Causal Fairness Analysis (Causal Inference II - Lecture 6)

Elias Bareinboim Drago Plecko

Columbia University Computer Science

Reference:

D. Plecko, E. Bareinboim. Causal Fairness Analysis. TR R-90, CausalAl Lab, Columbia University. <u>https://causalai.net/r90.pdf</u>

Moving beyond SFM

Measures	direct, indirect, spurious
Business Necessity	$\{\{\emptyset\}, \{Z\}, \{W\}, \{Z, W\}\}$
Fair Prediction	Causal IF

Measures	variable specific
Business Necessity	any $V' \subseteq V$
Fair Prediction	fairadapt

Motivating Example

Example (COMPAS Business Necessity). Courts at Broward County, Florida, predict the risk of re-offending within 2 years, based on demographic information Z (Z_1 for gender, Z_2 for age), race X (x_0 denoting Majority, x_1 Minority), juvenile offense counts J, prior offense count P, and degree of charge D. A causal analysis using the Fairness Cookbook by ProPublica revealed that:

Ctf-IE_{x₁,x₀}(y | x₁) =
$$-5.7\% \pm 0.5\%$$
,
Ctf-SE_{x₁,x₀}(y) = $-4.0\% \pm 0.9\%$,

After the court hearing, the judge ruled that using the attributes age (Z_2), prior count (P), and charge degree (D) were not discriminatory, but using the attributes juvenile count (J) and gender (Z_1) was.

How can the ProPublica extend their findings based on this decision?

Motivating Example

 $\mathsf{Ctf}\mathsf{-}\mathsf{SE}_{x_1,x_0}(y) = \underbrace{\mathsf{Ctf}}_{x_1,x_0}(y) + \underbrace{\mathsf{Ctf}}_{x_1,x_0}(y), \\ \underbrace{\mathsf{Ctf}}_{gender} \underbrace{\mathsf{Ctf}}_{age} \underbrace{\mathsf{Ctf$

Refining Spurious Effects

- We start by refining the spurious effect notion $Exp-SE_{x}(y)$
- What is our target in terms of Structural Fairness?

Str-SE-BN_X(Y) = 1(an^{ex}(Y) \cap an^{ex}(X) \cap $U_{BN}^C = \emptyset$).

• How can we get a decomposition

 $\mathsf{Exp-SE}_{x}(y) = \mathsf{Exp-SE}_{x}^{Z_{1}}(y) + \mathsf{Exp-SE}_{x}^{Z_{2}}(y)$?

New Primitive: Intuition

Basic Idea: Integrated Submodel

Definition. Let \mathcal{M} be an SCM. Let $Z' \subseteq Z$ be a subset of the exogenous variables. Define by $\mathcal{M}^{Z'}$ the following SCM

$$\mathcal{M}^{Z'=z'} = \sum_{z} P^{\mathcal{M}}(Z'=z') \mathcal{M}_{Z'=z'}.$$

That is, in $\mathcal{M}^{Z'}$ the variables Z' are sampled from the observational distribution of the SCM, after which the submodel $\mathcal{M}_{Z'=z'}$ is used to obtain all other observables $V \setminus Z'$.

Y

X

like in a randomized control trial

Basic Idea: Integrated Submodel

 $Z \operatorname{empty} \Longrightarrow X, Y \operatorname{associated} \operatorname{as}$ in the observational P(V)

Z neither empty nor full \implies X, Y associated by some, but not all Us

all of $Z \Longrightarrow X$, Y independent like in a randomized control trial

I-Submodel: Example

How are conditional probabilities computed?

$$P^{\mathcal{M}^{Z_{1}}}(y \mid x) = \sum_{z_{1}} P^{\mathcal{M}}(z_{1}) P^{\mathcal{M}}(y \mid x, do(z_{1}))$$

= $\sum_{z_{1}} P^{\mathcal{M}}(z_{1}) P^{\mathcal{M}}(y \mid x, z_{1})$ (2nd rule of do-calculus)
= $\sum_{z_{1}, z_{2}} P^{\mathcal{M}}(z_{1}) P^{\mathcal{M}}(z_{2} \mid z_{1}, x) P^{\mathcal{M}}(y \mid x, z_{1}, z_{2})$ [D]

