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Abstract. Let S be a nonsingular projective surface equipped with a line bundle
H . Lehn’s conjecture is a formula for the top Segre class of the tautological bundle
associated to H on the Hilbert scheme of points of S. Voisin has recently reduced
Lehn’s conjecture to the vanishing of certain coefficients of special power series. The
first result here is a proof of the vanishings required by Voisin by residue calculations
(A. Szenes and M. Vergne have independently found the same proof). Our second
result is an elementary solution of the parallel question for the top Segre class on the
symmetric power of a nonsingular projective curve C associated to a higher rank vector
bundle V on C. Finally, we propose a complete conjecture for the top Segre class on
the Hilbert scheme of points of S associated to a higher rank vector bundle on S in
the K-trivial case.

Lehn’s conjecture. The number of (n− 2)-subspaces in P2n−2 which are n-secant to a

nonsingular curve

C ⊂ P2n−2

of genus g and degree d is a classical enumerative calculation [ACGH]. The answer can

be expressed in terms of Segre integrals on the symmetric1 product C [n] of C. Let the

line bundle

H → C

be the degree d restriction of OP2n−2(1). The n-secant problem is solved by the Segre

integral, and the answer can be written in closed form [LeB], [C],

(1)

∞
∑

n=0

zn
∫

C[n]

sn(H
[n]) =

(1− w)d+2χ(OC )

(1− 2w)χ(OC )
,

after the change of variables

z = w(1 − w) .

Going further, consider a pair (S,H) consisting of a nonsingular projective surface

and a line bundle H → S. The Segre integrals
∫

S[n]

s2n(H
[n])

Date: December 2017.
1The nth symmetric product of C is the Hilbert scheme of points C[n]. For curves C and surfaces S,

we use the standard notation for the tautological bundle H [n] of rank n on the Hilbert schemes C[n] and
S[n] associated to a line bundle H , see [EGL].
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on the Hilbert scheme of points S[n] count the n-secants of dimension n− 2 to the image

of the surface

S → P3n−2 , H = OP3n−2(1)|S .

The following conjecture was made by Lehn [L]:

(2)

∞
∑

n=0

zn
∫

S[n]

s2n(H
[n]) =

(1− w)a(1− 2w)b

(1− 6w + 6w2)c

for constants

a = H ·KS − 2K2
S , b = (H −KS)

2 + 3χ(OS) , c =
1

2
H(H −KS) + χ(OS) .

A more complicated change of variables is needed here,

z =
w(1− w)(1 − 2w)4

(1− 6w + 6w2)3
.

The first few terms are

z = w + 9w2 + 68w3 + . . . ⇐⇒ w = z − 9z2 + 94z3 + . . . .

For K-trivial surfaces, Lehn’s conjecture was established in [MOP] via a study of

the virtual geometry of a suitable Quot scheme. The results in [V] on blowups of K3

surfaces, obtained via classical geometry, provide the missing geometric pieces needed to

establish Lehn’s conjecture in full generality.

Theorem 1. Lehn’s conjecture holds for all surfaces.

Proof. By the results of [EGL], the Segre series can be written in the form

(3)

∞
∑

n=0

zn
∫

S[n]

s2n(H
[n]) = A1(z)

H2 · A2(z)
χ(OS ) ·A3(z)

H·KS ·A4(z)
K2

S

for four universal power series

A1, A2, A3, A4 ∈ Q[[z]] .

Lehn’s conjecture consists of the following evaluations:

A1(z) =
1− 2w

(1− 6w + 6w2)
1
2

, A2(z) =
(1− 2w)3

1− 6w + 6w2
,(4)

A3(z) =
(1− w)(1 − 6w + 6w2)

1
2

(1− 2w)2
, A4(z) =

1− 2w

(1− w)2
.

As already mentioned, on K3 surfaces, equality (3) and the expressions for A1, A2 in

(4) were proven correct in [MOP]. Key to the argument is the closed form evaluation of

all Segre integrals

(5)

∫

S[n]

s2n(H
[n]) = 2n

(H2

2 + 2− 2n

n

)

.
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We show that the results in [V] on blowups of K3s give the remaining series A3 and

A4. To this end, let S to be the blowup of a generic primitively polarized K3 surface

(X,L) at one point. Define the line bundle

H = L⊗ E−k

on S where E is the exceptional line bundle on the blowup. We have

H ·KS = k .

The crucial input is provided by Theorem 3 in [V], which, in our notation, states2

(6) s2n(H
[n]) = 0 whenever χ(H) = 3n − 1, k = n− 1, or k = n .

