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Task 2. Fair Predictions 
(Continued)



Failure of Optimal Transport  
(in the Individual Fairness framework)

4

• A possible approach for pre-processing is to use optimal transport

• The distribution  is transported onto P(V ∣ x1) P(V ∣ x0)

Pre-processing is not covered by the 
Fair Prediction Theorem. 

 
Q: How does it behave causally?



Failure of Optimal Transport  
(in the Individual Fairness framework)
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X ← UX

W ← ϵ(2UW − 1)

Y ← {UY ∨ 1(W > 0) if X = x0

UY ∨ 1(W < 0) if X = x1

X

W

Y

Example.

UX, UW, UY Bernoulli(0.5)

• A common approach for pre-processing is to use optimal transport

• The distribution  is transported onto P(V ∣ x1) P(V ∣ x0)

• In the example, we wish to compute NIEx0,x1(ỹ) = P(ỹx0,W̃x1
) − P(ỹx0

)



Failure of Optimal Transport  
(in the Individual Fairness framework)
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X = x0 distribution (blue)
X = x1 distribution (red)
transport map τ (green)

no transport across -axisy

 depends on W̃ Y

breaks the causal orderingSection 5.2 
Example 5.4



Failure of Optimal Transport  
(in the Individual Fairness framework)
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P(ỹx0,W̃x1
) = P(ỹx0,ϵ, W̃x1

= ϵ) + P(ỹx0,−ϵ, W̃x1
= − ϵ)

 for any ỹx0,ϵ = 1 u

 for  w.p. 


 w.p.  (1/4 for each )

W̃x1
= ϵ UW = 1

1
2

UW = 0
1
2

UY

yx0,−ϵ = UY

for ,  


with prob.  (0 for ) 

UY = 1 W̃x1
= − ϵ

1
4

UW = 1

P(ỹx0
) = P(yx0

)

P(ỹx0,W̃x1
) − P(ỹx0

) = Indirect  
Effect !≠ 0⟹

yx0
= UY ∨ 1(W > 0)

for , 

for ,  


with prob. 

UY = 1 yx0
= 1

UY = 0 yx0
= 1

1
2

1
2

1
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3
4

= −
1
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using the SCM

putting together



Towards the solution
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causal structure of the SFM is  
preserved for the predictor  ̂Y

(i)

W

X Y

Z

W

X ̂Y

Z

identification expressions for 
, , and  equal  

for the predictor 
x-DE x-SE x-IE 0

̂Y

(ii)
x-DEID

x0,x1( ̂y ) = ∑
z,w

[P( ̂y ∣ x1, z, w) − P( ̂y ∣ x0, z, w)]P(w ∣ x0, z)P(z ∣ x0) = 0

x-IEID
x0,x1( ̂y ) = ∑

z,w

P( ̂y ∣ x1, z, w)[P(w ∣ x1, z) − P(w ∣ x0, z)]P(z ∣ x) = 0

x-SEID
x1,x0( ̂y ) = ∑

z

P( ̂y ∣ x1, z)[P(z ∣ x1) − P(z ∣ x0)] = 0.

• how can we construct “causal” fair predictions?

Section 5.2.8



In-processing solution
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Theorem. Let  be the solution to the following optimization problem:̂Y

Then  satisfies 
̂Y

x-DEx0,x1( ̂y ∣ x0) = x-IEx1,x0( ̂y ∣ x0) = x-SEx1,x0( ̂y ) = 0.