Sampling-Evaluation Loop's Perspective

Spurious Decomposition

Theorem. Let U_1, \ldots, U_k be the subset of exogenous variables that lie on top of a spurious trek between X and Y. Let $Z_{[i]}$ denote the variables Z_1, \ldots, Z_i ($Z_{[0]}$ denotes the empty set \emptyset). Then, using the term

$$\mathsf{Exp-SE}_{x}^{A,B}(y) = P^{\mathscr{M}^{A}}(y \mid x) - P^{\mathscr{M}^{B}}(y \mid x),$$

we can decompose the experimental spurious effect as follows:

$$\begin{aligned} \mathsf{Exp-SE}_{x}(y) &= P(y \mid x) - P(y_{x}) \\ &= \sum_{i=0}^{k-1} \mathsf{Exp-SE}_{x}^{Z_{[i]}, Z_{[i+1]}}(y) \\ &= \sum_{i=0}^{k-1} P^{\mathscr{M}^{Z_{[i]}}}(y \mid x) - P^{\mathscr{M}^{Z_{[i+1]}}}(y \mid x) \,. \end{aligned}$$

Decomposing $Exp-SE_{\chi}(y)$

Target quantity to decompose: $Exp-SE_x(y) = P(y \mid x) - P(y_x)$

Decomposing Exp-SE_{χ}(y)

Towards latent decompositions

- We managed to decompose the spurious effect by attributing the variations to observable Z_1, \ldots, Z_k .
- When expanding the SFM, however, we might have bidirected confounding arrows - can we extend our approach?
- What is the best starting point?

Look at attribution of variations to U_1, \ldots, U_k in the Markovian case

Exogenous Integrated Submodel

Definition. Let \mathcal{M} be an SCM. Let $U_Z \subseteq U$ be a subset of the exogenous variables. Define by \mathcal{M}^{U_Z} the following SCM

$$\mathcal{M}^{U_Z} = \sum_{u_Z} P^{\mathcal{M}}(U_Z = u_Z) \mathcal{M}_{U_Z = u_Z}.$$

That is, in \mathcal{M}^{U_Z} the exogenous variables U_Z are determined from the distribution P(U) of the SCM, after which the submodel $\mathcal{M}_{U_Z=u_Z}$ is used to obtain the all the observables V.

Exogenous Integrated Submodel

 $U_Z \text{ empty} \Longrightarrow X, Y \text{ associated}$ as in the observational P(V)

 U_Z neither empty nor full \Longrightarrow X, Y associated by some, but

 U_Z of all $Z \Longrightarrow X, Y$ independent like in a randomized control trial

Spurious Decomposition (Exogenous)

Theorem. Let U_1, \ldots, U_k be the subset of exogenous variables that lie on top of a spurious trek between *X* and *Y*. Let $U_{[i]}$ denote the variables U_1, \ldots, U_i ($U_{[0]}$ denotes the empty set \emptyset). Then, using the term

$$\mathsf{Exp-SE}_{x}^{A,B}(y) = P^{\mathscr{M}^{A}}(y \mid x) - P^{\mathscr{M}^{B}}(y \mid x),$$

we can decompose the experimental spurious effect as follows:

$$\begin{aligned} \mathsf{Exp-SE}_{x}(y) &= P(y \mid x) - P(y_{x}) \\ &= \sum_{i=0}^{k-1} \mathsf{Exp-SE}_{x}^{U_{[i]}, U_{[i+1]}}(y) \\ &= \sum_{i=0}^{k-1} P^{\mathscr{M}^{U_{[i]}}}(y \mid x) - P^{\mathscr{M}^{U_{[i+1]}}}(y \mid x) \,. \end{aligned}$$

Spurious Decomposition Equivalence

Theorem. Let Z_1, \ldots, Z_k be the confounders between variables X and Y, sorted in any valid topological ordering. Denote the exogenous variables corresponding to Z_1, \ldots, Z_k as U_1, \ldots, U_k , respectively. Let $Z_{[i]} = \{Z_1, \ldots, Z_i\}$ and $U_{[i]} = \{U_1, \ldots, U_i\}$. It then holds that

$$P^{\mathcal{M}^{\mathbb{Z}[i]}}(V) = P^{\mathcal{M}^{\mathbb{U}[i]}}(V),$$

that is, the induced distributions over the observables V for the integrated submodel $\mathcal{M}^{Z_{[i]}}$ and the exogenous integrated submodel $\mathcal{M}^{U_{[i]}}$ are equal.

we have an attribution with respect to latents that is equivalent (in Markovian, topological order case)

Spurious Decomposition Equivalence

Case 1: Fixing Z variables one by one

Spurious Decomposition Equivalence

Can we use the same latent attribution approach to extend to Semi-Markovian models? Note that we have a primitive that can attribute variations to the latent Us!

