Causal Fairness Analysis (Causal Inference II - Lecture 6)

Elias Bareinboim Drago Plecko

Columbia University Computer Science

Reference:

D. Plecko, E. Bareinboim.

Causal Fairness Analysis.
TR R-90, CausalAI Lab, Columbia University. https://causalai.net/r90.pdf

Moving beyond SFM

Motivating Example

Example (COMPAS Business Necessity). Courts at Broward County, Florida, predict the risk of re-offending within 2 years, based on demographic information $Z\left(Z_{1}\right.$ for gender, Z_{2} for age), race $X\left(x_{0}\right.$ denoting Majority, x_{1} Minority), juvenile offense counts J, prior offense count P, and degree of charge D. A causal analysis using the Fairness Cookbook by ProPublica revealed that:

$$
\begin{aligned}
\operatorname{Ctf}-I E_{x_{1}, x_{0}}\left(y \mid x_{1}\right) & =-5.7 \% \pm 0.5 \% \\
{\operatorname{Ctf}-\mathrm{SE}_{x_{1}, x_{0}}}(y) & =-4.0 \% \pm 0.9 \%
\end{aligned}
$$

After the court hearing, the judge ruled that using the attributes age $\left(Z_{2}\right)$, prior count (P), and charge degree (D) were not discriminatory, but using the attributes juvenile count (J) and gender $\left(Z_{1}\right)$ was.

How can the ProPublica extend their findings based on this decision?

Motivating Example

Ctf-SE $_{x_{1}, x_{0}}(y)=$ Ctf-SE $_{x_{1}, x_{0}}^{Z_{1}}(y)+$ Ctf-SE E$_{x_{1}, x_{0}}^{Z_{2}}(y)$,

$$
\begin{aligned}
&{\operatorname{Ctf}-\mathrm{I} \mathrm{E}_{x_{1}, x_{0}}\left(y \mid x_{1}\right)=}^{{\operatorname{Ctf}-1 \mathrm{IE}_{x_{1}, x_{0}}^{J}\left(y \mid x_{1}\right)}_{\operatorname{juvenile~count~}^{\operatorname{Ctf}-I E_{x_{1}, x_{0}}^{P}\left(y \mid x_{1}\right)}}^{\text {prior count }}} \\
& \underbrace{\operatorname{Ctf}-\mathrm{IE}_{x_{1}, x_{0}}^{D}\left(y \mid x_{1}\right) .}_{\text {charge degree }}
\end{aligned}
$$

Refining Spurious Effects

- We start by refining the spurious effect notion $\operatorname{Exp}^{2} \mathrm{SE}_{x}(y)$
- What is our target in terms of Structural Fairness?

$$
\operatorname{Str}^{\mathrm{SE} E-B N_{X}}(Y)=1\left(\operatorname{anex}(Y) \cap \operatorname{anex}(X) \cap U_{B N}^{C}=\varnothing\right) .
$$

- How can we get a decomposition

$$
{\operatorname{Exp}-\mathrm{SE}_{x}(y)=\operatorname{Exp}^{2}-\mathrm{E}_{x}^{Z_{1}}(y)+\operatorname{Exp}-\mathrm{SE}_{x}^{Z_{2}}(y) ? ~ ? ~}_{\text {and }}
$$

New Primitive: Intuition

$\mathscr{M}_{X=x}$

"Behaves as" or
"Listens to" metaphor

$$
P\left(y_{x_{1}, W_{x 0}}\right)
$$

W
Y listens to $X=x_{1}$,
W listens to $X=x_{0}$
$\mathscr{M}^{\mathrm{Z}=z}$
 the fact that $X=x$

Basic Idea: Integrated Submodel

Definition. Let \mathscr{M} be an SCM. Let $Z^{\prime} \subseteq Z$ be a subset of the exogenous variables. Define by $\mathscr{M}^{Z^{\prime}}$ the following SCM

$$
\mathscr{M}^{Z^{\prime}=z^{\prime}}=\sum_{z} P^{\mathscr{M}}\left(Z^{\prime}=z^{\prime}\right) \mathscr{M}_{Z^{\prime}=z^{\prime}}
$$

That is, in $\mathscr{M}^{Z^{\prime}}$ the variables Z^{\prime} are sampled from the observational distribution of the SCM, after which the submodel $\mathscr{M}_{Z^{\prime}=z^{\prime}}$ is used to obtain all other observables $V \backslash Z^{\prime}$.

