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Moduli space of stable curves

Mg is the moduli space of smooth curves of genus g.
Deligne–Mumford compactificationMg of stable curves of genus g.

g − 1 1

g − 1
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Severi’s theorem and conjecture

Theorem (Severi, 1915)
Mg is unirational for g ≤ 10.

Conjecture (Severi)
Mg is unirational for all g.

. . . some years passed . . .

Theorem (Sernesi, 1981)
M12 is unirational.
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The result of Mumford–Harris and Eisenbud–Harris

Theorem (Harris–Mumford, 1982; Eisenbud–Harris, 1987)
Mg is of general type for g ≥ 24.
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Geometric consequences

General type implies non-uniruledness.
In particular no general curve of high genus is a hyperplane section of
a non-ruled surface.
Only “special” curves of high genus can be obtained by constructions
involving free parameters.
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How to prove unirationality

Approach: write down simultaneous equations for almost all the
curves of a given genus.
Elliptic curves: Weierstraß equations.
Works similarly for other low values of g.
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Proofs of general type results

Let λ be the Hodge class onMg, note that λ is big.
Formula for the canonical class onMg explicitly known:

KMg
= 13λ− 2δ

Want to find an effective divisor D such that we can write

KMg
= D + ελ

for some rational number ε > 0.
This then implies KMg

is big as well.
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Singularities are a problem . . . or are they?

Mg has non-canonical singularities, i.e., canonical differentials do not
locally extend when resolving the singularities.

Theorem (Harris–Mumford)
If g ≥ 4, then for all m, every m-canonical form onMreg

g extends to an
m-canonical form onMg. More precisely:

H0
(
Mreg

g ,K⊗m
Mreg

g

)
∼= H0

(
M̂g,K

⊗m
M̂g

)
for every desingularization M̂g ofMg.
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Overview of known results forMg

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
≥2
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Overview of known results forMg
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Overview of known results forMg,n
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Section 2

Moduli spaces of level curves
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Moduli spaces of level curves

Choose a prime number `.
Let Rg,` be the moduli space of pairs [C, η] where C ∈Mg and η is
a line bundle of order `.
Such an η induces an isomorphism class of a cyclic étale cover
C̃ → C of order `.
Rg,` generalizes the modular curve Y1(`) to higher genus.
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Modular compactification of Rg,`

Various compactifications available.
Most useful for us: based on Deligne–MumfordMg with new types
of quasistable curves lying over points in ∆0.

g−1 1

η OE
η1 η2

g−1 1

g−1 η̃

η

g−1 OC

η
g−1

P1

η

O(1)
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Prym varieties

Classical case: ` = 2
From [C, η] get a double cover π : C̃ → C.
The cover π induces an endomorphism γ of Jac(C̃).
P (C, η) = Image(1− γ) is a ppav of dimension g − 1.
P (C, η) is called a Prym variety.
Prym map Rg,2 → Ag−1 dominant for g ≤ 6, used to study ppavs of
low dimension.
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Singularities are getting worse

Again, Rg,` has non-canonical singularities.
For ` ≥ 5 there exists a difficult new type of singularity.

Theorem (Farkas–Ludwig, Chiodo–Farkas)
Fix g ≥ 4 and ` = 2 or ` = 3. Let R̂g,` → Rg,` be any desingularization.
Then every pluricanonical form defined on the smooth locus Rreg

g,` of Rg,`
extends holomorphically to R̂g,`, that is, for all integers m ≥ 0 we have
isomorphisms

H0
(
Rreg
g,` ,K

⊗m
Rreg

g,`

)
∼= H0

(
R̂g,`,K⊗mR̂g,`

)
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Overview of known results

`

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
1
2
3
5
7
11
13

0

≥19

≥1≥0

Gregor Bruns The birational geometry of moduli spacesof level curves 18/41



Overview of known results
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Section 3

Prym varieties of genus 15
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The case of g = 15 and ` = 2

Theorem (—, 2015)
R15,2 is of general type.
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Which divisor works for g = 15 and ` = 2? I

Motivation from genus 6.
General curve of genus 6 has a finite number of (base point free)
L ∈W 2

6 (C).
L induces a 4-nodal plane sextic model Γ.
Ask for a conic Q that is tangent to Γ at every point of intersection.

