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3. Rank reduction for curves.

4. Speculation about a general conformal element.

2 Vertex algebra of Joyce and the conformal element

To explain the Lie bracket that appeared in Miguel’s talk, I will describe how it is derived
from the Vertex algebra constructed by Joyce(17’). For this, we will begin with the moduli
stack of complexes on X

MX

and consider its shifted homology for each component labeled by a class α:

Ĥ∗(Mα) = H∗−χ(α,α)

(
MX ,C

)
,

where χ is the Euler pairing∗. The vertex algebra on

V∗ =
⊕
α

Ĥ∗(Mα) (2.1)

consists mainly of two important ingredients:

• the translation operator
T : V∗ −→ V∗+2

• and the state-to-field correspondence

Y (−, z) : V∗ −→ End(V∗)Jz, z−1K

satisfying additional compatibilities. One of them being the condition of locality

(z − w)N
[
Y (v, z), Y (u, z)

]
= 0

for any two u, v ∈ V . These are constructed out of their respective ingredients

∗We will always work over C for a reason that will become apparent later.

1



• the action of ρ : [∗/Gm]×MX → MX which in S-families of complexes on X is given
by rescalling by a line bundle L on S pulled back from S:(

E → X × S
)
7→

(
E ⊗ π∗

S(L) → X × S) .

• The morphism induced by mapping sheaves to their direct sums

σ : MX ×MX −→ MX

and the complex
Ext −→ MX ×MX

given by Ext(E,F ) at each point ([E], [F ]) ∈ MX×MX together with the translation
operator T itself.

The construction of both of these are then given by

1. letting t be the dual of c1(L) for the universal line bundle on [∗/Gm] and setting

T (u) = ϕ∗(t⊠ u) .

2. For u ∈ Ĥd(Mα) and v ∈ Ĥe(Mβ), we construct

Y (u, z)v = (−1)χ(α,β)zχ(α,β)+χ(β,σ∗

(
ezT ⊗ id

(
u⊠ v ∩ cz−1(Ext∨ + σ∗Ext

))
, (2.2)

It was the observation of Joyce(17’) that these satisfy the necessary axioms of a vertex
algebra.

Example 2.1. We will mostly focus here on the case of a curve C. Cheating a little
bit this will also include acyclic quivers Q and complexes of representations, because both
are homological dimension 1. The construction above still makes sense in this case. The
homology (2.1) has now an explicit description in terms of K0 := K0(C) (resp. K0(Q)).
Fixing a basis B of K0 ⊗ C constructed as

B = ⊔p,qB
p,q ,

where Bp,q is a basis of Hp,q(C,C), we define the classes

µv,i = chi
(
G/v∨

)
.

where F → X ×MX is the universal sheaf.
To compare with Miguel’s notation one sees by a simple computation that

chi(w) =
∑
v∈B

∫
X
w · vµv,i−[p,q] ,

where [p, q] :=
⌊p−q

2

⌋
. We may write

H∗(MC) = C[K0(C)]⊗ SSym•
CJµv,k, v ∈ B, k > 0K ,

H∗(MC) = C[K0(C)]⊗ SSym•
CJuv,k, v ∈ B, k > 0K ,
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where µv,k = 1
(k−1)!

∂
∂uv,k

. The latter has a natural vertex algebra structure called the lattice

vertex algebra associated to the pairing

χssym : K0 ×K0 −→ Z , χssym(v, w) = χ(v, w) + (−1)deg(v)χ(w, v) .

and by Gross(19’)/Joyce(17’) it is the one described by (2.2).
Miguel constructed in his talk a map ξG : DC → H∗(MC) using the universal sheaf G

on C ×MC such that after imposing the relations

chi(γ) =

{
0 if p− q ≥ 2i and p ̸= q ,∫
Y ch(α) · γ if p = q, i = 0 .

(2.3)

it becomes an isomorphisms only because we are working with curves. This has to do with
B0,q being bounded by q = 1.

Continuing to use the notation of the example, recall that Miguel defined the operators

T ∗
k , R

∗
k

on the algebra DC in terms of chi(v) and their derivations. The condition that these can
be formulated on the full H∗(MC) is equivalent to

ξG
[
R∗

k

(
chi(v

p,q)
)]

= 0 ,

whenever the degree of ξG
(
chi(v

p,q)
)
is zero. This holds again only for curves C, because

in this case degree of chi(v
1,0) = 0. We then denote by

Tk, Rk

their duals on the homology H∗(MC). The beauty of this is that we have a natural confor-
mal element

ω =
∑
v∈B

e0 ⊗ uv,1uv∨,1 ,

† such that its field
Y (ω, z) =

∑
k∈Z

Lkz
−k−2 (2.4)

recovers Lk = Tk +Rk whenever k ≥ −1 and

B =
⊔

Bp,p .

