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GENUS. I

DAN PETERSEN

First I give some motivating examples for the theory of weights in the cohomology of an
algebraic variety. Perhaps they are not so useful if you have never seen the theory before.

After this I introduce mixed Hodge theory. By this I really mean that I state a bunch of
useful properties that will be used in the rest of the course as a black box. I also consider a
concrete example, namely the mixed Hodge structure on H1 of a punctured curve.

References for these first parts are: for less formal introductions, [Deligne 1975; Danilov 1996];
for a formal treatment, the book [Peters and Steenbrink 2008]; and Deligne’s original papers
Hodge I, Hodge II, Hodge III, Weil I, Weil II.

Finally we apply the mixed Hodge theory to moduli of curves. I show that H•(M0,n) is
spanned by strata and that the space of relations is spanned by pullbacks of the WDVV
relation onM0,4.

I also include in the end a brief explanation of how what we say about H•(M0,n) can be
interpreted in the language of operads.

This part follows the treatment of [Getzler 1995] with some differences.

1. Motivation for the theory of weights

The fundamental principle in the theory of weights is that if X is a smooth proper variety,
then Hi(X) is a ‘pure object’ of ‘weight i’. These pure objects are the building blocks for the
cohomology of an arbitrary variety. For any variety, Hi(X) is an iterated extension of pure
objects.

The main motivation for believing that such a theory should exist comes from étale cohomol-
ogy and the Weil conjecture. Let me recall this. Let X be a smooth projective variety over
Fq and X its base change to an algebraic closure. We are interested in counting the number
of points of X over finite fields, i.e. finding

#X(Fqk),

which is the fixed points of Frobq acting on X(Fq). The idea is that this may be computed
using the Lefschetz fixed point theorem for a suitable cohomology theory. This theory is given
by the `-adic cohomology. It is defined algebraically and canonically enough that Hi(X,Q`)
obtains an action of Gal(Fq/Fq) and we can talk about the trace of Frobenius on cohomology.

Theorem 1.1. Let X be a smooth projective variety over Fq as above. For any ` not dividing
q we have:
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(1) #X(Fqk) =
∑

i(−1)itr(Frobk
q | Hi(X,Q`))

(2) All eigenvalues of Frobq on Hi(X,Q`) are algebraic and have absolute value qi/2

under any embedding into the complex numbers. (We say that Hi is ‘pure of weight
i’.)

Remark 1.2. The first part generalizes to an arbitrary variety if we put Hi
c instead of Hi.

The second remains true if instead of qi/2 we take qk/2 for some 0 ≤ k ≤ i. (Different
eigenvalues can have different absolute value.) This is somewhat natural because we expect
both non-compactness and singularities to decrease the number of Fq-points.

MAIN IDEA: Any map between cohomology groups which is ‘algebraically defined’ or
‘sufficiently natural’ should be equivariant with respect to Frobq-action.1 In particular there
should be no nonzero maps between cohomology groups of different weight.

Example 1.3. Let U be a smooth variety and X a smooth compactification, such that
X \U =

⋃
Di is a normal crossing divisor, with any intersection of the Di again smooth. We

consider the Leray spectral sequence for

f : U → X.

One can compute that each sheaf Rkf∗Q` is a sum of sheaves of the form j∗Q` ⊗Q`(−k),
where j is the inclusion of a k-fold intersection of distinct boundary divisors. Over the
complex numbers this is not so strange, if you think of the stalk of Rkf∗Q` at a point x as
the cohomology of U ∩ V for a sufficiently small neighbourhood V of x in X. But let’s just
accept it.

(The factor Q`(−k) makes the example not as simple as one would like. But it’s not compli-
cated. Q`(−k) is a particular 1-dimensional Galois representation, the kth tensor power of
the inverse of the cyclotomic character. We have tr(Frobq | Q`(−k)) = qk. So tensoring with
Q`(−k) just has the effect of multiplying all Frobenius eigenvalues by qk, so that the weight
is increased by 2k. This is called a Tate twist.)