[^0]
Basic Idea: Integrated Submodel

Z empty $\Longrightarrow X, Y$ associated as
in the observational $P(V)$
Z neither empty nor full \Longrightarrow X, Y associated by some, but not all $U s$
all of $Z \Longrightarrow X, Y$ independent like in a randomized control trial

I-Submodel: Example

- How are conditional probabilities computed?

$$
P(y \mid x) \text { in } \mathscr{M}^{Z_{1}} \text { for }
$$

$$
\begin{aligned}
P^{M^{1_{1}}}(y \mid x) & =\sum_{z_{1}} P^{M /}\left(z_{1}\right) P^{M /}\left(y \mid x, d o\left(z_{1}\right)\right) \\
& =\sum_{z_{1}} P^{M}\left(z_{1}\right) P^{M}\left(y \mid x, z_{1}\right) \quad \text { (2nd rule of do-calculus) } \\
& =\sum P^{M}\left(z_{1}\right) P^{M}\left(z_{2} \mid z_{1}, x\right) P^{M}\left(y \mid x, z_{1}, z_{2}\right)
\end{aligned} \text { ID! }
$$

Sampling-Evaluation Loop's Perspective

Spurious Decomposition

Theorem. Let U_{1}, \ldots, U_{k} be the subset of exogenous variables that lie on top of a spurious trek between X and Y. Let $Z_{[i]}$ denote the variables $Z_{1}, \ldots, Z_{i}\left(Z_{[0]}\right.$ denotes the empty set \varnothing). Then, using the term

$$
\operatorname{Exp}-E_{x}^{A, B}(y)=P^{M^{A}}(y \mid x)-P^{M^{B}}(y \mid x)
$$

we can decompose the experimental spurious effect as follows:

$$
\begin{aligned}
&{\operatorname{Exp}-S E_{x}(y)}=P(y \mid x)-P\left(y_{x}\right) \\
&=\sum_{i=0}^{k-1} \operatorname{Exp}^{-S E_{x}^{Z_{[i]}, Z_{[i+1]}}(y)} \\
&=\sum_{i=0}^{k-1} P^{M^{Z_{[i]}}}(y \mid x)-P^{M^{Z_{[i+1]}}}(y \mid x) .
\end{aligned}
$$

Decomposing Exp-SE ${ }_{x}(y)$

Target quantity to decompose: ${\operatorname{Exp}-\mathrm{SE}_{x}(y)=P(y \mid x)-P\left(y_{x}\right), ~(x)}$

Using the definition of decomposition:

Z1 contribution:

$$
\begin{aligned}
P(y \mid x)-P\left(y_{x}\right) & =\sum_{z_{1}, z_{2}} P\left(y_{x} \mid x, z_{1}, z_{2}\right)\left[P\left(z_{1}, z_{2} \mid x\right)-P\left(z_{1}\right) P\left(z_{2} \mid z_{1}, x\right)\right] \\
& +\sum_{z_{1}, z_{2}} P\left(y_{x} \mid x, z_{1}, z_{2}\right)\left[P\left(z_{1}\right) P\left(z_{2} \mid x, z_{1}\right)-P\left(z_{1}, z_{2}\right)\right] \longrightarrow \begin{array}{c}
\\
\text { Z2 contribution: } \\
\text { Exp-SE }
\end{array} .
\end{aligned}
$$

$P\left(z_{1}, z_{2} \mid x\right) \quad$-> assignment of X fully depends on Z (observational data)
$P\left(z_{1}\right) P\left(z_{2} \mid x, z_{1}\right) \quad$-> assignment of X fully depends on Z , but the association of X and Z 1 is the same as in an RCT (the between case)
$P\left(z_{1}, z_{2}\right) \quad->$ assignment of X does not depend on Z (classical RCT)

Decomposing Exp-SE ${ }_{x}(y)$

$P(y \mid x)$
$P^{\mathcal{M}_{Z_{1}}}(y \mid x)$
(a) Exp-SE ${ }_{x}^{\emptyset, Z_{1}}(y)$.

$$
P^{\mathcal{M}_{z_{1}}}(y \mid x)
$$

$$
P^{\mathcal{M}_{z_{1}, Z_{2}}(y \mid x)}
$$

(b) Exp- $\mathrm{SE}_{x}^{Z_{1},\left\{Z_{1}, Z_{2}\right\}}(y)$.

