\mathbb{A}_g, $\overline{\mathbb{M}}_g$, and $\text{Hilb}(\mathbb{C}^2, d)$

Rahul Pandharipande
ETH Zürich
27 October 2023, Leiden
Extended notes updated April 2024

joint with
S. Canning
S. Molcho
D. Oprea
A. Pixton
H. H. Tseng
A. Tiberio López
including results of
F. Greer - C. Lian
Compactifications

Extended Torelli

Torelli

moduli spaces of classifying spaces

$\text{Sp}(2g, \mathbb{H}) \xrightarrow{\text{hom}} \text{Map}(g)$

Groups

$X_3(g)$

\downarrow

M_{k3}^g

moduli of quasi-polarized X_3 surfaces

moduli of PPAV

\mathcal{A}_g

\mathcal{P}_C

\overline{M}_g

M_g

\overline{M}_g

moduli of smooth curves

Correspondence with linear sections as studied by Mukai

Various compactifications,

perhaps no winner yet,

but Satake is convenient
I. Moduli of abelian varieties

\[\text{Sp}(2g, \mathbb{H}) \sim \mathcal{H}_g \quad \text{Siegel upper half space} \]

\[A_j = \frac{\mathcal{H}_g}{\text{Sp}(2g, \mathbb{H})} \quad \text{(contractible)} \]

model for
\[B \text{Sp}(2g, \mathbb{H}) \]

up to finite stabilizers

we have: \[H^*(A_j) = H^*_\text{Sp}(2g, \mathbb{H}) \]

All cohomology taken with \(\mathbb{Q} \)-coefficients.
IE is defined by

\[\Delta \xrightarrow{\pi} A_g \]

Then \[IE = \Delta^* (\Omega^1_{\pi}) \]

\[\text{rank } g \]

Lambda class: \[\lambda_i = c_i (IE) \]

\[\text{ch } R_{\pi_X} \mathcal{O}_\mathcal{X} = \text{ch } (1 - IE + \wedge^2 IE + \ldots) \]

Borel 1974: Stable cohomology of \(Sp(2) \)

generated by \(\lambda_i \).
Following van der Geer, define tautological classes:

- $RH^*(A_g) \subset H^*(A_g)$ \text{ cohomology}
 subalgebra generated by all $\lambda_i = c_i(E)$,

- $R^*(A_g) \subset CH^*(A_g)$ \text{ algebraic cycles}
 subalgebra generated by all $\lambda_i = c_i(E)$.

\underline{Theorem (van der Geer 1996)}

$RH^*(A_g) = R^*(A_g)$ with presentation

$$\mathbb{Q}[\lambda_1, \ldots, \lambda_g]$$

\[\lambda_g = 0, \quad c(E \oplus E^*) = 1 \]

\[(1 + \lambda_1 + \lambda_2 + \cdots + \lambda_g) \cdot (1 - \lambda_1 + \lambda_2 - \cdots + (-1)^g \lambda_g) = 1. \]
As a consequence, $\mathcal{R}^*(A_g)$ is a Gorenstein ring with socle

$$\mathcal{R}^{(g)}(A_g) \cong \mathbb{Q} \cdot \lambda_1^{(g)} \cong \mathbb{Q} \cdot \lambda_1 \lambda_2 \cdots \lambda_{g-1}.$$

Many open questions:

- Calculate $H^*_{\text{Sp}(2g,\mathbb{Z})}$ in unstable ranges
- Calculate $\text{CH}^*(A_g)$
- Calculate $H^*_{\text{Sp}(2g,\mathbb{Z})}$ with \mathbb{Z}-coefficients

all very difficult. We will go in a different direction.
II. Projection

We have $\mathcal{R}^*(A_j) \subset CH^*(A_j)$

and $\mathcal{R}^*(M^c_j) \subset CH^*(M^c_j)$.

Is there a canonical projection

$CH^*(M^c_j) \xrightarrow{Pr_{M^c_j}} \mathcal{R}^*(M^c_j)$?

There is no proposal for ,

but for $CH^*(A_j) \xrightarrow{Pr_A} \mathcal{R}^*(A_j)$,

we believe Pr_A exists!
The idea uses compactification:

\[A_g \subset A_g^{pc} \]

Some facts:

(i) Hodge bundle extends canonically

\[1E \subset 1E \]

\[\downarrow \quad \downarrow \]

\[A_g \subset A_g^{pc} \]

(ii) \(R^* (A_g^{pc}) \overset{\text{def}}{=} CH^* (A_g^{pc}) \)

Subalgebra generated by all

\[\lambda_i = c_i (1E) \].
Theorem (van der Geer 1996)

\[\mathcal{H}^* \left(A_j^{pc} \right) = \frac{\mathbb{Q} \left[\lambda_1, \ldots, \lambda_g \right]}{\left(c \left(E \otimes E^* \right) = 1 \right)} \]

\[\left(1 + \lambda_1 + \lambda_2 + \cdots + \lambda_g \right) \cdot \left(1 - \lambda_1 + \lambda_2 - \cdots - \lambda_g \right) = 1 \]

\[\mathcal{H}^* \left(A_j^{pc} \right) \text{ is a Gorenstein ring} \]

with socle

\[\mathcal{H}^{(g)} \left(A_j^{pc} \right) \cong \mathbb{Q} \cdot \lambda_{1}^{(g)} \cong \mathbb{Q} \cdot \lambda_1 \lambda_2 \cdots \lambda_{g-1} \lambda_{g} \]

Using integration on \(A_j^{pc} \)

and the duality of \(\mathcal{H}^* \left(A_j^{pc} \right) \).
We define a projection:

\[\text{CH}^*(A_j^{pc}) \xrightarrow{Pr_{A_j^{pc}}} \mathcal{L}^*(A_j^{pc}) \]

\[\text{Pr}_{A_j^{pc}} (\alpha \in \text{CH}^*(A_j^{pc})) = \beta \in \mathcal{L}^*(A_j^{pc}) \]

where \(\forall \gamma \in \mathcal{L}^*(A_j^{pc}) \),

\[\int_{A_j^{pc}} \alpha \cdot \gamma = \int_{A_j^{pc}} \beta \cdot \gamma \],

\(\beta \) exists and is unique.

\[\text{Pr}_{A_j^{pc}} \text{ is a projection} \]
Idea for constructing

\[\text{CH}^*(A_j) \xrightarrow{\text{Pr}_A} \Lambda^*(A_j) \]

via \(\text{Pr}_{A_{pc}} : \)

\[\text{Pr}_A (\alpha \in \text{CH}^*(A_j)) = \text{Pr}_{A_{pc}} (\overline{a} \in \text{CH}^*(A_{pc})) \bigg|_{A_j} \]

but closure not canonical!