What one finds is that we have a spectral sequence

Epq
2 =

⊕
i1<···<iq

Hp(Di1 ∩ · · · ∩Diq )⊗Q`(−q) =⇒ Hp+q(U).

Rahul pointed out that I’m using q for two distinct things now: the cardinality of a finite field
and an index in a spectral sequence. But I don’t think any other variable name is acceptable
for either one of them, so I will stick to this.

Now the intersection of boundary divisors is smooth and projective, so Hp(Di1 ∩ · · · ∩Diq )
is a pure object of weight p. Taking into account the Tate twist we get that Epq

2 has weight
p+ 2q. So the weights look as in Figure 1.

It’s clear that the E2 differential is compatible with weights, but that all further differentials
go between cohomology groups with different weight. So all further differentials should be
zero, according to the principle of weights, and the Leray spectral sequence should degenerate
after the first differential.

1At least up to a Tate twist.
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Figure 1. Weights at Epq
2 of Leray spectral sequence for f .

In characteristic zero, this degeneration is a famous result of Deligne, proven in [Deligne 1971].
His proof uses Hodge theory and represents the Leray spectral sequence as the hypercoho-
mology spectral sequence for a complex of sheaves on X given by holomorphic differential
forms possibly with logarithmic poles along X \ U .

Example 1.4. Let A be a differential graded algebra (dga), so that its cohomology H•(A)
is a graded algebra. It is not always true that A and H•(A) are quasi-isomorphic as dga’s.
However, there is a notion of an A∞-algebra S, which means that S is equipped with a
sequence of multilinear maps µn : S⊗n → S for n ≥ 1 of degree 2 − n satisfying certain
identities. These identities say that µ1 is a differential, so µ1 ◦ µ1 = 0 and S is in particular
a chain complex. µ2 is a product compatible with the differential, so that S becomes a dga.
µ3 is a chain homotopy (w.r.t. µ1) between the two maps S⊗3 → S that can be constructed
by composing µ2 in two different ways. µ4 is a homotopy between homotopies, and so on.

There is then Kadeishvili’s theorem [Kadeišvili 1980], which says the following. Let A be a
dga, and consider it as an A∞-algebra by putting µn = 0 for n > 2. Then one can define
operations µn for n > 2 on H•(A) making it an A∞-algebra such that A and H•(A) are
quasi-isomorphic as A∞-algebras. The µn are unique up to homotopy.

In the particular case when A is the singular cochain complex of a topological space X, we
obtain certain multilinear operations2 on H•(X). These are exactly the much more classical
Massey products [Massey 1958] in the cohomology of X.

Now let’s say that X is a smooth projective variety over Fq as before, and let’s say we have
an étale analogue of the singular cochain complex.3 Then we would get Massey products in
the étale cohomology, multilinear operations µn of degree 2 − n. But if we believe in the
principle of weights we should expect all of them to vanish, which should tell us that H•(X)
is quasi-isomorphic as a dga to the singular cochains on X.

2Defined up to some ambiguity since µn were only unique up to homotopy.
3Such an analogue exists by [Deligne 1980].



4 DAN PETERSEN

Again let’s consider the case of characteristic zero. A famous theorem of Deligne–Griffiths–
Morgan–Sullivan [Deligne et al. 1975] says that if X is a compact Kähler manifold (in partic-
ular a smooth projective variety) then the dga’s Sing•(X) and H•(X) are quasi-isomorphic.4

One says that the space X is formal.

Again the proof uses Hodge theory.

The upshot is that the principle of weights seems to make accurate and highly nontrivial
predictions for cohomology over an arbitrary base field. (This is maybe not so surprising
because you can spread over a finitely generated domain, count points, apply comparison
isomorphism between different cohomology theories, etc.) Also, if we extrapolate from these
two examples, then it seems that the weights in the cohomology of a complex algebraic variety
should have something to do with Hodge theory. This turns out to be true.

