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Abstract

We define the logarithmic tautological rings of the moduli spaces of Deligne–Mumford stable curves (together

with a set of additive generators lifting the decorated strata classes of the standard tautological rings). While

these algebras are infinite dimensional, a connection to polyhedral combinatorics via a new theory of homological

piecewise polynomials allows an effective study. A complete calculation is given in genus 0 via the algebra of

piecewise polynomials on the cone stack of the associated Artin fan (lifting Keel’s presentation of the Chow ring

of M0,n). Counterexamples to the simplest generalizations in genus 1 are presented. We show, however, that the

structure of the log tautological rings is determined by the complete knowledge of all relations in the standard

tautological rings of the moduli spaces of curves. In particular, Pixton’s conjecture concerning relations in the

standard tautological rings lifts to a complete conjecture for relations in the log tautological rings of the moduli

spaces of curves. Several open questions are discussed.

We develop the entire theory of logarithmic tautological classes in the context of arbitrary smooth normal

crossings pairs pX,Dq with explicit formulas for intersection products. As a special case, we give an explicit set

of additive generators of the full logarithmic Chow ring of pX,Dq in terms of Chow classes on the strata of X

and piecewise polynomials on the cone stack.
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1 Introduction

1.1 Overview

The Chow ring of the moduli space Mg,n of Deligne–Mumford stable curves1 contains a distinguished subring of

tautological classes

R‹pMg,nq Ă CH‹
pMg,nq .

The structure of R‹pMg,nq is related to the geometry of stable maps, Abel-Jacobi theory, the classification of

CohFTs, and many other directions, see [18, 50] for a survey.

Since the boundary ∆ Ă Mg,n, defined by the locus of nodal curves, is a divisor with normal crossings, we may

view the pair pMg,n,∆q as a log scheme. The logarithmic Chow ring of pMg,n,∆q is defined2 by

logCH‹
pMg,nq “ lim

ÝÑ
ĂMg,nÑMg,n

CH‹
p ĂMg,nq , (1)

where the direct limit is taken over all logarithmic modifications3 with respect to the log structure pMg,n,∆q, and

the transition maps are given by pullback. The simplest log modification is a blowup along a nonsingular stratum of

the log structure. Since the compositions of such log modifications are cofinal in the system of all log modifications,

we can restrict to compositions of blowups of nonsingular strata in the direct limit in definition (1).

There is a canonical injection via pullback,

α : CH‹
pMg,nq ãÑ logCH‹

pMg,nq ,

so every Chow class is also a log Chow class. There is also a canonical surjection via pushforward

β : logCH‹
pMg,nq ↠ CH‹

pMg,nq

satisfying β ˝ α “ Id.

1We view Mg,n as a nonsingular Deligne–Mumford stack and always consider the Chow theory with Q-coefficients. All of our Chow
and tautological rings are algebras over Q.

2Formally, we should write logCH‹pMg,n,∆q to specify the log structure. Since we will not consider any other log structure on
Mg,n, the boundary ∆ will be omitted from the notation.

3For singular log modifications ĂMg,n, the notation CH‹ denotes operational Chow. In some contexts, the flexibility of considering
singular log modifications can be useful.
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Our goal here is to define and to begin the study of the tautological subring of the logarithmic Chow ring of

the moduli space of curves,

logR‹
pMg,nq Ă logCH‹

pMg,nq .

The first motivation for the study of logCH‹
pMg,nq comes from logarithmic Gromov-Witten theory: log Chow

groups are essential for the log product [25, 54] and degeneration formulas [1, 55] and the logarithmic double

ramification cycle [27, 28, 46]. At a more fundamental level, the motivation is that the log structure on Mg,n is an

intrinsic aspect of the geometry of stable curves, and the corresponding log Chow theory can not be avoided. The

tautological subring logR‹
pMg,nq represents the most tractable log Chow classes.

1.2 The strata algebra of Mg,n

We review here the construction of the strata algebra S‹pMg,nq following [23]. The strata algebra provides a basic

framework for the study of tautological classes on the moduli spaces of curves.

1.2.1 Stable graphs

The strata of the logarithmic boundary of the moduli space Mg,n correspond to stable graphs. A stable graph Γ

consists of the data

Γ “ pV,H,L, g : V Ñ Zě0, v : H Ñ V, ι : H Ñ Hq

satisfying the following properties:

(i) V is a vertex set with a genus function g : V Ñ Zě0,

(ii) H is a half-edge set equipped with a vertex assignment

v : H Ñ V

and an involution ι : H Ñ H,

(iii) E, the edge set, is defined by the 2-cycles of ι in H (self-edges at vertices are permitted),

(iv) L, the set of legs, is defined by the fixed points of ι and is endowed with a bijective correspondence with the

set of markings

L Ø t1, . . . , nu ,

(v) the pair pV,Eq defines a connected graph,

(vi) for each vertex v, the stability condition holds:

2gpvq ´ 2 ` npvq ą 0,

where npvq is the valence of Γ at v including both edges and legs.

An automorphism of Γ consists of automorphisms of the sets V and H which leave invariant the structures g, ι,

and v (and hence respect E and L). Let AutpΓq denote the automorphism group of Γ.

The genus of a stable graph Γ is defined by

gpΓq “
ÿ

vPV

gpvq ` h1pΓq.

A boundary stratum of the moduli space Mg,n naturally determines a stable graph of genus g with n legs by

considering the dual graph of a generic pointed curve parameterized by the stratum.

To each stable graph Γ, we associate the moduli space

MΓ “
ź

vPV

Mgpvq,npvq.
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There is a canonical morphism

ιΓ : MΓ Ñ Mg,n

with image4 equal to the closure of the boundary stratum associated to the graph Γ. To construct ιΓ, a family

of stable pointed curves over MΓ is required. Such a family is easily defined by attaching the pullbacks of the

universal families over each of the Mgpvq,npvq along the sections corresponding to half-edges. Let

rΓs P CH‹
pMg,nq

denote the pushforward under ιΓ of the fundamental class of MΓ.

1.2.2 Strata algebras

The strata algebra S‹
g,n is defined as the Q-vector space with basis given by the decorated strata classes rΓ, γs where

(i) Γ is a stable graph corresponding to a stratum of the moduli space,

ιΓ : MΓ Ñ Mg,n ,

(ii) γ is a product of κ and ψ classes on MΓ.

In (ii), the κ classes are associated to the vertices, and the ψ classes are associated to the half-edges. The only

condition imposed is that the degrees of the κ and ψ classes associated to a vertex v P VpΓq together do not exceed

the dimension 3gpvq ´ 3 ` npvq of the moduli space at v.

The strata algebra S‹
g,n is of finite dimension as a Q-vector space, graded by the natural codimension of classes,

and carries a product for which the natural pushforward map

S‹
g,n Ñ CH‹

pMg,nq , rΓ, γs ÞÑ pιΓq‹γ (2)

is a homomorphism of graded Q-algebras, see [51, Section 0.3]. The image of (2) is defined to be the subalgebra of

tautological classes

R‹pMg,nq Ă CH‹
pMg,nq .

The kernel of the quotient map,

S‹
g,n

q
ÝÑ R‹pMg,nq ÝÑ 0 ,

is the ideal of tautological relations.

1.3 The logarithmic strata algebra of Mg,n

We present here a new perspective on the subring of tautological classes of the logarithmic Chow ring of the moduli

space of curves which is parallel to the above constructions in Section 1.2 for the usual Chow ring. While the full

foundational development is given in Sections 3 and 4, the parallel structure of the logarithmic construction can

be seen without the complete definitions.

Let Σg,n be the moduli space of tropical curves as defined in [15]. The construction of Σg,n with the structure

of a cone stack is reviewed in Section 2.1. Associated to a stable graph Γ, there is a cone stack with boundary

pStarΓpΣg,nq,∆Γq associated to the space MΓ endowed with the strict log structure for the morphism

ιΓ : MΓ Ñ Mg,n .

On the level of cone stacks, we define

StarΓpΣg,nq “

¨

˝

ź

vPV pΓq

Σgpvq,npvq

˛

‚ˆ pRě0qEpΓq , (3)

4The degree of ιΓ is |AutpΓq|.
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parameterizing a tuple of tropical curves Γv (for each vertex v P V pΓq) and edge lengths ℓe ě 0 (for each edge

e P EpΓq. The natural tropical gluing map

StarΓpΣg,nq Ñ Σg,n

connects the various graphs Γv with edges of lengths ℓe. Via the gluing map, the cone stack StarΓpΣg,nq defines

a finite cover of the star5 in Σg,n of the cone σΓ P Σg,n associated to Γ. The boundary ∆Γ of StarΓpΣg,nq then

consists of all cones ppσΓv qvPV pΓq, τq of StarΓpΣg,nq such that τ ň pRě0qEpΓq is a proper face of pRě0qEpΓq.

There is a canonical Q-vector space PP‹pStarΓpΣg,nq,∆Γq of homological piecewise polynomials on StarΓpΣg,nq

defined in Section 3. The homological condition here requires the piecewise polynomials to vanish on the boundary

∆Γ of the cone stack, in particular making PP‹pStarΓpΣg,nq,∆Γq a module over the Q-algebra sPP‹
pStarΓpΣg,nqq of

all strict piecewise polynomials. The strata classes we will consider in the logarithmic context carry the additional

decoration of a homological piecewise polynomial.

Let Γ be a stable graph of genus g with n markings. A decorated log strata class rΓ, f, γs is defined by the

following conditions:

(i) Γ is a stable graph,

(ii) f is a homological piecewise polynomial on (StarΓpΣg,nq,∆Γq,

(iii) γ “
ś

vPV pΓq γv is a product of decorated strata classes on the vertices of Γ.6

We define the logarithmic strata algebra logS‹
g,n as the (in general infinite-dimensional) Q-vector space

logS‹
g,n “

à

Γ

˜

PP‹pStarΓpΣg,nq,∆Γq bsPP‹pStarΓpΣg,nqq

â

vPV pΓq

S‹
gpvq,npvq

¸

. (4)

Here the sum goes over all isomorphism classes Γ of stable graphs. We use the existence of a natural map

sPP‹
pStarΓpΣg,nqq Ñ

â

vPV pΓq

S‹
gpvq,npvq

as is explained in Remark 126 below.

The algebra logS‹
g,n is graded by codimension and carries a product for which the natural pushforward7 map

logS‹
g,n Ñ logCH‹

pMg,nq ,
ÿ

Γ

fΓ b γΓ ÞÑ
ÿ

Γ

rΓ, fΓ, γΓs (5)

is a homomorphism of graded Q-algebras, see Theorem 124. The image of (5) is defined to be the subalgebra of

logarithmic tautological classes

logR‹
pMg,nq Ă logCH‹

pMg,nq .

The kernel of the quotient map,

logS‹
g,n

q
ÝÑ logR‹

pMg,nq ÝÑ 0 ,

is the ideal of logarithmic tautological relations.

As in the case of the standard strata algebra S‹
g,n, the logarithmic strata algebra logS‹

g,n is a natural setting

for both theoretical results and calculations: the Q-vector space structure and the product are completely explicit

(and can be implemented on computational interfaces). The complexity of the tautological cycle theory in both

the standard and log cases lies in the kernel of q.

5The star of σΓ is the set of cones of Σg,n containing σΓ as a face.
6For the discussion below and in particular equation (4), it is convenient to generalize the decorations γ from products of κ and

ψ-classes to arbitrary decorated strata classes. As discussed in Remark 126 (c) below, we obtain the same space of log tautological
classes by restricting to decorations γ which are products of κ and ψ-classes as in Section 1.2.2.

7Pushforward in the logarithmic context is a delicate operation. The boundary vanishing of homological piecewise polynomials
allows an extension by 0, see Section 3.5.
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There are two simple sources of logarithmic tautological classes. First, every tautological class on Mg,n lifts to

a logarithmic class via a commutative diagram of Q-algebras (as explained in Remark 126):

S‹
g,n R‹pMg,nq

logS‹
g,n logR‹

pMg,nq .

q

q

Second, there is a canonical map from the Q-algebra of piecewise polynomials of Σg,n,

Φlog
g,n : PP‹

pΣg,nq Ñ logR‹
pMg,nq ,

as discussed in Section 2.1. Since both R‹pMg,nq and PP‹
pΣg,nq are algebras over the Q-algebra of strict piecewise

polynomials sPP‹
pΣg,nq, we obtain a canonical homomorphism,

µR
g,n : R‹pMg,nq bsPP‹pΣg,nq PP

‹
pΣg,nq Ñ logR‹

pMg,nq .

1.4 Results in genus 0,1, and higher genus

In addition to the foundational development of the theory of decorated log strata classes, we present several results

about the structure of logR‹
pMg,nq:

‚ A complete calculation of logR‹
pM0,nq is given in Section 2.2 by the following result.

Theorem 1. The map µR
0,n is an isomorphism,

µR
0,n : R‹pM0,nq bsPP‹pΣ0,nq PP

‹
pΣ0,nq

„
Ñ logR‹

pM0,nq .

In other words, logR‹
pM0,nq is canonically isomorphic to the algebra of piecewise polynomials on the Artin fan

ΣM0,n
of M0,n modulo8 the WDVV relations. The result can be viewed as a logarithmic lift of Keel’s calculation

[35] of CH‹
pM0,nq, since

logR‹
pM0,nq “ logCH‹

pM0,nq .

Our method of proof uses Kapranov’s approach to M0,n via the Chow quotient of the Grassmannian [34] and

related results of Gibney–Maclagan [22], Hacking–Keel–Tevelev [24], and Tevelev [59].

‚ The genus 1 case is studied in Section 2.3. We prove µR
1,n is always surjective in Proposition 20, but µR

1,n is not

in general an isomorphism. Nontrivial elements of the kernel of µR
1,n are found in Proposition 19 for n ě 3. How to

write a simple and explicit set of generators of the kernel in genus 1 is an open question.

‚ For g ě 7, the map µR
g,n is not surjective by Proposition 8, so a different approach must be taken to control

logR‹
pMg,nq in high genus.

‚ We prove in Theorem 21 of Section 2.4 that the structure of logR‹
pMg,nq is determined by the complete knowledge

of all relations in the standard tautological rings of (products of) moduli spaces of curves. In particular, Pixton’s

conjecture [52] concerning relations in the standard tautological rings yields a complete conjecture for all relations

in the log tautological rings of the moduli spaces of curves.

A fundamental open question (related to the missing presentation of logR‹
pM1,nq) is whether there exists

a non-trivial logarithmic lift of the formula of Pixton’s relations. Pixton’s DR cycle relations have non-trivial

logarithmic lifts (specified by a choice of stability condition on line bundles on curves) obtained from the study of

the logarithmic DR cycle [27].

8Keel’s disjoint boundary divisor equations already hold in piecewise polynomials.
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1.5 Log tautological rings of arbitrary normal crossing pairs

The constructions for Mg,n are valid in a more general setting. For any nonsingular DM stack X with a normal

crossings divisor D, there is a natural log structure for the pair pX,Dq and a natural notion of strata. In Section 4,

we define log decorated strata classes, the log strata algebra, and the log tautological ring for pX,Dq.

Our construction takes as input a tautological system on X, a set of subrings

␣

R‹pP q Ă CH‹
pP q

(

P
,

for every stratum closure P in X, which is required to be closed under pullback and pushforward along strata

inclusions.9 For example, the log tautological ring of Mg,n discussed above is obtained from the tautological

system on pMg,n,∆q defined by taking R‹pMΓq to be the tautological ring of MΓ in the classical sense.

Another important special case of a tautological system is the Chow system, where R‹pP q “ CH‹
pP q for all P .

We can then write a presentation of logCH‹
pXq.

Theorem 2. The log tautological ring logR‹
pXq induced by the Chow system is equal to the full log Chow ring

logCH‹
pXq. Hence the map logS‹

pXq Ñ logCH‹
pXq is a surjective ring morphism, and the log decorated strata are

additive generators for logCH‹
pXq.

Technical innovations required here include the notions of idealised Artin fans (Definition 46) and cone stacks

with boundary (Definition 41). Just as Artin fans and cone stacks capture the behaviour of log smooth stacks,

idealised Artin fans and cone stacks with boundary capture the behaviour of strata of log smooth stacks, and

more generally, of logarithmic stacks that are smooth over substacks of Artin fans. In Section 3, we work out

their theory, as well as the theory of homological piecewise polynomials sPP‹pΣ,∆q on cone stacks pΣ,∆q with

boundaries. Elements of sPP‹pΣ,∆q probe the intersection theory of idealised log smooth stacks, in a similar manner

to how piecewise polynomials probe the intersection theory of log smooth stacks. The homological condition is the

requirement that piecewise polynomials on Σ vanish on the boundary ∆. Among the new ideas are introduced in

Section 3 are the following:

• Given a log stack X, we define the notion of a choice of an Artin fan X Ñ A (Definition 43), generalizing

the construction of the (canonical) Artin fan Acan
X of [2]. The new notion has better functoriality properties

than Acan
X , which allow us much more flexibility (see also [27, Remark 5] for a related discussion).

• There is a natural correspondence between cone stacks pΣ,∆q with boundary and pairs pA,Bq of an Artin fan

A and a closed reduced substack B Ď A. Under the correspondence, we prove an identification (in Theorem

59) of the Chow group of B with the homological piecewise polynomials on pΣ,∆q,

CH‹pBq – sPP‹pΣ,∆q , (6)

generalizing the case A “ B from [45, Theorem 14] .

• We give a combinatorial formula for proper pushforwards of homological piecewise polynomials and show

that, under the identification (6), we obtain the usual proper pushforwards of Chow groups (Proposition 76).

All of these tools are used extensively in the general construction of log tautological classes on pX,Dq and the proof

of Theorem 2 in Section 4.
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2 Logarithmic tautological rings of moduli spaces of curves

While the general treatment of log tautological rings of normal crossing pairs pX,Dq is covered in Section 4 below,

we begin here by introducing the fundamental case of the moduli space of curves pMg,n,∆q.

2.1 Definitions and comparisons

2.1.1 Cone stacks

The logarithmic Chow ring of Mg,n is defined as the colimit of Chow rings of iterated boundary blowups. The

combinatorics of the boundary stratification is captured by the cone stack Σg,n of tropical curves, constructed

in [15].

Definition 3. The cone stack Σg,n is the collection of cones

σΓ “ tℓ : EpΓq Ñ Rě0u – pRě0qEpΓq for Γ a stable graph of Mg,n ,

together with face inclusion morphisms

ιφ : σΓ Ñ σΓ1 for φ : Γ1 Ñ Γ a morphism of stable graphs .

Viewing Γ as an edge-contraction of Γ1 via φ, the map ιφ includes σΓ as the face of σΓ1 where the lengths of all

contracted edges are set to zero. ♢

An Artin fan AΣg,n associated to the cone stack Σg,n is constructed in [15]. The Artin fan is a smooth algebraic

stack which has a locally closed stratification by 1-point subsets,

SΓ – BpGEpΓq
m ¸ AutpΓqq Ď AΣg,n ,

for each isomorphism class Γ of stable graphs. The union of the SΓ for Γ non-trivial forms a normal crossing divisor.

The stack AΣg,n receives a strict, smooth, and surjective map,

t : Mg,n Ñ AΣg,n , (7)

which satisfies the following property: the preimage of SΓ is precisely the locally closed stratum of curves of dual

graph Γ in Mg,n (see [15, Theorem 4]).

Given a subdivision pΣ Ñ Σg,n of cone stacks (specified by a collection of fans with supports σΓ compatible under

the face inclusion morphisms ιφ), we obtain a log blowup pA Ñ AΣg,n via the equivalence of categories between

cone stacks and Artin fans ([15, Theorem 3]). Taking a fiber product

xM Mg,n

pA AΣg,n

t
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with respect to the map t above, we obtain a log blowup xM Ñ Mg,n. Conversely, every log blowup of Mg,n is

obtained from such a fiber product associated to a subdivision of Σg,n. We refer the reader to [3, Section 3] and

[15] for further details on Artin fans and the associated cone complexes.

A central tool for constructing cycle classes on Mg,n (and on the log blowups xM) is a complete description

of the intersection theory of Artin fans AΣ in terms of the Q-algebras sPP‹
pΣq of strict piecewise polynomials on

the associated cone stack Σ. An element of sPP‹
pΣq is a collection of R-valued polynomial functions on the cones

σ P Σ (with Q-coefficients) compatible under all face inclusion morphisms in Σ. An isomorphism

Φ : sPP‹
pΣq Ñ CH‹

pAΣq (8)

was constructed in [45, Theorem 14].

To extend Φ, we define the ring PP‹
pΣq of piecewise polynomials as the set of functions on the cones σ P Σ

which become strict piecewise polynomial on some subdivision pΣ Ñ Σ. The collection of the maps Φ for such

subdivisions pΣ then induces an isomorphism

Φlog : PP‹
pΣq Ñ logCH‹

pAΣq . (9)

Returning to Mg,n and the cone stack Σ “ Σg,n, we can compose the two maps (8) and (9) with pullback by the

map t of (7) to obtain Q-algebra homomorphisms

sPP‹
pΣg,nq

Φg,n
ÝÝÝÑ CH‹

pMg,nq and PP‹
pΣg,nq

Φlog
g,n

ÝÝÝÑ logCH‹
pMg,nq . (10)

The map Φg,n factors through R‹pMg,nq Ď CH‹
pMg,nq, with image spanned by normally decorated strata classes

(fundamental classes of strata closures decorated by Chern classes of their normal bundles, see [45, Theorem 13]).

2.1.2 Definitions

Using the map Φlog
g,n, we construct the first (and smallest) type of logarithmic tautological rings of Mg,n.

Definition 4. The piecewise polynomial tautological ring logR‹
pppMg,nq is the image

logR‹
pppMg,nq “ Φg,npPP‹

pΣg,nqq Ă logCH‹
pMg,nq

of the piecewise polynomials on the cone stack Σg,n. ♢

The top Chern class λg of the Hodge bundle over Mg,n is an example of an interesting class contained in the

piecewise polynomial tautological ring, see [45, Theorem 6]. However, in general, even basic tautological classes

like κ1 P R‹pMg,nq are not contained in logR‹
pppMg,nq. Indeed, the restriction of the latter ring to Mg,n is just the

span of the fundamental class rMg,ns.

To include the κ classes, observe that both R‹pMg,nq and PP‹
pΣg,nq are algebras over the Q-algebra of strict

piecewise polynomials sPP‹
pΣg,nq. We therefore obtain a canonical homomorphism,

µR
g,n : R‹pMg,nq bsPP‹pΣg,nq PP

‹
pΣg,nq Ñ logCH‹

pMg,nq .

Definition 5. The small tautological ring logR‹
smpMg,nq is the Q-subalgebra

logR‹
smpMg,nq “ µR

g,npR‹pMg,nq bsPP‹pΣg,nq PP
‹
pΣg,nqq Ă logCH‹

pMg,nq

generated by tautological classes R‹pMg,nq Ď CH‹
pMg,nq Ď logCH‹

pMg,nq and classes coming from piecewise

polynomials on Σg,n. ♢

As mentioned above, the existence of κ- and ψ-classes which are non-trivial on the interior Mg,n Ă Mg,n implies

that the inclusion logR‹
pppMg,nq Ă logR‹

smpMg,nq is, in general, strict. Notable examples of classes contained in

the small tautological ring are the (logarithmic) double ramification cycles

DRg,A P CHgpMg,nq and logDRg,A P logCHgpMg,nq ,

9



as proven in [45, Theorem 19], [46] and [28, Theorem 4.22]. More generally, Molcho [44] shows that Abel–Jacobi

pullbacks of Brill–Noether classes, of which the double ramification cycle is just one example, lie in the small

logarithmic tautological ring.

While the ring logR‹
smpMg,nq allows us to combine normally decorated strata classes in log blowups of Mg,n

with tautological classes, a weakness of the definition is that the tautological class must always be defined on all

of Mg,n. For example, we could blow up a boundary stratum and then decorate the exceptional divisor with a

product of κ- and ψ-classes only defined on the stratum itself. Developing a formalism for such logarithmic classes

is a central motivation of the present paper.

To formulate the corresponding construction, we first prove10 that given a stable graph Γ on Mg,n there exists

an Artin stack PΓ and a map jΓ : PΓ Ñ AΣg,n such that we have a fiber diagram

MΓ Mg,n

PΓ AΣg,n

ιΓ

tΓ t

jΓ

(11)

with both vertical maps being smooth surjections. The morphism jΓ is a finite cover of the closure SΓ Ď AΣg,n of

the stratum SΓ associated to Γ. Via the diagram (11), the morphism jΓ can be seen as a smooth local model of

the gluing morphism ιΓ inside the Artin fan AΣg,n . The natural cone stack associated to the strict log structures

on MΓ and PΓ induced by the horizontal maps of (11) is the product

StarΓpΣg,nq :“ ΣΓ :“

¨

˝

ź

vPV pΓq

Σgpvq,npvq

˛

‚ˆ REpΓq

ě0 . (12)

In general, the stacksMΓ and PΓ are not log smooth with the above induced log structure, since these log structures

can be generically nontrivial. However, they are idealized log smooth (see Definition 31), which roughly means that

they are cut out inside a log smooth space by an ideal that is monomial with respect to the log structure.11 On

the combinatorial side, the existence of this monomial ideal is reflected by the fact that ΣΓ carries the structure of

a cone stack with boundary (see Definition 41). The boundary ∆Γ of ΣΓ consists of the collection of cones in ΣΓ of

the form
ź

vPV pΓq

σv ˆ τ

for τ ň REpΓq

ě0 a proper face of REpΓq

ě0 . The significance of the boundary is explained in Theorem 59 where we show

that parallel to equation (10) we have isomorphisms

sPP‹pΣΓ,∆Γq
ΨΓ

ÝÝÑ CH‹pPΓq and PP‹pΣΓ,∆Γq
Ψlog

Γ
ÝÝÝÑ logCH‹pPΓq , (13)

where psqPP‹pΣΓ,∆Γq denotes the set of (strict) piecewise polynomials on ΣΓ vanishing on all cones of ∆Γ. Such

functions are called homological piecewise polynomials below, and correspondingly logCH‹pPΓq denotes the homo-

logical log Chow group of PΓ defined in [10].12 Since such homological log Chow classes admit flat pullbacks and

proper pushforwards along log maps, we can use them to define our third ring of log tautological classes.

Given f P PP‹pΣΓ,∆Γq and γ P R‹pMΓq, we define a log decorated stratum class as the cycle

rΓ, f, γs “ pιΓq‹

´

γ ¨ t‹ΓΨ
log
Γ pfq

¯

P logCH‹
pMg,nq . (14)

Before moving on with the general theory, let us list some examples and properties of these log decorated stratum

10See Corollary 94, which is formulated in the case of arbitrary pairs pX,Dq of a smooth DM-stack and normal crossings divisor D.
11Just as the basic model for a log smooth space is a toric variety, the basic model for an idealised log smooth space is a torus

invariant subscheme inside a toric variety.
12We warn the reader that logCH‹pXq of a log scheme X that is not log smooth is not necessarily as well behaved as the log Chow

ring of a log smooth log scheme. For example, logCH‹pXq is not necessarily supported in degrees 0 through dimX even if dimX “ 0.
See Example 62 and Proposition 63 for examples on logarithmic Chow groups and homological piecewise polynomials.
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classes:

a) Let Γ be a stable graph with precisely two vertices v1, v2 connected by a pair of edges (associated to a

stratum MΓ Ď Mg,n of codimension 2). On ΣΓ “ Σgpv1q,npv1q ˆ Σgpv2q,npv2q ˆ R2
ě2 consider the piecewise

polynomial function f “ minpx, yq, where x, y are the coordinates on the last factor R2
ě2. Then the class

t‹ΓΨ
log
Γ pfq P logCH‹

pMΓq is given by the fundamental class r xMΓs of a log blowup p : xMΓ Ñ MΓ, where p is

a P1-bundle. If we set the decoration γ “ 1, then

rΓ,minpx, yq, 1s “ pιΓq‹r xMΓs

maps to a multiple of the exceptional divisor of the blowup of MΓ
inside Mg,n. For an arbitrary decoration

γ, we would just replace the fundamental class r xMΓs by pp‹γq X r xMΓs in this formula. We see that the

intuition of the formalism is to allow us to combine log Chow classes from piecewise polynomials (like r xMΓs)

with decorations γ that are only defined on the domain MΓ of the gluing map ιΓ. For more details and an

application of this example, see the proof of Proposition 8.

b) In general, when the decoration γ “ 1 is trivial, the class rΓ, f, 1s can be calculated as

rΓ, f, 1s “ Φlog
g,npgq P logCH‹

pMg,nq for an explicit g “ pιtropΓ q‹f P PP‹
pMg,nq,

see Proposition 67. The tropical pushforward g of f can be calculated using a formula adapted from [13] (see

Proposition 76). In the simplest situation when the map ΣΓ Ñ Σg,n is just an inclusion of a cone sub-complex

(which happens, for example, when g “ 0), the function g is just the extension of f by zero on all cones not

in the image of ΣΓ. The condition that f vanishes on the boundary of ΣΓ is exactly what makes this a

well-defined piecewise polynomial.

c) As with the traditional tautological subrings [23] of decorated strata classes on Mg,n, there is a product

formula, expressing intersections of cycles rΓ, f, γs as linear combinations of further log decorated strata

classes (116).

