
COHOMOLOGY OF MODULI OF STABLE POINTED CURVES OF LOW
GENUS. II

DAN PETERSEN

In this lecture I first discuss briefly local systems and variations of Hodge structure. A good
reference for this part is [Peters and Steenbrink 2008].

Then I move on to moduli of pointed genus one curves. I will prove the first half of the claims
made by [Getzler 1997], proven in [Petersen 2012], that all even cohomology ofM1,n consists
of classes of strata.

However instead of also proving the second half I move on to genus two and apply similar
methods as in the genus one case. Here we will follow the paper [Petersen and Tommasi
2012]. I almost prove in this lecture that the tautological ring of M2,n is not Gorenstein in
general — all that will remain at the end is to prove that certain classes that are pushed
forward from the boundary are zero. I will deal with these next time.

1. Variation of Hodge structure

Last time we had the guiding principle: if X is smooth and proper, then Hi(X) is a ‘pure
object of weight i’. Today we will need the relative version: if f : X → Y is a smooth proper
morphism, then Rif∗Q is a ‘pure object of weight i’.

This raises the question: what kind of object is Rif∗Q?

This is a sheaf on Y , and by proper base change we have (Rif∗Q)y = Hi(Xy,Q) for any
point y of Y . Ehresmann’s theorem says that all fibers Xy are diffeomorphic and f is a C∞
fiber bundle. Finally there is the ‘Gauss–Manin connection’ which says that Rif∗Q is a local
system.

A local system of rank n on a space X is a sheaf F such that there is an open cover {Uα}
with F |Uα ∼= Qn, that is, it really is locally isomorphic to a constant sheaf. An equivalent
definition is that a local system is a functor

ρ : Π1(X)→ VectQ

that assigns to a point a Q-vector space, and to a homotopy class of paths between points an
isomorphism between the vector spaces. Given F as above, define ρ by assigning to a point
x the stalk Fx. For a path between points x and y, cover the path with open sets which
trivialize F . On each open set the sheaf is constant which means that the stalks of any two
points in the same connected component are canonically isomorphic. Applying this one open
set at a time gives an isomorphism between Fx and Fy. Irrelevant exercise: understand why
the inverse of this construction is given by the definition

F (U) = lim (Π1(U)→ VectQ) .
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Both definitions of local system arise naturally for us. The sheaf Rif∗Q given by the derived
pushforward of the constant sheaf is locally constant in the first sense. But it will also be
useful to think about it as a representation of the fundamental group of Y (if we pick a
basepoint y ∈ Y and assume Y connected). Then we have the monodromy action of π1(Y, y)
on the vector space Hi(Xy,Q), which contains the same information as Rif∗Q.

We can also talk about the cohomology of a local system. When we think of it as a locally
constant sheaf this is ordinary sheaf cohomology. There is also a definition of the cohomology
of local systems in terms of representations of the fundamental groupoid. In the special case
when Y is connected and aspherical (its universal cover is simply connected) we are in fact
considering group cohomology:

Hk(Y,Rif∗Q) ∼= Hk(π1(Y, y), Hi(Xy,Q)).

But in fact the sheaves Rif∗Q have more structure. They are the underlying local systems
of a (polarizable) variation of Hodge structure (PVHS) of weight i. This means roughly that
each stalk Hi(Xy,Q) is a pure Hodge structure of weight i and that the Hodge structure
varies in a controlled manner, I will not give the correct definition.

Theorem 1.1. Let Y be a smooth variety and let V be a PVHS of weight i on Y . Then
Hk(Y,V) is canonically equipped with a mixed Hodge structure of weights ≥ k + i. If Y is
in addition proper then Hk(Y,V) is pure of weight k + i. If we have a smooth proper map
f : X → Y then the Leray spectral sequence

Epq2 = Hp(Y,Rqf∗Q) =⇒ Hp+q(X)

is compatible with mixed Hodge structure.

This is not an easy theorem. The case when Y is a punctured curve is in [Zucker 1979],
and the general case requires (as far as I know) the far more general theory of mixed Hodge
modules due to [Saito 1990]. In fact the reason I included smoothness assumption on Y is so
that I can think of a PVHS as a pure Hodge module and apply Saito’s theory.