Not clear that \(\text{Pr}_A \) is well defined.

Conjecture (Canning-Oprea-P 2023):

\[\lambda_g \bigg|_{A_{pc} \setminus A_j} = 0 \in \text{CH}^*(A_{pc} \setminus A_j) \]

Conjecture \(\Rightarrow \text{Pr}_A \) is well defined.
Using the Conjecture, there is another path to the projection:

for $a \in \text{Ch}^*(A_g)$ and $\gamma \in \mathcal{R}^*(A_g)$, define a pairing

$$\langle a, \gamma \rangle_{A_g} = \int_{A_g^{pc}} a \cdot \gamma \cdot \lambda_g$$

Conjecture $\Rightarrow \langle a, \gamma \rangle_{A_g}$ is well defined.

Exercise: $\langle a, \gamma \rangle_{A_g} = \langle \text{Pr}_A(a), \gamma \rangle_{A_g}$

$\forall a \in \text{Ch}^*(A_g)$ and $\forall \gamma \in \mathcal{R}^*(A_g)$
Update (19 November 2023):

The vanishing conjecture

$$\mathcal{A}_g \bigg/ A_g^{pc} \cdot A_g = 0 \in \text{CH}^*(\mathcal{A}_g^{pc} \cdot A_g)$$

is true!

- Argument by Sam Molcho constructing trivial quotients of $1E$ on the boundary via residue maps.
- Another path suggested by Ben Moonen using boundary geometry and rigidity results from Faltings-Chai.

Proofs work for all sufficiently fine toroidal compactification pr_A^* exists and is independent of choice of compactification.

arXiv: 2401.15768
III. Noether-Lefschetz loci

The simplest NL locus to consider is

\[A_1 \times A_{g-1} \to A_g. \]

We assume \(g \geq 2 \).

We define a twisted generalization by the following construction:

Let \(NL_d \to A_g \) be the \(d \geq 1 \) model of pairs:

\[NL_d \cong \left[E \to X \right] \]

Condition: \(E \cdot \Theta = d \)

theta divisor of \(X \)

1 dim Subgroup, an elliptic curve

PPAV of dimension \(g \)
In case \(d=1 \), \(\mathcal{N}_{L_1} = A_1 \times A_{g-1} \).

Easy to see:

\[
\dim \mathcal{N}_{L_d} = \dim A_g - (g-1)
\]

so \(\{ \mathcal{N}_{L_d} \} \in CH^{g-1}(A_g) \).

The main topic of the lecture is the computation

\[
Pr_A(\{ \mathcal{N}_{L_d} \}) \in R^*(A_g).
\]

There are 2 immediate issues:

- \(Pr_A \) depends on the vanishing Conjecture.
- Even if we assume the Conjecture, it is not clear how to integrate the classes of the closures in \(A_g^{pc} \).
Theorem (Cannings-OPrea-P 2023):

If the vanishing conjecture holds,

\[\Pr_A ([A_1 \times A_{g-1}]) = \frac{g}{6 |B_{g-1}|} \lambda_{g-1}. \]

An interesting direction:

What is the projection of the Schottky locus,

\[\Pr_A (\text{Tor}_* [M_g^{ct}]) \in \kappa^*(A_g) ? \]
IV. A different question

We consider now a different question:

\[
\text{If } [N_{L_d}] \in R^*(A_g), \\
\text{what could it be?}
\]

- Since P_{r_A} is well-defined, the answer to the question is:

\[
[N_{L_d}] \in R^*(A_g) \\
\Rightarrow \\
[N_{L_d}] = P_{r_A}([N_{L_d}]).
\]
Proposition (Cannings-Oprea-P 2023):

If $[NL_d] \in R^*(A_g)$, then

$$[NL_d] = c_{g,d} \cdot \lambda_{g-1} \cdot \square$$

A scalar in \mathbb{Q}.

Proof: We have $[NL_d] \in R^g(A_g)$.

Moreover, $\lambda_{g-1} \cdot [NL_d] = 0$.

Since $NL_d \in [E \leftrightarrow \chi]$

\downarrow

$A_1 \times A_{g-1}^{\text{Pol}} \in [E] \times [\chi/\overline{E}]$

A non principal polarization.
\[\lambda_{g-1} \mid_{NL_d} \text{ is pulled-back} \]

from \[\lambda_{g-1} \mid A_1 \times A_{g-1}^{\text{pol}} \]

and \[\lambda_{g-1} \mid A_1 \times A_{g-1}^{\text{pol}} = 0 \]

because \[c(\mathcal{E}_1) \mid A_1 = 0 \]

and \[\lambda_{g-1} \mid A_{g-1}^{\text{pol}} = 0. \]

Finally, \[Q \cdot \lambda_{g-1} \in R^{g-1}(A_g) \]

is the annihilator of \[\lambda_{g-1} \] in \[R^{g-1}(A_g) \]. \qed
V. Integration

We have seen

\[[NL_d] \in R^*(A_g) \Rightarrow [NL_d] = c_{g,d} \cdot \lambda_{g-1}. \]

The question is now what is the scalar \(c_{g,d} \)?

The idea is to pull-back via Torelli:

\[
\text{Tor} : \ M_g^{ct} \rightarrow A_g ,
\]

\[
\text{Tor}^* \left([NL_d] \right) \in R^{g-1} \left(M_g^{ct} \right),
\]

\[
\text{Tor}^* \left(\lambda_{g-1} \right) \in R^{g-1} \left(M_g^{ct} \right).
\]
Then we can calculate \(c_{g,d} \)

by the \(\mathfrak{g} \)-evaluation on \(\overline{M}_g^{ct} \):

\[
\int_{\overline{M}_g} \text{Tor}^* \left(\left[N_{L_d} \right] \right) \cdot \mathfrak{g}_{g-2} \mathfrak{g}_g = c_{g,d}
\]

\[
\int_{\overline{M}_g} \mathfrak{g}_{g-2} \mathfrak{g}_{g-1} \mathfrak{g}_g = \frac{1}{2(2g-2)!} \frac{1}{2g} \frac{1}{2g-2}
\]

