The birational geometry of moduli spaces of level curves

Gregor Bruns

Moduli of curves, sheaves, and K3 surfaces
Humboldt-Universität zu Berlin
February 09, 2017

Section 1

$$
\overline{\mathcal{M}}_{g}
$$

Moduli space of stable curves

- \mathcal{M}_{g} is the moduli space of smooth curves of genus g.
- Deligne-Mumford compactification $\overline{\mathcal{M}}_{g}$ of stable curves of genus g.

Severi's theorem and conjecture

Theorem (Severi, 1915)

$\overline{\mathcal{M}}_{g}$ is unirational for $g \leq 10$.
Conjecture (Severi)
$\overline{\mathcal{M}}_{g}$ is unirational for all g.
...some years passed ...

Theorem (Sernesi, 1981)

$\overline{\mathcal{M}}_{12}$ is unirational.

The result of Mumford-Harris and Eisenbud-Harris

Theorem (Harris-Mumford, 1982; Eisenbud-Harris, 1987)
$\overline{\mathcal{M}}_{g}$ is of general type for $g \geq 24$.

Geometric consequences

- General type implies non-uniruledness.
- In particular no general curve of high genus is a hyperplane section of a non-ruled surface.
- Only "special" curves of high genus can be obtained by constructions involving free parameters.

How to prove unirationality

- Approach: write down simultaneous equations for almost all the curves of a given genus.
- Elliptic curves: Weierstraß equations.
- Works similarly for other low values of g.

Proofs of general type results

- Let λ be the Hodge class on $\overline{\mathcal{M}}_{g}$, note that λ is big.
- Formula for the canonical class on $\overline{\mathcal{M}}_{g}$ explicitly known:

$$
K_{\overline{\mathcal{M}}_{g}}=13 \lambda-2 \delta
$$

- Want to find an effective divisor D such that we can write

$$
K_{\overline{\mathcal{M}}_{g}}=D+\varepsilon \lambda
$$

for some rational number $\varepsilon>0$.

- This then implies $K_{\overline{\mathcal{M}}_{g}}$ is big as well.

Singularities are a problem ... or are they?

■ $\overline{\mathcal{M}}_{g}$ has non-canonical singularities, i.e., canonical differentials do not locally extend when resolving the singularities.

Theorem (Harris-Mumford)

If $g \geq 4$, then for all m, every m-canonical form on $\overline{\mathcal{M}}_{g}^{\text {reg }}$ extends to an m-canonical form on $\overline{\mathcal{M}}_{g}$. More precisely:

$$
H^{0}\left(\overline{\mathcal{M}}_{g}^{\mathrm{reg}}, K_{\overline{\mathcal{M}}_{g}^{\mathrm{reg}}}^{\otimes m}\right) \cong H^{0}\left(\widehat{\mathcal{M}}_{g}, K_{\widehat{\mathcal{M}}_{g}}^{\otimes m}\right)
$$

for every desingularization $\widehat{\mathcal{M}}_{g}$ of $\overline{\mathcal{M}}_{g}$.

Overview of known results for \mathcal{M}_{g}

| g | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 101112131415161718192021222324 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |

Overview of known results for \mathcal{M}_{g}

| g | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 101112131415161718192021222324 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |

Overview of known results for $\mathcal{M}_{g, n}$

Section 2

Moduli spaces of level curves

Moduli spaces of level curves

- Choose a prime number ℓ.
- Let $\mathcal{R}_{g, \ell}$ be the moduli space of pairs $[C, \eta]$ where $C \in \mathcal{M}_{g}$ and η is a line bundle of order ℓ.
- Such an η induces an isomorphism class of a cyclic étale cover $\widetilde{C} \rightarrow C$ of order ℓ.
- $\mathcal{R}_{g, \ell}$ generalizes the modular curve $Y_{1}(\ell)$ to higher genus.

Modular compactification of $\mathcal{R}_{g, \ell}$

- Various compactifications available.
- Most useful for us: based on Deligne-Mumford $\overline{\mathcal{M}}_{g}$ with new types of quasistable curves lying over points in Δ_{0}.

Prym varieties

Classical case: $\ell=2$

- From $[C, \eta]$ get a double cover $\pi: \widetilde{C} \rightarrow C$.
- The cover π induces an endomorphism γ of $\operatorname{Jac}(\widetilde{C})$.
- $P(C, \eta)=\operatorname{Image}(1-\gamma)$ is a ppav of dimension $g-1$.
- $P(C, \eta)$ is called a Prym variety.
- Prym map $\mathcal{R}_{g, 2} \rightarrow \mathcal{A}_{g-1}$ dominant for $g \leq 6$, used to study ppavs of low dimension.

Singularities are getting worse

- Again, $\overline{\mathcal{R}}_{g, \ell}$ has non-canonical singularities.
- For $\ell \geq 5$ there exists a difficult new type of singularity.