Towards latent decompositions

- We managed to decompose the spurious effect by attributing the variations to observable Z_{1}, \ldots, Z_{k}.
- When expanding the SFM, however, we might have bidirected confounding arrows - can we extend our approach?
- What is the best starting point?

> Look at attribution of variations to
> U_{1}, \ldots, U_{k} in the Markovian case

Exogenous Integrated Submodel

Definition. Let \mathscr{M} be an SCM. Let $U_{Z} \subseteq U$ be a subset of the exogenous variables. Define by $\mathscr{M}^{U_{Z}}$ the following SCM

$$
\mathscr{M}^{U_{Z}}=\sum_{u_{Z}} P^{\mathscr{M}}\left(U_{Z}=u_{Z}\right) \mathscr{M}_{U_{Z}=u_{Z}}
$$

That is, in $\mathscr{M}^{U_{Z}}$ the exogenous variables U_{Z} are determined from the distribution $P(U)$ of the SCM, after which the submodel $\mathscr{M}_{U_{Z}=u_{Z}}$ is used to obtain the all the observables V.

Exogenous Integrated Submodel

U_{Z} empty $\Longrightarrow X, Y$ associated as in the observational $P(V)$
U_{Z} neither empty nor full \Longrightarrow X, Y associated by some, but
U_{Z} of all $Z \Longrightarrow X, Y$
independent like in a
randomized control trial

Spurious Decomposition (Exogenous)

Theorem. Let U_{1}, \ldots, U_{k} be the subset of exogenous variables that lie on top a spurious trek between X and Y. Let $U_{[i]}$ denote the variables $U_{1}, \ldots, U_{i}\left(U_{[0]}\right.$ denotes the empty set \varnothing). Then, using the term

$$
\operatorname{Exp}-E_{x}^{A, B}(y)=P^{M^{A}}(y \mid x)-P^{M^{B}}(y \mid x)
$$

we can decompose the experimental spurious effect as follows:

$$
\begin{aligned}
&{\operatorname{Exp}-S E_{x}(y)}=P(y \mid x)-P\left(y_{x}\right) \\
&=\sum_{i=0}^{k-1} \operatorname{Exp}^{k-S E_{x}^{U_{[i]}} U_{[i+1]}}(y) \\
&=\sum_{i=0}^{k-1} P^{M^{U_{[i]}}}(y \mid x)-P^{M^{U_{[i+1]}}}(y \mid x) .
\end{aligned}
$$

Spurious Decomposition Equivalence

Theorem. Let Z_{1}, \ldots, Z_{k} be the confounders between variables X and Y, sorted in any valid topological ordering. Denote the exogenous variables corresponding to Z_{1}, \ldots, Z_{k} as U_{1}, \ldots, U_{k}, respectively. Let $Z_{[i]}=\left\{Z_{1}, \ldots, Z_{i}\right\}$ and $U_{[i]}=\left\{U_{1}, \ldots, U_{i}\right\}$. It then holds that

$$
P^{M^{z_{i j]}}}(V)=P^{M^{U_{[i]}}}(V),
$$

that is, the induced distributions over the observables V for the integrated submodel $\mathscr{M}^{Z_{[i]}}$ and the exogenous integrated submodel $\mathscr{M}^{U_{[i]}}$ are equal.

Spurious Decomposition Equivalence

Case 1: Fixing Z variables one by one

$$
\operatorname{Exp}^{\mathbf{S E}}{ }_{x}(y)=P^{M^{Z_{[0]}}}(y \mid x)-P^{M^{Z_{[1]}}}(y \mid x)+\ldots+P^{M^{Z_{[k-1]}}}(y \mid x)-P^{M^{Z_{[k]}}}(y \mid x) .
$$ z_{1} contribution

Case 2: Fixing U variables one by one
Z_{k} contribution

same numbers!

$$
\operatorname{Exp}^{\operatorname{SE}_{x}}(y)=P^{M_{[0]}^{U_{[0]}}}(y \mid x)-P^{M^{U_{[1]}}}(y \mid x)+\ldots+P^{M_{[k-1]}}(y \mid x)-P^{M_{[k]}}(y \mid x) .
$$

Spurious Decomposition Equivalence

Can we use the same latent attribution approach to extend to Semi-Markovian models?

