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Abstract

We define the logarithmic tautological rings of the moduli spaces of Deligne-Mumford stable curves (together
with a set of additive generators lifting the decorated strata classes of the standard tautological rings). While
these algebras are infinite dimensional, a connection to polyhedral combinatorics via a new theory of homological
piecewise polynomials allows an effective study. A complete calculation is given in genus 0 via the algebra of
piecewise polynomials on the cone stack of the associated Artin fan (lifting Keel’s presentation of the Chow ring
of Mo.»). Counterexamples to the simplest generalizations in genus 1 are presented. We show, however, that the
structure of the log tautological rings is determined by the complete knowledge of all relations in the standard
tautological rings of the moduli spaces of curves. In particular, Pixton’s conjecture concerning relations in the
standard tautological rings lifts to a complete conjecture for relations in the log tautological rings of the moduli
spaces of curves. Several open questions are discussed.

We develop the entire theory of logarithmic tautological classes in the context of arbitrary smooth normal
crossings pairs (X, D) with explicit formulas for intersection products. As a special case, we give an explicit set
of additive generators of the full logarithmic Chow ring of (X, D) in terms of Chow classes on the strata of X
and piecewise polynomials on the cone stack.
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1 Introduction

1.1 Overview

The Chow ring of the moduli space M, , of Deligne-Mumford stable curves' contains a distinguished subring of
tautological classes

R*(ﬂg,n) = CH*(W%”).

The structure of R*(M,,) is related to the geometry of stable maps, Abel-Jacobi theory, the classification of
CohFTs, and many other directions, see [18, 50] for a survey.

Since the boundary A ﬂg,n, defined by the locus of nodal curves, is a divisor with normal crossings, we may
view the pair (M, ,,A) as a log scheme. The logarithmic Chow ring of (M, A) is defined” by

|OgCH*(ﬂg’n) = h_l’I)l CH*(-/,\\/Zg,n) ) (1)

Mg n—>Mg n

where the direct limit is taken over all logarithmic modifications® with respect to the log structure (Mg’n, A), and
the transition maps are given by pullback. The simplest log modification is a blowup along a nonsingular stratum of
the log structure. Since the compositions of such log modifications are cofinal in the system of all log modifications,
we can restrict to compositions of blowups of nonsingular strata in the direct limit in definition (1).

There is a canonical injection via pullback,

a: CH"(M,.,) < logCH* (M, ),
so every Chow class is also a log Chow class. There is also a canonical surjection via pushforward

B : logCH* (Mg ) - CH* (M, )

satisfying 5o a = Id.

'We view Mg, » as a nonsingular Deligne-Mumford stack and always consider the Chow theory with Q-coefficients. All of our Chow
and tautological rings are algebras over Q.

2Formally, we should write |ogCH*(mg,n,A) to specify the log structure. Since we will not consider any other log structure on
Mg,n, the boundary A will be omitted from the notation.

3For singular log modifications M g,n, the notation CH* denotes operational Chow. In some contexts, the flexibility of considering
singular log modifications can be useful.



Our goal here is to define and to begin the study of the tautological subring of the logarithmic Chow ring of
the moduli space of curves,

logR*(My ) < logCH* (M., -

The first motivation for the study of logCH*(M, ,,) comes from logarithmic Gromov-Witten theory: log Chow
groups are essential for the log product [25, 54] and degeneration formulas [1, 55] and the logarithmic double
ramification cycle [27, 28, 46]. At a more fundamental level, the motivation is that the log structure on Mg,n is an
intrinsic aspect of the geometry of stable curves, and the corresponding log Chow theory can not be avoided. The

tautological subring logR* (M, ) represents the most tractable log Chow classes.

1.2 The strata algebra of M,

We review here the construction of the strata algebra S*(M, ,,) following [23]. The strata algebra provides a basic
framework for the study of tautological classes on the moduli spaces of curves.

1.2.1 Stable graphs

The strata of the logarithmic boundary of the moduli space ﬂg,n correspond to stable graphs. A stable graph T’
consists of the data
r=(V,H,L,g:V—>Zsy, v:H->V, .:H— H)

satisfying the following properties:
(i) V is a vertex set with a genus function g : V — Zx,

(ii) H is a half-edge set equipped with a vertex assignment
v:H->V

and an involution ¢ : H — H,
(iii) E, the edge set, is defined by the 2-cycles of ¢ in H (self-edges at vertices are permitted),

(iv) L, the set of legs, is defined by the fixed points of ¢ and is endowed with a bijective correspondence with the
set of markings
Lo {l,...,n},

(v) the pair (V,E) defines a connected graph,

(vi) for each vertex v, the stability condition holds:
2g(v) — 2+ n(v) > 0,

where n(v) is the valence of T' at v including both edges and legs.