Computed by Faber-P (1999)
But how are we going to calculate

$$\int \text{Tor}^* \left(\left[NL_d \right] \right) \cdot \mathfrak{g}_{g-2} \mathfrak{g}_g ? \mathfrak{M}_g$$

This requires a miracle provided by stable maps and the quantum cohomology of $\text{Hilb}(\mathbb{C}^2, d)$. We assume $g \geq 2$ and $d \geq 1$.
VI Stable maps

Consider the fiber product:

\[\text{Tor}^{-1}(NL_d) \rightarrow NL_d \]

\[M_{g,ct} \rightarrow \text{Tor} \rightarrow A_g \]

We will add a marked point:

\[\text{Tor}^{-1}(NL_d) \rightarrow NL_d \]

\[M_{g,1} \rightarrow \text{Tor}_i \rightarrow A_g \]
\[
\text{dilaton} \downarrow \\
(2g-2) \cdot \int \overline{\mathcal{M}_g} \overline{\text{Tor}^* \left(\left[\mathcal{N}_d \right] \right)} \cdot \mathbb{R}_{g-2}^2 \ g
\]

\[
\overline{\mathcal{M}_g} \left\| \right. \\
\int \overline{\text{Tor}_i^* \left(\left[\mathcal{N}_d \right] \right)} \cdot \mathcal{V}_i \cdot \mathbb{R}_{g-2}^2 \ g
\]

Since on \(\mathcal{M}_{g,i} \), we have

\[
\text{Tor}_i^* \left(\left[\mathcal{N}_d \right] \right) = \alpha^* \left(\text{Tor}^* \left(\left[\mathcal{N}_d \right] \right) \right)
\]

where \(\alpha : \mathcal{M}_{g,i} \overset{\text{forgetful}}{\rightarrow} \mathcal{M}_g \).
Let \(M_{1,1}^{ct} = M_{1,1} \) be the model of pointed nonsingular elliptic curves:

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\pi^{ct}} & M_{1,1} \\
\downarrow & & \downarrow \\
\end{array}
\]

\(q \) Zero Section

Let \(M_{g,1}^{ct} (\pi^{ct}, d) \) be the Grothendieck \(\pi \)-relative space of stable maps to the fibers of \(\pi \).
\[\mathcal{M}_{g,1}^{\text{ct}}(\pi_{\text{ct}},d) \] has a virtual class of dimension.

\[\text{virdim} = 1 + 1 + 2g-2 = 2g. \]

\[\dim \mathcal{M}_{g,1} \]

\[\text{unpointed maps to a fixed elliptic fiber} \]

\[\text{Tor}^*_1([NL_d]) \] is a intersection class on \(\text{Tor}^{-1}(NL_d) \) of dimension.

\[\text{virdim} = 3g-3 + 1 - (g-1) = 2g-1. \]

\[\dim \mathcal{M}_{g,1}^{\text{ct}} \]

\[\text{codim of } NL_d \]
there is a discrete invariant:

\[f^*: \text{Jac}_0(E) \to \text{Jac}_0(C), \]

\[\text{Jdeg}_f = \frac{d}{|\ker f^*|}. \]

\[\text{Jdeg}_f \in \{1, 2, \ldots, d\} \] must divide \(d \)

and is a discrete invariant of \(f \),

\[\mathcal{M}^\text{ct}_{g,1}(\pi^\text{ct}, d) = \bigsqcup \mathcal{M}^\text{ct}_{g,1}(\pi^\text{ct}, d)^{\hat{d}}. \]

maps with \(\text{Jdeg}_f = \hat{d} \)
Another way to think about Jdeg_f:

a degree d stable map

$$f : (C, p) \rightarrow (E, q)$$

Compact type

factors uniquely as

$$(C, p) \xrightarrow{g} (\hat{E}, \hat{q}) \xrightarrow{h} (E, q)$$

Where $h : \hat{E} \rightarrow E$ is group homomorphism of elliptic curves and $g^* : \text{Jac}_0(\hat{E}) \rightarrow \text{Jac}_0(C)$ is injective.
Then \[|\ker f^*| = \deg(h) \]
and \[d = \deg(g) \cdot \deg(h) , \]
so we have
\[
\text{Jdeg } f = d / |\ker f^*| = \deg(g) .
\]
The disjoint decomposition
\[
\mathcal{M}^{ct}_{g,1}(\pi^{ct}, d) = \bigsqcup_{\text{Jdeg } \hat{a}} \mathcal{M}^{ct}_{g,1}(\pi^{ct}, d)^{\hat{a}}
\]
has principal part \(\mathcal{M}^{ct}_{g,1}(\pi^{ct}, d) \).
The lower parts \(\mathcal{M}^{ct}_{g,1}(\pi^{ct}, \hat{d})^{\hat{d} < d} \)
can be studied via \(\mathcal{M}^{ct}_{g,1}(\pi^{ct}, \hat{d}) \).
Theorem (Canning-Oprea-Pixton 2023)

There is an isomorphism of DM stacks

\[\text{ev}^{-1}(q)^{d} \cong \text{Tor}_{1}(NL_{d}) \]

\[\circ \]

\[\mathcal{M}_{g,1}^{\text{ct}}(\pi, d)^{d} \]

Here \(\text{ev}^{-1}(q)^{d} \) is the locus of maps where the evaluation of the marking on the domain equals the zero point \(q \) of the elliptic target.
To be useful we must also match the virtual classes:

\[
\text{vir} \dim \quad e^{-1}v(q^d) = \text{vir} \dim \quad M_{g,1}^{c_t} (\pi_{c_t}^*)^d - 1 \\
= 2g - 1,
\]

\[
\left[e^{-1}v(q^d) \right]^{c_t, \text{vir}} = e^*v(q) \cap \left[M_{g,1}^{c_t} (\pi_{c_t}^*)^d \right]^{\text{vir}}.
\]

Conjecture (Canning-Oprea-P, Pixton 2023)

under the above isomorphism,

\[
\left[e^{-1}v(q^d) \right]^{c_t, \text{vir}} = \text{Tor}_i^* \left(\left[NL_d \right] \right).
\]
Update Feb 2024:
Francois Greer and Carl Lian can prove

$$
\left[eV^{-1}(q) \right]_{ct,vir}^d = \text{Tor}^*_i \left(\left[NL_d \right] \right)
$$

effectively in the required form using a matching of obstruction theories.

