Causal Fairness Analysis (Causal Inference II - Lecture 2)

Elias Bareinboim Drago Plecko

Columbia University Computer Science

Reference:

D. Plecko, E. Bareinboim.

Causal Fairness Analysis.
TR R-90, CausalAI Lab, Columbia University. https://causalai.net/r90.pdf

TV family of causal fairness measures

Section 4

Gedankenexperiment (NDE)

- For an individual assigned to male ($X=x_{0}$) by intervention, how would his salary (Y) change had he been assigned female ($X=x_{1}$), while keeping the age, nationality, education and employment status unchanged (at the natural level $X=x_{0}$)?
$\operatorname{NDE}_{x_{0}, x_{1}}(y)=P\left(y_{x_{1}, W_{x_{0}}}\right)-P\left(y_{x_{0}, W_{x_{0}}}\right)$

Gedankenexperiment (NIE)

- For an individual assigned to be female ($X=x_{1}$) by intervention, how would her salary (Y) change had she been assigned to be male ($X=x_{0}$), while keeping gender unchanged along the direct causal pathway (at the natural level $X=x_{1}$)?
$\mathbf{N I E}_{x_{1}, x_{0}}(y)=P\left(y_{x_{1}, W_{x_{0}}}\right)-P\left(y_{x_{1}, W_{x_{1}}}\right)$

W

$$
Y_{x_{1}, W_{x 0}}
$$

$Y_{x_{1}, W_{x_{1}}}$

Gedankenexperiment (Exp-SE)

- How would an individuals salary (Y) change if their gender is set to male (or female) by intervention, compared to observing their salary as male (female)?

$$
\operatorname{Exp}^{\mathbf{S}} \mathbf{E}_{x}(y)=P\left(y_{x}\right)-P(y \mid x)
$$

W
Y_{x}

$Y \mid X=x$

Relation to Structural Fairness

Corollary. The criteria based on NDE, NIE, and Exp-SE measures are admissible with respect to structural direct, indirect, and spurious fairness. Formally, these facts are written as:

$$
\begin{aligned}
S-D E & \Longrightarrow \text { NDE-fair } \\
S-I E & \Longrightarrow \text { NIE-fair } \\
S-S E & \Longrightarrow \text { Exp-SE-fair }
\end{aligned}
$$

admissibility w.r.t. structural

In practice, for example, by computing the NDE, we can test for the presence of structural direct effect.

Testing Structural Fairness in Practice

- Our previous corollary shows that

$$
\text { S-DE } \Longrightarrow \text { NDE-fair . }
$$

- By taking this statement's contrapositive, we can see that

$$
\operatorname{NDE}_{x_{0}, x_{1}}(y) \neq 0 \Longrightarrow \neg \mathrm{~S}-\mathrm{DE} .
$$

- Therefore, in practice, one may use the following hypothesis testing procedure for testing structural direct effect,

$$
H_{0}: \operatorname{NDE}_{x_{0}, x_{1}}(y)=0
$$

A similar approach can be used for the NIE and Exp-SE since S-IE \Longrightarrow NIE-fair S-SE \Longrightarrow Exp-SE-fair

This will be used to connect with the disparate treatment and impact doctrines later on.

Fairness Map (prelim version)

- The map is constructed based on the Corollary in the previous page
- We have found fairness measures that are (i) computable from the data; (ii) admissible with respect to structural fairness; (iii) satisfy decomposability with respect to TV;

> Does that mean we are done with Causal Fairness Analysis?