I should also mention the following classical result.

Theorem 1.2. [Deligne 1968] If f : X → Y is a smooth and projective morphism then the
Leray spectral sequence degenerates.

In particular the restriction map Hk(X) → Hk(Xy) surjects onto the monodromy invariant
subspace of Hk(Xy), since it is one of the edge maps of the spectral sequence (seeing as
Hk(Xy) = H0(Y,Rkf∗Q)).

Projectivity can be weakened to properness in Deligne’s result.

2. Local systems on the moduli of elliptic curves

Let π : E → M1,1 be the universal elliptic curve. We define V = R1π∗Q and Vk = Symk V.
Each Vk is a PVHS of weight k onM1,1.

Lemma 2.1. If k is odd, then H•(M1,1,Vk) = 0.
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Proof. Consider the projection to the coarse space µ : M1,1 → M1,1 and compute cohomology
using Leray spectral sequence. The fiber of µ over a point [E] is a single point, but this point
has automorphism group Aut(E). So the cohomology of the fiber is group cohomology and

(Rqµ∗Vk)[E] = Hq(BAut(E),SymkH1(E)) =

{
(SymkH1(E))Aut(E) i = 0

0 i 6= 0.

So we have no higher cohomology because the coefficients are Q-vector spaces, and in degree
zero we take the invariants. But inversion in the group structure of E acts as multiplication
by (−1)k on SymkH1(E), so there are no invariants if k is odd. �

An equivalent and maybe more standard way of formulating the above proof is in terms of
the Hochschild–Serre spectral sequence for

1→ ±1→ SL(2,Z)→ PSL(2,Z)→ 1.

Here SL(2,Z) = π1(M1,1) (in the stack sense).

Rahul mildly objected to the above proof as being unnecessarily complicated (“you can just
use Čech cohomology!”).

Our reason for introducing the sheaves Vk is that all irreducible representations of SL2 are
symmetric powers of the standard 2-dimensional one. So all tensor powers of V can be
expressed in terms of the Vk, e.g.

V⊗2 = V2 ⊕ V0(−1)

V⊗3 = V3 ⊕ 2V1(−1)

V⊗4 = V4 ⊕ 3V2(−1)⊕ V0(−2)

By Vk(−n) I mean an n-fold Tate twist of the PVHS Vk. This is the same underlying local
system but the mixed Hodge structure on its cohomology has been shifted by a Tate twist.
Vk(−n) is a PVHS of weight k + 2n.

3. Pointed genus one curves

Now we consider f : Mrt
1,n →M1,1. The superscript ‘rt’ means curves with rational tails. An

n-pointed stable genus g curve has rational tails if it has a component of geometric genus g.
This implies that all other components have genus zero and that the dual graph is a tree, so
that we have attached ‘tails’ of rational curves to a smooth genus g curve.

Observe that f is a smooth projective morphism. Let Fn denote the fiber of f . Each Rif∗Q is
a PVHS of weight i. Decomposing it into irreducible local systems is the same as decomposing
Hi(Fn) as a representation of SL2. In this way one writes Rif∗Q as a direct sum

⊕
j Vkj (−nj),

with kj + 2nj = i for each j. (We are implicitly using that the category of PVHS of given
weight is semisimple.)

In particular if i is odd/even, then Rif∗Q contains only the local systems Vk for k odd/even.
So Rif∗Q has no cohomology for odd i, by Lemma 2.1. Moreover, since M1,1 is a non-
compact curve, it can only have cohomology in degree 0 and 1 for any of the Vk. So the Leray
spectral sequence for f has not so many nonzero entries, see Figure 1. It therefore collapses
and we have proven:
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Figure 1. Leray spectral sequence for Mrt
1,n → M1,1

Proposition 3.1. For even k we have

Hk(Mrt
1,n) = H0(M1,1,R

kf∗Q) = Hk(Fn)SL2

and for odd k we have
Hk(Mrt

1,n) = H1(M1,1,R
k−1f∗Q).