Definition 6. The log strata algebra logS‹
g,n is the Q-vector space

logS‹
g,n “

à

Γ

PP‹pΣΓ,∆Γq bQ
â

vPV pΓq

S‹
gpvq,npvq

with a product defined by the product formula (116). ♢

We obtain a well-defined homomorphism of Q-algebras

q : logS‹
g,n Ñ logCH‹

pMg,nq .

which is used to define our final (and largest) log tautological ring.

Definition 7. The large tautological ring logR‹
pMg,nq is the image

logR‹
pMg,nq “ qplogS‹

g,nq Ă logCH‹
pMg,nq

of the log decorated strata classes rΓ, f, γs. ♢

2.1.3 Comparisons

We first show that the small tautological ring is contained in the large tautological ring. Let Γ “ Γ0 be the stable

graph with a single vertex (and no edges) associated to the main stratum of Mg,n. Then, for

f P sPP‹pΣΓ0
,∆Γ0

q “ sPP‹
pΣg,nq

11



and γ P R‹pMΓ0
q “ R‹pMg,nq, we have

rΓ, f, γs “ γ ¨ Φpfq .

Since the classes γ ¨ Φpfq generate the small log tautological ring logR‹
smpMg,nq, we obtain inclusions

logR‹
pppMg,nq Ă logR‹

smpMg,nq Ă logR‹
pMg,nq .

By the following result, the second inclusion is also, in general, strict.

Proposition 8. For g ě 7 and n ě 0, logR‹
smpMg,nq Ĺ logR‹

pMg,nq.

Proof. Consider the codimension 2 stratum associated to the graph Γ given by

g ´ 4 3 1

and the class γ “ κ1 b 1 b 1 P R‹pMΓq, with κ1 on the vertex of genus g ´ 4. Let f be the homogeneous piecewise

polynomial on the star of MΓ given by minpℓ1, ℓ2q on σΓ “ R2
ě0

13.

Let ĂMg,n Ñ Mg,n be a log blowup associated to a subdivision of Σg,n whose induced subdivision of StarσγΣg,n
makes f a strict homogeneous piecewise polynomial. On the complement of the codimension 3 boundary, we are

simply blowing up the stratum MΓ Ď Mg,n. We then define

pγ “ rΓ, f, γs P CH‹
p ĂMg,nq .

By definition, pγ P logR‹
pMg,nq. We claim that pγ is not contained in logR‹

smpMg,nq.

To prove the latter claim, we take the fiber square

ĂMg,n ˆMg,n
MΓ

ĂMg,n

MΓ Mg,n

π1

π2

ιΓ

.

We claim

Ψlogpfq “ r ĂMg,n ˆMg,n
MΓs P logCH‹pMΓq (15)

and that correspondingly

pγ “ pπ1q‹π
‹
2γ P CH‹

p ĂMg,nq Ď logCH‹
pMg,nq. (16)

The proof of equation (15) uses some more machinery, which we have not yet introduced, and is explained in

Example 62 later.

Restricting to the complement U of the codimension 3 boundary, the diagram takes the form

E pU

MΓ “ Mg´4,1 ˆ M3,2 ˆ M1,n`1 U

ιE

π

ιΓ

where map π : E Ñ MΓ is a P1-bundle (giving the exceptional divisor of the blowup of ιΓpMΓq) and the normal

bundle of the embedding ιE in pU is OEp´1q. We have

π‹ι
‹
Epγ|

pU
(16)
“ π‹ι

‹
EιE‹π

‹pκ1 b 1 b 1q “ π‹ pc1pOEp´1qq ¨ π‹pκ1 b 1 b 1qq “ ´κ1 b 1 b 1 P R1pMΓq . (17)

13To extend f to a piecewise polynomial on the star, define f on every cone containing the cone σΓ by projecting to σΓ. The extended
f automatically vanishes on the boundary of the star since f vanishes on the boundary of σΓ.
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Next, we assume pγ P logR‹
smpMg,nq. In other words

pγ P Im
´

sPPp ĂMg,nq b R‹pMg,nq

¯

,

where sPPp ĂMg,nq are the strict piecewise polynomial functions on the cone complex of ĂMg,n.
14 This would imply

π‹ι
‹
Epγ|

pU P Im
´´

π‹ι
‹
EsPPp ĂMg,nq

¯

b ι‹ΓR
‹pMg,nq

¯

. (18)

The classes from strict piecewise polynomials on ĂMg,n are given by fundamental cycles of strata of this space

decorated by Chern classes of summands of their normal bundles (see [45, Theorem 15]). Since the stack U removes

the higher codimension strata of the moduli of curves, the image of the piecewise polynomials simply give the

Chern classes of the normal bundle of MΓ:

π‹ι
‹
EsPPp ĂMg,nq “ xp´ψ1 b 1 ´ 1 b ψ1q b 1, 1 b p´ψ2 b 1 ´ 1 b ψ1qy .

By the excess intersection formula, this is in fact contained in the pullback ι‹ΓR
‹pMg,nq, and the additional classes

in this pullback are ι‹Γκ1 and the ι‹Γψi, for i “ 1, . . . , n. Consider the quotient map R1pMΓq Ñ Q by the span of

all ψ-classes on any of the factors. By [5] the space Q is 2-dimensional with basis rκ1 b 1 b 1s, r1 b κ1 b 1s. By

the discussion above, the image of the right-hand side of (18) in Q agrees with the image of ι‹ΓR
‹pMg,nq and is

spanned by

rι‹Γκ1s “ rκ1 b 1 b 1 ` 1 b κ1 b 1s

which does not contain the class (17). This gives the desired contradiction.

We will take logR‹
pMg,nq Ă logCH‹

pMg,nq to be the fundamental definition of the logarithmic tautological ring

of the moduli space of Deligne–Mumford stable curves. In certain situations, the study of the smaller tautological

rings can also be natural, but our goal is to control all of logR‹
pMg,nq.

2.1.4 Log Gromov-Witten theory

In the case of standard Gromov-Witten theory, a speculation of [41] is that the pushforwards to the moduli of

curves of the virtual fundamental classes of the spaces of genus g stable maps to a nonsingular projective variety

X lie in the tautological ring RH‹
pMgq in cohomology. We can ask a parallel question here.

Question A. Do the pushforwards to the moduli of curves of the log virtual classes of the spaces of genus g log

stable maps to pX,∆q lie in logRH‹
pMgq?

For an explanation of the log virtual class and its pushforward to the logarithmic Chow group of Mg,n we refer

the reader to [56, Section 3.2] and the forthcoming survey paper [26]. The log tautological ring in cohomology can

be simply defined at the image under the cycle map of

logR‹
pMgq Ñ logH‹

pMgq .

When the target is a toric variety pY,∆Y q with log structure given by the full toric boundary, the answer to Question

A is positive by the results of [56]. More generally, it should be possible to adapt the methods of [46, 54, 56] and

combine them with Janda’s results [31] to give a positive answer to Question A for products of nonsingular curves

with logarithmic structure, but some steps along the path remain to be proven.

14Here we tacitly use that for any representation of pγ using piecewise polynomials on some subdivision of the cone complex of Mg,n,

we can always go to a common refinement and push forward to the complex of ĂMg,n to obtain a strict piecewise polynomial there.

The fact that pγ was constructed from a representative on ĂMg,n implies that this does not change the class pγ.
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2.2 A presentation of the logarithmic Chow ring in genus 0

2.2.1 Chow ring of M0,n

We start with the standard presentation of the ring CH‹
pM0,nq. The irreducible components DA Ă ∆ of the

boundary ∆ Ă M0,n are indexed by subsets A Ă t1, . . . , nu satisfying the properties

1 P A and 2 ď |A| ď n´ 2 .

The divisor DA parameterizes nodal curves with the markings partitioned by the node into the sets A and Ac. The

Chow classes15 of the divisors DA satisfy two basic sets of relations.

(i) Disjoint relations: DA ¨ DB “ 0 when the divisors are set-theoretically disjoint.

(ii) WDVV relations obtained from all pullbacks via the forgetting maps of the boundary relations on M0,4.

The following fundamental result is due to Keel.

Theorem 9 ([35]). The Chow ring of M0,n is generated by the divisors classes tDAu, and the ideal of relations is

generated by the Disjoint and WDVV relations:

CH‹
pM0,nq “

QrtDAus

pDisjoint , WDVVq
.

Since CH‹
pM0,nq is generated by the classes of the boundary divisors, R‹pM0,nq “ CH‹

pM0,nq. A parallel log

result holds: the three types of logarithmic tautological rings in genus 0 are all equal to the full logarithmic Chow

ring.

Proposition 10. We have logR‹
pppM0,nq “ logR‹

smpM0,nq “ logR‹
pM0,nq “ logCH‹

pM0,nq.

Proof. For any stable graph Γ associated to a stratum MΓ of M0,n we have that R‹pMΓq “ CH‹
pMΓq. Then the

equality logR‹
pM0,nq “ logCH‹

pM0,nq follows from Corollary 128. We conclude by showing that any generator

rΓ, f, αs of logR‹
pM0,nq lies in logR‹

pppM0,nq, where f P PP‹pMstr
Γ q and α P CH‹

pMΓq. For this just observe that

there exists g P sPP‹
pMstr

Γ q such that α “ Φpgq (where Φ is the pullback map sPP‹
pXq Ñ CH‹

pXq, again since the

strata of MΓ generate its Chow ring. But then

rΓ, f, αs “ rΓ, f,Φpgqs “ rΓ, f ¨ g, 1s “ pιΓq‹Ψpf ¨ gq “ ΦppιΓqtrop‹ f ¨ gq P logR‹
pppM0,nq .

2.2.2 Calculation of logCH‹
pM0,nq

Each divisor class DA P CH1
pM0.nq corresponds canonically to a piecewise polynomial function on the Artin fan

of pM0,n,∆q. Therefore, the WDVV relations can be canonically lifted from QrtDAus to the algebra of piecewise

polynomials PP‹
pM0,n,∆q. Our first result is the following.

Theorem 11. The logarithmic Chow ring of M0,n is given by

logCH‹
pM0,nq “ PP‹

pM0,n,∆q{WDVV.

In particular, all log Chow classes are tautological.

The calculation shows that the logarithmic Chow ring of M0,n is not only tractable, but has a structure which

is as simple as possible. Assuming this result, we can prove Theorem 1 from the introduction.

Proof of Theorem 1. Our first observation is that, in the notation of Theorem CH‹
pM0,nq above, the quotient ring

sPP‹
pΣ0,nq “

QrtDAus

pDisjointq

15We use the same symbol for the divisor and the associated divisor class.
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gives the Stanley-Reisner presentation [43, Definition 1.6] of the strict piecewise polynomials on Σ0,n (where the

Disjoint relations are exactly the generators of the face ideal). In particular, Keel’s theorem immediately implies

R‹pM0,nq “ CH‹
pM0,nq “

sPP‹
pΣ0,nq

pWDVVq
.

From this presentation, we find the desired isomorphism

R‹pM0,nq bsPP‹pΣ0,nq PP
‹
pΣ0,nq –

sPP‹
pΣ0,nq

pWDVVq
bsPP‹pΣ0,nq PP

‹
pΣ0,nq –

PP‹
pΣ0,nq

pWDVVq
,

which is equal to logCH‹
pM0,nq by Theorem 11, finishing the proof.

2.2.3 Toric geometry

Our strategy to prove Theorem 11 is to move the problem from the Chow rings of blowups of M0,n to the Chow

ring of a certain toric variety. We can then take advantage of the fact that the limit Chow rings are known in the

toric case. The following Proposition will play a central role.

Proposition 12. There exists a nonsingular quasi-projective toric variety X0,n with dense torus T Ă X0,n and an

embedding

j : M0,n ãÑ X0,n

which satisfies the following properties:

(i) The stack quotient rX0,n{Ts is canonically identified with the Artin fan of M0,n, and the composition

M0,n ãÑ X0,n Ñ rX0,n{Ts

coincides with natural map

M0,n Ñ ApM0,n,∆q

to the Artin fan. In particular, the stratification of X0,n by torus orbits pulls back to the stratification of

M0,n by topological type.

(ii) If V is a torus orbit closure in X0,n and W is the corresponding stratum of M0,n obtained by intersection

with V , then there is an identification of vector bundles bundles on W

NW {M0,n
“ j|‹WNV {X0,n

.

Proposition 12 is well-known to experts, but since the proof is spread out over many papers in the literature,

we recall the appropriate results and explain how to deduce the claims. We start with a theorem of Kapranov [34,

Section 4.1].

Theorem 13. The moduli space M0,n is the Chow quotient of the Grassmannian Gp2, nq by the action of the

pn´ 1q-dimensional dilating torus H.

The Grassmannian Gp2, nq embeds in Ppn2q´1 via the Plücker map, and the dilating torus H is a subtorus of the

dense torus of the Plücker projective space Ppn2q´1. We therefore have the following result.

Corollary 14. Let X 1
0,n be the Chow quotient of Ppn2q´1 by the torus H. There is a natural embedding:

M0,n ãÑ X 1
0,n . (19)

The Chow quotient X 1
0,n is a toric variety, since it is the Chow quotient of a toric variety by a subtorus of its

dense torus – see [33] for additional details on toric quotients. The properties of the embedding (19) have been

well-studied, by Gibney–Maclagan [22], Hacking–Keel–Tevelev [24], and Tevelev [59]. We collect the results that

we need here.
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Proposition 15. Let Σ1
0,n be the fan of the toric variety X 1

0,n, and let T be its dense torus. The tropicalization

of M0,n in its embedding into T is a union of cones in Σ1
0,n.

Proof. See [22, Theorem 5.7] of Gibney and Maclagan and use the geometric interpretation of tropicalization [24,

Section 2].

Let Σ0,n be the subfan given by the union of cones in Σ1
0,n which meet the tropicalization of M0,n, and let X0,n

be the associated non-compact torus invariant open in X 1
0,n. Equivalently, X0,n Ă X 1

0,n is the complement of the

closed strata that are disjoint from M0,n.

Proposition 16. The morphism

M0,n Ñ rX0,n{T s

is smooth.

Proof. See [24, Theorem 1.11] of Hacking, Keel, and Tevelev.

Proof of Proposition 12. We have constructed the toric variety X0,n above, as a torus invariant open inside the

Chow quotient of Ppn2q´1. It follows from Kapranov’s description that the toric stratification of X0,n pulls back to

the usual stratification of M0,n. The statement about Artin fans follows.

The statement about normal bundles follows by using these results together with the following pair of Cartesian

diagrams:

W M0,n

V X0,n

rV {T s ApX0,nq.

The bottom left of the diagram is the closed stratum in the Artin fan ApV q given by the done dual to V in X0,n.

Since the composite maps from the top row to the bottom are both smooth by Proposition 16, and therefore flat,

the statement about normal bundles now follows from flat base change for the normal bundle.

We next turn to the Chow description. The following result is due to de Concini–Procesi [17], and is proved in

the more general context of wonderful compactifications of hyperplane arrangement complements. See also [19].

Proposition 17. Let j : M0,n Ñ X0,n be the inclusion above. The pullback map

j‹ : CH‹
pX0,nq Ñ CH‹

pM0,nq

is an isomorphism. The same is true for the pullback map under the inclusion of a stratum of M0,n into the

corresponding stratum of X0,n.

Proof. It is straightforward to see that the pullback is surjective: Keel’s presentation of the Chow ring already

shows that the Chow ring of M0,n is generated as an algebra by boundary divisors. Moreover, the stratification of

M0,n by topological type is the pullback of the toric stratification on X0,n. In particular, the boundary divisors

pull back to the boundary divisors, which guarantees surjectivity of j‹.

The injectivity is slightly more subtle, but follows from more general results on wonderful compactifications of

hyperplane arrangement complements. Indeed, M0,n is the wonderful compactification of the braid arrangement

complement in Cn´3, in the sense of de Concini–Procesi [17, Section 4.3]. The cohomology presentation they

give in [17, Section 5] is the same as that of Keel’s. In this broader context of arrangements, in [19] Feichtner

and Yuzvinsky showed that this explicit presentation is precisely the natural Chow presentation for smooth toric

varieties16 of the toric variety X0,n. The reader can find a summary of this work in [42, Section 6.7]. These together

show that j‹ is an isomorphism.

16In terms of invariant divisors with relations given by characters, as in [20, Chapter 5]
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We turn to the statement for strata. Fix a boundary stratum in M0,n with marked dual graph Γ. This stratum

MΓ is identified with a product of moduli spaces of curves associated to the vertices of Γ, marked by the flags of

incident edges and markings. The stratum MΓ is naturally embedded in a stratum XΓ of the toric variety X0,n.

The fan Σ0,n of this toric variety is naturally identified with the cone complex Mtrop
0,n . The fan of XΓ is equal to

the star fan, in Mtrop
0,n , of the cone labeled by the type Γ. This star fan is also naturally a product over vertices in

Γ, of the fans associated to vertices of Γ, marked as above.

Summarizing, the stratum MΓ is a product of M0,k for various k ă n and similarly, the stratum XΓ is a product

of X0,k for various k ă n. The induced embedding MΓ ãÑ XΓ is compatible with the product decomposition.

The varieties in question are linear, and therefore satisfy a Künneth theorem in Chow cohomology [61]. It

follows that the embedding MΓ ãÑ XΓ also induces an isomorphism in Chow under pullback.

2.2.4 Proof of Theorem 11

We will prove the theorem by showing that the directed systems of Chow rings of blowups coincide, and this will be

done by induction on the number of blowups. We can then use the easy isomorphism on the X0,n side. Let us spell

out the argument in the case of a single blowup, before explaining the general case. We start with an isomorphism

on Chow induced by the inclusion

j : M0,n Ñ X0,n.

Let W be a stratum of M0,n. By the proposition above, W is equal to j´1pV q. Furthermore, under the pullback

j‹, the normal bundle of V becomes that of W . By using Keel’s blowup formula [35], we see that pullback under

j1 : BlWM0,n ãÑ BlVX0,n

gives rise to a natural isomorphism of Chow rings.

The claimed result now follows by induction. Any stratum of BlWM0,n is either a blowup of a moduli space

with smaller numerical data, or formed from projective bundles over such a smaller moduli space. By the arguments

above, the map j1 still identifies these strata and their Chow rings by pullback, compatibly with normal bundles.

It follows that the two directed systems of Chow rings are isomorphic.

The stated theorem now follows from the fact that the Chow ring of the toric side is given by piecewise

polynomials modulo linear relations coming from the characters of the dense torus. Since the latter is preserved by

blowups, the result follows.

2.2.5 Spaces of rational curves

The calculation of logCH‹
pM0,nq has a natural extension to the logarithmic geometry the moduli of maps. Let Y

be a nonsingular and projective toric variety, with its canonical log structure coming from the full toric boundary.

Consider the moduli space MΛpY q of logarithmic stable maps of genus 0 curves to Y (with respect to the full toric

boundary ∆Y Ă Y ) with fixed numerical data Λ, and assume n ě 3. By results of [53, 57], the stack MΛpY q is

isomorphic to a logarithmic blowup of M0,n ˆ Y . As a consequence,

logCH‹
pMΛpY qq “ logCH‹

pM0,n ˆ Y q .

The arguments we have used for M0,n immediately generalize to prove the following result.

Theorem 18. The logarithmic Chow ring of MΛpY q is given by

logCH‹
pMΛpY qq “ PP‹

pM0,n ˆ Y q { pWDVV, Linearq ,

where Linear is the usual space of relations on piecewise linear functions PL‹
pY q obtained from the divisor linear

equivalences of the components of the toric boundary of Y .

A parallel calculation without the full toric boundary condition would be interesting. For example, the loga-

rithmic Chow rings of the moduli spaces of genus 0 logarithmic maps to Pn with the logarithmic structure coming

17



from a subset of the toric boundary are well-behaved, and there is evidence that their Chow rings are entirely

tautological (as in the case of M0,n), see [36, 48, 49].

2.3 Results and counterexamples in genus 1

For all g and n, there is a canonical map

µg,n : PP‹
pMg,n,∆q Ñ logR‹

pMg,nq .

The map µ0,n is surjective in genus 0, and the calculation of logCH‹
pM0,nq can be restated as: the kernel of µ0,n

is generated by the canonical lifts of the WDVV relations. A more elegant restatement is as an isomorphism:

µR
0,n : R‹pM0,nq bsPP‹pM0,n,∆q

PP‹
pM0,n,∆q

„
ÝÑ logR‹

pM0,nq .

Here, sPP‹
pM0,nq is the algebra of strict piecewise polynomials on the Artin fan of M0,n.

In higher genus, the map µR
g,n surjects onto logR‹

smpMg,nq,

µR
g,n : R‹pMg,nq bsPP‹pMg,n,∆q

PP‹
pMg,n,∆q ↠ logR‹

smpMg,nq .

Question B. Can the kernel of µR
g,n be understood?

A non-trivial kernel of µR
g,n can be found even in genus 1.

Proposition 19. For g “ 1, n ě 3 the map µR
g,n is not injective.

Proof. Below we construct a non-trivial element in the kernel of µR
1,3. For n ą 3 this element pulls back to a

non-zero element in the kernel of µR
1,n under the natural forgetful map.

For n “ 3, consider the stable graph Γ0 with two genus 0 vertices, carrying markings t1, 2u and t3u, respectively,

and connected by two edges. In Figure 1 we depict the star of Γ0 in the tropicalization Σ1,3 of M1,3. The cone

of Γ0 corresponds to the vertical line, and the central dot corresponds to the ray τΓ0
where ℓ1 “ ℓ2. The drawn

subdivision pΓ at τΓ0
corresponds to the blowup xM Ñ M1,3 of the stratum associated to Γ0. We claim that

0 ‰ 1 b ppx´ yq ¨ minpℓ1, ℓ2qq P kerµR
g,n (20)

is a nonzero element of the kernel.

To see that it maps to zero under µR
g,n we note that the piecewise linear function minpℓ1, ℓ2q has value 1 on the

generator of the new ray τΓ0
and 0 on all other rays of pΣ. Thus it corresponds to the exceptional divisor E of the

blowup xM Ñ M1,3. Multiplying this function by x´ y corresponds to pulling back the WDVV relation under the

projection E Ñ MΓ0
“ M0,4, since this relation is given by the piecewise polynomial x “ y on Σ0,4. This shows

that px´ yq ¨ minpℓ1, ℓ2q indeed maps to zero in logR‹
smpM1,3q.

Finally, to see that (20) is nonzero, note that the map sPP‹
pM1,3,∆q Ñ R‹pM1,3q is surjective (since the

boundary strata generate the tautological ring in genus 1) and it is an isomorphism in degree at most 1 (since the

boundary divisors in M1,3 are linearly independent by [5]). Thus

R‹pM1,3q “ sPP‹
pM1,3,∆q{I

with the ideal I generated in the degree at least 2. It follows that the domain of µR
g,n is isomorphic to

PP‹
pMg,n,∆q{I ¨ PP‹

pMg,n,∆q .

Since the generators of I have degree at least 2, the degree 2 part of I ¨ PP‹
pMg,n,∆q agrees with the degree

2 part of I, and thus consists of strict piecewise polynomial functions on Σ1,3. Since px ´ yq ¨ minpℓ1, ℓ2q is not

strict piecewise polynomial on Σ1,3 (only on its subdivision pΣ), it is not contained in I ¨ PP‹
pMg,n,∆q, and thus

nonzero.
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Figure 1: A cross section through the star of Γ0 in the cone stack of M1,3. For better visibility, we draw the
double-cover of the actual picture where the two edges with lengths ℓ1, ℓ2 are distinguishable. The star of Γ0 is the
quotient of the figure under reflection along the horizontal axis (the red subdivision defined by ℓ1 “ ℓ2).

Proposition 20. In genus 1, logR‹
pppM1,nq “ logR‹

pM1,nq for all n ě 1.

Proof. By Definition 7 it suffices to show that any decorated log stratum rΓ, f, αs is contained in logR‹
pppM1,nq.

For this, we note that α P R‹pMΓq is a product of strata classes (decorated by κ and ψ-classes) on the factors

Mgpvq,npvq of MΓ, where clearly all gpvq ď 1. But in genus at most 1, any ψ-class (and thus after pushforward

any κ-class) can be expressed in terms of undecorated boundary strata using the divisorial relations from [5].

Thus the map Φ : sPP‹
pMg1,n1 q Ñ R‹pMg1,n1 q is surjective for all pg1, n1q with g1 “ 0, 1. This means there exists

hv P sPP‹
pΣgpvq,npvqq such that

α “
ź

vPV pΓq

Φphvq P R‹pMΓq .

Let πv : ΣΓ Ñ Σgpvq,npvq be the projection to the factor associated to vertex v in (12). Then it follows that

rΓ, f, αs “ rΓ, f ¨
ź

vPV pΓq

hv ˝ πv, 1s .

Finally we conclude by noting that for any class rΓ, g, 1s we have

rΓ, g, 1s “ pιΓq‹Ψpgq “ ΦppιΓqtrop‹ gq P logR‹
pppM1,nq.

Question C. Find a presentation of logR‹
pM1,nq.

2.4 Study in higher genus

While logR‹
pMg,nq appears larger and more complicated than the standard tautological ring R‹pMg,nq, we view the

study as not being essentially more difficult. The calculation of logR‹
pM0,nq is the first evidence of the tractability

of these log Chow rings. We show here how relations in R‹pMg,nq can be used to determine the structure of

logR‹
pMg,nq.

The tautological ring R‹pMg,nq admits a surjection from the strata algebra

ϕg,n : S‹
g,n ↠ R‹pMg,nq ,

see [23, Appendix A]. A full description of the tautological rings of the moduli spaces of curves is provided by

presenting a complete set of additive generators of the kernel,

Pg,n Ă kerpϕg,nq ,

for all stable g and n. Pixton has conjectured a complete set of generators of Pg,n [52].
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Given the domain MΓ of a gluing map ιΓ, there is a similar surjection

ϕΓ : S‹
Γ “

â

vPV pΓq

S‹
gpvq,npvq ↠ R‹pMΓq Ď CH‹

pMΓq ,

whose image agrees with the image of the natural composition

â

vPV pΓq

R‹pMgpvq,npvqq ãÑ
â

vPV pΓq

CH‹
pMgpvq,npvqq

pr
ÝÑ CH‹

pMΓq . (21)

It is natural to expect that the kernel PΓ of ϕΓ is the ideal generated by the tautological relations Pgpvq,npvq on

the individual factors S‹
gpvq,npvq

and this would follow if the composition (21) is injective. However, in contrast to

the case of singular cohomology, the Chow group of a product does not agree with the tensor product of its Chow

groups.

Thus, in order to fully control the Chow groups of all normalizations of strata closures in Mg,n we a priori

need the full system of tautological relations PΓ. However, there is a sufficient condition to ensure that the PΓ

are indeed generated by the Pgpvq,npvq: assume that for all pairs gpvq, npvq, the system Pgpvq,npvq also gives the

complete system of tautological relations in cohomology. Then we have R‹pMgpvq,npvqq – RH2‹
pMgpvq,npvqq and a

commutative diagram

Â

vPV pΓq R
‹pMgpvq,npvqq CH‹

pMΓq

Â

vPV pΓq RH
2‹

pMgpvq,npvqq
Â

vPV pΓq H
2‹pMgpvq,npvqq H2‹pMΓq

– cl

–

(22)

The injectivity and isomorphisms along the lower left path of the diagram (where the last isomorphism follows

from the Künneth formula in cohomology) imply that the upper arrow is injective. As mentioned before, this then

implies that PΓ is the ideal generated by the Pgpvq,npvq.

