
COHOMOLOGY OF MODULI OF STABLE POINTED CURVES OF LOW
GENUS. IV

DAN PETERSEN

In this final talk I will mostly follow my paper [Petersen 2012], where I proved the following
theorem that was announced in [Getzler 1997]: the even cohomology of M1,n is spanned
additively by strata, and all relations are obtained by pulling back WDVV and Getzler’s
relation. To make the last part more precise, consider a dual graph Γ corresponding to a
stratum M(Γ) of M1,n. Choose a vertex and four incident half-edges. By pulling back the
WDVV relation fromM0,4 (if this vertex has genus zero) or the Getzler relation fromM1,4

(if this vertex has genus one) one obtains a relation between strata classes of codimension
one (resp. two) onM(Γ).

In the end I discuss why there will be no such simple result when g = 2.

1. Résumé of genus zero

Suppose X is a filtered algebraic variety, · · · ⊂ Xp ⊂ Xp+1 ⊂ · · · = X, each Xp closed in
Xp+1. Then there is a spectral sequence for Borel–Moore homology,

E1
pq = Hp+q(Xp \Xp−1) =⇒ Hp+q(X).

We apply this to the filtration by topological type, so that Xp \Xp−1 is the disjoint union of
all p-dimensional strata:

Xp \Xp−1 =
∐
Γ

M(Γ)

where
M(Γ) =

∏
i

M0,ni .

Now Hk(M0,n) is pure of weight −k (sinceM0,n is smooth and projective). Then only the
part of HkM(Γ) that is pure of weight −k can survive to E∞. By Künneth this is the same
as determining the pure part of H•M0,n, and we saw in the first talk that this was only
the fundamental class; so the homology of M0,n is spanned by the cycle classes of strata.
To figure out the relations we should determine when there’s a differential giving a relation
between different strata classes. Such a differential would need to start from grW−i+1HiM(Γ),
so we need the second lowest weight part of the homology. (The ‘second lowest weight’ will
be the whole theme of this last talk.)

We determined the weights in the homology of M0,n and found the picture seen in Figure
1. We see that it degenerates after the first differential and that all relations come from
codimension 1. In cohomology, this means that relations come from H1(M0,n). Actually
we found that Hk(M0,n) was pure of weight 2k, so if we want cohomology that’s of weight
“pure+1” then we have to look in degree 1. We wanted to prove that all relations are pulled
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Figure 1. Weights at E1
pq of filtration spectral sequence for M0,n.

back from M0,4 and this was the same as proving that H1(M0,n) was spanned by classes
pulled back from H1(M0,4).

2. Genus one: statement of results

Now let’s apply the same filtration toM1,n. We find by the same arguments that generators
for the homology come from W−iHiM(Γ) and relations from grW−i+1HiM(Γ). Thus we need
to determine (let’s now switch to cohomology) WiH

i(M1,n) and grWi+1H
i(M1,n), since we

already know the weights in genus zero.

We will prove that

WiH
i(M1,n) =

{
fundamental class in degree zero i even
cusp form classes i odd

.

In fact we’ve already seen that the even cohomology of M1,n is spanned by strata and the
odd cohomology ofM1,n consists of cusp form classes, so this is not new. But we will see a
different proof.

Then we also prove that

grWi+1H
i(M1,n) =

{
only in degree i = 3 i odd
don’t really care i even

.

Note that only grWi+1H
i(M1,n) for odd i gives relations between even classes, the other ones

give relations between odd classes. This is clear if you think in terms of weights: the spectral
sequence is compatible with weights, and we want to kill a class in even weights, so we need
a ‘relation’ with even weight as well, so i+ 1 must be even.

The space grW4 H3(M1,4) is 1-dimensional and gives a single codimension 2 relation onM1,4,
the Getzler relation. We will prove that grW4 H3(M1,n) is in general spanned by classes pulled
back from grW4 H3(M1,4), so that all relations between strata are spanned (additively) by the
pullbacks of the WDVV relation and Getzler’s relation, applied to a vertex of a dual graph.
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3. The fibration g : M1,n →M1,1.

We want to study the forgetful map g : M1,n →M1,1. The Leray spectral sequence just says

0→ H1(M1,1,R
q−1g∗Q)→ Hq(M1,n)→ H0(M1,1,R

qg∗Q)→ 0.

