# THE COMBINATORICS OF LEHN'S CONJECTURE 

A. MARIAN, D. OPREA, AND R. PANDHARIPANDE


#### Abstract

Let $S$ be a nonsingular projective surface equipped with a line bundle H. Lehn's conjecture is a formula for the top Segre class of the tautological bundle associated to $H$ on the Hilbert scheme of points of $S$. Voisin has recently reduced Lehn's conjecture to the vanishing of certain coefficients of special power series. The first result here is a proof of the vanishings required by Voisin by residue calculations (A. Szenes and M. Vergne have independently found the same proof). Our second result is an elementary solution of the parallel question for the top Segre class on the symmetric power of a nonsingular projective curve $C$ associated to a higher rank vector bundle $V$ on $C$. Finally, we propose a complete conjecture for the top Segre class on the Hilbert scheme of points of $S$ associated to a higher rank vector bundle on $S$ in the $K$-trivial case.


Lehn's conjecture. The number of $(n-2)$-subspaces in $\mathbb{P}^{2 n-2}$ which are $n$-secant to a nonsingular curve

$$
C \subset \mathbb{P}^{2 n-2}
$$

of genus $g$ and degree $d$ is a classical enumerative calculation [ACGH]. The answer can be expressed in terms of Segre integrals on the symmetric ${ }^{1}$ product $C^{[n]}$ of $C$. Let the line bundle

$$
H \rightarrow C
$$

be the degree $d$ restriction of $\mathcal{O}_{\mathbb{P}^{2 n-2}}(1)$. The $n$-secant problem is solved by the Segre integral, and the answer can be written in closed form $[\mathrm{LeB}],[\mathrm{C}]$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n} \int_{C^{[n]}} s_{n}\left(H^{[n]}\right)=\frac{(1-w)^{d+2 \chi\left(\mathcal{O}_{C}\right)}}{(1-2 w)^{\chi\left(\mathcal{O}_{C}\right)}} \tag{1}
\end{equation*}
$$

after the change of variables

$$
z=w(1-w) .
$$

Going further, consider a pair $(S, H)$ consisting of a nonsingular projective surface and a line bundle $H \rightarrow S$. The Segre integrals

$$
\int_{S[n]} s_{2 n}\left(H^{[n]}\right)
$$

[^0]on the Hilbert scheme of points $S^{[n]}$ count the $n$-secants of dimension $n-2$ to the image of the surface
$$
S \rightarrow \mathbb{P}^{3 n-2}, \quad H=\left.\mathcal{O}_{\mathbb{P}^{3 n-2}}(1)\right|_{S}
$$

The following conjecture was made by Lehn [L]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n} \int_{S^{[n]}} s_{2 n}\left(H^{[n]}\right)=\frac{(1-w)^{a}(1-2 w)^{b}}{\left(1-6 w+6 w^{2}\right)^{c}} \tag{2}
\end{equation*}
$$

for constants

$$
a=H \cdot K_{S}-2 K_{S}^{2}, \quad b=\left(H-K_{S}\right)^{2}+3 \chi\left(\mathcal{O}_{S}\right), \quad c=\frac{1}{2} H\left(H-K_{S}\right)+\chi\left(\mathcal{O}_{S}\right) .
$$

A more complicated change of variables is needed here,

$$
z=\frac{w(1-w)(1-2 w)^{4}}{\left(1-6 w+6 w^{2}\right)^{3}}
$$

The first few terms are

$$
z=w+9 w^{2}+68 w^{3}+\ldots \Longleftrightarrow w=z-9 z^{2}+94 z^{3}+\ldots
$$

For $K$-trivial surfaces, Lehn's conjecture was established in [MOP] via a study of the virtual geometry of a suitable Quot scheme. The results in [V] on blowups of $K 3$ surfaces, obtained via classical geometry, provide the missing geometric pieces needed to establish Lehn's conjecture in full generality.

