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§l. Counting partitions

How can we write n as a sum of positive numbers?
The list of partitions of n = 3 is

3, 241, 1+1+1,
and the list of partitions of n =4 is

4, 341, 242, 241+1, 1+14+1+1.

Let p(n) = Number of partitions of n

So p(3) = 3 and p(4) = 5.



A formula for p(n)?

There is no direct formula for p(n), but there is a formula for the

generating series:

gp(n)q” = kﬁ;l <1_1qk>

Expand the right side

gp(n)q” - <1—1q1> (1—1q2> <1—1q3)m

= 14+¢" +2¢°+3¢°+5¢" +7¢° +...




The product formula for the counting of partitions was found by

Leonhard Euler (1707-1783):
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Express partitions as diagrams:
10=5+4+1

can be pictured as

The diagram may be viewed as stacking squares in the corner of a
2-dimensional room (stable for both coordinate directions of

gravity).

What about 3-dimensions ?



We would like to stack 3-dimensional boxes in the corner of a
3-dimensional room.

Photo of the installation Five Boxes
by the Icelandic artist Egill Seebjornsson.

Photo courtesy of the Reykjavik Art Museum.



A 3-dimensional partition is a stacking of boxes in the corner of a
room (which is stable for any of the three coordinate directions of

gravity):

Let P(n) = Number of 3-dimensional partitions of n

Wesee P(1) =1, P(2) =3, P(3) =6, ...



A formula for P(n)

Again, there is no direct formula for P(n), but there is a formula
for the generating series:

The formula is due to Percy MacMahon
(1854-1929). Before his mathematical
career, he was a Lieutenant in the British
army. He was said to be at least partially
inspired by stacking cannon balls.




A formula for counting partitions in 4-dimensions ?

2-dim Z p(n)
n=0
3-dim Z P(n)q"

MacMahon proposed [];2 ( L

1—qgk

of 4-dimensional partitions.

k+1

7 for the generating series

He was wrong! Formulas for dimensions 4 and higher are unknown.

His 4-dim proposal is correct for n < 5. For n = 6 boxes, he
proposes 141, while the correct number is 140.



§1l. Points in affine space: dimensions 1 and 2

We will study the r-dimensional complex affine space C" and
consider configurations of n distinct unordered points of C".

A configuration of 3 points in C! : ) t ¢
l

{0,1,it cC? . .

The configuration space C"[n] parameterizes all such
configurations of n distinct unordered points of C".

e The r =1 case is simple:
C![n] = {monic degree n polynomials in x with no double roots}
by multiplication of linear factors

{0,1,i} = (x=0)(x—1)(x—1)=x3=(1+)x*+ix.



To capture the collisions of points, we take the space of all
monic polynomials

C*[n] c {all monic degree n polynomials in x} =C".

e The r = 2 case is much more interesting: how are we to capture
the collisions of points in C? ?

Algebraic geometry provides a deep solution to the question of
collisions via the Hilbert scheme.

Let x, y be the two coordinates of C?. To each configuration
{p1,p2,...,pn} € C?

of distinct points, we associate the ideal of polynomials
Z C CJ[x, y] which vanish on these points

{p1,p2,.- P} = I={feClxy] | Vi, f(p;)=0}.



The quotient ring has dimension n as a C-vector space:
dim¢ ((C[x,y]/I) =n.

An idea due to Alexander Grothendieck is to
parameterize all ideals Z C C|[x, y| of codim n
by a space he called the Hilbert scheme.

The Hilbert scheme is an example of a moduli
space in algebraic geometry:

Hilb"(C2) = {Z c Clx, y] ’ dime ((C[x,y]/I) - n} ,

and we have C?[n] C Hilb"(C?) .



Collision of point

configurations in C2[3]

Limit configuration in

Hilb®(C?) satisfying

dimc (Clx, y1/ (< xy.y%)) =3
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§l1l. Geometry of Hilb"(C?)

Hilb"(C?) is a nonsingular complex manifold (or algebraic variety)
of dimension 2n by Fogarty (1968).

e Euler characteristic

The first question about the topology of a space:
what is the Euler characteristic?

