Causal Fairness Analysis (Causal Inference II - Lecture 3)

Elias Bareinboim Drago Plecko

Columbia University Computer Science

Reference:

D. Plecko, E. Bareinboim.

Causal Fairness Analysis.
TR R-90, CausalAI Lab, Columbia University. https://causalai.net/r90.pdf

Fairness Map (recap)

Implications

Theorem (Zhang \& Bareinboim, 2018). The total variation (TV) measure admits a decomposition into counterfactual direct, indirect, and spurious effects

Implications

Theorem. The z-specific, v^{\prime}-specific, and unit-level total effects admit a decomposition into direct and indirect effects:

$$
\begin{aligned}
& z-T E_{x_{0}, x_{1}}(y \mid z)=z-D E_{x_{0}, x_{1}}(y \mid z)+z-I E_{x_{1}, x_{0}}(y \mid z) \\
& v^{\prime}-T E_{x_{0}, x_{1}}\left(y \mid v^{\prime}\right)=v^{\prime}-D E_{x_{0}, x_{1}}\left(y \mid v^{\prime}\right)+v^{\prime}-I E_{x_{1}, x_{0}}\left(y \mid v^{\prime}\right) \\
& \text { unit-TE } E_{x_{0}, x_{1}}(y(u))=\text { unit-DE } E_{x_{0}, x_{1}}(y(u))+\text { unit-IE } E_{x_{1}, x_{0}}(y(u))
\end{aligned}
$$

FPCFA (with Identification)

Definition. Let μ be a fairness measure defined over a space of SCMs Ω. Let Q_{1}, \ldots, Q_{k} be a collection of structural fairness criteria. The Fundamental Problem of Causal Fairness Analysis is to find a collection of measures μ_{1}, \ldots, μ_{k} s.t. the following properties are satisfied:
(i) μ is decomposable w.r.t. μ_{1}, \ldots, μ_{k} Decomposability
(ii) μ_{1}, \ldots, μ_{k} are admissible w.r.t. the structural fairness criteria $Q_{1}, Q_{2}, \ldots, Q_{k}$
(iii) μ_{1}, \ldots, μ_{k} are as powerful as possible. Admissibility

Power
(iv) μ_{1}, \ldots, μ_{k} are identifiable from the SFM and observational data.

Identifiability

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

W

Example (Limitation of NDE). A new startup company is currently in hiring season. The hiring decision $(Y \in\{0,1\}$ indicating whether the candidate is hired) is based on gender $(X \in\{0,1\}$, female and male, respectively), age ($Z \in\{0,1\}$, younger and older than 40 years, respectively), and education level ($W \in\{0,1\}$ which indicates whether the applicant has a Ph.D. degree). Following the legal guidelines, the startup is in this case obliged to avoid disparate treatment in hiring.

Admissibility

1) NDE admissible, but $\operatorname{NDE}_{x_{0}, x_{1}}(y)=0$

Power
2) x-DE admissible, and x - $\mathrm{DE}_{x_{0}, x_{1}}(y)=0.036$

Power
3) z-DE admissible, and $z-\mathrm{DE}_{x_{0}, x_{1}}(y)=0.2$

Which of these can be identified from observational data? (new part of FPCFA)

Soundness of the SFM

Theorem. Under the Standard Fairness Model (SFM) the orientation of edges within possibly multidimensional variable sets Z and W does not change any of general, x-specific, or z-specific measures. That is, if two causal diagrams G_{1} and G_{2} have the same projection to the Standard Fairness Model, i.e.,

$$
\Pi_{\mathrm{SFM}}\left(G_{1}\right)=\Pi_{\mathrm{SFM}}\left(G_{2}\right)
$$

Section 4.4
Theorem 4.12
then any measure $M(P(v), G)$ will satisfy

$$
M\left(P(v), \mathscr{G}_{1}\right)=M\left(P(v), \mathscr{G}_{2}\right)=M\left(P(v), \mathscr{G}_{\mathrm{SFM}}\right)
$$

where $M(P(v), \mathscr{G})$ means that the measures are computed based on the observational distribution $P(v)$ and the causal diagram G.