Before we have considered variations of Hodge structure. The sheaves Rqg∗Q are variations
of mixed Hodge structure. The reason is that g is not proper, only smooth. This means that
the local systems themselves have a weight filtration. For all i we have

grWi Rqg∗Q

a PVHS of weight i, defined by the monodromy action on grWi Hq(fiber). So the weight
filtrations vary in a controlled way in families.

Now recall that if V is a PVHS of weight w, then Hi(V) has weights ≥ w + i. This tells us
that we only need to consider the possible contributions from

grWq Rqg∗Q and grWq+1Rqg∗Q

to grWi+1H
i(M1,n) — all other parts of the weight filtration of Rqg∗Q will have cohomology

with too high weight!

Let us now show that the first of these, grWq Rqg∗Q, does not contribute. We can write
this PVHS in terms of the local systems Vk. I claim that there is no local system Vk with
grWi+k+1H

i(M1,1,Vk) 6= 0. Indeed if i = 0 then we are only considering the trivial local system
and it is obvious. If i = 1 then Eichler–Shimura says that H1(M1,1,Vk) has a summand of
weight k + 1 (the pure part, from cusp forms) and a summand of weight 2k + 2 (the impure
part, coming from Eisenstein series). If the impure part has weight 1 more than the pure
part then k = 0 and Vk is the trivial local system, impossible. (In other words there are no
weight 2 Eisenstein series for SL(2,Z)).

Thus only grWq+1Rqg∗Q will contribute nontrivially to grWi+1H
i(M1,n). Moreover, only the

trivial local system can occur if we demand that i+ 1 is even, since this is the only one with
pure cohomology of even weight. So we need to understand

grWq+1H
q(fiber)SL2 .

This turns out not to be completely easy, which is why I postponed talking about this until
the last lecture.

4. Totaro’s dga

Recall one of the motivating examples of mixed Hodge theory from the first lecture, where
we considered an embedding U ↪→ X of a smooth variety into a smooth compactification
where the complement has strict normal crossings. We argued that the Leray spectral se-
quence should degenerate after the first differential by a weight argument: all intersections of
boundary components are smooth and projective, so their cohomology is pure, and then all
differentials go between cohomology groups of different weights.

Now proving Leray degeneration in this way would actually be circular, because the definition
of a mixed Hodge structure on H•(U) given in [Deligne 1971] uses the fact that this sequence
degenerates after the first differential.
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However, we could consider an analogous situation where X \ U is not strict normal cross-
ings, but where it’s still true that all intersections of components are smooth and projective.
Then this weight argument would imply degeneration of the spectral sequence after the first
differential.

In particular, for a variety X we let F (X,n) be the configuration space of n distinct ordered
points in X. We consider the Leray spectral sequence for

F (X,n) ↪→ Xn.

This is certainly not snc: the complement is not even a divisor unless X is a curve, and in
any case the intersections of boundary divisors aren’t transverse. Nevertheless this weight
argument will prove that there is only a single nontrivial differential.

This was first noticed by Totaro in [Totaro 1996]. Moreover, he determined an explicit presen-
tation of the first nontrivial page of the spectral sequence, considered as a differential graded
algebra. This works more generally for an arbitrary oriented manifold X, say r-dimensional.
We now define Totaro’s dga ΛX(n). WhenX is a complex algebraic variety whose cohomology
is pure, the cohomology of ΛX(n) is H•(F (X,n)).

We define
ΛX(n) = H•(Xn)[ωij ]/(relations)

where 1 ≤ i 6= j ≤ n and the relations are

(p∗iα− p∗jα)ωij = 0,

(where pi denotes projection onto the ith factor),

ω2
ij = 0,

ωij = (−1)rωji,

and the “Arnol’d relation”
ωijωik + ωjkωji + ωkiωkj = 0.

When r = 2 it is useful to think of ωij as analogous to the differential form d log(zi− zj) that
appears in the cohomology of F (C, n). The differential on this algebra is defined by

dα = 0 for α ∈ H•(Xn),

and
dωij = ∆ij ,

where ∆ij is the class of the submanifold of Xn where the ith and jth coordinate coincide.
This dga is bigraded, where Hi(Xn) has degree (i, 0) and ωij has degree (0, r − 1).

We get a picture something like Figure 2. In the second row we sum over all
(
n
2

)
variables

ωij , equivalently, over all diagonals. In the third row we sum over all degree 2 monomials in
the ωij (modulo Arnol’d relation). This is the same as summing over all intersections of two
diagonals.