Note that we have a primitive that can attribute variations to the latent Us!

Semi-Markovian Models: Treks

Definition. Let \mathscr{G} be the causal diagram of a Semi-Markovian model.
A trek τ from X to Y is an ordered pair of causal paths $\left(g_{l}, g_{r}\right)$ with a common exogenous source $U_{i} \in U$. That is, g_{l} is a causal path $U_{i} \rightarrow \ldots \rightarrow X$ and g_{r} is a causal path $U_{i} \rightarrow \ldots \rightarrow Y$.

The common source U_{i} is called the top of the trek (ToT), denoted top $\left(g_{l}, g_{r}\right)$. A trek is called spurious if g_{r} is a causal path from U_{i} to Y, i.e., not intercepted by X.

Spurious Treks:

$X \leftarrow Z_{1} \leftarrow U_{1} \rightarrow Z_{1} \rightarrow Y$ with top U_{1}
$X \leftarrow Z_{2} \leftarrow U_{2} \rightarrow Z_{2} \rightarrow Y$ with top U_{2}
$X \leftarrow Z_{1} \leftarrow U_{1} \rightarrow Z_{1} \rightarrow Z_{2} \rightarrow Y$ with top U_{1}

Exogenous Set-Specific Effects

Definition. Let $U_{s T o T} \subseteq U$ be the set of trek tops. Suppose $A \subseteq B \subseteq U_{s T o T}$. The exogenous experimental spurious effect is defined as

$$
\operatorname{Exp}_{-\mathbf{S E}_{x}^{A, B}(y)=P^{M^{A}}(y \mid x)-P^{M^{B}}(y \mid x) . . . ~}^{\text {. }}
$$

$$
P^{\mathcal{M}^{A}}(y \mid x)
$$

$$
P^{\mathcal{M}_{B}}(y \mid x)
$$

Admissibility with respect to Structural Fairness Measures

Lemma. Let $U_{B N} \subseteq U$ be a subset of the exogenous confounders of X, Y that fall under business necessity. Let $U_{B N}^{C}$ denote the exogenous ancestors of X that do not fall under business necessity, that is $U_{B N}^{C}=\operatorname{anex}(X) \backslash U_{B N}$. Then the measures $\operatorname{Exp}-\mathrm{SE}_{x}^{\varnothing, U_{B N}^{C}}(y), \operatorname{Exp}-\mathrm{SE}_{x}^{U_{B N}, U}(y)$ are admissible with respect to the structural criterion $\operatorname{Str}-\operatorname{SE}\left(U_{B N}\right)_{X}(Y)$, that is

$$
\begin{aligned}
& \left(\operatorname{Str}^{-S E}-\mathbf{B N}_{X}(Y)=0\right) \Longrightarrow\left(\operatorname{Exp}-\mathbf{S E}_{x}^{\varnothing, U_{B N}^{C}}(y)=0\right) \\
& \left(\operatorname{Str}-\mathbf{S E}^{C} \mathbf{B N}_{X}(Y)=0\right) \Longrightarrow\left(\operatorname{Exp}-\mathbf{S E}_{x}^{U_{B N}, U}(y)=0\right)
\end{aligned}
$$

Since they are admissible, we will be able to add them to the Fairness Map (TBD)

Semi-Markovian Spurious Decomposition

Theorem. Let U_{1}, \ldots, U_{k} be the subset of exogenous variables that lie on top of a spurious trek between X and Y. Let $U_{[i]}$ denote the variables $U_{1}, \ldots, U_{i}\left(U_{[0]}\right.$ denotes the empty set \varnothing). The experimental spurious effect can be decomposed as follows:

$$
\begin{aligned}
&{\operatorname{Exp}-S E_{x}(y)}=P(y \mid x)-P\left(y_{x}\right) \\
&=\sum_{i=0}^{k-1} \operatorname{Exp}^{-S E_{x}^{U_{[i]}} U_{[i+1]}(y)} \\
&=\sum_{i=0}^{k-1} P^{M^{U_{[i]}}}(y \mid x)-P^{M^{U_{[i+1]}}}(y \mid x) .
\end{aligned}
$$