To understand the even cohomology ofMrt
1,n we should understand the cohomology of Fn as

a representation of SL2.

Observe that f can be factored asMrt
1,n → En−1 →M1,1, where En−1 denotes a fibered power

of the universal curve. The first map contracts all rational components to get a pointed genus
one curve where points may coincide. The second forgets all but one marking. In the same
way we can think of Fn (the fiber over [E]) as a blow-up of En−1. To get the Sn-action more
canonically it is better to think of

En−1 = En/E,

the quotient of En by E acting diagonally by translation. Then we also have

Fn = FM(E,n)/E,

where FM(E,n) is the Fulton–MacPherson compactification [Fulton and MacPherson 1994]
of n points on E.

In this way we can solve the problem in two steps. First we find the SL2-invariants in
H•(En−1) = H•(E)⊗n−1. Observe that H0 and H2 is invariant on each factor, so we should
determine the invariants in H1(E)⊗k. This is very classical invariant theory: for k = 2 the
invariant subspace is exactly ∧2H1(E), and for k > 2 even the invariant subspace is spanned
by the subspace (

∧2H1(E)
)⊗k/2 ⊂ H1(E)⊗k

and its translates under the Sk-action. Note that ∧2H1(E) is spanned by the class of the
diagonal in H2(E × E) restricted to H1(E)⊗2.

What this tells us is that the subalgebra H•(En−1)SL2 is generated by the classes of diagonals
and the generators of H2, which can be taken to be loci of the form xi = e, i = 1, . . . , n− 1,
where e is the origin of the elliptic curve. If we consider more invariantly H•(En/E)SL2 then
the generators are just the diagonals.
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Now H•(FM(E,n)) is generated as an algebra over H•(En) by the exceptional divisors. In
other words the generators are fundamental classes of strata in the stratification by topological
type of FM(E,n). In our case we blow up only in loci whose cohomology classes are SL2-
invariant. Thus the SL2-action on H•(FM(E,n)) is very simple: we extend the action on
H•(En) by giving all generators the trivial action. Hence the SL2-invariants are generated
as an algebra over the SL2-invariants in H•(En). The same holds for H•(Fn) as an algebra
over H•(En−1). All in all we have proven the following.

Proposition 3.2. The invariant part H•(Fn)SL2 is spanned by classes of strata.

Corollary 3.3. Let k be even. Then Hk(Mrt
1,n) is spanned by classes of strata.

A stratum in Mrt
1,n restricts to a stratum of Fn. Conversely, if we take a codimension i

stratum in Fn and allow the moduli of the elliptic curve to vary we get a codimension i
stratum ofMrt

1,n. These constructions are mutually inverse.

Now by a Lemma proven in Lecture 1 we have the exact sequence

Hk−2(M0,n+2)(−1)→ Hk(M1,n)→ Hk(Mrt
1,n).

All classes on both left and right hand side are strata. We obtain the following result:

Proposition 3.4. All even cohomology ofM1,n is spanned by strata classes.

This is the first half of Getzler’s claims on the cohomology of M1,n that were announced
in [Getzler 1997]. The first published proof was given in [Petersen 2012]. The second half
concerns relations between generators and is trickier to prove. Maybe we will prove it later
in the course.

4. The Eichler–Shimura theory and the odd cohomology

We can also say something about the odd cohomology ofM1,n. To do this we consider again

Hk−2(M0,n+2)(−1)→ Hk(M1,n)→ Hk(Mrt
1,n).

SinceM0,n+2 has no cohomology and since we have a surjection on the right when we consider
pure cohomology, we get that

Hk(M1,n)
∼→WkH

k(Mrt
1,n) = WkH

1(M1,1,R
k−1f∗Q)

for odd k.

