A_g, M_g^c, and $\text{Hilb}(C^2,d)$

Rahul Pandharipande
ETH Zürich

27 October 2023, Leiden

Extended notes updated
April 2024

joint with
S. Canning
S. Molcho
D. Oprea
A. Pixton
H. H. Tseng
A. Triñar López

including results of
F. Greer - C. Lian
Various compactifications,

Perhaps no winner yet,

but Satake is convenient
I. Moduli of abelian varieties

\[\text{Sp}(2g, \mathbb{R}) \sim \mathcal{H}_g \quad \text{Siegel upper half space (contractible)} \]

\[A_g = \mathcal{H}_g \left/ \text{Sp}(2g, \mathbb{R}) \right. \]

model for
\[B \text{Sp}(2g, \mathbb{R}) \]
up to finite Stabilizers

we have:
\[H^* (A_g) = H^* \text{Sp}(2g, \mathbb{R}) , \]
all cohomology taken with \(\mathbb{Q} \)-coefficients.
IE is defined by

\[\text{Abelian variety of } \dim g \]

Then \(\text{IE} = \Delta^* (\Omega^1_\pi) \)

\[\text{rank } g \]

Lambda classes: \(\lambda_i = c_i (\text{IE}) \),

\[\text{ch } R_{\pi_*} \Theta_x = \text{ch } (1 - \text{IE}^v + \wedge^2 \text{IE}^v \cdots) \].

Borel 1974: Stable cohomology of \(\text{Sp}(\mathbb{Z}) \)

generated by \(\lambda_i \).
Following van der Geer, define tautological classes:

- \(\mathcal{R} H^*(A_g) \subset H^*(A_g) \) \text{ cohomology}
 - subalgebra generated by all \(\lambda_i = c_i(\mathcal{E}) \),

- \(\mathcal{R}^*(A_g) \subset C H^*(A_g) \) \text{ algebraic cycles}
 - subalgebra generated by all \(\lambda_i = c_i(\mathcal{E}) \).

Theorem (van der Geer 1996)

\[\mathcal{R} H^*(A_g) = \mathcal{R}^*(A_g) \text{ with presentation} \]

\[\mathbb{Q}[\lambda_1, \ldots, \lambda_g] \]

\[(\lambda_g = 0, \ c(\mathcal{E} \oplus \mathcal{E}^*) = 1) \]

\[(1+\lambda_1+\lambda_2+\cdots+\lambda_g) \cdot (1-\lambda_1+\lambda_2-\cdots-(-1)^g \lambda_g) = 1. \]
As a consequence, \(H^*(A_g) \) is a Gorenstein ring with socle

\[H^{(g)}(A_g) \cong \mathbb{Q} \cdot \lambda_1^{(g)} \cong \mathbb{Q} \cdot \lambda_1 \lambda_2 \ldots \lambda_{g-1}. \]

Many open questions:

1. Calculate \(H^*_\text{Sp}(2g, \mathbb{Z}) \) in unstable ranges
2. Calculate \(CH^*(A_g) \)
3. Calculate \(H^*_\text{Sp}(2g, \mathbb{Z}) \) with \(\mathbb{Z} \)-coefficients

all very difficult. We will go in a different direction.
We have $R^*(A_j) \subset CH^*(A_j)$

and $R^*(M_{g_j}^{ct}) \subset CH^*(M_{g_j}^{ct})$.

Is there a canonical projection

$CH^*(M_{g_j}^{ct}) \xrightarrow{Pr_{M_{g_j}^{ct}}} R^*(M_{g_j}^{ct})$?

There is no proposal for,

but for $CH^*(A_j) \xrightarrow{Pr_A} R^*(A_j)$,

we believe Pr_A exists!
The idea uses compactification:

\[A_g \subset A_g^{pc} \quad \text{Perfect Core Compactification} \]

Some facts:

(i) Hodge bundle extends canonically

\[IE \subset IE \]

\[\downarrow \quad \downarrow \]

\[A_g \subset A_g^{pc} \]

(ii) \(H^*(A_g^{pc}) \) def \(\text{Subalgebra generated by all} \)

\[\lambda_i = c_i(IE) \]
Theorem (van der Geer 1996)

• \(R^*(A_g^{pc}) = \frac{\mathbb{Q}[\lambda_1, \ldots, \lambda_g]}{(c(E \otimes E^e) = 1)} \)

\[(1 + \lambda_1 + \lambda_2 + \cdots + \lambda_g) \cdot (1 - \lambda_1 + \lambda_2 - \cdots - (i)\lambda_g) = 1. \]

• \(R^*(A_g^{pc}) \) is a Gorenstein ring

with socle

\[R^{(g^+)}_{(2)}(A_g^{pc}) \cong \mathbb{Q} \cdot \lambda_1^{(g^+)} \cong \mathbb{Q} \cdot \lambda_1 \lambda_2 \cdots \lambda_{g-1} \lambda_g. \]

Using integration on \(A_g^{pc} \)

and the duality of \(R^*(A_g^{pc}) \),
We define a projection:

\[\text{CH}^*(A^\text{pc}_j) \xrightarrow{\text{Pr}_{A^\text{pc}j}} \mathcal{R}^*(A^\text{pc}_j) \]

\[\text{Pr}_{A^\text{pc}j} (\alpha \in \text{CH}^*(A^\text{pc}_j)) = \beta \in \mathcal{R}^*(A^\text{pc}_j) \]

where \(\forall \gamma \in \mathcal{R}^*(A^\text{pc}_j), \)

\[\int_{A^\text{pc}_j} \alpha \cdot \gamma = \int_{A^\text{pc}_j} \beta \cdot \gamma, \]

\(\beta \) exists and is unique.

\[\text{Pr}_{A^\text{pc}j} \text{ is a projection} \]
Idea for constructing

\[\text{CH}^*(A_j) \xrightarrow{\text{Pr}_A} \mathbb{R}^*(A_j) \]

via \(\text{Pr}_{A,pc} \):

\[\text{Pr}_A (\alpha \in \text{CH}^*(A_j)) = \text{Pr}_{A,pc} (\overline{\alpha} \in \text{CH}^*(A_{j,pc})) \]

but closure not canonical!

Not clear that \(\text{Pr}_A \) is well defined.