Γ

Q

Equivalently:

Sym2H0(C,L⊗ η)→ H0(C,L⊗2)
Sym2H0(C,L)

not injective, where η is a 2-torsion line bundle.
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Which divisor works for g = 15 and ` = 2? II

Now in genus 15:
General curve has a smooth degree 16 model in P4 induced by a line
bundle L.
Ask for

Sym2H0(C,L⊗ η)→ H0(C,L⊗2)
Sym2H0(C,L)

not injective.
Pairs [C, η] with such an L form a virtual divisor D15 in R15,2.
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Which divisor works for g = 15 and ` = 2? III

Sym2H0(C,L⊗ η)→ H0(C,L⊗2)
Sym2H0(C,L)

Have to construct a pair [C, η] where the above map is injective.
A curve with a theta characteristic in W 4

14(C) works.
Also need to prove that the moduli space of triples [C, η, L] is
irreducible.
Use a globalized version of the map to calculate the divisor class.
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Which divisor works for g = 15 and ` = 2? IV

Theorem (—,2015)
The class

[D15]′ ≡ 31020
(

3127
470 λ− (δ′0 + 4δ′′0 )− 3487

1880δ
(1)
0

)
in PicQ(R′15,2) is effective. Here R′15,2 is a partial compactification of
R15,2 including only curves lying over general points in ∆0 ⊂M15.
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Section 4

Mukai’s geometry of low genus curves
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Unirationality ofMg for g = 3, 4, 5

General canonical curve of genus
g = 3 is a plane quartic.
g = 4 is a (2, 3)-complete intersection in P3.
g = 5 is a (2, 2, 2)-complete intersection in P4.
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Genus 6 and beyond

The general curve of genus 6 (and above) is not a complete
intersection in projective space.
Mukai’s insight: If we consider curves embedded in homogeneous
spaces, not just projective space, then we can continue up to genus 9.
Concretely: Curves of genus 6 ≤ g ≤ 9 arise as complete intersections
in Grassmannian varieties.

Definition
Restricting the universal quotient bundle of a Grassmannian to an
embedded curve C gives a vector bundle EC , the Mukai bundle of C.
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Mukai’s geometry in concrete numbers

g Xg rk(EC) h0(C,EC) BN condition
6 G(5, 2) 2 5 #W 1

4 (C) <∞
7 OG(10, 5) 5 10 W 1

4 (C) = ∅
8 G(6, 2) 2 6 W 2

7 (C) = ∅
9 SpG(6, 3) 3 6 W 1

5 (C) = ∅
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Section 5

Using the Mukai bundle
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General type for g = 8 and ` = 3

Theorem (—, 2016)
R8,3 is of general type.

Gregor Bruns The birational geometry of moduli spacesof level curves 31/41



Recap on Mukai geometry of genus 8 curves

General canonical curve C is an intersection of the Grassmannian
G(6, 2) ⊆ P14 and a 7-dimensional plane.

Mukai bundle EC is the restriction of the universal rank 2 quotient
bundle on G(6, 2) to C.
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Which divisor works for g = 8 and ` = 3? I

Consider the locus

D8,3 =
{

[C, η]
∣∣ H0(C,EC ⊗ η) 6= 0

}
.

EC is (locally) an extension

0→ A→ EC → L→ 0

with A ∈W 1
5 (C) and L = KC −A ∈W 3

9 (C).
Description in terms of the map

H0(C,L⊗ η)⊗H0(C,L⊗ η−1)→ H0(C,L⊗2)
Sym2H0(C,L)
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Which divisor works for g = 8 and ` = 3? II

D8,3 is a divisor: construct one example [C, η] where we have
H0(C,EC ⊗ η) = 0.
By semi-continuity and irreducibility of R8,3 this is then true for the
general pair.
Proof by specialization first to plane nodal septics: there
EC = M ⊕M ′.
Further specialization to hyperelliptic curves necessary.
Need irreducibility of some moduli spaces of linear series.
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Which divisor works for g = 8 and ` = 3? III

Compactification D8,3 has a useful class.

Theorem (—,2016)
The class

[D8,3]′ = 196λ− 28(δ′0 + 2δ′′0 )− 308
3 δ

(1)
0

in PicQ(R′8,3) is effective. Here R′8,3 is a partial compactification of R8,3
including only curves lying over general points in ∆0 ⊂M8.

We have a similar theorem for other `, as well as for g = 6.
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Overview of known results, now
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Section 6

Idle speculation
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Implications for other genera?

`
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Nothing is known about R9,3 and R10,3.
We have κ(R11,3) ≥ 19. Observe dim(R11,3) = 30.
Theorem suggests these three spaces could be of general type as well.
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Relation between the gaps?

`
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≥0

Strips almost map to each other under

[C, η] 7→ [C̃ → C] 7→ [C̃] ∈M`g−`+1

Coincidence?
In what respect are the curves C̃ general?
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Comparison with spin moduli spaces

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
≥0

g

+
−

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

Why do spin curves seem to be easier?
What about R12,2?
Program for higher order spin curves?

Gregor Bruns The birational geometry of moduli spacesof level curves 40/41



The end

Thank you!
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