Section 4.2
Figure 4.2

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

$\operatorname{NDE}_{x_{0}, x_{1}}(y)=P\left(y_{x_{1}, W_{x_{0}}}\right)-P\left(y_{x_{0}}\right)$
$=P\left(\right.$ Bernoulli $\left.\left(\frac{1}{5}(1-Z)+\frac{1}{6} W\right)=1\right)$
$-P\left(\right.$ Bernoulli $\left.\left(\frac{1}{5}(Z)+\frac{1}{6} W\right)=1\right)$
$=\sum_{z \in\{0,1\}} \sum_{w \in\{0,1\}} P(w)\left[\frac{1}{5}(1-2 z)+\frac{1}{6} w-\frac{1}{6} w\right]$
$=\sum_{z \in\{0,1\}} \frac{1}{5}(1-2 z)=0 . \quad \begin{array}{r}\text { Section } 4.2 \\ \text { Example 4.1 }\end{array}$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

NDE is admissible w.r.t. S-DE. However, here NDE = 0, and structural direct effect exists.
 Q: Is NDE powerful enough for detecting discrimination?

Gedankenexperiment (Ctf-DE)

- For a male person $X=x_{0}$, how would his salary change (Y) had he been a female ($X=x_{1}$), while keeping the age, nationality, education and employment status unchanged (at the level of $X=x_{0}$)?

$$
\mathbf{C t f}-\mathbf{D E} \mathbf{E}_{x_{0}, x_{1}}(y)=P\left(y_{x_{1}, W_{x_{0}}} \mid x_{0}\right)-P\left(y_{x_{0}, W_{x_{0}}} \mid x_{0}\right)
$$

W

$$
Y_{x_{1}, W_{x_{0}}} \mid X=x_{0}
$$

W

$$
Y_{x_{0}, W_{x_{0}}} \mid X=x_{0}
$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

$$
\begin{aligned}
& \text { Ctf-DE }_{x_{0}, x_{1}}\left(y \mid x_{0}\right)=P\left(y_{x_{1}, W_{x_{0}}} \mid x_{0}\right)-P\left(y_{x_{0}} \mid x_{0}\right) \\
&=P\left(\left.\operatorname{Bernoulli}\left(\frac{1}{5}(1-Z)+\frac{1}{6} W\right)=1 \right\rvert\, x_{0}\right) \\
&-P\left(\left.\operatorname{Bernoulli}\left(\frac{1}{5}(Z)+\frac{1}{6} W\right)=1 \right\rvert\, x_{0}\right) \\
&=\sum_{z \in\{0,1\}} \sum_{w \in\{0,1\}} P(w) P\left(z \mid x_{0}\right)\left[\frac{1}{5}(1-2 z)+\frac{1}{6} w-\frac{1}{6} w\right] \\
&=\sum_{z \in\{0,1\}} \frac{1}{5}(1-2 z) P\left(z \mid x_{0}\right)=0.036 . \\
& \begin{array}{r}
\text { Section 4.2 } \\
\text { Example 4.2 }
\end{array}
\end{aligned}
$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

Key properties of Ctf-DE: 1. Ctf-DE is admissible. 2. Ctf-DE is more powerful than NDE.

$\mathrm{Z} \leftarrow$ Bernoulli(expit(U))
$W \leftarrow$ Bernoulli(0.3)
$Y \leftarrow \operatorname{Bernoulli}\left(\frac{1}{5}(X+Z-2 X Z)+\frac{1}{6} W\right)$

$$
\begin{aligned}
& =\sum_{z \in\{0,11} \sum_{w \in\{0,1\}} P(w) P\left(z \mid x_{0}\right)\left[\frac{1}{5}(1-2 z)+\frac{1}{6} w-\frac{1}{6} w\right] \\
& =\sum_{z \in\{0,1\}} \frac{1}{5}(1-2 z) P\left(z \mid x_{0}\right)=0.036 .
\end{aligned}
$$

Section 4.2
Example 4.2

Gedankenexperiment (Ctf-IE)

- For a male person $X=x_{0}$, how would his salary (Y) change had his education and employment status been at the level of a female person $X=x_{1}$, while keeping the age, nationality and gender unchanged (at the level of $X=x_{0}$)?

$$
\text { Ctf-IE } \mathbf{x}_{x_{0}, x_{1}}(y)=P\left(y_{x_{0}, W_{x_{1}}} \mid x_{0}\right)-P\left(y_{x_{0}, W_{x_{0}}} \mid x_{0}\right)
$$