̂Y = argminf E[Y − f(X, Z, W )]2

subject to x-DEID
x0,x1( ̂y ∣ x0) = 0

x-DEID
x1,x0( ̂y ∣ x0) = 0

x-IEID
x0,x1( ̂y ∣ x0) = 0

x-IEID
x1,x0( ̂y ∣ x0) = 0

x-SEID
x1,x0( ̂y ) = 0

Section 5.2.9 
Theorem 5.2



Pre-processing solution (Causal IF)
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Definition. The Causal Individual Fairness (Causal IF, for short) algorithm is 
performed on a data coming from an SCM  compatible with the standard fairness 
model (SFM), in the following way:

ℳ

X

W

Y

Z

W

Y

Z

x(1)

x(1)

⋮
x(n)

X
z(1)

z(2)

⋮
z(n)

Z
w(1)

w(2)

⋮
w(n)

W Y
SFM Data 𝒟

1) if , transport  
    

Z ∉ BN-set
Z ∣ x1 ↦ Z ∣ x0

z̃(1)

z̃(2)

⋮
z̃(n)

w̃(1)

w̃(2)

⋮
w̃(n)

y(1)

y(2)

⋮
y(n)

2) if , transport 

    

W ∉ BN-set
W ∣ x1, Z = z ↦ W ∣ x0, Z = z

3) transport  
   Y ∣ x1, Z = z, W = w ↦ Y ∣ x0, Z = z, W = w

ỹ(1)

ỹ(2)

⋮
ỹ(n)

Section 5.2 
Algorithm 2



Pre-processing solution (Causal IF)
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Theorem. Let  be an SCM compatible with the SFM. Let  be the optimal 
transport map obtained when applying Causal IF. Define a new, additional 
mechanism of the SCM  such that


                             


For the transformed outcome  we can then claim: 

              

Furthermore, the transformed outcome  also satisfies

 
                            

ℳ τ

ℳ

Ỹ ← τY(Y; X, Z, W ) .

Ỹ

if Z ∉ BN-set ⟹ x-SEx1,x0(ỹ) = 0.
if W ∉ BN-set ⟹ x-IEx1,x0(ỹ ∣ x0) = 0.

Ỹ

x-DEx0,x1(ỹ ∣ x0) = 0.

Section 5.2 
Theorem 5.3



Task 3: Fair Decision-Making

12W

Z

X

• Task 3 is about making fair decisions 
(possibly over time)


• What is the gap between Task 2 (fair 
prediction) and Task 3?


• Task 2 is usually about mimicking an 
existing  mechanism, while Task 3 
usually contains a utility function that 
goes “beyond the data”. 


• Example: predicting average GPA during 
undergraduate studies would be Task 2, 
while deciding to admit students to a 
course would be Task 3


• What are the implications of previous 
results for this setting?

fY

D
Decision

Downstream 
effects…

W

̂Y

Z

X
Constructed 
prediction

Y

T2

T3



College Admissions Example
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Example (T2 vs. T3). A university is deciding on admissions of 
prospective applicants. The information available to the selection 
committee is the following —gender ( ), the  SAT scores ( ), the 
predicted GPA score if enrolled ( ). Based on this information, the 
university needs to make a decision  on whether to admit the applicant.


X W
̂Y

D

W

Z

X
Constructed 
prediction

T2

T3

The aim of Task 2 is to produce predictions 
, which, for example, contain no direct 

effect of gender , that is, 
                    



   

̂Y
X

NDEx0,x1( ̂y ) = NDEx1,x0( ̂y ) = 0.

The aim of Task 3 is to decide which of the 
applicants get admitted based on some 

utility function . Different types of utility can 
be considered, e.g., the total expected 

income of the university coming from tuition 
fees; university reputation; minority 

representation.

U

̂Y

Y



Fair Decisions from  
Fair Predictions?
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• A first possible idea might be to leverage fair predictions to construct fair decisions.

Proposition. Let  be a fairness measure defined by a contrast  of the form 
. Suppose that a predictor  is fair w.r.t. , that is, .  

Suppose that a decision policy  is constructed simply as a transformation of , i.e., 
 
                    

Then, we can say that  is fair with respect to  if: 

(a) function  is linear, 
(b) measure  is a unit level measure.

μ C
(C1, C0, E1, E0) ̂Y μ μ( ̂y ) = 0

D ̂Y

D := fD( ̂Y ) .

D μ

fD
μ

• This suggests that transforming   does not always work in practice.̂Y

Chaining does not 
work in general.