Update April 2024:
The Greer-Lian proof can be found here:

arXiv: 2404.10826
An important property of

\[[e^{-1}(q^d)]^{ct,vir} \in A_{2g-1}(\mathcal{M}^{ct}_{g,1}(\pi^c, d)) \]

is the existence of a canonical extension to \(\overline{\mathcal{M}}_{g,1}(\pi^c, d) \):

\[[e^{-1}(q)]^{vir} \in A_{2g-1}(\overline{\mathcal{M}}_{g,1}(\pi, d)) \]

where \(\overline{\mathcal{M}}_{g,1}(\pi, d) \) ev

Over \[\partial \in \overline{\mathcal{M}}_{g,1} \]
we have log stable maps

\[q \]
\[\pi \]
\[\mu \]
\[e \]
The complement

$$\overline{M}_{g,1}(\pi, d) \setminus M_{g,1}^{\text{ct}}(\pi^c, d)$$

is mapped by \mathcal{E} to the complement

$$\overline{M}_{g,1} \setminus M_{g,1}^{\text{ct}}.$$

Over $M_{g,1}$, this is by definition.

Over the point $[\mathcal{X}] \in \overline{M}_{g,1}$, the claim is more interesting:

there are no curves with compact type domains which map to \mathcal{X} with degree $d \geq 1$ by the definition of log maps.
We conclude:

\[
\int_{\overline{M}_{g,1}} \overline{T_{\text{vir}}^* \left(\left[NL_d \right] \right)} \cdot \psi_i \cdot \gamma_{g-2} \gamma_g
\]

\[
\int_{\overline{M}_{g,1}} \overline{\varepsilon_*} \left[\psi \right] \overset{\text{vir}}{d} \cdot \gamma_{g-2} \gamma_g
\]

\[
\int_{\overline{M}_{g,1}} \overline{\varepsilon_*} \left[\psi \right] \overset{\text{vir}}{d} \cdot \gamma_{g-2} \gamma_g
\]

cotangent line now on \(\overline{M}_{g,1} \left(\pi, d \right) \), no correction terms since there are no maps of positive degree \(\mathbb{P}^1 \to E \).
We now use the extension:

\[
\int_{\tilde{\mathcal{M}}_g, s} \epsilon_\ast \left[e_{\nu}^{-1}(q) \cdot \psi_1 \right]^{\text{vir}} \cdot \mathbb{Z}_{g-2} \mathcal{Z}_g
\]

\[
\sum_{\hat{\text{d}1d}} \circ \left(\frac{\partial}{\partial \hat{q}} \right) \cdot \int_{\tilde{\mathcal{M}}_g, s} \epsilon_\ast \left[e_{\nu}^{-1}(q) \cdot \hat{\psi} \right]^{\text{vir}} \cdot \mathbb{Z}_{g-2} \mathcal{Z}_g
\]

Count of \((\hat{E}, \hat{q}) \rightarrow (E, q)\),

\[
\sigma(x) = \sum_{e \in x} e
\]
Hence the integrals

\[\int_{\overline{M}_{g,1}} \left[\text{ev}^{-1}(q)^d \cdot \psi \right] \cdot \overline{\mu}_{g-2, g} \]

and the integrals

\[\int_{\overline{M}_{g,1}} \left[\text{ev}^{-1}(q) \cdot \psi \right] \cdot \overline{\mu}_{g-2, g} \]

are related inductively by

a simple invertible transformation.
We will now calculate

\[\int \xi^* \left[\text{ev}^{-1}(q) \cdot \psi \right]_{\overline{M}_{g,1}}^{\text{vir}} \cdot \frac{\omega_{g-2} \omega_g}{2} \]

\[\int \mathcal{T}_! (q) \cdot \frac{\omega_{g-2} \omega_g}{2} \]

\[\left[\overline{M}_{g,1}(\pi, d) \right]^{\text{vir}} \]

using the idea of the

GW/H correspondence Okounkov-P (2006)

A new issue is the families geometry.
\[
\int \mathcal{T}_1(q) \, \mathcal{M}_{g-2, 2g} \left[\mathcal{M}_{g, 1}^{\text{vir}}(\pi, d) \right]^{\text{vir}}_{\text{vir}} \\
\left\{ \mathcal{T}_1(q) \, \mathcal{M}_{g-2, 2g} \right\}_{\text{vir}}^{\Pi_{0}}
\]

GW/H correspondence equation is found by degeneration of every fiber of

\[
\begin{array}{c}
\pi \\
\downarrow \\
\mathcal{M}_{g, 1}
\end{array}
\xrightarrow{\Phi} q
\]

to the normal cone of \(q \).
The resulting equation is

\[\left< T, (g) \left| 2_{g-2} 2_g \right> \right>_{g,d}^\pi \]

\[= \frac{1}{2^g} \sigma(d) \cdot (2g-2) \cdot \int \frac{\lambda_{g-2} \lambda_{g-1} c(E)}{1 - \lambda} \overline{M}_{g-1,1} \]

\[+ \left< 2_{g-2} 2_g \left| (2) \right> \right>_{g,d}^\pi \]

relative condition

integral evaluated to equal

\[\frac{|B_{2g-2}|}{(2g-2) (2g-2)!} \]

Faber-P (1999)
\(\left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \sum_{2 \leq e \leq d} \langle \frac{e^2}{2^g} \mid (2) \rangle^d \circ \cdot \text{Part} (d-e) \)

\(- \frac{1}{24} \left(\frac{t_1 + t_2}{t_1 t_2} \right) \sum_{2 \leq e \leq d} \langle (2) \rangle^E \circ \cdot \text{Part} (d-e) \)

invertible relation

\(\langle (2) \rangle^\pi \circ \mathbb{C}^2 \cdot \quad \) possibly disconnected

(no degree 0 connected components)

\(t_1, t_2 \) weight on \(\mathbb{C}^2 \)
The above relation is the
Connected / disconnected equation
(together with basic Hodge identities).