Proof sketch

\Longrightarrow Any quantity ID just from the SFM is the same for G_{1}, G_{2}

Identifiability in the Fairness Map

SFM's Identification

- In words, identification in our context means that L_{2} and L_{3} quantities can be computed using obs. (L_{1}) data:

	Measure	ID expression
	$\mathrm{TE}_{x_{0}, x_{1}}(y)$	$\sum_{z}\left[P\left(y \mid x_{1}, z\right)-P\left(y \mid x_{0}, z\right)\right] P(z)$
	Exp-SE ${ }_{x}(y)$	$\sum_{z} P(y \mid x, z)[P(z)-P(z \mid x)]$
	$\mathrm{NDE}_{x_{0}, x_{1}}(y)$	$\sum_{z, w}\left[P\left(y \mid x_{1}, z, w\right)-P\left(y \mid x_{0}, z, w\right)\right] P\left(w \mid x_{0}, z\right) P(z)$
	$\mathrm{NIE}_{x_{0}, x_{1}}(y)$	$\sum_{z, w} P\left(y \mid x_{0}, z, w\right)\left[P\left(w \mid x_{1}, z\right)-P\left(w \mid x_{0}, z\right)\right] P(z)$
	$\operatorname{ETT}_{x_{0}, x_{1}}(y \mid x)$	$\sum_{z}\left[P\left(y \mid x_{1}, z\right)-P\left(y \mid x_{0}, z\right)\right] P(z \mid x)$
	Ctf-SE ${ }_{x_{0}, x_{1}}(y)$	$\sum_{z} P\left(y \mid x_{0}, z\right)\left[P\left(z \mid x_{0}\right)-P\left(z \mid x_{1}\right)\right]$
	${\mathrm{Ctf}-\mathrm{DE}_{x_{0}, x_{1}}(y \mid x)}$	$\sum_{z, w}\left[P\left(y \mid x_{1}, z, w\right)-P\left(y \mid x_{0}, z, w\right)\right] P\left(w \mid x_{0}, z\right) P(z \mid x)$
	$\operatorname{Ctf-~}^{-1 E_{x_{0}, x_{1}}(y \mid x)}$	$\sum_{z, w} P\left(y \mid x_{0}, z, w\right)\left[P\left(w \mid x_{1}, z\right)-P\left(w \mid x_{0}, z\right)\right] P(z \mid x)$
	$z-\mathrm{TE}_{x_{0}, x_{1}}(y \mid x)$	$P\left(y \mid x_{1}, z\right)-P\left(y \mid x_{0}, z\right)$
	$z-\mathrm{DE}_{x_{0}, x_{1}}(y \mid x)$	$\sum_{w}\left[P\left(y \mid x_{1}, z, w\right)-P\left(y \mid x_{0}, z, w\right)\right] P\left(w \mid x_{0}, z\right)$
	$z-\mathrm{IE}_{x_{0}, x_{1}}(y \mid x)$	$\sum_{w} P\left(y \mid x_{0}, z, w\right)\left[P\left(w \mid x_{1}, z\right)-P\left(w \mid x_{0}, z\right)\right]$

Contrasts \& Identification - recap

	Measure	C_{0}	C_{1}	E_{0}	E_{1}	
	$\mathrm{TV}_{x_{0}, x_{1}}$	\emptyset	\emptyset	x_{0}	x_{1}	
	$\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	\emptyset	\emptyset	
	Exp-SE ${ }_{x}$	x	x	\emptyset	x	
	$\mathrm{NDE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	\emptyset	\emptyset	
	$\mathrm{NIE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	\emptyset	\emptyset	
$\&$ 	$\mathrm{ETT}_{x_{0}, x_{1}}$	x_{0}	x_{1}	x	x	
	Ctf-SE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{0}	x_{0}	x_{1}	
	Ctf-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	x	x	
	Ctf-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	x	x	
$\begin{gathered} N \\ \\| \\ N \end{gathered}$	$z-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	z	z	
	$z-\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	z	z	
	$z-\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	z	z	
$\begin{aligned} & \Delta \\ & \text { U } \\ & \text { i } \end{aligned}$	$v^{\prime}-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	v^{\prime}	v^{\prime}	
	$v^{\prime}-\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	v^{\prime}	v^{\prime}	
	$v^{\prime}-\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	v^{\prime}	v^{\prime}	
产	unit-TE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{1}	u	u	
	unit-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	u	u	
	$u^{\text {unit-IE }} \mathrm{I}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	u	u	

Contrasts that are identifiable under the SFM (without additional assumptions)

Contrasts that are not identifiable under the SFM (without additional assumptions)