Proposition 19 in [V] furthermore asserts that the vanishings (6) uniquely determine the

series A3, A4. The series are determined inductively, coefficient by coefficient. However,

the closed form expressions for A3, A4 stated in (4) were left open in [V]. To complete

the proof of Lehn’s conjecture, we show that using the expressions for A3, A4 stated in

(4), the coefficient of zn in

A1(z)
H2 ·A2(z)

χ(OS ) · A3(z)
H·KS ·A4(z)

K2
S

vanishes in the cases (6).

We will show a slightly stronger result giving a closed formula for a larger class of

Segre integrals on the K3 blowup. Specifically, we prove that

(7)

∫

S[n]

s2n(H
[n]) =

(

H ·KS − n+ 1

n

)

whenever χ(H) = 3n− 1 .

A few remarks are needed here. Note first that the binomial expression (7) vanishes for

the range

n− 1 ≤ k ≤ 2n − 1 ,

covering in particular the vanishing (6) in [V]. This can be seen geometrically: when

maximally exploited, the Reider-type argument used by Voisin yields in fact the entire

vanishing range. Second, equation (7) should be compared to the evaluation (5) for K3

surfaces. However, unlike the K3 case where the Segre integrals were found for all values

of n, the present closed expression holds conditionally on χ and n.

Let us now establish (7). By the discussion above, it suffices to show that the coefficient

of zn in

A1(z)
H2 ·A2(z)

χ(OS) · A3(z)
H·KS · A4(z)

K2
S =

(1− w)a(1− 2w)b

(1− 6w + 6w2)c

equals
(

H ·KS − n+ 1

n

)

.

Writing H ·KS = k, we compute

χ(H) = 3n− 1 =⇒ H2 = k + 6n− 6 .

2It would be interesting to see if these Segre vanishings can be obtained also by the methods of [MOP].



4 A. MARIAN, D. OPREA, AND R. PANDHARIPANDE

We obtain

a = H ·KS + χ(OS) = k + 2, b = (H −KS)
2 + 3χ(OS) = −k + 6n− 1,

c = χ(H) = 3n− 1.

Hence, we need to extract the coefficient of zn in the expression

(1− w)k+2(1− 2w)−k+6n−1

(1− 6w + 6w2)3n−1
.

It is more convenient to express this coefficient as the residue

Resz=0 ω

of the differential form

ω =
(1− w)k+2(1− 2w)−k+6n−1

(1− 6w + 6w2)3n−1
· dz

zn+1
.

Lehn’s change of variables

z =
w(1− w)(1 − 2w)4

(1− 6w + 6w2)3

is a nonsingular coordinate change near w = 0

dz =
(1− 2w)3

(1− 6w + 6w2)3
dw .

Substituting, we obtain

ω = (1− w)k−n+1(1− 2w)−k+2n−2 · dw

wn+1
.

A further change of variables

w =
u

1 + 2u

turns the form into

ω = (1 + u)k−n+1 · du

un+1
.

The residue is now easily computed

Resu=0 ω =

(

k − n+ 1

n

)

,

thus confirming (7). �

Remark. Closed formulas for certain Segre integrals similar to (7) hold on blowups of

all K-trivial surfaces. By the same methods it can shown that

(i) If S is the blowup of an Enriques surface at two points, then
∫

S[n]

s2n(H
[n]) =

(

H ·KS − n+ 3

n

)

whenever χ(H) = 3n− 1.
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(ii) If S is the blowup of an abelian or bielliptic surface in three points, then
∫

S[n]

s2n(H
[n]) =

(

H ·KS − n+ 5

n

)

whenever χ(H) = 3n− 1.

Exponential form of the series. Following [EGL], it is customary to rewrite the

above formulas in exponential notation.

• For curves, two power series are needed,

(8)
∞
∑

n=0

zn
∫

C[n]

sn(H
[n]) = exp

(

A1(z) · d+A2(z) · χ(OC)
)

.

By (1), the expressions for A1, A2 become particularly simple after the change of variables

z = −t(1 + t) .

We have

A1(z) = log(1 + t) , A2(z) = 2 log(1 + t)− log(1 + 2t)

for formula (8).

• For surfaces, four power series are needed,

∞
∑

n=0

zn
∫

S[n]
s2n(H

[n]) = exp
(

A1(z) ·H2+A2(z) ·χ(OS)+A3(z) · (H ·KS)+A4(z) ·K2
S

)

.