An automorphism of I consists of automorphisms of the sets V and H which leave invariant the structures g, ¢,
and v (and hence respect E and L). Let Aut(I") denote the automorphism group of T'.
The genus of a stable graph I' is defined by

g(I) = D) 8(v) + A1 (D).

veV

A boundary stratum of the moduli space ﬂg,n naturally determines a stable graph of genus g with n legs by
considering the dual graph of a generic pointed curve parameterized by the stratum.
To each stable graph I', we associate the moduli space

Mr = [ [ Mg@w)n(w)-

veV



There is a canonical morphism

ir: Mr — My,

with image? equal to the closure of the boundary stratum associated to the graph I'. To construct ¢, a family
of stable pointed curves over Mr is required. Such a family is easily defined by attaching the pullbacks of the
universal families over each of the ﬂg(v),n(v) along the sections corresponding to half-edges. Let

[T'] e CH" (M)

denote the pushforward under ¢ of the fundamental class of Mp.

1.2.2 Strata algebras
The strata algebra S , is defined as the Q-vector space with basis given by the decorated strata classes [T, ~v] where

(i) T is a stable graph corresponding to a stratum of the moduli space,

Lr ./\/lr —>Mg,n,

(i) « is a product of x and v classes on Mr.

In (ii), the s classes are associated to the vertices, and the v classes are associated to the half-edges. The only
condition imposed is that the degrees of the x and v classes associated to a vertex v € V(I') together do not exceed
the dimension 3g(v) — 3 + n(v) of the moduli space at v.

The strata algebra S7 | is of finite dimension as a Q-vector space, graded by the natural codimension of classes,
and carries a product for which the natural pushforward map

S;,n - CH*(Mg,n)a [T, 9] = (er)«y (2)

is a homomorphism of graded Q-algebras, see [51, Section 0.3]. The image of (2) is defined to be the subalgebra of
tautological classes

R*(M, ) © CH* (M) -
The kernel of the quotient map,
Sy L R*(Mgyn) — 0,

g,n

is the ideal of tautological relations.

1.3 The logarithmic strata algebra of M,,

We present here a new perspective on the subring of tautological classes of the logarithmic Chow ring of the moduli
space of curves which is parallel to the above constructions in Section 1.2 for the usual Chow ring. While the full
foundational development is given in Sections 3 and 4, the parallel structure of the logarithmic construction can
be seen without the complete definitions.

Let ¥, be the moduli space of tropical curves as defined in [15]. The construction of X, with the structure
of a cone stack is reviewed in Section 2.1. Associated to a stable graph I', there is a cone stack with boundary
(Starr(Eg’n)7 Ar) associated to the space M endowed with the strict log structure for the morphism

Ly mr‘ - ﬂg,n .
On the level of cone stacks, we define
Starr(Zg,n) = H Zg(v)yn(v) X (R;O)E(F), (3)
veV (T)

4The degree of ¢ is |Aut(T)|.



parameterizing a tuple of tropical curves I', (for each vertex v € V(I')) and edge lengths ¢, > 0 (for each edge
e € E(T'). The natural tropical gluing map
Starr(Eg.n) = Xgn

connects the various graphs I', with edges of lengths ¢.. Via the gluing map, the cone stack Starp(X, ) defines
a finite cover of the star® in X4 n of the cone or € ¥, associated to I'. The boundary Ar of Starp(3,,,) then
consists of all cones ((or,)yev (ry, 7) of Starp(X, ;) such that 7 < (Rxo) EM) is a proper face of (Rxo)ZT).

There is a canonical Q-vector space PP, (Starr(3,.,), Ar) of homological piecewise polynomials on Starr(X, )
defined in Section 3. The homological condition here requires the piecewise polynomials to vanish on the boundary
Ar of the cone stack, in particular making PP, (Starp(X,,,,), Ar) a module over the Q-algebra sPP*(Starp (X, ,,)) of
all strict piecewise polynomials. The strata classes we Wlll consider in the logarithmic context carry the additional
decoration of a homological piecewise polynomial.