Failure of Thresholding Policies
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Example (Thresholding). A university is deciding on admissions of prospective 
applicants. The information available to the selection committee is the following. 
Let  denote race (  for minority groups, for majority group),  the SAT 
score, and  the student's score on the admission exam. The predicted GPA 
of the student  is a function of , and the final admission decision is denoted 
by . Suppose the following (unknown) SCM describes this setting situation:


X x0 x1 W1
W2 ̂Y W2

D
X ← UX

W1 ← UW + X

W2 ← {W1 + 2(1 − X) if W1 > 0.5,
W1 otherwise .

̂Y ← W2 + 2

D ← 1( ̂Y > 3.75)

UX ∼ Bernoulli(0.8), UW ∼ Unif[0,1] .

NIEx1,x0( ̂y ) = 0.

NIEx1,x0(d) =
1
2

−
1
4

=
1
4

.

Can compute:



Failure of Thresholding
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Utility Functions & Examples
• Different types of utility can be considered 

when performing Task 3 in practice

17

Utility Type Mathematical 
Representation

University Reputation

Income From Tuition Fees

Minority Representation

λ1W1, where W1 is SAT score

λ2W2, where W2 is SE status

λ31(X = x0), with x0 protected



Decision-Making as in-processing
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Theorem. Let the decision policy  be constructed as the optimal solution toD

Then  satisfies 
D

x-DEsym
x (d ∣ x0) = x-IEsym

x (d ∣ x0) = x-SEx1,x0(d) = 0.

D = argmind E[U(d; X, Z, W, Y )]

subject to x-DEID
x0,x1(d ∣ x0) = 0

x-DEID
x1,x0(d ∣ x0) = 0

x-IEID
x0,x1(d ∣ x0) = 0

x-IEID
x1,x0(d ∣ x0) = 0

x-SEID
x1,x0(d) = 0

Section 5.3 
Theorem 5.4



• A popular class of utility functions takes the form: 
 
              U(D; X, Z, W, Y) = R(D, Y) + λ1(X = x0)D .

• (Nilforoshan et. al., 2022)’s result:  the policy  that is 
optimal for a specific  value will with large probability does 
not satisfy any causal notion of fairness!

dλ-opt

λ

Reward + Diversity Utility

19

Reward term measuring

individual’s qualifications

Incentivising 
disadvantaged groups

• The  parameter interpolates between the reward-only ( ) 
and minority-representation only ( ) solutions

λ λ = 0
λ = ∞

• Does the result sound familiar?



Causal Conceptions of  
Fairness as FPT Corollary
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Theorem. Let the utility function be given as 

                       
 
Let  denote the maximum utility policy that solves the problem 

                             
 
Further, let  denote the causally fair maximum utility policy that solves the problem 
                           

                           

Then, it is the case that 

                        

U(D; X, Z, W, Y ) = − [Y − D(X, Z, W )]2 + λ1(X = x0)D .

Dmax

Dmax = argmind linear E[U(d; X, Z, W, Y )] .

dCF

DCF = argmind linear E[U(d; X, Z, W, Y )]
subject to x-DEx0,x1(d ∣ x0) = 0

x-IEx0,x1(d ∣ x0) = 0,
x-SEx0,x1(d) = 0.

∃ϵ(nZ, nW) > 0 s.t. P(U(Dmax) − U(DCF) > ϵ(nZ, nW)) ≥
3
4

.

The result can be derived from the Fair Prediction Theorem!



How to interpret Causal 
Conceptions?

21

Example (College Admissions: Who is who?). A university is 
deciding on admissions of prospective applicants. The information 
available to the selection committee is the following. Let  denote 
race (  for minority groups,  for majority group),  denotes the 
SAT score,  denotes the socio-economic status of the family of the 
student (  for poor,  for rich). Let  be the decision 
whether to admit an applicant. Suppose that the following SCM 
describes the situation: 
 
 
 

X
x0 x1 W

Z
Z = 0 Z = 1 D

X ← UX
Z ← UZ

W ← UW − 5(1 − Z)(1 − X)
D ← fD(X, W ),

UX ∼ Bernoulli(0.8),
UZ ∼ Bernoulli(0.3),
UW ∼ Unif[0,1] .