Semi-Markovian Spurious Decomposition

$\operatorname{Exp}^{-S E_{x}}(y)=$

Identification of Spurious

$$
\text { Definition (Anchor Set). } \quad \mathbf{A S}\left(U_{1}, \ldots, U_{l}\right)=\bigcup_{i=1} \operatorname{ch}\left(U_{i}\right) \backslash X . \quad \begin{gathered}
\text { observables } \\
\text { "touched" by } U
\end{gathered}
$$

Definition (Precedence Relation).

$$
U_{i} \stackrel{P R}{\leq} U_{j} \Longleftrightarrow \mathbf{A S}\left(U_{j}\right) \cap\left\{\mathbf{A S}\left(U_{i}\right) \cup \mathbf{a n}\left(\mathbf{A S}\left(U_{i}\right)\right)\right\} \neq \varnothing
$$

Theorem (ID of Spurious Effects). $P^{M^{A}}(y \mid x)$ is identifiable from observational data $P(V)$ if the following hold:
(i) $Y \notin \mathbf{A S}(A) Y$ not touched
(ii) $\mathbf{A S}(A) \cap \mathbf{A S}\left(U_{S T o T} \backslash A\right)=\varnothing$ touched observables disjoint
(iii) there is no $U_{j} \in U_{s T o T} \backslash A$ such that $\exists U_{i} \in A$ for which $U_{j} \stackrel{P R}{\leq} U_{i}$. no precedence between set elements
that is, $P^{U_{1 X}}(V)$ is identifiable

Theorem (ID of Spurious Effects). $P^{M^{A}}(y \mid x)$ is identifiable from observational data $P(V)$ if the following hold:
(i) $Y \notin \mathbf{A S}(A) Y$ not touched
(ii) $\mathbf{A S}(A) \cap \mathbf{A S}\left(U_{s T o T} \backslash A\right)=\varnothing$ touched observables disjoint
(iii) there is no $U_{j} \in U_{s T o T} \backslash A$ such that $\exists U_{i} \in A$ for which $U_{j} \stackrel{P R}{\leq} U_{i}$. no precedence between set elements

x-specific spurious?

- Target: $\mathrm{Ctf} \mathrm{SE}_{x_{0}, x_{1}}(y)=P\left(y_{x_{0}} \mid x_{1}\right)-P\left(y \mid x_{0}\right)$

Definition (Exogenous x-specific Integrated Submodel). Define by $\mathscr{M}_{x}^{U_{Z}}$ the following SCM:

$$
M_{x}^{U_{Z}}=\sum_{u_{Z}} P^{M^{M}}\left(U_{Z}=u_{Z} \mid X=x\right) \mathscr{M}_{U_{Z}=u_{Z}}
$$

Definition (Exogenous x-specific spurious).

$$
{\operatorname{Ctf}-\mathrm{SE}_{x_{0}, x_{1}}^{A, B}}_{A}(y)=P^{M_{x_{1}}^{A}}\left(y \mid x_{0}\right)-P^{M_{x_{1}}^{B}}\left(y \mid x_{0}\right) .
$$

Theorem (x-specific exogenous spurious decomposition).

$$
\operatorname{Ctf}-\mathrm{SE}_{x_{0}, x_{1}}(y)=\sum_{i=0}^{m-1} \operatorname{Ctf} \mathbf{S E}_{x_{0}, x_{1}}^{U_{[i]}, U_{[i+1]}}(y)
$$

Refining Indirect Effects

- Target: refine the quantity $\mathrm{NIE}_{x_{0}, x_{1}}(y)$
- What is our target in terms of Structural Fairness?
$\operatorname{Str}-\mathrm{IE}-\mathrm{BN}_{X}(Y)=1\left(\operatorname{an}(Y) \cap \operatorname{ch}(X) \cap W_{B N}^{C}=\varnothing\right)$.