Conjecture (Canning-Oprea-P 2023):

\[\lambda_g \mid_{A_{j,pc}, A_j} = 0 \in \text{CH}^*(A_{j,pc}, A_j) \]

Conjecture \(\Rightarrow \) \(\text{Pr}_A \) is well defined.
Using the Conjecture, there is another path to the projection:

for $\alpha \in \text{Ch}^*(A_g)$ and $\gamma \in R^*(A_g)$, define a pairing

\[
\langle \alpha, \gamma \rangle_{A_g} = \int \bar{\alpha} \cdot \gamma \cdot \lambda_g_{A_g}
\]

Conjecture \Rightarrow $\langle \alpha, \gamma \rangle_{A_g}$ is well defined.

Exercise: $\langle \alpha, \gamma \rangle_{A_g} = \langle Pr_A(\alpha), \gamma \rangle_{A_g}$

$\forall \alpha \in \text{Ch}^*(A_g)$ and $\forall \gamma \in R^*(A_g)$
Update (19 November 2023):

The vanishing conjecture

\[\alpha_g | \mathcal{A}_g^{pc} = 0 \in \mathcal{CH}^*(\mathcal{A}_g^{pc}, \mathcal{A}_g) \]

is true!

- Argument by Sam Molcho constructing trivial quotients of IE on the boundary via residue maps.
- Another path suggested by Ben Moonen using boundary geometry and rigidity results from Faltings–Chai.

Proofs work for all sufficiently fine toroidal compactifications: \(\mathsf{Pr}_A \) exists and is independent of choice of compactification.

arXiv: 2401.15768
III. Noether–Lefschetz loci

The simplest NL locus to consider is

$$A_1 \times A_{g-1} \to A_g.$$

We assume $g \geq 2$

We define a twisted generalization by the following construction:

Let $NL_d \to A_g$ be the $d \geq 1$

module of pairs:

$$NL_d \ni \left[E \to \chi \right]$$

Condition: $E \cdot \Theta = d$

theta divisor of χ

1 dim Subgroup, PPAV of dimension g

an elliptic curve
In case \(d = 1 \), \(\text{NL}_1 = A_1 \times A_{g-1} \).

Easy to see:

\[
\dim \text{NL}_d = \dim A_g - (g-1)
\]

so \([\text{NL}_d] \in CH^{g-1}(A_g) \).

The main topic of the lecture is the computation

\[
\Pr_A ([\text{NL}_d]) \in R^*_A(A_g).
\]

There are 2 immediate issues:

- \(\Pr_A \) depends on the vanishing Conjecture.
- Even if we assume the Conjecture, it is not clear how to integrate the classes of the closures in \(A^\text{pc}_g \).
Theorem (Cannings-Opred-P 2023):

If the vanishing conjecture holds,

\[P_{\mathcal{A}} ([A_1 \times A_{g,1}]) = \frac{g}{6 |B_{2g}|} \lambda_{g-1}. \]

An interesting direction:

What is the projection of the Schottky locus,

\[P_{\mathcal{A}} (\text{Tor}^* [M_g^{ct}]) \in \Lambda^* (A_g) ? \]
A different question

We consider now a different question:

\[[NL_d] \in R^*(A_g), \]

What could it be?

- Since \(P_{r_A} \) is well-defined, the answer to the question is:

\[[NL_d] \in R^*(A_g) \Rightarrow [NL_d] = P_{r_A}([NL_d]). \]
Proposition (Camenik-Opredel-P 2023):

If \([NL_d] \in R^*(A_g)\), then

\[
\begin{bmatrix}
NL_d
\end{bmatrix} = c_{g,d} \cdot \lambda_{g-1}.
\]

\(\uparrow\)

Scalar in \(\mathbb{Q}\)

Proof: We have \([NL_d] \in R^*(A_g)\).

Moreover \(\lambda_{g-1} \cdot [NL_d] = 0\),

Since \(NL_d \in \begin{bmatrix}
E & \chi
\end{bmatrix}\)

\(\downarrow\)

\[
A_1 \times A_{g-1}^{\text{Pol}} \ni \begin{bmatrix}
E
\end{bmatrix} \times \begin{bmatrix}
\chi \\
E
\end{bmatrix}
\]

\(\uparrow\) non principal polarization
and \(\lambda_{g-1} \mid \mathcal{N}_d \) is pulled-back from \(\lambda_{g-1} \mid A_1 \times A_{g-1}^{\text{pol}} \),

and \(\lambda_{g-1} \mid A_1 \times A_{g-1}^{\text{pol}} = 0 \)

because \(c(1E) \mid A_1 = 0 \)

and \(\lambda_{g-1} \mid A_{g-1}^{\text{pol}} = 0 \).

Finally, \(Q \cdot \lambda_{g-1} c \in R^{g-1}(A_g) \)

is the annihilator of \(\lambda_{g-1} \) in \(R^{g-1}(A_g) \). \(\square \)
I. Integration

We have seen

\[[NL_d] \in R^*(A_g) \Rightarrow [NL_d] = c_{g,d} \cdot \lambda_{g-1}. \]

The question is now what is the scalar \(c_{g,d} \)?

The idea is to pull-back via Torelli:

\[\text{Tor} : M_g^{ct} \rightarrow A_g , \]

\[\text{Tor}^* \left([NL_d] \right) \in R^{g-1}(M_g^{ct}) , \]

\[\text{Tor}^* \left(\lambda_{g-1} \right) \in R^{g-1}(M_g^{ct}) . \]
Then we can calculate $c_{g,d}$ by the λ_g - evaluation on M_{g}^{ct}:

$$\int_{\overline{M}_{g}} \text{Tor}^* \left(\left[NL_d \right] \right) \cdot \lambda_{g-2} \lambda_g = c_{g,d}$$

$$\int_{\overline{M}_{g}} \lambda_{g-2} \lambda_{g-1} \lambda_g$$

Computed by Faber-P (1999)

$$\int_{\overline{M}_{g}} \lambda_{g-2} \lambda_{g-1} \lambda_g = \frac{1}{2 \cdot (2g-2)!} \frac{1}{2g} \frac{1}{2^{g-2}}$$
But how are we going to calculate

\[
\int \text{Tor}^* \left(\left[NL_d \right] \right) \cdot \mathfrak{g}_{g-2} \mathfrak{g}_g \ ?
\]

\[\bar{\mathcal{M}}_g\]

This requires a miracle provided by stable maps and the quantum cohomology of \(\text{Hilb}(\mathbb{C}^2, d)\).
VI Stable maps

Consider the fiber product:

\[\text{Tor}^{-1}(NL_d) \rightarrow NL_d \rightarrow M_g^{ct} \rightarrow \text{Tor} \rightarrow A_g \]

