Causal Fairness Analysis (Causal Inference II - Lecture 2)

Elias Bareinboim Drago Plecko

Columbia University Computer Science

Reference:

D. Plecko, E. Bareinboim. Causal Fairness Analysis. TR R-90, CausalAl Lab, Columbia University. <u>https://causalai.net/r90.pdf</u>

TV family of causal fairness measures

Section 4

Gedankenexperiment (NDE)

• For an individual assigned to male ($X = x_0$) by intervention, how would his salary (Y) change had he been assigned female ($X = x_1$), while keeping the age, nationality, education and employment status unchanged (at the natural level $X = x_0$)?

Gedankenexperiment (NIE)

• For an individual assigned to be female ($X = x_1$) by intervention, how would her salary (Y) change had she been assigned to be male ($X = x_0$), while keeping gender unchanged along the direct causal pathway (at the natural level $X = x_1$)?

Gedankenexperiment (Exp-SE)

 How would an individuals salary (Y) change if their gender is set to male (or female) by intervention, compared to observing their salary as male (female)?

$$\mathsf{Exp-SE}_{x}(y) = P(y_{x}) - P(y \mid x)$$

Relation to Structural Fairness

Corollary. The criteria based on NDE, NIE, and Exp-SE measures are admissible with respect to structural direct, indirect, and spurious fairness. Formally, these facts are written as:

 $S-DE \implies NDE-fair$ $S-IE \implies NIE-fair$ $S-SE \implies Exp-SE-fair$

> admissibility w.r.t. structural

In practice, for example, by computing the NDE, we can test for the presence of structural direct effect.

Testing Structural Fairness in Practice

Our previous corollary shows that

S-DE \implies NDE-fair.

- By taking this statement's contrapositive, we can see that $\mathsf{NDE}_{x_0,x_1}(y) \neq 0 \implies \neg \mathsf{S}\text{-}\mathsf{DE}\,.$
- Therefore, in practice, one may use the following hypothesis testing procedure for testing structural direct effect, $H_0: NDE_{x_0,x_1}(y) = 0.$

A similar approach can be used for the NIE and Exp-SE since S-IE \implies NIE-fair S-SE \implies Exp-SE-fair im

This will be used to connect with the disparate treatment and impact doctrines later on.

Fairness Map (prelim version)

- The map is constructed based on the Corollary in the previous page
- We have found fairness measures that are (i) computable from the data; (ii) admissible with respect to structural fairness; (iii) satisfy decomposability with respect to TV;

Does that mean we are done with Causal Fairness Analysis? Section 4.2

Figure 4.2

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision ($Y \in \{0,1\}$ indicating whether the candidate is hired) is based on gender ($X \in \{0,1\}$, female and male, respectively), age ($Z \in \{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in \{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

$$\begin{aligned} \mathbf{E}_{x_0,x_1}(y) &= P(y_{x_1,W_{x_0}}) - P(y_{x_0}) \\ &= P(\mathbf{Bernoulli}(\frac{1}{5}(1-Z) + \frac{1}{6}W) = 1) \\ -P(\mathbf{Bernoulli}(\frac{1}{5}(Z) + \frac{1}{6}W) = 1) \\ &= \sum_{z \in \{0,1\}} \sum_{w \in \{0,1\}} P(w)[\frac{1}{5}(1-2z) + \frac{1}{6}w - \frac{1}{6}w] \\ &= \sum_{z \in \{0,1\}} \frac{1}{5}(1-2z) = 0. \end{aligned}$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision ($Y \in \{0,1\}$) indicating whether the candidate is hired) is based on gender ($X \in \{0,1\}$, female and male, respectively), age ($Z \in \{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in \{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

NDE is admissible w.r.t. S-DE. However, here NDE = 0, and structural bffer direct effect exists. Q: Is NDE powerful enough for detecting v]discrimination?

4.2

4.1

Gedankenexperiment (Ctf-DE)

• For a male person $X = x_0$, how would his salary change (Y) had he been a female ($X = x_1$), while keeping the age, nationality, education and employment status unchanged (at the level of $X = x_0$)?