Theorem (Farkas-Ludwig, Chiodo-Farkas)

Fix $g \geq 4$ and $\ell=2$ or $\ell=3$. Let $\widehat{\mathcal{R}}_{g, \ell} \rightarrow \overline{\mathcal{R}}_{g, \ell}$ be any desingularization. Then every pluricanonical form defined on the smooth locus $\overline{\mathcal{R}}_{g, \ell}^{\mathrm{reg}}$ of $\overline{\mathcal{R}}_{g, \ell}$ extends holomorphically to $\widehat{\mathcal{R}}_{g, \ell}$, that is, for all integers $m \geq 0$ we have isomorphisms

$$
H^{0}\left(\overline{\mathcal{R}}_{g, \ell}^{\mathrm{reg}}, K_{\overline{\mathcal{R}}_{g, \ell}^{\mathrm{reg}}}^{\otimes m}\right) \cong H^{0}\left(\widehat{\mathcal{R}}_{g, \ell}, K_{\widehat{\mathcal{R}}_{g, \ell}}^{\otimes m}\right)
$$

Overview of known results

Overview of known results

λ	1	2	3	4	5	6	7	8	9	1011		,	3141		1617	18	202122
1																	
2											≥ 0			≥ 1			
3										≥ 19							
5																	
7																	
11	-																
13																	

Section 3

Prym varieties of genus 15

The case of $g=15$ and $\ell=2$

Theorem (—, 2015)
 $\overline{\mathcal{R}}_{15,2}$ is of general type.

Which divisor works for $g=15$ and $\ell=2$? ।

- Motivation from genus 6 .
- General curve of genus 6 has a finite number of (base point free) $L \in W_{6}^{2}(C)$.
- L induces a 4 -nodal plane sextic model Γ.
- Ask for a conic Q that is tangent to Γ at every point of intersection.

- Equivalently:

$$
\operatorname{Sym}^{2} H^{0}(C, L \otimes \eta) \rightarrow \frac{H^{0}\left(C, L^{\otimes 2}\right)}{\operatorname{Sym}^{2} H^{0}(C, L)}
$$

not injective, where η is a 2 -torsion line bundle.

Which divisor works for $g=15$ and $\ell=2$? II

Now in genus 15:

- General curve has a smooth degree 16 model in \mathbb{P}^{4} induced by a line bundle L.
- Ask for

$$
\operatorname{Sym}^{2} H^{0}(C, L \otimes \eta) \rightarrow \frac{H^{0}\left(C, L^{\otimes 2}\right)}{\operatorname{Sym}^{2} H^{0}(C, L)}
$$

not injective.

- Pairs $[C, \eta]$ with such an L form a virtual divisor \mathcal{D}_{15} in $\mathcal{R}_{15,2}$.

Which divisor works for $g=15$ and $\ell=2$? III

$$
\operatorname{Sym}^{2} H^{0}(C, L \otimes \eta) \rightarrow \frac{H^{0}\left(C, L^{\otimes 2}\right)}{\operatorname{Sym}^{2} H^{0}(C, L)}
$$

- Have to construct a pair $[C, \eta]$ where the above map is injective.
- A curve with a theta characteristic in $W_{14}^{4}(C)$ works.
- Also need to prove that the moduli space of triples $[C, \eta, L]$ is irreducible.
- Use a globalized version of the map to calculate the divisor class.

Which divisor works for $g=15$ and $\ell=2$? IV

Theorem (-,2015)
The class

$$
\left[\overline{\mathcal{D}}_{15}\right]^{\prime} \equiv 31020\left(\frac{3127}{470} \lambda-\left(\delta_{0}^{\prime}+4 \delta_{0}^{\prime \prime}\right)-\frac{3487}{1880} \delta_{0}^{(1)}\right)
$$

in $\operatorname{Pic}_{\mathbb{Q}}\left(\mathcal{R}_{15,2}^{\prime}\right)$ is effective. Here $\mathcal{R}_{15,2}^{\prime}$ is a partial compactification of $\mathcal{R}_{15,2}$ including only curves lying over general points in $\Delta_{0} \subset \mathcal{M}_{15}$.

Section 4

Mukai's geometry of low genus curves

Unirationality of $\overline{\mathcal{M}}_{g}$ for $g=3,4,5$

General canonical curve of genus

- $g=3$ is a plane quartic.
- $g=4$ is a $(2,3)$-complete intersection in \mathbb{P}^{3}.
- $g=5$ is a $(2,2,2)$-complete intersection in \mathbb{P}^{4}.

Genus 6 and beyond

- The general curve of genus 6 (and above) is not a complete intersection in projective space.
- Mukai's insight: If we consider curves embedded in homogeneous spaces, not just projective space, then we can continue up to genus 9 .
- Concretely: Curves of genus $6 \leq g \leq 9$ arise as complete intersections in Grassmannian varieties.