We will add a marked point:

\[\text{Tor}_i^{-1}(NL_d) \rightarrow NL_d \rightarrow M_{g,i}^{ct} \rightarrow \text{Tor}_i \rightarrow A_g \]
\[(2g-2) \cdot \int_{\overline{M}_g} \overline{\text{Tor}}^* \left(\left[N_{L_d} \right] \right) \cdot \mathfrak{a}_{g-2} \mathfrak{a}_g\]

\[
\ll
\int_{\overline{M}_{g,1}} \overline{\text{Tor}}_{i}^* \left(\left[N_{L_d} \right] \right) \cdot \psi_i \cdot \mathfrak{a}_{g-2} \mathfrak{a}_g
\]

Since on \(M_{g,1}^{ct} \), we have

\[
\overline{\text{Tor}}_{i}^* \left(\left[N_{L_d} \right] \right) = \alpha^* \left(\overline{\text{Tor}}^* \left(\left[N_{L_d} \right] \right) \right)
\]

where \(\alpha : M_{g,1}^{ct} \overset{\text{forgetful}}{\longrightarrow} M_g^{ct} \).
Let $M_{1,1}^{ct} = M_{1,1}$ be the models of pointed nonsingular elliptic curves:

\[
\begin{array}{c}
\pi^{ct} \\
\downarrow \\
M_{1,1}
\end{array}
\]

Let $M_{g,1}^{ct}(\pi^{ct}, d) \xrightarrow{ev} M_{g,1}^{ct}$ be the Grothendieck π-relative space of stable maps to the fibers of π.
$\mathcal{M}_{g,1}^{ct} (\pi_{ct}, d)$ has a virtual class of dimension marked point

\[\text{virdim} = 1 + 1 + 2g - 2 = 2g. \]

\[\dim \mathcal{M}_{g,1} \]

unpointed maps to a fixed elliptic fiber

$\text{Tor}_i^* \left(\left[N \mathcal{L}_d \right] \right)$ is an intersection class on $\text{Tor}_i^* (N \mathcal{L}_d)$ of dimension

\[\text{virdim} = 3g - 3 + 1 - (g - 1) = 2g - 1. \]

\[\dim \mathcal{M}_{g,1}^{ct} \]

\[\text{codim of } N \mathcal{L}_d \]
compact type
\[
\left[f : (C, p) \to (E, q) \right] \in \mathcal{M}_{g,1}^{ct} (\pi^ct, d)
\]

there is a discrete invariant:
\[f^* : \text{Jac}_o(E) \to \text{Jac}_o(C), \]

\[
\text{Jdeg} f = \frac{d}{|\ker f^*|}.
\]

\[\text{Jdeg}_f \in \{ 1, 2, \ldots, d \} \text{ must divide } d \]

and is a discrete invariant of \(f \),

\[
\mathcal{M}_{g,1}^{ct} (\pi^ct, d) = \left/ \mathcal{M}_{g,1}^{ct} (\pi^ct, d) \right. \big/ \text{Jdeg} \hat{d}.
\]

maps with \(\text{Jdeg} f = \hat{d} \)
Another way to think about $\deg f$:

A degree d stable map

$$f : (C, p) \to (E, q)$$

Compact type

factors uniquely as

$$(C, p) \xrightarrow{g} (\hat{E}, \hat{q}) \xrightarrow{h} (E, q)$$

where $h : \hat{E} \to E$ is group homomorphism of elliptic curves

and $g^* : \text{Jac}_0(\hat{E}) \to \text{Jac}_0(C)$

is injective.
Then \(|\ker f^*| = \deg(h) \)

and \(d = \deg(g) \cdot \deg(h) \).

So we have

\[
\text{Jdeg } f = d \bigg/ |\ker f^*| = \deg(g).
\]

The disjoint decomposition

\[
\mathcal{M}_{g,1}^{\mathrm{ct}}(\pi^c, d) = \bigsqcup_{\text{Jdeg } \hat{d}} \mathcal{M}_{g,1}^{\mathrm{ct}}(\pi^c, d)^{\hat{d}}
\]

has principal part \(\mathcal{M}_{g,1}^{\mathrm{ct}}(\pi^c, d)^{\hat{d}} \).

The lower parts \(\mathcal{M}_{g,1}^{\mathrm{ct}}(\pi^c, d)^{\hat{d} < d} \)

can be studied via \(\mathcal{M}_{g,1}^{\mathrm{ct}}(\pi^c, \hat{d}) \).
Theorem (Cannings–Opredel-P, Pixton 2023)

There is an isomorphism of DM stacks

\[\ev^{-1}(q)^d \cong \Tor_1^p(NL_d) \]

\[\cap \]

\[M_{g,1}^{ct}(\pi, d)^d \]

Here \(\ev^{-1}(q)^d \) is the locus of map where the evaluation of the marking on the domain equals the zero point \(q \) of the elliptic target.
To be useful we must also match the virtual classes:

\[
\text{vir dim } \text{ev}^{-1}(q)^d = \text{vir dim } \mathcal{M}_{g,1}^{\text{ct}}(\pi^\text{ct},d)^d - 1 = 2g - 1,
\]

\[
\left[\text{ev}^{-1}(q)^d\right]^{\text{ct,vir}} = \text{ev}^*(q) \cap \left[\mathcal{M}_{g,1}^{\text{ct}}(\pi^\text{ct},d)^d\right]^{\text{vir}}.
\]

Conjecture (Canning-Oprea-P, Pixton 2023)

under the above isomorphism,

\[
\left[\text{ev}^{-1}(q)^d\right]^{\text{ct,vir}} = \text{Tor}_i^\times \left(\left[NL_d \right] \right).
\]
Update Feb 2024:
Francois Greer and Carl Lian can prove
\[
\left[e V^{-1} (q)^d \right]_{\text{ct,vir}}^\text{ct,vir} = \text{Tor}^*_1 \left(\left[NL_d \right] \right)
\]

exactly in the required form using
a matching of obstruction theories.

Update April 2024:
The Greer - Lian proof can be found here:

arXiv: 2404.10826
An important property of

\[
\left[\text{ev}^{-1}(q^d) \right]^{\text{ct, vir}} \in A_{2g-1}(\mathcal{M}_{g,1}^{\text{ct}}(\pi^ct, d^d))
\]

is the existence of a canonical extension to \(\overline{\mathcal{M}}_{g,1}(\pi^ct, d) \):

\[
\left[\text{ev}^{-1}(q) \right]^{\text{vir}} \in A_{2g-1}(\overline{\mathcal{M}}_{g,1}(\pi, d))
\]

where \(\overline{\mathcal{M}}_{g,1}(\pi, d) \xrightarrow{\text{ev}} \mathcal{M}_{g,1} \xrightarrow{\pi} \mathcal{M}_{1,1} \)

over \(\partial \in \overline{\mathcal{M}}_{g,1} \), we have log stable maps
The complement
\[\overline{\mathcal{M}}_{g,1}(π, d) \setminus \mathcal{M}_{g,1}^{ct}(π^{ct}, d) \]
is mapped by \(\mathcal{E} \) to the complement \(\overline{\mathcal{M}}_{g,1} \setminus \mathcal{M}_{g,1}^{ct} \).