W

$$
Y_{x_{0}, W_{x_{1}}} \mid X=x_{0}
$$

$$
Y_{x_{0}, W_{x_{0}}} \mid X=x_{0}
$$

Gedankenexperiment (Ctf-SE)

- For a male person $X=x_{0}$ and a female person $\left(X=x_{1}\right)$, how would their salary (Y) differ had they both been male persons $X=x_{0}$?
$\mathbf{C t f}-\mathbf{S E}_{x_{0}, x_{1}}(y)=P\left(y_{x_{0}} \mid x_{1}\right)-P\left(y_{x_{0}} \mid x_{0}\right)$

W

$$
Y_{x_{0}} \mid X=x_{1}
$$

W

$$
Y_{x_{0}} \mid X=x_{0}
$$

- Ctf-SE $_{x_{1}, x_{0}}(y)$

TV Decomposition II (Causal Explanation Formula, ZB18)

$$
Y \mid X=x_{0}
$$

$\operatorname{Ctf}-\mathrm{DE}_{x_{0}, x_{1}}\left(y \mid x_{0}\right)$

$Y \mid X=x_{1}$

$Y_{x_{1}} \mid x_{0}$
$Y_{x_{1}} \mid x_{0}$

$$
Y_{x_{1}} \mid x_{0}
$$

$Y_{x_{1}} \mid x_{0}$

$Y \mid X=x_{0}$

- Ctf-SE $_{x_{1}, x_{0}}(y)$
$-\operatorname{Ctf}-\mathrm{IE}_{x_{1}, x_{0}}\left(y \mid x_{0}\right)$

$-\operatorname{Ctf}-\mathrm{SE}_{x_{1}, x_{0}}(y)$

Lemma. The total variation measure can be decomposed into its direct, indirect, and spurious variations:

$$
T V_{x_{0}, x_{1}}(y)=\underbrace{C t f-D E_{x_{0}, x_{1}}\left(y \mid x_{0}\right)}_{\text {direct }}-\underbrace{C t f-I E_{x_{1}, x_{0}}\left(y \mid x_{0}\right)}_{\text {indirect }}-\underbrace{\operatorname{Ctf-SE} E_{x_{1}, x_{0}}(y)}_{\text {spurious }}
$$

$Y_{x_{1}} \mid x_{0}$

$Y \mid X=x_{0}$
${\operatorname{Ctf}-\mathrm{DE}_{x_{0}, x_{1}}\left(y \mid x_{0}\right)}$

x-specific measures

Definition. The effect of treatment on the treated and counterfactual direct, indirect, and spurious effects are defined as

$$
\begin{aligned}
E T T_{x_{0}, x_{1}}(y \mid x) & =P\left(y_{x_{1}} \mid x\right)-P\left(y_{x_{0}} \mid x\right) \\
C t f-D E_{x_{0}, x_{1}}(y \mid x) & =P\left(y_{x_{1}, W_{x_{0}}} \mid x\right)-P\left(y_{x_{0}} \mid x\right) \\
C t f-I E_{x_{1}, x_{0}}(y \mid x) & =P\left(y_{x_{1}, W_{x_{0}}} \mid x\right)-P\left(y_{x_{1}} \mid x\right) \\
C t f-S E_{x_{0}, x_{1}}(y) & =P\left(y_{x_{0}} \mid x_{1}\right)-P\left(y_{x_{0}} \mid x_{0}\right) .
\end{aligned}
$$