I will discuss the necessary modification when there are non (p, p)-classes later.

3 Compatibility explained on an Example: Flag and Gr(n, k)

We show the power of rephrasing Virasoro constraints in terms of the vertex algebra proving
some new results without having to do many computations.

†Here I used the notation {v∨} to denote the dual basis of B with respect to χssym pretending that it is
non-degenerate. This is not true in general, but can be easily fixed.
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Gross–Joyce–Tanaka(20’) formulated the wall-crossing to take place in the quotient

W∗ = V∗+2/DV∗

which carries a Lie algebra structure by

[ū, v̄] = [z−1]Y (u, z)v

for any lifts u, v ∈ V∗ of ū, v̄ ∈ W∗.
They defined for each reasonable choice of stability condition σ and α ∈ K0 the homology

classes [
Mα(σ)

]in
satisfying the wall-crossing formulae[

Mα(σ2)
]in

=
∑
α⃗⊢α

coeff.
[
· · ·

[[
Mα1(σ1)

]in
,
[
Mα1(σ1)

]in]
, · · · ,

[
Mαk

(σ1)
]in]

for some pre-described coefficients depending on the two different stability condition σ1, σ2.
Their main contribution is in showing that when there are no strictly σ-semistables in class
α, then these are the pushforwards of the usual virtual fundamental classes[

Mα(σ)
]vir

under the open embeddings Mα(σ) ↪→ MC . Recall the map

η : DC −→ Din
C ,

from Miguel’s talk which was used to define an invariant Virasoro ‡. Since the dual of R−1

is our translation operator T , the dual λ = η∗ induces a well-defined lift

λ : W∗ −→ V∗ .

Standard result: If Lk are given by the Virasoro element as in (2.4), then if

Lk ◦ λ
[
Mα1(σ)

]in
= δk,0λ

[
Mα(σ)

]in
is satisfied for all i = 1, · · · , k, then

Lk ◦ λ
[
Mα(σ)

]in
= δk,0λ

[
Mα(σ)

]in
. (3.1)

The point is to show that the set P ⊂ L of physical states satisfying precisely the condition
(3.1) forms a Lie subalgebra of L.

Unfortunately in this raw form this can not be applied in too many interesting geome-
tries. That is why I selected these examples. Start with any acyclic quiver Q, for example
just Ak

1◦ 2◦ 3◦ · · · k◦ , (3.2)

and consider the µ-stability, a representation V• is said to be (semi)-stable if for every
W• ⊂ V• and the respective dimension vectors e⃗ and d⃗ we have∑

i

eiµi < (≤)
∑
i

diµi .

We only need two cases

‡Here Din
C = ker(R−1)
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1. In the case when µi+1 > µi, where i increases in the direction of the arrows we get
that the only non-zero classes [

M
d⃗
, (µ)

]in
are those for the dimension vectors δi when i = 1, · · · , k and these are just the point
classes in H∗(Mδi).

2. In the example (??), we choose real numbers

1 ≫ µ1 ≫ µ2 ≫ · · · ≫ µk−1

together with µk < −k(k−1)
2 . It is then easy to see that there are no strictly semi-

stables in the class
d⃗ = (1, 2, · · · , k)

and
[M

d⃗
(µ)]in = [Flag(Ck)] .

Similar arguments can be applied to the case

1◦ 2◦

to get [Gr(n, k)] = [M(k,n)(µ)]
in . This proves the claim.

Remark 3.1. The statement for flag-varieties was also proved by Miguel purely using
geometry.

4 Rank reduction for curves

The first difference that appears when moving on to curves is the issue of extending Lk for
k ≥ −1 from Miguel’s talk to a full field∑

k∈Z
Lkz

−k−2 ,

The next few lines are not strictly necessary in the setting of working with curves, but they
are a precursor for things to come when thinking of higher dimensions. To shorten notation
it makes sense to introduce the holomorphic pairing

χH
(
v, w

)
= (−1)p(v)

∫
X
v · w · td(X) ,

§ and its supersymmetrization

χH
ssym

(
v, w

)
= χH(v, w) + (−1)deg(v)χH

(
w, v) ,

The usual field of the lattice vertex algebra we mentioned before is

Y (uv,1, z) =
{∑

k>0

uv,k · zk−1 + (−1)δodd(v)
∑
k>0

∑
w∈B

k!(
k − δodd(v)

