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§I. What is a K3 surface?

The projective space CP3 has homogeneous coordinates

[x0, x1, x2, x3] ∈ CP3 .

An algebraic hypersurface in CP3 is defined by the vanishing of a
single homogeneous polynomial

Fd ∈ C[x0, x1, x2, x3]

of degree d .

Quadric surface (d = 2)
ruled by lines:
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If the four degree d − 1 polynomials

∂Fd
∂x0

,
∂Fd
∂x1

,
∂Fd
∂x2

,
∂Fd
∂x3

have no common solutions in CP3, then Fd=0 defines a
nonsingular 2-dimensional variety

Sd ⊂ CP3 .

Nonsingular cubic
surface (d = 3)
with 27 lines:
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In degrees d = 1, 2, 3, nonsingular hypersurfaces are rational:
there exist parameterizations by rational functions,

C2 −− → Sd ⊂ CP3 .

In degrees d ≥ 5, nonsingular hypersurfaces are of general type.
These are irrational in the furthest sense. For random Fd , there are
no nonconstant rational curves

C −− → Sd ⊂ CP3 .

Nonsingular hypersurfaces S4 ⊂ CP3 of degree d = 4 are quartic
K3 surfaces. For example, the Fermat quartic:

(x40 + x41 + x42 + x43 = 0) ⊂ CP3 .
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All quartic K3 surfaces have the same structure as differential
manifolds.

The cohomology groups of S4 are:

H0(S4,Z) = Z , H2(S4,Z) = Z22 , H4(S4,Z) = Z .

The intersection pairing of S4,

〈 , 〉 : H2(S4,Z)× H2(S4,Z)→ Z ,

is the quadratic form U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1),

U =

(
0 1
1 0

)
, E8(−1) =


−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

 .

The intersection form is even.
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An algebraic K3 surface/C is any compact, simply connected,
nonsingular algebraic surface with trivial canonical class.

The underlying differential manifold is always the same as for the
quartic K3.

With respect to rational curves, K3 surfaces lie between rational
surfaces (with a plethora of rational curves) and surfaces of general
type (with a paucity). Elliptic curves/Q play a similar transitional
role in dimension 1 with respect to rational points.

Kummer K3:
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§II. Are there rational curves on algebraic K3 surfaces?

Consider the question for a quartic K3 surface

S4 ⊂ CP3

defined by a polynomial F4 ∈ C[x0, x1, x2, x3].

We view a rational curve on S4 as an algebraic map

φ : CP1 → CP3

defined by homogeneous polynomials Pi ∈ C[y0, y1] of degree e,

CP1 3 [y0, y1]
φ7→ [P0(y0, y1),P1(y0, y1),P2(y0, y1),P3(y0, y1)] ,

which satisfies
F4
(
P0,P1,P2,P3

)
= 0 .
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• The dimension of the space of degree e maps CP1 φ→ CP3 ?

Answer: 4(e + 1)− 1− 3 = 4e.

e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree e, the −1 is for projectivization, and the −3 is for
reparameterization of CP1.

• The number of conditions imposed by F4
(
P0,P1,P2,P3

)
= 0 ?

Answer: 4e + 1.

4e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree 4e.

Above calculation suggests S4 contains no rational curves
(number of conditions exceeds available dimensions by 1).



• The dimension of the space of degree e maps CP1 φ→ CP3 ?

Answer: 4(e + 1)− 1− 3 = 4e.

e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree e, the −1 is for projectivization, and the −3 is for
reparameterization of CP1.

• The number of conditions imposed by F4
(
P0,P1,P2,P3

)
= 0 ?

Answer: 4e + 1.

4e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree 4e.

Above calculation suggests S4 contains no rational curves
(number of conditions exceeds available dimensions by 1).



• The dimension of the space of degree e maps CP1 φ→ CP3 ?

Answer: 4(e + 1)− 1− 3 = 4e.

e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree e, the −1 is for projectivization, and the −3 is for
reparameterization of CP1.

• The number of conditions imposed by F4
(
P0,P1,P2,P3

)
= 0 ?

Answer: 4e + 1.

4e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree 4e.

Above calculation suggests S4 contains no rational curves
(number of conditions exceeds available dimensions by 1).