Theorem 21. The log tautological ring logR‹
pMg,nq is determined by the set of relations

Pď
g,n “

!

PΓ Ă S‹
Γ

ˇ

ˇ

ˇ
Γ stable graph of genus g with n legs

)

.

Proof. By assumption, the above system of relations determines the tautological rings R‹pMΓq “ S‹
Γ{PΓ of all

spaces MΓ. But these are precisely the tautological rings of the monodromy torsors MΓ “ PσΓ with σΓ P Σg,n
appearing in the standard tautological system RMg,n

on Mg,n. Thus by Theorem 120 this information uniquely

determines the tautological system π‹RMg,n
on any iterated boundary blowup π : xM Ñ Mg,n via Fulton’s blowup

exact sequence. Since the iterated boundary blowups are cofinal in the system of all log blowups, we obtain a

description of the log tautological ring logR‹
pMg,nq.

While logR‹
pMg,nq is determined by set of tautological relations Pď

g,n, the study via Fulton’s blowup sequence

is not practical. A more useful direction would be to lift the relations known among the tautological classes of

Mg,n.

Question D. Are there canonical lifts of Pixton’s relations to logR‹
pMg,nq ?

In the case of Pixton’s double ramification cycle relations, lifts (depending upon a choice of stability condition

for line bundles) have been given in [27] via the formula for the logarithmic double ramification cycle.

Another potential source of relations comes from log double ramification cycles of higher rank. The rank r

logarithmic double ramification cycle is a virtually log smooth compactification of the space of pointed smooth

curves equipped with r principal divisors, each with prescribed zeroes and poles at the marked points [28, 46]. The

space is equipped with logarithmic evaluation maps to a certain toric variety [56]. The standard toric boundary

relations give rise to relations on the higher rank log double ramification cycles, and by pushforward, in the log

tautological ring of Mg,n.
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3 Homological piecewise polynomials

3.1 Conventions and homological Chow groups

Piecewise polynomials have been an important tool in logarithmic intersection theory on moduli spaces. For log

smooth schemes/stacks, the theory is developed in [45, 28, 27]. However, for log stacks that are not log smooth, such

as the strata of Mg,n or the moduli space of log pointed curve Mst
g,n of [29], the theory is not yet well developed. In

singular geometries, Chow homology classes are more natural to study, but piecewise polynomials are cohomology

classes. There is, as yet, no homological version of piecewise polynomials.

We propose here a definition of homological piecewise polynomials for idealised log smooth schemes. We establish

basic properties, state the tropical interpretation, and study the question of proper pushforwards for homological

piecewise polynomials. For log smooth schemes, the theory recovers the usual piecewise polynomials.

In Section 4, we will use language developed here to to define the log tautological ring ofMg,n (and, furthermore,

to describe the log Chow ring of any scheme with a divisorial log structure).

Definition 22. An idealised log scheme is a tuple pX,α : MX Ñ OX ,KXq where pX,αq is a log scheme and

KX Ă α´1p0q is a monoid ideal inside MX . A morphism of idealised log schemes f : X Ñ Y is a map on the

underlying log schemes such that the map f‹KY Ñ MX factors through KX . ♢

A basic example may be helpful. Affine space An has a natural divisorial log structure coming from its coordinate

boundary. Take any monomial subscheme Z Ă An and equip it with the pullback log structure. The monomials

that vanish on Z give a monoid ideal inside the logarithmic structure of Z. See Ogus [47], for a detailed treatment

of idealised log schemes. We record a few examples that are relevant to our goals.

Example 23. Any log scheme with the empty sheaf of ideals forms an idealised log scheme. We call this a log

scheme with trivial idealised structure.

Example 24. Let X be a log scheme with log structure given by a normal crossings divisor D. Let S be a stratum

closure of X endowed with the strict log structure from the embedding i : S Ñ X. For U Ď X open we have

MXpUq “ tx P OXpUq : x|UzD P Oˆ
XpUzDqu.

As S is a stratum, it is given by an ideal K Ă MX . Then

pS,MS ,K|Sq

is an idealised log scheme. In particular, if S is a point and dimX “ d, then this idealised log scheme is

ppt,Nd,Ndz0q.

Definition 25. A map of idealised log stacks f : X Ñ Y is idealised log smooth if f satisfies the lifting property

for all idealised log thickenings. A log scheme X is idealised log smooth if X is idealised log smooth over the base

point. ♢

Example 26. All examples of idealised log schemes so far are idealised log smooth. Only those with generically

trivial sheaf of monoids are log smooth.

For an Artin stack X, we let CH‹pXq denote Kresch’s Chow group [38] with Q-coefficients. We let CH‹
pXq

denote the operational Chow ring of X with test objects given by algebraic stacks of finite type stratified by global

quotient stacks, as defined in [8]. For DM-stacks, these correspond to the usual Chow groups and rings. When X

is smooth, there is a natural Poincaré duality isomorphism

CH‹
pXq

„
ÝÑ CH‹pXq, α ÞÑ α X rXs .

Thus, when X carries a log structure and is both smooth and log-smooth, we can define the logarithmic Chow ring

logCH‹
pXq either as a direct limit of CH‹

p pXq over all log blowups pX Ñ X, or as the direct limit of CH‹p pXq for

smooth log blowups pX, and obtain isomorphic results.

21



However, when X is only idealized log smooth (as for the strata S from Example 24), there may be log blowups
pX Ñ X which are no longer smooth (or even equidimensional). For these cases, we will need a definition of

homological log Chow groups logCH‹pXq – and the necessary level of generality is to allow X to be an Artin stack.

When X is a log scheme, a definition logCH‹pXq was presented in [10, Definition 2.7]. In remainder of Section

3.1, we recall the treatment of [10].

Definition 27. Log spaces and log stacks:

(i) An algebraic log space is an algebraic space with a log structure.

(ii) An algebraic log stack is an algebraic stack with a log structure.

(iii) A log stack is a stack in groupoids over LogSch, with a log étale cover by a log algebraic stack and with

diagonal representable by log algebraic spaces.

(iv) A log stack X is dominable if it has a log blowup rX that is an algebraic log stack. ♢

Remark 28. Given any algebraic log stack X, the category of log maps S Ñ X is a log stack. For many purposes,

it suffices to study algebraic log stacks: all examples of log stacks that we consider (outside of this Remark) are

algebraic log stacks. However, there are important examples of log stacks which are not represented by an algebraic

log stack.

(i) The log stacks Glog
m and Gtrop

m , which represent the functors X ÞÑ MXpXq and X ÞÑ MX respectively. They

are dominable by P1 and rP1{Gms respectively, see [57, Proposition 1]

(ii) The logarithmic Picard group LogPic{S of a log curve C{S, and, in particular, the universal logarithmic Picard

group LogPicg,n{Mg,n. The space LogPicg,n has representable log blowups given by universal compactified

Jacobians associated to non-degenerate stability conditions, see [27, Section 4].

(iii) The moduli space LogAg of log abelian varieties of dimension g, first defined in [32]. The standard toroidal

compactifications of the moduli space Ag of principally polarized abelian varieties of dimension g, such as the

perfect cone compactification and the second Voronoi compactification, are log blowups of LogAg.

Definition 29. A log stack X is locally free if every stalk of MX is isomorphic to Nr for some r. ♢

Example 30. The basic cases for us are:

(i) The stackMg,n with its divisorial log structure is locally free, since the stalk of the ghost sheaf at pC, p1, . . . , pnq

is isomorphic to Nr for r the number of nodes of C.

(ii) A toric variety with the toric log structure is locally free if and only if the underlying toric variety is smooth.

Definition 31. The category of idealised log schemes pX,α :MX Ñ OX ,KXq is denoted IdLogSch. The subcate-

gory consisting of idealised log schemes with maps f : X Ñ Y satisfying the equality KX “ f‹KY of monoid ideals

is denoted IdLog. An idealised log stack is a log stack X{LogSch together with a map to IdLog{LogSch. ♢

Remark 32. The category of maps from idealised log schemes to an idealised log stack forms a stack over IdLogSch,

and any stack over IdLogSch with a smooth cover by an idealised log stack is of this form.

Example 33. For the gluing map ιΓ : MΓ Ñ Mg,n associated to a stable graph Γ, we write Mstr
Γ for the stack

MΓ endowed with the strict log structure induced from the standard divisorial log structure on Mg,n via ιΓ. The

stack Mstr
Γ is locally free, where the stalk at pCv, q1,v, . . . , qnpvq,vqvPV pΓq is

MMstr
Γ ,pCvqv

“ NEpΓq ‘
à

vPV pΓq

MMgpvq,npvq,pCv,q1,v,...,qnpvq,vq
.

To give Mstr
Γ an idealised log structure, we must give an idealised log structure on S for every map S Ñ Mstr

Γ . We

let the log ideal KS Ă MS be the ideal generated by the lengths of the edges of Γ.
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Definition 34. Let X be a locally free algebraic log stack, and let π : rX Ñ X be a log blowup of locally free

log stacks. We let π! denote the virtual relative dimension 0 pullback CH‹pXq Ñ CH‹p rXq constructed in [10,

Construction 2.4]. ♢

Example 35. Let X be the point with characteristic monoid N2, and let rX be the P1 obtained by blowing up in

the log ideal px1, x2q. Using the excess intersection formula, we obtain

π!rXs “ ´rHs P CH‹p rXq,

where H is the hyperplane class on P1.

Example 36. Let rX Ñ X be a log blowup of locally free log smooth log stacks. Then, π! is equal to π‹.

Definition 37. Let X be a dominable log stack. We define the homological log Chow group logCH‹pXq to be the

colimit

logCH‹pXq “ colim
ĂXÑX

CH‹p rXq ,

where the colimit runs over all locally free algebraic log blowups of X, and the transition maps for a log blowup

π : rX1 Ñ rX2 is the Gysin pullback π! from Definition 34.

We define the cohomological log Chow group logCH‹
pXq to be the operational Chow ring for logCH‹, consisting

of bivariant classes acting on logCH‹pT q for maps T Ñ X, and commuting with saturated proper pushforward, log

flat pullback and all strict Gysin maps (see [10, Definition 2.20]). ♢

Remark 38. For a log smooth log stack X, we have by [10, Corollary 2.23] a natural isomorphism

logCH‹
pXq Ñ logCH‹pXq

given by acting on the fundamental class rXs.

Remark 39. There are several different definitions of logCH‹ in the literature. For example, in [28], the definition

logCH‹
HScpXq “ colim

ĂXÑX
CHopp rXq

is used for log smooth stacks X. In [29], the definition

logCH‹
HSppXq “ colim

ĂXÑX
CHOPp rXq

is used (where CHOP is the operational Chow ring defined in [8]).

There is a map logCH‹
HSppXq Ñ logCH‹

HScpXq. In [29, Appendix A], a map logCH‹
HSppXq Ñ logCH‹

pXq is

constructed. Many constructions in the literature lie in logCH‹
HSppXq or can be canonically lifted to logCH‹

HSppXq,

and can then be mapped to logCH‹
pXq.

Remark 40. When X is not log smooth, many nice properties, such as the Poincaré duality isomorphism, fail. In

[10], the notion of a compatible fundamental class rXs P logCH‹pXq, represented by the fundamental class of any

locally free log blowup of X of maximal dimension, is introduced. However, it is then no longer the case that every

class in logCH‹pXq can be obtained from rXs by the action of a logarithmic operational class.

For example, for X “ ppt,N2q, the group logCH‹ppt,N2q is supported in degree 0 and 1 for dimension reasons.

Moreover, it follows from Proposition 63 below that

logCH1ppt,N2q –
␣

f P PP1
pR2

ě0q : fpx, 0q “ fp0, yq “ 0 for all x, y P Rě0

(

is an infinite-dimensional Q-vector space (all functions f “ minpax, byq for a, b P Zě1 with gcdpa, bq “ 1 are linearly

independent). On the other hand, since logCH0
ppt,N2q “ Q, the map

logCH‹
ppt,N2q Ñ logCH1´‹ppt,N2q, α ÞÑ α X rXs
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only covers a 1-dimensional subspace of logCH1ppt,N2q. An important motivation for introducing homological

piecewise polynomials in Section 3.4 is to describe significantly larger parts of logCH‹pXq.

3.2 Cone stacks with boundary

Recall from [15] that a (combinatorial) cone stack is a category fibered in groupoids

C : Σ Ñ RPCf (23)

over the category RPCf of rational polyhedral cones (with morphisms being face inclusions). For the precise

technical conditions, see [15, Definition 2.15]. We denote the objects of Σ by σ and the morphisms by σ Ñ σ1.

Where there is no risk of confusion, we identify the morphisms with the cones and face morphisms that they

correspond to under C.

The category of Artin fans is usually defined as the category of Artin stacks that are log étale over Spec k

and admit a strict étale cover by Artin cones, which are Artin stacks of the form rSpec krM s{Spec krMgpss. The

category of cone stacks Σ is naturally isomorphic to the category of Artin fans AΣ, see [15, Theorem 6.11] for more

details.

While the Artin fan AΣ itself is log smooth, a closed subset B Ď AΣ with its reduced stack structure and

induced log structure will in general only be idealized log smooth. Conversely, as explained in Section 3.3, any

idealized log smooth stack admits a strict and smooth map to such a set B. In ΣX , the set B is described by a

collection of cones σ0 in ΣX that are closed under taking face maps σ0 Ñ σ. These ideas motivate the following

definition.

Definition 41. A cone stack with boundary pΣ,Σ0,∆q is a cone stack Σ together with a full subcategory Σ0 Ď Σ

which is forward-closed: for σ0 P Σ0 and a morphism σ0 Ñ σ in Σ, we also have σ P Σ0. We call Σ0 the interior of

Σ and the complementary full subcategory ∆ “ ΣzΣ0 its boundary. A morphism

pΣ1,Σ
0
1,∆1q Ñ pΣ2,Σ

0
2,∆2q

of idealized cone stacks is a morphism Σ1 Ñ Σ2 of cone stacks sending Σ0
1 to Σ0

2. ♢

For a cone stack with boundary pΣ,Σ0,∆q, the subcategory ∆ is a cone stack itself, and the map ∆ Ñ Σ

corresponds to an open embedding A∆ Ñ AΣ of the corresponding Artin fans. We denote by

BΣ0 “ AΣzA∆ Ď AΣ

the complement of A∆ with its reduced substack structure. We can extract a colimit presentation of the stack BΣ0

from the combinatorial data. Indeed, recall the classical presentation of the Artin fan

AΣ “ colim
σPΣ

rSpec krSσs{Spec krSgp
σ ss

looooooooooooooomooooooooooooooon

“Aσ

,

with Sσ Ď σ_ the semigroup associated to σ.

To find the corresponding presentation of the closed substack BΣ0 Ď AΣ, consider the étale cover
š

σ Aσ Ñ AΣ

of the Artin fan AΣ by Artin cones Aσ. We then identify the closed substack of Aσ obtained as the preimage of

the union of strata BΣ0 insider AΣ. This preimage is cut out by a toric ideal Jσ,Σ0 Ď krSσs.

To calculate this ideal, note that in AΣ, the strata of BΣ0 contained in the image of Aσ correspond to morphisms

σ1 Ñ σ with σ1 P Σ0. Since Σ0 is forward-closed, this forces σ P Σ0. Given such a morphism, one sees by an argument

similar to [16, Exercise 3.2.6] that the functions in krSσs vanishing on the preimage of the stratum associated to

σ1 are given by the ideal17

Jσ1Ñσ “ pχs : s P Sσ with s|σ1 ‰ 0 P pσ1q_q Ď krSσs .

17Note that equation (3.2.7) in [16] has a very unfortunate typo and should read I “ xχm|m R τK X pσ1q_ X My Ď Crpσ1q_ X Ms “

CrSσ1 s.
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To give an example: when σ1 “ σ “ Rně0 then Sσ “ Nn so that krSσs “ krx1, . . . , xns. Then among all elements

s P Sσ only s “ 0 restricts to zero on the dual cone pσ1q_ “ pRně0q_. Thus

Jσ1Ñσ “ pχs : s P Sσzt0uq “ px1, . . . , xnq Ď krx1, . . . , xns .

And indeed, in the toric variety An “ Speckrx1, . . . , xns associated to σ, the cone σ1 “ σ itself corresponds to the

origin in An. Correspondingly, we have that px1, . . . , xnq is the toric ideal of functions vanishing at the origin.

Returning to the general setting, we define the ideal

Jσ,Σ0 “
č

σ1
Ñσ

σ1
PΣ0

Jσ1Ñσ Ď krSσs

of all functions in krSσs vanishing on some preimage of a stratum in BΣ0 . Then we have a presentation

BΣ0 “ colim
σPΣ0

“

Spec
`

krSσs{Jσ,Σ0

˘

{Spec pkrSσsgpq
‰

. (24)

Compared to the presentation ofAΣ, we could restrict to those σ contained in Σ0, since the others satisfy Jσ,Σ0 “ p1q

and thus their contribution to the colimit (24) would be empty. In particular, the presentation (24) shows that

the stack BΣ0 only depends on the category Σ0 and the functor from this category to the category of rational

polyhedral cones.

Remark 42. The construction above gives an equivalence between the category of cone stacks with boundary and

the category of embeddings B Ñ A of a reduced closed substack, where the maps are commutative squares. In

general, the more natural category might be the category of (reduced) closed substacks of Artin fans, where the

maps are maps of algebraic log stacks. For example, Proposition 48 is not true for embedded idealised Artin fans,

per Remark 49.

Combinatorially, this category of reduces closed substacks of Artin fans is equivalent to the category of cone

stacks with boundary localised at maps that are an isomorphism on the interior.

3.3 Scheme theoretic images inside Artin fans

We will use the language of cone stacks (with boundary) and Artin fans to describe the tropicalization of a log

stack X.

Definition 43. For an algebraic log stack X, an Artin fan of X is the data of a strict morphism X Ñ A to an

Artin fan A with geometrically connected fibers (where the empty set is connected) and non-empty fibers over

minimal strata of A.18 Given an Artin fan A of X, the cone stack Σ associated to A is a tropicalization of X. ♢

Remark 44. Every algebraic log stack X satisfying some mild hypotheses admits a canonical Artin fan X Ñ Acan
X

as constructed in [3, Section 3.2] building on [4]. This canonical Artin fan deserves to be called the Artin fan, but

following this path leads to various well-known issues:

(i) The canonical Artin fan of a log stack is not functorial as a map X Ñ Y of log stacks does not necessarily

induce a map Acan
X Ñ Acan

Y which makes the natural diagram commute (see [2, Section 5.4] for a discussion).

(ii) The stack X “ BZ{2Z with trivial log structure is an Artin fan, but Acan
X is point and is therefore not identical

to X. In other words, X is an Artin fan which is not its own (canonical) Artin fan.

(iii) For X “ Mg,n and Σg,n the moduli space of tropical curves (Definition 3), the map from X to its (canonical)

Artin fan factors as

Mg,n
t

ÝÑ AΣg,n
t1

ÝÑ Acan
Mg,n

(25)

but the map t1 is not in general an isomorphism. The issue arises since the cone σΓ P AΣg,n associated to

a stable graph Γ can have non-trivial automorphisms acting trivially on the set of edges (by flipping two

18We do not require smoothness of the map X Ñ A, as this does not hold in general for idealised log smooth stacks. We will see in
Lemma 52 that any idealised log smooth stack is smooth over its image in the Artin fan.
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half-edges forming a loop). This automorphism acts trivially on the branches of the boundary divisor cutting

out the stratum associated to Γ and is therefore not seen in the canonical Artin stack Acan
Mg,n

(see [62, Example

4.10] for a related discussion).

All these issues are resolved by the added flexibility of being able to choose an Artin fan:

(i) For any morphism X Ñ Y of log stacks, we have a commutative diagram

X Y

AX AY

where AX and AY are Artin fans for X and Y respectively, see [4, Section 2.5].

(ii) The identity BZ{2Z Ñ BZ{2Z is an Artin fan.

(iii) The map t : Mg,n Ñ AΣg,n is a choice of an Artin fan, as proven in [15, Theorem 4].

Whenever we refer to the Artin fan of a log stack X, we mean a fixed choice of an Artin fan, which we denote

by X Ñ AX with associated cone stack ΣX .

Remark 45. A log stack with an Artin fan is automatically algebraic. In Section 3, we often assume the log stack

has an Artin fan, to ease the exposition. For a dominable non-algebraic log stack, one can either blowup to make

it admit an Artin fan, or use the non-algebraic Artin fan (a log stack that admits a log blowup by an Artin fan).

To define homological piecewise polynomials, we first need one more ingredient lying inside the Artin fan.

Definition 46. Let X be a log stack, and X Ñ AX the map to an Artin fan of X. We define an idealised Artin

fan BX of X as the scheme theoretic image of X inside its Artin fan. We denote the scheme theoretic image of X

inside its canonical Artin fan X Ñ Acan
X by Bcan

X . ♢

Example 47. Let X be the point with log structure Nr. Then we can choose AX “ AAr “ rAr{Grms, and

BX “ BGrm.

Despite the name, the definition of the idealized Artin fan (and other definitions in Section 3) a priori make

sense for any log stack X. However, the only context in which we know them to be well behaved is for idealised

log smooth log stacks, the setting to which we restrict in the following. It is reasonable to expect that much of the

theory we develop below is well behaved for any log stack that is log flat over its image in its Artin fan.

We will now show that any idealised Artin fan admits an étale map to the canonical idealised Artin fan, and

that idealised Artin fans are functorial (in the sense of Remark 44).

Proposition 48. Let X be an idealised log stack, with idealised Artin fan X Ñ BX and canonical idealised Artin

fan X Ñ Bcan
X . There is a strict étale map f : BX Ñ Bcan

X making the diagram

X

BX Bcan
X

f

commute.

Proof. First note that as the map X Ñ BX is strict with geometrically connected fibers we have

H0pX,MXq “ H0pBX ,MBX q. (26)

We say X is small if the Artin fan Acan
X of X is an Artin cone. We first prove the existence of f for small X,

with associated monoid P . Then HompY,Acan
X q is in bijection with HompP,H0pY,MY qq. By the equality (26)
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the map X Ñ Acan
X now descends to a map BX Ñ Acan

X . By functoriality of schematic image we obtain the map

f : BX Ñ Bcan
X fitting in the diagram.

Now we show that if X is small, then f is strict étale. For this, we can work étale locally on AX and on X.

Then we can assume AX is itself an Artin cone rSpec krQs{Spec krQgpss for some sharp fs monoid Q, and X is still

small. Then the argument above shows that AX Ñ Acan
X is an isomorphism, and hence the map of idealised Artin

fans is also an isomorphism. All in all, f is étale locally an isomorphism, so f is étale.

Now we will show this proposition holds for general X. We take a groupoid representation BV Ñ BU Ñ BX
where the BU and BV are disjoint unions of small idealised Artin fans. Let V Ñ U Ñ X be the representation

obtained by pulling back BV Ñ BU Ñ BX . In particular, V Ñ BV and U Ñ BV are idealised Artin fans, as they

are strict maps with geometrically connected fibers to idealised Artin fans. We get the diagram

V

BV U Bcan
V

BU X Bcan
U

BX Bcan
X

Because U and V are themselves small, we obtain étale maps fU : BU Ñ Bcan
U and fV : BV Ñ Bcan

V fitting in

the diagram, by the first part of the argument.

Recall that for a log stack Z, the idealised Artin fan Bcan
Z is the colimit of Bcan

C Ñ Bcan
D where C Ñ D Ñ Z

is a colimit diagram of strict maps and C,D are disjoint unions of small log schemes. Hence Bcan
´ commutes with

colimits of strict maps, and in particular Bcan
X is the colimit of Bcan

V Ñ Bcan
U . Then fU , fV descend to a strict étale

map BX Ñ Bcan
X .

Remark 49. Proposition 48 is false for Artin fans. For example, for X “ ppt,Nq \ ppt,Nq, the canonical Artin fan

is rA1{Gms \ rA1{Gms. If one picks AX “ rP1{Gms, then there is no commutative diagram

X AX

Acan
X

t

tcan

Lemma 50. Let f : X Ñ Y is a map of log stacks, and assume functoriality of the Artin fan for f , i.e. that there

is a Af : AX Ñ AY fitting in the obvious diagram. Then there is a map Bf : BX Ñ BY fitting in the obvious

diagram.

Proof. For this, note that there is (by composition) a map X Ñ BY , and so the pullback of BY to AX is a closed

substack of AX via which X factors. But then (by definition of the scheme theoretic image) we find that BX is a

subscheme of the pullback of BY , so we get a map BX Ñ BY .

Definition 51. Let X be a log scheme and d P Z. We say X has pure log dimension d if for any log stratum19 Z

with generic point ζ the local log dimension rkMζ ` dimZ is equal to d. ♢

Lemma 52. Let X be an idealized log smooth stack over k. Then the morphism X Ñ BX is smooth. If X is

pure of dimension e and pure of log dimension d, then BX has dimension e´ d and the map X Ñ BX has relative

dimension d.

19Here with a log stratum, we mean a log stratum on a strict étale cover.
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Proof. We will prove this locally on X. By definition, the map X Ñ Specpkq to the point with trivial log structure

is idealised log smooth. Using [47, Variant IV.3.3.5], such an idealised log smooth map has charts, which in our

case means that étale locally on X there is a monoid Q, an ideal K of Q and a strict smooth20 map

b : X Ñ Spec krQs{pKq “: Y. (27)

Since the map b is strict, there exists a strict and étale map Acan
X Ñ Acan

Y of their canonical Artin fans such that

the rectangular diagram on the right below commutes:

X Y

BX Bcan
X Bcan

Y

Acan
X Acan

X

Pro. 48

In the diagram above, the surjectivity of X Ñ Bcan
X implies that we obtain a map Bcan

X Ñ Bcan
Y as indicated, and in

fact it then follows that the lower square diagram is Cartesian, so that this map is also strict and étale. Secondly,

from Proposition 48 it follows that we get a strict étale map BX Ñ Bcan
X as indicated.

Summarizing, we have obtained a commutative diagram of maps

X Y

BX Bcan
Y

with X Ñ Y smooth and BX Ñ Bcan
Y étale. Then if we show that Y Ñ Bcan

Y is smooth, it follows that X Ñ BX is

also smooth (since smoothness can be checked after composition with the étale morphism BX Ñ Bcan
Y ).

All in all we are reduced to proving the claim for log schemes of the form Y “ Spec krQs{pKq, and for the

canonical idealised Artin fan. The Artin fan of Spec krQs{pKq is

ApQq “ rSpec krQs{Spec krQgpss,

and the idealised Artin fan is the substack cut out by the ideal generated by K. Indeed, the map from Spec krQs

to its Artin fan ApQq is smooth, and the pullback of the substack cut out by pKq is the subscheme cut out by pKq.

In particular, the induced map Spec krQs{pKq Ñ ApQq is smooth onto its scheme theoretic image.

The claim on the relative dimension also follows immediately from the same claim for the charts.

Given an idealised log smooth log stack, we will now use its idealised Artin fan to create a cone stack with

boundary. We recall that there is an equivalence of categories between Artin fans and cone stacks.

Definition 53. Let X be an idealised log smooth log stack and X Ñ AX an Artin fan. Let ΣX be the cone stack

corresponding to AX , and ∆X Ñ AX be the cone stack corresponding to the open embedding AXzBX Ñ AX .

Then we define Σ˝
X to be ΣXz∆X , and the tropicalization of X to be the cone stack with boundary pΣX ,Σ

˝
X ,∆Xq.

♢

Example 54. If X is log smooth, then AX “ BX , and we get the empty boundary.

Example 55. Given a rational polyhedral cone σ, consider the cone stack Facespσq whose objects are the faces

σ0 ă σ and whose morphisms are inclusions of faces induced by the identity of σ. If σ is smooth, the stack Facespσq

has 2dimσ many pairwise non-isomorphic objects. Declare its interior σ0 to be the full subcategory consisting only

of σ itself. Then we obtain a cone stack with boundary pFacespσq, σ0,∆σq. If X is the point with characteristic

monoid Nr and sheaf of ideals Nrz0, then its cone stack (with boundary) is given by ΣX “ FacespRrě0q.

