Causal Fairness Analysis (Causal Inference II - Lecture 1)

Elias Bareinboim Drago Plecko

Columbia University Computer Science

Reference:

D. Plecko, E. Bareinboim.

Causal Fairness Analysis.
TR R-90, CausalAI Lab, Columbia University. https://causalai.net/r90.pdf

Fairness Challenges in AI

Machine Bias

Fairness Challenges in Al

Fairness Challenges in Al

Two Muslims walk into a cafe. They spot a jukebox. "We should kill everyone here," says one to the other. "Yeah," the other replies. "Let's kill them all." Minutes later, the men are dead, and the jihad is over, thanks

Fairness Challenges in Al

Fairness Challenges in AI

Why Causality matters for Fair AI?

US Supreme Court, 2008
"To establish a disparate-treatment claim under this plain language, a plaintiff must prove that age was the "but-for" cause of the employer's adverse decision."
"A plaintiff must prove by a preponderance of the evidence (which may be direct or circumstantial), that age was the "but-for" cause of the challenged employer decision."

US Supreme Court, 2015
"A disparate-impact claim relying on a statistical disparity must fail if the plaintiff cannot point to a defendant's policy or policies causing that disparity."
"A plaintiff who fails to allege facts at the pleading stage or produce statistical evidence demonstrating a causal connection cannot make out a prima facie case of disparate impact."
"If the plaintiff cannot show a causal connection between the Department's policy and a disparate impact-for instance, because federal law substantially limits the Department's discretion-that should result in dismissal of this case."

Lectures' Outline

Lecture 1. Basics about fairness; Theory of Decomposing Variations; Fundamental Problem of Causal Fairness Analysis; - Explainability Plane.

Lecture 2. The TV-family of causal fairness measures; Using contrastive measures in practice; Structure of the TV-family; Towards the Fairness Map.

Lecture 3. Implications of the Fairness Map; Identification and Estimation in practice; Connections to previous literature.

Lecture 4. CFA for Task 1 (Bias Detection), Task 2 (Fair Prediction), and Task 3 (Fair Decision-Making).

Lecture 5. CFA in general causal diagrams with arbitrary business necessity considerations (moving beyond a cluster diagram).

Fairness Tasks (Big Picture)

I. Causal Inference Basics (Recap)

Structural Causal Model (SCM)

Definition: A structural causal model M is a 4-tuple $<\boldsymbol{V}, \boldsymbol{U}, \mathscr{F}, P(\boldsymbol{u})\rangle$, where

- $\boldsymbol{V}=\left\{V_{1}, \ldots, V_{n}\right\}$ are endogenous (observed) variables;
- $\boldsymbol{U}=\left\{U_{l}, \ldots, U_{m}\right\}$ are exogenous (latent, unobserved) variables;
- $\mathscr{F}=\left\{f_{1}, \ldots, f_{n}\right\}$ are functions determining each variables in $V_{i} \in V, v_{i} \leftarrow f_{i}\left(p a_{i}, u_{i}\right), P a_{i} \subset V_{i}, U_{i} \subset U$;
- $P(\boldsymbol{u})$ is a distribution over the exogenous \boldsymbol{U}.

Axiomatic characterization: Galles-Pearl, 1998; Halpern, 1998. Survey: Bareinboim et al., 2020.

SCM - mechanisms \& population

after u is fixed, the evaluation is deterministic
Evaluation of SCM M :

SCM M \rightarrow Causal Diagram G

- Every SCM M induces a causal diagram G.
- Represented as a directed acyclic graph (DAG), where:
- Each $V_{i} \in \boldsymbol{V}$ is a node,
- There is an edge $V_{i} \rightarrow V_{j}$ if $V_{i} \in P a_{j}$, and
- There is a bidirected edge $V_{i} \leftrightarrow \cdots \cdots V_{j}$ if $U_{i} \cap U_{j} \neq \varnothing$.

$$
\begin{aligned}
& \boldsymbol{V}=\{A, B, C, D\} \\
& \boldsymbol{U}=\{U\} \\
& D \leftarrow f_{d}(A, B, U) \\
& E \leftarrow f_{e}(C, U)
\end{aligned}
$$

SCM M \rightarrow Causal Diagram G

- Every SCM M induces a causal diagram G.
- Represented as a directed acyclic graph (DAG), where:
- Each $V_{i} \in \boldsymbol{V}$ is a node,
- There is an edge $V_{i} \rightarrow V_{j}$ if $V_{i} \in P a_{j}$, and
- There is a bidirected edge $V_{i} \xrightarrow{\cdots} \cdots V_{j}$ if $U_{i} \cap U_{j} \neq \varnothing$.