• The dimension of the space of degree e maps CP1 φ→ CP3 ?

Answer: 4(e + 1)− 1− 3 = 4e.

e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree e, the −1 is for projectivization, and the −3 is for
reparameterization of CP1.

• The number of conditions imposed by F4
(
P0,P1,P2,P3

)
= 0 ?

Answer: 4e + 1.

4e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree 4e.

Above calculation suggests S4 contains no rational curves
(number of conditions exceeds available dimensions by 1).



• The dimension of the space of degree e maps CP1 φ→ CP3 ?

Answer: 4(e + 1)− 1− 3 = 4e.

e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree e, the −1 is for projectivization, and the −3 is for
reparameterization of CP1.

• The number of conditions imposed by F4
(
P0,P1,P2,P3

)
= 0 ?

Answer: 4e + 1.

4e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree 4e.

Above calculation suggests S4 contains no rational curves
(number of conditions exceeds available dimensions by 1).



• The dimension of the space of degree e maps CP1 φ→ CP3 ?

Answer: 4(e + 1)− 1− 3 = 4e.

e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree e, the −1 is for projectivization, and the −3 is for
reparameterization of CP1.

• The number of conditions imposed by F4
(
P0,P1,P2,P3

)
= 0 ?

Answer: 4e + 1.

4e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree 4e.

Above calculation suggests S4 contains no rational curves
(number of conditions exceeds available dimensions by 1).



• The dimension of the space of degree e maps CP1 φ→ CP3 ?

Answer: 4(e + 1)− 1− 3 = 4e.

e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree e, the −1 is for projectivization, and the −3 is for
reparameterization of CP1.

• The number of conditions imposed by F4
(
P0,P1,P2,P3

)
= 0 ?

Answer: 4e + 1.

4e + 1 is the dimension of the space homogeneous polynomials in
y0, y1 of degree 4e.

Above calculation suggests S4 contains no rational curves
(number of conditions exceeds available dimensions by 1).



On the other hand, throw a quartic K3 on the floor:

S4 lands on a tri-tangent plane H.

The intersection S4 ∩ H ⊂ H with the tri-tangent plane is a

quartic plane curve with 3 singularities,
hence rational.

Perhaps S4 does contain rational curves after all?
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§III. Stable maps and the virtual fundamental class

Let S be an algebraic K3 surface, and let

β ∈ Pic(S) = H2(S ,Z) ∩ H1,1(S ,C)

be a nonzero effective curve class. The moduli space Mg (S , β) of
genus g stable maps has expected dimension

dimvir
C Mg (S , β) =

∫
β
c1(S) + (dimC(S)− 3)(1− g) = g − 1.
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The obstruction space at the moduli point [f : C → S ] is

Obs[f ] = H1(C , f ∗TS)

which admits a 1-dimensional trivial quotient,

H1(C , f ∗TS) ∼= H1(C , f ∗ΩS)→ H1(C , ωC ) = C .

The virtual class [Mg (S , β)]vir vanishes, so the virtual theory of
curves of S is trivial.

However, there are curves on algebraic K3 surfaces.
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A K3 may be fibered in elliptic curves,

S → CP1 .

An elliptically fibered K3 surface has 24 nodal rational fibers.
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A K3 surface S which is a double cover of P2 branched over a
sextic B ⊂ P2 has 324 2-nodal rational curves covering the
bitangent lines of B:
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The virtual class of Mg (S , β) vanishes since there are deformations
of S for which β does not remain in Pic(S).

The trivial piece of Obs[f ] can be removed. The result is a reduced
virtual class invariant under deformations of S for which β remains
in Pic(S),

dimred
C Mg (S , β) = dimvir

C Mg (S , β) + 1 = g .

Define the reduced genus 0 counts of S in a primitive class
β∈ Pic(S) by:

N0,h =

∫
[M0(S ,β)]red

1 , 〈β, β〉 = 2h − 2

Sensible since the reduced virtual dimension is 0 if g = 0.
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§IV. Yau-Zaslow Conjecture

For primitive classes, Yau and Zaslow considered∑
h≥0

N0,h q
h−1 = q−1 + 24q0 + 324q1 + 3200q2 + . . .

and conjectured in 1995:∑
h≥0

N0,h q
h−1 =

1

∆(q)
=

1

q
∏∞

n=1(1− qn)24
,

the first connection between curve counting on K3 surfaces and
modular forms.
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The primitive Yau-Zaslow conjecture was proven by Beauville
(1997) and Bryan-Leung (1997).