20[47, Variant IV.3.3.5] claims this map is étale, but is not true (for example, it fails for X a smooth scheme of positive dimension
with trivial log structure). It should say “smooth (resp. étale)”.
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In Section 3.4, we will be interested in the (log) Chow groups of these Artin fans and their substacks, and their

relations with the Chow group of X. We have the following result on the virtual relative dimension 0 pullback used

in Definition 37, the definition of the log Chow group.

Lemma 56. Let π : rAX Ñ AX be a log blowup. Consider the associated diagram of cartesian squares

rX rBX rAX

X BX AX

πX πB π

Then the virtual relative dimension 0 pullbacks

CH‹pXq
π!
X

ÝÝÑ CH‹p rXq, CH‹pBXq
π!
B

ÝÝÑ CH‹p rBXq, CH‹pAXq
π!

ÝÑ CH‹p rAXq

in Definition 34 are all equal to the Gysin pullback of the log blowup π.

Proof. This follows immediately from Construction 2.4 of [10].

3.4 Definitions

For a log stack X with Artin fan AX and associated cone stack ΣX , we denote the ring of strict piecewise poly-

nomials on ΣX by sPP‹
pXq, and similarly the ring of piecewise polynomials on ΣX by PP‹

pXq. There are natural

isomorphisms

Φ : sPP‹
pXq Ñ CH‹

pAXq and Φlog : PP‹
pXq Ñ logCH‹

pAXq , (28)

of graded algebras (see [28, Section 3.4] for the construction and [45, Theorem 14] for the proof that they give

isomorphisms). Next we introduce homological versions of these polynomials.

Definition 57. Let pΣ,Σ˝,∆q be a cone stack with boundary. Then we define

sPP‹pΣ,∆q Ď sPP‹
pΣq and PP‹pΣ,∆q Ď PP‹

pΣq

to be the set of (strict) piecewise polynomials on Σ vanishing on all cones of ∆. These Q-vector spaces carry a

grading with values k P Zď0 given by the negative degree of the piecewise polynomial, i.e. sPPk Ď sPP´k. They

also have a natural module structure over sPP‹
pΣq (respectively, PP‹

pΣq).

For X an idealised log smooth log stack of pure log dimension d and pΣ,Σ˝,∆q “ pΣX ,Σ
˝
X ,∆Xq the associated

tropicalization of X, we also write

sPP‹pXq “ sPP‹pΣX ,∆Xq Ď sPP‹
pXq and PP‹pXq “ PP‹pΣX ,∆Xq Ď PP‹

pXq

for the sets above. ♢

Remark 58. A priori sPP‹pΣ,∆q depends on the full data of pΣ,Σ˝,∆q. A posteriori however, it only depends

on Σ˝, as we can also define it as a system of polynomials pfσqσ for σ P Σ˝ that is compatible with face-pullbacks

for morphisms in Σ˝ and such that for a face τ ĺ σ that is not the image of some object in Σ˝, we have fσ|τ “ 0.

Theorem 59. Let pΣ,Σ˝,∆q be a cone stack with boundary, with Σ smooth and denote by i : BΣ˝ Ñ AΣ the

inclusion of the associated closed substack. Then there is a commutative diagram

sPP‹pΣ,∆q sPP‹
pΣq

CH‹pBΣ˝ q CH‹pAΣq “ CH‹
pAΣq

Ψ Φ

i‹

(29)

29



where both vertical maps are isomorphisms of graded Q-vector spaces. Similarly we have a diagram

PP‹pΣ,∆q PP‹
pΣq

logCH‹pBΣ˝ q logCH‹pAΣq “ logCH‹
pAΣq

Ψlog Φlog

i‹

(30)

with both vertical maps being isomorphisms, even for Σ not necessarily smooth.

In order to prove the above result, we want to use the theory of higher Chow groups of Artin stacks, applied to

the various Artin fans and their open or closed substacks. This theory was originally developed by Bloch [12] for

schemes, with the purpose of extending the excision exact sequence of Chow groups on the left. It was generalized

to the setting of Artin stacks by Kresch [38], and there are now modern approaches via étale motivic Borel-Moore

homology [37]. For recent applications of these higher Chow groups in intersection theory of moduli spaces see

[9, 39, 40, 11]. Below, we use several formal properties of these higher Chow groups which were proven in [37],

such as their functoriality under proper pushforwards and flat pullbacks, the extension of the excision sequence [37,

Theorem 2.18] and certain (cap) products [37, Section 2.2.6]. The forthcoming paper [7] by Bae and Park will give

a comparison result of those (higher) Chow groups with the ones defined by Kresch (and used in the remaining

paper). The comparison for the (zeroth) Chow groups is established in [37, Example 2.10], and since these are what

we ultimately care about in the proof of Theorem 59, we can use Khan’s formalism in the technical arguments and

specialize to the standard Chow groups in the end.

To set up notation, let X be an algebraic stack of finite type over k, stratified by quotient stacks. Then there

exist the first higher Chow groups CH‹pX , 1q with Q-coefficients. If U Ď X is open with complement Z, then there

is an exact sequence

CH‹pZ, 1q Ñ CH‹pX , 1q Ñ CH‹pU , 1q
B

ÝÑ CH‹pZq Ñ CH‹pXq Ñ CH‹pUq Ñ 0 . (31)

In general, the groups CH‹pX , 1q can be quite large, even for very simple stacks X . One reason for this is that they

always contain a piece coming from the higher Chow group CH1
pk, 1q of the base field k, which is non-trivial in

general. Denote by

CH‹pX , 1q “ CH‹pX , 1q{impCH‹`1pX q b CH1
pk, 1qq (32)

the indecomposable part of the higher Chow group (see [9, Section 2.3]). The boundary map B in the excision

sequence (31) factors through CH‹pU , 1q by [9, Remark 2.18]. In particular, when this latter group vanishes, the

pushforward of Chow groups under the inclusion Z ãÑ X is injective. When U “ BGnm ¸ G for G finite, this

vanishing CH‹pU , 1q “ 0 follows from [9, Proposition 2.14, Remark 2.21]. The following result allows to extend this

vanishing to a broader range of Artin stacks.

Proposition 60. Let U be an algebraic stack of finite type over k, stratified by quotient stacks, such that it has

a locally closed stratification by stacks Ui with CH‹pUi, 1q “ 0. Then CH‹pU , 1q “ 0. In particular, this vanishing

holds if U is a smooth Artin fan.

Proof. We do induction on the number of strata Ui, with the base case U “ Ui being trivial. In the general case,

let V “ Ui be an open stratum inside U , with complement Z. Then letting K “ CH1
pk, 1q and using the excision

sequence (31), we have a diagram

CH‹`1pZq bK CH‹`1pUq bK CH‹`1pVq bK 0

CH‹pZ, 1q CH‹pU , 1q CH‹pV, 1q CH‹pZq

CH‹pZ, 1q
loooomoooon

“0 by induction

CH‹pU , 1q CH‹pV, 1q
loooomoooon

“0 by assumption

(33)
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with exact rows and columns. Here the vertical arrows from the first to the second row are the cap products

mentioned before, which are compatible with the proper pushforward under Z ãÑ X and the open restriction under

V Ď U . This shows that the two left squares are commutative, and the commutativity of the right square follows

from [9, Remark 2.18]. Then the four-lemma implies the vanishing of CH‹pU , 1q. Finally, any smooth Artin fan

has a locally closed stratification with strata BGnm ¸G (corresponding to an object σ in the associated cone stack

mapping to Rně0 and having automorphism group G). The vanishing of the indecomposable part of the higher

Chow group for these pieces was discussed before, so the proposition applies.

Proof of Theorem 59. Let A∆ Ď AΣ be the open complement of BΣ˝ . Then applying the excision sequence to that

open substack, we have a commutative diagram of solid arrows

CH‹pA∆, 1q CH‹pBΣ˝ q CH‹pAΣq CH‹pA∆q 0

0 sPP‹pΣ,∆q sPP‹
pΣq sPP‹

p∆q 0

B

Ψ „ „

with exact rows (the upper row by excision, the lower by definition of sPP‹pΣ,∆q. Since the indecomposable part

CH‹pA∆, 1q of CH‹pA∆, 1q vanishes and since B factors through it, we have that B “ 0. Then it follows that a

unique dashed arrow Ψ as above exists and is an isomorphism.

To show the statement for the logarithmic Chow groups, first note that all spaces involved in the diagram (30)

are invariant under replacing Σ by a refinement and BΣ˝ and AΣ by the corresponding log blowups. Choosing

a suitable refinement we can reduce to the case that Σ is smooth. In this setting, note that any log blowup

q : pB Ñ BΣ˝ is obtained as a total transform of a log blowup p : A
pΣ Ñ AΣ for a subdivision pΣ of Σ. Moreover, for

the choice of such a subdivision, the diagram

CH‹p pBq CH‹pA
pΣq

CH‹pBΣ˝ q CH‹pAΣq

q! p‹

commutes by Lemma 56. Under the identifications with spaces of strict piecewise polynomials in the first part, this

shows that the virtual Gysin pullback q! is given by the standard restriction map

sPP‹pΣ,∆q Ñ sPP‹ppΣ, p∆q

to the subdivision pΣ of Σ. Taking the colimit over such subdivisions, we obtain the diagram (30) where the

isomorphism in the lower right corner was proven in [10, Corollary 2.23].

Corollary 61. Let X be an idealised log smooth log stack of pure log dimension d. Let i : BX Ñ AX denote the

inclusion. Then if X is locally free, there is a commutative diagram

sPP‹pXq sPP‹
pXq

CH‹pBXq CH‹pAXq “ CH‹
pAXq

i‹

Ψ Φ

where both vertical maps are isomorphisms of graded groups.

The same diagram holds verbatim, replacing sPP by PP and CH by logCH (see (30)), even for X not necessarily

locally free.

Proof. Let pΣX ,Σ
˝
X ,∆Xq be the tropicalization of X. The corollary follows by applying Theorem 59 to the cone

stack pΣ,Σ˝,∆q “ pΣX , σ
˝
X ,∆Xq.

Assume X is idealized log smooth of pure log dimension d. Composing Ψ and Ψlog with the pullback under the
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map X Ñ BX , which is strict and smooth by Lemma 52, we obtain maps

Ψ : sPP‹pXq Ñ CH‹`dpXq and Ψlog : PP‹pXq Ñ logCH‹`dpXq , (34)

which we denote again by Ψ,Ψlog if there is no risk of confusion (and by ΨX ,Ψ
log
X otherwise).

Example 62. Consider the log scheme X “ ppt,Nrq with cone stack ΣX “ pRě0qr, which is idealized log smooth

of pure log dimension r. Then sPP‹pXq is the free module over sPP‹
pXq “ Qrx1, . . . , xrs generated by x1x2 . . . xr

of degree ´r. We have piecewise polynomial functions

x1x2 . . . xr P sPP´rpXq and minpx1, . . . , xrq P PP´1pXq .

If Pr´1 Ñ pt denotes the log blowup obtained by blowing up in the monoid ideal px1, . . . , xrq, then we have

Ψpx1x2 . . . xrq “ rpts P CH0pptq and Ψlogpminpx1, . . . , xrqq “ rPr´1s P logCHr´1pptq

give the fundamental class of X and the fundamental class of its log blowup Pr´1, respectively. To see these

formulas, consider the Artin fan AX “ rAn{Gnms and its blowup rA Ñ AX at the origin BGnm with exceptional

divisor E Ď rA. We obtain

Φpx1x2 . . . xrq “ rBGnms P CH´rpAXq and Φlogpminpx1, . . . , xrqq “ rEs P CH´1p rAq

using the results of [27, Section 6.2]. Together with the injectivity of the horizontal maps in Corollary 61 this

implies the claimed formulas.

In fact, with some more work we can fully understand the logarithmic Chow group of the log scheme X above.

Proposition 63. For the log scheme X “ ppt,Nrq with cone stack ΣX “ pRě0qr we have that the map

Φ : PP‹pXq Ñ logCH‹ppt,Nrq

is surjective. Its kernel is given by the submodule

K “ tc1x1 ` . . .` crxr : c1, . . . , ck P PP‹pXqu Ď PP‹pXq .

obtained from the ideal I “ pxk : k “ 1, . . . , rq Ď PP‹
pXq as K “ I ¨ PP‹pXq.

Proof. Consider the stack BX “ pBGrm,Nrq associated toX and the universal vector bundle π : V “ rAr{Grms Ñ BX
with its induced strict log structure from the target. Then we have a diagram

X
i

ÝÑ V
π

ÝÑ BX

representing X – rGrm{Grms as an open substack (via the map i) in the vector bundle V . Since the map X Ñ BX
induces an isomorphism on Artin fans, any log blowup rX of X fits into a fiber diagram

rX rV rB

X V BX

ri rπ

i π

(35)

where rπ is still a vector bundle of rank r, and ri is an open embedding, representing rX as the open complement of

the union rZ of r hyperplane sections rZ1, . . . , rZr Ď rV . Let jk : rZk Ñ rV be the inclusion, then the map

r
ğ

k“1

rZk
\jk

ÝÝÑ rZ

is proper, representable and surjective and thus induces a surjection of Chow groups. Then the excision sequence
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for Chow groups implies that we have an exact sequence

r
à

k“1

CH‹p rZkq

ř

kpjkq‹

ÝÝÝÝÝÑ CH‹prV q
ri‹
ÝÑ rX Ñ 0 . (36)

Both rV and all rZk are vector bundles over rB, and thus the composition

sPP‹p rBq
Ψ

ÝÑ CH‹p rBq
π‹

ÝÑ CH‹`rprV q

is an isomorphism (the first map is an isomorphism by Corollary 61, the second by [38, Theorem 2.1.12 (vi)]).

Similarly, we have an isomorphism

sPP‹p rBq
Ψ

ÝÑ CH‹p rBq
π‹

ÝÑ CH‹`r´1p rZkq .

Using these identifications in (35), the map pjkq‹ : sPP‹p rBq Ñ sPP‹p rBq is given by multiplication with the piecewise

linear function xi.

This shows that sPP‹p rBq Ñ CH‹p rBq is surjective with kernel pxk : k “ 1, . . . , rq. Taking the direct limit over all

log blowups rB Ñ BX we obtain the desired statement (where similar to the proof of Theorem 59 we use Lemma

56 to show that the refined Gysin pullbacks between the groups CH‹p rBq correspond to restrictions of piecewise

polynomials to subdivisions).

Example 64. Let X be given by the union of the three axes inside A3, with log structure the pullback of the

toric log structure on A3. Then BX “ rX{G3
ms and AX “ rA3{G3

ms. We have ΣX “ R3
ě0, and the boundary ∆X

consists of the three rays generated by the three basis vectors. The strict piecewise polynomials vanishing on ∆X

are, as a Qrx, y, zs-module, generated by yz, xz and xy. These three generators map to the classes of the three axes

in CH‹pXq under the map Ψ.

Example 65. Let X be a log smooth scheme pure of dimension d (which hence is pure of log dimension d). Then

we have a commutative diagram

PP‹
pXq PP´‹pXq

logCH‹
pXq logCHd´‹pXq

„

„

where the horizontal maps are given by acting on the constant function 1 (top) and the fundamental class of X

(bottom) respectively. Note that the isomorphism PP´‹pXq Ñ PP‹
pXq also has a natural interpretation, as the

inclusion of the piecewise polynomials vanishing on the empty boundary ∆X “ H of ΣX inside the set of all

piecewise polynomials.

3.5 Pushing forward piecewise polynomials

We define, for a certain class of maps, a pushforward on the level of homological piecewise polynomials, show the

projection formula, and verify compatibility with the usual pushforward on (log) Chow groups. Our definition

works for maps of so-called relative log dimension 0, as per the following definition.

Definition 66. Let X and Y be two idealised log smooth log stacks of pure log dimension d. Let f : X Ñ Y be a

proper saturated morphism of log stacks which descends to a map on Artin fans.

We say f is of relative log dimension 0 if the map on tropicalisations ΣX Ñ ΣY is a relative dimension 0 map

between the dimension d cone stacks, i.e. any cone σ P ΣX is mapped to a cone of dimension dimpσq in ΣY . ♢

Proposition 67. Let X and Y be two idealised log smooth log stacks and f : X Ñ Y be a proper map of relative
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log dimension 0 and of relative Deligne–Mumford type, for which there is a cartesian square

X Y

BX BY

f

Bf

(37)

Then the map Bf is proper and saturated. Let f trop : ΣX Ñ ΣY be the map associated to Af . Then we have a

map

pf tropq‹ : sPP‹pXq
ΨX
– CH‹pBXq

pBf q‹
ÝÝÝÑ CH‹pBY q

ΨY
– sPP‹pY q

of sPP‹
pY q modules such that the diagram

sPP‹pXq sPP‹pY q

CH‹pXq CH‹pY q

pftrop
q‹

ΨX ΨY

f‹

(38)

commutes. The same statement holds verbatim when replacing sPP by PP and CH by logCH.

Here the sPP‹
pY q-module structure on sPP‹pXq is induced from the sPP‹

pXq-structure on sPP‹pXq via the

pullback map sPP‹
pY q Ñ sPP‹

pXq.

Proof. Properness is local on the base in the fpqc topology, hence Bf is proper. And similarly, being saturated is

local in the log smooth topology. Then for strict piecewise polynomials and usual Chow groups, the commutativity

of (38) follows from the compatibility of proper pushforwards and flat pullbacks in the diagram (37). The existence

of a proper pushforward pBf q‹ of logarithmic Chow groups and the corresponding commutativity follow from [10,

Construction 2.15, Theorem 2.19] applied to the map Bf .

Remark 68. The class of morphisms f as in Proposition 67 contains log blowups, inclusions of strata closures,

and finite G-torsors, and is closed under compositions.

Proposition 69. In the situation of Proposition 67, if f is additionally surjective and of relative DM-type, then

the map

pBf q‹ : sPP‹pXq Ñ sPP‹pY q

is surjective.

Proof. Again we can use that surjectivity and being of relative DM-type is local on the base in the fpqc topology,

so these properties descend from f to Bf . Then the surjectivity follows from [8, Proposition B.19].

Proposition 70. Let f : X Ñ Y be as in Proposition 67, with both X,Y of pure log dimension d. We get a

commutative diagram

logCHipXq logCHipY q

logCHi´dpBXq logCHi´dpBY q

where the vertical maps are pullbacks and the horizontal maps are pushforwards.

Proof. This follows from [10, Theorem 2.19].

Now we apply this theory to the gluing maps.

Definition 71. Let Γ be a genus-decorated graph of genus g with n markings. Let Mstr
Γ be the stack MΓ with

log structure a pullback along the gluing map gl : MΓ Ñ Mg,n. ♢
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Lemma 72. The map glstr : Mstr
Γ Ñ Mg,n is of relative log dimension 0 with both spaces having log dimension

3g ´ 3 ` n.

Corollary 73. There is a map sPP‹pMstr
Γ q Ñ sPP‹pMg,nq that lies over the pushforward map logCH‹pMstr

Γ q Ñ

logCH‹pMg,nq.

While we don’t need the following description, the pushforward of piecewise polynomials can be carried out

explicitly within the language of polynomials on combinatorial cone stacks, using results from Brion.

Definition 74. Let f : Σ1 Ñ Σ be a map of cone stack, and let σ P Σ be a cone. We let χσ,f be the groupoid

consisting of elements

pσ1 Ñ σ
„

ÝÑ σq

where σ1 P Σ1, and σ1 Ñ σ is a minimal factorisation of f |σ1 Ñ Σ1. The isomorphisms in this groupoid are given by

diagrams

σ1 σ σ

σ2 σ σ

„

„

„

„

♢

Remark 75. If f is a map of cone complexes, then χσ,f is the set of σ1 P Σ1 such that σ is the smallest cone

containing fpσ1q.

Proposition 76. Let ψ : ΣX Ñ ΣY be a relative dimension 0, proper map between smooth cone stacks. Then

ϕ‹ : sPP‹
pXq Ñ sPP‹

pY q is uniquely determined by the fact that for any maximal cone σ P ΣY we have

pπ‹fqσ “ ϕσ ¨
ÿ

pσ1Ñσ
„

ÝÑσqPχσ,f

ϕ´1
σ1 ¨ fσ1 .

Here
ř

pσ1Ñσ
„

ÝÑσqPχσ,f
refers to the groupoid sum, where each term pσ1 Ñ σ

„
ÝÑ σq is counted with weight

#Autppσ1 Ñ σ
„

ÝÑ σqq´1.

Proof. For a map of cone complexes, this is simply Brion’s formula [13, Theorem 2.3.(iii)]. The general case follows

by taking finite covers by cone complexes.

We present three examples that fall outside of the scope of Brion’s original formula [13, Theorem 2.3.(iii)].

Example 77. We take f : X Ñ Y to be A2 Ñ rA2{pZ{2Zqs. Let σ1 denote the unique maximal cone in ΣX , and

σ the unique maximal cone in ΣY . We fix an isomorphism σ1 Ñ σ. Note that σ has a non-trivial isomorphism τ .

Then χσ,f is the set

pσ1 Ñ σ
id

ÝÑ σq, pσ1 Ñ σ
τ

ÝÑ σq

.

Then by Proposition 76 the linear functions x and y on ΣX both get sent to x` y, and the quadratic function

xy gets sent to 2xy.

Example 78. We take Σ to be the cone shown in Figure 2, and Σ1 Ñ Σ to be the barycentric subdivision in the

maximal cone. Again, with σ the unique maximal cone in Σ, the groupoid χσ,f is a set of size 2. The formula from

Proposition 76 then gives the equality
1

xy
“

1

xpy ´ xq
`

1

ypx´ yq
.

Example 79. We take f : Σ1 Ñ Σ to be BpZ{2Zq Ñ t˚u. The groupoid χ˚,f is BpZ{2Zq, and the constant function

1 pushes forward to the constant function 1
2 .

The following lemma shows that pushing forward homological piecewise polynomials is the same as pushing

forward the corresponding piecewise polynomials.
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Lemma 80. Let f : BX Ñ BY be a proper, saturated map of idealised Artin fans, extending to a diagram

BX BY

AX AY

where the map AX Ñ AY is a proper, saturated map of Artin fans. Under the identification of logCH‹pBXq with

piecewise polynomials on ΣX vanishing on the boundary ∆X as per Corollary 61, the pushforward

logCHi´dpBXq Ñ logCHi´dpBY q

is given by pushing forward piecewise polynomial functions as in Proposition 76.

Proof. This immediately follows from the commutative diagram

logCHipBXq logCHipBY q

logCHipAXq logCHipAY q

where all the maps are pushforwards, using the injectivity of the vertical maps and the identifications with spaces

of piecewise polynomials from Corollary 61.

Example 81. Let X be the point with log structure N2, let Y be P2 with toric log structure, and let f : X Ñ Y

be the strict proper map sending X to the origin. Then we get the commutative diagram

X P2

BG2
m rP2{G2

ms

and this induces the commutative diagram

logCHipXq logCHipY q

logCHi´2pBG2
mq logCHi´2rP2{G2

ms

With the identification from Corollary 61, we have that sPP‹pXq consists of PP functions on R2
ě0 vanishing on the

boundary, and sPP‹pXq of PL functions on the fan Σ of P2. The pushforward then sends a PP function f on R2
ě0

vanishing on the boundary to the PP function on Σ that is f on R2
ě0 and 0 everywhere else.

4 A general treatment of log tautological rings

Let pX,Dq be a smooth Deligne-Mumford stack over a characteristic 0 field k. For simplicity assume X to be

connected. We consider X as a smooth log smooth log stack with the divisorial log structure induced by D. Let

X Ñ AX be an Artin fan as in Definition 43, such that the generic point of AX has trivial automorphism group.21

Denote by ΣX the associated cone stack. The assumptions above guarantee that it has a unique object 0 P ΣX (up

to isomorphism) mapping to the zero cone, and its automorphism group Autp0q “ tidu in ΣX is trivial.

Our goal here is to define notions of tautological classes, both in the Chow ring of X itself, as well as for

log blowups of X (leading to a notion of log tautological classes). These classes are constructed by combining

information from piecewise polynomials together with decorations by Chow classes defined on strata closures of

21As an example, the canonical Artin fan Acan
X always has this property.
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σ

ρ
0

Figure 2: The fan ΣX defined in Example 82

X. Modeling our definition on the decorated strata classes of Mg,n, we require an analogue of the gluing maps

ιΓ : MΓ Ñ Mg,n parameterizing these strata closures.

For this purpose, let σ P ΣX be a cone and denote by Sσ Ď X the associated locally closed stratum, and

by Sσ its closure. The normalization rSσ Ñ Sσ is smooth. For Gσ the group of automorphisms of σ in ΣX we

claim that there is a universal principal Gσ-bundle pσ : Pσ Ñ rSσ such that the normal bundle of the composition

Pσ Ñ rSσ Ñ X splits as a sum of line bundles. For X “ Mg,n and σ “ σΓ the cone associated to a stable graph,

we have GσΓ “ AutpΓq and we exactly recover that PσΓ “ MΓ is the domain of the gluing map ιΓ.

The spaces Pσ were explained in [45, Section 5.1] and [27, Section 6.2.1] when AX is chosen as the canonical

Artin fan. In this case, the Gσ can be seen as the monodromy group, acting on the branches of the divisor D

cutting out Sσ. Analytically locally, the normal bundle of the map rSσ Ñ X has one summand for each such branch

of D, and the cover Pσ Ñ rSσ precisely ensures that the pullback of this bundle to Pσ decomposes as a sum of line

bundles. For an arbitrary choice of Artin fan X Ñ AX we construct Pσ in Section 4.1.1 below and verify several

properties used in later proofs (see in particular Lemma 88 and Corollary 94).

To provide some intuition and illustrate our constructions, we have the following running example throughout

Section 4.

Example 82. Let ΣX be the combinatorial cone stack from [15, Example 2.21], given by22

0 ρ σ (39)

where 0 is the cone point, ρ is a ray, σ is R2
ě0. The two maps ρ Ñ σ are the two inclusions of ρ as a ray of σ,

and the non-trivial automorphism on σ is the swap px, yq ÞÑ py, xq. A more geometric visualization can be found

in Figure 2.

This is similar to the Z{2Z-quotient of R2
ě0 except with trivial stabilizer on the cone point. There are multiple

stacks which have ΣX as cone stack. A trivial example is the Artin fan AΣX itself. For an example in log algebraic

spaces, one can take the colimit of the diagram

A1 ˆ Gm A2

where the map A2 Ñ A2 sends px, yq to py, xq, and the two maps A1 ˆ Gm Ñ A2 are px, yq ÞÑ px, yq and

px, yq ÞÑ py, xq. Here with the colimit we mean the universal log algebraic space Y with maps A1 ˆ Gm Ñ Y and

22Note that the diagram below omits the identity morphisms of each object, and the unique morphism 0 Ñ σ.
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A2 Ñ Y such that the diagram

A1 ˆ Gm A2

Y

commutes. A final example which we will study further is to take X “ A2 ˆ Gm, with divisorial log structure

induced by the divisor

D “ tpx, y, zq P A2 ˆ Gm : x2 ´ y2z “ 0u Ă A2 ˆ Gm .

This example is also known as the punctured Whitney umbrella, and is also treated in detail in [3, Example 3.3.1]

and [2, Example 5.4.1]. The singular locus of D is the z-axis tp0, 0qu ˆ Gm Ă X, which we denote by Dp2q. We

have Sσ “ rSσ “ Dp2q, and Pσ = Gm with the map to Sσ given by

Pσ “ Gm Ñ Gm “ Sσ, u ÞÑ z “ u2 ,

corresponding to the automorphism group of σ having order 2. For the ray ρ we have Sρ “ D, and

Pρ “ rSρ – tpx, y, pu : tqq P A2 ˆ P1 : xt “ yuu

given by the normalization of D (which is the strict transform of D in the blowup of X at Dp2q). The scheme PS
has generic log structure of rank 1 and log structure of rank 2 along 0 ˆ 0 ˆ P1.

4.1 Preliminaries on cone stacks and monodromy torsors

In the following subsections we start with a purely combinatorial construction of star cone stacks, giving the tropical

analogue of the monodromy torsors above (Section 4.1.1). Via the equivalence of cone stacks and Artin fans, we

use this to define the monodromy torsors (Section 4.1.2). Finally we discuss star subdivisions, which are needed

when analyzing the effect of log blowups on the Chow groups of the monodromy torsors above (Section 4.1.3).