$$
\boldsymbol{V}=\{A, B, C, D\}
$$

$$
\boldsymbol{U}=\{U\}
$$

$$
D \leftarrow f_{d}(A, B, U)
$$

$$
E \leftarrow f_{e}(C, U)
$$

Counterfactuals' Semantics

- Definition (Potential Response): Let $\boldsymbol{X}, \boldsymbol{Y} \subseteq \boldsymbol{V}$. The potential response of \boldsymbol{Y} to action $d o(\boldsymbol{X}=\boldsymbol{x})$, denoted by $\boldsymbol{Y}_{\boldsymbol{x}}(\boldsymbol{u})$, is the solution for \boldsymbol{Y} of the set of equations in the model M_{x}, where the equations of \boldsymbol{X} are replaced with \boldsymbol{x} (i.e. $Y_{\chi}(u)=\boldsymbol{Y}_{M x}(\boldsymbol{u})$).
- Definition (Counterfactual): Let $\boldsymbol{X}, \boldsymbol{Y} \subseteq \boldsymbol{V}$. The counterfactual sentence "the value \boldsymbol{Y} would have obtained, had \boldsymbol{X} been \boldsymbol{x} for unit $\boldsymbol{U}=\boldsymbol{u}$ " is interpreted as the potential response $\boldsymbol{Y}_{\boldsymbol{x}}(\boldsymbol{u})$.

Observational \& Counterfactual Distributions

- For counterfactual quantities, their distribution can be defined via the SCM $\mathscr{M}=\langle V, U, \mathscr{F}, P(u)\rangle$, which induces a family of joint distributions over counterfactual events Y_{x}, \ldots, Z_{w} for any $Y, Z, \ldots, X, W \subseteq V:$

$$
P^{M}\left(y_{x}, \ldots, z_{w}\right)=\sum_{u} 1\left(Y_{x}(u)=y, \ldots, Z_{w}(u)=z\right) P(u) .
$$

- A special case of this, when the subscripts x, \ldots, z are empty, gives the so-called observational distribution. In that case, we simply consider a set of variables $Y \subseteq V$ and the observational distribution is defined by:

$$
P^{M}(y)=\sum_{u} 1(Y(u)=y) P(u)
$$

Fairness Examples \& Standard Fairness Model

Example 1 (Berkeley admission). Students apply for university admission (Y), and choose specific departments to which they wish to join ($D=0$ for sciences, $D=1$ for arts \& humanities). For the purpose of discrimination monitoring, gender is also recorded ($X=0$ for male, $X=1$ for female).

(Truth-Unobserved)

Admission Outcome

[^0]Example 1 (Berkeley admission). Students apply for university admission (Y), and choose specific departments to which they wish to join ($D=0$ for sciences, $D=1$ for arts \& humanities).
For the purpose of discrimination monitoring, gender is also recorded ($X=0$ for male, $X=1$ for female).

- Data analysis reveals that

$$
\mathrm{TV}_{x_{0}, x_{1}}(Y)=E\left[Y \mid x_{1}\right]-E\left[Y \mid x_{0}\right]<0
$$

- A female applicant is predicted to have a lower probability of admission compared to a male applicant.

Q: Is this enough to conclude that female students at Berkeley were discriminated during admission?

Example 2 (COMPAS prediction). Northpointe are trying to predict whether a person will recidivate after being released (Y). Variable Z represents the age, W represents prior convictions, and X represents race ($X=0$ for White-Caucasian, $X=1$ for Non-White).

Example 2 (COMPAS prediction). Northpointe are trying to predict whether a person will recidivate after being released (Y). Variable Z represents the age, variable W represents prior convictions, and variable X represents race, ($X=0$ for White-Caucasian, $X=1$ for NonWhite).

- Data analysis reveals that

$$
\mathrm{TV}_{x_{0}, x_{1}}(Y)=E\left[Y \mid x_{1}\right]-E\left[Y \mid x_{0}\right]>0
$$

- The probability of being classified as high-risk to recidivate is higher in the Non-White group compared to the White-Caucasian group.
- Q: Can we conclude that Northpointe's software has discriminated against the minority group?

Example 3 (Government Census). The US census data records a person's yearly salary (Y, in tens of thousands of $\$$). The census also records age (Z), gender ($X=0$ for male, $X=1$ for female), education level $\left(W_{2}\right)$ and employment status $\left(W_{2}\right)$.

