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. Speculation about a general conformal element.

2 Vertex algebra of Joyce and the conformal element

To explain the Lie bracket that appeared in Miguel’s talk, I will describe how it is derived
from the Vertex algebra constructed by Joyce(17’). For this, we will begin with the moduli
stack of complexes on X

Mx

and consider its shifted homology for each component labeled by a class a:
E[* (Ma) = H*fx(a,a) (MX7 (C) )

where x is the Euler pairing®*. The vertex algebra on
Vk = @ﬁ*(MQ) (2'1)
6

consists mainly of two important ingredients:

e the translation operator
T:V, — Viyo

e and the state-to-field correspondence
Y(—,2): Vi — End(V,)[z, 27 !]
satisfying additional compatibilities. One of them being the condition of locality
(z —w)N|Y (v, 2),Y (u, z)] =0

for any two u,v € V. These are constructed out of their respective ingredients

*We will always work over C for a reason that will become apparent later.



e the action of p : [¥/G,,] x M x — Mx which in S-families of complexes on X is given
by rescalling by a line bundle L on S pulled back from S

(E=-Xx8)m (E@ms(L) — X x5).

e The morphism induced by mapping sheaves to their direct sums
o Mx X Mx — Mx

and the complex
Ext — Mx x Mx

given by Ext(E, F) at each point ([E], [F]) € Mx x Mx together with the translation
operator T itself.

The construction of both of these are then given by

1. letting ¢ be the dual of ¢;(£) for the universal line bundle on [x/G,,] and setting

T(u) = ¢ (t R u).
2. For u € Hy(M,) and v € H.(Mg), we construct

Y (u, 2)v = (—1)X(@8) xX(@B8)+x(B. (eZT ®@id(uXvNec,-1(Ext’ + 0*5xt)) . (2.2)

It was the observation of Joyce(17’) that these satisfy the necessary axioms of a vertex
algebra.

Example 2.1. We will mostly focus here on the case of a curve C. Cheating a little
bit this will also include acyclic quivers ) and complexes of representations, because both
are homological dimension 1. The construction above still makes sense in this case. The
homology (2.1) has now an explicit description in terms of K := K°(C) (resp. K°(Q)).
Fixing a basis B of K° ® C constructed as

B = U,,B",
where BP9 is a basis of HP4(C, C), we define the classes
/Lvﬂ' = Chi (G/Uv) .

where F — X x M x is the universal sheaf.
To compare with Miguel’s notation one sees by a simple computation that

Chz(w) = Z/ W - Vb i—[p,q] »
veEB X

where [p, q] := [25%] . We may write

g
<

2
I

C[K°(C)] ® SSym [ty x,v € B,k > 0],
H.(M¢) = C[K°(C)] ® SSym&[uy, x,v € B,k > 0],



where p1, ), = ﬁ%@k. The latter has a natural vertex algebra structure called the lattice

verter algebra associated to the pairing
Xssym - K'x K — Z, Xssym(vyw) = x(v,w) + (_1)deg(v)x(w7v) :

and by Gross(19)/Joyce(17’) it is the one described by (2.2).
Miguel constructed in his talk a map &€ : D¢ — H*(M¢) using the universal sheaf G
on C X M such that after imposing the relations

0 if p—qg>2 and p#gq,
chi(v) = { (2.3)

Jych(a)-y if p=gq,i=0.

it becomes an isomorphisms only because we are working with curves. This has to do with
B%4 being bounded by ¢ = 1.

Continuing to use the notation of the example, recall that Miguel defined the operators
Ty, Ry

on the algebra D in terms of ch;(v) and their derivations. The condition that these can
be formulated on the full H*(M¢) is equivalent to

€8 [Ry (chy(vP1))] =0,

whenever the degree of ¢€ (chi(vp’q)) is zero. This holds again only for curves C', because
in this case degree of ch;(v'"?) = 0. We then denote by

Ty, Ry,

their duals on the homology H,.(Mc¢). The beauty of this is that we have a natural confor-
mal element

0
w = E € @ Uy 1UyV 1,
vEB

 such that its field

Y(w,2) = Z Lz k2 (2.4)

kEZ

recovers L = Ty + R whenever k > —1 and

B=||B,,.

I will discuss the necessary modification when there are non (p, p)-classes later.

3 Compatibility explained on an Example: Flag and Gr(n, k)

We show the power of rephrasing Virasoro constraints in terms of the vertex algebra proving
some new results without having to do many computations.

THere I used the notation {v¥} to denote the dual basis of B with respect to Yssym pretending that it is
non-degenerate. This is not true in general, but can be easily fixed.



Gross—Joyce-Tanaka(20’) formulated the wall-crossing to take place in the quotient
W, = Viya/DV.
which carries a Lie algebra structure by
[a,9] = [z=1]Y (u, 2)v

for any lifts u,v € Vi of u,v € W,.
They defined for each reasonable choice of stability condition ¢ and o € K° the homology
classes

[Ma (0_)] in
satisfying the wall-crossing formulae
[Ma(O-Q)}ln = Z coeff. [ .. [[Mal (01)]m, [Mal(ol)]m] e [Mak(al)]m}
aka
for some pre-described coefficients depending on the two different stability condition oy, os.

Their main contribution is in showing that when there are no strictly o-semistables in class
a, then these are the pushforwards of the usual virtual fundamental classes

[Ma (0_)] vir
under the open embeddings M, (o) < M. Recall the map
n:Do — ]Dié1 ,
from Miguel’s talk which was used to define an invariant Virasoro ¥. Since the dual of R_;
is our translation operator T', the dual A = n* induces a well-defined lift
AW, — V.
Standard result: If L; are given by the Virasoro element as in (2.4), then if
Ly, 0 A[May (o] ™ = 0k.0A[Ma(0)]™
is satisfied for all i =1, , k, then
Lo A[My(0)]™ = 050N [Ma(o)]™ . (3.1)

The point is to show that the set P C L of physical states satisfying precisely the condition
(3.1) forms a Lie subalgebra of L.