Over \(\mathcal{M}_{g,1} \), this is by definition.

Over the point \([\mathcal{O}] \in \overline{\mathcal{M}}_{g,1} \),
the claim is more interesting:

there are no curves with compact type domains which map to \(\mathcal{O} \) with degree \(d \geq 1 \) by the definition of log maps.
We conclude:

\[
\int_{\overline{M}_{g,1}} \text{Tor}_* \left([N \mathcal{L}_d] \right) \cdot \psi_1 \cdot \psi_{g-2} \psi_g \\
\int_{\overline{M}_{g,1}} \epsilon_* \left[e_{\nu}^{-1}(q^d) \right]^{\text{vir}} \cdot \psi_1 \cdot \psi_{g-2} \psi_g \\
\int_{\overline{M}_{g,1}} \epsilon_* \left[e_{\nu}^{-1}(q^d \cdot \psi_1) \right]^{\text{vir}} \cdot \psi_{g-2} \psi_g
\]

cotangent line now on $\overline{M}_{g,1} \left(\pi, d \right)$, no correction terms since there are no maps of positive degree $\mathbb{P}^1 \to E$.
We now use the extension:

\[
\sum \ell^{-\deg \left(\frac{d}{\delta} \right)} \cdot \int_{\overline{M}_g, i} \left[e_{\nu}^{-1}(q) \cdot \psi_i \right]^{\text{vir}} \cdot \mathfrak{g}_{g-2} \mathfrak{g}_d
\]

\[
\sum \ell^{-\deg \left(\frac{d}{\delta} \right)} \cdot \int_{\overline{M}_g, i} \left[e_{\nu}^{-1}(q) \cdot \psi_i \right]^{\text{vir}} \cdot \mathfrak{g}_{g-2} \mathfrak{g}_d
\]

\[
\text{Count of } (E, \hat{q}) \rightarrow (E, q),
\]

\[
\sigma(x) = \sum_{\ell \mid x} \ell
\]
Hence the integrals

\[\int_{\bar{M}_{g,1}} \epsilon_* \left[\text{ev}^{-1}(q) \cdot \psi \right] \cdot \alpha_{g-2} \alpha_g^{\text{vir}} \]

and the integrals

\[\int_{\bar{M}_{g,1}} \epsilon_* \left[\text{ev}^{-1}(q) \cdot \psi \right] \cdot \alpha_{g-2} \alpha_g^{\text{vir}} \]

are related inductively by

a simple invertible transformation.
We will now calculate

$$\int_{\bar{M}_{g,1}} \left[\text{ev}^{-1}(q) \cdot \psi \right]^{\text{vir}} \cdot \mathcal{A}_{g-2, \mathcal{A}_g}$$

$$\int_\mathcal{M}_{9,1} \mathcal{T}_i(q) \cdot \mathcal{A}_{g-2, \mathcal{A}_g}$$

$$\left[\mathcal{M}_{9,1}(\pi, d) \right]^{\text{vir}}$$

using the idea of the

GW/\mathcal{H} correspondence Okounkov-P (2006)

A new issue is the families geometry.
\[
\int T_i(q) \, \mathfrak{g}_{g-2} \, \mathfrak{g}_g \quad [\overline{\mathcal{M}}_{g,1}(\pi, d)]^{\text{vir}} \quad \| \quad \langle T_i(q) \, \mathfrak{g}_{g-2} \, \mathfrak{g}_g \rangle_{g,d}^\pi \quad 0
\]

GW/H correspondence equation is found by degeneration of every fiber of

\[
\begin{array}{c}
\Xi \\
\pi \\
\downarrow \\
\overline{\mathcal{M}}_{g,1}
\end{array} \quad q
\]

to the normal cone of \(q \).
The resulting equation is

\[
\left< T_1 (g) \right| g_{g-2} g_g \right>_{g,d}^{\pi_0} = \frac{1}{2g} \sigma(d) \cdot (2g-2) \cdot \int \frac{c(E^\gamma)}{1 - \gamma} \frac{\mathcal{M}_{g-1,1}}{M_{g-1,1}}
\]

\[
+ \left< g_{g-2} g_g \right| (2) \right>_{g,d}^{\pi_0}
\]

\text{relative condition}

\text{integral evaluated to equal}

\[
\frac{|B_{2g-2}|}{(2g-2)(2g-2)!} \quad \text{(Faber-P 1999)}
\]
VIII

Quantum Cohomology of $\text{Hilb}(\mathbb{C}^2, d)$

\[
\frac{(t_1 + t_2)^2}{t_1 t_2} \sum \left< \frac{\alpha_{g-2, g}}{(2)} \right>_{g, e}^\pi \cdot \text{Part}(d-e) \\
2 \leq e \leq d
\]

\[
- \frac{1}{24} \frac{(t_1 + t_2)}{t_1 t_2} \sum \left< (2) \right>_{g, e}^{E \times \mathbb{C}^2} \cdot \overset{\sim}{\text{Part}}(d-e) \\
2 \leq e \leq d
\]

invertible relation

\[
\left< (2) \right>_{g, d}^{\pi \times \mathbb{C}^2}
\]

Possibly disconnected
t, t_2 weight on \mathbb{C}^2

(No degree 0 connected components)
The above relation is the Connected / disconnected equation (together with basic Hodge identities).