2. Mixed Hodge theory

From now on all algebraic varieties are complex and all cohomology is rational. Deligne’s
mixed Hodge theory [Deligne 1971; Deligne 1974] tells us the following facts, that we can
assume as a black box.

Fact. If X is a variety, then Hk(X) has an increasing filtration

· · · ⊂Wi ⊂Wi+1 ⊂
such that W−1 = 0 and W2k = Hk(X). We call grWr Hk(X) the weight r component of
Hk(X). If Hk(X) = grWr Hk(X) then we say that Hk(X) is pure of weight r.
Remark 2.1. It is maybe surprising that we get a weight filtration and not a weight grading
on the cohomology groups. If you only think in terms of Frobq you might expect a direct sum
decomposition into eigenspaces. From the point of view of Example 1.3 it is natural, though.
Whenever you have a spectral sequence converging to something you get a canonically defined
filtration on that object. The first step of the filtration is the image of the first row of the
spectral sequence, the second step is the image of the first two rows, and so on. If you
consider the Leray spectral sequence for f : U → X as in Example 1.3 then the first step of
the filtration on Hk(X) is pure of weight k, the second has weights k and k + 1, the third
has weights k, k + 1 and k + 2, and so on. So we get an increasing filtration with the rth
component of the associated graded pure of weight k + r.

More facts. If f : X → Y is a morphism then the weight filtration is strictly compatible, i.e.

f∗(Hk(Y )) ∩WrH
k(X) = f∗(WrH

k(Y )).

So it is functorial in a strong sense. There are natural weight filtrations also on relative
cohomology, compactly supported cohomology, Borel–Moore homology. The weight filtration
is compatibly with Künneth theorem, that is, the natural tensor product filtration on

H•(X)⊗H•(Y )

coincides with the weight filtration on H•(X × Y ) under the Künneth isomorphism. In
particular cup product respects weights. If Z ⊂ Y ⊂ X then the maps in the long exact
sequence

· · · → Hk(X,Y )→ Hk(X,Z)→ Hk(Y,Z)→ Hk+1(X,Y )→ · · ·

4With real coefficients. This was later improved to rational coefficients [Sullivan 1977].



COHOMOLOGY OF MODULI OF STABLE POINTED CURVES OF LOW GENUS. I 5

are compatible with weights. If X is smooth then the Poincaré duality pairing

Hk(X)⊗H2d−k
c (X)→ H2d

c (X)

is compatible with weights.

So far all we have said is that weights are compatible with most natural operations on coho-
mology groups. Here is a more substantial result that will be used over and over again in this
minicourse.

Theorem 2.2. Let X be an algebraic variety. We denote by Hk the Borel–Moore homology.

(1) Hk(X) has weights in the interval [−k, 0] for any k.
(2) The cycle class map Ak(X) → H2k(X) has its image in the lowest weight subspace

W−2kH
2k(X).

(3) if U ⊂ X is an open immersion, then W−kHk(X)→W−kHk(U) is surjective.
(4) if X → Y is a proper surjection, then W−kHk(X)→W−kHk(Y ) is surjective.

Let us make some remarks and draw some consequences of this.

(1) For any variety X, Hk
c (X) is the dual of Hk(X) and will therefore have weights in

the interval [0, k]. This is what we expect according to Remark 1.2.
(2) If X is compact, then Hk(X) = Hk

c (X), so its weights are in the interval [0, k] (a
priori they are in [0, 2k].)

(3) The fundamental class in H2d
c (X), where d is the dimension of X, is pure of weight

2d, by the second claim of the theorem.
(4) If X is smooth then we have the Poincaré duality pairing Hk(X) ⊗ H2d−k

c (X) →
H2d

c (X). Since H2d−k
c (X) has weights at most 2d−k and H2d

c (X) has weights exactly
2d, compatibility of Poincaré duality with weights implies that Hk(X) has weights in
the interval [k, 2k].