Theorem 1. Lehn's conjecture holds for all surfaces.
Proof. By the results of [EGL], the Segre series can be written in the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n} \int_{S^{[n]}} s_{2 n}\left(H^{[n]}\right)=A_{1}(z)^{H^{2}} \cdot A_{2}(z)^{\chi\left(\mathcal{O}_{S}\right)} \cdot A_{3}(z)^{H \cdot K_{S}} \cdot A_{4}(z)^{K_{S}^{2}} \tag{3}
\end{equation*}
$$

for four universal power series

$$
A_{1}, A_{2}, A_{3}, A_{4} \in \mathbb{Q}[[z]]
$$

Lehn's conjecture consists of the following evaluations:

$$
\left.\begin{array}{rl}
A_{1}(z)=\frac{1-2 w}{\left(1-6 w+6 w^{2}\right)^{\frac{1}{2}}}, & A_{2}(z)  \tag{4}\\
=\frac{(1-2 w)^{3}}{1-6 w+6 w^{2}} \\
A_{3}(z)=\frac{(1-w)\left(1-6 w+6 w^{2}\right)^{\frac{1}{2}}}{(1-2 w)^{2}}, & A_{4}(z)
\end{array}\right)=\frac{1-2 w}{(1-w)^{2}} .
$$

As already mentioned, on $K 3$ surfaces, equality (3) and the expressions for $A_{1}, A_{2}$ in (4) were proven correct in [MOP]. Key to the argument is the closed form evaluation of all Segre integrals

$$
\begin{equation*}
\int_{S^{[n]}} s_{2 n}\left(H^{[n]}\right)=2^{n}\binom{\frac{H^{2}}{2}+2-2 n}{n} \tag{5}
\end{equation*}
$$

We show that the results in [V] on blowups of $K 3 \mathrm{~s}$ give the remaining series $A_{3}$ and $A_{4}$. To this end, let $S$ to be the blowup of a generic primitively polarized $K 3$ surface $(X, L)$ at one point. Define the line bundle

$$
H=L \otimes E^{-k}
$$

on $S$ where $E$ is the exceptional line bundle on the blowup. We have

$$
H \cdot K_{S}=k
$$

The crucial input is provided by Theorem 3 in [V], which, in our notation, states ${ }^{2}$

$$
\begin{equation*}
s_{2 n}\left(H^{[n]}\right)=0 \text { whenever } \chi(H)=3 n-1, k=n-1, \text { or } k=n . \tag{6}
\end{equation*}
$$

Proposition 19 in [V] furthermore asserts that the vanishings (6) uniquely determine the series $A_{3}, A_{4}$. The series are determined inductively, coefficient by coefficient. However, the closed form expressions for $A_{3}, A_{4}$ stated in (4) were left open in [V]. To complete the proof of Lehn's conjecture, we show that using the expressions for $A_{3}, A_{4}$ stated in (4), the coefficient of $z^{n}$ in

$$
A_{1}(z)^{H^{2}} \cdot A_{2}(z)^{\chi\left(\mathcal{O}_{S}\right)} \cdot A_{3}(z)^{H \cdot K_{S}} \cdot A_{4}(z)^{K_{S}^{2}}
$$

vanishes in the cases (6).
We will show a slightly stronger result giving a closed formula for a larger class of Segre integrals on the $K 3$ blowup. Specifically, we prove that

$$
\begin{equation*}
\int_{S^{[n]}} s_{2 n}\left(H^{[n]}\right)=\binom{H \cdot K_{S}-n+1}{n} \text { whenever } \chi(H)=3 n-1 \tag{7}
\end{equation*}
$$

A few remarks are needed here. Note first that the binomial expression (7) vanishes for the range

$$
n-1 \leq k \leq 2 n-1
$$

covering in particular the vanishing (6) in [V]. This can be seen geometrically: when maximally exploited, the Reider-type argument used by Voisin yields in fact the entire vanishing range. Second, equation (7) should be compared to the evaluation (5) for $K 3$ surfaces. However, unlike the $K 3$ case where the Segre integrals were found for all values of $n$, the present closed expression holds conditionally on $\chi$ and $n$.