Semi-Markovian Models: Treks

Definition. Let \mathscr{G} be the causal diagram of a Semi-Markovian model. A trek τ from X to Y is an ordered pair of causal paths (g_l, g_r) with a common exogenous source $U_i \in U$. That is, g_l is a causal path $U_i \to \ldots \to X$ and g_r is a causal path $U_i \to \ldots \to Y$.

The common source U_i is called the top of the trek (ToT), denoted top (g_l, g_r) . A trek is called spurious if g_r is a causal path from U_i to Y, i.e., not intercepted by X.

Exogenous Set-Specific Effects

Definition. Let $U_{sToT} \subseteq U$ be the set of trek tops. Suppose $A \subseteq B \subseteq U_{sToT}$. The exogenous experimental spurious effect is defined as

$$\mathsf{Exp-SE}_{x}^{A,B}(y) = P^{\mathscr{M}^{A}}(y \mid x) - P^{\mathscr{M}^{B}}(y \mid x).$$

Admissibility with respect to Structural Fairness Measures

Lemma. Let $U_{BN} \subseteq U$ be a subset of the exogenous confounders of X, Y that fall under business necessity. Let U_{BN}^C denote the exogenous ancestors of X that do not fall under business necessity, that is $U_{BN}^C = \operatorname{an}^{e_X}(X) \setminus U_{BN}$. Then the measures $\operatorname{Exp-SE}_x^{\emptyset, U_{BN}^C}(y)$, $\operatorname{Exp-SE}_x^{U_{BN}, U}(y)$ are admissible with respect to the structural criterion $\operatorname{Str-SE}(U_{BN})_X(Y)$, that is

$$(\mathsf{Str}\mathsf{-}\mathsf{SE}\mathsf{-}\mathsf{BN}_X(Y) = 0) \implies (\mathsf{Exp}\mathsf{-}\mathsf{SE}_x^{\emptyset,U_{BN}^C}(y) = 0)$$
$$(\mathsf{Str}\mathsf{-}\mathsf{SE}\mathsf{-}\mathsf{BN}_X(Y) = 0) \implies (\mathsf{Exp}\mathsf{-}\mathsf{SE}_x^{U_{BN},U}(y) = 0).$$

Since they are admissible, we will be able to add them to the Fairness Map (TBD)

Semi-Markovian Spurious Decomposition

Theorem. Let U_1, \ldots, U_k be the subset of exogenous variables that lie on top of a spurious trek between *X* and *Y*. Let $U_{[i]}$ denote the variables U_1, \ldots, U_i ($U_{[0]}$ denotes the empty set \emptyset). The experimental spurious effect can be decomposed as follows:

$$\begin{aligned} \mathsf{Exp-SE}_{x}(y) &= P(y \mid x) - P(y_{x}) \\ &= \sum_{i=0}^{k-1} \mathsf{Exp-SE}_{x}^{U_{[i]}, U_{[i+1]}}(y) \\ &= \sum_{i=0}^{k-1} P^{\mathscr{M}^{U_{[i]}}}(y \mid x) - P^{\mathscr{M}^{U_{[i+1]}}}(y \mid x) \end{aligned}$$

Semi-Markovian Spurious Decomposition

Identification of Spurious

Definition (Anchor Set).

$$\mathsf{AS}(U_1, \dots, U_l) = \bigcup_{i=1}^l \mathsf{ch}(U_i) \backslash X.$$
 observables
"touched" by U

Definition (Precedence Relation).

 U_i topologically before U_i

$$U_i \stackrel{_{PR}}{\leq} U_j \iff \mathsf{AS}(U_j) \cap \{\mathsf{AS}(U_i) \cup \mathsf{an}(\mathsf{AS}(U_i))\} \neq \emptyset.$$

Theorem (ID of Spurious Effects). $P^{\mathcal{M}^A}(y \mid x)$ is identifiable from observational data P(V) if the following hold:

(i) $Y \notin AS(A)$ *Y* not touched (ii) $AS(A) \cap AS(U_{sToT} \setminus A) = \emptyset$ touched observables disjoint (iii) there is no $U_j \in U_{sToT} \setminus A$ such that $\exists U_i \in A$ for which $U_j \stackrel{PR}{\leq} U_i$. no precedence between set elements

Theorem (ID of Spurious Effects). $P^{\mathcal{M}^A}(y \mid x)$ is identifiable from observational data P(V) if the following hold:

(i) $Y \notin AS(A)$ *Y* not touched (ii) $AS(A) \cap AS(U_{sToT} \setminus A) = \emptyset$ touched observables disjoint (iii) there is no $U_j \in U_{sToT} \setminus A$ such that $\exists U_i \in A$ for which $U_j \stackrel{PR}{\leq} U_i$. no precedence between set elements

x-specific spurious?