§V. Higher genus curves

Let S be an algebraic K3 surface, and let β ∈ Pic(S).

Since the (reduced) virtual dimension of Mg ,n(S , β) is g ,
constraints are required:
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Define the Gromov-Witten invariants by〈
n∏

i=1

ταi (γi )

〉S

g ,β

=

∫
[Mg,n(S ,β)]red

n∏
i=1

ψαi
i ∪ ev∗i (γi ) ,

where γi ∈ H∗(S ,Q).

• ψi ∈ H2(Mg ,n(S , β)) is the i th cotangent line class,

• ev∗i ∈ H∗(Mg ,n(S , β)) is the pull-back via the i th evaluation.
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Define a generating series for the descendent theory of K3 surfaces:

Fg

(
τk1(γl1) · · · τkr (γlr )

)
=
∞∑
h=0

〈
τk1(γl1) · · · τkr (γlr )

〉S
g ,h

qh−1 .

Define the Eisenstein series by

E2k(q) = 1− 4k

B2k

∑
n≥1

n2k−1qn

1− qn
.

Let QMod = Q[E2(q),E4(q),E6(q)] be the ring of holomorphic
quasimodular forms (of level 1),

E2k ∈ QMod .

The ring QMod is naturally graded by weight (where E2k has
weight 2k) and carries a filtration

QMod≤2k ⊂ QMod

given by forms of weight ≤ 2k .
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Theorem (Maulik-P-Thomas, 2010)

The descendent potential is the Fourier expansion in q of a
quasimodular form:

Fg

(
τk1(γ1) · · · τkr (γr )

)
∈ 1

∆(q)
QMod≤2g+2r .

• Uses vanishing of the tautological cohomology of Mg>0,n,

R≥g (Mg ,n,Q) = 0 ,

Getzler, Ionel (2003), and in strongest form by P-Faber (2005).

• Uses complete descendent theory of elliptic curves solved by
P-Okounkov (2006).
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§VI. Conjectures for S × E

The Calabi-Yau 3-fold X = S × E is a perfect place for counting.

The geometry depends upon 3 parameters: g, h, d:

Define the count to be NX•
g ,h,d
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Define the partition function:

NX•(u, q, q̃) =
∑
g∈Z

∑
h≥0

∑
d≥0

NX•
g ,h,d u2g−2qh−1q̃d−1.

Conjecture (Oberdieck-P, 2014)

After the variable change exp(iu) = p, we have

NX•(u, q, q̃) = − 1

χ10(Ω)
.

Related to Katz-Klemm-Vafa (1998) study
of heterotic duality, black hole counts of
Dabholkar-Murthy-Zagier (2012).
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The Igusa cusp form χ10(Ω) is a weight 10 Siegel modular form on

Ω =

(
τ z
z τ̃

)
∈ H2 ,

where τ, τ̃ ∈ H1 lie in the Siegel upper half plane, z ∈ C, and

Im(z)2 < Im(τ)Im(τ̃) .

Let u = 2πz . Define:

p = exp(iu), q = exp(2πiτ), q̃ = exp(2πi τ̃).

χ10(Ω) is a function of p, q, q̃.
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Define the Jacobi theta function by

F (z , τ) = u exp
(∑

k≥1
(−1)k

B2k

2k(2k!)
E2ku

2k
)
.

Define the Weierstrass ℘ function by

℘(z , τ) = − 1

u2
+
∑
k≥2

(−1)k(2k − 1)
B2k

(2k)!
E2ku

2k−2 .

Define the coefficients c(m) by

−24℘(z , τ)F (z , τ)2 =
∑
n≥0

∑
k∈Z

c(4n − k2)pkqn.



Igusa cusp form χ10(Ω) following Gritsenko - Nikulin is

χ10(Ω) = pqq̃
∏

(k,h,d)

(1− pkqhq̃d)c(4hd−k
2),

where the product is over all k ∈ Z and h, d ≥ 0 satisfying one of:

• h > 0 or d > 0 ,

• h = d = 0 and k < 0 .

T he End
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