(Truth-Unobserved)

Example 3 (UCI Adult). The US census data records whether a person earns more than \$50,000/year (Y). The census also records age (Z), gender ($X=0$ for male, $X=1$ for female), education level (W_{l}) and employment status (W_{2} with 10 job types).

- Data analysis reveals that

$$
\mathrm{TV}_{x_{0}, x_{1}}(Y)=E\left[Y \mid x_{1}\right]-E\left[Y \mid x_{0}\right]<0
$$

- A female employee is predicted to have a lower chance of high income compared to a male employee.
- Q: Is this enough to conclude that female are systematically discriminated in various companies in the US?

The Emergence of the "Standard Fairness Model"

The Fundamental Problem of Causal Fairness Analysis
 (FPCFA)

(How to explain observed disparities found in the data in terms of the unobservable causal mechanisms?)

The Fundamental Problem of Causal Fairness Analysis

Female applicants are 14\% less likely of being accepted to the university than their male counterparts!

SCM M* (truth):
unobserved
$X \leftarrow$ Bernoulli(0.5)
$D \leftarrow$ Bernoulli($0.5+0.2 X$)
$Y \leftarrow$ Bernoulli $(0.1+0 * X+0.3 D)$
Active Mechanisms

Q: Is the university guilty of gender discrimination?

The Fundamental Problem of Causal Fairness Analysis

Female applicants are 14\% less likely of being accepted to the university than their male counterparts!

Q: Is the university guilty of gender discrimination?

No!

SCM M* (truth):
$X \leftarrow$ Bernoulli(0.5)
$D \leftarrow$ Bernoulli $(0.5+0.2 X)$
$Y \leftarrow$ Bernoulli($0.1+0 * X+0.3 D$)
Active Mechanisms

The Fundamental Problem of Causal Fairness Analysis

Female applicants are 14\% less likely of being accepted to the university than their male counterparts!

Data \mathscr{D}

$$
\mathrm{TV}_{\mathrm{x} 0, \mathrm{x} 1}=14 \%
$$

Q: Is the university guilty of gender discrimination?

No!
M' can generate same data.

SCM M' (hypothesized):
$X \leftarrow$ Bernoulli(0.5)
$D \leftarrow$ Bernoulli $(0.5+0.2 X)$
$Y \leftarrow$ Bernoulli $(0.1+0.3 X+0 * D)$ Active Mechanisms

The Fundamental Problem of Causal Fairness Analysis

Female applicants are 14\% less likely of being accepted to the university than their male counterparts!

Data \mathscr{D}

Q: Is the university guilty of gender discrimination?

No! Yes!

SCM M' (hypothesized):

$X \leftarrow$ Bernoulli(0.5)

$D \leftarrow$ Bernoulli $(0.5+0.2 X)$
$Y \leftarrow$ Bernoulli $(0.1+0.3 X+0 * D)$
Active Mechanisms

Active Mechanisms

The Fundamental Problem of Causal Fairness Analysis

Female applicants are 14\% less likely of being accepted to the university than their male counterparts!

$$
T V_{x 0, x 1}=14 \%
$$

Q: Is the university guilty of gender discrimination?

No! Yes!
Don't know!

Legal Doctrines:

Disparate Treatment \& Impact

- The most common legal doctrines found in the US, EU, and throughout the world are known as disparate treatment and disparate impact.
- Disparate treatment is focused on how changes induced by the treatment, or the protected attribute X, affects the outcome Y. In words, how the decision-making criteria changes with X. In CI, this is represented by the notion known as "direct effect."
- Disparate impact is related to how outcome Y behaves, and trying to understand disparities regardless of the treatment.
- There are exceptions, \& other central notions in legal settings include what is known as "business necessity" (see also "red lining").
- In general, most of the legal discussions revolve around showing specific causal links, depending on what is permitted or forbidden following society's standards and expectations.

Legal Doctrines of Fairness

Disparate impact occurs when a facially neutral practice has an adverse impact on members of the protected group (the doctrine focuses on outcome fairness). Under this doctrine most commonly fall the cases in which discrimination is unintended or implicit (e.g., redlining).

Business necessity allows the usage of certain variables that are correlated with the outcome, due to their relevance to the business itself (e.g., PhD degrees in hightech companies).

Example: US Government Census

- The observed disparity in

$$
\mathrm{TV}=E[Y \mid \text { male }]-E[Y \mid \text { female }]
$$

could be explained in different ways, i.e.,
(1) The salary decision is based on employee' gender: $X \rightarrow Y$.
(2) Decisions were based on education or employment: $X \rightarrow W \rightarrow Y$.
(3) Age or nationality are used to infer the person's gender: $X \leftrightarrow Z \rightarrow Y$.