The first cohomology of the local systems Vk is determined by the Hodge-theoretic interpre-
tation of the Eichler–Shimura isomorphism. It is not so easy to find a reference that explains
this in a way suitable for algebraic geometers interested in cohomology of moduli spaces (but
who are not interested in number theory). In any case the theorem (in the case ofM1,1) is
that the weight filtration on H1(M1,1,Vk) splits, so the cohomology is a sum of two pure
Hodge structures. These are

grWk+1H
1(M1,1,Vk) = S[k + 2]

where I denote by S[n] the Hodge structure attached to cusp forms of weight n for SL2(Z).
For each such cusp eigenform there is a 2-dimensional subspace of S[n] of type (n− 1, 0) and
(0, n− 1).
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We also have that grW2k+2H
1(M1,1,Vk) is similarly ‘attached’ to Eisenstein series of weight

k + 2 for SL2(Z). There is a 1-dimensional space of Eisenstein series of weight k + 2 for any
even k ≥ 2, and this Hodge structure is just Q(−k − 1).

Hence all odd cohomology of M1,n is given in this way in terms of cusp forms. The first
nonzero cusp form for SL2(Z) is the discriminant form ∆ of weight 12, which appears in the
cohomology of V10. This local system appears in the decomposition of the cohomology of Fn
for the first time when n = 11, so we get cohomology inM1,11 of type (11, 0) and (0, 11). In
particular the varietyM1,11 is irrational. (Belorousski proved that it’s rational for n ≤ 10.)

Hence we have in a sense completely classified the cohomology ofM1,n. The even cohomology
is strata and the odd cohomology is cusp forms.

5. Genus two

Let’s try to apply the same methods to Mrt
2,n and to M2,n. Before we found that all even

cohomology was tautological. But it is known from [Graber and Pandharipande 2003] that
there is a non-tautological algebraic cycle onM2,20 giving a class in H22(M2,20). Since it’s
the class of an algebraic cycle it extends to H22(M2,20). So it will not even be true that all
even cohomology is tautological, or that all cohomology of (p, p)-type is tautological. Let’s
see how to understand this in terms of local systems.

Let’s start off the same way as we did in genus one. We consider f : Mrt
2,n →M2, a smooth

projective morphism. Again Rqf∗Q is a PVHS pure of weight q, and Lemma 2.1 holds also in
this case: the odd local systems have no cohomology. (Use the same proof but the hyperelliptic
involution instead of the elliptic involution: each genus two curve is hyperelliptic.)

The fibers of f have the form FM(C, n) where C is a smooth genus two curve, and FM as before
denotes the Fulton–MacPherson compactification. Thus we should decompose Hq(FM(C, n))
as an irreducible representation of π1(M2). But π1(M2) acts through the homomorphism
π1(M2) → Sp4(Z), where Sp4(Z) acts on H1(C) (which is four-dimensional, and has a
symplectic pairing via the cup product.) So we only need to decompose Hq(FM(C, n)) as
Sp4-representation.

The irreducible representations of Sp4 are indexed by their highest weights, which are integers
l ≥ m ≥ 0. We write the corresponding local system as Vl,m.

One can think about this is in terms of the Torelli mapMg → Ag. We have π1(Ag) = Sp2g(Z),
and for any representation of Sp2g given by a highest weight λ = l1 ≥ l2 ≥ . . . ≥ lg ≥ 0 there
is a local system Vλ on Ag (since a local system is just a representation of the fundamental
group). It can naturally be considered a PVHS of weight |λ| = l1 + . . .+ lg, by identifying it
inside of V⊗|λ| where V is the local system on Ag whose fiber over [A] is H1(A,Q). Pulling
back these local systems along the Torelli map gives also local systems Vλ on Mg, which
coincide with the Vl,m above since a curve and its Jacobian have canonically isomorphic
H1’s.

Now we consider the Leray spectral sequence for f . We use that M2 is affine: indeed, up
to Z/2-action it can be identified with the quotient M0,6/S6, since a genus two curve is
hyperelliptic, hence in a unique way a double cover of P1 branched over 6 unordered points.
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ButM0,6 is obviously affine and then so is the quotient by a finite group. This implies that
Hp(M2,R

qf∗Q) vanishes for p > 3. So we have nonzero entries only in the four columns
p = 0, 1, 2, 3 and only in the rows where q is even. This means that we get short exact
sequences

0→ H2(M2,R
k−2f∗Q)→ Hk(Mrt

2,n)→ H0(M2,R
kf∗Q)→ 0

for k even and

0→ H3(M2,R
k−3f∗Q)→ Hk(Mrt

2,n)→ H1(M2,R
k−1f∗Q)→ 0

for k odd.