4.1.1 Star cone stacks

Definition 83. Given a cone stack Σ and σ P Σ, the star cone stack

C : StarσpΣq Ñ RPCf

has as objects diagrams pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q of morphisms in Σ such that σ1 is minimal among objects in Σ receiving

maps j1, j2 from σ, σ2. The functor C sends this object to

Cpσ
j1

ÝÑ σ1 j2

ÐÝ σ2q “ σ2 P RPCf . (40)

The morphisms in StarσpΣq are defined by commuting diagrams

Morpσ
j1
1

ÝÑ σ1
1

j2
1

ÐÝ σ2
1 , σ

j1
2

ÝÑ σ1
2

j2
2

ÐÝ σ2
2q “

σ1
1 σ2

1

σ

σ1
2 σ2

2

φ1

j2
1

φ2

j1
1

j1
2

j2
2

(41)

The functor C sends the morphism (41) to φ2 : σ2
1 Ñ σ2

2 .

We define the interior StarσpΣq0 to be the full subcategory of objects pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q P StarσpΣq such that the

map j2 is an isomorphism, and we let ∆σ,Σ be its complement. ♢
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Lemma 84. The tuple pStarσpΣq,StarσpΣq0,∆σ,Σq is a cone stack with boundary.

Proof. The only thing to check is that StarσpΣq0 is forward-closed. Thus assume that we have a morphism

φ : pσ
j1
1

ÝÑ σ1
1

j2
1

ÐÝ σ2
1q Ñ pσ

j1
2

ÝÑ σ1
2

j2
2

ÐÝ σ2
2q

in StarσpΣq such that j2
1 is an isomorphism. This gives a solid diagram as follows:

σ1
1 σ2

1

σ σ1
2 σ2

2

σ2
2

φ1

j2
1

φ2j1
1

j1
2

φ2
˝pj2

1 q
´1

˝j1
1

j2
2

id
j2
2

(42)

But one immediately checks that the dashed diagram commutes with the maps in the solid diagram. Therefore,

the assumption that σ1
2 is minimal among objects receiving maps from σ, σ2

2 implies that j2
2 is an isomorphism and

hence pσ ÝÑ σ1
2 ÐÝ σ2

2q P StarσpΣq0 as desired.

Example 85 (continues Example 82). We compute that StarρpΣq is given by the following diagram.

pρ
id

ÝÑ ρ
id

ÐÝ ρq

pρ
id

ÝÑ ρ Ð ‚q pρ
ι1

ÝÑ σ
id

ÐÝ σq

pρ
ι1

ÝÑ σ
ι2

ÐÝ ρq

pι1,ι1qpid,‚Ñρq

pι1,‚Ñρq pid,ι2q

Here the boundary is given by the two objects on the bottom left. Similarly, the star StarσpΣq is given by

pσ
id

ÝÑ σ
ι1

ÐÝ ρq

pσ
id

ÝÑ σ Ð ‚q pσ
id

ÝÑ σ
id

ÐÝ σq

pσ
id

ÝÑ σ
ι2

ÐÝ ρq

pid,ι1qpid,‚Ñρq

pid,‚Ñρq pid,ι2q

with the boundary being everything except pσ
id

ÝÑ σ
id

ÐÝ σq. Looking at this diagram, we see that StarσpΣq –

Facespσq “ FacespR2
ě0q.

If the unique object 0 P Σ mapping to the origin of the cones in Σ has no non-trivial automorphisms, we have

a natural identification Star0pΣq “ Star0pΣq0 – Σ. See also [46, Section 3.3.1] for more applications of the star

construction.

Given a morphism ψ : τ Ñ σ in Σ there is an induced map

Starψ : StarσpΣq Ñ Starτ pΣq (43)

pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q ÞÑ pτ
j1

˝ψ
ÝÝÝÑ rσ1

rj2

ÐÝ σ2q ,

where rσ1 Ñ σ1 is the unique minimal face morphism in Σ through which the maps j1 ˝ψ and j2 factor. Its existence

and uniqueness follow the properties of cone stacks in [15, Definition 2.15]. One checks that Starψ sends StarσpΣq0
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to Starτ pΣq0 and thus defines a map of cone stacks with boundary.

This construction is functorial (in the sense that Starφ ˝ Starψ “ Starψ˝φ), and hence when ψ : σ Ñ σ runs

through the automorphisms of σ, we obtain a compatible system of automorphisms Starψ of StarσpΣq and a quotient

cone stack23 (with boundary)

qσ : StarσpΣq Ñ StarσpΣq{Autpσq . (44)

Another important functoriality is given by a map from StarσpΣq to σ itself in the case when Σ is smooth. To

set this up, recall the cone stack Facespσq from Example 55 obtained from the rational polyhedral cone σ and its

faces σ0 ă σ with interior given by the full subcategory consisting only of σ itself.

To construct a map StarσpΣq Ñ Facespσq we observe that for each morphism j : σ Ñ σ1 in Σ there exists a

unique map of the underlying cones πj : σ
1 Ñ σ which is the projection from σ1 onto its face σ.24 Clearly we have

πj ˝ j “ idσ.

Proposition 86. There is a morphism of cone stacks with boundary

πtrop
σ : pStarσpΣq,StarσpΣq0,∆σ,Σq Ñ pFacespσq, σ0,∆σq (45)

sending an object pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q to the face inclusion pπj1 ˝ j2qpσ2q ĺ σ, whose underlying map

Cpσ
j1

ÝÑ σ1 j2

ÐÝ σ2q “ σ2
πj1 ˝j2

ÝÝÝÝÑ pπj1 ˝ j2qpσ2q

on cones is likewise given by πj1 ˝ j2. Moreover, the morphism satisfies

pπtrop
σ q´1pσ0q “ StarσpΣq0 . (46)

Proof. The necessary compatibility checks to show that πtrop
σ is a morphism of cone stacks are a short chase in

the diagram (41). This uses that adding the projection morphisms πj1
1
and πj1

2
to the diagram, we still have the

relevant maps in the diagram commute.

For proving (46) we have to show that given an object pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q of StarσpΣq with πj : σ1 Ñ σ the

projection onto the face given by j1, we have that the composition πj1 ˝ j2 surjects onto σ if and only if j2 is an

isomorphism (the two respective criteria of being in the interior). Clearly it’s true that j2 being an isomorphism

implies the surjectivity since the projection πj1 is surjective. Conversely, if j2 is a strict face inclusion, then by the

minimality of σ1 in the diagram pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q there must be a ray of σ whose image under j1 is not contained

in the image of j2. But then this ray cannot be contained in the image of the composition πj1 ˝ j2 and thus this

composition is not surjective.

A final result that is necessary later is a compatibility of the star cone stack construction with morphisms of

the ambient cone stacks.

Lemma 87. Let φ : pΣ Ñ Σ be a morphism of cone stacks, and for a choice of pσ P pΣ denote by σ “ φppσq the image

cone of pσ in Σ. Then there exists a well-defined map of cone-stacks

t
pσÑσ : Star

pσppΣq Ñ StarσpΣq, ppσ Ñ pσ1 Ð pσ2q ÞÑ pσ Ñ σ1 “ φppσ1q Ð σ2 “ φppσ2qq (47)

commuting with the maps StarσpΣq Ñ Σ and Star
pσppΣq Ñ pΣ

φ
ÝÑ Σ. Moreover, the construction is functorial: for a

morphism pσ Ñ pσ1 in pΣ mapping to σ Ñ σ1 under φ, we have

StarσÑσ1 ˝ t
pσ1Ñσ1 “ t

pσÑσ ˝ Star
pσÑpσ1 . (48)

Proof. The central point in checking that t
pσÑσ is well-defined is to verify that pσ Ñ σ1 Ð σ2q is an object of

StarσpΣq, i.e. that in this diagram, the cone σ1 is minimal among cones of Σ receiving maps from σ, σ2. This

23The quotient cone stack Σ{G for a finite group G acting on Σ is the cone stack with objects given by the cones of Σ, and morphisms
given by the compositions g ˝ ψ of morphisms ψ in Σ and elements g P G.

24Here we stress that πj is in general not a morphism of the original cone stack Σ; it’s just a map of rational polyhedral cones!
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follows very easily from the corresponding minimality property of pσ1 and the fact that pσ1 φ
ÝÑ σ1 does not factor

through a proper face of σ1 (by definition of φ being a morphism of cone stacks). Thus equation (47) gives a

well-defined map on objects, whose associated map on cones is just pσ2 φ
ÝÑ σ2. Filling in the remaining data and

verifying the compatibilities is straightforward, just like the fact that t
pσÑσ commutes with the maps of its domain

and target to Σ. Finally, one checks the functoriality (48) by observing that both maps act on the cones of pΣ
pσ1 as

ppσ1 Ñ pσ2 Ð pσ3q ÞÑ pσ Ñ φppσ2q Ð φppσ3qq .

4.1.2 Monodromy torsors

In the following we use the star cone stacks above to define the monodromy torsors mentioned in the introduction

of Section 4. For this recall that by [15, Theorem 3] the category of cone stacks is equivalent to the category of

Artin fans. Given a cone stack Σ with associated Artin fan AΣ and a cone σ P Σ, we write

• Sσ Ď AΣ for the associated locally closed stratum,

• Sσ for its closure in AΣ, and

• rSσ for the normalization of Sσ.

Let Σ be a smooth cone such that 0 P Σ has trivial automorphism group and let σ P Σ be an object of Σ. Then

the natural map Star0Ñσ : StarσpΣq Ñ Star0pΣq – Σ factors through the quotient (44). For the morphisms

StarσpΣq Ñ StarσpΣq{Autpσq Ñ Σ

of cone stacks with boundary, we obtain associated morphisms of the closed substacks B of their Artin fans

BStarσpΣq0 Ñ BStarσpΣq0{Autpσq Ñ BΣ “ AΣ . (49)

Moreover, since Autpσq acts on StarσpΣq0, we obtain an induced action of Autpσq on BStarσpΣq0 by functoriality.

Lemma 88. For a smooth cone stack Σ with trivial automorphism group of the zero cone 0 P Σ and for a choice

of σ P Σ, there is a canonical isomorphism

BStarσpΣq0{Autpσq – rSσ .

Moreover, the action of Autpσq on BStarσpΣq0 makes it a principal Autpσq-bundle over rSσ.

Definition 89. We call Pσ :“ BStarσpΣq0 Ñ rSσ the stacky monodromy torsor associated to σ P Σ and write

ισ : Pσ Ñ AΣ for the induced map to the Artin fan of Σ. ♢

Example 90 (continues Example 82). The cone stack ΣX from (39) has an Artin fan with a locally closed

decomposition

AΣX “ pt
loomoon

S0

\ BGm
loomoon

Sρ

\BG2
m ¸ pZ{2Zq

loooooooomoooooooon

Sσ

.

On the other hand, we saw that StarσpΣq0 – Facespσq so that

BStarσpΣq0 “ BG2
m Ď AStarσpΣq0 “ rA2{G2

ms .

Correspondingly, the stacky monodromy torsor Pσ Ñ rSσ is given by BG2
m Ñ BG2

m ¸ pZ{2Zq.

The proof of Lemma 88 proceeds by reduction to the case of toric varieties. We state and prove that case

separately.

Lemma 91. Let Σ be a smooth fan with toric variety XΣ, σ P Σ and consider the strata closure Sσ Ď XΣ. Then

the map of cone stacks with boundary associated to Sσ Ď XΣ is given by StarσpΣq Ñ Σ. In particular, there is a
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fiber diagram

Sσ XΣ

BStarσpΣq0 AΣ

.

Proof. It is immediate to check that the map StarσpΣq0 Ñ Σ is a fully faithful embedding, using that the cone

stack (associated to) Σ has at most one morphism between each of its objects. This implies that BStarσpΣq0 is the

unique closed reduced substack of AΣ whose points correspond to the cones of Σ containing σ as a face. By the

toric Orbit-Cone correspondence ([16, Theorem 3.2.6]) the preimage of that substack in X is precisely the orbit

closure Sσ.

Proof of Lemma 88. By construction, the Artin fan AΣ is a colimit

AΣ “ lim
ÝÑ
σ0PΣ

rSpec krσ_
0 s

looooomooooon

Vσ0

{Spec krpσ_
0 qgps

loooooooomoooooooon

Tσ0

s (50)

of Artin cones rVσ0
{Tσ0

s where Vσ0
is the affine toric variety with torus Tσ0

associated to the cone σ0. Thus we

obtain a strict smooth cover
š

σ0
rVσ0{Tσ0s Ñ AΣ by quotient stacks of affine toric varieties. We prove the claimed

isomorphisms after pullback to one of the varieties rVσ0{Tσ0s of the cover.

To calculate this pullback, note that for the cone stack Facespσ0q associated to the cone σ0 we have an isomor-

phism rVσ0
{Tσ0

s – AFacespσ0q. By the equivalence of 2-categories between cone stacks and Artin fans ([15, Theorem

6.11]), we can calculate the fiber product as the Artin fan

AStarσpΣq ˆAΣ AFacespσ0q “ AStarσpΣqˆΣFacespσ0q (51)

associated to the fiber product of StarσpΣq and Facespσ0q over Σ. Then the pullbacks of the stacks BStarσpΣq0 and

BStarσpΣq0{Autpσq in (49) under AFacespσ0q Ñ AΣ are closed substacks of (51) associated to the pullback of the interior

StarσpΣq0 of StarσpΣq. We conclude by showing that they are canonically isomorphic to the pullbacks of Pσ and
rSσ, respectively.

Spelling out the definition of the fiber product StarσpΣq0 ˆΣ Facespσ0q of cone stacks, its objects are given by

triples
ˆ

pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q, τ ĺ σ0, σ
2 – τ

˙

of an object in StarσpΣq0 (which thus satisfies that j2 is an isomorphism), a face τ of σ0 and an isomorphism of

their associated objects in Σ. Using j2 to identify σ1 and σ2 and applying the provided isomorphism of σ2 and τ ,

this is just equivalent (up to unique isomorphism) to the data pσ Ñ σ1 ĺ σ0q of a morphism σ Ñ σ1 in Σ and an

identification of σ1 as a face of σ0.

Before returning to geometry, we need to classify these objects a bit further. Note that we can separate them

into a disjoint union depending on the image impσq “ τσ Ď σ0 of the morphism σ Ñ σ0. Any two morphisms

σ Ñ σ0 with the same image τσ are uniquely related by an automorphism of σ, and thus Autpσq acts freely on the

objects of StarσpΣq0 ˆΣ Facespσ0q. Dividing out by Autpσq, once we fix a choice of face τσ that can be the image of

a morphism σ Ñ σ0, the intermediate face σ1 is just any element of the (classical) star of τσ in σ0. Thus we have

StarσpΣq0 ˆΣ σ0{Autpσq “
ğ

τσĎσ0

Starτσ pσ0q0

To finish the proof, note that by Lemma 91 the toric variety associated to Starτσ pσ0q0 is precisely the (normalization

of the) strata closure of the stratum of Vσ0
associated to τσ Ď σ0. Since taking the normalization is compatible

under smooth base change, this descends to the quotient stack AFacespσ0q and one verifies that the stacks BStarτσ pσ0q

indeed glue together to the pullback of the strata closure normalization rSσ.
Finally, since StarσpΣq Ñ StarσpΣq{Autpσq is clearly an Autpσq-quotient, the equivalence of categories between

cone stacks and Artin fans implies that the associated map Pσ Ñ rSσ is a principal Autpσq-bundle, as desired.
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An important property of the monodromy torsors considered in [45, 27] was that their normal bundles (for the

natural map to the ambient stack) decomposes into a sum of line bundles. Using the setup above, we can make

this property very explicit for the stacks Pσ, using the projection morphism πtrop
σ from Proposition 86. For this

observe that there is a natural isomorphism

BFacespσq˝ “ pBGmqσp1q “
ź

ρPσp1q

BGm .

For ρ P σp1q let Lρ be the universal line bundle on BFacespσq0 associated to the factor BGm corresponding to ρ.

Then the normal bundle of the inclusion

i : BFacespσq˝ Ñ AFacespσq

is given by the direct sum of Lρ for ρ P σp1q.

Proposition 92. For a smooth cone stack Σ such that 0 P Σ has trivial automorphism group and σ P Σ consider

the diagram

BStarσpΣq0 AStarσpΣq AΣ

BFacespσq˝ AFacespσq

i1

ισ

Pσ “

πσ rπσ

qσ

i

(52)

where

• i, i1 are the closed embeddings associated to the respective cone stacks with boundary,

• qσ and the composition ισ “ qσ ˝ i1 are induced from the map Star0Ñσ,

• πσ, rπσ are induced from πtrop
σ .

Then qσ and Ăπσ are étale, and the square diagram is cartesian. In particular, the normal bundle of ισ splits as

NPσ{AΣ
“

à

ρPσp1q

π‹
σLρ , (53)

and c1pπ‹
σLρq “ Φppπtrop

σ q‹xρq, with xρ the (piecewise) linear function on Facespσq associated to the ray ρ of σ.

Moreover, for Fσ “
ś

ρPσp1qpπtrop
σ q‹xρ we have Fσ P sPP‹pPσq and ΨpFσq “ rPσs P CH´ dimpσqpPσq. In fact

sPP‹pPσq “ sPP‹
pPσq ¨ Fσ (54)

is a free sPP‹
pPσq-module with generator Fσ.

Proof. To see that qσ is étale, note that this property can be checked étale locally on the source (see [60, Tag

036W]). The domain AStarσpΣq of qσ has an étale cover by Artin cones Aσ2 for pσ Ñ σ1 Ð σ2q P StarσpΣq. But

the composition Aσ2 Ñ AStarσpΣq

qσ
ÝÑ AΣ is just part of the étale cover of AΣ by its own Artin cones. Hence we

conclude that qσ is étale.

Similarly, to see that rπσ is smooth, note that πtrop
σ acts on cones by projection to one of their faces. This

implies, that the domain and target of rπσ have compatible covers by Artin cones, such that étale locally rπσ has

the form

rAn{Gnms Ñ rAn
1

{Gn
1

ms ,

where n ě n1 and the map is induced by the projection to the first n1 coordinates. It suffices to show that this

map is smooth, which we can check on the smooth cover An Ñ rAn{Gnms of its domain. But there it is just given

by the composition of the two smooth morphisms

An Ñ An
1

Ñ rAn
1

{Gn
1

ms ,
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first performing a coordinate projection, followed by a principal Gn1

m-bundle.

To see that the square diagram is cartesian, we only have to prove on the cone stack side that given an object

pσ
j1

ÝÑ σ1 j2

ÐÝ σ2q of StarσpΣq, its image under πtrop
σ is contained in the interior of Facespσq, and is thus equal to

σ ă σ, if and only if the object is contained in the interior of StarσpΣq. This was proven in Proposition 86.

Since qσ is étale and rπσ is smooth, we have an isomorphism

NPσ{AΣ
“ NPσ{AStarσpΣq

“ π‹
σ NBFacespσq˝ {AFacespσq
looooooooomooooooooon

“
À

ρ Lρ

.

The formula for c1pπ‹
σLρq follows since c1pLρq “ Φpxρq P CH1

pAFacespσqq, essentially by definition of Φ.

The claim that Fσ vanishes on the boundary of StarσpΣq follows since that boundary is precisely the locus where

one of the coordinates xρ vanishes. As for the statement about fundamental classes, it follows immediately from

[27, Lemma 40], which shows that

rPσs “ Φ

¨

˝

ź

ρPσp1q

pπtrop
σ q‹xρ

˛

‚P CH‹
pAStarσpΣqq ,

and the injectivity of the pushforward CH‹pPσq Ñ CH‹pAStarσpΣqq from Corollary 61. Finally, for (54) we simply

observe that the condition of a function f P sPP‹pPσq vanishing on the boundary, is equivalent to it being divisible

by
ś

ρPσp1q xρ on any of its cones.

We now return to the geometric situation of a smooth Deligne–Mumford stack X with normal crossings divisor

D, associated cone stack ΣX and Artin fan X Ñ AX “ AΣX as described at the beginning of Section 4. Recall

that the assumptions there ensure that the zero cone 0 P ΣX has trivial automorphism group.

Definition 93. For σ P ΣX we call Pσ “ Pσ ˆAX X the monodromy torsor associated to σ. ♢

The action of Autpσq on Pσ induces an action on Pσ and the natural map ισ : Pσ Ñ X is invariant under this

action. Using the fact that X Ñ AX is smooth, the content of Lemma 88 immediately implies the following.

Corollary 94. Given a cone σ P ΣX , we have a fiber diagram

Pσ rSσ X

Pσ rSσ AX

pσ

ισ

(55)

with pσ an Autpσq-principal bundle. In particular, the monodromy torsor Pσ endowed with the strict topology

from ισ has tropicalization StarσpΣXq and the map of cone stacks associated to ισ is given by

ιtropσ “ Star0Ñσ .

Moreover, given a morphism ψ : σ Ñ σ1 in ΣX we obtain an associated map

ισÑσ1 : Pσ1 Ñ Pσ (56)

of principal bundles as the fibre product of the map Pσ1 Ñ Pσ induced by Starψ.

Proof. First recall that rSσ is the normalization of the closure of the stratum Sσ in AΣX by Lemma 88. Since the

map X Ñ AΣX is smooth and surjective, it follows that the fiber product is indeed the normalization of the closure

of Sσ in X. This shows that the right diagram is a fiber square. The left square is Cartesian by the definition of

Pσ. This immediately implies that the tropicalization of ισ is the map Star0Ñσ associated to Pσ Ñ AX . Finally,

for ψ : σ Ñ σ1 in ΣX as above we first obtain a map Starσ1 pΣXq
Starψ

ÝÝÝÑ StarσpΣXq
Star0Ñσ

ÝÝÝÝÝÑ ΣX of cone stacks with
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boundary. Again by Lemma 88 this induces a morphism Pσ1 Ñ Pσ Ñ AX of their associated Artin stacks. Taking

the fiber product with X Ñ AX gives the desired map Pσ1

ισÑσ1

ÝÝÝÝÑ Pσ
ισ

ÝÑ X.

Notation 95. To ease the notation slightly in the following, we write Σσ “ StarσpΣXq for the cone stack with

boundary associated to Pσ. Given σ Ñ σ1 as above, we also write ιtropσÑσ1 : Σσ1 Ñ Σσ for the map StarσÑσ1 associated

to ισÑσ1 : Pσ1 Ñ Pσ.

Example 96 (continues Example 82). Let σ P ΣX be the two-dimensional cone, then the map Pσ Ñ X factors as

Pσ “ Gm
uÞÑp0,0,uq

ÝÝÝÝÝÝÑ Y “ A2 ˆ Gm
px,y,uqÞÑpx,y,u2

q
ÝÝÝÝÝÝÝÝÝÝÝÑ X “ A2 ˆ Gm .

As the log structure on X is induced by the divisor D Ď X, the induced log structure on Y comes from the

pre-image E Ď Y of D, cut out by the equation x2 ´ y2u2 “ px´ yuqpx` yuq. We see that E splits in E˘ cut out

by x “ ˘yu, with E` X E´ “ Pσ. In particular, as predicted by Proposition 92, the normal bundle of the map

Pσ Ñ X splits canonically as

NPσ{X “ OpE`q|Pσ ‘ OpE´q|Pσ .

Remark 97. The Cartesian diagram (55) is also mentioned in [44, Section 3.7]. Using the notation above, that

paper studies the strata homology classes in the Chow groups of Pσ pulled back from the stack Pσ. As observed

in [44, Lemma 3.9], pushing forward such classes to X just recovers classes on X defined via strict piecewise

polynomials on ΣX . In Section 4.2 below we will see how to combine strata homology classes with explicit systems

of decorations on Pσ itself to obtain potentially larger tautological rings of X.

We conclude Section 4.1.2 with some further results on the monodromy torsors which are needed in later proofs.

The first one concerns the behavior of the spaces Pσ under log blowups of pX Ñ X. Recall that such a log blowup

corresponds to a subdivision φ : pΣ Ñ ΣX . On the cone stack side, we saw in Lemma 87 that for pσ P pΣ mapping to

σ P ΣX we obtain a map

t
pσÑσ : Star

pσppΣq Ñ StarσpΣq .

Taking first the geometric realization of (47) on Artin fans and the fiber product with X Ñ AX , we obtain a map

s
pσÑσ : P

pσ Ñ Pσ . (57)

To gain some geometric intuition: in the proof of Theorem 120 we are going to see that if pΣ Ñ Σ corresponds to a

blowup pX Ñ X of a smooth stratum closure in X, then the map s
pσÑσ is given by either

• a projective bundle, in case that Pσ Ñ X has image inside the blowup center, or

• a blowup at a disjoint union of smooth strata closures, representing P
pσ as the strict transform of the map

Pσ Ñ X, otherwise.

Example 98 (continues Example 82). We take rΣ to be the subdivision in the ray ρ1 “ xp1, 1qy Ă σ. Then sρ1Ñσ

is a P1-bundle, giving the map from the exceptional divisor to the center of the blowup.

An important construction used below is the fiber product of s
pσÑσ with a map ισÑσ1 , which corresponds to

restricting s
pσÑσ to (the parametrization of) a smaller stratum closure inside Pσ. The following proposition shows

that this fiber product can be covered by a union of monodromy torsors P
pσ1 for pσ1 P pΣ.

Proposition 99. Let π : pX Ñ X be a log blowup with associated map φ : pΣ Ñ ΣX of cone stacks. Let pσ P pΣ be

a cone mapping to σ P ΣX and choose a morphism σ Ñ σ1 in ΣX . Define P
pσÑσ1 as the fiber product

P
pσÑσ1 P

pσ

Pσ1 Pσ

πσ1

ι
pσÑσ1

s
pσÑσ

ισÑσ1

(58)
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whose associated cone stack pΣ
pσ ˆΣσ Σσ1 has interior indexed by commuting diagrams

pσ pσ1

σ σ1 σ2 σ2

φ φ

„

. (59)

Let H
pσÑσ1 “ tppσ Ñ pσ1, σ1 Ñ σ2qu be a set of representatives of diagrams (59) associated to the minimal cones of

ppΣ
pσ ˆΣσ Σσ1 q0. Then for the induced diagram

Ů

P
pσ1 P

pσÑσ1 P
pσ

Ů

Pσ2 Pσ1 Pσ

J

ι
pσÑpσ1

\s
pσ1Ñσ2 πσ1

ι
pσÑσ1

s
pσÑσ

\ισ1Ñσ2 ισÑσ1

(60)

where the disjoint unions go over elements of H
pσÑσ1 , we have that the map J is proper, representable and surjective.

Proof. The description of the interior of pΣ
pσ ˆΣσ Σσ1 follows directly from the definition of the fiber product of cone

stacks. The minimal cones in this interior correspond to the irreducible components of the fiber product P
pσÑσ1 .

Then the properness, representability and surjectivity of J can first be checked on the level of idealised Artin fans

and is preserved under taking the fibre product with X Ñ AΣ. On the level of idealised Artin fans, surjectivity

follows from surjectivity of the corresponding map of cone stacks, representability follows as the map on cones is

injective on automorphism groups. Finally, properness can be checked by a valuative property, which on the level

of cone stacks amounts to the following statement: consider any inclusion of cones

ppσ Ñ pσ1
1, σ

1 Ñ σ2
1q Ñ ppσ Ñ pσ1

2, σ
1 Ñ σ2

2q (61)

in the cone stack of P
pσÑσ1 . This corresponds to a morphism between diagrams of the form (59). Now for each cone

ppσ1 Ñ pσ1
1q of one of the P

pσ1 mapping to the left-hand side of (61), we claim that we can find a unique inclusion in

a cone mapping to the right-hand side of (61). Indeed this is the case, since (61) contains the data of an inclusion

pσ1
1 Ñ pσ1

2 and thus the morphism

ppσ1 Ñ pσ1
1q Ñ ppσ1 Ñ pσ1

1 Ñ pσ1
2q

in pΣ
pσ1 given by composing with this face map is the unique solution we are looking for.

Lemma 100. The strata closure Sσ associated to σ P ΣX is smooth if and only if the map

StarσpΣq0{Autpσq Ñ Σ (62)

is a fully faithful embedding.

Proof. We have that Sσ is smooth if and only if the normalization map rSσ Ñ Sσ is an isomorphism. Reformulating,

this is the case if and only if the map rSσ Ñ X is a closed embedding. This can equivalently be checked for the

map rSσ Ñ AX on the Artin fan side. By Lemma 88 the map rSσ Ñ AX corresponds to the map (62) of cone stacks

with boundary. It is thus a closed embedding if and only if this underlying map of cone stacks is a fully faithful

embedding.