Example: US Government Census

- The observed disparity in

$$
\mathrm{TV}=E[Y \mid \text { male }]-E[Y \mid \text { female }]
$$

could be explained in different ways, i.e.,
(1) The salary decision is based on employee' gender: $X \rightarrow Y$.
(2) Decisions were based on education or employment: $X \rightarrow W \rightarrow Y$.
(3) Age or nationality are used to infer the person's gender: $X \leftrightarrow Z \rightarrow Y$.
(1) suggests a typical case of disparate treatment.
$(1+2+3) \&$ the implied TV's disparity suggest a disparate impact case.

Example: US Government Census

- The observed disparity in

$$
\mathrm{TV}=E[Y \mid \text { male }]-E[Y \mid \text { female }]
$$

could be explained in different ways, i.e.,
(1) The salary decision is based on employee' gender: $X \rightarrow Y$.
(2) Decisions were based on education or employment: $X \rightarrow W \rightarrow Y$.
(3) Age or nationality are used to infer the person's gender: $X \leftrightarrow Z \rightarrow Y$.

After a legal argument, the jury may be okay with Y 's variations due to education, but not okay with the variations due to gender or age.

Example: US Government Census

- The observed disparity in

$$
\mathrm{TV}=E[Y \mid \text { male }]-E[Y \mid \text { female }]
$$

could be explained in different ways, i.e.,
(1) The salary decision is based on employee' gender: $X \rightarrow Y$.
(2) Decisions were based on education or employment: $X \rightarrow W \rightarrow Y$.
(3) Age or nationality are used to infer the person's gender: $X \leftrightarrow Z \rightarrow Y$.

After a legal argument, the jury may be okay with Y 's variations due to education, but not okay with the variations due to gender or age.

The Attribution Problem

On the one hand, we consider the observed statistical disparity:

$$
\mathrm{TV}=E[Y \mid \text { male }]-E[Y \mid \text { female }]
$$

Need a framework/measures that allow for the decomposition of the variations within TV

Oh the other, we need to "ground" (or attribute) the variations to different legal doctrines"

But, we know that TV contains

\Longrightarrow This entanglement makes the attribution problem challenging!

Treatment

Disparate Impact

Business
Necessity

Structural Fairness Measures

- In order to underpin a more formal discussion amenable to ML, and motivated by the doctrines of disparate treatment \& impact, we introduce the structural fairness measures. These will represent building blocks of more refined notions.
A. Definition. Let pa $\left(V_{i}\right)$ and an $\left(V_{i}\right)$ be the parents and ancestors of V_{i} in the causal diagram \mathscr{G}, respectively.
For an SCM M, Y is fair w.r.t. X in terms of:

1. the direct effect ($D E-$ fair $_{X}(Y)$, for short) if and only if $X \notin p a(Y)$,
2. the indirect effect (IE-fair ${ }_{X}(Y)$) if and only if $X \notin$ an $(\mathrm{pa}(Y))$,
3. spurious effect (SE-fair $X_{X}(Y)$) if and only if

$$
U_{X} \cap a n_{G_{\underline{X}}}(Y)=\varnothing \wedge a n(X) \cap a n_{G_{\underline{X}}}(Y)=\varnothing
$$

Structural Fairness Measures

- The structural measures represent idealized conditions in which discrimination can be thought about and articulated.
- If we go back to the legal doctrines, we can start connecting disparate treatment and impact with the structural measures.

Admissibility \& Power

Definition. Let Ω be a class of SCMs on which a structural criterion Q and measures μ and μ^{\prime} are defined.

- The measure μ is said to be admissible w.r.t Q if

$$
\forall \mathscr{M} \in \Omega: Q(\mathscr{M})=0 \Longrightarrow \mu(\mathscr{M})=0 .
$$

- The measure μ^{\prime} is said to be more powerful than μ if
(i) μ^{\prime} is admissible

$$
\text { (ii) } \mu^{\prime}(\mathscr{M})=0 \Longrightarrow \mu(\mathscr{M})=0 .
$$

Admissibility \& Power

Definition. Let Ω be a class of SCMs on which a structural criterion Q and measures μ and μ^{\prime} are defined.

- The measure u is said to be admissible w.r.t O if

Note: Power and Admissibility are the analogues of necessity and sufficiency for the corresponding fairness measures.
(ii) $\mu^{\prime}(\mathscr{M})=0 \Longrightarrow \mu(\mathscr{M})=0$.