Theorem [Ellingsrud-Strgmme 1987, Gottsche 1994].

The generating series of Euler characteristics is:

0o - . 00 1
nz_%x(Hllb (C*))q —k1;[1<1_qk>

We recognize the right side as counting partitions.

A coincidence?



An ideal Z C C|[x, y| is monomial if Z is generated by monomials in
x and y. For example:

T = (x2,xy,y?) is mononial, T = (x+y,y?) is not.

Monomial ideals of codimension n are in bijective correspondence
with partitions of n.

The diagram of the corresponding partition is defined by the n
monominals which are not in Z.
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Calculation of x(Hilb"(C?)) by Ellingsrud-Strgmme (1987)
and Cheah (1996) in four steps:

e The group C* x C* acts on C? by scaling the coordinates
(A1, A2) - (x,¥) = (A1x, Aay)
and therefore C* x C* also acts on Hilb"(C?).

e Since x(C*) = 0, we have:

x(Hilb"(C?)) = Number of fixed points

e The fixed points of the action are monomial ideals.

e Monomial ideals in C[x, y] of codimension n are in bijective
correspondence with partitions of n.



e Full cohomology H*(Hilb"(C?))
We can ask next: what does the cohomology look like?

To every 7 € Hilb"(C?), we can associate a partition o7 of n by
the pattern of collisions.

Examples for n = 3 are:

~~




Given any partition o of n, we define N(c) C Hilb"(C?) by:

N(o) = {I € Hilb"(C?) ( o1 = a}.

Theorem [Nakajima 1997, Grojnowski 1996]. A Q-basis of the
cohomology of Hilb”(C?) is determined by the subvarieties N(o) as
o varies over all partitions of n.

The result allows for a geometric understanding of the full
cohomology. The sum

&b H*(Hilb"(C?))

n=0
is naturally the Fock space representation of the Heisenberg
algebra, and there is a natural (additive) isomorphism:

é H*(Hilb"(C?)) = A,
n=0

where A is the ring of symmetric polynomials in variables {x;}%°;.



Under the isomorphism,

X * H n 1 ag
nQ?OH (Hilb"(C?)) > [N(o)] Aut(o)] P €N,

where p? is the power sum symmetric function:
c=1+1+3, p’=pi-ps, pi=x'+x +x3'+ .

The connection to representation theory was first conjectured by
C. Vafa and E. Witten (1994) based on a study of the orbifold
cohomology of the quotient (C2)"/%,.

The geometry of Hilb”(C?) was used by M. Haiman (2001) to
prove properties of Macdonald polynomials and the n! conjecture.



e Quantum cohomology QH*(Hilb"(C?))

The symmetric product (C?)"/X, is singular, but otherwise a
much more naive geometry. The Hilbert scheme admits a map

Hilb"(C?) — (C%)"/%,
which is a resolution of singularities.

As suggested by Vafa and Witten (1994), there is a deep
connection between the geometry of

Hilb"(C2) and  [(C?)"/%,]°",
where the orbifold structure is taken on the symmetric product.

20 year project to compute and prove an equivalence in
quantum cohomology: Chen-Ruan (2002), Bryan-Graber (2009),
Coates-Corti-Iritani-Tseng (2009), Maulik-Oblomkov (2009),
Okounkov-P (2010), P-Tseng (2019).



The classical cup product in cohomology (for manifolds) carries
the data of the intersection product of triples of cycles.

The quantum product carries a richer set of data: the
enumeration of rational curves meeting triples of cycles.




Theorem [Okounkov-P 2010]. The quantum cohomology of
Hilb”(C?) is generated as an algebra by the class

N2+ 1+ +1).
2

While quantum cohomology concerns the enumeration of
Riemann spheres, the full Gromov-Witten theory carries the
enumerative geometery of curves of all genera.

Theorem [P-Tseng 2019]. The full Gromov-Witten theories of
Hilb"(C?) and [(CZ)”/Z,,]Orb are isomorphic.

