contrasts & Structural Basis). Any contrast can be 
decomposed into its factual and counterfactuals components: 

 
 

Furthermore:  

A. Any counterfactual contrast ( ) admits the structural 
basis expansion of the form: 

 

B. any factual contrast ( ) admits the structural basis 
expansion of the form:  

 

P(yC1
∣ E1) − P(yC0

∣ E0) = P(yC1
∣ E1) − P(yC0

∣ E1)

counterfactual contrast

+ P(yC0
∣ E1) − P(yC0

∣ E0)

factual contrast

.

E0 = E1 = E

P(yC1
∣ E) − P(yC0

∣ E) = ∑
u

[yC1
(u) − yC0

(u)]

unit-level difference

P(u ∣ E)
posterior

.

C0 = C1 = C

P(yC ∣ E1) − P(yC ∣ E0) = ∑
u

yC(u)
⏟

unit outcome

[P(u ∣ E1) − P(u ∣ E0)
posterior difference

] .

Putting it all together…

mechanisms ℱ population P(u)

39
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Different events 

imply different units  

accounted for by the measure.

E = e
Different values of interventions 

 imply a 
different mechanism’s selection 

(direct, indirect, spurious).

C0 = c0, C1 = c1

Start with general 
population-level 
 DE, IE, and SE

move along 
…

And end at  
the unit level.

Population Axis

Mechanism Axis

Section 3.2 
Figure 3.2
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population P(u)

-subset x P(u ∣ x)

-subset z, x P(u ∣ x, z)

entire US 
population

women in US

women in US 
below 40 years

-subset z, x, w P(u ∣ x, z, w)
women in US 

below 40 years

with college degree

unit-level u
Catherine, who is

below 40 years


with college degree

DE IE SE Mechanism Axis

Po
pu

la
tio

n 
Ax

is