Let Σ be a cone stack and Σ0 be a forward-closed subcategory. We say that Σ0 is connected if the graph whose

vertices are isomorphism classes of objects of Σ0 and whose edges correspond to morphisms in Σ0 is connected. It’s

straightforward to see that Σ0 is connected if and only if the associated stack BΣ0 is connected.

Lemma 101. Let Σ0
X be a connected forward-closed subcategory in the cone stack ΣX with complement ∆. Then

BΣ0
X

is smooth if and only if there is a stratum σ P Σ0
X such that the embedding Σ0

X Ñ ΣX is isomorphic to

StarσpΣXq0{Autpσq Ñ ΣX .
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Proof. First assume BΣ0
X

is smooth. Then since it’s also connected, it must be irreducible and hence has a generic

point corresponding to some minimal stratum σ in ΣX . Then the equivalence follows from Lemma 100. The

implication the other way is also direct from Lemma 100.

Example 102 (continues Example 82). We know the stratum D is not smooth, as it has a self-intersection. The

corresponding substack with boundary

Σ0
X “

ˆ

ρ σ
i1

i2

˙

does have a unique minimal object, but is is not of the form stated in Lemma 101, as the map StarρpΣXq0{Autpρq Ñ

ΣX is not isomorphic to Σ0
X Ñ ΣX (indeed, the map from the star is not even an embedding).

The stratum Dp2q is smooth, and does trivially satisfy the condition from Lemma 101.

4.1.3 Star subdivisions

Given a cone σ P ΣX as in Lemma 100, the blowup

rX “ BlSσX Ñ X (63)

is a logarithmic modification, corresponding to the star subdivision ssdσpΣXq Ñ ΣX of the cone stack ΣX . Since

it will be needed later, we give an explicit construction of this subdivision below.

Construction 103. Consider the decomposition ΣX “ StarσpΣXq0{Autpσq \ R of the objects of ΣX into subcat-

egories induced by the embedding (62). Objects of StarσpΣXq0{Autpσq are indexed by morphisms pσ Ñ σ1q in ΣX
and we denote rσ P R the objects of the residual category R.

Then the objects of the star subdivision ssdσpΣXq decompose as

ssdσpΣXq “ ssdpStarσpΣXq0q{Autpσq \ R ,

where elements of ssdpStarσpΣXq0q{Autpσq are indexed by diagrams pτ
h

ÝÑ σ
h1

ÝÑ σ1q in ΣX such that h is a proper

face morphism (i.e. a morphism in Σ whose induced map on cones is the inclusion of a proper face of σ). Denoting

by bσ “
ř

ρPσp1q uρ the barycenter of σ, the associated cone to this object is the subcone of σ1 given by the convex

hull

Cpτ
h

ÝÑ σ
h1

ÝÑ σ1q “ conepth1pbσqu Y ph1 ˝ hqpτq Y pσ1p1qzh1pσp1qqqq Ď σ1

of the barycenter bσ (or rather its image under h1), the image of τ in σ1 and all the rays ρ P σ1p1q which are not in

the image of any of the rays of σ. On the other hand, the cone Cprσq associated to rσ P R is just the same cone as

for Σ. See Figure 3 for an example of a star subdivision, showing the cones Cpτ
h

ÝÑ σ
h1

ÝÑ σ1q in red.

Having defined the two types of objects pτ
h

ÝÑ σ
h1

ÝÑ σ1q and rσ of ssdσpΣXq, the morphisms between them are

given as follows:

MorssdσpΣXqpτ1
h1

ÝÑ σ
h1
1

ÝÑ σ1
1, τ2

h2
ÝÑ σ

h1
2

ÝÑ σ1
2q “

$

’

’

’

&

’

’

’

%

τ1 σ σ1
1

τ2 σ σ1
2

h1 h1
1

h2 h1
2

,

/

/

/

.

/

/

/

-

MorssdσpΣXqpτ
h

ÝÑ σ
h1

ÝÑ σ1, rσq “ H

MorssdσpΣXqprσ, τ
h

ÝÑ σ
h1

ÝÑ σ1q “ tprσ
i

ÝÑ σ1q P MorΣX prσ, σ1q : impiq Ď Cpτ
h

ÝÑ σ
h1

ÝÑ σ1qu

MorssdσpΣXqprσ1, rσ2q “ MorΣX prσ1, rσ2q

Both the composition of such morphisms and their associated face maps under the functor C : ssdσpΣXq Ñ RPCf

are straightforward to define. Similarly, one verifies that ssdσpΣXq is a cone stack and it has a natural map

btropσ,ΣX
: ssdσpΣXq Ñ ΣX , pτ

h
ÝÑ σ

h1

ÝÑ σ1q ÞÑ σ1, rσ ÞÑ rσ . (64)
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ρ2

ρ1

ρ4

ρ3

τ24

τ13

τ12 τ34
τ23

σ123

σ234

ρ2

ρ1

ρ4

ρ3

τ24

τ13

τ34
τ23 σ234

ρ2 Ñ τ12 Ñ τ12

0 Ñ τ12 Ñ τ12

ρ1 Ñ τ12 Ñ τ12

ρ
2 Ñ

τ12 Ñ
σ
123

0 Ñ
τ12 Ñ

σ
123

ρ
1 Ñ

τ12 Ñ
σ
123

ssdτ12pΣXqΣX

Figure 3: A cone stack ΣX and its star subdivision at an object τ12, with new cones on the right indicated in red.
We draw here a slice through the underlying 3-dimensional picture.

Proposition 104. The morphism bσ,ΣX : AssdσpΣXq Ñ AΣX induced by the map btropσ,ΣX
is the blowup of the strata

closure Sσ Ď AΣX .

Proof. As in the proof of Lemma 88, it is sufficient to verify the claim on the toric atlas
š

σ0PΣX
Vσ0

Ñ AΣX . On

the fan of each such Vσ0 , there are two cases for the pullback of the subdivision btropσ,ΣX
under the map σ0 Ñ ΣX :

• If there exists a map σ Ñ σ0 in ΣX , the condition from Lemma 100 implies that the image of σ in σ0 is

unique. Then the pullback subdivision is the star subdivision at the image of the barycenter of σ in σ0 (which

only depends on the image of σ).

• If there exists no map σ Ñ σ0, the cone σ0 is not subdivided when pulling back ssdσpΣXq Ñ ΣX under

σ0 Ñ ΣX .

Comparing with the classical toric correspondence between star subdivisions and blowups of smooth strata ([16,

Proposition 3.3.15]), we see that this precisely corresponds to the blowup of the preimage of Sσ under the map

Vσ0
Ñ AΣX . This correspondence is also compatible on the overlaps of the Vσ0

and thus the original map is given

by the blowup of Sσ in AΣX as claimed.

Example 105 (continues Example 82). We consider the star subdivision in the two dimensional cone σ. We see

we end up with the following cone stack rΣ “ ssdσpΣXq:

p0 Ñ σ Ñ σq

r0 rρ pρ Ñ σ Ñ σq

(65)

On the scheme level, the blowup rX of X in Dp2q has two codimension one strata: the strict transform of D and the

exceptional divisor. They intersect in a single connected stratum that is abstractly isomorphic to Gm. And indeed

we can obtain rX as the fiber product

rX X

A
rΣ AΣX
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making rX Ñ A
rΣ a choice of an Artin fan (in the sense of Definition 43).

However, we warn the reader that rΣ is not the canonical cone stack Σ
ĂX

of the blowup rX, as Σ
ĂX

does not have

a non-trivial automorphism of the exceptional divisor while rΣ does. In fact, rΣ is the relative cone stack (or the

cone stack corresponding to the relative Artin fan), and there is no map Σ
ĂX

Ñ rΣ. In fact, rX Ñ X is the standard

example where functoriality of the canonical Artin fan fails, see [2, Section 5.4]. In contrast, the star subdivision

is functorial, by construction.

4.2 Tautological systems

In the following, given a normal crossings pair pX,Dq with choice of cone stack ΣX and Artin fan AX , we define

the notion of tautological classes on X. These will not be fully intrinsic to pX,Dq, but depend on an additional

choice of systems of Chow classes on the monodromy torsors Pσ from Definition 93. For this recall that the strata

Sσ of X correspond to the cones σ P ΣX , and for a given cone we defined a map Pσ Ñ rSσ Ñ X parameterizing the

normalization rSσ of the strata closure of Sσ. We denoted by pΣσ,∆σq the cone stack with boundary associated to

Pσ (Notation 95).

Definition 106. A system of tautological rings RX “ pR‹pPσqqσPΣX on pX,Dq is data of a tautological subring

ΨpsPP‹
pΣσ,∆σqq “ ΨpsPP‹pPσqq Ď R‹pPσq Ď CH‹

pPσq (66)

which contains all classes induced from strict piecewise polynomials on Σσ vanishing on the boundary.

Furthermore, we assume that pushforward and pullback under ισÑσ1 give maps

ισÑσ1‹ : R‹pPσ1 q Ñ R‹pPσq and ι‹σÑσ1 : R‹pPσq Ñ R‹pPσ1 q (67)

respecting the tautological subrings on the monodromy torsors Pσ and Pσ1 . ♢

Note that pushing the tautological ring on Pσ forward under the principal bundle map Pσ Ñ rSσ gives the

tautological ring

R‹prSσq “ p‹R
‹pPσq – R‹pPσqAutpσq (68)

where the equality with the Autpσq-invariant part of R‹pPσq follows from [9, Lemma 2.20].

Example 107. The Chow system CHX of tautological rings on pX,Dq is given by setting R‹pPσq “ CH‹
pPσq to

be the full Chow ring. This trivially satisfies the compatibility conditions (66) and (67).

Example 108. For X “ Mg,n with its usual boundary divisor we take ΣX “ Σg,n. Its cones σ are associated to

stable graphs Γ and for σ “ σΓ we have an associated principal bundle

PΓ “ MΓ Ñ rSΓ “ MΓ{AutpΓq

for the monodromy group Autpσq “ AutpΓq (see [27, Section 6.2.5]). The standard system of tautological rings

RMg,n
is defined by setting R‹pPΓq “ R‹pMΓq to be the image of the tensor product of tautological rings of the

factors Mgpvq,npvq as usual. The relevant ring of strict piecewise polynomials is given by

sPP‹
pMΓq “

¨

˝

ź

ePEpΓq

1 b ℓe

˛

‚¨
â

vPV pΓq

sPP‹
pΣgpvq,npvqq bQ Qrℓe : e P EpΓqs .

Under the map Ψ, the strict piecewise polynomials on the fans Σgpvq,npvq map to tautological classes in R‹pMgpvq,npvqq,

whereas for an edge e “ ph, h1q P EpΓq, the length function ℓe maps to ´ψh ´ ψh1 . In particular, this implies the

desired inclusion (66) of classes from strict piecewise polynomials in the tautological rings of MΓ.

Finally, the morphisms σΓ1 Ñ σΓ in Σg,n are in correspondence with stable graph morphisms φ : Γ Ñ Γ1 and

the associated map of principal bundles is a partial gluing morphism

ιφ : MΓ Ñ MΓ1 , (69)
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which glue together all pairs of nodes associated to edges in EpΓqzEpΓ1q (see [58, Notation 2.8]). By [23, Appendix

A], the pushforward and pullback under ιφ indeed preserves the tautological rings, so that condition (67) holds.

Given a smooth log blowup π : p pX, pDq Ñ pX,Dq associated to a subdivision φ : pΣ Ñ ΣX , we claim that there is

a natural system of tautological rings pR‹pP
pσqq

pσPpΣ on p pX, pDq. To describe it, let pσ P pΣ be a cone of the subdivision,

and σ “ φppσq P ΣX its image in ΣX . Then given any map σ Ñ σ1 in ΣX we can take the fibre product25

P
pσÑσ1 P

pσ

Pσ1 Pσ

ι
pσÑσ1

πσ1 s
pσÑσ

ισÑσ1

(70)

as in Proposition 99. The cone stack Σ
pσÑσ1 associated to P

pσÑσ1 is given by the analogous fiber product pΣ
pσˆΣσ Σσ1

in the category of cone stacks and has a natural boundary ∆0
pσÑσ. Denote by

sPP‹pP
pσÑσ1 q “ sPP‹

pΣ
pσÑσ,∆

0
pσÑσq (71)

the strict piecewise polynomials on Σ
pσÑσ vanishing on the boundary, as usual.

Definition 109. Let π : p pX, pDq Ñ pX,Dq be a smooth log blowup associated to a subdivision φ : pΣ Ñ ΣX . Let

pσ P pΣ be a cone mapping to σ “ φppσq P ΣX . A decorated log-strata class on P
pσ is described by a triple rσ1, f, γs

of a cone σ1 P ΣX admitting a map26 σ Ñ σ1 in ΣX , a piecewise polynomial f P sPP‹pP
pσÑσ1 q and a decoration

γ P R‹pPσ1 q. Its associated class in CH‹
pXq is given by

rσ1, f, γs “ ι
pσÑσ1‹ pπ‹

σ1γ ¨ Ψpfqq P CH‹
pP

pσq . (72)

We denote by pπ‹RXqpP
pσq the Q-vector subspace of CH‹

pP
pσq spanned by all decorated log-strata classes. ♢

Our next goal is to prove the following:

Theorem 110. The collection R
xX

“ ppπ‹RXqpP
pσqq

pσPpΣ forms a system of tautological rings on p pX, pDq.

Definition 111. Given a smooth log blowup π : p pX, pDq Ñ pX,Dq, and a system RX of tautological rings on X,

we denote by R
xX

“ π‹RX the induced tautological system on pX from Theorem 110. ♢

Remark 112. As the tautological system RX contains classes of homological piecewise polynomials per definition,

there are also pushforward maps π‹ : R
xX

pP
pσq Ñ RXpPσq for a cone pσ P pΣ mapping to σ P ΣX .

This shows that once we define tautological classes on X and its strata, we obtain a notion of tautological

classes on any smooth log blowup of X, allowing us to define log tautological rings in Section 4.4.

To start approaching the proof of Theorem 110, the first step is to give a slightly different generating set of

pπ‹RXqpP
pσq, for which some of the calculations are easier to express explicitly. For this choose pσ Ñ pσ1 a morphism

in pΣ mapping to σ Ñ σ1 under φ : pΣ Ñ ΣX . From equation (48) we see that we have a commutative diagram

P
pσ1 P

pσ

Pσ1 Pσ

ι
pσÑpσ1

s
pσ1Ñσ1 s

pσÑσ

ισÑσ1

Given β P RXpPσ1 q and g P sPP‹pP
pσ1 q we can define the class

tpσ1, g, βu “ pι
pσÑpσ1 q‹pps

pσ1Ñσ1 q‹β ¨ Ψpgqq P CH‹
pP

pσq , (73)

which we call a strictly decorated log stratum class.

25Note that since the map ισÑσ1 below is strict, the fibre product in the category of fs log stacks agrees with the fibre product of
stacks, by [47, Remark III.2.1.3].

26In fact the class depends on the choice of such a map, but for simplicity we suppress this in the notation.
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Lemma 113. Inside CH‹
pP

pσq, the Q-linear spans of all classes rσ1, f, γs from (72) and of all classes tpσ1, g, βu from

(73) coincide.

Proof. Consider a decorated log-stratum class rσ1, f, γs recall from Proposition 99 that we have the diagram

Ů

P
pσ1 P

pσÑσ1 P
pσ

Ů

Pσ2 Pσ1 Pσ

J

ι
pσÑpσ1

\s
pσ1Ñσ2 πσ1

ι
pσÑσ1

s
pσÑσ

\ισ1Ñσ2 ισÑσ1

with the disjoint union indexed by ppσ Ñ pσ1, σ1 Ñ σ2q P H
pσÑσ1 and the map J being proper, representable and

surjective. By Proposition 69, we can then find g
pσ1 P sPP‹pP

pσ1 q for ppσ Ñ pσ1, σ1 Ñ σ2q P H
pσÑσ1 such that

pJ tropq‹p
ÿ

g
pσ1 q “ f P sPP‹pP

pσÑσ1 q .

Then we can conclude

rσ1, f, γs “
ÿ

ppσÑpσ1,σ1Ñσ2qPH
pσÑσ1

tpσ1, g
pσ1 , ι‹σ1Ñσ2γu ,

where we use that the tautological system on X is closed under pullbacks by the maps ισ1Ñσ2 .

On the other hand, fix a strictly decorated log-stratum class tpσ1, g, βu with φppσ1q “ σ1 P ΣX . Then we have a

solid diagram of morphisms

P
pσ1 P

pσÑσ1 P
pσ

Pσ1 Pσ

j

ι
pσÑpσ1

s
pσ1Ñσ1

πσ1

ι
pσÑσ1

s
pσÑσ

ισÑσ1

which is commutative by (the geometric realization of) Lemma 87. Then the dashed arrow j exists by the universal

property of the fiber product P
pσÑσ1 and we have

tpσ1, g, βu “ rσ1, jtrop‹ g, βs .

Thus we have expressed all classes rσ1, f, γs as linear combinations of cycles tpσ1, g, βu, and vice versa, and hence

their linear spans coincide.

An important first step in the proof of Theorem 110 is to show that each group pπ‹RXqpP
pσq forms a Q-algebra,

i.e. is closed under intersection products. In fact, it is possible to give an explicit formula for the product of two

decorated log-strata, analogous to the formula for products of decorated boundary strata in Mg,n presented in [23,

Appendix A]. We begin by defining the relevant notation to state this formula.

Definition 114. Given two maps σ1 Ð σ Ñ σ2 in ΣX , a generic pσ1, σ2q-structure over σ is given by a triple

pσ1, φ1 : σ1 Ñ σ1, φ2 : σ2 Ñ σ1q of a cone σ1 P ΣX and morphisms φ1, φ2 in ΣX such that the diagram

σ σ1

σ2 σ1

φ1

φ2

(74)

commutes, and such that each ray of σ1 is in the image of either φ1 or φ2.

A second triple pσ2, φ1
1, φ

1
2q is called isomorphic if there is an isomorphism σ2 Ñ σ1 in ΣX making the obvious

diagrams commute. Denote by Gσ1ÐσÑσ2
the set of isomorphism classes of generic pσ1, σ2q-structures. ♢

51



When σ “ 0 is the trivial cone, we will often just write

Gσ1,σ2 “ Gσ1ÐσÑσ2 .

Lemma 115. Given two cone stack morphisms ιtropσÑσi : Σσi Ñ Σσ associated to maps σ Ñ σi in ΣX (for i “ 1, 2)

consider the map of cone stacks with boundary

ğ

pσ1,φ1,φ2qPGσ1ÐσÑσ2

Σσ1 Ñ Σσ1
ˆΣσ Σσ2

(75)

induced by the commutative diagram
Ů

Σσ1 Σσ2

Σσ1
Σσ

ιtropφ2

ιtropφ1
ιtropσÑσ2

ιtropσÑσ1

. (76)

Then the map (75) induces an isomorphism

ğ

pσ1,φ1,φ2qPGσ1ÐσÑσ2

Σ0
σ1

„
ÝÑ pΣσ1

ˆΣσ Σσ1
q0 (77)

on the interiors of its domain and target.

Proof. By definition of the fiber product, the existence of the map (75) follows from the commutativity of the

diagram (76). This commutativity in turn follows from the commutativity of the diagram (74) and the functoriality

Starσ1Ñσ1Ñσ “ Starσ1Ñσ2Ñσ .

It remains to verify that (75) induces an isomorphism on the interiors. For this, recall that objects of the cone

stack fiber product Σσ1
ˆΣσ Σσ2

are indexed by objects in Σ1,Σ2 together with an isomorphism of their images in

Σσ. This data boils down to a diagram of the form

σ σ1 σ1
1 σ2

1

σ2 σ1
2 σ2

2

j1
1

φ1

j2
1

φ2

j1
2

j2
2

in Σ with φ1, φ2 isomorphisms. The original objects are contained in Σ0
1,Σ

0
2 if and only if also j2

1 , j
2
2 are isomor-

phisms. In this case, denoting σ2 “ σ2
2 the data of the diagram boils down (up to unique isomorphism) to the data

of the maps

rφ1 “ φ2 ˝ pj2
1 q´1 ˝ j1

1 : σ1 Ñ σ2 and rφ2 “ pj2
2 q´1 ˝ j1

2 : σ2 Ñ σ2 ,

commuting with the morphisms from σ. By the properties of the cone stack ΣX , there is a unique minimal

morphism j : σ1 Ñ σ2 such that rφ1, rφ2 factor through j:

σ1

σ σ1 σ2

σ2

φ1

rφ1

j

φ2

rφ2

Then by the minimality of j we have pσ1, φ1, φ2q P Gσ1ÐσÑσ2 and pσ1 j
ÝÑ σ2 id

ÐÝ σ2q gives an object of Σ0
σ1 .

Conversely it’s straightforward to check that pιtropφ1
, ιtropφ2

q sends this object back to the original cone in Σσ1
ˆΣσ Σσ2

,
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and that these inverse functors induce isomorphisms on the cone Cpσ2
2q “ Cpσ2q associated to the objects in domain

and target by the structure of their respective cone stacks.

Proposition 116. Let ΣX be the cone stack of pX,Dq and σ1 Ð σ Ñ σ2 morphisms in ΣX . Then there is a fiber

diagram
Ů

Pσ1 Pσ2

Pσ1 Pσ

ιφ2

ιφ1
ισ2

ισ1

. (78)

where the disjoint union is over pσ1, φ1, φ2q P Gσ1ÐσÑσ2
. Let γi P CH‹

pPσiq and fi P sPP‹pPσiq for i “ 1, 2 and

denote by Fσ P sPP‹pPσq the strict piecewise polynomial with ΨpFσq “ rPσs from Proposition 92. Then we have

an equality

pισ1‹γ1 ¨ Ψpf1qq ¨ pισ2‹γ2 ¨ Ψpf2qq “
ÿ

pσ1,φ1,φ2qPGσ1ÐσÑσ2

ισ1‹

˜

pι‹φ1
γ1q ¨ pι‹φ2

γ2q ¨ Ψ

˜

pιtropφ1
q‹f1 ¨ pιtropφ2

q‹f2

pιtropσ1Ñσq‹Fσ

¸¸

(79)

in CH‹pPσq, where we use that the above fraction gives a well-defined element of sPP‹pPσ1 q.

Proof. The fact that (78) is a fiber diagram just follows from the geometric realization of the isomorphism (77)

above. For proving the formula of the intersection product (79) consider, similar to Fσ, the polynomials Fσi P

sPP‹pPσiq with ΨpFσiq “ rPσis (and analogously for σ1). It follows immediately that

Ψpfiq “ Φ

ˆ

fi
Fσi

˙

¨ rPσis ,

where Φ : sPP‹
pPσiq Ñ CH‹

pPσiq is the usual map. Here the fraction fi{Fσi is well-defined by (54). Using

Proposition 92, we obtain a piecewise linear function xρ on Pσi for each ρ P σip1q and have that

Fσi “
ź

ρPσip1q

xρ “: xσip1q and Fσ1 “
ź

ρPσ1p1q

xρ “: xσ1p1q .

Moreover, again from Proposition 92, the top Chern classes of normal bundles of the two horizontal maps in the

diagram (78) are given by

epNισ1
q “ Φ

¨

˝

ź

ρPσ1p1qzσp1q

xρ

˛

‚“ Φ

ˆ

xσ1p1q

xσp1q

˙

and epNιφ2
q “ Φ

¨

˝

ź

ρPσ1p1qzσ2p1q

xρ

˛

‚“ Φ

ˆ

xσ1p1q

xσ2p1q

˙

.

By the excess intersection formula [21, Proposition 17.4.1], the intersection product (79) is given by a sum of

contributions from the components Pσ1 of the fiber product (78), with the contribution of Pσ1 given by

ισ1‹

˜

pι‹φ1
γ1 ¨ Φ

ˆ

f1
Fσ1

˙

q ¨ pι‹φ2
γ2 ¨ Φ

ˆ

f1
Fσ1

˙

q ¨ e

˜

Nισ1

Nιφ2

¸

¨ rPσ1 s

¸

.

Using the formula h‹Φpgq “ Φpphtropq‹gq for h “ ιφ1 , ιφ2 , together with the formulas derived above (and identifying

rays of σ, σ1, σ2 as elements of the common set σ1p1q via the cone morphisms φ1, φ2), this simplifies to

ισ1‹

ˆ

pι‹φ1
γ1q ¨ pι‹φ2

γ2q ¨ Φ

ˆ

pιtropφ1
q‹f1 ¨ pιtropφ2

q‹f2

xσ1p1q ¨ xσ2p1q

˙

¨ Φ

ˆ

xσ1p1q ¨ xσ2p1q

xσp1q ¨ xσ1p1q

˙

¨ Ψpxσ1p1qq

˙

.

Using that Φpfq ¨ Ψpgq “ Ψpf ¨ gq, this readily simplifies to the formula (79).

Given a subdivision pΣ Ñ ΣX and φi : pσ1 Ñ pσi a morphism in pΣ, we denote by φi : σ1 Ñ σi the induced

morphism in ΣX given as the image of φi under the map pΣ Ñ ΣX of cone stacks.
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Proposition 117. Given a cone pσ P pΣ, the product of two strictly decorated log-strata on P
pσ is given by

tpσ1, g1, β1u ¨ tpσ2, g2, β2u “
ÿ

ppσ1, pφ1, pφ2qPG
pσ1ÐpσÑpσ2

#

pσ1,
pιtrop

pφ1
q‹g1 ¨ pιtrop

pφ2
q‹g2

pιtrop
pσ1Ñpσq‹

ś

ρPpσp1q xρ
, pιφ1

q‹β1 ¨ pιφ2
q‹β2

+

. (80)

Proof. This follows immediately by applying the formula from Proposition 116 on the cone stack pΣ with γi “

ps
pσiÑσiq

‹βi, which explains the summation over G
pσ1ÐpσÑpσ2

and the decoration by strict piecewise polynomials. To

see how the decorations pιφiq
‹βi arise, we observe that

ι‹φiγi “ ps
pσ1Ñσ1 q‹pιφiq

‹βi

and apply the definition of strictly decorated log strata classes.

Continuing with preparations for the proof of Theorem 110 we show functoriality of tautological classes along

the map s
pσÑσ.

Lemma 118. Pushforward and pullback under the morphism s
pσÑσ induce well-defined maps

s
pσÑσ‹ : pπ‹RXqpP

pσq Ñ RXpPσq and s‹
pσÑσ : RXpPσq Ñ pπ‹RXqpP

pσq . (81)

Proof. For the pushforward consider a strictly decorated log-stratum class tpσ1, g, βu on P
pσ defined via the commu-

tative diagram

P
pσ1 P

pσ

Pσ1 Pσ

Ψpgq
ι
pσÑpσ1

s
pσ1Ñσ1 s

pσÑσ

β
ισÑσ1

.

Then we have

s
pσÑσ‹tpσ1, g, βu “ pισÑσ1 q‹ pβ ¨ s

pσ1Ñσ1‹Ψpgqq “ pισÑσ1 q‹

`

β ¨ Ψppstrop
pσ1Ñσ1 q‹gq

˘

P RXpPσq .

where the last containment follows as the tautological system RX contains classes in the image of Ψ and is closed

under intersection products and pushforwards via ισÑσ1 . In the equality we also used that the map s
pσÑσ is proper

of relative log dimension 0 (Definition 66) and thus its tropicalization strop
pσÑσ : pΣ

pσ Ñ Σσ admits a pushforward

compatible with the map Ψ (as in Proposition 67).

For the pullback via s
pσÑσ, let γ P RXpPσq and let F

pσ P sPP‹pP
pσq be the piecewise polynomial from Proposition

92 which satisfies ΨpF
pσq “ rP

pσs. Then taking σ1 “ σ in the fiber diagram

P
pσÑσ P

pσ

Pσ Pσ

id

πσ s
pσÑσ

id

(82)

we see

rσ, F
pσ, γs “ pidq‹π

‹
σγ ¨ ΨpF

pσq “ s‹
pσÑσγ ,

proving that the pullback of tautological classes on Pσ under s
pσÑσ indeed lands in pπ‹RXqpP

pσq.

Proof of Theorem 110. For the entire proof fix pσ P pΣ and let σ “ φppσq be its image in ΣX . By Proposition 117 we

have that R‹pP
pσq Ď CH‹

pP
pσq is a sub-Q-algebra. To see that it contains the class Ψpfq for any f P sPP‹pP

pσq, just

note that

Φpfq “ rσ, f, 1s ,

by a computation similar to the one presented in the proof of Lemma 118.