Ctf-DE_{x₀,x₁}(y) =
$$P(y_{x_1,W_{x_0}} | x_0) - P(y_{x_0,W_{x_0}} | x_0)$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision ($Y \in \{0,1\}$ indicating whether the candidate is hired) is based on gender ($X \in \{0,1\}$, female and male, respectively), age ($Z \in \{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in \{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

$$\begin{aligned} \mathsf{DE}_{x_0, x_1}(y \mid x_0) &= P(y_{x_1, W_{x_0}} \mid x_0) - P(y_{x_0} \mid x_0) \\ &= P(\mathsf{Bernoulli}(\frac{1}{5}(1-Z) + \frac{1}{6}W) = 1 \mid x_0) \\ &- P(\mathsf{Bernoulli}(\frac{1}{5}(Z) + \frac{1}{6}W) = 1 \mid x_0) \\ &= \sum_{z \in \{0,1\}} \sum_{w \in \{0,1\}} P(w)P(z \mid x_0)[\frac{1}{5}(1-2z) + \frac{1}{6}w - \frac{1}{6}w] \\ &= \sum_{z \in \{0,1\}} \frac{1}{5}(1-2z)P(z \mid x_0) = 0.036. \end{aligned}$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision ($Y \in \{0,1\}$ indicating whether the candidate is hired) is based on gender ($X \in \{0,1\}$, female and male, respectively), age ($Z \in \{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in \{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

Key properties of Ctf-DE: 1. Ctf-DE is admissible. $U \leftarrow N$ X $\leftarrow B$

- $Z \leftarrow \mathsf{Bernoulli}(expit(U))$
- $W \leftarrow \text{Bernoulli}(0.3)$

$$Y \leftarrow \text{Bernoulli}(\frac{1}{5}(X + Z - 2XZ) + \frac{1}{6}W)$$

 $= \sum_{z \in \{0,1\}} \sum_{w \in \{0,1\}} P(w) P(z \mid x_0) \left[\frac{1}{5} (1 - 2z) + \frac{1}{6} w - \frac{1}{6} w \right]$ $= \sum_{z \in \{0,1\}} \frac{1}{5} (1 - 2z) P(z \mid x_0) = 0.036.$

Gedankenexperiment (Ctf-IE)

• For a male person $X = x_0$, how would his salary (Y) change had his education and employment status been at the level of a female person $X = x_1$, while keeping the age, nationality and gender unchanged (at the level of $X = x_0$)?

Gedankenexperiment (Ctf-SE)

• For a male person $X = x_0$ and a female person $(X = x_1)$, how would their salary (Y) differ had they both been male persons $X = x_0$?

 $\mathsf{Ctf}\mathsf{-}\mathsf{DE}_{x_0,x_1}(y \mid x_0)$

x-specific measures

Definition. The effect of treatment on the treated and counterfactual direct, indirect, and spurious effects are defined as

$$\begin{aligned} & \textit{ETT}_{x_0, x_1}(y \mid x) = P(y_{x_1} \mid x) - P(y_{x_0} \mid x) \\ & \textit{Ctf-DE}_{x_0, x_1}(y \mid x) = P(y_{x_1, W_{x_0}} \mid x) - P(y_{x_0} \mid x) \\ & \textit{Ctf-IE}_{x_1, x_0}(y \mid x) = P(y_{x_1, W_{x_0}} \mid x) - P(y_{x_1} \mid x) \\ & \textit{Ctf-SE}_{x_0, x_1}(y) = P(y_{x_0} \mid x_1) - P(y_{x_0} \mid x_0) \,. \end{aligned}$$

x-specific

Definition. The effect of treatment on direct, indirect, and spurious effects and

$$\begin{aligned} \mathsf{TE}_{x_0,x_1}(y \mid x) &= P(y_{x_1}) - P(y_{x_0}) \\ \mathsf{NDE}_{x_0,x_1}(y) &= P(y_{x_1,W_{x_0}}) - P(y_{x_0}) \\ \mathsf{NIE}_{x_1,x_0}(y) &= P(y_{x_1,W_{x_0}}) - P(y_{x_1}) \\ \mathsf{Exp-SE}_{x_0,x_1}(y) &= P(y_x) - P(y_x \mid x) \,. \end{aligned}$$

$$\begin{aligned} & \textit{ETT}_{x_0, x_1}(y \mid x) = P(y_{x_1} \mid x) - P(y_{x_0} \mid x) & \text{where we came from} \\ & \textit{Ctf-DE}_{x_0, x_1}(y \mid x) = P(y_{x_1, W_{x_0}} \mid x) - P(y_{x_0} \mid x) \\ & \textit{Ctf-IE}_{x_1, x_0}(y \mid x) = P(y_{x_1, W_{x_0}} \mid x) - P(y_{x_1} \mid x) \\ & \textit{Ctf-SE}_{x_0, x_1}(y) = P(y_{x_0} \mid x_1) - P(y_{x_0} \mid x_0) \,. \end{aligned}$$