Let T be a stable graph of genus g with n markings. A decorated log strata class [T, f,~] is defined by the
following conditions:

(i) T is a stable graph,
(ii) f is a homological piecewise polynomial on (Starr(2,,), Ar),
(iii) v = HUEV ) Yo s a product of decorated strata classes on the vertices of I'.
We define the logarithmic strata algebra logS} ,, as the (in general infinite-dimensional) Q-vector space
IogS;m = @ <PP* (StarI‘(Eg,n)a AF) ®sPP*(Starr(Eg,n)) ® S;(v),u(v)) : (4)
r veV (T")

Here the sum goes over all isomorphism classes I" of stable graphs. We use the existence of a natural map

sPP*(Starp (2 - & Shw

veV (T)

as is explained in Remark 126 below.
The algebra logS? ,, is graded by codimension and carries a product for which the natural pushforward” map

logS; ,, — — logCH* (M Zfr X — Z [T, fr,r] (5)

is a homomorphism of graded Q-algebras, see Theorem 124. The image of (5) is defined to be the subalgebra of
logarithmic tautological classes

logR* (M) < logCH*(M,,,) -

The kernel of the quotient map,
logS;; ,, 4, logR* (M ,,) — 0,

is the ideal of logarithmic tautological relations.

As in the case of the standard strata algebra S¥ ., the logarithmic strata algebra IogSg » 1s a natural setting
for both theoretical results and calculations: the Q-vector space structure and the product are completely explicit
(and can be implemented on computational interfaces). The complexity of the tautological cycle theory in both

g,n’

the standard and log cases lies in the kernel of q.

5The star of or is the set of cones of 3g,n containing or as a face.

6For the discussion below and in particular equation (4), it is convenient to generalize the decorations v from products of x and
1-classes to arbitrary decorated strata classes. As discussed in Remark 126 (c) below, we obtain the same space of log tautological
classes by restricting to decorations v which are products of x and -classes as in Section 1.2.2.

"Pushforward in the logarithmic context is a delicate operation. The boundary vanishing of homological piecewise polynomials
allows an extension by 0, see Section 3.5.



There are two simple sources of logarithmic tautological classes. First, every tautological class on ﬂgm lifts to
a logarithmic class via a commutative diagram of Q-algebras (as explained in Remark 126):

S —1 5 R*(M,.n)

i i

logS} ,, —— logR*(My,n) .

Second, there is a canonical map from the Q-algebra of piecewise polynomials of ¥ ,,,

DL - PP*(Sy,,) — logR* (M),
as discussed in Section 2.1. Since both R*(M, ,,) and PP*(X, ) are algebras over the Q-algebra of strict piecewise
polynomials sPP*(X, ,,), we obtain a canonical homomorphism,

(1 R* (M) Qsppe (s, ) PP*(Eg,n) — logR* (M) .

1.4 Results in genus 0,1, and higher genus

In addition to the foundational development of the theory of decorated log strata classes, we present several results

about the structure of logR*(M,.,,):

e A complete calculation of logR*(M ;) is given in Section 2.2 by the following result.

Theorem 1. The map ,u&n is an isomorphism,
,U(Fin : R*(Mo,) ®spp=(s,.) PP*(Z0,n) = logR*(Mo,n) -

In other words, logR* (M, ,,) is canonically isomorphic to the algebra of piecewise polynomials on the Artin fan
Eﬂg,n of mo,n modulo® the WDVV relations. The result can be viewed as a logarithmic lift of Keel’s calculation
[35] of CH*(M, ), since

logR* (Mo.,) = logCH* (Mo ,,) -

Our method of proof uses Kapranov’s approach to ﬂo,n via the Chow quotient of the Grassmannian [34] and
related results of Gibney—Maclagan [22], Hacking—Keel-Tevelev [24], and Tevelev [59].

e The genus 1 case is studied in Section 2.3. We prove u'in is always surjective in Proposition 20, but u?n is not
in general an isomorphism. Nontrivial elements of the kernel of uf" are found in Proposition 19 for n > 3. How to
write a simple and explicit set of generators of the kernel in genus 1 is an open question.

e For g > 7, the map us,n is not surjective by Proposition 8, so a different approach must be taken to control

logR* (M, ,) in high genus.

e We prove in Theorem 21 of Section 2.4 that the structure of logR* (M, ,,) is determined by the complete knowledge
of all relations in the standard tautological rings of (products of) moduli spaces of curves. In particular, Pixton’s
conjecture [52] concerning relations in the standard tautological rings yields a complete conjecture for all relations
in the log tautological rings of the moduli spaces of curves.

A fundamental open question (related to the missing presentation of logR*(M; ,,)) is whether there exists
a non-trivial logarithmic lift of the formula of Pixton’s relations. Pixton’s DR cycle relations have non-trivial
logarithmic lifts (specified by a choice of stability condition on line bundles on curves) obtained from the study of
the logarithmic DR cycle [27].

8Keel’s disjoint boundary divisor equations already hold in piecewise polynomials.