There are several terms to explain:

- \(\text{Part}(l) \) = \# of partitions of \(l \)
 \[
 \begin{align*}
 \text{Part}(0) &= 1 \\
 \text{Part}(1) &= 1 \\
 \text{Part}(2) &= 2
 \end{align*}
 \]

A well-known property is

\[
\text{Hur}_E^l = \text{Part}(l) \quad \text{for } l \geq 1
\]

\[\leftarrow \text{Aut-weighted Count of possibly disconnected unramified covers of } E = \emptyset \text{ of degree } l\]
\[\tilde{\text{Part}}(l) \overset{\text{def}}{=} \tilde{\text{Hur}}_E^l \quad \text{for } l \geq 1 \]

\[\tilde{\text{Part}}(0) = 0 \]

- Aut-weighted Count of possibly disconnected unramified covers of \(E = \mathbb{C} \) of degree \(l \) where each cover in weighted also by the number of connected components.

\[\tilde{\text{Part}}(1) = 1 \]

\[\tilde{\text{Part}}(2) = 1 + \frac{3}{2} = \frac{5}{2} \]

- Disconnected Cover
- Connected Covers

\[\frac{1}{2} \cdot 1 \cdot 2 \]

- Connected Aut Count Components
Let \(P(x) = \sum_{l=0}^{\infty} x^l \text{Part}(l) \),

\(\widetilde{P}(x) = \sum_{l=0}^{\infty} x^l \widetilde{\text{Part}}(l) \).

\[T(x, y) = \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} x^l y^k \text{Hur}_E^{l, k} \]

\(\text{Aut-weighted Count of possibly disconnected unramified covers of } E = \mathbb{Q} \)
\(\text{of degree } l \text{ with } K \text{ connected components} \)

\[T(x, y) = \exp \left(y \log P(x) \right) \]

\(\widetilde{P}(x) = \frac{d}{dy} T(x, y) \bigg|_{y=1} \)

\[= P(x) \cdot \log P(x) \]

\[= x + \frac{5}{2} x^2 + \frac{29}{6} x^3 + \frac{109}{12} x^4 + \frac{907}{60} x^5 + \ldots \]
\[\langle (2) \rangle_{g,d}^{E \times \mathcal{F}^2 \circ} \] denotes the connected GW theory to a fixed target \(E \times \mathcal{F}^2 \).

The connected/disconnected calculus yields:

\[\langle (2) \rangle_{g,d}^{E \times \mathcal{F}^2 \circ} = \sum_{2 \leq e \leq d} \langle (2) \rangle_{g,e}^{E \times \mathcal{F}^2 \circ} \cdot \text{Part} (d-e) \]

So we can easily compute \(\langle (2) \rangle_{g,d}^{E \times \mathcal{F}^2 \circ} \) from \(\langle (2) \rangle_{g,d}^{E \times \mathcal{F}^2 \circ} \).
By the GW/\mathcal{M}_{\mathfrak{H}}\mathfrak{H} correspondance (fixed E)\quad Okounkov-P (2005)
Bryan-P

\[-\sum_{g \in \mathcal{Z}} n^{2g-3} \left\langle \begin{array}{c} (2) \\ g, d \end{array} \right\rangle^{E \times \mathcal{H}^2} \cdot \]
\[\equiv \]

\[(-i) \cdot \text{Trace} \left(\mathcal{M}_{d, d} \right) \quad \text{after} -g = e^{im} . \]

\[\equiv \]

\[(-i) \cdot \mathcal{T}_{r, d} \cdot (t_1 + t_2) \]
Let \(D = c_1(\mathcal{O}/\mathcal{I}) \in \mathcal{H}^2(\text{Hilb}(\mathbb{C}^2, k)) \)

Let \(M_{D, k} \) be the operator \(D = -\ (2) \) of quantum multiplication

\[
M_{D, k} = D \ast : \mathcal{H}^*(\text{Hilb}(\mathbb{C}^2, k)) \to \mathcal{H}^*(\text{Hilb}(\mathbb{C}^2, k)).
\]

Computed explicitly by Okounkov-P (2010)

Let \(Tr_k = \frac{1}{t_1 + t_2} \text{Trace} \left(M_{D, k} \right) \)

\[
M_D = (t_1 + t_2) \sum_r \left(\frac{(-q)^r}{r} - \frac{(-q)^r}{r} \right) \alpha_r \alpha_r
\]

+ off diagonal terms.
The last step is to evaluate

$$\langle (2) \rangle_{\text{Hilb}(\mathbb{F},d)} = \sum_{n=0}^{\infty} q^n \langle (2) \rangle_{1, \beta_n}$$

H.-H. Tseng and I found a conjectural answer:

Conjecture (H.-H. Tseng - P 2023)

$$- \langle (2) \rangle_{\text{Hilb}(\mathbb{F},d)} = - \frac{1}{24} \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left(\text{Tr}_d + \sum_{k=2}^{d-1} \frac{6(d-k)}{d-k} \text{Tr}_X \right)$$
Example $d = 2$:

\[
\left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left\langle \lambda_{g-2} \lambda_g \middle| \langle 2 \rangle \right\rangle_{g, 2} = \left\langle \langle 2 \rangle \right\rangle_{g, 2}^{\pi \times \Phi^2}.
\]

Convention:

g terms are summed as

\[
\sum_{g \geq 0} \hat{u}^{2g-3} \ldots
\]

and $-q = \exp(i\pi)$

Example $d = 3$:

\[
\left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left\langle \lambda_{g-2} \lambda_g \middle| \langle 2 \rangle \right\rangle_{g, 3} + \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left\langle \lambda_{g-2} \lambda_g \middle| \langle 2 \rangle \right\rangle_{g, 2}
\]

\[
- \left(- \frac{1}{24} \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 (-i) \cdot \text{Tr}_2(q) \right)
\]

\[
\ll \left\langle \langle 2 \rangle \right\rangle_{g, 3}^{\pi \times \Phi^2}.
\]
Example \(d = 4 \):

\[
\left(\frac{t_1 + t_2}{t, t_2} \right)^2 \left\langle \frac{\gamma_3 - \gamma_4}{(2)} \right\rangle_{g, 4} + \left(\frac{t_1 + t_2}{t, t_2} \right)^2 \left\langle \frac{\gamma_3 - \gamma_3}{(2)} \right\rangle_{g, 3}^\circ + \left(\frac{t_1 + t_2}{t, t_2} \right)^2 \left\langle \frac{\gamma_3 - \gamma_3}{(2)} \right\rangle_{g, 2}^\circ \cdot 2
\]

\[-\frac{1}{24} \left(\frac{t_1 + t_2}{t, t_2} \right) \left\langle (2) \right\rangle_{g, 3}^\circ \cdot \widehat{\mathcal{P}}_\text{art} (1)\]