Contrasts \& Identification - recap

	Measure	C_{0}	C_{1}	E_{0}	E_{1}
	$\mathrm{TV}_{x_{0}, x_{1}}$	\emptyset	\emptyset	x_{0}	x_{1}
	$\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	\emptyset	\emptyset
	Exp-SE ${ }_{x}$	x	x	\emptyset	x
	$\mathrm{NDE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	\emptyset	\emptyset
	$\mathrm{NIE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	\emptyset	\emptyset
$\underset{\sim}{+1}$	$\mathrm{ETT}_{x_{0}, x_{1}}$	x_{0}	x_{1}	x	x
	Ctf-SE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{0}	x_{0}	x_{1}
	Ctf-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	x	x
	Ctf-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	x	x
N	$z-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	z	z
N	$z-\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	z	z
	z-IE $\mathrm{x}_{0, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	z	z
\rightarrow	$v^{\prime}-\mathrm{TE}_{x_{0}, x_{1}}$	x_{0}	x_{1}	v^{\prime}	v^{\prime}
UI	$v^{\prime}-\mathrm{DE}_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	v^{\prime}	v^{\prime}
今	$v^{\prime}-\mathrm{IE}_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	v^{\prime}	v^{\prime}
菏	unit-TE ${ }_{x_{0}, x_{1}}$	x_{0}	x_{1}	u	u
	unit-DE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{1}, W_{x_{0}}$	u	u
	unit-IE ${ }_{x_{0}, x_{1}}$	x_{0}	$x_{0}, W_{x_{1}}$	u	u

identifiable under the SFM (without additional assumptions)

Estimation

Recall from Cl1: Inverse Probability Weighting (IPW) Derivation

Holds true for the SFM!

- If Z is a back-door set for X, Y, then

$$
\begin{aligned}
& P\left(\mathbf{y}_{x}\right)=\sum_{\mathbf{z}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P(\mathbf{z}) \\
&=\sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x}, \mathbf{z})} P(\mathbf{z}) \\
&=\sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})} P(\mathbf{z}) \\
&=\sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z}))}{P(\mathbf{x} \mid \mathbf{z})} \rightarrow \text { Entries of the joint distribution } \\
& \text { Fit a function } g(z) \text { that } \\
& \text { approximates this probability }
\end{aligned}
$$

Recall from Cl1: Inverse Probability Weighting (IPW) Derivation

- Assuming we have N samples, we can compute

$$
\begin{aligned}
P\left(\mathbf{y}_{x}\right) & =\sum_{\mathbf{z}} \frac{P(\mathbf{y}, \mathbf{x}, \mathbf{z})}{P(\mathbf{x} \mid \mathbf{z})} \\
& =\sum_{\mathbf{z}} \frac{\frac{1}{N} \sum_{i=1}^{N} 1_{\mathbf{Y}_{i}=\mathbf{y}, \mathbf{\mathbf { X } _ { i }}=\mathbf{x}, \mathbf{Z}_{i}=\mathbf{z}}}{g(\mathbf{z})} \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{\mathbf{z}} \frac{1_{\mathbf{Y}_{i}=\mathbf{y}, \mathbf{X}_{i}=\mathbf{x}, \mathbf{Z}_{i}=\mathbf{z}}}{g(\mathbf{z})} \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{1_{\mathbf{Y}_{i}=\mathbf{y}, \mathbf{,}, \mathbf{X}_{i}=\mathbf{x}, \mathbf{Z}_{i}=\mathbf{z}}}{g(\mathbf{z})} \rightarrow \begin{array}{l}
\text { Requires time proportional to } \\
\text { the number of samples } N
\end{array}
\end{aligned}
$$

Inverse Probability Weighting (IPW)

- Thus, a typical way to compute $E\left[y_{x}\right]$ is to use inverse propensity weighting (IPW) and an estimator of the form

$$
\frac{1}{n} \sum_{i=1}^{n} \frac{1\left(X_{i}=x\right) Y_{i}}{\widehat{p}\left(X_{i} \mid Z_{i}\right)}
$$

- The assumptions that we need (on top of the SFM)

Assumption (Positivity). The positivity assumption holds if $\forall x, z, P(X=x \mid Z=z)$ is bounded away from 0 , that is

$$
\delta<P(X=x \mid Z=z)<1-\delta
$$

for some $\delta>0$.