(5) If X is smooth and compact then Hk(X) is thus pure of weight k, which is as it
should be according to our guiding principles.

(6) If X is smooth, then the cycle class map Ak(X)→ H2k(X) lands in W2kH
2k(X).

(7) The third claim of the theorem follows quite easily from the first since the cokernel
of Hk(X)→ Hk(U) is contained in Hk−1(X \ U).

(8) In the second point of the theorem we do not only get something in the lowest weight
subspace but we get a class of type (−k,−k) in the (p, q)-decomposition. (I haven’t
defined what this means.) The Hodge conjecture asserts that the converse is true:
Ak(X) surjects onto the (−k,−k) part of H2k(X).

The third and fourth claims may be thought of as analogues of the fact that Ak(X)→ Ak(U)
is surjective if U ⊂ X is an open immersion, and Ak(X) → Ak(Y ) is surjective for a proper
surjection. The second claim shows a nice compatibility. Hence considering weights in the
cohomology allows one to use certain convenient properties about Chow groups, while still
working with a full-fledged cohomology theory.

The third and fourth claims have the following useful special cases.

(1) Let U ⊂ X be a Zariski open in a smooth proper variety. Then

WkH
k(U) = Im(Hk(X)→ Hk(U)).
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(Indeed the map WkH
k(X)→WkH

k(U) is surjective by the third claim in Theorem
2.2 and Poincaré duality. But X is proper so WkH

k(X) = Hk(X) by the weight
bound for compact varieties.)

(2) Let X̃ → X be a resolution of singularities of a compact variety. Then

Hk(X)/Wk−1H
k(X) = Im(Hk(X)→ Hk(X̃)).

(Since cohomology is dual to Borel–Moore homology on a compact variety, injectivity
of grWk Hk(X) → grWk Hk(X̃) follows from the fourth claim in Theorem 2.2. But X̃
is in addition smooth, so Wk−1H

k(X) goes to zero by the weight bound for smooth
varieties.)

Finally I state a result that will be very useful for us.

Lemma 2.3. Let X be a smooth variety, Z a closed subvariety of (complex) codimension c,
and Z̃ a resulution of singularities. Then there is a short exact sequence

Wk

(
Hk−2c(Z̃)(−c)

)
→WkH

k(X)→WkH
k(U)→ 0.

Proof. We have an exact sequence

Hk
c (Z)← Hk

c (X)← Hk
c (U).

Apply grWk to get also injectivity on the left,

grWk Hk
c (Z)← grWk Hk

c (X)← grWk Hk
c (U)← 0

(since U → X is an open immersion). Now grWk Hk
c (Z̃) ← grWk Hk

c (Z) is injective, so the
composite

grWk Hk
c (Z̃)← grWk Hk

c (X)← grWk Hk
c (U)← 0

is also exact. But now all spaces are smooth and we can apply Poincaré duality to get the
lemma. �

3. The twice punctured elliptic curve

Let us consider a single concrete example of a mixed Hodge structure before moving on to
moduli of curves. Let C be a smooth compact genus one curve, Z two distinct points, and
C = C \ Z. We have a long exact sequence in cohomology (recall H•c (C) = H•(C,Z))

· · · → Hk
c (C)→ Hk(C)→ Hk(Z)→ Hk+1(C)→ · · ·

We find that H2
c (C) ∼= H2

c (C) and that H1
c sits in a short exact sequence

0→ H0(Z)/H0(C)→ H1
c (C)→ H1(C)→ 0.

We apply Poincaré duality and find the short exact sequence

0→ H1(C)→ H1(C)→ Ker
(
H0(Z)(−1)→ H2(C)

)
→ 0.

Here the first term is pure of weight 1, the last term is pure of weight 2, and the short exact
sequence exactly exhibits the 2-step weight filtration on H1(C).