\[-\frac{1}{24} \left(\frac{t_1 + t_2}{t, t_2} \right) \left\langle (2) \right\rangle_{g, 2}^\circ \cdot \widehat{\mathcal{P}}_\text{art} (2)\]

\[
\left\langle (2) \right\rangle_{g, 4}^\circ \cdot \mathcal{E} \times \mathbb{C}^2
\]
We simplify as

\[
\begin{align*}
\frac{(t_1 + t_2)^2}{t_1t_2} & \left\langle \frac{\lambda_3^2 \lambda_3}{(2)} \right\rangle_{g,4}^\pi \cdot \frac{(t_1 + t_2)^2}{t_1t_2} \left\langle \frac{\lambda_3^2 \lambda_3}{(2)} \right\rangle_{g,4}^\pi \\
& + \frac{(t_1 + t_2)^2}{t_1t_2} \left\langle \frac{\lambda_3^2 \lambda_3}{(2)} \right\rangle_{g,2}^\pi \cdot 2 \\
& - \left(-\frac{1}{2} \frac{(t_1 + t_2)^2}{t_1t_2} \right) \cdot (-i) \left(\text{Tr}_3 - \text{Tr}_2 \right) \cdot 1 \\
& - \left(-\frac{1}{2} \frac{(t_1 + t_2)}{t_1t_2} \right) \cdot (-i) \text{Tr}_2 \cdot \frac{5}{2} \\
\end{align*}
\]

\[
\langle (2) \rangle_{g,4}^\pi \cdot \xi^2 \cdot \pi \cdot \Phi^2
\]
Projection of NL_d

By definition:

$$P_{\mathcal{A}}([NL_d]) \in R^{q-1}(A_g).$$

Let $s_{g,d} \in CH^{q-1}(A_g)$,

$$s_{g,d} \in \ker(P_{\mathcal{A}}),$$

be the non tautological part:

$$[NL_d] = P_{\mathcal{A}}([NL_d]) + s_{g,d}.$$
By definition of P_A,

$$\langle \delta_{g,d}, \gamma \rangle_{A_g} = \int \overline{\delta_{g,d}} \cdot \gamma \cdot \lambda_g$$

lifting of γ classes

$$= 0$$

for all $\gamma \in R^{(g_2) - (g-1)}(A_g)$.

We have seen before that

$$\lambda_{g-1} \cdot [N L_d] = 0 \in R^{2g-2}(A_g).$$
So we have

\[0 = \lambda_{g-1} \cdot \Pr_A \left(\begin{bmatrix} NL_d \end{bmatrix} \right) + \lambda_{g-1} \cdot S_{g,d} \]

Certainly

\[\lambda_{g-1} \cdot \Pr_A \left(\begin{bmatrix} NL_d \end{bmatrix} \right) \in \mathbb{R}^{2g-2} (A_g) \]

Claim: \[\lambda_{g-1} \cdot S_{g,d} \in \ker \left(\Pr_A \right) \]

Proof: \[\langle \lambda_{g-1} \cdot S_{g,d}, \gamma \rangle_{A_g} = \langle S_{g,d}, \lambda_{g-1} \cdot \gamma \rangle_{A_g} \]

\[\forall \gamma \in \mathbb{R}^{\binom{g}{2} - (2g-2)} (A_g) \]
Therefore, since

\[R^{2g-2} (A_j) \cap \ker (\Pr_A) = 0, \]

\[\lambda_{g-1} \cdot \Pr_A (\lbrack NL_d \rbrack) = 0, \]

\[\lambda_{g-1} \cdot \delta_{g,d} = 0. \]

As before, we conclude

\[\Pr_A (\lbrack NL_d \rbrack) = \hat{C}_{g,d} \cdot \lambda_{g-1}. \]
If \([NL_d] \in \mathbb{R}^*(A_g) \), then
\[
\hat{C}_{g,d} = C_{g,d}
\]
defined by projection

Computed previously using \(\text{Hilb}(\mathbb{C}^2, k) \)

Conjecture (Canning - Oprea - P 2023)

for all \(g \geq 2, \ d \geq 1 \):
\[
\hat{C}_{g,d} = C_{g,d}
\]

Probably \(g = 1 \) also works with careful definitions as a degenerate case.
The $d = 1$ case follows from

\[\Pr_A \left([A_1 \times A_{g-1}] \right) = \frac{g}{6 |\beta_{2g}|} \lambda_{g-1}. \]

Theorem (Cavanna-Oprea-P 2023):
If the vanishing conjecture holds,

\[\Pr_A \left([A_1 \times A_{g-1}] \right) = \frac{g}{6 |\beta_{2g}|} \lambda_{g-1}. \]

Together with the calculation of $c_{g,1}$.

In general, we have

\[[N L_d] = \hat{c}_{g,d} \cdot \lambda_{g-1} + \delta_{g,d} \]

with \(\delta_{g,d} \in \text{Ker}(\Pr_A) \)

and \(\alpha \cdot \delta_{g,d} = 0 \)
\(\forall \alpha \in R^*(A_g) \text{ satisfying } \alpha \cdot \gamma_{g-1} = 0, \)

\[
(\alpha \in \text{Ann} (\gamma_{g-1})) .
\]

In order to prove

\[\hat{C}_{g,d} = C_{g,d} , \]

we must show

\[\int \text{Tor}^* \left(\sigma_{g,d} \right) \cdot \gamma_{g-2} \gamma_g = 0 . \]

I see two possible paths to prove
I point out that

\[\text{Tor}_*^* \left(\mathcal{M}_g^{ct} \right) \in \mathbb{L}^* \left(\mathcal{A}_g \right) \]

\[\downarrow \]

\[\int \left(\text{Tor}_*^* \left(\delta_{g,d} \right) \cdot \mathcal{A}_{g-2} \mathcal{A}_g = 0. \right) \]

\[\overline{\mathcal{M}}_g \]

But there is not much reason to believe that \(\text{Tor}_*^* \left(\mathcal{M}_g^{ct} \right) \)

is tautological.
The best reason to believe

\[\hat{C}_{g,d} = C_{g,d} \]

is a conjecture by Aitor:

Conjecture (Iribar López 2024)

\[CH^*(A_g) \xrightarrow{\text{Pr}_A} R^*(A_g) \]

is a ring homomorphism.

What limited evidence that we have supports this claim.