How to interpret Causal 
Conceptions?

22

 
SCM Interpretation: 80% of applicants from the majority group, and 
10% of the applicants come from privileged socio-economic 
background. Applicants from low income minority families have 
lower SAT scores on average, compared to their majority group 
counterparts. For the high-income families, there is no difference in 
the SAT scores between the majority and minority groups. 
 
 
 

X ← UX
Z ← UZ

W ← UW − 5(1 − Z)(1 − X)
D ← fD(X, W ),

UX ∼ Bernoulli(0.8),
UZ ∼ Bernoulli(0.3),
UW ∼ Unif[0,1] .



W

Z

X D

D0−opt

Dλ−opt
picks these guys 

because of factual 
outcome

DCF
picks these guys


because of 
counterfactual


outcome



Task 3: Outcome Control
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W

Y

Z

X

• There is an interesting specific setting 
of Task 3 (Decision-Making) in which 
the decision variable  possibly 
influences the outcome of interest  
we are trying to optimize.

D
Y

D

Discretion of the 
decision-maker

• We refer to this setting as 
Outcome Control.

• Examples range from criminal justice 
(  recidivism,  detention) to medical 
applications (  survival,  surgery).
Y D

Y D

• How can we conceptualize fairness in 
such instances and leverage the 
previously developed tools? 



Example (Judge and Oracle). A district court judge has to make 
decisions about whether to detain or release individuals that have been 
charged with a similar offense (  for detaining,  for 
releasing). The judge assesses a total of 500 individuals, half of whom 
are female, but has limited resources and can detain at most 100 of 
them. The judge's objective is to minimize the number of people who 
will re-offend (  for re-offending,  for not re-offending). 
However, the judge has access to an oracle that knows the potential 
outcomes  for every individual. Who does the judge detain?

D = 0 D = 1

Y = 0 Y = 1

Yd0
, Yd1

250

250

Potential outcomes  tell us:(Yd0
, Yd1

)

(0,0) those who always re-offend,
(1,1) those who never re-offend,
(1,0) those who re-offend only if detained,
(0,1) those who re-offend only if released .

100 100 Pick 50 of each!



Units  𝒰

Unsafe

Complier

Defier

Safe

x1Females

Males x0



Principal Fairness
• The appealing intuitive reasoning motivates the 

definition of principal fairness (Imai & Jiang, 2020): 
 
           P(d ∣ yd0

, yd1
, x1) = P(d ∣ yd0

, yd1
, x0)

27

Warning: 
Joint distribution over counterfactual 

outcomes is notoriously difficult to get!

⟹ Proposition. Principal Fairness is not identifiable from any 
combination of observational and experimental data.

Imai & Jiang solution: Monotonicity 
 

Assumption: Yd1
(u) ≥ Yd0

(u)

Defiers! 
(Think medical)



Decision-Maker’s Perspective
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• So far, we considered perfect knowledge, which allows perfect utility!

Example (Cancer Surgery). Clinicians at CUMC need to decide which 
cancer patients should undergo a cancer surgery in order to improve 
survival . They have information on sex  and illness severity  
determined from tissue biopsy. The SCM is given by:


Y X W

X ← UX

W ← X + (−1)X UW

D ← fD(X, W )

Y ← 1(UY +
1
3

WD −
1
5

W > 0.5) .

UX ∈ {0,1}, P(UX = 1) = 0.5,
UW, UY ∼ Unif[0,1],

The clinicians compute:      
P(yd1

= 1 ∣ w, x1) − P(yd0
= 1 ∣ w, x1) =

w
3

P(yd1
= 1 ∣ w, x0) − P(yd0

= 1 ∣ w, x0) =
w
3

.
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Safe Complier Unsafe

Oracle vs. Decision-Maker

Why are we seeing this 
difference? 