Structural Basis Expansion:

$$Ctf-DE_{x_0,x_1}(y \mid x) = \sum_{u} [y_{x_1,W_{x_0}}(u) - y_{x_0}(u)]P(u \mid x)$$

$$Ctf-IE_{x_1,x_0}(y \mid x) = \sum_{u} [y_{x_1,W_{x_0}}(u) - y_{x_1}(u)]P(u \mid x)$$

$$Ctf-SE_{x_0,x_1}(y) = \sum_{u} y_{x_0}(u)[P(u \mid x_1) - P(u \mid x_0)]$$

$$remember where we are within \mathcal{U}$$
where we go next 17

z-specific measures

Definition. The *z*-specific total, direct, and indirect effects are defined as

$$z - TE_{x_0, x_1}(y \mid z) = P(y_{x_1} \mid z) - P(y_{x_0} \mid z)$$
$$z - DE_{x_0, x_1}(y \mid z) = P(y_{x_1, W_{x_0}} \mid z) - P(y_{x_0} \mid z)$$
$$z - IE_{x_1, x_0}(y \mid z) = P(y_{x_1, W_{x_0}} \mid z) - P(y_{x_1} \mid z).$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision ($Y \in \{0,1\}$ indicating whether the candidate is hired) is based on gender ($X \in \{0,1\}$, female and male, respectively), age ($Z \in \{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in \{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

$$DE(y \mid Z = 0) = P(y_{x_1, W_{x_0}} \mid Z = 0) - P(y_{x_0} \mid Z = 0)$$

$$= P(Bernoulli(\frac{1}{5}(1 - Z) + \frac{1}{6}W) = 1 \mid Z = 0)$$

$$-P(Bernoulli(\frac{1}{5}(Z) + \frac{1}{6}W) = 1 \mid Z = 0)$$

$$= \sum_{w \in \{0, 1\}} P(w)[\frac{1}{5} + \frac{1}{6}w - \frac{1}{6}w] = \frac{1}{5}.$$

$$Section 4.2$$

$$Example 4.3$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision ($Y \in \{0,1\}$) indicating whether the candidate is hired) is based on gender ($X \in \{0,1\}$, female and male, respectively), age ($Z \in \{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in \{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

v'-specific measures

Definition. The v'-specific total, direct, and indirect effects are defined as

$$\begin{aligned} v' - TE_{x_0, x_1}(y \mid v') &= P(y_{x_1} \mid v') - P(y_{x_0} \mid v') \\ v' - DE_{x_0, x_1}(y \mid v') &= P(y_{x_1, W_{x_0}} \mid v') - P(y_{x_0} \mid v') \\ v' - IE_{x_1, x_0}(y \mid v') &= P(y_{x_1, W_{x_0}} \mid v') - P(y_{x_1} \mid v') . \end{aligned}$$

Example – Probabilities of Causation (Ch. 9, Pearl, 2000)

By picking $v' = \{x_0, y_0\}$ and the total effect, the measure v'-TE becomes

$$(x, y) - \mathsf{TE}_{x_0, x_1}(y \mid x_0, y_0) = P(y_{x_1} \mid x_0, y_0) - P(y_{x_0} \mid x_0, y_0)$$
$$= P(y_{x_1} \mid x_0, y_0).$$
Probability of sufficiency.

Similarly, v'-TE for the event $\{x_1, y_1\}$ equals

Unit-level measures

Definition. Given a unit U = u, the unit-level total, direct, and indirect effects are given by

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P(y_{C_1} | E_1) - P(y_{C_0} | E_0)$, following he

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P(y_{C_1} | E_1) - P(y_{C_0} | E_0)$, following he constructions indicated below.