(at least for the subring of \(CH^*(A_g) \) generated by \(NL \) and Jacobian loci.)
Update April 2024 (by Aitor)

Using the equation (which we know now)

\[
\int \text{Tor}^* \left(\delta_{g,d} \right) \cdot \alpha_{g-2} \alpha_g = 0
\]

\[\overline{\mu}_g\]

and boundary arguments by Pixton,

the homomorphism property is established

in the following case:

Let \(T \in R^* (M^\text{ct}_g) \) be any class.

Then we have

\[
\Pr_A \left(\text{Tor}_* T \cdot \left[NL_d \right] \right)
\]

\[
\Pr_A \left(\text{Tor}_* T \right) \cdot \Pr_A \left(\left[NL_d \right] \right).
\]
Calculation of the projection of N_{L_d}

by Aitor Iribar López:

We have already proven

$$Pr_A ([N_{L_d}]) \Rightarrow \hat{C}_{g,d} \cdot \lambda_{g-1} \in \Lambda^*(A_g)$$

Theorem A (Iribar López 2024)

$$\hat{C}_{g,d} = \prod_{p \mid d} (1 - \frac{-2g+2}{p}) \cdot \frac{g}{6|B_{2g}|}$$

Aitor's proof uses the geometry of the moduli of abelian varieties with level structures.
Let \(c_{g,d} \) be computed using the conjectural formula for \(\text{Hilb}(\mathbb{F}^2, e) \):

\[
\langle (2) \rangle_{\text{Hilb}(\mathbb{F}^2, e)}^{\text{Hilb}(\mathbb{F}^2, e)}, \quad 2 \leq e \leq d.
\]

Theorem B (Iriber López 2024)

For all \(g \geq 2, \ d \geq 1 \):

\[
\hat{c}_{g,d} = c_{g,d}.
\]

* here denotes the dependence on the conjectural formula for \(\text{Hilb}(\mathbb{F}^2) \).
Aifor's results yield the following implication

Conjecture (Iribar López 2024)

$$\text{CH}^*(A_g) \xrightarrow{Pr_A} R^*(A_g)$$

is a ring homomorphism.

Conjecture (H.-H. Tseng - P 2023)

$$-\left\langle \left\langle 2 \right\rangle \right\rangle_{\text{Hilb}(\mathbf{P}^2,d)} =$$

$$-\frac{1}{24} \frac{(t_1+t_2)^2}{t_1t_2} \left(\text{Tr}_d + \sum_{k=2}^{d-1} \frac{d-d-k}{d-k} \text{Tr}_k \right).$$
Appendix: Update March 2024

There is a new path to prove:

Conjecture (H.-H. Tseng - P 2023)

\[- \langle (2) \rangle_{1}^{\text{Hilb}(\mathcal{C}, d)} = \]

\[- \frac{1}{24} \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left(T_{r_d} + \sum_{k=2}^{d-1} \frac{6(d-k)}{d-k} T_{r_k} \right). \]

We have seen that calculating the following Connected Gromov-Witten integral is sufficient:
\[
\int T_1(q) \ \overline{\mathcal{M}}_{g-2,2} \bigg[\overline{\mathcal{M}}_{g,1}(\pi, \ell) \bigg]^{\text{vir}} \ll \\
\left\langle T_1(q) \ \overline{\mathcal{M}}_{g-2,2} \right\rangle_{g,d}^{\pi}\bigg[\overline{\mathcal{M}}_{g,1} \bigg]^{\pi_0}
\]

Here \(\overline{\mathcal{M}}_{g,1} \) is the moduli of pointed non-singular elliptic curves and

\[
\begin{array}{c}
\pi \\
\downarrow
\end{array}
\]

\(q \) \quad \text{zero section}
The first idea is to switch to an elliptically fibered $K3$ surface:

$$
\begin{array}{c}
S \\
\pi_S \\
\mathbb{P}^1
\end{array} \xrightarrow{q} \quad 24 \text{ nodal fibers}
$$

The fibers of π_S are 1-pointed stable genus 1 curves.

The induced morphism

$$
\mathbb{P}^1 \to \overline{\mathcal{M}}_{1,1}
$$

is of degree 48.
Then we have

\[
\int T_1(q) \, \mathfrak{g}_{g-2} \, \mathfrak{g}_g
\]

\[
\left[\overline{M}_{g,1}(\pi, d) \right]^{\text{vir}}
\]

\[
\downarrow
\]

\[
\frac{1}{48} \int T_1(q) \, \mathfrak{g}_{g-2} \, \mathfrak{g}_g
\]

\[
\left[\overline{M}_{g,1}(\pi_5, d) \right]^{\text{vir}}
\]

• The second idea is to use K3 vanishing.
Consider the integral:

\[\int T_1(q) \, \mathcal{A}_{g-2} = 0 \]

\[[\overline{M}_{g,1}(S,d)]^{vir} \]

\[d \text{ times fiber class of } \pi_g, \quad d > 0. \]

The above vanishing will give us a nontrivial relation.
Claim A:

\[\int T_1(q) \, \gamma_{g-2} \, e(\text{IE}^v \otimes \text{Tan}_p) \]

\[[\bar{M}_{g,1}(\pi_5, d)]^{\text{vir}} \parallel \]

\[\int T_1(q) \, \gamma_{g-2} \]

\[[\bar{M}_{g,1}(S, d)]^{\text{vir}} . \]

Corollary:

\[\int T_1(q) \, \gamma_{g-2} \, e(\text{IE}^v \otimes \text{Tan}_p) = 0 . \]

\[[\bar{M}_{g,1}(\pi_5, d)]^{\text{vir}} \]
Proof: There is a morphism

$$\overline{M}_{g,1}(\pi_5, d) \rightarrow \overline{M}_{g,1}(S, d)$$

which is an isomorphism of DM stacks away from the 24 nodal fibers of π_5. Moreover, away from the 24 nodal fibers, the obstruction theory of $\overline{M}_{g,1}(\pi_5, d)$ augmented by $\text{IE}^V \otimes \text{Tan}_{\rho}$ matches the standard obstruction theory of $\overline{M}_{g,1}(S, d)$.
The entire issue is about the nodal fibers

\[
\begin{array}{c}
S \\
\downarrow \quad \pi_S \\
\mathbb{P}^1
\end{array}
\Rightarrow
\begin{array}{c}
\text{some} \\
\downarrow
\end{array}
\]

We use here the degeneration to the normal cone of the divisor \(\alpha \subset S \) of nodal fibers, a standard technique, but a complication here is that \((S, \alpha)\) requires \(\log GW\) (since \(\alpha\) is singular).
We study the normal cone

\[X = Bl(S \times \mathbb{C}, \alpha \times 0) \]

\[\downarrow \]

\[\mathbb{C} \]

\[X \] has a single singularity
(a 3-fold double point)
over each point \(p \times 0 \)
where \(p \in \alpha \) is a node.