Let us now say that X is a smooth projective variety of dimension k (so r = 2k). Then we can
give Totaro’s dga a mixed Hodge structure by declaring each ωij to be of type Q(−k), and by
taking the natural Hodge structure on H•(Xn). Then the differential is compatible with the
mixed Hodge structure on ΛX(n), and with the mixed Hodge structure on H•(F (X,n)). This
is because Totaro’s dga is just an explicit way of writing down the Leray spectral sequence,
and the Leray spectral sequence is compatible with mixed Hodge theory.



COHOMOLOGY OF MODULI OF STABLE POINTED CURVES OF LOW GENUS. IV 5

2(r − 1) ⊕H0(Xn−2) ⊕H1(Xn−2) ⊕H2(Xn−2) ⊕H3(Xn−2)

r − 1 ⊕H0(Xn−1) ⊕H1(Xn−1) ⊕H2(Xn−1) ⊕H3(Xn−1)

0 H0(Xn) H1(Xn) H2(Xn) H3(Xn)

0 1 2 3

Figure 2. Entries at Epq
r . The differential dr is the first nontrivial one.

Finally we apply this to the fibers of g. The fiber of g over the moduli point [E] is F (E,n)/E,
the configuration space of n points on E modulo the translation action. By translating the
first point to the origin, this quotient is isomorphic to F (E0, n−1), where E0 is the punctured
elliptic curve. E0 is smooth but not proper, however, its cohomology is still pure so we can
apply Totaro’s dga to compute the cohomology.

Observe that the bottom row of the spectral sequence, i.e. the part of Totaro’s dga in bidegree
Λ•,0X (n), will give the lowest weight part of the cohomology of F (X,n), and the second row
of the spectral sequence (i.e. bidegree Λ•,1X (n)) gives the second lowest weight part of the
cohomology of F (X,n). Thus we should understand these two rows in the case X = E0.

I proved the following propositions:

Proposition 4.1. Hp,0ΛE0
(n) ∼=

(
n
p

)
Vp.

This implies in particular that the only pure even cohomology of M1,n is the fundamental
class. However we already knew that. The real reason for proving this is that this statement
gets used in the proof of the next statement.

Proposition 4.2. Hp,1ΛE0(n)SL2 is nonzero only when p = 2.

The proofs I gave in the lecture were identical to the ones given in [Petersen 2012], so I will
not repeat them in these notes.

All in all, this tells us that all ‘new’ relations between strata classes in genus one must have
codimension 2. (Whereas WDVV is a codimension 1 relation.) To conclude we just need
to prove that grW4 H3(M1,n) is spanned by classes pulled back from grW4 H3(M1,4) (which
we have already seen is 1-dimensional, spanned by Getzler’s relation). Equivalently, that
Hp,1ΛE0

(n)SL2 is spanned by classes pulled back from Hp,1ΛE0
(3)SL2 along forgetful maps.

For any injection {1, ..., n} ↪→ {1, ..., n + k} there is a point-forgetting map F (X,n + k) →
F (X,n) and a pullback map in cohomology H•(F (X,n))→ H•(F (X,n+ k)). There is also
an obvious embedding ΛX(n) ↪→ ΛX(n+ k). These are compatible with each other. For any
r-manifold X, it is very easy to see that the bidegree (p, k(r − 1)) part of ΛX(n) is spanned
by classes that are pulled back from n = p+ 2k. Indeed a degree k monomial in the ωij can
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only involve 2k indices, and a degree p cohomology class in H•(Xn) can only have p distinct
non-identity components in a Künneth decomposition.

In our case this observation says that Hp,1ΛE0
(n) is spanned by classes pulled back from

Hp,1ΛE0
(4). But we wanted to get classes from Hp,1ΛE0

(3)! The reason for the mismatch
is that in identifying the fibers of M1,n → M1,1 with F (E0, n − 1) we’ve fixed one marked
point, which we can not forget, so we’ve lost one of the point-forgetting maps.

In any case this is not a problem. What we have said so far tells us that all tautological
relations in genus one are pulled back from M1,5, rather than M1,4. The space M1,5 is
small enough that one can verify with computer that there are no new relations here, and in
fact this has already been done by several people: Pavel Belorousski, Stephanie Yang, Aaron
Pixton, maybe others.