icated below. mechanism unit

units

Measure	C_0	C_1	E_0	E_1
TV_{x_0,x_1}	Ø	Ø	x_0	x_1
TE_{x_0,x_1}	x_0	x_1	Ø	Ø
$\operatorname{Exp-SE}_x$	x	x	Ø	x
NDE_{x_0,x_1}	x_0	x_1, W_{x_0}	Ø	Ø
NIE_{x_0,x_1}	x_0	x_0, W_{x_1}	Ø	Ø
ETT_{x_0,x_1}	x_0	x_1	x	x
$\operatorname{Ctf-SE}_{x_0,x_1}$	x_0	x_0	x_0	x_1
$\operatorname{Ctf-DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	x	x
$\operatorname{Ctf-IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	x	x
$z ext{-} ext{TE}_{x_0,x_1}$	x_0	x_1	z	z
$z ext{-} ext{DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	z	z
$z ext{-}\mathrm{IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	z	\overline{z}
v' -TE $_{x_0,x_1}$	x_0	x_1	v'	v'
v' -DE $_{x_0,x_1}$	x_0	x_1, W_{x_0}	v'	v'
v' -IE $_{x_0,x_1}$	x_0	x_0, W_{x_1}	v'	v'
unit-TE $_{x_0,x_1}$	x_0	x_1	u	u
unit- DE_{x_0,x_1}	x_0	x_1, W_{x_0}	u	\overline{u}
unit-IE $_{x_0,x_1}$	x_0	x_0, W_{x_1}	u	u
	Measure TV_{x_0,x_1} TE_{x_0,x_1} $Exp-SE_x$ NDE_{x_0,x_1} NIE_{x_0,x_1} ETT_{x_0,x_1} $Ctf-SE_{x_0,x_1}$ $Ctf-DE_{x_0,x_1}$ $z-TE_{x_0,x_1}$ $z-TE_{x_0,x_1}$ $v'-TE_{x_0,x_1}$ $v'-TE_{x_0,x_1}$ $v'-TE_{x_0,x_1}$ $unit-TE_{x_0,x_1}$ $unit-TE_{x_0,x_1}$	Measure C_0 TV_{x_0,x_1} \emptyset TE_{x_0,x_1} x_0 $Exp-SE_x$ x NDE_{x_0,x_1} x_0 NIE_{x_0,x_1} x_0 ETT_{x_0,x_1} x_0 $Ctf-SE_{x_0,x_1}$ x_0 $Ctf-DE_{x_0,x_1}$ x_0 $ctf-IE_{x_0,x_1}$ x_0 z - TE_{x_0,x_1} x_0 z - IE_{x_0,x_1} x_0 v' - TE_{x_0,x_1} x_0 v' - IE_{x_0,x_1} x_0 v' - IE_{x_0,x_1} x_0 $unit-TE_{x_0,x_1}$ x_0 $unit-TE_{x_0,x_1}$ x_0 $unit-IE_{x_0,x_1}$ x_0	Measure C_0 C_1 TV_{x_0,x_1} \emptyset \emptyset TE_{x_0,x_1} x_0 x_1 $\mathrm{Exp-SE}_x$ x x NDE_{x_0,x_1} x_0 x_1, W_{x_0} NIE_{x_0,x_1} x_0 x_0, W_{x_1} ETT_{x_0,x_1} x_0 x_1 $\mathrm{Ctf-SE}_{x_0,x_1}$ x_0 x_1 $\mathrm{Ctf-DE}_{x_0,x_1}$ x_0 x_1, W_{x_0} $\mathrm{Ctf-IE}_{x_0,x_1}$ x_0 x_1 z -TE $_{x_0,x_1}$ x_0 x_1, W_{x_0} z -IE $_{x_0,x_1}$ x_0 x_1, W_{x_0} v' -TE $_{x_0,x_1}$ x_0 x_1, W_{x_0} v' -IE $_{x_0,x_1}$ x_0 x_1, W_{x_0} v' -IE $_{x_0,x_1}$ x_0 x_1, W_{x_0} $unit$ -TE $_{x_0,x_1}$ x_0 x_1, W_{x_0} $unit$ -DE $_{x_0,x_1}$ x_0 x_1, W_{x_0} $unit$ -IE $_{x_0,x_1}$ x_0 x_1, W_{x_0} $unit$ -IE $_{x_0,x_1}$ x_0 x_1, W_{x_0}	Measure C_0 C_1 E_0 TV_{x_0,x_1} \emptyset \emptyset x_0 TE_{x_0,x_1} x_0 x_1 \emptyset $\mathrm{Exp-SE}_x$ x x \emptyset NDE_{x_0,x_1} x_0 x_1, W_{x_0} \emptyset NIE_{x_0,x_1} x_0 x_1, W_{x_0} \emptyset ETT_{x_0,x_1} x_0 x_1 x $\mathrm{Ctf}{-SE}_{x_0,x_1}$ x_0 x_1 x $\mathrm{Ctf}{-DE}_{x_0,x_1}$ x_0 x_1, W_{x_0} x z - TE_{x_0,x_1} x_0 x_1, W_{x_0} x z - DE_{x_0,x_1} x_0 x_1, W_{x_0} z z - DE_{x_0,x_1} x_0 x_1, W_{x_0} z v' - TE_{x_0,x_1} x_0 x_1, W_{x_0} v' v' - TE_{x_0,x_1} x_0 x_1, W_{x_0} v' v' - IE_{x_0,x_1} x_0 x_1, W_{x_0} v' $unit-\mathrm{TE}_{x_0,x_1}$ x_0 x_1, W_{x_0} u $unit-\mathrm{DE}_{x_0,x_1}$ x_0 x_1, W_{x_0} u