Oracle vs. Decision-Maker: 
Intuition

30



Benefit Fairness
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P(decision ∣ Δ, ) = P(decision ∣ Δ, )

Definition. Define the degree of benefit  as: 

    
    We say that the pair  satisfies benefit fairness (BF, for short) if 

    
 

Δ

Δ(x, z, w) = P(yd1
∣ x, z, w) − P(yd0

∣ x, z, w) .
(Y, D)

P(d ∣ Δ = δ, x0) = P(d ∣ Δ = δ, x1) ∀δ .



Canonical Types and Guarantees
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• Principal Strata types “Safe”, “Unsafe”, “Complier”, “Defier” are 
sometimes referred to as canonical types.


• Can we provide results on the benefit  using the canonical types?Δ

Proposition A. Let  denote the proportions of canonical types for a set of 
covariates . It then follows that 
                                           

                                    

(s, d, c, u)
(x, z, w)

Δ(x, z, w) := P(yd1
∣ x, z, w) − P(yd0

∣ x, z, w)
= c(x, z, w) − d(x, z, w) .

Proposition B. Let  and . It 
then follows that if  that 
 

                                                    

 
In particular, the above bounds are tight.

m1(x, z, w) = P(yd1
∣ x, z, w) m0(x, z, w) = P(yd0

∣ x, z, w)
m1 ≥ m0

d ∈ [0, min(m0,1 − m1)],
c ∈ [m1 − m0, m1] .



Canonical Types and Guarantees

33

Section 5.3.3



Decision-Making Problem
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Definition. The optimal decision-making problem is defined as finding the solution to 
the following optimization problem, given a fixed budget : 

    

       

b

d* = argmaxd E[Yd]
subject to P(d) ≤ b .

Yd = (1 − D)Yd0
+ DYd1

Yd1
= 1(safe) + 1(complier)

Yd0
= 1(safe) + 1(defier) }⟹ E[Yd] = P(safe) + E[D1(complier)]



Algorithmic approach for  
Benefit Fairness

35

:

But what if there is still 
a disparity?

Proxy for c − d



Is there still a gap?

36

W

Y

Z

X

D

Discretion of the 
decision-maker

• With benefit fairness, we make sure that both 
 and  groups are treated equally at any 

fixed level of the benefit .
x0 x1

Δ

• Can this still result in a large gap between 
groups in terms of the allocation of 
resources?

• Yes, when the benefit distribution is quite 
different between the groups!

Q: So how can we solve this 
problem?



Controlling the Gap
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1) Use the Decision-Making with Benefit Fairness Algorithm to construct a policy d

2) Decompose the total variation induced by the decision policy  based on the Fairness 
Map


                        

d

P(d ∣ x1) − P(d ∣ x0) = DE + IE + SE .

3) Based on expert knowledge, determine if

3a) There is causal unfairness in the benefit through a contrast C = (C0, C1)

3b) There is a “purely distributive” need for reducing the total variation

  
-> Repeat Step 1) by using different thresholds  for the  groupsδ(x0)

b , δ(x1)
b x0, x1

 Use Causal Benefit Fairness:          

E(yC1,d1
∣ x, z, w) = E(yC0,d1

∣ x, z, w) ∀x, z, w
E(yC1,d0

∣ x, z, w) = E(yC0,d0
∣ x, z, w) ∀x, z, w

P(d ∣ Δ, x0) = P(d ∣ Δ, x1) .



Task 3: Long-term effects
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• We discussed Task 3 with a 
specific utility function -> we 
call this the -step DM


• We discussed Task 3 with a 
specific outcome to be 
controlled -> we call this the 

-step DM


• Naturally, it is also possible 
to think about a -step DM


• We leave this challenge for 
future work -> very exciting 
problem, related to RL!

0

1

k

W Y1 Yk

X D1 Dk

Z

……

……

SFM like

}

decisions taken over time