Beyond IPW

\Longrightarrow Double Machine Learning

Relationship to previous literature

- How does the presented framework of Causal Fairness Analysis relate to previous literature?
- In particular, we discuss
(i) Counterfactual Fairness (Kusner et. al., 2017)
(ii) Individual Fairness (Dwork et. al., 2012)
(iii) Predictive Parity (Chouldechova, 2017)

Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).
An outcome Y is said to be counterfactually fair if and only if

$$
P\left(y_{x}(u) \mid X=x, W=w\right)=P\left(y_{x^{\prime}}(u) \mid X=x, W=w\right), \forall x, x^{\prime}, w .
$$

W
$Y_{x_{0}, W_{1}} \mid X=x_{0}$

$$
Y_{x_{0}, W_{x}} \mid X=x_{0}
$$

Note: if the u is fixed, there are no probabilistic statements involved.

[^0]
Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).
An outcome Y is said to be counterfactually fair if and only if

$$
P\left(y_{x}(u) \mid X=x, W=w\right)=P\left(y_{x^{\prime}}(u) \mid X=x, W=w\right), \forall x, x^{\prime}, w \text {. }
$$

Intuition: granular measure of total effect.

Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).

An outcome Y is said to be counterfactually fair if and only if

$$
P\left(y_{x}(u) \mid X=x, W=w\right)=P\left(y_{x^{\prime}}(u) \mid X=x, W=w\right), \forall x, x^{\prime}, w .
$$

unit-level

$y_{x}(u)-y_{x^{\prime}}(u)=0, \quad \forall x, x^{\prime}, u \in \mathscr{U}$ consistent with authors' claim: "emphasize that counterfactual fairness is an individual-level definition, which is substantially different from comparing different individuals that happen to share the same "treatment" $X=x$ and coincide on the values of $W=w^{\prime \prime}$
across units

$$
P\left(y_{x} \mid X=x, W=w\right)=P\left(y_{x^{\prime}} \mid X=x, W=w\right)
$$

also consistent with authors' claim: "the distribution over possible predictions for an individual should remain unchanged in a world where an individual's protected attributes had been different"

Counterfactual Fairness

Definition (Counterfactual Fairness, Kusner et. al., 2017).
An outcome Y is said to be counterfactually fair if and only if

$$
P\left(y_{x}(u) \mid X=x, W=w\right)=P\left(y_{x^{\prime}}(u) \mid X=x, W=w\right), \forall x, x^{\prime}, w .
$$

> ambiguity in interpretation
the paper leaves space for

Counterfactual fairness (Kusner et. al., 2017)

Counterfactual fairness (Kusner et. al., 2017)

Counterfactual fairness (Kusner et. al., 2017)

Ctf-fair, Issue 1: Inadmissibility

Proposition. The unit-level total effect (unit-TE ${E_{x_{0}, x_{1}}}(y)$) and the (x, w)-specific total effect $\left((x, w)-\mathrm{TE}_{x_{0}, x_{1}}(y \mid x, w)\right)$ are not admissible w.r.t. the structural direct, indirect, and spurious criteria. Formally, we write

Str-DE-fair \Longrightarrow unit-TE-fair, Str-DE-fair $\Longrightarrow(x, w)$-TE-fair Str-IE-fair \Longrightarrow unit-TE-fair, Str-IE-fair $\Longrightarrow(x, w)$-TE-fair Str-SE-fair \Longrightarrow unit-TE-fair, Str-SE-fair $\Longrightarrow(x, w)$-TE-fair.

Counterfactual Fairness is inadmissible, therefore not suitable to reason about direct, indirect, or spurious effects.

Ctf-fair, Issue 2: Spurious Effects

Assumption: ancestral closure of set X.

COMPAS: age \perp race rejected ($p<0$. 001)

Adult: age \perp sex rejected ($p<0.001$)

COMPAS: race \perp sex rejected $(p<0.001)$

Adult: race \perp sex rejected ($p<0.001$)

redlining
religious segregation
rural/urban balance of genders in China

Ctf-fair, Issue 2: Spurious Effects

Assumption: ancestral closure of set X.
However, is this a realistic assumption?

COMPAS: age \perp race rejected ($\mathrm{p}<0.001$)
COMPAS: race \perp sex rejected $(p<0.001)$

 present in some practical settings.

Vignette Time! Male
redlining
religious segregation (include) spurious variations, which may be

Ctf-fair, Issue 3: Identifiability

Proposition. Suppose that \mathscr{M} is a Markovian model and that \mathscr{G} is the associated causal diagram. Assume that the set of mediators between X and Y is non-empty, $W \neq \varnothing$. Then, the measures unit-TE ${x_{x_{0}, x_{1}}}(y)$ and $(x, w)-\mathrm{TE}_{x_{0}, x_{1}}(y \mid x, w)$ are not identifiable from observational data, even if the fully specified diagram \mathscr{G} is known.

