The birational geometry of moduli spaces of level curves

Gregor Bruns

Moduli of curves, sheaves, and K3 surfaces Humboldt-Universität zu Berlin

February 09, 2017

Section 1

$$\overline{\mathcal{M}}_g$$

- \mathcal{M}_g is the moduli space of smooth curves of genus g.
- Deligne–Mumford compactification $\overline{\mathcal{M}}_g$ of stable curves of genus g.

Theorem (Severi, 1915)

 $\overline{\mathcal{M}}_g$ is unirational for $g \leq 10$.

Conjecture (Severi)

 $\overline{\mathcal{M}}_g$ is unirational for all g.

... some years passed ...

Theorem (Sernesi, 1981)

 $\overline{\mathcal{M}}_{12}$ is unirational.

The result of Mumford-Harris and Eisenbud-Harris

Theorem (Harris-Mumford, 1982; Eisenbud-Harris, 1987)

 $\overline{\mathcal{M}}_g$ is of general type for $g \ge 24$.

- General type implies non-uniruledness.
- In particular no general curve of high genus is a hyperplane section of a non-ruled surface.
- Only "special" curves of high genus can be obtained by constructions involving free parameters.

How to prove unirationality

- Approach: write down simultaneous equations for almost all the curves of a given genus.
- Elliptic curves: Weierstraß equations.
- Works similarly for other low values of *g*.

- Let λ be the Hodge class on $\overline{\mathcal{M}}_g$, note that λ is big.
- Formula for the canonical class on $\overline{\mathcal{M}}_g$ explicitly known:

$$K_{\overline{\mathcal{M}}_g} = 13\lambda - 2\delta$$

 \blacksquare Want to find an effective divisor D such that we can write

$$K_{\overline{\mathcal{M}}_g} = D + \varepsilon \lambda$$

for some rational number $\varepsilon > 0$.

• This then implies $K_{\overline{\mathcal{M}}_q}$ is big as well.

■ *M*_g has *non-canonical* singularities, i.e., canonical differentials do not locally extend when resolving the singularities.

Theorem (Harris–Mumford)

If $g \ge 4$, then for all m, every m-canonical form on $\overline{\mathcal{M}}_g^{\text{reg}}$ extends to an m-canonical form on $\overline{\mathcal{M}}_g$. More precisely:

$$H^0\left(\overline{\mathcal{M}}_g^{\mathrm{reg}}, K_{\overline{\mathcal{M}}_g^{\mathrm{reg}}}^{\otimes m}\right) \cong H^0\left(\widehat{\mathcal{M}}_g, K_{\widehat{\mathcal{M}}_g}^{\otimes m}\right)$$

for every desingularization $\widehat{\mathcal{M}}_g$ of $\overline{\mathcal{M}}_g$.

Overview of known results for \mathcal{M}_g

g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
																							≥ 2	

Overview of known results for \mathcal{M}_g

g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Overview of known results for $\mathcal{M}_{g,n}$

Section 2

Moduli spaces of level curves

- Choose a prime number ℓ .
- Let $\mathcal{R}_{g,\ell}$ be the moduli space of pairs $[C,\eta]$ where $C \in \mathcal{M}_g$ and η is a line bundle of order ℓ .
- Such an η induces an isomorphism class of a cyclic étale cover $\widetilde{C} \to C$ of order ℓ .
- **\mathbb{R}_{g,\ell}** generalizes the modular curve $Y_1(\ell)$ to higher genus.

- Various compactifications available.
- Most useful for us: based on Deligne–Mumford $\overline{\mathcal{M}}_g$ with new types of *quasistable* curves lying over points in Δ_0 .

Classical case: $\ell = 2$

- From $[C, \eta]$ get a double cover $\pi \colon \widetilde{C} \to C$.
- The cover π induces an endomorphism γ of $\operatorname{Jac}(\widetilde{C})$.
- $P(C, \eta) = \text{Image}(1 \gamma)$ is a ppav of dimension g 1.

•
$$P(C, \eta)$$
 is called a *Prym variety*.

Prym map $\mathcal{R}_{g,2} \to \mathcal{A}_{g-1}$ dominant for $g \leq 6$, used to study ppavs of low dimension.

- Again, $\overline{\mathcal{R}}_{g,\ell}$ has non-canonical singularities.
- For $\ell \geq 5$ there exists a difficult new type of singularity.