- How can we get a decomposition

$$
\mathrm{NIE}_{x_{0}, x_{1}}(y)=\mathrm{NIE}_{x_{0}, x_{1}}^{W_{1}}(y)+\mathrm{NIE}_{x_{0}, x_{1}}^{W_{2}}(y) ?
$$

Set-specific indirect

Definition (Set-specific indirect effect). Let W_{A}, W_{B} be nested subsets of the mediators W, so that $W_{A} \subseteq W_{B}$. Let $W_{A^{C}}$ and $W_{B^{C}}$ denote the complements of W_{A}, W_{B} in W. We then define the E-specific indirect effect with respect to sets W_{A}, W_{B} as

Admissibility with respect to Structural Measures

Lemma. Let $W_{B N} \subseteq W$ be a subset of the mediators that fall under business necessity. Then the measure $E-\operatorname{IE}_{x_{0}, x_{1}}^{\varnothing, W_{B N}^{C}}(y)$ is admissible with respect to the structural criterion $\operatorname{Str}-\operatorname{IE}\left(W_{B N}\right)_{X}(Y)$, that is

$$
\begin{aligned}
& \left(\operatorname{Str}^{\left.\operatorname{IE} \mathrm{I}-\mathrm{BN}_{X}(Y)=0\right)}\right. \\
& \left(\operatorname{Str}-\mathrm{IE}-\mathrm{BN}_{X}(Y)=0\right)
\end{aligned}
$$

Since they are admissible, we will be able to add them to the Fairness Map (TBC)

Decomposition of Indirect

Theorem. Let W_{1}, \ldots, W_{k} denote the set of mediators, sorted in a topological order. Define $W_{[i]}$ as the set $\left\{W_{1}, \ldots, W_{i}\right\}$ and $W_{-[i]}$ as $\left\{W_{i+1}, \ldots, W_{k}\right\}$. The E-specific indirect effect can then be decomposed as

$$
\begin{aligned}
E-I E_{x_{0}, x_{1}}(y) & =P\left(y_{x_{0}, W_{x_{1}}} \mid E\right)-P\left(y_{x_{0}} \mid E\right) \\
& =\sum_{i=0}^{k-1} E-I E_{x_{0}, x_{1}}^{W_{[i]}, W_{[i+1]}(y)} \\
& =\sum_{i=0}^{k-1} P\left(y_{x_{0},\left(W_{[i+1)}\right)_{x_{1}},\left(W_{-[i+1]}\right)_{x_{0}}} \mid E\right)-P\left(y_{x_{0},\left(W_{[i]}\right)_{x_{1}},\left(W_{-[i]}\right)_{x_{0}}} \mid E\right) .
\end{aligned}
$$

Lack of symmetry

- A lack of symmetry arises because we can consider either a $x_{0} \rightarrow x_{1}$, or $x_{1} \rightarrow x_{0}$ transition, and similarly for the BN transition.
As a consequence, note that:

$$
\begin{aligned}
{\mathrm{Ctf}-\mathrm{I} \mathrm{E}_{x_{0}, x_{1}}(y \mid x)}= & \underbrace{\operatorname{Ctf}-\mathrm{IE}_{x_{0}, x_{1}}^{\varnothing, W_{B N}^{C}}(y \mid x)}_{\text {discriminatory }}+\underbrace{\mathrm{Ctf}-\mathrm{IE}_{x_{0}, x_{1}}^{W_{B N}^{C}, W}(y \mid x)}_{\mathrm{BN} \text { variations }} \\
& =\underbrace{\mathrm{Ctf}-\mathrm{I} \mathrm{E}_{x_{0}, x_{1}}^{\varnothing, W_{B N}}(y \mid x)}_{\mathrm{BN} \text { variations }}+\underbrace{\mathrm{Ctf}-\mathrm{IE}_{x_{0}, x_{1}}^{W_{B S}, W}(y \mid x),}_{\text {discriminatory }}
\end{aligned}
$$

and analogously for $\operatorname{Ctf}-\mathrm{IE}_{x_{1}, x_{0}}(y \mid x)$, and also for the spurious.

- How can we fix this problem?
- \Longrightarrow Take an average over the transitions!