• Target: Ctf-SE_{$$x_0,x_1$$}(y) = $P(y_{x_0} | x_1) - P(y | x_0)$

Definition (Exogenous *x***-specific Integrated Submodel).** Define by $\mathcal{M}_x^{U_Z}$ the following SCM:

$$\mathcal{M}_x^{U_Z} = \sum_{u_Z} P^{\mathcal{M}}(U_Z = u_Z \mid X = x) \mathcal{M}_{U_Z = u_Z}.$$

Definition (Exogenous *x***-specific spurious).**

Ctf-SE^{A,B}_{x_0,x_1}(y) =
$$P^{\mathscr{M}^A_{x_1}}(y \mid x_0) - P^{\mathscr{M}^B_{x_1}}(y \mid x_0)$$
.

Theorem (*x***-specific exogenous spurious decomposition).**

$$\mathsf{Ctf-SE}_{x_0,x_1}(y) = \sum_{i=0}^{m-1} \mathsf{Ctf-SE}_{x_0,x_1}^{U_{[i]},U_{[i+1]}}(y)$$

Refining Indirect Effects

- Target: refine the quantity $NIE_{x_0,x_1}(y)$
- What is our target in terms of Structural Fairness?

Str-IE-BN_X(Y) = 1(an(Y)
$$\cap$$
 ch(X) \cap W^C_{BN} = Ø).

• How can we get a decomposition

$$\mathsf{NIE}_{x_0,x_1}(y) = \mathsf{NIE}_{x_0,x_1}^{W_1}(y) + \mathsf{NIE}_{x_0,x_1}^{W_2}(y) ?$$

Set-specific indirect

Definition (Set-specific indirect effect). Let W_A , W_B be nested subsets of the mediators W, so that $W_A \subseteq W_B$. Let W_{A^C} and W_{B^C} denote the complements of W_A, W_B in W. We then define the E-specific indirect effect with respect to sets W_A, W_B as $E - \mathsf{IE}_{x_0, x_1}^{W_A, W_B}(y) = P(y_{x_0, (W_B)_{x_1}, (W_BC)_{x_0}})$ $P(y_{x_0,(W_A)_{x_1},(W_AC)_{x_0}})$ EE). x_0 x_0 x_1 x_1 $W_{B \setminus A}$ $W_A \longrightarrow W_{B \setminus A} \longrightarrow W_{B^C}$ W_{BC} $W_A \longrightarrow$

Admissibility with respect to Structural Measures

Lemma. Let $W_{BN} \subseteq W$ be a subset of the mediators that fall under business necessity. Then the measure E-IE $_{x_0,x_1}^{\emptyset,W_{BN}^C}(y)$ is admissible with respect to the structural criterion Str-IE $(W_{BN})_X(Y)$, that is

$$(\mathsf{Str-IE-BN}_X(Y) = 0) \implies (E - \mathsf{IE}_{x_0, x_1}^{\emptyset, W_{BN}^C}(y) = 0),$$
$$(\mathsf{Str-IE-BN}_X(Y) = 0) \implies (E - \mathsf{IE}_{x_0, x_1}^{W_{BN}, W}(y) = 0).$$

Since they are admissible, we will be able to add them to the Fairness Map (TBC)

Decomposition of Indirect

Theorem. Let W_1, \ldots, W_k denote the set of mediators, sorted in a topological order. Define $W_{[i]}$ as the set $\{W_1, \ldots, W_i\}$ and $W_{-[i]}$ as $\{W_{i+1}, \ldots, W_k\}$. The *E*-specific indirect effect can then be decomposed as

$$\begin{split} E^{-lE_{x_0,x_1}}(y) &= P(y_{x_0,W_{x_1}} \mid E) - P(y_{x_0} \mid E) \\ &= \sum_{i=0}^{k-1} E^{-lE_{x_0,x_1}^{W_{[i]},W_{[i+1]}}}(y) \\ &= \sum_{i=0}^{k-1} P(y_{x_0,(W_{[i+1]})_{x_1},(W_{-[i+1]})_{x_0}} \mid E) - P(y_{x_0,(W_{[i]})_{x_1},(W_{-[i]})_{x_0}} \mid E) \,. \end{split}$$

Lack of symmetry

 A lack of symmetry arises because we can consider either a x₀ → x₁, or x₁ → x₀ transition, and similarly for the BN transition.
As a consequence, note that:

and analogously for Ctf-IE_{x_1,x_0}($y \mid x$), and also for the spurious.