Theorem (Farkas–Ludwig, Chiodo–Farkas)

Fix $g \ge 4$ and $\ell = 2$ or $\ell = 3$. Let $\widehat{\mathcal{R}}_{g,\ell} \to \overline{\mathcal{R}}_{g,\ell}$ be any desingularization. Then every pluricanonical form defined on the smooth locus $\overline{\mathcal{R}}_{g,\ell}^{\mathrm{reg}}$ of $\overline{\mathcal{R}}_{g,\ell}$ extends holomorphically to $\widehat{\mathcal{R}}_{g,\ell}$, that is, for all integers $m \ge 0$ we have isomorphisms

$$H^0\left(\overline{\mathcal{R}}_{g,\ell}^{\mathrm{reg}}, K_{\overline{\mathcal{R}}_{g,\ell}}^{\otimes m}\right) \cong H^0\left(\widehat{\mathcal{R}}_{g,\ell}, K_{\widehat{\mathcal{R}}_{g,\ell}}^{\otimes m}\right)$$

Overview of known results

ℓ^g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1																						
2												≥ 0			≥ 1							
3											≥ 19											
5																						
7																						
11	0																					
13																						

Overview of known results

ℓ^g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1																						
2												≥ 0			≥ 1							
3											≥ 19											
5																						
7																						
11	0																					
13																						

Section 3

Prym varieties of genus 15

The case of g = 15 and $\ell = 2$

Theorem (---, 2015)

 $\overline{\mathcal{R}}_{15,2}$ is of general type.

Which divisor works for g = 15 and $\ell = 2$? I

- Motivation from genus 6.
- General curve of genus 6 has a finite number of (base point free) $L \in W_6^2(C)$.
- L induces a 4-nodal plane sextic model Γ .
- \blacksquare Ask for a conic Q that is tangent to Γ at every point of intersection.

Equivalently:

$$\operatorname{Sym}^2 H^0(C, L \otimes \eta) \to \frac{H^0(C, L^{\otimes 2})}{\operatorname{Sym}^2 H^0(C, L)}$$

not injective, where η is a 2-torsion line bundle.

Now in genus 15:

- General curve has a smooth degree $16 \mod$ in \mathbb{P}^4 induced by a line bundle L.
- Ask for

$$\operatorname{Sym}^2 H^0(C, L \otimes \eta) \to \frac{H^0(C, L^{\otimes 2})}{\operatorname{Sym}^2 H^0(C, L)}$$

not injective.

Pairs $[C, \eta]$ with such an L form a virtual divisor \mathcal{D}_{15} in $\mathcal{R}_{15,2}$.

$$\operatorname{Sym}^{2} H^{0}(C, L \otimes \eta) \to \frac{H^{0}(C, L^{\otimes 2})}{\operatorname{Sym}^{2} H^{0}(C, L)}$$

- Have to construct a pair $[C, \eta]$ where the above map is injective.
- A curve with a theta characteristic in $W_{14}^4(C)$ works.
- Also need to prove that the moduli space of triples $[C, \eta, L]$ is irreducible.
- Use a globalized version of the map to calculate the divisor class.

Theorem (---,2015)

The class

$$[\overline{\mathcal{D}}_{15}]' \equiv 31020 \left(\frac{3127}{470} \lambda - (\delta_0' + 4\delta_0'') - \frac{3487}{1880} \delta_0^{(1)} \right)$$

in $\operatorname{Pic}_{\mathbb{Q}}(\mathcal{R}'_{15,2})$ is effective. Here $\mathcal{R}'_{15,2}$ is a partial compactification of $\mathcal{R}_{15,2}$ including only curves lying over general points in $\Delta_0 \subset \mathcal{M}_{15}$.

Section 4

Mukai's geometry of low genus curves

Unitationality of
$$\overline{\mathcal{M}}_g$$
 for $g = 3, 4, 5$

General canonical curve of genus

- g = 3 is a plane quartic.
- g = 4 is a (2,3)-complete intersection in \mathbb{P}^3 .
- g = 5 is a (2, 2, 2)-complete intersection in \mathbb{P}^4 .

- The general curve of genus 6 (and above) is *not* a complete intersection in projective space.
- Mukai's insight: If we consider curves embedded in *homogeneous* spaces, not just projective space, then we can continue up to genus 9.
- Concretely: Curves of genus $6 \le g \le 9$ arise as complete intersections in Grassmannian varieties.