We remark that the pure part of the cohomology is precisely the part that is in the restriction
of the compactification, as was said in the previous section.
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We can represent cohomology classes on C as Poincaré duals of C∞ oriented submanifolds,
so classes in H1(C) can be drawn as curves on the punctured torus. Then H1(C) is spanned
by the two curves around the meridians; these curves define the pure subspace of H1(C).

The other type of generator of H1(C) is a curve connecting the two punctures. But this is
not a subspace: there are many different paths between the two punctures, and the difference
of two such paths will in general be given by a collection of curves around the meridians of
the torus, so a class in the pure subspace. So elements of grW2 H1(C) can not be interpreted
as curves, but they can be faithfully represented as the difference of the endpoints of the
curves. Such a difference is precisely an element of Ker

(
H0(Z)(−1)→ H2(C)

)
. We will see

later again the idea that elements of grWk+1H
k can be represented as relations between classes

supported on the boundary.

Remark 3.1. I can’t resist mentioning a neat characterization of when the weight filtration
on H1(C) splits. Give C the structure of an elliptic curve by taking one of the punctures to
be the origin. Then H1(C) is a direct sum of two pure Hodge structure if and only if the
other puncture is a torsion point on C.

4. Cohomology of M0,n

We now use mixed Hodge theory to re-prove known results on H•(M0,n). In [Keel 1992] it
is shown that it is generated as an algebra by boundary divisors, and the ideal of relations
is spanned by the pullbacks of the WDVV relation from M0,4. Here we prove a stronger
statement: it is spanned additively by boundary strata, and the space of relations is additively
generated by pullbacks of the WDVV relation. (The second half is obviously a stronger
statement. The first half is actually equivalent, since it is easy to see that every boundary
stratum inM0,n is the transverse intersection of the boundary divisors containing it.) This
stronger statement was first proven in [Kontsevich and Manin 1994]. Our argument is similar
to the one in [Getzler 1995], but we give a direct argument for why all relations are pulled
back fromM0,4 whereas he deduces it from the knowledge of a quadratic presentation of the
‘gravity operad’.

We begin by proving the first half, that the strata span the cohomology.

Theorem 4.1. H•(M0,n) is spanned by cycle classes of strata.

Proof. Observe that we have an open immersion

M0,n
∼= {(x1, . . . , xn−3) | xi 6= xj , xi 6= 0, xi 6= 1} ⊂ Cn−3.

By what we said earlier, WkH
k(Cn−3) → WkH

k(M0,n) is surjective. This shows that the
fundamental class in H0 is the only pure part of the cohomology ofM0,n.

Observe thatM0,n \M0,n =
⋃
Di with each Di

∼=M0,j+1 ×M0,n−j+1. The map∐
i

Di →
⋃
i

Di

is a resolution of singularities. By Lemma 2.3 we have⊕
i

Hk−2(M0,j+1 ×M0,n−j+1)(−1)→ Hk(M0,n)→WkH
k(M0,n)
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and WkH
k(M0,n) = 0 for k > 0, so Hk(M0,n) is spanned by classes that are pushed forward

from the boundary. But by induction on n these are going to be strata classes. �

Characterizing the relations is a bit trickier. We want to find the kernel of the pushforward
map. We will need a slightly more detailed study of the mixed Hodge structure ofM0,n. We
observe thatM0,n is a complement of an arrangement of complex hyperplanes, according to
the preceding proof, and the cohomology ring of such a complement has a classical description.

Theorem 4.2. [Arnol’d 1969; Brieskorn 1973] Let U be the complement of the arrangement
of hyperplanes Li = 0 in CN . Then H•(U) is generated as an algebra by H1(U), which is
spanned by the classes

ωi =
1

2πi
d log(Li).

It is easy to see from [Deligne 1971] that the classes ωi are pure of weight 2 and in fact of
type (1, 1). Thus each Hk is pure of weight 2k and of type (k, k). For a different proof of
this fact see [Kim 1994; Shapiro 1993; Lehrer 1992] (they all independently found the same
proof!)