Let us now establish (7). By the discussion above, it suffices to show that the coefficient of $z^{n}$ in

$$
A_{1}(z)^{H^{2}} \cdot A_{2}(z)^{\chi\left(\mathcal{O}_{S}\right)} \cdot A_{3}(z)^{H \cdot K_{S}} \cdot A_{4}(z)^{K_{S}^{2}}=\frac{(1-w)^{a}(1-2 w)^{b}}{\left(1-6 w+6 w^{2}\right)^{c}}
$$

equals

$$
\binom{H \cdot K_{S}-n+1}{n} .
$$

Writing $H \cdot K_{S}=k$, we compute

$$
\chi(H)=3 n-1 \Longrightarrow H^{2}=k+6 n-6
$$

[^1]We obtain

$$
\begin{gathered}
a=H \cdot K_{S}+\chi\left(\mathcal{O}_{S}\right)=k+2, b=\left(H-K_{S}\right)^{2}+3 \chi\left(\mathcal{O}_{S}\right)=-k+6 n-1, \\
c=\chi(H)=3 n-1 .
\end{gathered}
$$

Hence, we need to extract the coefficient of $z^{n}$ in the expression

$$
\frac{(1-w)^{k+2}(1-2 w)^{-k+6 n-1}}{\left(1-6 w+6 w^{2}\right)^{3 n-1}}
$$

It is more convenient to express this coefficient as the residue

$$
\operatorname{Res}_{z=0} \omega
$$

of the differential form

$$
\omega=\frac{(1-w)^{k+2}(1-2 w)^{-k+6 n-1}}{\left(1-6 w+6 w^{2}\right)^{3 n-1}} \cdot \frac{d z}{z^{n+1}}
$$

Lehn's change of variables

$$
z=\frac{w(1-w)(1-2 w)^{4}}{\left(1-6 w+6 w^{2}\right)^{3}}
$$

is a nonsingular coordinate change near $w=0$

$$
d z=\frac{(1-2 w)^{3}}{\left(1-6 w+6 w^{2}\right)^{3}} d w
$$

Substituting, we obtain

$$
\omega=(1-w)^{k-n+1}(1-2 w)^{-k+2 n-2} \cdot \frac{d w}{w^{n+1}}
$$

A further change of variables

$$
w=\frac{u}{1+2 u}
$$

turns the form into

$$
\omega=(1+u)^{k-n+1} \cdot \frac{d u}{u^{n+1}}
$$

The residue is now easily computed

$$
\operatorname{Res}_{u=0} \omega=\binom{k-n+1}{n}
$$

thus confirming (7).
Remark. Closed formulas for certain Segre integrals similar to (7) hold on blowups of all $K$-trivial surfaces. By the same methods it can shown that
(i) If $S$ is the blowup of an Enriques surface at two points, then

$$
\int_{S^{[n]}} s_{2 n}\left(H^{[n]}\right)=\binom{H \cdot K_{S}-n+3}{n}
$$

whenever $\chi(H)=3 n-1$.
(ii) If $S$ is the blowup of an abelian or bielliptic surface in three points, then

$$
\int_{S^{[n]}} s_{2 n}\left(H^{[n]}\right)=\binom{H \cdot K_{S}-n+5}{n}
$$

whenever $\chi(H)=3 n-1$.

Exponential form of the series. Following [EGL], it is customary to rewrite the above formulas in exponential notation.

- For curves, two power series are needed,

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n} \int_{C^{[n]}} s_{n}\left(H^{[n]}\right)=\exp \left(A_{1}(z) \cdot d+A_{2}(z) \cdot \chi\left(\mathcal{O}_{C}\right)\right) . \tag{8}
\end{equation*}
$$

By (1), the expressions for $A_{1}, A_{2}$ become particularly simple after the change of variables

$$
z=-t(1+t)
$$

We have

$$
A_{1}(z)=\log (1+t), \quad A_{2}(z)=2 \log (1+t)-\log (1+2 t)
$$

for formula (8).