There are several terms to explain:

- \(\text{Part}(l) = \# \text{ of partitions of } l \)
 - \(\text{Part}(0) = 1 \)
 - \(\text{Part}(1) = 1 \)
 - \(\text{Part}(2) = 2 \)

A well-known property is

\[
\text{Hur}_E^l = \text{Part}(l) \quad \text{for } l \geq 1
\]

\(\text{Aut-weighted Count of} \)
\(\text{Possibly disconnected} \)
\(\text{unramified covers of } E = \varnothing \)
\(\text{of degree } l \)
\[\overset{\sim}{\text{Part}}(l) \overset{\text{def}}{=} \overset{\sim}{\text{Hur}}_E^l \quad \text{for } l \geq 1 \]

\[\overset{\sim}{\text{Part}}(0) = 0 \]

\[\overset{\sim}{\text{Part}}(1) = 1 \]

\[\overset{\sim}{\text{Part}}(2) = 1 + \frac{3}{2} = \frac{5}{2} \]

\[\frac{1}{2} \cdot 1 \cdot 2 \]

\[\overset{\sim}{\text{Part}} \quad \text{Aut-Weighted Count of} \]
\[\overset{\sim}{\text{Connected Covers of }} E = \emptyset \]
\[\overset{\sim}{\text{Possibly disconnected}} \]
\[\overset{\sim}{\text{unramified covers of }} \]
\[\overset{\sim}{\text{degree }} l \quad \text{where each cover} \]
\[\overset{\sim}{\text{is weighted also by the}} \]
\[\overset{\sim}{\text{number of connected components}}. \]
\[P(x) = \sum_{l=0}^{\infty} x^l \text{Part}(l), \]

\[\widetilde{P}(x) = \sum_{l=0}^{\infty} x^l \widetilde{\text{Part}}(l). \]

\[\mathcal{F}(x, y) = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} x^l y^k \text{Hur}_{E}^{l, k} \]

Auto-weighted Count of Possibly disconnected unramified covers of $E = \Theta$ of degree l with k connected components

\[\mathcal{F}(x, y) = \exp(y \log P(x)) \]

\[\widetilde{P}(x) = \frac{d}{dy} \mathcal{F}(x, y) \bigg|_{y=1} \]

\[= P(x) \cdot \log P(x) \]

\[= x + \frac{5}{2} x^2 + \frac{29}{6} x^3 + \frac{109}{12} x^4 + \frac{907}{60} x^5 + ... \]
\(\langle (2) \rangle^{E \times \Phi^2 \circ}_{g,d} \) denotes the connected \GW\ theory to a fixed target \(E \times \Phi^2 \)

The connected/disconnected calculus yields:

\[\langle (2) \rangle^{E \times \Phi^2 \circ}_{g,d} = \sum_{2 \leq e \leq d} \langle (2) \rangle^{E \times \Phi^2 \circ}_{g,e} \cdot \text{Part}(d-e) \]

So we can easily compute \(\langle (2) \rangle^{E \times \Phi^2 \circ}_{g,d} \)

from \(\langle (2) \rangle^{E \times \Phi^2 \circ}_{g,d} \).
- \sum_{g \in \mathbb{Z}} n^{2g-3} \left\langle (2) \right\rangle_{g,d}^{E \times \mathcal{C}^2} \quad \Rightarrow \\
\quad (-i) \cdot \text{Trace} (\mathcal{M}_{D,d}) \
\quad \text{after } -q = e^{im} \
\quad \Rightarrow \\
\quad (-i) \cdot \text{Tr}_d \cdot (t_1 + t_2)
Let \(D = c_1(\mathcal{O}/_{\mathcal{I}}) \in \mathcal{H}^2(\text{Hilb}(\psi^2, k)) \)

Let \(M_{D,k} \) be the operator of quantum multiplication

\[
M_{D,k} = D \ast : \mathcal{H}^*(\text{Hilb}(\psi^2, k)) \rightarrow \mathcal{H}^*(\text{Hilb}(\psi^2, k)).
\]

\(\updownarrow\) computed explicitly by Okounkov-P (2010)

Let \(\text{Tr}_k = \frac{1}{t_1+t_2} \text{Trace} \left(M_{D,k} \right) \),

\[
M_D = (t_1+t_2) \sum_r \left(\frac{(-q^r+1)}{r} - \frac{1}{2} \frac{(-q^r+1)}{(-q^r-1)} \right) \alpha_r \alpha'_r
\]

+ off diagonal terms.
By the GW/Hilb correspondence (for π)

$$
\sum_{g \geq 0} u^{2g-3} \langle (2) \rangle^\pi \cdot \mathcal{H}(\mathcal{O}_X^2)
$$

Tseng-P (2019)

$$
= (-i) \cdot \sum_{n \geq 0} q^n \langle (2) \rangle_{\text{Hilb}(\mathcal{O}_X^2)}^{1, \beta_n}
$$

genus 1

GW invariants in curve class

β_n of degree

$$
\gamma = \sum_{\beta_n} c_1(\mathcal{O}_{\mathcal{I}})
$$

Tautological bundle on $\text{Hilb}(\mathcal{O}_X^2)$
The last step is to evaluate

$$
\langle (2) \rangle_{\text{Hilb}(\mathbb{F}, d)} = \sum_{n \geq 0} q^n \langle (2) \rangle_{1, \beta_n}^{\text{Hilb}(\mathbb{F}, d)}
$$

H.-H. Tseng and I found a conjectural answer:

Conjecture (H.-H. Tseng - P 2023)

$$
- \langle (2) \rangle_{\text{Hilb}(\mathbb{F}, d)} = -\frac{1}{24} \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left(\text{Tr}_d + \sum_{k=2}^{d-1} \frac{\zeta(k)}{d-k} \text{Tr}_X \right).
$$
Example $d=2$:

\[
(t_1 + t_2)^2 \left\langle \frac{\lambda_{g-2} \lambda_g}{t_1 t_2} \right| (2) \right\rangle^\pi_{g,2} = \left\langle (2) \right\rangle^\pi \times \Phi^2 \cdot g,2
\]

Convention:
- g terms are summed as
 \[
 \sum_{g \geq 0} u^{2g-3} \cdots
 \]
- $-q = \exp(i\pi)$