After the change of variables

(9) z =
1

2
t(1 + t)2 so that w =

1

2

(

1−
√

1 + t

1 + 3t

)

a straightforward calculation using (2) for surfaces yields:

A1(z) =
1

2
log(1 + t) ,

A2(z) =
3

2
log(1 + t)− 1

2
log(1 + 3t) ,

A3(z) = − log 2− log (1 + t) + log
(√

1 + t+
√
1 + 3t

)

,

A4(z) = log 4 +
1

2
log(1 + t) +

1

2
log(1 + 3t)− 2 log

(√
1 + t+

√
1 + 3t

)

.

The change of variables (9) is simpler than the one originally proposed by Lehn and used

in the proof of Theorem 1. The expression is better suited for higher rank generalizations.

Higher rank. We discuss higher rank analogues of the exponential formulas above. For

a pair (C, V ) consisting of a nonsingular projective curve C and a rank r vector bundle
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V of degree d, we have

(10)

∞
∑

n=0

zn
∫

C[n]

sn(V
[n]) = exp

(

d · A1(z) + χ(OC) ·A2(z)
)

for power series A1(z) and A2(z) depending upon r. The series A1 was conjectured in

[W], though not in closed form, while the expression for A2 was left open. Here, we

prove the following result.

Theorem 2. For formula (10) in rank r, we have

A1(−t(1 + t)r) = log(1 + t), A2(−t(1 + t)r) = (r + 1) log(1 + t)− log(1 + t(r + 1)) .

Proof of Theorem 2. To find the series A1 and A2, we need only consider the projective

line C ≃ P1 with the vector bundle

V = OP1 ⊗ Cr−1 ⊕OP1(d) .

We obtain

V [n] = O[n] ⊗ Cr−1 ⊕ (O(d))[n] .

The Hilbert scheme of points is simply (P1)[n] ≃ Pn, and the universal subscheme Z →֒
Pn × P1 is given by

O(−Z) = OPn(−1)⊠OP1(−n) .

It follows that

ch O(d)[n] = ch Rpr⋆ (OZ ⊗OP1(d))

= ch Rpr⋆ ((O −O(−Z))⊗OP1(d))

= ch
(

H0(OP1(d))⊗OPn −H•(OP1(d− n))⊗OPn(−1)
)

= (d+ 1)− (d− n+ 1) · exp(−h)

Here, we write h for the hyperplane class on Pn. We can then find the Chern roots of

(O(d))[n] yielding the following expression for the Segre class

s(O(d)[n]) = (1− h)d−n+1 .

Consequently

s(V [n]) = (1− h)d−rn+r =⇒
∫

Pn

sn(V
[n]) = (−1)n

(

d− rn+ r

n

)

.

We conclude that

(11)

∞
∑

n=0

(−1)n
(

d− rn+ r

n

)

· zn = exp(d ·A1(z) +A2(z)).

To finish the proof, we invoke the following result which was first proved in [MOP] for

r = 2. We follow the same argument here.
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Lemma 3. After the change of variables

z = t(1 + t)r,

we have
∞
∑

n=0

(

d− rn+ r

n

)

· zn =
(1 + t)d+r+1

1 + t(r + 1)
.

Proof. First, we already know from (11) that the left hand side takes the form

F d
1 · F2

for power series F1 = exp(A1), F2 = exp(A2). In fact, we claim that

F1(z) = 1 + t, F2(z) =
(1 + t)r+1

1 + t(r + 1)
.

To confirm the formulas for F1 and F2 above, it suffices to verify the Lemma for two

different values of d. We use d = −2r and d = −r.

First, when d = −2r, we establish

(12)

∞
∑

n=0

(−rn− r

n

)

· zn =
1

(1 + t)r−1(1 + t(r + 1))
.

This is contained in Lemma 5 of [MOP] for r = 2. There, it is shown that the solution

to the equation

z = t(1 + t)r

has the Taylor expansion

(13) t =

∞
∑

n=0

zn+1

n+ 1

(−rn− r

n

)

.

Differentiating, we find identity (12)
∞
∑

n=0

zn
(−rn− r

n

)

=
dt

dz
=

(

dz

dt

)−1

=
(

(1 + t)r−1(1 + (r + 1)t)
)−1

.

The case d = −r uses the identity

1 + t

1 + (r + 1)t
= (1 + t)− 1

(1 + t)r−1(1 + (r + 1)t)
· (r + 1) · t(1 + t)r.