1.5 Log tautological rings of arbitrary normal crossing pairs

The constructions for M, ,, are valid in a more general setting. For any nonsingular DM stack X with a normal
crossings divisor D, there is a natural log structure for the pair (X, D) and a natural notion of strata. In Section 4,
we define log decorated strata classes, the log strata algebra, and the log tautological ring for (X, D).

Our construction takes as input a tautological system on X, a set of subrings

{R*(P) = CH"(P) },,

for every stratum closure P in X, which is required to be closed under pullback and pushforward along strata

inclusions.” For example, the log tautological ring of M, , discussed above is obtained from the tautological
system on (M, ,,, A) defined by taking R*(Mr) to be the tautological ring of Mr in the classical sense.
Another important special case of a tautological system is the Chow system, where R*(P) = CH*(P) for all P.

We can then write a presentation of logCH*(X).

Theorem 2. The log tautological ring logR*(X) induced by the Chow system is equal to the full log Chow ring
logCH*(X). Hence the map logS*(X) — logCH*(X) is a surjective ring morphism, and the log decorated strata are
additive generators for logCH* (X).

Technical innovations required here include the notions of idealised Artin fans (Definition 46) and cone stacks
with boundary (Definition 41). Just as Artin fans and cone stacks capture the behaviour of log smooth stacks,
idealised Artin fans and cone stacks with boundary capture the behaviour of strata of log smooth stacks, and
more generally, of logarithmic stacks that are smooth over substacks of Artin fans. In Section 3, we work out
their theory, as well as the theory of homological piecewise polynomials sPP.(3, A) on cone stacks (X,A) with
boundaries. Elements of sSPP, (X, A) probe the intersection theory of idealised log smooth stacks, in a similar manner
to how piecewise polynomials probe the intersection theory of log smooth stacks. The homological condition is the
requirement that piecewise polynomials on ¥ vanish on the boundary A. Among the new ideas are introduced in
Section 3 are the following:

e Given a log stack X, we define the notion of a choice of an Artin fan X — A (Definition 43), generalizing
the construction of the (canonical) Artin fan A" of [2]. The new notion has better functoriality properties

than A", which allow us much more flexibility (see also [27, Remark 5] for a related discussion).

e There is a natural correspondence between cone stacks (X, A) with boundary and pairs (A, B) of an Artin fan
A and a closed reduced substack B < A. Under the correspondence, we prove an identification (in Theorem
59) of the Chow group of B with the homological piecewise polynomials on (3, A),

CH,(B) = sPP.(3,A), (6)

generalizing the case A = B from [45, Theorem 14] .

e We give a combinatorial formula for proper pushforwards of homological piecewise polynomials and show
that, under the identification (6), we obtain the usual proper pushforwards of Chow groups (Proposition 76).

All of these tools are used extensively in the general construction of log tautological classes on (X, D) and the proof
of Theorem 2 in Section 4.
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2 Logarithmic tautological rings of moduli spaces of curves

While the general treatment of log tautological rings of normal crossing pairs (X, D) is covered in Section 4 below,
we begin here by introducing the fundamental case of the moduli space of curves (M ,,, A).

2.1 Definitions and comparisons

2.1.1 Cone stacks

The logarithmic Chow ring of M, , is defined as the colimit of Chow rings of iterated boundary blowups. The
combinatorics of the boundary stratification is captured by the cone stack X, , of tropical curves, constructed
in [15].

Definition 3. The cone stack ¥, is the collection of cones

or ={€: E(I') > Rxo}

lIe

(R;O)E(F) for I' a stable graph of My ,, ,
together with face inclusion morphisms
Lty or — o for ¢ : T — I' a morphism of stable graphs.

Viewing I' as an edge-contraction of I via ¢, the map ¢, includes or as the face of o/ where the lengths of all
contracted edges are set to zero. O

An Artin fan As, , associated to the cone stack ¥, ,, is constructed in [15]. The Artin fan is a smooth algebraic
stack which has a locally closed stratification by 1-point subsets,
Sr = B(GE™ x Aut(T)) € As, .

for each isomorphism class I' of stable graphs. The union of the St for I' non-trivial forms a normal crossing divisor.
The stack Ay, , receives a strict, smooth, and surjective map,

t: ﬂgyn — Azg_’n , (7)

which satisfies the following property: the preimage of St is precisely the locally closed stratum of curves of dual
graph T' in M, ,, (see [15, Theorem 4]).