Definition

Restricting the universal quotient bundle of a Grassmannian to an embedded curve C gives a vector bundle E_C , the *Mukai bundle* of C.

g	X_g	$\operatorname{rk}(E_C)$	$h^0(C, E_C)$	BN condition
6	G(5, 2)	2	5	$\#W_4^1(C) < \infty$
7	OG(10, 5)	5	10	$W_4^1(C) = \emptyset$
8	G(6, 2)	2	6	$W_7^2(C) = \emptyset$
9	$\operatorname{SpG}(6,3)$	3	6	$W_5^1(C) = \emptyset$

Section 5

Using the Mukai bundle

General type for g = 8 and $\ell = 3$

Theorem (---, 2016)

 $\overline{\mathcal{R}}_{8,3}$ is of general type.

Recap on Mukai geometry of genus 8 curves

General canonical curve C is an intersection of the Grassmannian $G(6,2) \subseteq \mathbb{P}^{14}$ and a 7-dimensional plane.

■ Mukai bundle *E_C* is the restriction of the universal rank 2 quotient bundle on G(6,2) to *C*.

Consider the locus

$$\mathcal{D}_{8,3} = \left\{ [C,\eta] \mid H^0(C, E_C \otimes \eta) \neq 0 \right\}.$$

• E_C is (locally) an extension

$$0 \to A \to E_C \to L \to 0$$

with $A \in W_5^1(C)$ and $L = K_C - A \in W_9^3(C)$.

Description in terms of the map

$$H^0(C, L \otimes \eta) \otimes H^0(C, L \otimes \eta^{-1}) \to \frac{H^0(C, L^{\otimes 2})}{\operatorname{Sym}^2 H^0(C, L)}$$

- $\mathcal{D}_{8,3}$ is a divisor: construct one example $[C, \eta]$ where we have $H^0(C, E_C \otimes \eta) = 0.$
- By semi-continuity and irreducibility of $\mathcal{R}_{8,3}$ this is then true for the general pair.
- Proof by specialization first to plane nodal septics: there $E_C = M \oplus M'$.
- Further specialization to hyperelliptic curves necessary.
- Need irreducibility of some moduli spaces of linear series.

• Compactification $\overline{\mathcal{D}}_{8,3}$ has a useful class.

Theorem (-,2016)

The class

$$[\overline{\mathcal{D}}_{8,3}]' = 196\lambda - 28(\delta_0' + 2\delta_0'') - \frac{308}{3}\delta_0^{(1)}$$

in $\operatorname{Pic}_{\mathbb{Q}}(\mathcal{R}'_{8,3})$ is effective. Here $\mathcal{R}'_{8,3}$ is a partial compactification of $\mathcal{R}_{8,3}$ including only curves lying over general points in $\Delta_0 \subset \mathcal{M}_8$.

• We have a similar theorem for other ℓ , as well as for g = 6.

Overview of known results, now

ℓ^g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1																						
2												≥ 0			≥ 1							
3											≥ 19											
5																						
7																						
11	0																					
13																						

Overview of known results, now

ℓ^g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1																						
2												≥ 0										
3											≥ 19											
5																						
7																						
11	0																					
13																						

Section 6

Idle speculation

Implications for other genera?

ℓ^g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1																						
2												≥ 0										
3											≥ 19											
5																						
7																						
11	0																					
13																						

- Nothing is known about $\mathcal{R}_{9,3}$ and $\mathcal{R}_{10,3}$.
- We have $\kappa(\overline{\mathcal{R}}_{11,3}) \ge 19$. Observe $\dim(\overline{\mathcal{R}}_{11,3}) = 30$.
- Theorem suggests these three spaces could be of general type as well.

Relation between the gaps?

Strips almost map to each other under

$$[C,\eta] \mapsto [\widetilde{C} \to C] \mapsto [\widetilde{C}] \in \mathcal{M}_{\ell g - \ell + 1}$$

Coincidence?

In what respect are the curves \widetilde{C} general?

Comparison with spin moduli spaces

g	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
$^+$								0														
-																						

- Why do spin curves seem to be easier?
- What about $\overline{\mathcal{R}}_{12,2}$?
- Program for higher order spin curves?

Thank you!