Unfortunately in this raw form this can not be applied in too many interesting geome-
tries. That is why I selected these examples. Start with any acyclic quiver @, for example

just AF
: k
o 3 3 o0, (3.2)

and consider the p-stability, a representation V, is said to be (semi)-stable if for every
W, C V, and the respective dimension vectors € and d we have

Z eitti < (<) Z dif; -

We only need two cases

Here DI = ker(R-1)



1. In the case when p;+1 > i, where ¢ increases in the direction of the arrows we get
that the only non-zero classes

(Mg, (m)]™
are those for the dimension vectors §; when ¢ = 1,--- , k and these are just the point
classes in Hy(Ms;,).

2. In the example (??), we choose real numbers

I>pr > pe > > ug

k(k—1)
2

together with up < — . It is then easy to see that there are no strictly semi-

stables in the class

and .
[Mf{p)]™ = [Flag(C")].
Similar arguments can be applied to the case
1 2
O — 0
to get [Gr(n, k)] = [M4n)(1)]™ . This proves the claim.

Remark 3.1. The statement for flag-varieties was also proved by Miguel purely using
geometry.

4 Rank reduction for curves

The first difference that appears when moving on to curves is the issue of extending L for
k > —1 from Miguel’s talk to a full field

ZLkaka ’

keZ

The next few lines are not strictly necessary in the setting of working with curves, but they
are a precursor for things to come when thinking of higher dimensions. To shorten notation
it makes sense to introduce the holomorphic pairing

Hio w) = (=1)P@ [ o.ow-
(o) = (~1) /X td(X),

$ and its supersymmetrization

Xy (v, w0) = X (v, 0) + (=1)98O)\H (1w, v) |

The usual field of the lattice vertex algebra we mentioned before is

Uv 1,2 {Zuvk 2k~ 1 Sodd U)Z Z ) Xssym(v w) 0 z—k—5ev(v) —i—X(’U,,@)Z_l},

— ou
E>0 E>0 weB 5 odd (v w,k

$Here H stands for Hodge, because it interacts non-trivially with the Hodge grading.



where we use doqq(v) = deg(v) ( mod 2). Again to make things easier on the eye, we
define its modification

k!
YH(v,2) = Zuv,kzk - Z —'ngm(v,w)

k>0 k>0,wEB (k = boda(v))

0

8uw7k

ZE ) X (0, 8)27

To obtain the full field, we may now take the sums of normal ordering products

0 0
L(z) = Z : YH(v,z)gYH(ﬁ,z) D+ Z : aYH(v,z)YH(f),z) :
cBP:4 B
0<q<p<1 0<¢<p<L1

by a direct computation.Y This is again very special for curves and is important for the
next result.

Lemma 4.1. . _
Ly, 0 N[ Mg, (0)]™ = 6,07\ [Ma(o)]™ (4.1)

1s satisfied for alli=1,--- ,k, then
Ly, 0 A[My(0)]™ = 6.0\ [Ma(0)]™ .

Proof. The proof is to show again that there is a Lie-subalgebra of physical states. This
relies this time on the fact that the locality condition of the fields is satisfied:

(z = w)N [L(2), Y ([Ma(0)]™, w)] = 0.

This follow, because the field L(z) could be constructed from the usual pairing in the same
way instead, which can be observed by showing that the part of the T} operator coming
from v%!, resp. v'? vanishes in both scenarios and the rest is unchanged. We then use
Don’s lemma.

Lemma 4.2. If three fields a(z) , b(z) and c(z) are mutually local, then
:a™ (2)b)(2) :

is local with respect to ¢(z).

It is now a simple observation that if we define the operator

(=1
L= DIL; - W, —V,
j>21 G+

which is the dual of the one introduced by Miguel, then (4.1) is equivalent to
£DMai]" 0.

Furthermore, by Miguel’s talk this makes our (3.1) equivalent to the geometric Virasoro
constraints observed by van Bree/Moreira/MOOP. We will now use the rank-reduction of

IThis time o is the dual of v with respect to x*.



Joyce/Thaddeus/Mochizuki together with the pushforward formula of Miguel from his talk
to prove that .
LM, " =0

and more! For this we also need to consider the moduli schemes of Bradlow pairs
@) X(—k‘) — F
which we denote by P,ffx and their classes sit in the homology of a stack of pairs Pé.

Theorem 4.3. We have

LOXERPE 1™ =0, £[M,,]" =0. (4.2)
for any choice of (r,x).
Proof. The result follows by starting with
Pon=ClP Mg =Jac?.
We then use first that there is a wall-crossing
PEI™ = >0 coeft|[[PE 1™ [BE o P, T (4.3)
(TX)F(r,x)

d-1
r>0

where additionally r; > 0 to show that
Ox(—k) [ pk
Lo [P ]

holds assuming (4.2) is satisfied for all lower ranks. Then using

[Mnx]in =0+ Z coeff. [ .. [[M]in, [MQQ]iH} e [Mak]m] , (4.4)
f;)i)g(ﬁx)

where the first term on the right hand side is defined by

using the projection 7 : 775 — M. We therefore only need a stack version of the result
discussed by Miguel

Proposition 4.4. If [Pﬁx]i“ satisfies

Ox(—k k 1tin __
£0x( )[pm(] -0

then
LAy =0.
This then shows that ,
L[M,,]" =0.
“for all ranks. O
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