Given a subdivision & — ¥, n of cone stacks (specified by a collection of fans with supports or compatible under
the face inclusion morphisms ¢,), we obtain a log blowup A As, ,, via the equivalence of categories between
cone stacks and Artin fans ([15, Theorem 3]). Taking a fiber product

|
‘Pi‘

& )

£

g,m



with respect to the map t above, we obtain a log blowup M= Mg,n. Conversely, every log blowup of ﬂgﬁn is
obtained from such a fiber product associated to a subdivision of ¥, ,. We refer the reader to [3, Section 3] and
[15] for further details on Artin fans and the associated cone complexes.

A central tool for constructing cycle classes on My, (and on the log blowups M\) is a complete description
of the intersection theory of Artin fans Ay in terms of the Q-algebras sPP*(X) of strict piecewise polynomials on
the associated cone stack 3. An element of sPP*(X) is a collection of R-valued polynomial functions on the cones
o € ¥ (with Q-coefficients) compatible under all face inclusion morphisms in ¥. An isomorphism

d : sPP*(X) — CH*(Ax) (8)

was constructed in [45, Theorem 14].

To extend ®, we define the ring PP*(X) of piecewise polynomials as the set of functions on the cones o €
which become strict piecewise polynomial on some subdivision S — Y. The collection of the maps @ for such
subdivisions 3 then induces an isomorphism

Plos . PP*(X) — logCH* (As) . (9)

Returning to M, ,, and the cone stack ¥ = X, ,,, we can compose the two maps (8) and (9) with pullback by the
map t of (7) to obtain Q-algebra homomorphisms

log

[
SPP*(S.0) —2% CH* (M) and PP*(,.,) —2% logCH* (M) . (10)

The map @, factors through R*(M, ) < CH*(M, ), with image spanned by normally decorated strata classes
(fundamental classes of strata closures decorated by Chern classes of their normal bundles, see [45, Theorem 13]).

2.1.2 Definitions

Using the map <I>}q°’§l, we construct the first (and smallest) type of logarithmic tautological rings of ﬂg’n.

Definition 4. The piecewise polynomial tautological ring |ogR;p(mg,n) is the image
|0gR;p(m9,n) = (I)gyn(PP*(Egm)) < |°gCH*(Mg,n)

of the piecewise polynomials on the cone stack ¥ ,,. O

The top Chern class Ay of the Hodge bundle over ﬂgyn is an example of an interesting class contained in the
piecewise polynomial tautological ring, see [45, Theorem 6]. However, in general, even basic tautological classes
like ;1 € R*(M,,,,) are not contained in logR? (Mg.n). Indeed, the restriction of the latter ring to M, , is just the
span of the fundamental class [M, ,].

To include the & classes, observe that both R*(M,,) and PP*(%, ) are algebras over the Q-algebra of strict

piecewise polynomials sPP*(3, ). We therefore obtain a canonical homomorphism,

18 R*(Myg.n) Qsppr (s, ) PP*(g,n) — logCH* (M., -

Definition 5. The small tautological ring logR%, (M,.,,) is the Q-subalgebra
logRZ (My.n) = tg n(R* (M) ®sppr(3,.,) PP*(2g,n)) < logCH* (M)

generated by tautological classes R*(M, ) < CH*(M, ) S logCH*(M, ) and classes coming from piecewise
polynomials on X ,,. O

As mentioned above, the existence of k- and v-classes which are non-trivial on the interior M, © M, ,, implies

that the inclusion logR} (M, ) < logR%, (M) is, in general, strict. Notable examples of classes contained in
the small tautological ring are the (logarithmic) double ramification cycles

DRy 4 € CH/(M,,,) and logDR, 4 € logCHY (M, ),



as proven in [45, Theorem 19], [46] and [28, Theorem 4.22]. More generally, Molcho [44] shows that Abel-Jacobi
pullbacks of Brill-Noether classes, of which the double ramification cycle is just one example, lie in the small
logarithmic tautological ring.

While the ring logR}, (ﬂgyn) allows us to combine normally decorated strata classes in log blowups of ﬂg,n
with tautological classes, a weakness of the definition is that the tautological class must always be defined on all
of ﬂg,n. For example, we could blow up a boundary stratum and then decorate the exceptional divisor with a
product of k- and -classes only defined on the stratum itself. Developing a formalism for such logarithmic classes
is a central motivation of the present paper.