- For surfaces, four power series are needed,
$\sum_{n=0}^{\infty} z^{n} \int_{S[n]} s_{2 n}\left(H^{[n]}\right)=\exp \left(A_{1}(z) \cdot H^{2}+A_{2}(z) \cdot \chi\left(\mathcal{O}_{S}\right)+A_{3}(z) \cdot\left(H \cdot K_{S}\right)+A_{4}(z) \cdot K_{S}^{2}\right)$.
After the change of variables

$$
\begin{equation*}
z=\frac{1}{2} t(1+t)^{2} \text { so that } w=\frac{1}{2}\left(1-\sqrt{\frac{1+t}{1+3 t}}\right) \tag{9}
\end{equation*}
$$

a straightforward calculation using (2) for surfaces yields:

$$
\begin{aligned}
A_{1}(z) & =\frac{1}{2} \log (1+t) \\
A_{2}(z) & =\frac{3}{2} \log (1+t)-\frac{1}{2} \log (1+3 t) \\
A_{3}(z) & =-\log 2-\log (1+t)+\log (\sqrt{1+t}+\sqrt{1+3 t}) \\
A_{4}(z) & =\log 4+\frac{1}{2} \log (1+t)+\frac{1}{2} \log (1+3 t)-2 \log (\sqrt{1+t}+\sqrt{1+3 t})
\end{aligned}
$$

The change of variables (9) is simpler than the one originally proposed by Lehn and used in the proof of Theorem 1. The expression is better suited for higher rank generalizations.

Higher rank. We discuss higher rank analogues of the exponential formulas above. For a pair $(C, V)$ consisting of a nonsingular projective curve $C$ and a rank $r$ vector bundle
$V$ of degree $d$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n} \int_{C^{[n]}} s_{n}\left(V^{[n]}\right)=\exp \left(d \cdot A_{1}(z)+\chi\left(\mathcal{O}_{C}\right) \cdot A_{2}(z)\right) \tag{10}
\end{equation*}
$$

for power series $A_{1}(z)$ and $A_{2}(z)$ depending upon $r$. The series $A_{1}$ was conjectured in [W], though not in closed form, while the expression for $A_{2}$ was left open. Here, we prove the following result.

Theorem 2. For formula (10) in rank $r$, we have

$$
A_{1}\left(-t(1+t)^{r}\right)=\log (1+t), \quad A_{2}\left(-t(1+t)^{r}\right)=(r+1) \log (1+t)-\log (1+t(r+1))
$$

Proof of Theorem 2. To find the series $A_{1}$ and $A_{2}$, we need only consider the projective line $C \simeq \mathbb{P}^{1}$ with the vector bundle

$$
V=\mathcal{O}_{\mathbb{P}^{1}} \otimes \mathbb{C}^{r-1} \oplus \mathcal{O}_{\mathbb{P}^{1}}(d)
$$

We obtain

$$
V^{[n]}=\mathcal{O}^{[n]} \otimes \mathbb{C}^{r-1} \oplus(\mathcal{O}(d))^{[n]}
$$

The Hilbert scheme of points is simply $\left(\mathbb{P}^{1}\right)^{[n]} \simeq \mathbb{P}^{n}$, and the universal subscheme $\mathcal{Z} \hookrightarrow$ $\mathbb{P}^{n} \times \mathbb{P}^{1}$ is given by

$$
\mathcal{O}(-\mathcal{Z})=\mathcal{O}_{\mathbb{P}^{n}}(-1) \boxtimes \mathcal{O}_{\mathbb{P}^{1}}(-n)
$$

It follows that

$$
\begin{aligned}
\operatorname{ch} \mathcal{O}(d)^{[n]} & ={\operatorname{ch~} \mathbf{R p r}_{\star}\left(\mathcal{O}_{\mathcal{Z}} \otimes \mathcal{O}_{\mathbb{P}^{1}}(d)\right)}={\operatorname{ch~} \mathbf{R p r}_{\star}\left((\mathcal{O}-\mathcal{O}(-\mathcal{Z})) \otimes \mathcal{O}_{\mathbb{P}^{1}}(d)\right)}=\operatorname{ch}\left(H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(d)\right) \otimes \mathcal{O}_{\mathbb{P}^{n}}-H^{\bullet}\left(\mathcal{O}_{\mathbb{P}^{1}}(d-n)\right) \otimes \mathcal{O}_{\mathbb{P}^{n}}(-1)\right) \\
& =(d+1)-(d-n+1) \cdot \exp (-h)
\end{aligned}
$$