Structural Basis Expansion:

$$
\begin{aligned}
& \text { Ct-DE } \mathrm{x}_{x_{0} x_{1}}(y \mid x)=\sum_{u}\left[y_{x_{1}, W_{x_{0}}}(u)-y_{x_{0}}(u)\right] P(u \mid x) \\
& \mathbf{C t I - I E} \boldsymbol{E}_{x_{1}, x_{0}}(y \mid x)=\sum\left[y_{x_{1}, W_{x_{0}}}(u)-y_{x_{1}}(u)\right] P(u \mid x)
\end{aligned}
$$

x-specific

Definition. The effect of treatment on direct, indirect, and spurious effects an

$$
\begin{aligned}
\mathrm{TE}_{x_{0}, x_{1}}(y \mid x) & =P\left(y_{x_{1}}\right)-P\left(y_{x_{0}}\right) \\
\operatorname{NDE}_{x_{0}, x_{1}}(y) & =P\left(y_{x_{1}, W_{x_{0}}}\right)-P\left(y_{x_{0}}\right) \\
\operatorname{NIE}_{x_{1}, x_{0}}(y) & =P\left(y_{x_{1}, W_{x_{0}}}\right)-P\left(y_{x_{1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
E T T_{x_{0}, x_{1}}(y \mid x) & =P\left(y_{x_{1}} \mid x\right)-P\left(y_{x_{0}} \mid x\right) \\
{\operatorname{Ctf}-D E_{x_{0}, x_{1}}}(y \mid x) & =P\left(y_{x_{1}, W_{x_{0}}} \mid x\right)-P\left(y_{x_{0}} \mid x\right) \\
\operatorname{Ctf}-I E_{x_{1}, x_{0}}(y \mid x) & =P\left(y_{x_{1}, W_{x_{0}}} \mid x\right)-P\left(y_{x_{1}} \mid x\right) \\
C t f-S E_{x_{0}, x_{1}}(y) & =P\left(y_{x_{0}} \mid x_{1}\right)-P\left(y_{x_{0}} \mid x_{0}\right) .
\end{aligned}
$$

Structural Basis Expansion:

where we came from

z-specific measures

Definition. The z-specific total, direct, and indirect effects are defined as

$$
\begin{aligned}
z-T E_{x_{0}, x_{1}}(y \mid z) & =P\left(y_{x_{1}} \mid z\right)-P\left(y_{x_{0}} \mid z\right) \\
z-D E_{x_{0}, x_{1}}(y \mid z) & =P\left(y_{x_{1}, W_{x_{0}}} \mid z\right)-P\left(y_{x_{0}} \mid z\right) \\
z-I E_{x_{1}, x_{0}}(y \mid z) & =P\left(y_{x_{1}, W_{x_{0}}} \mid z\right)-P\left(y_{x_{1}} \mid z\right)
\end{aligned}
$$

Structural Basis Expansion:

$$
\begin{aligned}
& \text { Structural Basis Expansion: } \\
& z-\mathbf{D E}_{x_{0}, x_{1}}(y \mid z)=\sum_{u}\left[y_{x_{1}, W_{x_{0}}}(u)-y_{x_{0}}(u)\right] P(u \mid z) \\
& z \mathbf{I E}_{x_{1}, x_{0}}(y \mid z)=\sum_{u}\left[y_{x_{1}, W_{x_{0}}}(u)-y_{x_{1}}(u)\right] P(u \mid z) \\
& \text { remember where } \\
& \text { we are within } \mathscr{U}
\end{aligned}
$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

$$
\begin{aligned}
z-\text { DE }(y \mid Z=0) & =P\left(y_{x_{1}, W_{x_{0}}} \mid Z=0\right)-P\left(y_{x_{0}} \mid Z=0\right) \\
& =P\left(\text { Bernoulli } \left.\left(\frac{1}{5}(1-Z)+\frac{1}{6} W\right)=1 \right\rvert\, Z=0\right) \\
& -P\left(\text { Bernoulli } \left.\left(\frac{1}{5}(Z)+\frac{1}{6} W\right)=1 \right\rvert\, Z=0\right) \\
& =\sum_{w \in\{0,1\}} P(w)\left[\frac{1}{5}+\frac{1}{6} w-\frac{1}{6} w\right]=\frac{1}{5} . \\
& \begin{array}{r}
\text { Section 4.2 } \\
\text { Example 4.3 }
\end{array}
\end{aligned}
$$