To formulate the corresponding construction, we first prove'” that given a stable graph I' on ﬂg,n there exists

an Artin stack Pr and a map jr : Pr — Asx, , such that we have a fiber diagram

n

.
Mr —— My,

J{tp i‘ (11)

PF Jr Ang
with both vertical maps being smooth surjections. The morphism jr is a finite cover of the closure Sp < As, gn Of
the stratum Sr associated to I'. Via the diagram (11), the morphism jr can be seen as a smooth local model of
the gluing morphism «r inside the Artin fan Ayx, . The natural cone stack associated to the strict log structures
on Mr and Pr induced by the horizontal maps of (11) is the product

Starp(Zgyn) =Y = H Zg(v),n(v) X Rg(()m . (12)
veV (T)

In general, the stacks M and Pr are not log smooth with the above induced log structure, since these log structures
can be generically nontrivial. However, they are idealized log smooth (see Definition 31), which roughly means that
they are cut out inside a log smooth space by an ideal that is monomial with respect to the log structure.!' On
the combinatorial side, the existence of this monomial ideal is reflected by the fact that X carries the structure of
a cone stack with boundary (see Definition 41). The boundary Ar of 3 consists of the collection of cones in X of

the form
H Op X T
veV (T)

for 7 < Rg(()r) a proper face of Rgér). The significance of the boundary is explained in Theorem 59 where we show
that parallel to equation (10) we have isomorphisms

log

PP, (S, Ar) 5 CH,(Pr) and PP, (Sr, Ar) —Is logCH, (Pr) (13)

where (s)PP, (Zr, Ar) denotes the set of (strict) piecewise polynomials on ¥ vanishing on all cones of Ar. Such
functions are called homological piecewise polynomials below, and correspondingly logCH, (Pr) denotes the homo-
logical log Chow group of Pr defined in [10].'? Since such homological log Chow classes admit flat pullbacks and
proper pushforwards along log maps, we can use them to define our third ring of log tautological classes.

Given f € PP,(3r,Ar) and v € R*(Mr), we define a log decorated stratum class as the cycle

[T, £.9] = (er)s (7 GUF5()) € logCH* (M) (14)

Before moving on with the general theory, let us list some examples and properties of these log decorated stratum

10See Corollary 94, which is formulated in the case of arbitrary pairs (X, D) of a smooth DM-stack and normal crossings divisor D.

11 Just as the basic model for a log smooth space is a toric variety, the basic model for an idealised log smooth space is a torus
invariant subscheme inside a toric variety.

12We warn the reader that logCH, (X) of a log scheme X that is not log smooth is not necessarily as well behaved as the log Chow
ring of a log smooth log scheme. For example, logCH, (X)) is not necessarily supported in degrees 0 through dim X even if dim X = 0.
See Example 62 and Proposition 63 for examples on logarithmic Chow groups and homological piecewise polynomials.
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classes:

a)

Definition 6. The log strata algebra logS

Let ' be a stable graph with precisely two vertices v1,vy connected by a pair of edges (associated to a
stratum ML < My, of codimension 2). On I = Yo m1) X Vglvs),n(vs) X R;z consider the piecewise
polynomial function f = min(z,y), where z,y are the coordinates on the last factor RZ,. Then the class
’cl’i\I/i?g(f) € logCH* (M) is given by the fundamental class [Mr] of a log blowup p : Mr — My, where p is
a Pl-bundle. If we set the decoration v = 1, then

[T, min(z,y), 1] = (ur).[Mr]

maps to a multiple of the exceptional divisor of the blowup of HF inside M, ,,. For an arbitrary decoration
v, we would just replace the fundamental class [/T/l\p] by (p*v) N [/\//Yp] in this formula. We see that the
intuition of the formalism is to allow us to combine log Chow classes from piecewise polynomials (like [/\//\lp])
with decorations 7 that are only defined on the domain Mr of the gluing map . For more details and an
application of this example, see the proof of Proposition 8.

In general, when the decoration v = 1 is trivial, the class [T, f, 1] can be calculated as

[T, f,1] = @Lﬁ%(g) € logCH* (M, .,,) for an explicit g = (11°?).f € PP*(M,..),

see Proposition 67. The tropical pushforward g of f can be calculated using a formula adapted from [13] (see
Proposition 76). In the simplest situation when the map ¥r — X, ,, is just an inclusion of a cone sub-complex
(which happens, for example, when g = 0), the function g is just the extension of f by zero on all cones not
in the image of Y. The condition that f vanishes on the boundary of ¥ is exactly what makes this a
well-defined piecewise polynomial.

As with the traditional tautological subrings [23] of decorated strata classes on M, ,, there is a product
formula, expressing intersections of cycles [I', f,7] as linear combinations of further log decorated strata
classes (116).

*

is the Q-vector space

g,n
logs;,n = @ PP*(ZIV AF) ®Q ® S;(v),n(v)
r veV (T)
with a product defined by the product formula (116). O

We obtain a well-defined homomorphism of Q-algebras

q :logS} ,, — logCH" (M, ) .

which is used to define our final (and largest) log tautological ring.

