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Section 1

Gregor Bruns birational geometry of moduli spacesof level curves




Moduli space of stable curves

m M, is the moduli space of smooth curves of genus g.
m Deligne-Mumford compactification M, of stable curves of genus g.
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Severi's theorem and conjecture

Theorem (Severi, 1915)

My is unirational for g < 10.
Conjecture (Severi)
M, is unirational for all g.

...some years passed ...

Theorem (Sernesi, 1981)

M4 is unirational.
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The result of Mumford—Harris and Eisenbud—Harris

Theorem (Harris—Mumford, 1982; Eisenbud—Harris, 1987)
M, is of general type for g > 24.
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Geometric consequences

m General type implies non-uniruledness.

m In particular no general curve of high genus is a hyperplane section of
a non-ruled surface.

m Only “special” curves of high genus can be obtained by constructions
involving free parameters.
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How to prove unirationality

m Approach: write down simultaneous equations for almost all the
curves of a given genus.

m Elliptic curves: WeierstraB equations.

m Works similarly for other low values of g.

Gregor Bruns The birational geometry of moduli spacesof level curves 7



Proofs of general type results

m Let A be the Hodge class on My, note that A is big.
m Formula for the canonical class on M, explicitly known:

Kyg, =13\ — 25

m Want to find an effective divisor D such that we can write

Kﬂg :D+€A

for some rational number € > 0.

m This then implies K+ is big as well.
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Singularities are a problem .. .or are they?

m M, has non-canonical singularities, i.e., canonical differentials do not
locally extend when resolving the singularities.

Theorem (Harris-Mumford)

If g > 4, then for all m, every m-canonical form on M;eg extends to an
m-canonical form on M. More precisely:

HO (M, K%’ch) = 1M, K%m)

for every desingularization M, of M,,.
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Overview of known results for M,
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Overview of known results for M,
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Overview of known results for M, ,,
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Section 2

Moduli spaces of level curves
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Moduli spaces of level curves

m Choose a prime number /.

m Let R, ¢ be the moduli space of pairs [C, 7] where C'€ M, and 7 is
a line bundle of order £.

m Such an 7 induces an isomorphism class of a cyclic étale cover
C — C of order ¢.

m R, ¢ generalizes the modular curve Y7 (¢) to higher genus.
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Modular compactification of R, ¢

m Various compactifications available.

m Most useful for us: based on Deligne-Mumford M, with new types
of quasistable curves lying over points in Ag.

AR R
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Prym varieties

Classical case: ¢ =2

= From [C, 7] get a double cover 7: C' — C.
The cover 7 induces an endomorphism ~ of Jac(C).
P(C,n) =Image(1 — v) is a ppav of dimension g — 1.

P(C,n) is called a Prym variety.

Prym map Ry 2 — Ag—1 dominant for g < 6, used to study ppavs of
low dimension.
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Singularities are getting worse

m Again, ﬁg’z has non-canonical singularities.
m For £ > 5 there exists a difficult new type of singularity.

Theorem (Farkas—Ludwig, Chiodo—Farkas)

Fixg>4andl=2orl=3. Let 7%974 — Ry.¢ be any desingularization.
Then every pluricanonical form defined on the smooth locus R, ; of Ry,

extends holomorphically to ﬁg,z, that is, for all integers m > 0 we have
isomorphisms

0 [ preg ®m ~ 0 m
H (Rgve,Kﬁxﬁ ~H (Rg,g,KﬁM)
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Overview of known results
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Section 3

Prym varieties of genus 15
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The case of g =15 and ¢ = 2

Theorem (—, 2015)
Ris,2 is of general type.
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Which divisor works for g = 15 and ¢ = 27 |

Motivation from genus 6.

General curve of genus 6 has a finite number of (base point free)
L e Wg(C).

L induces a 4-nodal plane sextic model T'.

m Ask for a conic @ that is tangent to I' at every point of intersection.

m Equivalently:

HO (07 L®2)

Sym® HY(C, L ® ) » ——=———
ym” H( " Sym? HO(C, L)

not injective, where 7 is a 2-torsion line bundle.
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Which divisor works for g = 15 and ¢ = 27 I

Now in genus 15:

m General curve has a smooth degree 16 model in P* induced by a line
bundle L.

m Ask for
HO(C, L®2)

Sym® HY(C, L ® ) » ————
ym” H( " Sym? HO(C, L)

not injective.

m Pairs [C,n] with such an L form a virtual divisor D15 in Ri5 2.
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Which divisor works for g = 15 and ¢ = 27 Il