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

v^{\prime}-specific measures

Definition. The v^{\prime}-specific total, direct, and indirect effects are defined as

$$
\begin{aligned}
v^{\prime}-T E_{x_{0}, x_{1}}\left(y \mid v^{\prime}\right) & =P\left(y_{x_{1}} \mid v^{\prime}\right)-P\left(y_{x_{0}} \mid v^{\prime}\right) \\
v^{\prime}-D E_{x_{0}, x_{1}}\left(y \mid v^{\prime}\right) & =P\left(y_{x_{1}, W_{x_{0}}} \mid v^{\prime}\right)-P\left(y_{x_{0}} \mid v^{\prime}\right) \\
v^{\prime}-I E_{x_{1}, x_{0}}\left(y \mid v^{\prime}\right) & =P\left(y_{x_{1}, W_{x_{0}}} \mid v^{\prime}\right)-P\left(y_{x_{1}} \mid v^{\prime}\right) .
\end{aligned}
$$

Structural Basis Expansion:

Example - Probabilities of Causation (Ch. 9, Pearl, 2000)

By picking $v^{\prime}=\left\{x_{0}, y_{0}\right\}$ and the total effect, the measure v^{\prime}-TE becomes

$$
\begin{aligned}
&(x, y)-\mathrm{TE}_{x_{0}, x_{1}}\left(y \mid x_{0}, y_{0}\right)=P\left(y_{x_{1}} \mid x_{0}, y_{0}\right)-P\left(y_{x_{0}} \mid x_{0}, y_{0}\right) \\
&=P\left(y_{x_{1}} \mid x_{0}, y_{0}\right) . \\
& \begin{array}{c}
\text { Probability of } \\
\text { sufficiency! }
\end{array}
\end{aligned}
$$

Similarly, v^{\prime}-TE for the event $\left\{x_{1}, y_{1}\right\}$ equals

$$
\begin{aligned}
(x, y)-\mathrm{TE}_{x_{0}, x_{1}}\left(y \mid x_{1}, y_{1}\right) & =P\left(y_{x_{1}} \mid x_{1}, y_{1}\right)-P\left(y_{x_{0}} \mid x_{1}, y_{1}\right) \\
& =1-P\left(y_{x_{0}} \mid x_{1}, y_{1}\right) \\
& =P\left(y_{x_{0}}=0 \mid x_{1}, y_{1}\right) . \quad \begin{array}{c}
\text { Probability of } \\
\text { necessity! }
\end{array}
\end{aligned}
$$

Unit-level measures

Definition. Given a unit $U=u$, the unit-level total, direct, and indirect effects are given by

TV family measures as contrasts

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)$, following he constructions indicated below.

Direct

Spurious

TV family measures as contrasts

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)$, following he constructions indicated below. mechanism unit

		Measure	C_{0}	C_{1}	E_{0}	E_{1}
		$\mathrm{TV}_{x_{0}, x_{1}}$	\emptyset	\emptyset	x_{0}	x_{1}
	\%	$\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	\emptyset	\emptyset
units	E.	Exp-SE ${ }_{x}$	x	x	\emptyset	x
UMIS	8	$\mathrm{NDE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	\emptyset	\emptyset
		$\mathrm{NIE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	\emptyset	\emptyset
,		$\mathrm{ETT}_{x_{0}, x_{1}}$	x_{0}	x_{1}	x	x
+	$\begin{aligned} & \mathrm{Z} \\ & 11 \end{aligned}$	Ctf-SE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{0}	x_{0}	x_{1}
-	̇	Ctf-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	x	x
$1>$		Ctf-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	x	x
	N	$z-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	z	z
$((0))))$	11	$z-\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	z	z
	N	z-IE $\mathrm{x}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	z	z
	\rightarrow	$v^{\prime}-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	v^{\prime}	v^{\prime}
	U11	$v^{\prime}-\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	v^{\prime}	v^{\prime}
	5	$v^{\prime}-\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	v^{\prime}	v^{\prime}
		unit-TE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{1}	u	u
	' ${ }^{\prime}$	unit-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	u	u
		unit-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	u	u