Definition 7. The large tautological ring logR* (M, ,,) is the image

logR* (M) = q(logS;’n) < logCH* (M, )

of the log decorated strata classes [T, f,v]. O

2.1.3 Comparisons

We first show that the small tautological ring is contained in the large tautological ring. Let I' = I'y be the stable
graph with a single vertex (and no edges) associated to the main stratum of ﬂg’n. Then, for

f € sPP.(Zr,, Ar,) = sPP*(3,.,,)

11



and v € R*(Mr,) = R*(My,,), we have
(T £, =7 2(f).

Since the classes v - ®(f) generate the small log tautological ring logR},, (ﬂg,n), we obtain inclusions
logR;p(ﬂg,”) < logR;m(mgW) < logR*(mgyn) .

By the following result, the second inclusion is also, in general, strict.

Proposition 8. For g > 7 and n > 0, logR%, (M, ) & logR* (M, ).

Proof. Consider the codimension 2 stratum associated to the graph I' given by

and the class v = k1 ® 1 ® 1 € R*(Mr), with k1 on the vertex of genus g — 4. Let f be the homogeneous piecewise
polynomial on the star of Mr given by min(¢y,¢5) on or = RZ,"%.

Let /\79,71 — ﬂg,n be a log blowup associated to a subdivision of ¥, ,, whose induced subdivision of Star(,W Ygn
makes f a strict homogeneous piecewise polynomial. On the complement of the codimension 3 boundary, we are
simply blowing up the stratum Mrp < Mg’n. We then define

7 =T, f,7] € CH* (M) -

By definition, 7 € logR*(M,,,). We claim that 7 is not contained in logR}, (M, ,,).
To prove the latter claim, we take the fiber square

Mr— M,
We claim
WE(f) = [Myon 57, Mr] € logCH, (Mr) (15)
and that correspondingly
y = (m1)«myy € CH (My ) S logCH* (M, 1,). (16)

The proof of equation (15) uses some more machinery, which we have not yet introduced, and is explained in
Example 62 later.
Restricting to the complement U of the codimension 3 boundary, the diagram takes the form

E Le U
| |
u

ir
Mp=Mg_y1 X Mzo x My i1 ——

where map 7 : E — Mr is a Pl-bundle (giving the exceptional divisor of the blowup of (r(Mr)) and the normal
bundle of the embedding tg in U is Og(—1). We have

* A~

mi Ay 2 mp (i @ 1@ 1) = 1y (1 (Op(—1) - T (M ®1® 1) =~k ®1®1e R{(Mp).  (17)

13To extend f to a piecewise polynomial on the star, define f on every cone containing the cone o by projecting to or. The extended
f automatically vanishes on the boundary of the star since f vanishes on the boundary of or.
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Next, we assume 7 € logR?, (M, ). In other words
7€ Im (SPP(My.0) OR* (M)
where sPP(/q g,n) are the strict piecewise polynomial functions on the cone complex of /qg,n.l/l This would imply
Al € Im ((W*LESPP(M!J,“)) ®L;R*(Mq,n)) : (18)

The classes from strict piecewise polynomials on Mg,n are given by fundamental cycles of strata of this space
decorated by Chern classes of summands of their normal bundles (see [45, Theorem 15]). Since the stack & removes
the higher codimension strata of the moduli of curves, the image of the piecewise polynomials simply give the
Chern classes of the normal bundle of Mr:

~

TethSPP(My ) = (-1 @1 - 1Q09Y1) @1, 1Q (— ®1 —1®1¢1)).

By the excess intersection formula, this is in fact contained in the pullback ¢ .R*(M, ), and the additional classes
in this pullback are t}r1 and the (J1);, for i = 1,...,n. Consider the quotient map R'(Mr) — Q by the span of
all 1)-classes on any of the factors. By [5] the space @ is 2-dimensional with basis [k1 ® 1 ® 1], [1 ® k1 ® 1]. By
the discussion above, the image of the right-hand side of (18) in @ agrees with the image of (}.R* (ﬂgm) and is
spanned by

[(hr1] = [ QIO +1Q K ®1]

which does not contain the class (17). This gives the desired contradiction. O

We will take logR* (M, ) < logCH* (M, ,,) to be the fundamental definition of the logarithmic tautological ring
of the moduli space of Deligne-Mumford stable curves. In certain situations, the study of the smaller tautological

rings can also be natural, but our goal is to control all of logR* (M, ,,).

