Strongly quasipositive knots are concordant to infinitely many strongly quasipositive knots

CIRGET, December 16, 2022

Tho (T. 2022): Every non-trivial strongly quasipositive knot is (smoothly) concordant to infinitely many pairwise non-iso topic strongly quasipositive knots.

In this tall:
I) Knots and concordance
II) Strongly quasipositive knots
III) Context
IV) Sketch of pf

Knot concordance

We work in the smooth category.
A link is a nonempty, oriented, closed, smooth 1-dimensional submanifold of SN 3, up to (ambient) isotopy. A knot is a connected link. (or .pres. diffeomor phish of S^{3})

Two knots $\left.U_{1}\right]$ are concordant if $\exists S^{1} \times[0,1] \cong A \subseteq S^{3} \times[0,1]$
smoothly \& properly embedded oriented annulus
s.t. $\partial A=U \times\{0\} \cup \overleftarrow{\zeta} \times\{1\}$.

This is an equivalence relation and in fact,

$$
\zeta:=(\{\text { concordance classes }\}, \#)
$$ is a group.

Fact: K.] isotopic Knots $\left.\Rightarrow K_{1}\right]$ are concordant In general.

Ex: \exists non-trivial (notisotopic to $\bigcirc_{\text {unknot }}$) knots that are not slice. concordant to the unknot e.g. the Conway knot is not slice. [Piccinillo 2020]

(Strongly) quasipositive Knots
Thy (Alexander 1923): Any Knot (or link) is the closure of an n-braid for some $n \geq 2$.

Actin 1925:

$$
B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \quad \begin{array}{l}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if }|i-j| \geqslant 2
\end{array}\right.\right\rangle
$$

braid ge on n strands
geometrically:

$$
\begin{aligned}
& \text { geometrically: } \\
& B_{2}=\langle\uparrow\rangle, B_{3}=\langle\uparrow \uparrow \uparrow \ldots
\end{aligned}
$$

A braid $\beta \in B_{n}$ is quasipositive if $\beta=\prod_{k=1}^{m} \omega_{k} \sigma_{i k} \omega_{k}{ }^{-1}, \quad i_{k} \in\{1, \ldots, n-1\}$, $\omega_{k} \in B_{n}$.

$$
k=1,-, m .
$$

A braid $\beta \in B_{n}$ is strongly quasipositive (sqq) if $\beta=\prod_{k=1}^{m} \sigma_{i u, j k}$ for some $\quad 1 \leqslant i_{k}<j k \leqslant n, k=1, \ldots, m$, where

$$
\sigma_{i, j}=\left(\sigma_{i} \cdot \ldots \cdot \sigma_{j-2}\right) \sigma_{j-1}\left(\sigma_{i} \cdot \ldots \cdot \sigma_{j-2}\right)^{-1} \text { for } i c_{j}
$$

Note: $\sigma_{\text {initio }}=\sigma_{i}$
$\sigma_{i j}$ (positive band)

A knot or link is (strongly) quasipositive if it is the closure of a (strongly) quasipositive braid.
$\underline{E x}: \quad \beta=\sigma_{1}^{2} \underbrace{\left(\sigma_{1} \sigma_{2} \sigma_{1}{ }^{-1}\right)}_{\sigma_{1,3}} \sigma_{2} \in B_{3}$

$\hat{\boldsymbol{\beta}}=S_{z}$

canonical
Seifert surface associated to β

$$
\begin{aligned}
& x(F(\beta))=3-4=-1 \\
& g(F(\beta))=\frac{1-x(F(\beta))}{2}=1
\end{aligned}
$$

Tho (slice-Bennequin inequality) [Bennequin 183, Rudolph 193, Kronheimer-Mrowlea 193]
Let $\beta \in B_{n}$ be a sap braid, $K=\hat{\beta}$ a knot.

$$
\Rightarrow g(K)=g_{4}(K)=g(F(\beta))=\frac{w_{r}(\beta)-n+1}{2}
$$

where $\quad g_{4}(K)=\min \left\{g(F) \mid F\right.$ or., cpct, come. Surface in S^{3}
 wi or. bdry K in $\left.S^{3}=2 B^{4}\right\}$

Thm (T. '22): Every non-trivial strongly quasipositive link is concordant to infmitely many pairwise non-isotopic strongly quasipositive links

Rem: The not true for $U=\circlearrowleft$ bic it is the only strongly quasipositive Knot concordant to U.

Context:
Knots of isolated singularities of ce.
alg. plane curves

$$
f(x, y)=x^{p}+y^{q}
$$

$$
T_{p, q}=V_{f} \cap S^{3} \subseteq \mathbb{C}^{2}
$$

$$
\left\{f^{\prime \prime}=0\right\}
$$

Thy (Litherland 179): concordance \Rightarrow isotopy for algebraic knots.
reformulation: Every concordance class in ℓ contains at most one algebraic knot.
Thu (Baader - Dehornoy-Liechti 17): Every concordance class in ℓ contains at most finitely many positive knots.

Conj: (Baker '16): concordance \Rightarrow isotopy for sap, fibered Knots
Tho (Baker '16): If the conjecture turns out to be false, then the slice-ribbon conjecture is false.

$$
\text { Fox } 162
$$

concordant to σ
slice-ribbon conjecture (Fox '62): Every slice knot is ribbon, i.e. bounds an immersed disk $\omega 1$ only ribbon singularities.

Thm (T. '22): Every non-trivial strongly quasipositive Knot is concordant to infinitely many pairwise non-isotopic strongly quasipositive Knots.

Sketch of proof: Let K be a sap $K_{\text {not, }} K \neq U$.
Let $F(\beta)$ be a Seifert surface for K that corresponds to a sap braid β w/ $\hat{\beta}=K$.

Idea: Tie a slice knot $C \neq U$ w/ $T B^{\prime}(C)=-1$ into a nr. ${ }^{\text {max in }}$ positive band of $F(\beta)$.
\rightarrow surface F^{\prime}
e.g. $C=$ mirror of $q_{k 6}$

(a)

(c)
(d)

Then:

1) $\quad \partial F^{\prime}=P_{\partial F(\beta)}(C)=$ satellite w/ pattern $\partial F(\beta)$ and companion C
We use $\quad C \underset{\text { canc. }}{\sim} U \Rightarrow \partial F^{\prime}=P_{\partial F(\beta)}(c) \sim P_{\partial F(\beta)}(u)=\partial F(\beta)=K$

$$
C \underset{\text { iso }}{\neq M_{\text {Juno }}-M_{\text {otegi }}} \underset{P_{\partial F(\beta)}}{\Rightarrow}(C) \neq P_{\partial F(\beta)}(U)
$$

need: geom. Wind ing nr. of pattern ≥ 2
2) ∂F^{\prime} is sap basically b/c $A(C,-1)$ is a qp surface (Rudolph) TB (C)

(a)

(c)

(b)

(d)

We iterate this construction to obtain an infinite family of sap Knots concordant but not isotopic to K.