HO(C, L®2)

Sym® H°(C, L ® —
ym® H( m Sym? HO(C, L)

m Have to construct a pair [C, 1] where the above map is injective.
m A curve with a theta characteristic in Wi, (C) works.

m Also need to prove that the moduli space of triples [C, 7, L] is
irreducible.

m Use a globalized version of the map to calculate the divisor class.
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Which divisor works for g = 15 and ¢ = 27 IV

Theorem (—,2015)

The class

_ 3127 3487 1)
/= X — (6 + 487 — 75(
[Dy5]" = 31020 ( 170 (60 + 407) 13300 )

in Picg(R15 2) is effective. Here R , is a partial compactification of
Ris,2 including only curves lying over general points in Ag C Ms.
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Section 4

Mukai's geometry of low genus curves
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Unirationality of M, for g = 3,4,5

General canonical curve of genus
m g = 3 is a plane quartic.
m g =4is a (2,3)-complete intersection in P3.

m g=>5isa (2,2,2)-complete intersection in P*.
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Genus 6 and beyond

m The general curve of genus 6 (and above) is not a complete
intersection in projective space.

m Mukai's insight: If we consider curves embedded in homogeneous
spaces, not just projective space, then we can continue up to genus 9.

m Concretely: Curves of genus 6 < g < 9 arise as complete intersections
in Grassmannian varieties.

Restricting the universal quotient bundle of a Grassmannian to an
embedded curve C gives a vector bundle E¢, the Mukai bundle of C'.

Gregor Bruns The birational geometry of moduli spacesof level curves 28/41



Mukai's geometry in concrete numbers

g X, rtk(Ec) h°(C,Ec) BN condition
6 Q05,2 2 5 AWLHO) <
7 0G(10,5) 5 10 W(C) =

8 G(6,2) 2 6 W2(C) =0
9 SpG(6,3) 3 6 Wa(C) =0
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Section 5

Using the Mukai bundle
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General type for g =8 and { = 3

Theorem (—, 2016)
Rs 3 is of general type.
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Recap on Mukai geometry of genus 8 curves

m General canonical curve C is an intersection of the Grassmannian
G(6,2) C P* and a 7-dimensional plane.

m Mukai bundle E¢ is the restriction of the universal rank 2 quotient
bundle on G(6,2) to C.
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Which divisor works for g = 8 and ¢ = 37 |

m Consider the locus
Dy ={[C,n] | HO(C,Ec©m) #£0}.
m Ec¢ is (locally) an extension
0—+A—FEc—L—0

with A € W2(C) and L = K¢ — A € W3(C).

m Description in terms of the map

HO(C, L#?)

HYC,Len) @ H(C,Lon ') —» ——— 2
( n) ( n) Sym? HO(C. L)
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Which divisor works for g = 8 and ¢ = 37 |l

m Dg 3 is a divisor: construct one example [C,n] where we have
H°(C,Ec ®n) = 0.

m By semi-continuity and irreducibility of Rg 3 this is then true for the
general pair.

m Proof by specialization first to plane nodal septics: there
Ec=Mao M.

m Further specialization to hyperelliptic curves necessary.

m Need irreducibility of some moduli spaces of linear series.
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Which divisor works for g = 8 and ¢ = 37 Il

m Compactification Dg 3 has a useful class.

Theorem (—,2016)

The class 308
[Ds.s)’ = 196\ — 28(8) + 267) — ngv

in Picg(Ryg 3) is effective. Here Ry 5 is a partial compactification of Rg 3
including only curves lying over general points in Ay C Ms.

m We have a similar theorem for other ¢, as well as for g = 6.
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Overview of known results, now
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Overview of known results, now
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Section 6

Idle speculation
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Implications for other genera?

{1 23456 7 8 91011121314151617 1819202122

m Nothing is known about Rg 3 and Rip 3.
m We have r(R11,3) > 19. Observe dim(R11,3) = 30.
m Theorem suggests these three spaces could be of general type as well.
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Relation between the gaps?

{1 23456 7 8 91011121314151617 1819202122

m Strips almost map to each other under
[Con) = [C = C) = [C] € Megi41

m Coincidence?
m In what respect are the curves C' general?
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Comparison with spin moduli spaces

911 2 3 456 7 8 91011121314151617 18192021 22

>0

91 2 3 45 6 7 8 91011121314151617 1819 2021 22
+ 0

Why do spin curves seem to be easier?
What about ﬁ12,2?

Program for higher order spin curves?
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The end

Thank you!
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