The main observation here:
we can avoid all log complication
by studying \(X^\circ \backslash X \).

\[t \text{ nonsingular locus} \]
The reason that the noncompact log geometry $\mathcal{X}^0 \subset \mathcal{X}$ can be used here is that the curve classes are fibers and have intersection 0 with α. Said differently: the moduli spaces of log stable maps to the log degeneration \mathcal{X}^0 are compact. Then the usual degeneration calculus of relative GW theory can be used.
After degeneration, the equality of Claim A is clear since the geometric differences of the moduli spaces vanish.

A second proof of Claim A would follow by constructing a coaction for the obstruction theory on $\bar{M}_{g,1}(\pi_5,d)$ obtained by combining the fiberwise deformation with $\mathcal{E}^V \otimes \mathcal{P}^l$.
• The third step is to expand
\[e(\mathfrak{I}E^\vee \otimes \text{Tan}_{p^1}) = (-1)^g \lambda_g + (-1)^{g-1} \lambda_{g-1} \cdot [2\text{pt}] \]
so we obtain
\[0 = \int \tau_1(q) \bar{\alpha}_{g-2} \cdot e(\mathfrak{I}E^\vee \otimes \text{Tan}_{p^1}) \]
\[\left[\overline{\mathcal{M}}_{g,1}(\pi_5, d) \right]^{\text{vir}} \]
\[= \int \tau_1(q) \bar{\alpha}_{g-2} \cdot (-1)^g \lambda_g \]
\[\left[\overline{\mathcal{M}}_{g,1}(\pi_5, d) \right]^{\text{vir}} \]
\[+ 2 \int \tau_1(q) \bar{\alpha}_{g-2} \cdot (-1)^{g-1} \lambda_{g-1} \cdot \overline{\mathcal{M}}_{g,1}(E, d)^{\text{vir}} \]
After rewriting, we find

\[
\int T_i(q) \quad \mathcal{A}_{g-2} \mathcal{A}_g \\
\left[\overline{\mathcal{M}}_{g,1}(\pi, d) \right]^\text{vir}
\]

\[=\]

\[
\frac{1}{24} \int T_i(q) \quad \mathcal{A}_{g-2} \mathcal{A}_{g-1} \\
\left[\overline{\mathcal{M}}_{g,1}(E, d) \right]^\text{vir}
\]

fixed elliptic target
The last step in the evaluation of the latter integral by Pixton (2008):

$$\sum_{d \geq 0} \mathcal{Q}^d \int T_1(q) \, \mathcal{Q}^{2g-2} \mathcal{Q}^{2g-1} \left[\overline{M}_{g,1}(\mathcal{E}, d) \right]^{vir} = \left| B_{2g-2} \right| \cdot \binom{2g}{2} C_{2g}(\mathcal{Q})$$

where

$$C_{2g}(\mathcal{Q}) = - \frac{B_{2g}}{2g \cdot 2g!} + \frac{z}{2g!} \sum_{n \geq 1} \delta_{2g-1}^{(n)} \mathcal{Q}^n,$$
In other words,

\[C_{2g}(Q) = \frac{-B_{2g}}{2g \cdot 2g!} E_{2g}(Q). \]

See page 32 of

for the results of Pixton.
Claim B: The evaluation

\[\sum_{d \geq 0} Q^d \int T_1(q) \bar{\mathcal{M}}_{g,1}(\bar{\pi}, d) \]

\[\equiv \frac{1}{24} |B_{2g-2}| \cdot \binom{2g}{2} C_{2g}(Q) \]

is equivalent to the conjectured formula for \(\langle 2 \rangle_{\text{Hilb}(\mathbb{P}^2, d)} \).

Proof by Iriber López.
The status now is that all the claims related to

\[P_{r_A}(\left[NL_d \right]) \in \mathbb{R}^{g-1}(A_g) \]

and the series \(\langle(2)\rangle \)

are proven:

\[\hat{C}_{g,d} \cdot \lambda_{g-1} = P_{r_A}(\left[NL_d \right]) \]

\[\hat{C}_{g,d} = \prod_{p \mid d} \left(1 - p^{-2g+2}\right) \cdot \frac{g}{c|\beta_{2g}|} \]

[by Iriber López]
\[-\left\langle (2) \right\rangle_{\text{Hilb}(\mathcal{H}, d)} =
\frac{1}{24} \left(\frac{t_1 + t_2}{t_1 t_2} \right)^2 \left(T_{d} + \sum_{k=2}^{d-1} \frac{c(d-k)}{d-k} T_{d-k} \right),\]

[by claim A + B]

definition
\[c_{g,d} = \frac{\int \overline{\mu}_g \cdot \overline{\alpha}_{g-2} \overline{\lambda}_g}{\int \overline{\mu}_g \cdot \overline{\alpha}_{g-2} \overline{\lambda}_{g-1} \overline{\lambda}_g},\]

\[\hat{c}_{g,d} = c_{g,d} \text{ by calculation of}\]
\[\left\langle (2) \right\rangle_{\text{Hilb}(\mathcal{H}, d)}\]
Many open directions remain.

My favorites:

Conjecture (Iribar López 2024)

\[
\text{CH}^*(A_g) \xrightarrow{\text{Pr}_A} \mathcal{R}^*(A_g)
\]

is a ring homomorphism.

- Study the extension of the diagram

\[
\begin{array}{ccc}
\text{Tor}_i^{-1}(NL_d) & \xrightarrow{} & NL_d \\
\downarrow & & \downarrow \\
M_g^{ct} & \xrightarrow{\text{Tor}_i} & A_g
\end{array}
\]
to the perfect cone compactifications

\[\text{Tor}_i^{-1}(NL_d) \quad \text{to} \quad \text{NL}_d \]

\[\overline{M}_{g,1} \quad \text{to} \quad \overline{A}_g \quad \text{Perfect cone} \]

- Calculate

\[\langle 6_1, 6_2, \ldots, 6_n \rangle_{\text{Hilb}(\mathbb{P}^2, d)} \]

for arbitrary partition insertions 6_i.
The End

17 March 2024