Decomposability

Definition. Let Ω be a class of SCMs and μ be a measure defined over it. μ is said to be Ω-decomposable if there exist measures

$$
\mu_{1}, \ldots, \mu_{k} \text { such that } \mu=f\left(\mu_{1}, \ldots, \mu_{k}\right),
$$

and where f is a non-trivial function vanishing at the origin, i.e., $f(0, \ldots, 0)=0$.

Note: decomposability can imply lack of admissibility

Admissibility, Power, Decomposability - Motivation

Composite measures

Atomic measures (to be constructed)

Structural measures

Truth

Fundamental Problem of Causal Fairness Analysis (FPCFA)

Definition. Let μ be a fairness measure defined over a space of SCMs Ω. Let Q_{1}, \ldots, Q_{k} be a collection of structural fairness criteria. The Fundamental Problem of Causal Fairness Analysis is to find a collection of measures μ_{1}, \ldots, μ_{k} such that the following properties are satisfied:
(i) μ is decomposable w.r.t. μ_{1}, \ldots, μ_{k} Decomposability
(ii) μ_{1}, \ldots, μ_{k} are admissible w.r.t. the structural fairness criteria $Q_{1}, Q_{2}, \ldots, Q_{k}$
(iii) μ_{1}, \ldots, μ_{k} are as powerful as possible.

Admissibility
Power what is our toolkit for solving FPCFA?

Section 3.1
Definition 3.6

The Anatomy of Contrastive Measures

Definition. A contrast is any quantity of the form

$$
P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right) .
$$

where E_{0}, E_{1} are observed (factual) events and
C_{0}, C_{1} are counterfactual events to which the outcome Y responds.

A contrast compares the outcome Y of individuals
who coincide with the observed event
E_{1} versus E_{0}, in the factual world,
and whose values, possibly counterfactually, were intervened on following C_{1} versus C_{0}.

Contrastive Measures: Factual vs. Counterfactual Basis

Theorem. Any contrast $P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)$ can be decomposed into its factual and counterfactual components:

$$
P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{1}\right)+P\left(y_{C_{0}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right) .
$$

We
normally
think of
$C_{0}, C_{1}, E_{0}, E_{1}$ as
including X.

Structural Basis Expansion I

Theorem (continued). Whenever $E_{0}=E_{1}=e$, any counterfactual contrast $P\left(y_{C_{1}} \mid E=e\right)-P\left(y_{C_{0}} \mid E=e\right)$ admits the following structural basis expansion
$\sum\left[y_{C_{1}}(u)-y_{C_{0}}(u)\right] \quad P(u \mid E=e)$.
u
unit-level difference posterior

For a specific unit $U=u$, Y's response to the transition $\mathrm{C}_{0} \rightarrow \mathrm{C}_{1}$.

Population of units consistent with the factual evidence $E=e$.

Contrastive Measures: Factual vs. Counterfactual Basis

Theorem. Any contrast $P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)$ can be decomposed into its factual and counterfactual components:

Structural Basis Expansion II

Theorem (continued). Whenever $C_{0}=C_{1}=c$, any factual contrast $P\left(y_{c} \mid E_{1}\right)-P\left(y_{c} \mid E_{0}\right)$ admits the following structural basis expansion:

- We will be mostly interested in contrasts w/ $C=x$, so that $X=x$ represents causal pathways.

Theorem (Contrasts \& Structural Basis). Any contrast can be decomposed into its factual and counterfactuals components:

$P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)=P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{1}\right)+P\left(y_{C_{0}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)$.
 mechanisms \mathscr{F} population $P(u)$
 Furthe

A. Any basis $P\left(y_{C}\right.$

Putting it all together...
ructural
E)
untr-veverunterentenosterior
B. any factual contrast ($C_{0}=C_{1}=C$) admits the structural basis expansion of the form:

$$
P\left(y_{C} \mid E_{1}\right)-P\left(y_{C} \mid E_{0}\right)=\sum_{u} \underbrace{y_{C}(u)}_{\text {unit outcome }} \underbrace{\left[P\left(u \mid E_{1}\right)-P\left(u \mid E_{0}\right)\right]}_{\text {posterior difference }} .
$$

Explainability Plane

Explainability Plane

[^0]: * Bickel, P., Eugene H, and J. William O’Connell. "Sex bias in graduate admissions: Data from Berkeley." Science 187.4175 (1975): 398-404.