Here, we write $h$ for the hyperplane class on $\mathbb{P}^{n}$. We can then find the Chern roots of $(\mathcal{O}(d))^{[n]}$ yielding the following expression for the Segre class

$$
s\left(\mathcal{O}(d)^{[n]}\right)=(1-h)^{d-n+1} .
$$

Consequently

$$
s\left(V^{[n]}\right)=(1-h)^{d-r n+r} \Longrightarrow \int_{\mathbb{P}^{n}} s_{n}\left(V^{[n]}\right)=(-1)^{n}\binom{d-r n+r}{n} .
$$

We conclude that

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n}\binom{d-r n+r}{n} \cdot z^{n}=\exp \left(d \cdot A_{1}(z)+A_{2}(z)\right) \tag{11}
\end{equation*}
$$

To finish the proof, we invoke the following result which was first proved in [MOP] for $r=2$. We follow the same argument here.

Lemma 3. After the change of variables

$$
z=t(1+t)^{r}
$$

we have

$$
\sum_{n=0}^{\infty}\binom{d-r n+r}{n} \cdot z^{n}=\frac{(1+t)^{d+r+1}}{1+t(r+1)}
$$

Proof. First, we already know from (11) that the left hand side takes the form

$$
F_{1}^{d} \cdot F_{2}
$$

for power series $F_{1}=\exp \left(A_{1}\right), F_{2}=\exp \left(A_{2}\right)$. In fact, we claim that

$$
F_{1}(z)=1+t, \quad F_{2}(z)=\frac{(1+t)^{r+1}}{1+t(r+1)}
$$

To confirm the formulas for $F_{1}$ and $F_{2}$ above, it suffices to verify the Lemma for two different values of $d$. We use $d=-2 r$ and $d=-r$.

First, when $d=-2 r$, we establish

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{-r n-r}{n} \cdot z^{n}=\frac{1}{(1+t)^{r-1}(1+t(r+1))} \tag{12}
\end{equation*}
$$

This is contained in Lemma 5 of $[\mathrm{MOP}]$ for $r=2$. There, it is shown that the solution to the equation

$$
z=t(1+t)^{r}
$$

has the Taylor expansion

$$
\begin{equation*}
t=\sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1}\binom{-r n-r}{n} \tag{13}
\end{equation*}
$$

Differentiating, we find identity (12)

$$
\sum_{n=0}^{\infty} z^{n}\binom{-r n-r}{n}=\frac{d t}{d z}=\left(\frac{d z}{d t}\right)^{-1}=\left((1+t)^{r-1}(1+(r+1) t)\right)^{-1}
$$

The case $d=-r$ uses the identity

$$
\frac{1+t}{1+(r+1) t}=(1+t)-\frac{1}{(1+t)^{r-1}(1+(r+1) t)} \cdot(r+1) \cdot t(1+t)^{r}
$$

For $1+t$ we substitute the expression (13), while for the fraction that follows it we use (12). We obtain

$$
\begin{aligned}
\frac{1+t}{1+(r+1) t} & =1+\sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1}\binom{-r n-r}{n}-(r+1) \sum_{n=0}^{\infty} z^{n+1}\binom{-r n-r}{n} \\
& =1+\sum_{n=0}^{\infty} z^{n+1}\binom{-r n-r}{n+1}=\sum_{n=0}^{\infty} z^{n}\binom{-r n}{n}
\end{aligned}
$$

which verifies the Lemma in this case.

Surfaces. For surfaces, a complete higher rank analogue of Lehn's conjecture is an open question. In this direction, several conjectures were recently formulated by Drew Johnson in [J]. Johnson's formulation of the conjecture was inspired by counts of points of 0-dimensional Quot schemes and strange duality, much like the strategy used to prove strange duality for curves in [MO]. We sharpen these conjectures, by providing closed formulas for some of the series involved.

Specifically, consider a pair $(S, V)$ where $V$ is a rank $s$ vector bundle on a nonsingular projective surface $S$. The associated vector bundle $V^{[n]}$ on the Hilbert scheme has rank $s n$. By passing to resolutions, $V^{[n]}$ makes sense for all $K$-theory classes $V$.