mechanisms

Spurious

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P(y_{C_1} | E_1) - P(y_{C_0} | E_0)$, following he constructions indicated below. mechanism unit

units

	Measure	C_0	C_1	E_0	E_1
	TV_{x_0,x_1}	Ø	Ø	x_0	x_1
ral	TE_{x_0,x_1}	x_0	x_1	Ø	Ø
ene	$\operatorname{Exp-SE}_x$	x	x	Ø	x
3G	NDE_{x_0,x_1}	x_0	x_1, W_{x_0}	Ø	Ø
	NIE_{x_0,x_1}	x_0	x_0, W_{x_1}	Ø	Ø
a	ETT_{x_0,x_1}	x_0	x_1	x	x
Í.	$\operatorname{Ctf-SE}_{x_0,x_1}$	x_0	x_0	x_0	x_1
X	$\operatorname{Ctf-DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	x	x
	$\operatorname{Ctf-IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	x	x
2	$z ext{-} ext{TE}_{x_0,x_1}$	x_0	x_1	z	z
M	$z ext{-} ext{DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	z	z
	$z ext{-}\mathrm{IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	z	z
A	v' -TE $_{x_0,x_1}$	x_0	x_1	v'	v'
	$v' ext{-} ext{DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	v'	v'
A	v' -IE $_{x_0,x_1}$	x_0	x_0, W_{x_1}	v'	v'
te	unit- TE_{x_0,x_1}	x_0	x_1	u	u
un	unit- DE_{x_0,x_1}	x_0	x_1, W_{x_0}	u	u
	$ ext{unit-IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	u	u

mechanisms

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P(y_{C_1} | E_1) - P(y_{C_0} | E_0)$, following he constructions indicated below. mechanism

unit

units

	Measure	C_0	C_1	E_0	E_1				
	TV_{x_0,x_1}	Ø	Ø	x_0	x_1				
ral	TE_{x_0,x_1}	x_0	x_1	Ø	Ø				
gene	$\operatorname{Exp-SE}_x$	x	x	Ø	x				
	NDE_{x_0,x_1}	x_0	x_1, W_{x_0}	Ø	Ø				
	NIE_{x_0,x_1}	x_0	x_0, W_{x_1}	Ø	Ø				
2	$\operatorname{ETT}_{x_0,x_1}$	x_0	x_1	x	x				
	$\mathrm{Ctf} ext{-}\mathrm{SE}_{x_0,x_1}$	x_0	x_0	x_0	x_1				
X	$\operatorname{Ctf-DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	x	x				
C	$\operatorname{Ctf-IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	x	x				
2	$z ext{-} ext{TE}_{x_0,x_1}$	x_0	x_1	z	z				
I	$z ext{-} ext{DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	z	z				
	$z ext{-}\mathrm{IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	z	z				
A	v' -TE $_{x_0,x_1}$	x_0	x_1	v'	v'				
	v' -DE $_{x_0,x_1}$	x_0	x_1, W_{x_0}	v'	v'				
A	v' -IE $_{x_0,x_1}$	x_0	x_0, W_{x_1}	v'	v'				
t	unit-TE $_{x_0,x_1}$	x_0	x_1	u	u				
iun	$ ext{unit-DE}_{x_0,x_1}$	x_0	x_1, W_{x_0}	u	u				
	$\operatorname{unit-IE}_{x_0,x_1}$	x_0	x_0, W_{x_1}	u	u				

mechanisms

Mechanisms Axis

Mediation Formula

Section 4.3 Theorem 4.9

Mechanisms Axis

29