)
!
χssym(v, w)

∂

∂uw,k
z−k−δev(v) + χ(v, β)z−1

}
,

§Here H stands for Hodge, because it interacts non-trivially with the Hodge grading.
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where we use δodd(v) ≡ deg(v) ( mod 2). Again to make things easier on the eye, we
define its modification

Y H(v, z) =
∑
k>0

uv,kz
k −

∑
k>0,w∈B

k!(
k − δodd(v)

)
!
χH
ssym(v, w)

∂

∂uw,k
z−k−δev(v) + χ(v, β)z−1 .

To obtain the full field, we may now take the sums of normal ordering products

L(z) =
∑

∈Bp,q

0≤q≤p≤1

: Y H(v, z)
∂

∂z
Y H(v̂, z) : +

∑
∈B0,1

0≤q≤p≤1

:
∂

∂z
Y H(v, z)Y H(v̂, z) :

by a direct computation.¶ This is again very special for curves and is important for the
next result.

Lemma 4.1.
Lk ◦ λ

[
Mα1(σ)

]in
= δk,0λ

[
Mα(σ)

]in
(4.1)

is satisfied for all i = 1, · · · , k, then

Lk ◦ λ
[
Mα(σ)

]in
= δk,0λ

[
Mα(σ)

]in
.

Proof. The proof is to show again that there is a Lie-subalgebra of physical states. This
relies this time on the fact that the locality condition of the fields is satisfied:

(z − w)N
[
L(z), Y ([Mα(σ)]

in, w)
]
= 0 .

This follow, because the field L(z) could be constructed from the usual pairing in the same
way instead, which can be observed by showing that the part of the Tk operator coming
from v0,1, resp. v1,0 vanishes in both scenarios and the rest is unchanged. We then use
Don’s lemma.

Lemma 4.2. If three fields a(z) , b(z) and c(z) are mutually local, then

: a(n)(z)b(m)(z) :

is local with respect to c(z).

It is now a simple observation that if we define the operator

L =
∑
j≥−1

(−1)j

(j + 1)!
DjLj : W∗ −→ V∗

which is the dual of the one introduced by Miguel, then (4.1) is equivalent to

L
[
Mα(σ)

]in
= 0 .

Furthermore, by Miguel’s talk this makes our (3.1) equivalent to the geometric Virasoro
constraints observed by van Bree/Moreira/MOOP. We will now use the rank-reduction of

¶This time v̂ is the dual of v with respect to χH .
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Joyce/Thaddeus/Mochizuki together with the pushforward formula of Miguel from his talk
to prove that

L[Mr,χ]
in = 0

and more! For this we also need to consider the moduli schemes of Bradlow pairs

OX(−k) −→ F

which we denote by P k
r,χ and their classes sit in the homology of a stack of pairs Pk

C .

Theorem 4.3. We have

LOX(−k)
[
P k
r,χ

]in
= 0 , L

[
Mr,χ

]in
= 0 . (4.2)

for any choice of (r, χ).

Proof. The result follows by starting with

P0,n = C [n] , M1,d = Jacd .

We then use first that there is a wall-crossing

[P k
r,χ]

in =
∑

(r⃗,χ⃗)⊢(r,χ)
d⃗⊢1
r>0

coeff.
[[
[P k

r1,χ1
]in, [P k

r2,χ2
]in
]
, · · · , [P k

rk,χk
]in
]
, (4.3)

where additionally ri > 0 to show that

LOX(−k)
[
P k
r,χ

]
holds assuming (4.2) is satisfied for all lower ranks. Then using

[Mr,χ]
in = Ωr,χ +

∑
r⃗,χ⃗)⊢(r,χ)
ri>0

coeff.
[
· · ·

[
[M]in, [Mα2 ]

in
]
, · · · , [Mαk

]in
]
, (4.4)

where the first term on the right hand side is defined by

Ωr,χ = π∗

(
[P k

r,χ]
in ∩ e(TPk

C/MC
)
)

(4.5)

using the projection π : Pk
C → MC . We therefore only need a stack version of the result

discussed by Miguel

Proposition 4.4. If [P k
r,χ]

in satisfies

LOX(−k)[P k
r,χ]

tin = 0

then
LΩk

r,χ = 0 .

This then shows that
L
[
Mr,χ

]in
= 0 .

¨for all ranks.
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