Here I am using that the Leray spectral sequence degenerates, because f is smooth and
projective! This was the real reason to work withMrt

2,n rather thanM2,n. (It’s possible that
the Leray spectral sequence for M2,n → M2 degenerates but I don’t know an argument.)
In genus one we could equally well have consideredM1,n →M1,1 and the arguments would
actually have been slightly easier.

So let’s first find the Sp4-invariants in H•(FM(C, n)). The argument is extremely similar: we
can first consider the Sp4-invariants in H•(Cn). The same argument as before goes through.
For the decomposition of H1(C)⊗k into irreducible representations of Sp4 see [Fulton and
Harris 1991], the part about “Weyl’s construction of the irreducible representations of the
symplectic group”. One finds that H•(Cn)Sp4 is the subalgebra generated by diagonals and
the loci where one of the xi is equal to some fixed point. Then H•(FM(C, n))Sp4 is generated
by strata and the same loci. Now the class of a point in H2(C) is obviously equal to the
canonical class, up to a scalar, which says that the class we get in H•(Mrt

2,n) in this way is a
ψ-class.

We have found the following facts. The surjection

Hk(Mrt
2,n)→ Hk(FM(C, n))Sp4

for even k has a section, and the image of this section in Hk(Mrt
2,n) is exactly the tautological

classes in Hk(Mrt
2,n). Indeed the tautological ring in genus two is spanned by strata and

ψ-classes (there are no κ-classes). The non-tautological cohomology in Hk(Mrt
2,n) can be

identified with H2(M2,R
k−2f∗Q).

6. Cohomology of local systems on M2 and A2

After the previous section we know that the non-tautological even cohomology ofMrt
2,n comes

from H2(M2,R
k−2f∗Q). We want to understand when this space is zero and in particular

when there are pure classes in this subspace, since these are the classes that will extend to
M2,n. We need a higher genus generalization of the Eichler–Shimura theory.

In genus two, the Torelli mapM2 → A2 is an open immersion. The complement A2 \M2 is
the locus of products of elliptic curves, and we have a surjectionM1,1 ×M1,1 → A2 \M2.

Now we are going to apply the Lemma that was shown in the previous class, but with
nontrivial coefficients. (It’s still true, with the same proof.) We find that

H0(M1,1 ×M1,1,Vl,m)(−1)→ H2(A2,Vl,m)→W2+l+mH
2(M2,Vl,m)→ 0.
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The cohomology of the local systems Vl,m on A2 and their weight filtration/Hodge structure
is known in any degree by work of myself (in preparation, will be on arXiv soon). But
even before this the subspace of the Eisenstein cohomology was known due to [Harder 2012].
Combining Harder’s work with the conjectural formulas of [Faber and van der Geer 2004]
gives an expression for the cohomology in any degrees. Faber and van der Geer’s conjecture
was known for regular weights (l > m > 0) due to [Weissauer 2009]. In [Petersen and Tommasi
2012] we used these partial results, but our arguments can be simplified after one knows the
whole cohomology.

In any case we have the following. Let (l,m) 6= (0, 0). (The trivial local system is uninteresting
since H2(M2) = 0.) Then

H2(A2,Vl,m) =

{⊕
f Q(−1− 2k) l = m = 2k

0 else

where the sum is over the set of cusp eigenforms for SL2(Z) of weight 4k+ 4. So also here we
have cohomology classes associated to modular forms, but note that we don’t find the Hodge
structures attached to cusp forms we saw before. All cohomology is of Tate type. This tells
us that only the local systems V2k,2k could give rise to a non-tautological class inMrt

2,n, and
assuming the Hodge conjecture, that all non-tautological even cohomology classes should be
classes of algebraic cycles.

The dimensions of H2(A2,V2k,2k) for k > 0 are 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, . . ..