All in all this proves the result: the even cohomology ofM1,n is spanned additively by strata,
and all relations are obtained by pulling back WDVV and Getzler’s relation.

5. Genus two

One expects the situation to become more complicated in genus two. As explained already
in this course, there is in a sense a ‘reasonable’ description of the generators of the even
cohomology of M2,n, which would be the analogue of the first half of Getzler’s result. But
let’s say we also wanted to understand the relations. We should consider grWi+1H

i(M2,n) for
odd i.

First of all, we would need to understand the cohomology of F (X,n), where X is now a
compact genus two curve. This adds two complications: the representation theory of Sp(4)
is messier than the representation theory of SL(2), and it really simplified the situation a lot
that we only considered configurations of points on a punctured curve. I don’t know anything
about what the bottom two rows of the Leray spectral sequence will look like in this case
(although I haven’t thought much about it, either).

There is also the matter that it’s not clear whether or not the Leray spectral sequence for
M2,n →M2 degenerates or not (or more generally the Leray spectral sequence forMg,n →
Mg). On a sidenote, I would be very interested if someone were to prove such a statement,
or give an example of a nontrivial differential in one of these spectral sequences! Anyway,
to avoid having to deal with this one should probably consider insteadMrt

2,n →M2, where
degeneration is guaranteed, and then try to understand separately the relations onMrt

2,n.

However, a more serious issue is the following. In genus one, we found that grWq Rqg∗Q could
be ignored when determining the relations. The reason is that there are local systems on
M1,1 with impure cohomology, but that there are no local systems with cohomology exactly
“pure weight +1”. This is no longer true in genus two!

The first example is the local system V2,2 with H1(M2,V2,2) = Q(−3). The cohomology of
this local system was first computed by Orsola Tommasi. When she did that she realized it
should correspond to a codimension three relation onM2,4 and assigned the task of finding
this relation to Nicola Pagani and Nicola Tarasca. What they eventually discovered is that
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this relation is just the pullback of the Belorousski–Pandharipande relation with a ψ-class!
So it was not so new after all.

But there are more examples. After [Petersen 2013] we can see that grW4a+6H
3(M2,V2a+1,2a+1)

is of Tate type and its dimension is the dimension of the space of cusp forms of weight 4a+ 6
for SL(2,Z). All these classes produce relations onM2,n, where n = 4a+ 2. They will be in
high codimension, too: these are codimension 2a+ 3 relations.

The first of these (BP·ψ) is in fact supported onM2,4\Mrt
2,4. The reason is thatH1(M2,V2,2)

doesn’t just define a class inH5(M2,4) but it naturally defines a cohomology class inH5(Mrt
2,4).

For the second ones even more is true: these classes are in the image of the restriction map

grW4a+6H
3(Mct

2 ,V2a+1,2a+1)→ grW4a+6H
3(M2,V2a+1,2a+1)

which means that the corresponding relations are supported on M2,n \ Mct
2,n. This has

the striking consequence that all these relations will produce relations in genus one Gromov–
Witten theory, even though they are relations between tautological classes onM2,n!!! It seems
therefore that it would be very useful to be able to explicitly write down these tautological
relations.

In any case, the conclusion is that there is no simple analogue of Getzler’s result in genus
two, in the sense of a finite list of tautological relations such that all others are obtained by
pullback. Such a list would have to be infinite. In fact the above discussion only touched
upon relations supported onM2,n \Mrt

2,n; even the ones supported away from compact type
are infinitely generated. On the other hand it also makes sense to study only tautological
relations on Mrt

2,n, or Mct
2,n, say. Maybe these are generated by a finite list of relations —

it seems likely that this is something one could prove by studying grWk+1H
k(F (X,n))Sp(4), as

we did here.

Finally I should say that I am working here with a very restrictive notion of a ‘new’ relation.
We should probably allow more operations on our relations than just pulling back, for instance
pushing forward along forgetful maps or multiplying with something arbitrary. It is not clear
whether either of these operations can be described in a nice way in the local systems picture.
Already the fact that the relation obtained from H1(M2,V2,2) was BP·ψ — whereas the
BP relation comes from the trivial local system and grW4 H3(F (X,n))Sp(4) — demonstrates
a certain incompatibility of the multiplicative structure on the tautological ring with the
techniques used in this mini-course.
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