Example $d=3$:

\[
(t_1 + t_2)^2 \left\langle \frac{\lambda_{g-2} \lambda_g}{t_1 t_2} \right| (2) \right\rangle^\pi_{g,3} + (t_1 + t_2)^2 \left\langle \frac{\lambda_{g-2} \lambda_g}{t_1 t_2} \right| (2) \right\rangle^\pi_{g,2}
\]

\[
- \left(- \frac{1}{24} \frac{(t_1 + t_2)^2}{t_1 t_2} (-i) \cdot \mathcal{T}_{r_2}(q) \right)
\]

\[
\equiv \left\langle (2) \right\rangle^\pi \times \Phi^2 \cdot g,3
\]
Example $d = 4$:

\[
\left(\frac{t_1 + t_2}{t, t_2} \right)^2 \left\langle \lambda_3 \lambda_2 | (2) \right\rangle_{g, 4}^{\pi \circ} + \left(\frac{t_1 + t_2}{t, t_2} \right)^2 \left\langle \lambda_3 \lambda_2 | (2) \right\rangle_{g, 3}^{\pi \circ} + \left(\frac{t_1 + t_2}{t, t_2} \right)^2 \left\langle \lambda_3 \lambda_2 | (2) \right\rangle_{g, 2}^{\pi \circ} \cdot 2
\]

\[-\frac{1}{24} \left(\frac{t_1 + t_2}{t, t_2} \right) \left\langle (2) \right\rangle_{g, 3}^{E \times \Omega^2 \circ} \cdot \widetilde{\text{Part}} (1)
\]

\[-\frac{1}{24} \left(\frac{t_1 + t_2}{t, t_2} \right) \left\langle (2) \right\rangle_{g, 2}^{E \times \Omega^2 \circ} \cdot \widetilde{\text{Part}} (2)
\]

\[
\left\langle (2) \right\rangle_{g, 4}^{\pi \times \Omega^2 \circ}
\]
We simplify as

\[
\left(\frac{t_1 + t_2}{t_1, t_2}\right)^2 \langle \chi_{g-2} \chi_g \mid (2) \rangle_{g, 4} \pi \circ \left(\frac{t_1 + t_2}{t_1, t_2}\right)^2 \langle \chi_{g-2} \chi_g \mid (2) \rangle_{g, 3} \pi \circ \\
+ \left(\frac{t_1 + t_2}{t_1, t_2}\right)^2 \langle \chi_{g-2} \chi_g \mid (2) \rangle_{g, 2} \pi \circ \cdot 2
\]

\[
- \left(-\frac{1}{24} \left(\frac{t_1 + t_2}{t_1, t_2}\right)^2 (-i) \left(\text{Tr}_3 - \text{Tr}_2 \right) \right) \cdot 1
\]

\[
- \left(-\frac{1}{24} \left(\frac{t_1 + t_2}{t_1, t_2}\right) (-i) \text{Tr}_2 \cdot \frac{5}{2} \right)
\]

\[\pi \times \mathcal{C}^2 \circ \]

\[
\langle (2) \rangle_{g, 4}
\]
Projection of NL_d

By definition:

$$\Pr_A([\text{NL}_d]) \in \mathbb{R}^{g-1}(A_g).$$

Let $\delta_{g,d} \in \text{CH}^{g-1}(A_g)$,

$$\delta_{g,d} \in \ker(\Pr_A),$$

be the non tautological part:

$$[\text{NL}_d] = \Pr_A([\text{NL}_d]) + \delta_{g,d}.$$
By definition of $P_{\mathcal{A}}$,

$$<\delta_{g_d}, \gamma>_{A_g} = \int \delta_{g_d} \cdot \gamma \cdot \lambda_g$$

non-canonical closure

lifting of λ classes

$$= 0$$

for all $\gamma \in R^{(g) - (g-1)}(A_g)$.

We have seen before that

$$\lambda_{g-1} \cdot [N_{L_d}] = 0 \in R^{2g-2}(A_g).$$
So we have

\[0 = \lambda_{g-1} \cdot \Pr_A \left(\left[\text{NL}_d \right] \right) \]
\[+ \lambda_{g-1} \cdot \delta_{g,d} . \]

Certainly

\[\lambda_{g-1} \cdot \Pr_A \left(\left[\text{NL}_d \right] \right) \in R^{2g-2} (A_g) . \]

Claim: \[\lambda_{g-1} \cdot \delta_{g,d} \in \ker (\Pr_A) \]

Proof: \[\langle \lambda_{g-1} \cdot \delta_{g,d}, \gamma \rangle_{A_g} = \langle \delta_{g,d}, \lambda_{g-1} \cdot \gamma \rangle_{A_g} \]
\[\forall \gamma \in R_{\left(\frac{g}{2}\right) - (2g-2)} (A_g) \]
Therefore, since

\[R^{2g-2}_j (A_j) \cap \ker (P_{r_A}) = 0, \]

\[\lambda_{g-1} \cdot P_{r_A} (\left[NL_d \right]) = 0, \]

\[\lambda_{g-1} \cdot S_{g,d} = 0. \]

As before, we conclude

\[P_{r_A} (\left[NL_d \right]) = \hat{C}_{g,d} \cdot \lambda_{g-1}. \]
If $[NL_d] \in R^*(A_g)$, then

\[\hat{C}_{g,d} = C_{g,d} \]

defined by projection

Computed previously using $\text{Hilb}(\mathbb{C}^2, k)$

Conjecture (Canning-OPrance-P 2023)

for all $g \geq 2$, $d \geq 1$:

\[\hat{C}_{g,d} = C_{g,d} \]

Probably $g = 1$ also works with careful definitions as a degenerate case.
The $d = 1$ case follows from

\begin{equation}
\text{Theorem (Canning-Oprea-P 2023):}
\end{equation}

If the vanishing conjecture holds,

\[P_{r_A} \left([A_1 \times A_{g-1}] \right) = \frac{g}{6|B_{2g}|} \lambda_{g-1}. \]

Together with the calculation of \(C_{g,1} \).

In general, we have

\[[N_{L_d}] = \hat{C}_{g,d} \cdot \lambda_{g-1} + \delta_{g,d} \]

with \(\delta_{g,d} \in \text{Ker} \left(P_{r_A} \right) \)

and \(\alpha \cdot \delta_{g,d} = 0 \).
\(\forall a \in R^*(A_g) \text{ satisfying } a \cdot \lambda_{g-1} = 0, \)
\((a \in \text{Ann}(\lambda_{g-1})) \).

In order to prove
\(\hat{C}_{g,d} = C_{g,d}, \)
we must show
\[
\int \text{Tor}^* \left(\delta_{g,d} \right) \cdot \lambda_{g-2} \lambda_{g} = 0.
\]
\(\overline{M}_g \)

I see two possible paths to prove.
I point out that

\[\text{Tor}^*_x \left(M^C_{g} \right) \in \mathcal{H}^*(\mathcal{A}_g) \]

\[\downarrow \]

\[\int \text{Tor}^* \left(\delta_{g,d} \right) \cdot \tau_{g-2} \tau_g = 0. \]

\[\overline{M}_g \]

But there is not much reason to believe that \(\text{Tor}^*_x \left(M^C_{g} \right) \) is tautological.
The best reason to believe
\[\hat{C}_{g,d} = C_{g,d} \]
is a conjecture by Aitor:

Conjecture (Iribar López 2024)
\[\text{CH}^*(A_g) \xrightarrow{\text{Pr}_A} \mathcal{R}^*(A_g) \]
is a ring homomorphism.