Counterfactual Fairness requires strong assumptions for identification.

Ctf-fair, Issue 3: Identifiability (Example)

Example. The startup company from our previous example has closed the hiring season. In the hiring process, the company achieved demographic parity, which means in this context that 50% of new hires were female. Now, the company needs to decide on each employee's salary. In order to be "fair", each employee is evaluated on how well they perform their tasks. The salary Y is then determined based on this information, but, due to a possibly subconscious bias of the executives while determining employees' salaries, gender may also affects how salaries are determined.

$$
\begin{aligned}
& \mathbf{S C M}\left\langle\mathscr{F}_{1}, P_{1}(U)\right\rangle \\
& X \leftarrow U_{X} \\
& W \leftarrow-X+U_{W} \\
& Y \leftarrow X+W+U_{Y} \\
& U_{X} \in\{0,1\}, P\left(U_{X}=1\right)=0.5, \\
& U_{W}, U_{Y} \sim N(0,1)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{SCM}\left\langle\mathscr{F}_{2}, P_{2}(U)\right\rangle \\
& X \leftarrow U_{X} \\
& W \leftarrow-X+(-1)^{X} U_{W} \\
& Y \leftarrow X+W+U_{Y} . \\
& U_{X} \in\{0,1\}, P\left(U_{X}=1\right)=0.5, \\
& U_{W}, U_{Y} \sim N(0,1) .
\end{aligned}
$$

Ctf-fair, Issue 3: Identifiability (Example)

$\operatorname{SCM}\left\langle\mathscr{F}_{1}, P_{1}(U)\right\rangle$

$$
\begin{aligned}
& X \leftarrow U_{X} \\
& W \leftarrow-X+U_{W} \\
& Y \leftarrow X+W+U_{Y} . \\
& U_{X} \in\{0,1\}, P\left(U_{X}=1\right)=0.5, \\
& U_{W}, U_{Y} \sim N(0,1) .
\end{aligned}
$$

$$
y_{x_{1}}(u)-y_{x_{0}}(u)=\underbrace{\left(1+\left(-1+u_{w}\right)+u_{y}\right)}_{y_{x_{1}}(u)}-\underbrace{\left(0+\left(-0+u_{w}\right)+u_{y}\right)}_{y_{x_{0}}(u)}=0 .
$$

$$
\begin{aligned}
& \mathbf{S C M}\left\langle\mathscr{F}_{2}, P_{2}(U)\right\rangle \\
& X \leftarrow U_{X} \\
& W \leftarrow-X+(-1)^{X} U_{W} \\
& Y \leftarrow X+W+U_{Y} . \\
& U_{X} \in\{0,1\}, P\left(U_{X}=1\right)=0.5, \\
& U_{W}, U_{Y} \sim N(0,1) .
\end{aligned}
$$

Counterfactual Fairness Summary

In summary, counterfactual fairness is:

- decomposable \& inadmissible (w.r.t DE, IE, SE),
- not identifiable in general, and
- oblivious to spurious effects (and corresponding business necessity requirements).

Relationship to previous literature

How does the presented framework of Causal Fairness Analvsis relate to previous literature?

(i) Counterfactual Fairness (Kusner et. al., 2017)
(ii) Individual Fairness (Dwork et. al., 2012)
(iii) Predictive Parity (Chouldechova, 2017)

Individual Fairness

Definition (Individual Fairness, Dwork et. al., 2012).

Let d be a fairness metric on $\mathscr{X} \times \mathscr{Z} \times \mathscr{W}$. An outcome Y is said to satisfy individual fairness if

$$
\left|P(y \mid x, z, w)-P\left(y \mid x^{\prime}, z^{\prime}, w^{\prime}\right)\right| \leq d\left((x, z, w),\left(x^{\prime}, z^{\prime}, w^{\prime}\right)\right) \quad \forall x, x^{\prime}, w, w^{\prime}, z, z^{\prime}
$$

Intuition: individuals similar w.r.t d should have similar outcomes.

Quick Detour: Optimal Transport

- What is optimal transport?

Monge (1781): how do we optimally transport the rubble into the pits?

- How do we define OT formally?

Given a measure μ over X and ν over Y the optimal transport problem is given by

$$
\min \int_{X \times Y} c(x, y) d \pi(x, y)
$$

where $c(x, y)$ is the cost function $\left(L_{1}, L_{2}\right)$ and π a transport plan with marginals μ, ν.

Quick Detour: Optimal Transport

- What do optimal transport plans look like?