Lack of symmetry

Definition. Define the x-specific indirect and spurious measures under business necessity as

$$
\begin{aligned}
& \left.\operatorname{Ctf}-\mathrm{IE}_{x_{0}, x_{1}}^{\varnothing, W_{B N}^{C}}(y \mid x)-\operatorname{Ctf}-\mathrm{IE}_{x_{0}, x_{1}}^{W_{B N}, W}(y \mid x)\right)
\end{aligned}
$$

$$
\begin{array}{r}
x-\operatorname{SE}^{\operatorname{Sym}-\mathrm{BN}_{(}(y)=} \frac{1}{4}\left({\operatorname{Ctf}-\mathrm{SE}_{x_{1}, x_{0}}^{\varnothing, U_{B N}^{C}}(y)+\operatorname{Ctf}-\mathrm{SE}_{x_{1}, x_{0}}^{U_{B N}, U}(y)-}^{\left.\operatorname{Ctf}-\mathrm{SE}_{x_{0}, x_{1}}^{\varnothing, U_{B N}^{C}}(y)-\operatorname{Ctf}-\mathrm{SE}_{x_{0}, x_{1}}^{U_{B N}, U}(y)\right) .} .\right.
\end{array}
$$

Extended Fairness Map

Mechanisms Axis

Task 1 (Extended)

Extended Fairness Cookbook

1) Obtain data on past decisions \mathscr{D}.
2) Determine the (possibly simplified) causal diagram \mathscr{G} (w.r.t. underlying \mathscr{M}^{*}).
3) Determine the Business Necessity (BN) set (now arbitrary!).
4) Test the following two hypotheses:

$H_{0}^{(\mathrm{Ctf}-\mathrm{IE}), \mathrm{BN}}: \mathrm{Ctf}-\mathrm{IE} \mathrm{E}^{\text {Sym-BN }}\left(y \mid x_{0}\right)=0$.

Task 2 (Extended)

Fairadapt: Sequential Optimal Transport

- joint optimal transport induces a dependency of W on Y, therefore breaking the causal structure
- instead, we perform the Optimal Transport sequentially
\square end return $V^{(f p)}$

Recap: Fair Prediction Theorem on COMPAS

(i)
$\mathrm{TV}_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\hat{\mathrm{y}})$ decomposition: Random Forest on COMPAS

(iii) $\mathrm{TV}_{\mathrm{x}_{0}, x_{1}}(\hat{\mathrm{y}})$ decomposition: Reductions on COMPAS
0.2
0.1

-0.1

(ii) $\mathrm{TV}_{\mathrm{x}_{0}, x_{1}}(\hat{y})$ decomposition: Reweighing on COMPAS

(iv) $\operatorname{TV}_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\hat{y})$ decomposition: Reject-option on COMPAS
0.2
0.1

Fairadapt: Result on COMPAS

$T V_{\mathrm{x}_{0}, \mathrm{x}_{1}}(\mathrm{y})$ decomposed for Compas dataset

Complexity Cascade

Lectures' Recap - L1

Foundations of Causal Inference

Fairness Examples \& the SFM

FPCFA

Legal Doctrines of Discrimination

Structural Fairness
 Criteria / Doctrines

Decomposing Variations

Admissibility \& Power

Explainability Plane

Lectures' Recap - L2

TV family as contrasts

Fairness Map

Decomposability, Admissibility and Power in the Map

Lectures' Recap - L3

Corollaries of Fairness Map

Identification \& Estimation

Understanding previous literature through the Map

Counterfactual Fairness Individual Fairness Predictive Parity

Lectures' Recap - L4 \& 5

Quantification over time

Quantification with Y, \widehat{Y}

Task 2: Fair Prediction

Biased Reality -> Biased Data -> Biased Future?
Pre-, In-, Post- processing

Fair Prediction Theorem

Lectures' Recap - L4 \& 5

Principal Fairness \& Benefit Fairness

Canonical Types

Decomposing the Gap

Task 3 fully blown version

Lectures' Recap - L6

Beyond the SFM

Decomposing Indirect Effects

Admissibility with respect to Structural Fairness

> Extended Fairness Map

Identifiability

[^0]: like in a randomized control trial