- How can we fix this problem?
- \implies Take an average over the transitions!

Lack of symmetry

Definition. Define the *x*-specific indirect and spurious measures under business necessity as

$$x-\mathsf{IE}^{\text{sym-BN}}(y \mid x) = \frac{1}{4} \left(\mathsf{Ctf-IE}_{x_{1},x_{0}}^{\emptyset,W_{BN}^{C}}(y \mid x) + \mathsf{Ctf-IE}_{x_{1},x_{0}}^{W_{BN},W}(y \mid x) - \mathsf{Ctf-IE}_{x_{0},x_{1}}^{W_{BN},W}(y \mid x) \right)$$
$$\mathsf{Ctf-IE}_{x_{0},x_{1}}^{\emptyset,W_{BN}^{C}}(y \mid x) - \mathsf{Ctf-IE}_{x_{0},x_{1}}^{W_{BN},W}(y \mid x) \right)$$
$$x-\mathsf{SE}^{\text{sym-BN}}(y) = \frac{1}{4} \left(\mathsf{Ctf-SE}_{x_{1},x_{0}}^{\emptyset,U_{BN}^{C}}(y) + \mathsf{Ctf-SE}_{x_{1},x_{0}}^{U_{BN},U}(y) - \mathsf{Ctf-SE}_{x_{0},x_{1}}^{U_{BN},U}(y) - \mathsf{Ctf-SE}_{x_{0},x_{1}}^{U_{BN},U}(y) \right).$$

Extended Fairness Map

Mechanisms Axis

Task 1 (Extended)

Extended Fairness Cookbook

1) Obtain data on past decisions \mathcal{D} .

2) Determine the (possibly simplified) causal diagram \mathscr{G} (w.r.t. underlying \mathscr{M}^*).

- 3) Determine the **Business Necessity** (BN) set (now arbitrary!).
- 4) Test the following two hypotheses:

Task 2 (Extended)

Fairadapt: Sequential Optimal Transport Plecko & Meinshausen, JMLR 2020

- joint optimal transport induces a dependency of W on Y, therefore *breaking the causal structure*
- instead, we perform the Optimal Transport sequentially

Recap: Fair Prediction Theorem on COMPAS

(ii) $TV_{x_0, x_1}(\overset{\Lambda}{y})$ decomposition: Reweighing on COMPAS

(iv) $TV_{x_0, x_1}(\hat{y})$ decomposition: Reject-option on COMPAS

Fairadapt: Result on COMPAS

Complexity Cascade

Foundations of Causal Inference

Fairness Examples & the SFM

FPCFA

Legal Doctrines of Discrimination Structural Fairness Criteria / Doctrines

Decomposing Variations

Admissibility & Power

Explainability Plane

TV family of measures

Power in practice

Unit-level measures

Towards *x*, *z*, *v*-specific

TV family as contrasts

Fairness Map

Decomposability, Admissibility and Power in the Map

Corollaries of Fairness Map

Identification & Estimation

Understanding previous literature through the Map

Counterfactual Fairness Individual Fairness Predictive Parity

Task 1: Bias Quantification

Fairness Cookbook

Quantification over time

Quantification with Y, \hat{Y}

Task 2: Fair Prediction

Biased Reality -> Biased Data -> Biased Future?

Pre-, In-, Post- processing

Fair Prediction Theorem

Task 3: Fair Decision-Making

Chaining Predictions to Decisions Fails

Different types of utility

Outcome Control Task

Principal Fairness & Benefit Fairness

Canonical Types

Decomposing the Gap

Task 3 fully blown version

Beyond the SFM

Decomposing spurious effects: Integrated Submodels

Integrated Submodels for Semi-Markovian models

Identifiability

Decomposing Indirect Effects

Admissibility with respect to Structural Fairness

Extended Fairness Map

Fair Data Adaptation