On the other hand, consider any morphism pσ Ñ pσ1 in pΣ, mapping to the morphism σ Ñ σ1 under φ. Then we

want to check invariance of the rings under pushforwards and pullbacks by ι
pσÑpσ1 : P

pσ1 Ñ P
pσ. By Lemma 113 we
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can verify this property on the generators of the tautological rings of P
pσ, Ppσ1 given by strictly decorated log-strata

classes.

For the pushforward, let pσ1 Ñ pσ2 be another morphism in pΣ. Then the class tpσ2, g, βu on P
pσ1 is defined by the

following commutative diagram

P
pσ2 P

pσ1 P
pσ

Pσ2 Pσ1 Pσ

Ψpgq
ι
pσÑpσ1

β

Then we just observe

pι
pσÑpσ1 q‹t pσ2

loomoon

pσ2Ñpσ1

, g, βu “ t pσ2
loomoon

pσ2Ñpσ

, g, βu P pπ‹RXqpP
pσq ,

where for clarity we have temporarily undone the abuse of notation discussed in Footnote 26.

On the other hand, consider a class tpσ0, g, βu on P
pσ for a morphism pσ Ñ pσ0 with σ0 “ φppσ0q. Then from

Proposition 117 we know that the fiber product P
pσ0

ˆP
pσ
P
pσ1 is given by the disjoint union of spaces P

pσ3 for

ppσ3, φ1, φ2q P G
pσ0ÐpσÑpσ1 . Then we obtain a commutative diagram

Ů

P
pσ3 P

pσ1

P
pσ0

P
pσ

Ů

Pφppσ3q Pσ1

Pσ0 Pσ

Ů

ι
pσ0Ñpσ3 ι

pσÑpσ1

Ψpgq

Ů

ισ0Ñ pφpσ3q

β

whose top face is a fiber diagram. Similar to the proof of Proposition 116 we use that

Ψpgq “ Φ

˜

g
ś

ρPpσ0p1q xρ

¸

¨ rP
pσ0

s and rP
pσ3 s “ Ψ

¨

˝

ź

ρPpσ3p1q

xρ

˛

‚ .

Then by a short diagram chase (using commutativity of proper pushforwards and Gysin pullbacks in the top fiber

diagram) and the excess intersection formula, we have

ι‹
pσÑpσ1 tpσ0, g, βu “

ÿ

ppσ3,φ1,φ2qPG
pσ0ÐpσÑpσ1

tpσ3, pιtrop
pσ0Ñpσ3 q‹g ¨

ź

ρPpσ1p1qzimppσp1qq

xρ, pισ0Ñ pφpσ3qq‹βu P pπ‹RXqpP
pσ1 q .

This shows that the tautological rings are indeed closed under pushforwards and pullbacks by the maps ι
pσÑpσ1 ,

concluding the proof.

We conclude Section 4.2 with a basic compatibility check, verifying that the process of inducing tautological

rings is transitive for a composition of log blowups.

Proposition 119. Let X2
π2

ÝÑ X1
π1

ÝÑ X be a sequence of log blowups with X1, X2 smooth and assume that X

carries a system of tautological rings RX . Then π‹
2π

‹
1RX “ pπ1 ˝ π2q‹RX .

Proof. Let Σ2
φ2

ÝÑ Σ1
φ1

ÝÑ ΣX be the sequence of subdivisions associated to the above sequence of smooth log

blowups. Given σ2 P Σ2 a cone, we check the claimed equality of tautological systems on X2 by verifying that

they give the same subring of CH‹
pPσ2q. For this, we recall that both pπ‹

2π
‹
1RXqpPσ2q and ppπ1 ˝ π2q‹RXqpPσ2q

are defined as the Q-linear span of certain generators, given by (strictly) decorated strata classes. Our proof will

proceed by showing that each type of generator of one ring can be expressed in terms of the generators of the other.

Denote by σ1 “ φ2pσ2q and σ “ φ1pσ1q the images of σ2 in Σ1,Σ, respectively. For a choice of σ2 Ñ σ1
2 in

Σ2, we have that generators of ppπ1 ˝ π2q‹RXqpPσ2q are given by the classes tσ1
2, g, βu defined via the commutative
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diagram

Pσ1
2

Pσ2

Pσ1
1

Pσ1

Pσ1 Pσ

Ψpgq

sσ1
1Ñσ

β

By Lemma 118 we know that s‹
σ1
1Ñσβ P pπ‹

1RXqpPσ1
1
q, and thus

tσ1
2, g, βu “ tσ1

2, g, s
‹
σ1
1Ñσβu P pπ‹

2π
‹
1RXqpPσ2q .

For the other inclusion, we recall that a set of generators

tσ1
2, g2, tσ

2
1 , g1, βuu P pπ‹

2π
‹
1RXqpPσ2

q (83)

by strictly decorated log-stratum classes is specified by

• choosing a morphism σ2 Ñ σ1
2 in Σ2, mapping to σ1

1 Ñ σ1 under φ2, and an element g2 P sPP‹pPσ1
2
q,

• choosing a morphism σ1
1 Ñ σ2

1 in Σ1 mapping to σ1 Ñ σ2 in Σ under φ1, an element g1 P sPP‹pPσ2
1
q and a

tautological class β P RXpPσ2 q.

These fit into the following commutative diagram of solid arrows

Ů

P
rσ2

Pσ1
2Ñσ2

1
Pσ1

2
Pσ2

Ů

P
rσ1

Pσ2
1

Pσ1
1

Pσ1

Ů

P
rσ Pσ2 Pσ1 Pσ

J

ισ1
2Ñrσ2

s
rσ2Ñrσ1

Ψpg2q

ισ2
1Ñrσ1

Ψpg1q

ισ2Ñrσ

β

(84)

where the disjoint union is indexed by pσ1
2 Ñ rσ2, σ

2
1 Ñ rσ1q P Hσ1

2Ñσ2
1
. As before let rg1, rg2 be strict piecewise

polynomials such that Ψpg1q “ Φprg1q ¨ rPσ2
1
s and Ψpg2q “ Φprg2q ¨ rPσ1

2
s. Abusing notation, we’ll use the same

notation for their pullback to the components P
rσ2

of the disjoint union in the above diagram.

To conclude, note that the definition of the class (83) involves pushing forward along Pσ2
1

Ñ Pσ1
1
and pulling

back along Pσ1
2

Ñ Pσ1
1
. First, we use compatibility of Gysin pullbacks with proper maps to reroute this via a refined

Gysin pullback to and pushforward from Pσ1
2Ñσ2

1
.

To analyze the result of this procedure, we first observe that since all spaces involved are idealized log smooth,

and all maps are pulled back from corresponding maps of Artin fans, we conclude that the fiber product Pσ1
2Ñσ2

1
is

reduced, and indeed idealized log smooth. Then we claim that the above refined Gysin pullback can be calculated

via the normalization morphism J . Indeed, the main term27 will be given by taking a Gysin pullback from Pσ2
1
to

the disjoint union of the spaces P
rσ2
, multiplying by the Euler class of a suitable excess bundle E and then pushing

forward to Pσ1
2
. As before, the Euler class of E comes from some piecewise polynomial gE,rσ2

on P
rσ2
. Combining

27For similar excess intersection theory calculations see, for example, [14, Section 5].
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this with the usual projection formula, one can conclude that the main term of the class (83) is given by

ÿ

pσ1
2Ñrσ2,σ2

1Ñrσ1qPHσ1
2Ñσ2

1

trσ2, rg1 ¨ rg2 ¨ gE,rσ2
¨ F

rσ2
, pισ2Ñrσq‹βu P pπ2 ˝ π1q‹RXqpPσ2q ,

where F
rσ2

is the usual piecewise polynomial with ΦpF
rσ2

q “ rP
rσ2

s.

In general, there will also be correction terms coming from intersections of different components P
rσ2

in the

normalization. These are again supported on smaller strata P
rσ1
2
and their contribution is given by a similar refined

Gysin pullback of β from Pσ2 , acting on a class of a homological piecewise polynomial on P
rσ1
2
and then pushed

forward to Pσ1
2
. In particular, all these correction terms are also given by strictly decorated log strata classes giving

generators of pπ2 ˝ π1q‹RXqpPσ2
q. This concludes the argument.

4.3 Tautological rings of log blowups

Next, we want to show that for particularly simple log blowups pX Ñ X, which correspond to the blowup of a

smooth stratum closure in X, the pullback of a tautological system on X to pX is determined purely by the data of

the original tautological system and the combinatorial data of the blowup (and does not require further knowledge

of the geometry of X).

The basic tool for computing the system of tautological rings on the blowup are the projective bundle formula

and the blowup formula for Chow groups. Recall that for p : E “ PpEq Ñ S the projectivization of a vector bundle

E of rank r on a smooth stack S, we have

CH‹
pEq “ CH‹

pSqrξs{pcrpEq ` cr´1pEqξ ` . . .` c1pEqξr´1 ` ξrq . (85)

Here the isomorphism is induced by the map sending p‹ : CH‹
pSq Ñ CH‹

pEq via pullback and sending ξ to

c1pOEp1qq.

On the other hand, let X be a smooth stack and Z Ď X a smooth closed substack. Consider the blowup pX of

X at Z, fitting into a fibre diagram

E pX

Z X

j

πE π

i

(86)

where E “ PpN q Ñ Z is the exceptional divisor, given by the projectivization of the normal bundle N “ NZ{X .

Denote by Q “ π‹
EN {OEp´1q the universal quotient bundle on E and consider the map

h : CH‹
pZq Ñ CH‹

pEq, α ÞÑ ´cm´1pQqπ‹
Epαq .

Then there is an exact sequence

0 Ñ CH‹
pZq

pi‹,hq
ÝÝÝÑ CH‹

pXq ‘ CH‹
pEq

pα,βqÞÑπ‹
pαq`j‹pβq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ CH‹
p pXq Ñ 0 . (87)

This sequence represents the Chow group of pX as a quotient of CH‹
pXq ‘CH‹

pEq, where CH‹
pEq is determined by

equation (85). In fact, the natural ring structure on CH‹
p pXq descends from a product on CH‹

pXq ‘ CH‹
pEq given

by the rules

pα1, 0q ¨ pα2, 0q “ pα1α2, 0q, pα, 0q ¨ p0, βq “ p0, β ¨ π‹
Ei

‹αq, p0, β1q ¨ p0, β2q “ p0,´β1 ¨ β2 ¨ ξq ,

with ξ “ c1pOEp1qq as before. For a reference see [21, Exercise 8.3.9] for the case where X is a variety and [6,

Theorem 7.1] for the case when X is a quotient stack.

Theorem 120. For a log blowup π : pX Ñ X that can be represented as a sequence of blowups of smooth

strata closures, and a tautological system RX on X, the data of the tautological rings (66) and the pushforward

and pullback maps (67) between them determine the induced tautological system π‹RX via applications of the

projective bundle formula (85) and the blowup exact sequence (87).
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Proof. By Proposition 119 it suffices to show the claim for a single blowup of a smooth stratum closure Sσ “ rSσ
for some σ P ΣX . As we have seen in Lemma 100, the fact that Sσ is smooth is reflected on the cone stack side

by the map Σ0
σ{Autpσq Ñ Σ being a fully faithful embedding of categories. By Proposition 104, the blowup map

π : pX Ñ X corresponds to the map

btropσ,ΣX
: pΣ “ ssdσpΣXq Ñ ΣX

from the star-subdivision of ΣX at σ that we specified in Construction 103. The claim of the above theorem is

then that for any pσ P ssdσpΣXq it is possible to understand the subring pπ‹RXqpP
pσq Ď CH‹

pP
pσq purely in terms of

the tautological maps (66), (67) of the original system, and the combinatorics of σ P ΣX . Using the description of

the objects pσ P ssdσpΣXq from Construction 103, we distinguish two cases:

Case 1: pσ “ pτ Ñ σ Ñ σ1q

The cone pσ corresponds to a stratum of pX inside the exceptional divisor of π. The map pΣ Ñ Σ sends pσ to σ1,

so as in (57) we obtain a map q “ s
pσÑσ1 : P

pσ Ñ Pσ1 . We claim that this map can be identified canonically as the

projective bundle

q : P
pσ “ P pEτÑσq Ñ Pσ1 , for EτÑσ “

à

ρPσp1qzτp1q

π‹
σLρ (88)

where the line bundles π‹
σLρ are defined as in Proposition 86. Intuitively this is plausible, as we are considering a

stratum in the exceptional divisor of the blowup. For a slightly more rigorous argument, recall that the strata of

Pσ1 correspond to the objects pσ1 Ñ σ1q P Σ0
σ1 in the interior of the cone stack Σσ1 . Unravelling the definitions, the

strata of P
pσ mapping to them are then indexed by objects in pΣ0

pσ corresponding to diagrams

τ σ σ1

τ σ σ1

where the rightmost arrow is the one given by pσ1 Ñ σ1q. Using the remaining automorphisms of such objects, we

can make the middle arrow σ Ñ σ be the identity. Then combinatorially, the objects are indexed by composition

of face inclusions pτ ă τ ň σq, whose associated cone Cpτ ă τ ň σq is spanned by bσ, τp1q and the rays of σ not

in the image of σ. The unique smallest (or primitive) object in this collection is given by choosing τ “ τ . Using

the theory of fibers of toric morphisms (see [30, Proposition 2.1.4]), one then confirms the identification (88) of P
pσ

as a projective bundle over Pσ1 . The direct summands of the vector bundle EτÑσ, corresponding to the rays of σ

not in τ , are determined by the fact that an object pτ ă τ ň σq as above is precisely determined by the choice of

τp1qzτp1q Ĺ σp1qzτp1q.

By the projective bundle formula (85), the Chow group of P
pσ is determined as

CH‹
pP

pσq “ CH‹
pPσ1 qrξs{pcrpEτÑσq ` cr´1pEτÑσqξ ` . . .` c1pEτÑσqξr´1 ` ξrq . (89)

We claim that the same equality holds when replacing the full Chow group CH with the tautological rings:

pπ‹RXqpP
pσq “ R‹

XpPσ1 qrξs{pcrpEτÑσq ` cr´1pEτÑσqξ ` . . .` c1pEτÑσqξr´1 ` ξrq . (90)

If we prove this, then indeed pπ‹RXqpP
pσq is determined by RXpPσ1 q as the Chern classes cipEτÑσq are simply the

elementary symmetric polynomials in c1pπ‹
σLρq, coming from piecewise linear functions on Pσ1 by Proposition 92.

Moreover, we note that there is a piecewise linear function e P sPP‹ppΣ
pσq such that Φpeq “ ξ. Indeed we can choose

e as the pullback of ´minpxρ : ρ P σp1qq from Facespσq.

To show the inclusion Ď of (90) note that the generators of pπ‹RXqpP
pσq are given by the decorated log strata

classes rσ2, f, γs for a choice of σ1 Ñ σ2 in ΣX , a homological strict piecewise polynomial f P sPP‹pP
pσÑσ2 q and
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γ P RXpPσ2 q, appearing in the diagram

P
pσÑσ2 P

pσ

Pσ2 Pσ1

Ψpfq

q1 q

γ
ισ1Ñσ2

To prove that rσ2, f, γs is contained in the right-hand side of (90), it is sufficient to show that

q‹prσ2, f, γs ¨ ξaq P R‹
XpPσ1 q for all 0 ď a ď r.

Indeed it is a general result that for a cycle γ in a projective bundle, its coefficients (as Chow classes on the base)

in the projective bundle formula (89) can be reconstructed from the pushforwards q‹pγ ¨ ξaq, a “ 0, . . . , r, in terms

of a matrix of classes depending only on the Chern classes of the bundle. But noting that ξ “ Φpeq “ Ψpe ¨ F
pσq,

with F
pσ P sPP‹pPσq as in Proposition 92, we have rσ2, f, γs ¨ ξa P pπ‹RXqpP

pσq. Therefore its pushforward under

q “ s
pσÑσ is tautological by Lemma 118, concluding the proof of the inclusion Ď.

To show the inclusion Ě of (90) it remains to observe that by Lemma 118 we have q‹RXpPσ1 q Ď pπ‹RXqpP
pσq.

Since also ξ “ Ψpe ¨ F
pσq is contained in this ring, we have concluded the equality (90) and Case 1.

Case 2: pσ “ rσ for rσ P ΣX not containing σ as a face

A cone pσ of this type corresponds to a stratum of pX that is the strict transform of the stratum inX corresponding

to rσ. In the following we always write pσ for the cone in pΣ, and rσ for the cone in ΣX . We claim that the map

q : P
pσ “ BlZ

rσ,σ
P
rσ Ñ P

rσ (91)

is a blowup of a union Z
rσ,σ Ď P

rσ of smooth and disjoint strata closures in P
rσ, which are precisely the preimage of

the blowup center Sσ Ď X under the map ι
rσ : P

rσ Ñ X. To characterize this preimage of Sσ, note that the map

ισ : Pσ Ñ X has exactly image Sσ, and forms an Autpσq-torsor over this image. Then from Proposition 117 we

know that that the fiber product of ι
rσ and the map ισ is given by the disjoint union

rZ
rσ,σ “

ğ

pσ1, rφ,φqPG
rσ,σ

Pσ1 (92)

over all isomorphism classes of generic prσ, σq-structures prσ
rφ

ÝÑ σ1 φ
ÐÝ σq. These fit in an iterated fiber diagram as

follows
rZ
rσ,σ Z

rσ,σ P
rσ

Pσ Sσ X

ι
rσ

ισ

(93)

Since the pullback of the Autpσq-torsor Pσ Ñ Sσ is again such a torsor, we have that the center

Z
rσ,σ “

¨

˝

ğ

pσ1, rφ,φqPG
rσ,σ

Pσ1

˛

‚{Autpσq (94)

of the blowup q is a union of strata closures of P
rσ. Let πE : E Ñ Z

rσ,σ be the exceptional divisor of q. Then from

the blowup formula (87) we obtain the exact sequence

0 Ñ CH‹
pZ

rσ,σq
pi‹,hq

ÝÝÝÑ CH‹
pP

rσq ‘ CH‹
pEq

pα,βqÞÑq‹
pαq`j‹pβq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ CH‹
pP

pσq Ñ 0 . (95)
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In this sequence, the representation (94) of Z
rσ,σ shows that its Chow group is given as

CH‹
pZ

rσ,σq “

˜

à

pσ1, rφ,φqPG
rσ,σ

CH‹
pPσ1 q

¸Autpσq

(96)

and the Chow group CH‹
pEq is given as a finite algebra over CH‹

pZ
rσ,σq by a suitable projective bundle formula

(85). Thus we see that if we have full control over all Chow rings pCH‹
pPσ0

qqσ0PΣX , the natural pushforward maps

between them and the Chern classes of normal bundles of the maps ισ0 , then we also have full control over the

Chow rings of the spaces P
pσ above. We claim that replacing the full Chow rings with the relevant tautological

rings, the same result holds, and in particular

0 Ñ R‹
XpZ

rσ,σq
pi‹,hq

ÝÝÝÑ R‹
XpP

rσq ‘ R‹
XpEq

pα,βqÞÑq‹
pαq`j‹pβq

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pπ‹RXqpP
pσq Ñ 0 . (97)

Here R‹
XpZ

rσ,σq is defined by the tautological analogue of the formula (96), and R‹
XpEq is defined by the projective

bundle formula over it. The fact that the first map pi‹, hq in the sequence (97) is well defined follows from the

invariance of tautological rings under the pushforwards ι
rσÑσ1˚ and the fact that the Chern classes of their normal

bundles come from piecewise polynomial functions. For the second arrow, the pullback map q‹ : R‹
XpP

rσq Ñ

pπ‹RXqpP
pσq is well-defined by Lemma 118. To see that j‹ : R‹

XpEq Ñ pπ‹RXq‹pP
pσq is well-defined, observe that

taking the fiber diagram of E Ñ Z
rσ,σ with the Autpσq-torsor rZ

rσ,σ Ñ Z
rσ,σ, we obtain a similar torsor rE Ñ E. By

the previous step of the proof, one sees easily that

rE “
ğ

pσ1, rφ,φqPG
rσ,σ

Pxbσ1 ,rσy ,

where bσ1 P σ1 is the barycenter of σ1, and xbσ1 , rσy is the sub-cone of σ1 spanned by bσ1 and the face rφ : pσ Ñ σ1.

This cone is part of pΣ and the natural morphism pσ Ñ xbσ1 , rσy induces a codimension 1 map Pxbσ1 ,rσy Ñ P
pσ. Again

by Case 1 of the current proof, the tautological ring of rE is given by the projective bundle formula over RXp rZ
rσ,σq

and hence

R‹
XpEq “ pπ‹RXq‹p rEqAutpσq “

˜

à

pσ1, rφ,φqPG
rσ,σ

pπ‹RXqpPxbσ1 ,rσyq

¸Autpσq

.

Then the fact that j‹ is well-defined follows from the invariance of π‹RX under pushforward by the maps Pxbσ1 ,rσy Ñ

P
pσ. Thus we conclude that the sequence (97) is well-defined.

To show its exactness, we note that each term is naturally a subset of the full sequence (95), which is exact.

From this, exactness of (97) at R‹
XpZ

rσ,σq is automatic. For exactness in the middle, assume that there is a class

pα, βq P R‹
XpP

rσq ‘ R‹
XpEq mapping to zero in pπ‹RXq‹pP

pσq. Then by exactness of (95) it comes from some class

γ P CH‹
pZ

rσ,σq and we must show that γ is tautological. But the map pα, βq ÞÑ pπEq‹β is a section of the map

pi‹, hq, and thus γ “ pπEq‹β. Since the pushforward by πE sends tautological classes to tautological classes (see

Lemma 118), we have that γ is tautological as desired.

It remains to prove exactness on the right. So let δ P pπ‹RXqpP
pσq then by the exactness of the sequence of

Chow groups, there exist pα, βq P CH‹
pP

rσq ‘CH‹
pEq mapping to δ. By modifying this pair via a class coming from

CH‹
pZ

rσ,σq, we can assume that β satisfies pπEq‹β “ 0. Equivalently, writing

β “ β0 ` β1ξ ` . . .` βr´2ξ
r´2 ` βr´1ξ

r´1 P CH‹
pEq

for unique βi P CH‹
pZ

rσ,σq, we can assume βr´1 “ 0. But from this it follows

q‹δ “ q‹q
‹α ` q‹j‹β “ α ` i‹ pπEq‹β

loomoon

“0

“ α .

Since q‹ sends tautological classes to tautological classes by Lemma 118, we have α P RXpP
rσq. By replacing δ

with δ ´ q‹α, we may assume without loss of generality that α “ 0 and thus δ “ j‹β P pπ‹RXq‹pP
pσq. Since the

tautological system π‹RX is closed under pullback by the map j (from Theorem 110), we have j‹δ P RXpEq. But
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on the other hand

j‹δ “ j‹j‹β “ β ¨ ξ “ β0ξ ` β1ξ
2 ` . . .` βr´2ξ

r´1 P RXpEq .

Uniqueness of this representation implies that all βi P RXpZ
rσ,σq, and hence also our original β was contained in

RXpEq. This concludes the proof of exactness of (97), the claim of Case 2 and thus of the theorem itself.

4.4 Log tautological rings and a generating set for logCH‹
pX,Dq

Let pX,Dq be a smooth normal-crossings pair as before. Then using the notion of induced tautological systems on

log blowups pX of X, we can define the notion of a log tautological class.

Definition 121. For R “ RX a tautological system on X, we define the logarithmic tautological ring of X as the

colimit

logR‹
pXq “ lim

ÝÑ
π:xXÑX

pπ‹RXqp pXq Ď logCH‹
pXq . (98)

of the induced tautological rings on smooth log blowups pX of X. ♢

By Remark 112, this is indeed a logarithmic lift of the tautological ring RpXq Ă CHpXq.

Proposition 122. The image of logR‹
pXq under the pushforward map logCHpXq Ñ CHpXq is R‹pXq.

Since the induced tautological rings above are by definition spanned by decorated log strata classes, we can

write down a formal Q-algebra with an explicit surjection onto logR‹
pXq.

Definition 123. Let RX be a tautological system on X, then its associated log strata algebra is given by

logS‹
pXq “

à

σPΣX

PP‹pΣσq bsPP‹pΣσq RXpPσq , (99)

where the sum goes over a set of representatives of isomorphism classes σ P ΣX and RXpPσq is a module over

sPP‹
pΣσq via the map Φ. It admits a natural map

logS‹
pXq Ñ logCH‹

pXq,
ÿ

σPΣX

fσ b γσ
looomooon

“:rσ,fσ,γσs

ÞÑ
ÿ

σPΣX

pισq‹

´

γσ ¨ Ψlog
Pσ

pfσq

¯

(100)

to the logarithmic Chow ring of X. ♢

Our first remark is that the notation rσ, fσ, γσs above is compatible with the notation for decorated strata classes

in Definition 109. Indeed, for the piecewise polynomial fσ on Σσ we can find a subdivision pΣσ Ñ Σσ making it a

strict piecewise polynomial. Choose a subdivision pΣ Ñ ΣX which contains the image of all new walls in pΣσ. Then

the image of rσ, fσ, γσs is a decorated stratum class (given by the same notation). Indeed, in Definition 109 we

choose pσ “ 0 P pΣ mapping to 0 P ΣX , which admits a map 0 Ñ σ in ΣX . The crucial insight is simply that we can

see fσ as an element of sPP‹pP0Ñσq, since by construction, the cone stack Σσ ˆΣX
pΣ is a refinement of pΣσ.

We can define a natural multiplication on the log strata algebra logS‹
pXq by

rσ1, f1, γ1s ¨ rσ2, f2, γ2s “
ÿ

pσ1,φ1,φ2qPGσ1,σ2

rσ1, pιtropφ1
q‹f1 ¨ pιtropφ2

q‹f2, ι
‹
φ1
γ1 ¨ ι‹φ2

γ2s . (101)

Theorem 124. The formula (101) defines a product on the log strata algebra logS‹
pXq, making the map logS‹

pXq Ñ

logCH‹
pXq from (100) a ring homomorphism with image logR‹

pXq.

To show this theorem, we prove a more general result about intersections of classes combining piecewise poly-

nomials and operational Chow classes.

61



Proposition 125. Let X1, X2, Y be log algebraic stacks with X1, X2 idealized log smooth and Y smooth and log

smooth. Assume that the diagram

Z X2

X1 Y

ρ1

ρ2

ξ2

ξ1

is a fiber diagram with the maps ξi being strict. Let ι : Z Ñ Y be the map induced from this diagram.

Then for any γi P CH‹
oppXiq and fi P sPP‹pXiq we have

ppξ1q‹pγ1 X Ψpf1qqq ¨ ppξ2q‹pγ2 X Ψpf2qqq “ ι‹
`

pρ‹
1γ1q ¨ pρ‹

2γ2q X Ψppρtrop1 q‹f1 ¨ pρtrop2 q‹f2q
˘

P CH‹pY q . (102)

Proof. First, observe that both sides of (102) are bilinear in f1, f2. Our goal is to decompose f1, f2 into a sum

of simpler contributions, which can be analyzed separately using standard excess intersection theory. To find this

decomposition, we claim that for i “ 1, 2, the map

à

σPΣmin
Xi

sPP‹pPσq
‘pιtropσ q‹

ÝÝÝÝÝÝÑ sPP‹pXiq , (103)

is surjective, where σ runs through representatives of the minimal cones Σmin
Xi

of the cone stack of Xi and ισ : Pσ Ñ

Xi is the associated map from the monodromy torsor associated to σ. This is just a translation of the fact that

the representable, surjective and proper map

ž

σPΣmin
Xi

Pσ Ñ BXi

induces a surjection on Chow groups, using the identification in Theorem 59 and the compatibility of tropical and

Chow pushforwards in Proposition 67. Using the surjectivity of (103) we can without loss of generality assume

that the polynomials fi are of the form pιtropi q‹
rfi for some monodromy torsor ιi : Pi Ñ Xi of Xi. Given this data,

we form the following fiber diagram:

pZ pP2 P2

pP1 Z X2

P1 X1 Y

pξ1

pξ2

ζ
ι2

ρ1

ρ2

ι
ξ2

ι1 ξ1

(104)

Assume for now that we are able to show the claim of the proposition for pXi, fi, γiq replaced by pPi, rfi, pιiq
‹γiq.