It is remarked in $[\mathrm{J}]$ that the following integrals of $V^{[n]}$ depend on five different power series

$$
\begin{align*}
& \sum_{n=0} z^{n} \int_{S^{[n]}} c_{2 n}\left(V^{[n]}\right)=  \tag{14}\\
& A_{1}(z)^{c_{2}(V)} \cdot A_{2}(z)^{\chi\left(c_{1}(V)\right)} \cdot A_{3}(z)^{\frac{1}{2} \chi\left(\mathcal{O}_{S}\right)} \cdot A_{4}(z)^{K_{S} \cdot c_{1}(V)-\frac{1}{2} K_{S}^{2}} \cdot A_{5}(z)^{K_{S}^{2}}
\end{align*}
$$

After changing $V$ into $-V$ in $K$-theory, the above expressions turn into Segre integrals of higher rank vector bundles. Hence, equation (14) generalizes Lehn's formula.

To say a bit more about the above series, we recall a result of [EGL] regarding the holomorphic Euler characteristics of tautological line bundles:

$$
\begin{equation*}
\sum_{n=0}^{\infty} z^{n} \chi\left(S^{[n]}, H_{n} \otimes E^{r}\right)=f_{r}(z)^{\frac{1}{2} \chi\left(\mathcal{O}_{S}\right)} \cdot g_{r}(z)^{\chi(H)} \cdot a_{r}(z)^{H \cdot K_{S}-\frac{1}{2} K_{S}^{2}} \cdot b_{r}(z)^{K_{S}^{2}} \tag{15}
\end{equation*}
$$

Here, $H_{n}$ denotes the line bundle induced by $H=\operatorname{det} V$ on the symmetric product, and $E$ is $-\frac{1}{2}$ of the exceptional divisor. By [J] and [EGL], the two series corresponding to $K$-trivial surfaces are determined in closed form

$$
f_{r}(z)=\frac{(1+t)^{r^{2}}}{1+r^{2} t}, \quad g_{r}(z)=1+t
$$

after the change of variables

$$
z=t(1+t)^{r^{2}-1} .
$$

As is usually the case, the series $a_{r}, b_{r}$ are unknown.
Refining the conjectures ${ }^{3}$ in $[J]$, we provide closed expressions for the series in (14) corresponding to $K$-trivial surfaces. The last two series are surprisingly connected in a very precise fashion to the unkown series $a_{r}, b_{r}$ of (15).
Conjecture 1. Let $V \rightarrow S$ be a vector bundle ${ }^{4}$ of rank $s=r+1$. After the change of variables

$$
z=-\frac{1}{r} t(1+t)^{-r}, \quad w=\frac{t(-r+(-r+1) t)^{r^{2}-1}}{(-r(1+t))^{r^{2}}}
$$

[^2]we have
\[

$$
\begin{aligned}
& A_{1}(z)=(-r)^{-r-1} \cdot(1+t)^{-r} \cdot(-r+(-r+1) t)^{r+1} \\
& A_{2}(z)=(-r)^{r} \cdot(1+t)^{r-1} \cdot(-r+(-r+1) t)^{-r} \\
& A_{3}(z)=(-r)^{r^{2}} \cdot(1+t-r t)^{-1} \cdot(1+t)^{(r-1)^{2}} \cdot(-r+t(-r+1))^{-r^{2}} \\
& A_{4}(z)=a_{r}(w) \\
& A_{5}(z)=b_{r}(w)
\end{aligned}
$$
\]

Furthermore, using the solution of Lehn's conjecture, we are able to predict the first nontrivial ${ }^{5}$ examples of the unknown series $a_{r}, b_{r}$ corresponding to $r= \pm 2$.