For 1 + t we substitute the expression (13), while for the fraction that follows it we use

(12). We obtain

1 + t

1 + (r + 1)t
= 1 +

∞
∑

n=0

zn+1

n+ 1

(−rn− r

n

)

− (r + 1)
∞
∑

n=0

zn+1

(−rn− r

n

)

= 1 +

∞
∑

n=0

zn+1

(−rn− r

n+ 1

)

=

∞
∑

n=0

zn
(−rn

n

)

which verifies the Lemma in this case. �
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Surfaces. For surfaces, a complete higher rank analogue of Lehn’s conjecture is an

open question. In this direction, several conjectures were recently formulated by Drew

Johnson in [J]. Johnson’s formulation of the conjecture was inspired by counts of points

of 0-dimensional Quot schemes and strange duality, much like the strategy used to prove

strange duality for curves in [MO]. We sharpen these conjectures, by providing closed

formulas for some of the series involved.

Specifically, consider a pair (S, V ) where V is a rank s vector bundle on a nonsingular

projective surface S. The associated vector bundle V [n] on the Hilbert scheme has rank

sn. By passing to resolutions, V [n] makes sense for all K-theory classes V .

It is remarked in [J] that the following integrals of V [n] depend on five different power

series

(14)
∑

n=0

zn
∫

S[n]

c2n(V
[n]) =

A1(z)
c2(V ) · A2(z)

χ(c1(V )) · A3(z)
1
2
χ(OS) · A4(z)

KS ·c1(V )− 1
2
K2

S · A5(z)
K2

S .

After changing V into −V in K-theory, the above expressions turn into Segre integrals

of higher rank vector bundles. Hence, equation (14) generalizes Lehn’s formula.

To say a bit more about the above series, we recall a result of [EGL] regarding the

holomorphic Euler characteristics of tautological line bundles:

(15)
∞
∑

n=0

znχ(S[n],Hn ⊗Er) = fr(z)
1
2
χ(OS) · gr(z)χ(H) · ar(z)H·KS−

1
2
K2

S · br(z)K
2
S .

Here, Hn denotes the line bundle induced by H = detV on the symmetric product, and

E is −1
2 of the exceptional divisor. By [J] and [EGL], the two series corresponding to

K-trivial surfaces are determined in closed form

fr(z) =
(1 + t)r

2

1 + r2t
, gr(z) = 1 + t

after the change of variables

z = t(1 + t)r
2−1.

As is usually the case, the series ar, br are unknown.

Refining the conjectures3 in [J], we provide closed expressions for the series in (14)

corresponding to K-trivial surfaces. The last two series are surprisingly connected in a

very precise fashion to the unkown series ar, br of (15).

Conjecture 1. Let V → S be a vector bundle4 of rank s = r + 1. After the change of

variables

z = −1

r
t(1 + t)−r, w =

t(−r + (−r + 1)t)r
2−1

(−r(1 + t))r2
,

3The series A1, . . . , A5 up to order 6 in z were calculated in [J]. The numerical data in [J] played an
important role in our formulation of Conjecture 1.

4For rank s = 1 (corresponding to r = 0), the Chern class c2n(V
[n]) is trivial for n > 0 since V [n] is

only of rank n. The formulas of Conjecture 1 are singular in the r = 0 case.
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we have

A1(z) = (−r)−r−1 · (1 + t)−r · (−r + (−r + 1)t)r+1 ,

A2(z) = (−r)r · (1 + t)r−1 · (−r + (−r + 1)t)−r ,

A3(z) = (−r)r
2 · (1 + t− rt)−1 · (1 + t)(r−1)2 · (−r + t(−r + 1))−r2 ,

A4(z) = ar(w) ,

A5(z) = br(w) .

Furthermore, using the solution of Lehn’s conjecture, we are able to predict the first

nontrivial5 examples of the unknown series ar, br corresponding to r = ±2.

Conjecture 2. After the change of variables

w =
t(2 + 3t)3

16(1 + t)4
,

we have

a−2(w) =
1

a2(w)
=

2 + 3t√
1 + t

· 1√
1 + t+

√
1 + 3t

,

b−2(w) = b2(w) = 4
√
2 + 3t · (1 + t)1/4 ·

√
1 + 3t

(
√
1 + t+

√
1 + 3t)5/2

.

These expressions are connected to the series appearing in Lehn’s rank 1 formula. We

have checked the term by term expansions pertaining to both a±2 and b±2 to high order.

In case S is a K3 surface, the series ar and br play no role since KS vanishes. Con-

jecture 1 is proven for all vector bundles V on K3 surfaces in [MOP2].
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