- In general, dimension $d>1$, OT plans are not easy to find!

Summary:

Optimal Transport gives an intuitive way of measuring a distance between distributions which has been shown as useful in many sciences (mathematics, physics, statistics, etc.)

Individual Fairness: Local to Global

Proposition (OT bounds TV, Dwork et. al., 2012).

Suppose that the IF condition holds. Let the optimal transport cost between $Z, W \mid X=x_{1}$ and $Z, W \mid X=x_{0}$ be denoted by $\mathrm{OTC}_{x_{0}, x_{1}}^{d}((Z, W))$. Then, it holds that

$$
\left|\operatorname{TV}_{x_{0}, x_{1}}(y)\right| \leq C_{d} * \operatorname{OTC}_{x_{0}, x_{1}}^{d}((Z, W))
$$

(1) IF criterion
(2) Small $\operatorname{OTC}_{x_{0}, x_{1}}^{d}((Z, W))$

Small TV

DE?
IE ?
SE?

Local to Global: Intuition

Individual Fairness (Dwork. et. al., 2012)

Causal Fairness Analysis implications on IF:

- IF is oblivious to the underlying causal mechanisms.
- IF captures the direct effect only under the SFM.

Section 4.5.2

- IF with a sparse metric d is not admissible.
- IF with a complete metric d doesn't account for business necessity.

IF, Issue 1: Ignoring Causal Structure

Examples.

$\begin{aligned} & \Sigma \\ & \sum \\ & \vdots \\ & 0 \end{aligned}$	\mathcal{F}	A $\begin{aligned} & X \leftarrow U_{X Y} \\ & Z \leftarrow U_{Z} \\ & Y \leftarrow X-U_{X Y}+Z+U_{Y} \end{aligned}$	B $\begin{aligned} & X \leftarrow U_{X Z} \\ & Z \leftarrow U_{X Z}+U_{Z Y} \\ & Y \leftarrow U_{Z Y}+U_{Y} \end{aligned}$
	$P(u)$	$\begin{gathered} U_{X Y} \sim \text { Bernoulli(0.5) } \\ U_{Z}, U_{Y} \sim N(0,1) \end{gathered}$	$\begin{gathered} U_{X Z} \sim \text { Bernoulli }(0.5) \\ U_{Z Y}, U_{Y} \sim N(0,1) \end{gathered}$
	\mathcal{G}		$X \xrightarrow{\kappa^{\prime} \xrightarrow{\ldots \cdots} Z \cdots \cdots}+$

metric

$$
d\left((x, z),\left(x^{\prime}, z^{\prime}\right)\right)=\left|z-z^{\prime}\right|
$$

IF, Issue 1: Insensitive to the Causal Structure

Example A: We can compute that

$$
\begin{aligned}
E^{\mathscr{M}_{A}[y \mid x, z]} & =E^{\mathscr{M}_{A}}\left[X-U_{X Y}+Z+U_{Y} \mid x, z\right] \\
& =\underbrace{E^{\mathscr{M}_{A}}\left[X-U_{X Y} \mid x, z\right]}_{=0 \text { as } X=U_{X Y}}+E^{\mathscr{M}_{A}[Z \mid x, z]}+\underbrace{E^{\mathscr{M}_{A}}\left[U_{Y} \mid x, z\right]}_{=0} \\
& =z .
\end{aligned}
$$

IF holds, but direct effect still exists

Example B: We can compute that

$$
\begin{aligned}
E^{\mathscr{M}_{B}}[y \mid x, z] & =E^{\mathscr{M}_{B}}\left[U_{Z Y}+U_{Y} \mid x, z\right] \\
& =E^{\mathscr{M}_{B}}\left[Z-U_{X Z} \mid x, z\right]+\underbrace{E^{\mathscr{M}_{B}}\left[U_{Y} \mid x, z\right]}_{=0} \\
& =E^{\mathscr{M}_{B}}[Z-X \mid x, z]=z-x . \\
& \Longrightarrow \mid E^{\mathscr{M}_{B}}\left[y \mid x_{1}, z\right]-E^{\mathscr{M}_{B}\left[y \mid x_{0}, z^{\prime}\right]\left|=\left|z-1-z^{\prime}\right|\right.}
\end{aligned}
$$