Philosophy: Hilb”(C?) is a perfect resolution of singularities of
the symmetric product which carries exactly the same quantum
geometry.



Of course there are many beautiful directions related to Hilb"(C?)
which | have not covered:

A Euler characteristics of Hilbert schemes of points of plane curve
singularities C C C? and the HOMFLY-PT polynomials of their
links [Oblomkov-Shende 2012, Maulik 2016].

A Exact formulas for tautological integrals and K-theoretic
invariants [Lehn 1999, Carlsson 2008, Carlsson-Okounkov 2012,
Voisin 2019, Marian-Oprea-P 2022, Moreira 2022,
Gottsche-Mellit 2022].

A Stable cohomology of Hilb"(C>) [Hoyois, Jelisiejew, Nardin,
Totaro, Yakerson 2021].

A Holomorphic symplectic geometry of Hilb”(C?), Hilb"(A),
Hilb"(K3). There is far too much activity to summarize, see the
webpage www.erc-hyperk.org of the ERC Synergy Grant HyperK
led by Debarre, Huybrechts, Macri, Voisin.



§IV. Geometry of Hilb"(C3)

Unlike the case of C2, the Hilbert scheme
Hilb"(C3) = {I C C[x,y, 2] ’ dimc ((C[X,y,Z]/I) = n}

parameterizing ideals in 3 variables is a terrible space (singular,
many irreducible components, unknown nilpotent structure).
Not a central topic of study until recently.

Starting in the 1990s, there was an effort made in algebraic
geometry to define integration on algebraic moduli spaces
predicted by path integral techniques [Li-Tian, Behrend-Fantechi].

The idea is to use deformation theory in algebraic geometry.
Though moduli spaces, such as the Hilbert scheme, are ill-behaved,
we have some understanding of their local structure.
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If we view Hilb"(C3) as essentially the space of 3 commuting nxn
matrices A, B, C in the space of all nxn matrices, then the defining
equations are given by the critical locus dF = 0 where

F = Trace([A, B]C).



The outcome is a virtual fundamental class and a well-defined
theory of integration on Hilb"(C3).

e Integration

Theorem [Maulik-Nekrasov-Okounkov-P 2006]:

o0 00 1 k
 fusin = La=car)
Z [Hilb"(C3)]Vr kl;Il 1—(-q)"

n=0

which is MacMahon's series for counting 3-dimensional partitions
(up to a sign).

e Sign

While Hilb™(C3) is singular, there is a Zariski tangent space

Tan¥" = Ext!(Z, 7).



Conjecture [Okounkov-P 2006]. For all Z € Hilb"(C3),

dlchan"" =n mod?2.

e Virtual motive

Theorem [Behrend-Bryan-Szendréi 2013]:

0o oo k—1
Yoa'Hib (@) = [Tl ——— w
n=0 k=1 /(=0 1-L

where L is the Lefschetz motive corresponding to C*.

The result refines the integration calculation.



We end here at the beginning of several rich directions.

A Donaldson-Thomas theory: the virtual geometry of the
moduli of sheaves on varieties of low dimension.

A Gromov-Witten/Donaldson-Thomas correspondence relating
sheaf counting to curve counting.

Richest context so far is for 3-dim algebraic varieties X:

X

Recent study in 4-dim [Borisov-Joyce 2017, Oh-Thomas 2022].



An example of how box counting influences everything in
3-dimensions:

Conjecture [Oblomkov-Okounkov-P 2020]. The normalized
generating series of DT invariants

<Chk1('71)"'Chkm(7m)>;< / <1>:

for a 3-fold X in class € Hp(X,Z) is polynomial in the series

(q;:;)i F3(—q)

with coefficients in the ring of rational functions in q.

S df agMa) 3 ‘
q)_kzlquk_ M(q) H<1q) ‘

k=1



A Mirror symmetry relating sheaves in one geometry to curves in a
mirror geometry.

Limit shape as a mirror [Kenyon-Okounkov 2007].



The End