Definition

Restricting the universal quotient bundle of a Grassmannian to an embedded curve C gives a vector bundle E_{C}, the Mukai bundle of C.

Mukai's geometry in concrete numbers

g	X_{g}	$\operatorname{rk}\left(E_{C}\right)$	$h^{0}\left(C, E_{C}\right)$	BN condition
6	$\mathrm{G}(5,2)$	2	5	$\# W_{4}^{1}(C)<\infty$
7	$\mathrm{OG}(10,5)$	5	10	$W_{4}^{1}(C)=\emptyset$
8	$\mathrm{G}(6,2)$	2	6	$W_{7}^{2}(C)=\emptyset$
9	$\mathrm{SpG}(6,3)$	3	6	$W_{5}^{1}(C)=\emptyset$

Section 5

Using the Mukai bundle

General type for $g=8$ and $\ell=3$

Theorem (—, 2016)
 $\overline{\mathcal{R}}_{8,3}$ is of general type.

Recap on Mukai geometry of genus 8 curves

- General canonical curve C is an intersection of the Grassmannian $\mathrm{G}(6,2) \subseteq \mathbb{P}^{14}$ and a 7-dimensional plane.

- Mukai bundle E_{C} is the restriction of the universal rank 2 quotient bundle on $\mathrm{G}(6,2)$ to C.

Which divisor works for $g=8$ and $\ell=3$?

- Consider the locus

$$
\mathcal{D}_{8,3}=\left\{[C, \eta] \mid H^{0}\left(C, E_{C} \otimes \eta\right) \neq 0\right\}
$$

- E_{C} is (locally) an extension

$$
0 \rightarrow A \rightarrow E_{C} \rightarrow L \rightarrow 0
$$

with $A \in W_{5}^{1}(C)$ and $L=K_{C}-A \in W_{9}^{3}(C)$.

- Description in terms of the map

$$
H^{0}(C, L \otimes \eta) \otimes H^{0}\left(C, L \otimes \eta^{-1}\right) \rightarrow \frac{H^{0}\left(C, L^{\otimes 2}\right)}{\operatorname{Sym}^{2} H^{0}(C, L)}
$$

Which divisor works for $g=8$ and $\ell=3$? II

- $\mathcal{D}_{8,3}$ is a divisor: construct one example $[C, \eta]$ where we have $H^{0}\left(C, E_{C} \otimes \eta\right)=0$.
- By semi-continuity and irreducibility of $\mathcal{R}_{8,3}$ this is then true for the general pair.
- Proof by specialization first to plane nodal septics: there $E_{C}=M \oplus M^{\prime}$.
- Further specialization to hyperelliptic curves necessary.

■ Need irreducibility of some moduli spaces of linear series.

Which divisor works for $g=8$ and $\ell=3$? III

- Compactification $\overline{\mathcal{D}}_{8,3}$ has a useful class.

Theorem (-,2016)

The class

$$
\left[\overline{\mathcal{D}}_{8,3}\right]^{\prime}=196 \lambda-28\left(\delta_{0}^{\prime}+2 \delta_{0}^{\prime \prime}\right)-\frac{308}{3} \delta_{0}^{(1)}
$$

in $\operatorname{Pic}_{\mathbb{Q}}\left(\mathcal{R}_{8,3}^{\prime}\right)$ is effective. Here $\mathcal{R}_{8,3}^{\prime}$ is a partial compactification of $\mathcal{R}_{8,3}$ including only curves lying over general points in $\Delta_{0} \subset \mathcal{M}_{8}$.

- We have a similar theorem for other ℓ, as well as for $g=6$.

Overview of known results, now

λ	1	2	3	4	5	6	7	8	9	101	111	121	314		617		202122
1																	
2												≥ 0		≥ 1			
3											≥ 19						
5																	
7																	
11	0																
13																	

Overview of known results, now

Section 6

Idle speculation

Implications for other genera?

- Nothing is known about $\mathcal{R}_{9,3}$ and $\mathcal{R}_{10,3}$.
- We have $\kappa\left(\overline{\mathcal{R}}_{11,3}\right) \geq 19$. Observe $\operatorname{dim}\left(\overline{\mathcal{R}}_{11,3}\right)=30$.
- Theorem suggests these three spaces could be of general type as well.

Relation between the gaps?

- Strips almost map to each other under

$$
[C, \eta] \mapsto[\widetilde{C} \rightarrow C] \mapsto[\widetilde{C}] \in \mathcal{M}_{\ell g-\ell+1}
$$

- Coincidence?
- In what respect are the curves \widetilde{C} general?

Comparison with spin moduli spaces

■ Why do spin curves seem to be easier?

- What about $\overline{\mathcal{R}}_{12,2}$?
- Program for higher order spin curves?

The end

Thank you!