IF does not hold, but direct effect does not exist

IF, Issue 1: Insensitive to the Causal Structure

Example A: We can compute that

$$
\begin{aligned}
E^{\mathscr{M}_{A}[y \mid x, z]} & =E^{\mathscr{M}_{A}}\left[X-U_{X Y}+Z+U_{Y} \mid x, z\right] \\
& =\underbrace{E^{\mathscr{M}_{A}}\left[X-U_{X Y} \mid x, z\right]}_{=0 \text { as } X=U_{X Y}}+E^{\mathscr{M}_{A}}[Z \mid x, z]+\underbrace{E^{\mathscr{M}_{A}}\left[U_{Y} \mid x, z\right]}_{=0} \\
& =z .
\end{aligned}
$$

IF is oblivious to the underlying causal

Exam structure, which translates in lack of both $E^{u_{0}}{ }^{1 /}$ necessity and sufficiency w.r.t. DE.

$$
\begin{aligned}
& =E^{\mathscr{M}_{B}}[Z-X \mid x, z]=z-x . \\
& \Longrightarrow \mid E_{=0}^{\mathscr{M}_{B}\left[y \mid x_{1}, z\right]-E^{M_{B}\left[y \mid x_{0}, z^{\prime}\right]}\left|=\left|z-1-z^{\prime}\right|\right.}
\end{aligned}
$$

IF does not hold, but direct effect does not exist

IF, Issue 2: Direct Effect (under suitable assumptions)

Proposition. Suppose that the metric d does not depend on the X variable, that is,

$$
d\left((x, z, w),\left(x^{\prime}, z^{\prime}, w^{\prime}\right)\right)=d\left((z, w),\left(z^{\prime}, w^{\prime}\right)\right)
$$

Then, under the assumptions of the Standard Fairness Model, the IF criterion implies that Ctf-DE equals 0 , that is

$$
\mathrm{IF} \Longrightarrow \mathrm{Ctf}_{\mathrm{D}} \mathrm{DE}_{x_{0}, x_{1}}(y \mid x)=0
$$

IF captures the direct effect - but under the assumptions entailed by the SFM

IF, Issue 3: Sparse metrics d suffer from decomposability issue

Example.

metric $d\left((x, z, w),\left(x^{\prime}, z^{\prime}, w^{\prime}\right)\right)=\left|w-w^{\prime}\right|$.

We can compute that $\left|P(y \mid x, z, w)-P\left(y \mid x^{\prime}, z^{\prime}, w^{\prime}\right)\right|=\left|\operatorname{expit}(w)-\operatorname{expit}\left(w^{\prime}\right)\right|$

$$
\leq \frac{1}{4}\left|w-w^{\prime}\right| \Longrightarrow \mathrm{IF} \text { holds! }
$$

However:

$$
\begin{aligned}
\mathrm{TV}_{x_{0}, x_{1}}(y) & =x-\mathrm{DE}_{x_{0}, x_{1}}\left(y \mid x_{0}\right)-x-\mathrm{IE}_{x_{1}, x_{0}}\left(y \mid x_{0}\right)-x-\mathrm{SE}_{x_{1}, x_{0}}(y) \\
& =\underbrace{(0 \%)}_{\text {direct }}-\underbrace{(14 \%)}_{\text {indirect }}-\underbrace{(-14 \%)}_{\text {spurious }},
\end{aligned}
$$

IF, Issue 3: Sparse metrics d suffer from decomposability issue

Example.

whenever the metric d is sparse
(complete metrics d addressed later)

4
However:

$$
\begin{aligned}
\mathrm{TV}_{x_{0}, x_{1}}(y) & =x-\mathrm{DE}_{x_{0}, x_{1}}\left(y \mid x_{0}\right)-x-\mathrm{IE}_{x_{1}, x_{0}}\left(y \mid x_{0}\right)-x-\mathrm{SE}_{x_{1}, x_{0}}(y) \\
& =\underbrace{(0 \%)}_{\text {direct }}-\underbrace{(14 \%)}_{\text {indirect }}-\underbrace{(-14 \%)}_{\text {spurious }},
\end{aligned}
$$

IF, Issue 4: complete metric d does not allow for business necessity

Part I. If $d\left((x, z, w),\left(x^{\prime}, z^{\prime}, w^{\prime}\right)\right)=\left\|z-z^{\prime}\right\|+\left\|w-w^{\prime}\right\|$ then $\operatorname{OTC}_{x_{0}, x_{1}}^{d}((Z, W))=0 \Longrightarrow X \Perp Z, W$.