Then we would have shown that the left-hand side of (102) is equal to

pι ˝ ζq‹

´

pζ‹ρ‹
1γ1q ¨ pζ‹ρ‹

2γ2q X Ψpppξtrop1 q‹
rf1 ¨ ppξtrop2 q‹

rf2q

¯

. (105)

Using the projection formula, the desired equality with the right-hand side of (102) then follows once we prove

pζtropq‹

´

ppξtrop1 q‹
rf1 ¨ ppξtrop2 q‹

rf2

¯

“ pρtrop1 q‹pιtrop1 q‹
rf1 ¨ pρtrop2 q‹pιtrop2 q‹

rf2 . (106)

To see (106), we first make a couple of remarks:

a) Associated to the fiber diagram (104) there exists a corresponding fiber diagram of cone stacks, connected by
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the maps ζtrop, pξtropi etc. In particular, slightly abusing notation28 we have

Σ
pPi

“ tppi, zq : ιtropi ppiq “ ρtropi pzqu ,

Σ
pZ “ tpp1, p2, zq : ιtropi ppiq “ ρtropi pzq for i “ 1, 2u . (107)

b) The maps ιtropi are associated to star fans of cones in ΣXi , and it follows that for each cone σ P ΣPi the map

ιtropi defines an isomorphism from σ to its image cone in ΣXi .

c) This implies that for both the maps ιi and their base changes, the pushforwards of piecewise polynomials can

be computed as

ppιtropi q‹gqpxiq “
ÿ

piPpιtropi q´1pxiq

gppiq ,

where we take an appropriate groupoid sum as in Proposition 76. Since ζtrop is a composition of base-changes

of the ιtropi , the same formula holds for pζtropq‹.

To prove formula (106) we now evaluate it at a point z P ΣZ . The left-hand side gives

ÿ

pp1,p2,zqPΣ
xZ

rf1pp1q ¨ rf2pp2q . (108)

On the other hand, the right-hand side evaluates to

ÿ

p1Ppιtrop1 q´1pσtrop
1 pzqq

rf1pp1q ¨
ÿ

p2Ppιtrop2 q´1pσtrop
2 pzqq

rf2pp2q . (109)

Comparing with the description in (107) it follows that these two expressions are equal.

We are left with showing the claim of the proposition for Xi of the form Pi as above. The one advantage that

the monodromy torsors have over the general situation is that they are smooth stacks and by (54) they satisfy

sPP‹pPiq – FPi ¨ sPP‹
pPiq , (110)

where FPi P sPP‹pPiq is the polynomial with ΨpFPiq “ rPis P CH‹pPiq. Then the calculation can be finished using

a standard excess intersection analysis modelled on the proof of Proposition 116.

Proof of Theorem 124. By Lemma 115 we have a fiber diagram

Ů

σ1 Pσ1 Pσ2

Pσ1 X

(111)

where the disjoint union is over pσ1, φ1, φ2q P Gσ1,σ2 . Now in general, the polynomials fi P PP‹pPσiq will not be

strict piecewise polynomials on Pσi . To remedy this, we can find a non-singular log blowup pX Ñ X such that for

the fiber diagram
Ů

σ1
pPσ1 pPσ2

pPσ1
pX

ξ2

ξ1

obtained by base-change of (111) we do have fi P sPP‹p pPσiq. Then the left-hand side of (101) is defined as the

28To avoid such an abuse, one could spell out the fiber product of cone stacks, saying: ”Objects of Σ
pPi

are pairs of cones pσ, τq P

ΣPiˆΣZ together with isomorphisms of their image cones inXi”. Since all relevant morphisms of cone stacks below induce isomorphisms
on all their cones (see point b)), the set-theoretic description we give is sufficient to finish the argument.
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intersection

pξ1q‹

´

γ1|
pPσ1

X Ψpf1q

¯

¨ pξ2q‹

´

γ2|
pPσ2

X Ψpf2q

¯

. (112)

This is precisely the type of intersection covered by Proposition 125. Comparing with equation (102) we see that

the above intersection is precisely given by the right-hand side of (101) (using that pPσ1 Ñ Pσ1 is a log blowup on

which pιtropφ1
q‹f1 ¨ pιtropφ2

q‹f2 is a strict piecewise polynomial).

Finally, the fact that the image of (100) equals logR‹
pXq simply follows as the tautological classes on a log

blowup pX Ñ X are defined as the span of decorated log strata classes as above.

Remark 126. a) For S‹
g,n the strata algebra of R‹pMg,nq as defined in Section 1.2.2 there is a natural morphism

S‹
g,n Ñ logS‹

pMg,nq of Q-algebras. It sends a decorated stratum class rΓ, γs (with γ a product of κ- and

ψ-classes on MΓ) to the class rΓ, FΓ, γs where FΓ “
ś

ePEpΓq ℓe P sPP‹pMΓq is the piecewise polynomial with

ΨpFΓq “ rMΓs. From this equation, it’s clear that the element in R‹pMg,nq associated to rΓ, γs equals the

image of the decorated log stratum rΓ, FΓ, γs. Moreover, the fact that S‹
g,n Ñ logS‹

pMg,nq is a morphism

of Q-algebras follows from the standard product formula for decorated strata classes combined with the fact

that in (99) we take the tensor product over the strict piecewise polynomials. This allows us to convert

higher powers of ℓe into decorations ´ψh ´ ψh1 appearing in the excess intersection formula in S‹
g,n for edges

e “ ph, h1q P EpΓq.

b) In the definition of the log strata algebra logS‹
pMg,nq, the allowed decorations are Chow classes γΓ P R‹pMΓq.

A purely symbolic strata algebra logS‹
g,n surjecting onto logS‹

pMg,nq was defined in (4), where the allowed

symbols γΓ are decorated strata classes (i.e. stable graphs with κ, ψ-decorations). One input that is needed

for the tensor product appearing in (4) is the existence of a natural factorization

sPP‹
pΣΓq

Â

vPV pΓq S
‹
gpvq,npvq

R‹pMΓq

Φ

of the map Φ from strict piecewise polynomials on ΣΓ to tautological classes on MΓ via the strata algebra

of MΓ. Such a factorization exists due to the identification of images of Φ with normally decorated strata

classes. Here polynomials on the factors Σgpvq,npvq of ΣΓ map to decorated strata in Sgpvq,npvq, whereas the

additional coordinate functions ℓe for e “ ph, h1q P EpΓq map to ´ψh ´ ψh1 in the tensor product of strata

algebras.

c) Consider a generator rΓ, f, γs P logS‹
g,n where γ “

ś

vPV pΓq γv is a product of decorated strata classes such

that at least one of the γv is supported on some proper stratum of the space Mgpvq,npvq. Then the associated

decoration γ in R‹pMΓq is a pushforward pιΓ1ÑΓq‹γ0 of a product γ0 of κ and ψ-polynomials on the vertices

and edges of some specialization Γ1 of Γ. Using the projection formula and the pullback of homological

piecewise polynomials for the partial gluing map ιΓ1ÑΓ (see the proof of Theorem 110), one can show that

rΓ, f, γs “ rΓ1,
`

pιtropΓ1ÑΓq‹f
˘

¨
ź

ePEpΓ1qzimEpΓq

xe, γ0s P logCH‹
pMg,nq .

Thus logR‹
pMg,nq is generated by decorated log strata classes rΓ1, F, γ0s where γ0 is a product of κ and

ψ-classes.

Taking the maximal tautological system CHX of all Chow classes from Example 107, the blowup formula also

implies that the induced tautological system on an iterated blowup of smooth strata is still maximal:

Proposition 127. For an iterated blowup π : pX Ñ X of smooth strata, we have CH
xX

“ π‹CHX .

Proof. Using Proposition 119 we can again reduce to the case of a single blowup of a smooth stratum. Then we

have to show that for each pσ P Σ
xX

we have an equality pπ‹CHXqpP
pσq “ CH‹

pP
pσq. As in the proof of Theorem 120

the cones pσ come in two variants (according to whether they describe strata in the exceptional divisor or not). The
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desired equality then comes from combining equations (89) and (90) in one case, and equations (95) and (97) in

the other.

Since the above blowups are cofinal in the system of all log blowups, the logarithmic tautological ring induced

from R “ CHX onX is indeed the full log Chow ring logCH‹
pXq. Combining this with Theorem 120 one immediately

obtains:

Corollary 128. The log Chow group logCH‹
pXq is generated as a Q-vector space by decorated log strata rσ, f, γs

for σ P ΣX , f P PP‹pPσq and γ P CH‹
pPσq. It is uniquely determined by the collection of maps

Ψ : sPP‹pPσq Ñ CH‹
pPσq

for σ P Σ (together with the Autpσq-action on both sides) as well as the pushforwards and pullbacks

ισ1Ñσ‹ : CH‹
pPσ1 q Ñ CH‹

pPσq and ι‹σ1Ñσ : CH‹
pPσq Ñ CH‹

pPσ1 q

for any morphism σ1 Ñ σ in ΣX .

Remark 129. Using the techniques from Section 4.4, we can also easily define the log tautological group of a

smooth idealised log smooth DM stack, such as a stratum MΓ with its strict induced log structure by the gluing

map ιΓ. We give a brief sketch of the construction: for X smooth and idealised log smooth, let pΣ,Σ0,∆q be its cone

stack with boundary. Then for prΣ, rΣ0, r∆q a smooth subdivision let pσ P pΣ0 be a cone mapping to σ “ φppσq P Σ0.

To define a decorated log-strata class on P
pσ consider a triple rσ1 Ñ σ, f, γs of a morphism σ1 Ñ σ in ΣX , a

piecewise polynomial f P sPP‹pP
pσÑσ1 q and a decoration γ P R‹pPσ1 q. Its associated class in logCH‹pXq is given by

the pushforward of

rσ1, f, γs “ ι
pσÑσ1‹ pπ‹

σ1γ ¨ Ψpfqq P CH‹
pP

pσq . (113)

under the map P
pσ Ñ pX. The collection of these form the log tautological group of X

logR‹pXq Ă logCH‹pXq.

If X is log smooth, then under the Poincaré isomorphism logCH‹pXq – logCH‹
pXq, the log tautological group

logR‹pXq is identified with the log tautological ring logR‹
pXq.

There is no direct analogue of Proposition 117, as logCH‹pXq does not have a ring structure. The direct analogue

of Corollary 128 does hold, with the same proof.

4.5 Functoriality of log tautological classes on moduli of curves

Proposition 130. Let p : X Ñ Y be a log lci map of smooth, log smooth DM-stacks, with a tropicalization

p : ΣX Ñ ΣY . Assume that for each map of cones σ Ñ σ1 with σ P Σ, σ1 P Σ1 with induced pullback p‹ :

CH‹
pPσ1 q Ñ CH‹

pPσq we have p‹pR‹pPσ1 qq Ă R‹pPσq.

Then the pullback map

p‹ : logCH‹
pY q Ñ logCH‹

pXq

restricts to a pullback back on log tautological classes

p‹ : logR‹
pY q Ñ logR‹

pXq

Proof. Take a log tautological class rσ1, f, γs P logR‹
pY q, with σ1 P Σ1. The pullback τ “ Starσ1 pΣ1q0ˆΣ1 Σ is a union

of cones of Σ. Write Pτ “ Y ˆAΣ1 Bτ . Then f pulls back to a homological piecewise polynomial pf P sPP‹pPτ q, and

γ pulls back to a tautological class on Pτ . It suffices to show that the class p‹γ ¨ Ψpp‹fq P logCH‹
pPτ q is a linear

combination of pushforwards of log tautological classes on Pσ for σ P τ . This follows by induction on the number

of cones in τ .
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Proposition 131. The forgetful map π : Mg,n`1 Ñ Mg,n induces a pushforward map

π‹ : logR‹
pMg,n`1q Ñ logR‹

pMg,nq.

Proof. Let rΓ, f, γs P logR‹
pMg,n`1q. Let Γ be the graph obtained from Γ by forgetting the marking n ` 1 and

stabilizing. Then we have a commutative diagram

MΓ Mg,n`1

MΓ Mg,n

ξΓ

πΓ π

ξΓ

(114)

Note that rΓ, f, γs “ pξΓq‹γ ¨Ψlogpfq is a log pushforward from MΓ. Since log pushforwards are functorial, it suffices

to show that

pπΓq‹γ ¨ Ψlogpfq P logCH‹pMΓq (115)

is log tautological. By this we mean that it is of the form γ ¨ Ψlogpfq. Indeed, then we would have

π‹rΓ, f, γs “ rΓ, f , γs P logR‹
pMg,nq ,

finishing the proof.

To prove the claim that (115) is log tautological, take a diagram

ĂMΓ MΓ

ĂMΓ MΓ

rπΓ πΓ

ξΓ

(116)

where the horizontal maps are log blowups, rπΓ is tropically transverse and f P sPP‹p ĂMΓq. Then the pushforward

pπΓq‹γ ¨ Ψlogpfq P logCH‹pMΓq is defined as prπΓq‹pγ ¨ Ψpfqq. Let yMΓ{MΓ denote the pullback of ĂMΓ{MΓ. Then

rπΓ factors as
ĂMΓ

p1
ÝÑ xMΓ

p2
ÝÑ ĂMΓ.

Here p1 is a log blowup, and since γ is a pullback from MΓ, we have

pp1q‹ pγ ¨ Ψpfqq “ γ ¨ Ψppp1qtrop‹ fq

After replacing f with its tropical pushforward under p1, we can thus assume without loss of generality that
ĂMΓ “ yMΓ, that is, (116) is a fiber square.

The graph Γ either has a single contracted edge, or no contracted edge. We first treat the case where there is

a single contracted edge e. In this case, the map

rπΓ : ĂMΓ Ñ ĂMΓ

is an isomorphism of underlying algebraic stacks, and the map on the level of cone stacks with boundary is

ΣΓ “ ΣΓ ˆ pRě0, 0q Ñ ΣΓ.

We write ℓe P sPP‹
ppRě0, 0qq for the piecewise linear function associated to the contracted edge. Then f P sPP‹pΣΓq

is a sum of terms of the form f ¨ℓbe with b ě 1, and f P sPP‹pΣΓq. The cohomological piecewise polynomial function

ℓe P sPP‹
pMΓq maps to the operational Chow class ´ψh ´ ψh1 P R‹pMΓq. We find

γ ¨ Ψpfq “ pγ ¨ Φpℓb´1
e qq ¨ Ψpf ¨ ℓeq
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As rπΓ is an isomorphism, this pushes forward to

rπΓ,‹pγ ¨ Φpℓb´1qq ¨ Ψpfq P CH‹p ĂMΓq.

This is a tautological class multiplied by a homological piecewise polynomial, hence it is log tautological.

Now we treat the case where Γ has no contracted edges. Then sPP‹pMΓq is generated by homological piecewise

polynomials on smaller strata and pullbacks of homological piecewise polynomial on ĂMΓ. By Remark 126c) we

can reduce to the second case. There the statement follows from the projection formula.

Proposition 132. Let Γ be a stable graph with associated gluing map ξΓ : Mstr
Γ Ñ Mg,n. Then pushforward by

ξΓ induces a map

pξΓq‹ :
â

vPV pΓq

logR‹
pMgpvq,npvqq Ñ logR‹

pMg,nq . (117)

Proof. To define the map (117) on the level of the full log Chow groups, note that we have log maps πv : Mstr
Γ Ñ

Mgpvq,npvq and so we can first pull back from the factors logCH‹
pMgpvq,npvqq to logCH‹

pMstr
Γ q, take the product,

and push forward under ξΓ. It remains to show that this map sends products of log tautological classes rΓv, fv, γvs P

logR‹
pMgpvq,npvqq to tautological classes. To see this, let Γ1 be the stable graph obtained by gluing all graphs Γv

into the vertices of Γ. Then we have a diagram

Mstr
Γ1 Mstr

Γ Mg,n

ś

vMstr
Γv

ś

vMgpvq,npvq

id
ś

v ξΓv

γv

Ψlogpfvq
(118)

where the left square is Cartesian. The vertical maps in the diagram forget the extra log structure coming from the

edges EpΓq. Correspondingly, the pullback of log classes under these vertical maps corresponds to multiplication by
ś

ePEpΓq Φpxeq, where xe P sPP1
pMstr

Γ q is the piecewise linear function associated to the edge e. Then the diagram

together with compatibility of log pushforwards and pullbacks shows that

pξΓq‹

ź

vPV pΓq

π‹
vrΓv, fv, γvs “

»

–Γ1,
ź

vPV pΓq

fv ¨
ź

ePEpΓq

xe,
ź

vPV pΓq

π‹
vγv

fi

fl P logR‹
pMg,nq .

References

[1] D. Abramovich, Q. Chen, M. Gross, and B. Siebert, Decomposition of degenerate Gromov-Witten

invariants, arXiv:1709.09864, (2017). 3

[2] D. Abramovich, Q. Chen, S. Marcus, M. Ulirsch, and J. Wise, Skeletons and fans of logarithmic struc-

tures, in Nonarchimedean and Tropical Geometry, M. Baker and S. Payne, eds., Simons Symposia, Springer,

2016, pp. 287–336. 7, 25, 38, 49

[3] D. Abramovich, Q. Chen, S. Marcus, and J. Wise, Boundedness of the space of stable logarithmic maps,

J. Eur. Math. Soc., 19 (2017), pp. 2783–2809. 9, 25, 38

[4] D. Abramovich and J. Wise, Birational invariance in logarithmic Gromov–Witten theory, Comp. Math.,

154 (2018), pp. 595–620. 25, 26

[5] E. Arbarello and M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic

geometry, Inst. Hautes Études Sci. Publ. Math., (1998), pp. 97–127. 13, 18, 19

67



[6] V. Arena, S. Obinna, and D. Abramovich, The integral chow ring of weighted blow-ups, arXiv:2307.01459,

(2023). 57

[7] Y. Bae and H. Park, A comparison theorem for cycle theories for algebraic stacks. In preparation. 30

[8] Y. Bae and J. Schmitt, Chow rings of stacks of prestable curves I, Forum Math. Sigma, 10 (2022), pp. Paper

No. e28, 47. With an appendix by Bae, Schmitt and Jonathan Skowera. 21, 23, 34

[9] Y. Bae and J. Schmitt, Chow rings of stacks of prestable curves II, Journal für die reine und angewandte

Mathematik (Crelles Journal), 2023 (2023), pp. 55–106. 30, 31, 49

[10] L. J. Barrott, Logarithmic Chow theory, arXiv:1810.03746, (2019). 10, 22, 23, 29, 31, 34

[11] M. Bishop, The integral Chow ring of M1,n for n “ 3, . . . , 10, arXiv:2311.11408, (2023). 30

[12] S. Bloch, Algebraic cycles and higher K-theory, Adv. in Math., 61 (1986), pp. 267–304. 30

[13] M. Brion, Piecewise polynomial functions, convex polytopes and enumerative geometry, in Parameter spaces

(Warsaw, 1994), vol. 36 of Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 25–44. 11,

35

[14] S. Canning, D. Oprea, and R. Pandharipande, Tautological and non-tautological cycles on the moduli

space of abelian varieties, arXiv:2408.08718, (2024). 56

[15] R. Cavalieri, M. Chan, M. Ulirsch, and J. Wise, A moduli stack of tropical curves, Forum Math. Sigma,

8 (2020), pp. 1–93. 4, 8, 9, 24, 26, 37, 39, 41, 42

[16] D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, vol. 124 of Graduate Studies in Mathematics,

American Mathematical Society, Providence, RI, 2011. 24, 42, 48

[17] C. De Concini and C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.), 1 (1995),

pp. 459–494. 16

[18] C. Faber and R. Pandharipande, Tautological and non-tautological cohomology of the moduli space of

curves, in Handbook of moduli. Vol. I, vol. 24 of Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 2013,

pp. 293–330. 2

[19] E. M. Feichtner and S. Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Invent. Math.,

155 (2004), pp. 515–536. 16

[20] W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993. 16

[21] , Intersection theory, vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of

Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern

Surveys in Mathematics], Springer-Verlag, Berlin, second ed., 1998. 53, 57

[22] A. Gibney and D. Maclagan, Equations for Chow and Hilbert Quotients, Journal of Algebra and Number

Theory, 4 (2010), pp. 855–885. 6, 15, 16

[23] T. Graber and R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves,

Michigan Math. J., 51 (2003), pp. 93–109. 3, 11, 19, 50, 51

[24] P. Hacking, S. Keel, and J. Tevelev, Stable pair, tropical, and log canonical compactifications of moduli

spaces of del Pezzo surfaces, Invent. Math., 178 (2009), pp. 173–227. 6, 15, 16

[25] L. Herr, The log product formula, Algebra Number Theory, 17 (2023), pp. 1281–1323. 3

[26] L. Herr, S. Molcho, R. Pandharipande, and J. Wise, Birational models of logarithmic Gromov–Witten

theory, In preparation, (2023). 13

68

https://arxiv.org/abs/2307.01459
https://arxiv.org/abs/1810.03746
https://arxiv.org/abs/2311.11408
https://arxiv.org/abs/2408.08718v2


[27] D. Holmes, S. Molcho, R. Pandharipande, A. Pixton, and J. Schmitt, Logarithmic double ramifica-

tion cycles, arXiv:2207.06778, (2022). 3, 6, 7, 20, 21, 22, 32, 37, 43, 44, 49

[28] D. Holmes and R. Schwarz, Logarithmic intersections of double ramification cycles, Algebr. Geom., 9

(2022), pp. 574–605. 3, 10, 20, 21, 23, 29

[29] D. Holmes and P. Spelier, Logarithmic cohomological field theories, arXiv:2308.01099, (2023). 21, 23

[30] Y. Hu, C.-H. Liu, and S.-T. Yau, Toric morphisms and fibrations of toric Calabi-Yau hypersurfaces, Adv.

Theor. Math. Phys., 6 (2002), pp. 457–506. 58

[31] F. Janda, Gromov–Witten theory of target curves and the tautological ring, Michigan Mathematical Journal,

66 (2017), pp. 683–698. 13

[32] T. Kajiwara, K. Kato, and C. Nakayama, Logarithmic abelian varieties, part VII: moduli, Yokohama

Math. J., 67 (2021), pp. 9–48. 22

[33] M. Kapranov, B. Sturmfels, and A. Zelevinsky, Quotients of toric varieties, Math. Ann., 290 (1991),

pp. 643–655. 15

[34] M. M. Kapranov, Chow quotients of Grassmannians. I, in I. M. Gelfand seminar. Part 2: Papers of the

Gelfand seminar in functional analysis held at Moscow University, Russia, September 1993, Providence, RI:

American Mathematical Society, 1993, pp. 29–110. 6, 15

[35] S. Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero, Transactions of the

American Mathematical Society, 330 (1992), pp. 545–574. 6, 14, 17

[36] P. Kennedy-Hunt, N. Nabijou, Q. Shafi, and W. Zheng, Divisors and curves on logarithmic mapping

spaces, Selecta Math. (N.S.), 30 (2024), p. Paper No. 75. 18

[37] A. A. Khan, Virtual fundamental classes of derived stacks I, arXiv:1909.01332, (2019). 30

[38] A. Kresch, Cycle groups for Artin stacks, Invent. Math., 138 (1999), pp. 495–536. 21, 30, 33

[39] E. Larson, The integral Chow ring of M2, Algebr. Geom., 8 (2021), pp. 286–318. 30

[40] H. Larson, The intersection theory of the moduli stack of vector bundles on P1, arXiv:2104.14642, (2021). 30

[41] M. Levine and R. Pandharipande, Algebraic cobordism revisited, Inventiones mathematicae, 176 (2009),

pp. 63–130. 13

[42] D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, vol. 161 of Graduate Studies in

Mathematics, American Mathematical Society, Providence, RI, 2015. 16

[43] E. Miller and B. Sturmfels, Combinatorial commutative algebra, vol. 227 of Graduate Texts in Mathe-

matics, Springer-Verlag, New York, 2005. 15

[44] S. Molcho, Pullbacks of Brill-Noether classes under Abel-Jacobi Sections, arXiv:2212.14368, (2022). 10, 45

[45] S. Molcho, R. Pandharipande, and J. Schmitt, The Hodge bundle, the universal 0-section, and the log

Chow ring of the moduli space of curves, Compos. Math., 159 (2023), pp. 306–354. 7, 9, 10, 13, 21, 29, 37, 43

[46] S. Molcho and D. Ranganathan, A case study of intersections on blowups of the moduli of curves,

arXiv:2106.15194, (2021). 3, 10, 13, 20, 39

[47] A. Ogus, Lectures on logarithmic algebraic geometry (notes), Unpublished notes, (2006). 21, 28, 50

[48] D. Oprea, Tautological classes on the moduli spaces of stable maps to pr via torus actions, Advances in

Mathematics, 207 (2006), pp. 661–690. 18

69

https://arxiv.org/abs/2207.06778
https://arxiv.org/abs/2308.01099
https://arxiv.org/abs/1909.01332
https://arxiv.org/abs/2104.14642
https://arxiv.org/abs/2212.14368
https://arxiv.org/abs/2106.15194


[49] R. Pandharipande, Intersections of Q-divisors on Kontsevich’s moduli space M0,npPr, dq and enumerative

geometry, Trans. Amer. Math. Soc., 351 (1999), pp. 1481–1505. 18

[50] R. Pandharipande, A calculus for the moduli space of curves, in Algebraic geometry: Salt Lake City 2015,

vol. 97.1 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2018, pp. 459–487. 2

[51] R. Pandharipande, A. Pixton, and D. Zvonkine, Relations on Mg,n via 3-spin structures, J. Amer.

Math. Soc., 28 (2015), pp. 279–309. 4

[52] A. Pixton, Conjectural relations in the tautological ring of Mg,n, arXiv:1207.1918, (2012). 6, 19

[53] D. Ranganathan, Skeletons of stable maps I: rational curves in toric varieties, J. Lond. Math. Soc., 95

(2017), pp. 804–832. 17

[54] , A note on cycles of curves in a product of pairs, arXiv:1910.00239, (2019). 3, 13

[55] , Logarithmic Gromov-Witten theory with expansions, Algebr. Geom., 9 (2022), pp. 714–761. 3

[56] D. Ranganathan and A. U. Kumaran, Logarithmic Gromov-Witten theory and double ramification cycles,

J. Reine Angew. Math., 809 (2024), pp. 1–40. 13, 20

[57] D. Ranganathan and J. Wise, Rational curves in the logarithmic multiplicative group, Proc. Amer. Math.

Soc., 148 (2020), pp. 103–110. 17, 22

[58] J. Schmitt and J. van Zelm, Intersections of loci of admissible covers with tautological classes, Selecta

Math. (N.S.), 26 (2020), pp. Paper No. 79, 69. 50

[59] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math., 129 (2007), pp. 1087–1104. 6, 15

[60] The Stacks Project Authors, stacks project. http://stacks.math.columbia.edu, 2019. 43

[61] B. Totaro, Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma, 2 (2014), pp. Paper

No. e17, 25. 17

[62] M. Ulirsch, Non-Archimedean geometry of Artin fans, Adv. Math., 345 (2019), pp. 346–381. 26

70

https://arxiv.org/abs/1207.1918
https://arxiv.org/abs/1910.00239
http://stacks.math.columbia.edu

	Introduction
	Overview
	The strata algebra of Mbargn
	Stable graphs
	Strata algebras

	The logarithmic strata algebra of Mbargn
	Results in genus 0,1, and higher genus
	Log tautological rings of arbitrary normal crossing pairs

	Logarithmic tautological rings of moduli spaces of curves
	Definitions and comparisons
	Cone stacks
	Definitions
	Comparisons
	Log Gromov-Witten theory

	A presentation of the logarithmic Chow ring in genus 0
	Chow ring of Mbar0n
	Calculation of logCH*(Mbar0n)
	Toric geometry
	Proof of Theorem 11
	Spaces of rational curves

	Results and counterexamples in genus 1
	Study in higher genus

	Homological piecewise polynomials
	Conventions and homological Chow groups
	Cone stacks with boundary
	Scheme theoretic images inside Artin fans
	Definitions
	Pushing forward piecewise polynomials

	A general treatment of log tautological rings
	Preliminaries on cone stacks and monodromy torsors
	Star cone stacks
	Monodromy torsors
	Star subdivisions

	Tautological systems
	Tautological rings of log blowups
	Log tautological rings and a generating set for logCH*(X,D)
	Functoriality of log tautological classes on moduli of curves