What limited evidence that we
have supports this claim
(at least for the subring of \text{CH}^*(A_g)
generated by NL and Jacobian loci.)
Update April 2024 (by Aitor)

Using the equation (which we know now)

$$\int \text{Tor}^* \left(\delta_{g,d} \right) \cdot \mathcal{A}_{g-2} \mathcal{A}_g = 0$$

and boundary arguments by Pixton,

the homomorphism property is established in the following case:

Let $T \in R^* (M^c_g)$ be any class.

Then we have

$$\text{pr}_A \left(\text{Tor}^* T \cdot [NL_d] \right)$$

so

$$\text{pr}_A \left(\text{Tor}^* T \right) \cdot \text{pr}_A \left([NL_d] \right).$$
Calculation of the projection of NL_d

by Aitor Iribar López:

We have already proven

$$P_{\mathcal{A}}([\text{NL}_d]) = \hat{c}_{g,d} \cdot \lambda_{g-1} e \in \mathcal{H}^*(\mathcal{A}_g)$$

Theorem A (Iribar López 2024)

$$\hat{c}_{g,d} = d^{2g-1} \prod_{p \mid m} (1 - p^{-2g+2}) \cdot \frac{g}{\text{c} \mid \mathcal{B}_{2g} \mid}$$

Aitor's proof uses the geometry of the moduli of abelian varieties with level structures.
Let $c_{g,d}$ be computed using the conjectural formula for $\langle \text{Hilb} (\mathbb{F}^2, e) \rangle ^{\text{Hilb} (\mathbb{F}^2, e)}$, $2 \leq e \leq d$.

Theorem B* (Iribe López 2024)

for all $g \geq 2$, $d \geq 1$:

$\hat{c}_{g,d} = c_{g,d}$.

* here denotes the dependence on the conjectural formula for $\text{Hilb} (\mathbb{F}^2)$.
Aifor's results yield the following implication

Conjecture (Iribar López 2024)

\[CH^*(\mathcal{A}_g) \xrightarrow{Pr_A} \mathbb{R}^*(\mathcal{A}_g) \]

is a \textcolor{red}{ring} homomorphism.

\[\Downarrow\]

Conjecture (H.-H. Tseng-P 2023)

\[- \left\langle \binom{2}{(2)} \right\rangle^H_{\text{Hilb}(\mathbb{P}^2, d)} = \]

\[-\frac{1}{24} \cdot \frac{(t_1 + t_2)^2}{t_1 t_2} \left(Tr_d + \sum_{k=2}^{d-1} \frac{\binom{d}{d-k}}{d-k} Tr_k \right).\]
Appendix: Update March 2024

There is a new path to prove:

Conjecture (H.-H. Tseng - P 2023)

\[- \left\langle \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \right\rangle_{\text{Hill}(\Phi^2, d)} = \]

\[- \frac{1}{24} \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left(\text{Tr}_d + \sum_{k = 2}^{d-1} \frac{6(d-k)}{d-k} \text{Tr}_k \right). \]

We have seen that calculating the following Connected Gromov-Witten integral is sufficient:
\[\int \underbrace{T_i(q) \mathfrak{g}_{g-2} \mathfrak{g}}_{\overline{\mathcal{M}_{g,1}(\pi, d)}} \]

\[\langle T_i(q) \mathfrak{g}_{g-2} \mathfrak{g} \rangle_{g,d}^{\pi_0} \]

Here \(\overline{\mathcal{M}_{g,1}} \) is the moduli of pointed nonsingular elliptic curves and

\[\begin{array}{c}
\overline{\mathcal{M}_{g,1}} \\
\pi \downarrow \\
\pi \end{array} \]

\[\begin{array}{c}
\mathcal{E} \\
q & \text{zero section}
\end{array} \]
The first idea is to switch to an elliptically fibered $K3$ surface:

$$
\begin{array}{c}
S \\
\pi_S \\
\mathbb{P}^1
\end{array}
\xrightarrow{q}
24 \text{ nodal fibers}
$$

The fibers of π_S are 1-pointed stable genus 1 curves.

The induced morphism

$$
\mathbb{P}^1 \rightarrow \overline{M}_{1,1}
$$

is of degree 48.
Then we have

\[\int T_1(q) \prod_{g-2}^g [\overline{M}_{g,1}(\pi, d)]^{\text{vir}} \]

\[\frac{1}{48} \int T_1(q) \prod_{g-2}^g [\overline{M}_{g,1}(\pi_5, d)]^{\text{vir}} \]

- The second idea is to use K3 vanishing.
Consider the integral:

\[\int \mathcal{T}_1(q) \mathcal{Z}_{g-2} = 0 \]

Integrand \(\dim = 2 + g - 2 \)
\[= g \]

Vanishing of standard K3 virtual class

\([\overline{M}_{g,1}(S, d)]^{vir}\)

Standard virtual class

\(d\) times fiber class of \(\pi_S\),

\(d > 0\).

The above vanishing will give us a nontrivial relation.
Claim A:
\[
\int T_i(q) \mathfrak{a}_{g-2} e(IE^v \otimes \text{Tan}_{\mathbb{P}^1})
\]
\[
\left[\overline{M}_{g,1}(\pi_5, d) \right]_{\text{vir}} \parallel
\]
\[
\int T_i(q) \mathfrak{a}_{g-2}
\]
\[
\left[\overline{M}_{g,1}(S, d) \right]_{\text{vir}}.
\]

Corollary:
\[
\int T_i(q) \mathfrak{a}_{g-2} e(IE^v \otimes \text{Tan}_{\mathbb{P}^1}) = 0.
\]
\[
\left[\overline{M}_{g,1}(\pi_5, d) \right]_{\text{vir}}
\]
Proof: There is a morphism

$$\overline{M}_{g,1}(\pi_5, d) \to \overline{M}_{g,1}(S, d)$$

which is an isomorphism of DM stacks away from the 24 nodal fibers of π_5. Moreover, away from the 24 nodal fibers, the obstruction theory of $\overline{M}_{g,1}(\pi_5, d)$ augmented by $\operatorname{IEV} \otimes \operatorname{Tr}_{\pi_5}$ matches the standard obstruction theory of $\overline{M}_{g,1}(S, d)$.
The entire issue is about the nodal fibers

\[
\begin{array}{c}
S \\
\downarrow \pi_S \\
\mathbb{P}^1
\end{array}
\xrightarrow{\eta} \begin{array}{c}
S' \\
\downarrow \\
\mathbb{P}^1'
\end{array}
\] .