Now we consider H0(M1,1 ×M1,1,Vl,m)(−1). Note that H0 is nonzero only for the trivial
local system, so we want to find the multiplicity of the trivial local system when we pull back
Vl,m toM1,1 ×M1,1. This is the same as computing how irreducible representations of Sp4

decompose into irreducibles when restricted to the subgroup SL2×SL2. This can also be
found in [Fulton and Harris 1991] somewhere: the answer is that the trivial representation
occurs with multiplicity 1 if l = m and 0 otherwise.

So when we consider the local system V10,10, then the first term in the sequence

H0(M1,1 ×M1,1,V10,10)(−1)→ H2(A2,V10,10)→W22H
2(M2,V10,10)→ 0

is 1-dimensional and the middle is 2-dimensional. Hence we must find a nonzero class in
W22H

2(M2,V10,10).

To summarize: pure classes in H2(M2,Vl,m) can come only from the local systems V2k,2k.
Such classes exist for any k ≥ 5 and possible a few lower values of k (but most likely k = 5
is the first case).

7. Putting it all together.

In the end of the last section we found a nonzero class in W22H
2(M2,V10,10), giving rise

to a class in W22H
22(Mrt

2,20) (of Tate type). Note that the nontautological class found by
[Graber and Pandharipande 2003] also was in H22 and of pure Tate type. They also transform
according to the same §20-representation.

To simplify exposition, let’s assume that V10,10 is the first local system for whichW2+l+mH
2(M2,Vl,m) 6=

0.
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Now if we writeM2,20 \Mrt
2,20 as a union of boundary divisors Di, then we have⊕

i

Hk−2(Di)(−1)→ Hk(M2,20)→WkH
k(Mrt

2,20)→ 0.

Let’s say also k is even. The even pure cohomology of Mrt
2,20 is all tautological, except the

funny class in H22 coming from V10,10 (since by our simplifying assumption this is the first
local system with nonzero pure cohomology).

Each boundary divisor Di is a productM1,k+1 ×M1,20−k+1, and we already know that the
even cohomology in genus one is tautological and the odd comes from cusp forms, and that the
odd cohomology appears for the first time onM1,11. This shows that all Di have tautological
even cohomology except those of the form M1,11 × M1,11, in which case H11(M1,11) ⊗
H11(M1,11) is nonzero and nontautological.

Hence there is possibility for non-tautological even cohomology on M2,20 in two different
degrees: there is the class in H22 coming from V10,10, and there is the pushforward of
H11(M1,11) ⊗ H11(M1,11) landing in H24. Next time we will prove that the pushforward
is actually zero for the specific case of 20 marked points, which means that the only non-
tautological even cohomology onM2,20 lies in H22.

In particular this shows that the tautological ring ofM2,20 is not Gorenstein, i.e. it does not
satisfy Poincaré duality. Indeed the even Betti numbers of H•(M2,20) are symmetric about
the middle degree by Poincaré duality. If there is non-tautological even cohomology below
the middle degree and not above it, then the tautological part of the cohomology can not
have this symmetry, so the image of the tautological ring in cohomology is not Gorenstein.
But then the same is true for the tautological ring in Chow. This is spelled out in [Petersen
and Tommasi 2012].

If our simplifying assumption was false — let’s say that V6,6 is the first local system for which
W2+l+mH

2(M2,Vl,m) 6= 0 — our argument would just be the same, but simpler. We could
instead argue that the tautological ring of M2,12 is not Gorenstein, and we would not even
have to worry about products of cusp form classes from the boundary.

In genus one we had a kind of classification of the even and odd cohomology. The same is
true in g = 2. We can say that there are three kinds of even cohomology onM2,n:

• Tautological classes
• Classes from the local system V2k,2k (non-tautological cohomology from the interior)
• Products of cusp form classes from the genus one boundary.

The second one appears when n = 20 and possibly earlier. The third one appears only for
n ≥ 21.

The odd cohomology can also be classified this way, let me just state the result without proof.
It is

• Classes of Siegel modular forms
• Endoscopic lifts
• Cusp form classes from the genus one boundary.
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