Part II. If IF condition holds, then for Y binary

$$
X \Perp Y \mid Z, W
$$

Part III (I + II). $X \Perp Z, W \quad \wedge \quad X \Perp Y \mid Z, W \quad X \Perp Z, W, Y$

IF, Issue 4: complete metric d does not allow for business necessity

Part I. If $d\left((x, z, w),\left(x^{\prime}, z^{\prime}, w^{\prime}\right)\right)=\left\|z-z^{\prime}\right\|+\left\|w-w^{\prime}\right\|$
then $\operatorname{OTC}_{x_{0}, x_{1}}^{d}((Z, W))=0 \Longrightarrow X \Perp Z, W$.

Part II. If IF condition holds, then for Y binary

A complete metric d implies X is independent of all other attributes, which is a strict requirement.

Relationship to previous literature

(iii) Predictive Parity (Chouldechova, 2017)

Predictive Parity (PP)

Definition. Let \hat{Y} be the predictor of Y. We say that \hat{Y} satisfies predictive parity (PP) with respect to X, Y if

$$
P\left(y \mid x_{1}, \hat{y}\right)=P\left(y \mid x_{0}, \hat{y}\right) \quad \forall \hat{y} .
$$

Alternatively, the PP criterion can also be written as a conditional independence statement

$$
Y \Perp X \mid \widehat{Y} .
$$

```
X has no more information about
    Y once we know }\widehat{Y
```

Finally, define the predictive parity measure to be

$$
\operatorname{PPM}_{x_{0}, x_{1}}(y \mid \widehat{y})=P\left(y \mid x_{1}, \widehat{y}\right)-P\left(y \mid x_{0}, \widehat{y}\right)
$$

PP Intuition

(

Two key results on PP

Proposition 1 (PP \& Efficient Learning). Suppose that the predictor \widehat{Y} is based on the features X, Z, W. Suppose also that \widehat{Y} is an efficient learner, meaning that:

$$
\widehat{Y}(x, z, w)=P(y \mid x, z, w)
$$

Then, it follows that \widehat{Y} satisfies predictive parity w.r.t

PP happens "naturally" for good learners!

Proposition 2 (PP \& DP Impossibility). The fairness criteria of predictive parity and demographic parity,

$$
\begin{aligned}
& Y \Perp X \mid \hat{Y} \\
& \hat{Y} \Perp X
\end{aligned}
$$

are mutually exclusive except for in degenerate cases, when $Y \Perp X$.

What is PP really doing?

$$
\begin{aligned}
E\left(y_{x_{1}} \mid x_{1}, \widehat{y}\right)-E\left(y_{x_{0}} \mid x_{1}, \widehat{y}\right) & =\alpha_{X W} \alpha_{W Y}+\alpha_{X Y} \\
E\left(y_{x_{0}} \mid x_{1}, \widehat{y}_{x_{1}}\right)-E\left(y_{x_{0}} \mid x_{1}, \widehat{y}_{x_{0}}\right) & =-\left(\alpha_{X W} \alpha_{W Y}+\alpha_{X Y}\right)
\end{aligned}
$$

What is PP really doing?

Not in control of the decision-maker!
Just the 2nd term is!

Causal Predictive Parity (CPP)

Definition. Let \widehat{Y} be a predictor of the outcome Y, and let X be the protected attribute. Then we say that \widehat{Y} satisfies causal predictive parity (CPP) with respect to a counterfactual contrast (C_{0}, C_{1}, E, E) if

$$
E\left[y_{C_{1}} \mid E\right]-E\left[y_{C_{0}} \mid E\right]=E\left[\hat{y}_{C_{1}} \mid E\right]-E\left[\hat{y}_{C_{0}} \mid E\right] .
$$

Furthermore, we say that \widehat{Y} satisfies CPP with respect to a factual contrast $\left(C, C, E_{0}, E_{1}\right)$ if

$$
E\left[y_{C} \mid E_{1}\right]-E\left[y_{C} \mid E_{0}\right]=E\left[\hat{y}_{C} \mid E_{1}\right]-E\left[\hat{y}_{C} \mid E_{0}\right] .
$$

CPP implications?

"Modelling"

BN considerations:

"Implementing"

Requirements:

$$
\begin{aligned}
& \mathrm{DE}=0 \\
& \mathrm{SE}=0
\end{aligned}
$$

HE =arbittary?
$\operatorname{IE}(\hat{y})=\operatorname{IE}(y)!$
Causal PP

CPP implications?

"Modelling"

"Implementing"

BN considerations:

Fairness Tasks (Big Picture)

[^0]: Note: if the u is not fixed, averaging over posterior $P(u \mid X=x, W=w)$.