We use here the degeneration to the normal cone of the divisor \(\alpha \in S \) of nodal fibers, a standard technique, but a complication here is that \((S, \alpha)\) requires \(\log GW \) (since \(\alpha \) is singular).
We study the normal cone

$$\mathcal{X} = \text{Bl}(S \times \mathcal{C}, a \times 0)$$

\downarrow

\mathcal{C}

\mathcal{X} has a single singularity
(a 3-fold double point)

over each point $p \times 0$

where $p \in \mathcal{C}$ is a node.

The main observation here:

We can avoid all log complication

by studying $\mathcal{X}^0 \subset \mathcal{X}$.

The nonsingular locus
The reason that the non-compact log geometry $X^0 \subset X$ can be used here is that the curve classes are fibers and have intersection 0 with α.

Said differently: the moduli spaces of log stable maps to the log degeneration X^0 are compact. Then the usual degeneration calculus of relative GW theory can be used.
After degeneration, the equality of Claim A is clear since the geometric differences of the moduli spaces vanish.

A second proof of Claim A would follow by constructing a connection for the obstruction theory on $\overline{\mathcal{M}}_{g,1}(\Pi_5, d)$ obtained by combining the fiberwise deformation with $\mathcal{E}^\vee \otimes \mathcal{P}^\perp$.
The third step is to expand

\[e(I\mathbb{E} \otimes \text{Tan}_{p^1}) = (-1)^g \lambda_g + (-1)^{g-1} \lambda_{g-1} \cdot [z_{p^1}] \]

so we obtain

\[0 = \int T_1(q) \, \mathcal{Z}_{g-2} \cdot e(I\mathbb{E} \otimes \text{Tan}_{p^1}) \]

\[\left[\overline{\mathcal{M}}_{g,1}(\pi_5, d) \right]^{\text{vir}} \]

\[= \int T_1(q) \, \mathcal{Z}_{g-2} \cdot (-1)^g \lambda_g \]

\[\left[\overline{\mathcal{M}}_{g,1}(\pi_5, d) \right]^{\text{vir}} \]

\[+ 2 \int T_1(q) \, \mathcal{Z}_{g-2} \cdot (-1)^{g-1} \lambda_{g-1} \]

\[\overline{\mathcal{M}}_{g,1}(E, d) \]

^{\text{vir}}
After rewriting, we find

\[\int T_i(q) \, \pi_{g-2} \pi_g \]

\[\left[\overline{\mathcal{M}}_{g,1}(\pi, d) \right]^\text{vir} \]

\[\frac{1}{24} \int T_i(q) \, \pi_{g-2} \pi_{g-1} \]

\[\left[\overline{\mathcal{M}}_{g,1}(E, d) \right]^\text{vir} \]

fixed elliptic target
The last step in the evaluation of the latter integral by Pixton (2008):

\[
\sum_{d \geq 0} Q^d \int \mathcal{T}_1(q) \begin{bmatrix} \overline{M}_{g,1}(E,d) \end{bmatrix}^{vir} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}
= |B_{2g-2}| \cdot \binom{2g}{2} \sum_{n \geq 1} \frac{6_{2g-1}^{(n)} Q^n}{2g \cdot 2g!}
\]

where

\[
C_{2g}(Q) = \frac{-B_{2g}}{2g \cdot 2g!} + \frac{2}{2g!} \sum_{n \geq 1} 6_{2g-1}^{(n)} Q^n
\]
in other words

\[C_{2g}(Q) = - \frac{B_{2g}}{2g \cdot 2g!} E_{2g}(Q) \].

See page 32 of

for the results of Pixton.
Claim B: The evaluation

\[
\sum_{d \geq 0} Q^d \int T_1(q) \overline{\mathbb{M}_{g,1}(\bar{\Pi}, d)}^{vir} \]

\[= \frac{1}{24} \left| B_{2g-2} \right| \cdot \binom{2g}{2} C_{2g}(Q) \]

is equivalent to the conjectured formula for \(\left\langle (2) \right\rangle \).

Proof by Iriber López.
The status now is that all the claims related to

\[\Pr_A \left(\left[\text{NL}_d \right] \right) \in \mathbb{R}^{g-1}(A_g) \]

and the series \(\langle (2) \rangle \)

are proven:

\[\Pr_A \left(\left[\text{NL}_d \right] \right) = \hat{c}_{g,d} \cdot \lambda_{g-1}, \]

\[\hat{c}_{g,d} = \prod_{p \mid d} (1 - p^{-2g+2}) \cdot \frac{g}{6 |B_{2g}|}, \]

\[\text{by Iribar López} \]
\[-\langle \mathcal{H}_{\text{ILB}}(\mathcal{P},d) \rangle_{1} = \]

\[-\frac{1}{24} \frac{(t_1+t_2)^2}{t_1 t_2} \left(Tr_d + \sum_{k=2}^{d-1} \frac{6(d-k)}{d-k} Tr_k \right), \]

[by claim A + B]

Definition

\[C_{g,d} = \frac{\int \overline{\mathcal{M}}_g}{\overline{\mathcal{M}}_g} \cdot \overline{\mathcal{M}}_g \]

\[\int \overline{\mathcal{M}}_g \cdot \overline{\mathcal{M}}_g \cdot \overline{\mathcal{M}}_g \]

\[\hat{C}_{g,d} = C_{g,d} \text{ by Calculation of} \]

\[\langle \mathcal{H}_{\text{ILB}}(\mathcal{P},d) \rangle_{1} \]
Many open directions remain. My favorites:

Conjecture (Iribar López 2024)

\[\text{CH}^*(A_g) \xrightarrow{\text{Pr}_A} \mathcal{R}^*(A_g) \]

is a ring homomorphism.

- Study the extension of the diagram

\[\text{Tor}_i^{-1}(NL_d) \rightarrow NL_d \]
\[M_{g,1}^{ct} \rightarrow A_g \]
to the perfect cone compactifications

\[
\begin{array}{ccc}
\text{Tor}_i^{-1}(\overline{NL}_d) & \longrightarrow & \overline{NL}_d \\
\downarrow & & \downarrow \\
\overline{M}_{g,1} & \longrightarrow & \overline{A}_g
\end{array}
\]

• Calculate

\[
\left\langle \text{Hilb}^\chi_{(g,d)} \right. \left. \begin{array}{c} G_1, G_2, \ldots, G_n \end{array} \right. \bigg|_1
\]

for arbitrary partition insertions \(G_i \).
The End

17 March 2024