Conjecture 2. After the change of variables

$$
w=\frac{t(2+3 t)^{3}}{16(1+t)^{4}},
$$

we have

$$
\begin{aligned}
& a_{-2}(w)=\frac{1}{a_{2}(w)}=\frac{2+3 t}{\sqrt{1+t}} \cdot \frac{1}{\sqrt{1+t}+\sqrt{1+3 t}} \\
& b_{-2}(w)=b_{2}(w)=4 \sqrt{2+3 t} \cdot \frac{(1+t)^{1 / 4} \cdot \sqrt{1+3 t}}{(\sqrt{1+t}+\sqrt{1+3 t})^{5 / 2}}
\end{aligned}
$$

These expressions are connected to the series appearing in Lehn's rank 1 formula. We have checked the term by term expansions pertaining to both $a_{ \pm 2}$ and $b_{ \pm 2}$ to high order.

In case $S$ is a $K 3$ surface, the series $a_{r}$ and $b_{r}$ play no role since $K_{S}$ vanishes. Conjecture 1 is proven for all vector bundles $V$ on $K 3$ surfaces in [MOP2].

Acknowledgements. We thank C. Voisin and A. Szenes for discussions about Lehn's conjecture, and we thank D. Johnson for sharing with us additional numerical data. A.M. was supported by the NSF through grant DMS 1601605. D. O. was supported by the NSF through grant DMS 1150675. R.P. was supported by the Swiss National Science Foundation and the European Research Council through grants SNF-200020-162928 and ERC-2012-AdG-320368-MCSK. R.P was also supported by SwissMap and the Einstein Stiftung in Berlin.

## References

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris, Geometry of algebraic curves, Springer-Verlag, New York, 1985.
[C] E. Cotterill, Geometry of curves with exceptional secant planes: linear series along the general curve, Math. Z. 267 (2011), 549 - 582.
[EGL] G. Ellingsrud, L. Göttsche, M. Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Alg. Geom. 10 (2001), 81-100.
[J] D. Johnson, Universal series for Hilbert schemes and Strange Duality, arXiv:1708.05743.
[L] M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), 157 - 207.

[^3][LeB] P. Le Barz, Sur une formule de Castelnuovo pour les espaces multisecants, Boll. Unione Mat. Ital. Sez. B 10 (2007), $381-387$.
[MO] A. Marian, D. Oprea, The level-rank duality for non-abelian theta functions, Invent. Math. 168 (2007),
$225-247$.
[MOP] A. Marian, D. Oprea, R. Pandharipande, Segre classes and Hilbert schemes of points, Annales Scientifiques de l'ENS 50 (2017), 239 - 267.
[MOP2] A. Marian, D. Oprea, R. Pandharipande, Higher rank Segre integrals over the Hilbert scheme of points, arXiv:1712.02382.
[V] C. Voisin, Segre classes of tautological bundles on Hilbert schemes of surfaces, arXiv:1708.06325.
[W] Z. Wang, Tautological integrals on Hilbert schemes of points on curves, arXiv:1506.08405.
Department of Mathematics, Northeastern University
E-mail address: a.marian@neu.edu
Department of Mathematics, University of California, San Diego
E-mail address: doprea@math.ucsd.edu
Department of Mathematics, ETH Zürich
E-mail address: rahul@math.ethz.ch


[^0]:    Date: December 2017.
    ${ }^{1}$ The $n^{t h}$ symmetric product of $C$ is the Hilbert scheme of points $C^{[n]}$. For curves $C$ and surfaces $S$, we use the standard notation for the tautological bundle $H^{[n]}$ of rank $n$ on the Hilbert schemes $C^{[n]}$ and $S^{[n]}$ associated to a line bundle $H$, see [EGL].

[^1]:    ${ }^{2}$ It would be interesting to see if these Segre vanishings can be obtained also by the methods of [MOP].

[^2]:    ${ }^{3}$ The series $A_{1}, \ldots, A_{5}$ up to order 6 in $z$ were calculated in [J]. The numerical data in [J] played an important role in our formulation of Conjecture 1.
    ${ }^{4}$ For rank $s=1$ (corresponding to $r=0$ ), the Chern class $c_{2 n}\left(V^{[n]}\right)$ is trivial for $n>0$ since $V^{[n]}$ is only of rank $n$. The formulas of Conjecture 1 are singular in the $r=0$ case.

[^3]:    ${ }^{5}$ We have $a_{0}=a_{ \pm 1}=b_{0}=b_{ \pm 1}=1$.