mechanisms

Direct

Indirect

Spurious

TV family measures as contrasts

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)$, following he constructions indicated below. mechanism unit

units		Measure	C_{0}	C_{1}	E_{0}	E_{1}
		$\mathrm{TV}_{x_{0}, x_{1}}$	\emptyset	\emptyset	x_{0}	x_{1}
		$\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	\emptyset	\emptyset
		Exp-SE ${ }_{x}$	x		\emptyset	x
		$\mathrm{NDE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	\emptyset	\emptyset
		$\mathrm{NIE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	\emptyset	\emptyset
		$\mathrm{ETT}_{x_{0}, x_{1}}$	x_{0}	x_{1}	x	x
		Ctf-SE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{0}	x_{0}	x_{1}
		Ctf-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	x	x
		Ctf-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	x	x
		z-TE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{1}	z	z
		z-餽, x_{1}	x_{0}	$x_{1}, W_{x_{0}}$	z	z
		$z-\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	z	z
		$v^{\prime}-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	v^{\prime}	v^{\prime}
		$v^{\prime}-\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	v^{\prime}	v^{\prime}
		$v^{\prime}-\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	v^{\prime}	v^{\prime}
		unit-TE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{1}	u	u
		unit-DE $\mathrm{E}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	u	u
		unit-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	u	u

mechanisms

Causal

Spurious

TV family measures as contrasts

Lemma. Under the Standard fairness model, all the measures within the TV family can be written as contrasts $P\left(y_{C_{1}} \mid E_{1}\right)-P\left(y_{C_{0}} \mid E_{0}\right)$, following he constructions indicated below. mechanism unit

units		Measure	C_{0}	C_{1}	E_{0}	E_{1}
		$\mathrm{TV}_{x_{0}, x_{1}}$	\emptyset	\emptyset	x_{0}	x_{1}
		$\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	\emptyset	\emptyset
		Exp-SE ${ }_{x}$	x	x	\emptyset	x
		$\mathrm{NDE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	\emptyset	\emptyset
		$\mathrm{NIE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	\emptyset	\emptyset
	$\begin{gathered} \hline 8 \\ 11 \\ \dot{N} \\ \hline 2 \\ 11 \\ N \end{gathered}$	$\mathrm{ETT}_{x_{0}, x_{1}}$	x_{0}	x_{1}	x	x
		$\mathrm{Ctf-SE}_{x_{0}, x_{1}}$	x_{0}	x_{0}	x_{0}	x_{1}
		Ctf-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	x	x
		Ctf-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	x	x
		z-TE $\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	z	z
		z - $\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	z	z
		z - $\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	z	z
	$\begin{aligned} & \text { B } \\ & \text { U } \\ & \text { I } \end{aligned}$	$v^{\prime}-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	v^{\prime}	v^{\prime}
		v^{\prime} - $\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	v^{\prime}	v^{\prime}
		v^{\prime} - $\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	v^{\prime}	v^{\prime}
	菏	unit-TE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{1}	u	u
		unit-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	u	u
		unit-IE $\mathrm{x}_{0, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	u	u

mechanisms

Fairness Map

Fairness Map

Mechanisms Axis

Fairness Map

Mechanisms Axis

structural to unit

Fairness Map

Mechanisms Axis

unit to
v^{\prime}-specific

Fairness Map

Mechanisms Axis

Fairness Map

Mechanisms Axis

z-specific to x-specific

Fairness Map

Mechanisms Axis

Fairness Map

Mechanisms Axis

Fairness Map

Mechanisms Axis

Mediation formula (Pearl, 2012)

Fairness Map

Mechanisms Axis

Extended Mediation Formula

Fairness Map

Extended Mediation Formula

Fairness Map

Fairness Map

Fairness Map

Mechanisms Axis

Fairness Map

Mechanisms Axis