Theorem 4.3. All additive relations between strata are pullbacks of the WDVV relation on
M0,4.

Proof. We will consider the spectral sequence of a filtration. Whenever you have a variety X
with a sequence . . . ⊂ Xp ⊂ Xp+1 ⊂ . . . of closed subvarieties there is a spectral sequence in
Borel–Moore homology

E1
pq = Hp+q(Xp \Xp−1) =⇒ Hp+q(X).

We take Xp to be the union of all strata of dimension ≤ p in the stratification of M0,n by
topological type. Then we have

Xp \Xp−1 =
∐
Γ

M(Γ),

where Γ is the dual graph of a p-dimensional stratum, andM(Γ) is the stratum:

M(Γ) =
∏

v∈Vert(Γ)

M0,n(v).

Observe that E∞pq is a subquotient of Hp+q(M0,n), so it is pure of weight −p − q. So only
the pure part of E1

pq can survive to E∞. But the only pure part of the homology ofM0,n is
the fundamental class, and by our expression forM(Γ) the same holds for each stratum. We
have thus given an alternative proof that the (co)homology ofM0,n is spanned by strata.

But we can be more precise. Since Hk(M0,n) is pure of weight 2k, the same is true for each
M(Γ). Then Hk(M(Γ)) is pure of weight 2d−2k, where d = dimM(Γ). Since each Xp\Xp−1

is p-dimensional, we see that E1
pq has pure weight −2q. We illustrate in a figure. Since each

M(Γ) is affine it is actually a first quadrant spectral sequence.

It is thus clear that the Leray spectral sequence degenerates after the E1-differential because
of weights.

The fundamental classes of the strata are placed along the diagonal p = q of the spectral
sequence. There are no nonzero entries above the diagonal, so we obtain edge maps from the
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2 · · −4 −4

1 · −2 −2 −2

0 0 0 0 0

0 1 2 3

Figure 2. Weights at E1
pq of filtration spectral sequence for M0,n.

diagonal to the homology ofM0,n; these are just the obvious map sending the fundamental
class of a stratum to the class of that stratum in H•(M0,n). Finding relations between these
generators now amounts to determining the image of the E1-differential E1

p+1,p → E1
p,p.

Now E1
p+1,p is a sum of H2p+1(M(Γ)) over all p + 1-dimensional strata, which is dual to

H2p+1
c (M(Γ)), which is Poincaré dual to H1(M(Γ)), which therefore surjects onto the space

of relations between the generators. We remark that we saw in the example with the twice
punctured elliptic curve that classes in grWk+1H

k could be interpreted as relations between
classes in the boundary, and that H1(M(Γ)) is pure of weight 2, so things make sense.

We want to prove that all relations are pulled back from M0,4: we now see that we should
prove that all classes in H1(M0,n) are pulled back from M0,4. (We made the switch to
cohomology to get compatibility with pullback maps.)

But this we can see from Arnol’d’s theorem. If we take a class in H1(M0,n) corresponding
to the hyperplane xi = 0 (resp. xi = 1), then it is the pullback from M0,4 of the class of
the hyperplane x1 = 0 (resp. x1 = 1). For the hyperplanes of the form xi = xj we use the
Sn-action to put one of xi or xj at 0 or 1. This concludes the proof. �

5. Koszul duality for operads

I can’t resist mentioning the following. We have seen in Example 1.3 a spectral sequence for
an open immersion. If we apply it to the particular open immersionM0,n →M0,n then we
are in the situation of the theorem and we get a spectral sequence⊕

i1<···<iq

Hp(Di1 ∩ · · · ∩Diq )⊗Q(−q) =⇒ Hp+q(M0,n),

and it is easy to see that each intersection Di1 ∩ · · · ∩Diq is the closure of one of the strata
in the stratification by topological type. Thus it is a product of the form

∏
kM0,nk

.

But we also saw the spectral sequence associated to the filtration ofM0,n, in the last proof of
the previous section. Now all terms were given by the homology of the open strata, so we had
products of the form

∏
kM0,nk

, and it converged to the homology of M0,n. Moreover, the
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combinatorial description of both spectral sequences are the same: the terms are described
as identical sums over all dual graphs.

And even more: if we switch in the first spectral sequence to Borel–Moore homology, then we
get rid of the Tate twist by Q(−q), and the differentials are given by the pushforward along
the gluing maps,

H•(M0,i+1 ×M0,j+1)→ H•(M0,i+j).

In the second one the differentials are defined in terms of the connecting homomorphism

H•(M0,i+1 ×M0,j+1)← H•−1(M0,i+j)

obtained by including M0,i+1 ×M0,j+1 as a boundary stratum in the compactification of
M0,i+j . So in both cases the spectral sequence is a sum over dual graphs, and the differential
is a sum over edges in the dual graph. And both spectral sequences degenerate after the first
differential.

What’s going on here? Why is there a symmetry? In what sense are M0,n and M0,n dual
to each other?

The simple answer is that H•(M0,n) is an operad, and H•+1(M0,n) is a co-operad. These
are often called the Hypercommutative operad and the Gravity co-operad, respectively. For
any operad P there is the bar construction BP which is a co-operad, and for a co-operad
Q the cobar construction ΩQ produces an operad. The co-operad BP is differential graded
and is defined as a sum over trees with differential given by operadic composition in P and
contracting along edges of trees. For P = H•(M0,n) the bar construction is given exactly
by the first of the above spectral sequences. The cobar construction is a similar sum over
trees, with differential defined by co-operadic co-composition in Q and splitting of trees along
edges. For Q = H•+1(M0,n) the cobar construction is given by the second of the above
spectral sequences.

In general there are quasi-isomorphisms ΩBP ∼= P and BΩQ ∼= Q.

Now it turns out that the bar construction on the hypercommutative operad is quasi-isomorphic
to its homology, which is the gravity co-operad. Similarly the cobar construction on the grav-
ity co-operad is quasi-isomorphic to its homology, the hypercommutative operad. This is
related to the fact that both these (co-)operads have natural chain level models which are
formal in genus zero. Thus this really establishes a duality between the gravity and hyper-
commutative (co-)operads.

But we can go further. Let’s dualize the co-operad H•+1(M0,n) to the operad H•+1
c (M0,n),

which we call the gravity operad. The fact that H•(M0,n) is generated by strata and all
relations come from WDVV can be interpreted operadically as saying that the hypercommu-
tative operad is quadratic. The same holds for the gravity operad. If we look at the spectral
sequence associated to the filtration by topological type and consider the weights, we see that
the rows in the spectral sequences are exact everywhere except the ends: the homology is
concentrated along the diagonal (see Figure 2). In the language of operads this says exactly
that the gravity operad is Koszul. Then the same holds for hypercommutative operad. (The
result for hypercommutative operad can also be deduced in the same way, by looking at
weights to see what part of the spectral sequence can survive to E∞.) Hence Gravity and
Hypercommutative operads are Koszul dual to each other.
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I should also mention that in the above it is slightly nicer to think of both hypercommutative
and gravity operads as cyclic operads, rather than ordinary operads.

The facts explained in this section can be found in [Getzler 1995]. The generalization of bar-
cobar duality to higher genus is given by the Feynmann transform of [Getzler and Kapranov
1998], but the naive generalization of duality between hypercommutative and gravity fails:
the cobar construction on the higher genus gravity operad is not quasi-isomorphic to the
hypercommutative operad. This is related to the fact that we really should be working with
the chain level version of the higher genus gravity operad, and that this operad is not formal.
This also shows that there is no higher genus Koszul duality between the two operads.

A more down-to-earth explanation of this duality is in [Kimura, Stasheff, and Voronov 1996].
Koszul duality of operads is explained in Ginzburg and Kapranov’s original paper or in [Loday
and Vallette 2012].
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