2.1.4 Log Gromov-Witten theory

In the case of standard Gromov-Witten theory, a speculation of [41] is that the pushforwards to the moduli of
curves of the virtual fundamental classes of the spaces of genus g stable maps to a nonsingular projective variety

X lie in the tautological ring RH*(M,) in cohomology. We can ask a parallel question here.

Question A. Do the pushforwards to the moduli of curves of the log virtual classes of the spaces of genus g log

stable maps to (X, A) lie in logRH*(M,)?

For an explanation of the log virtual class and its pushforward to the logarithmic Chow group of M, ,, we refer
the reader to [56, Section 3.2] and the forthcoming survey paper [26]. The log tautological ring in cohomology can
be simply defined at the image under the cycle map of

logR* (M) — logH*(M,) .

When the target is a toric variety (Y, Ay ) with log structure given by the full toric boundary, the answer to Question
A is positive by the results of [56]. More generally, it should be possible to adapt the methods of [46, 54, 56] and
combine them with Janda’s results [31] to give a positive answer to Question A for products of nonsingular curves
with logarithmic structure, but some steps along the path remain to be proven.

14Here we tacitly use that for any representation of 4 using piecewise polynomials on some subdivision of the cone complex of ﬂg,ru
we can always go to a common refinement and push forward to the complex of My , to obtain a strict piecewise polynomial there.
The fact that 4 was constructed from a representative on Mg ,, implies that this does not change the class 4.
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2.2 A presentation of the logarithmic Chow ring in genus 0
2.2.1 Chow ring of Mo,n

We start with the standard presentation of the ring CH*(M,j,). The irreducible components D4 < A of the
boundary A = My, are indexed by subsets A < {1,...,n} satisfying the properties

leA and 2<|4|<n-—-2.

The divisor D4 parameterizes nodal curves with the markings partitioned by the node into the sets A and A¢. The
Chow classes'® of the divisors D 4 satisfy two basic sets of relations.

(i) Disjointrelations: D4 - Dp = 0 when the divisors are set-theoretically disjoint.
(ii) WDVV relations obtained from all pullbacks via the forgetting maps of the boundary relations on Mo 4.
The following fundamental result is due to Keel.

Theorem 9 ([35]). The Chow ring of M, is generated by the divisors classes {D 4}, and the ideal of relations is
generated by the Disjoint and WDVV relations:
- Q[{Da}]

CH* (Mo.n) = (Disjoint, WDVV) °

Since CH*(Mo,,,) is generated by the classes of the boundary divisors, R*(Mo.,) = CH*(Mo,). A parallel log
result holds: the three types of logarithmic tautological rings in genus 0 are all equal to the full logarithmic Chow
ring.

Proposition 10. We have logR* (Mo ) = logR%,(Mo.n) = logR* (Mon) = logCH*(Mo,,).

Proof. For any stable graph I' associated to a stratum Mr of My, we have that R*(Mr) = CH*(Mr). Then the
equality logR*(Mo ) = logCH* (M ,,) follows from Corollary 128. We conclude by showing that any generator
[T, f, ] of logR*(M,y,) lies in logR* (Mo,n), where f € PP,(M3") and a € CH*(Mr). For this just observe that
there exists g € sSPP*(M$") such that o = ®(g) (where ® is the pullback map sPP*(X) — CH*(X), again since the
strata of M generate its Chow ring. But then

[F’ f’ Oé] = [F’ f’ (I)(g)] = [F’ f "9, 1] = (LF)*\I/(f : g) = (I)((LF)iropf . g) € |OgR;p(ﬂO,n) . O

2.2.2 Calculation of logCH* (Mo ;)

Each divisor class D4 € CHl(ﬂo‘n) corresponds canonically to a piecewise polynomial function on the Artin fan
of (Mg n,A). Therefore, the WDVV relations can be canonically lifted from Q[{D4}] to the algebra of piecewise
polynomials PP* (Mo ,,, A). Our first result is the following.

Theorem 11. The logarithmic Chow ring of My, is given by
logCH* (M ) = PP* (Mo, A)/WDVV.

In particular, all log Chow classes are tautological.

The calculation shows that the logarithmic Chow ring of M., is not only tractable, but has a structure which
is as simple as possible. Assuming this result, we can prove Theorem 1 from the introduction.

Proof of Theorem 1. Our first observation is that, in the notation of Theorem CH*(ﬂom) above, the quotient ring

15We use the same symbol for the divisor and the associated divisor class.
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gives the Stanley-Reisner presentation [43, Definition 1.6] of the strict piecewise polynomials on Yo, (where the
Disjoint relations are exactly the generators of the face ideal). In particular, Keel’s theorem immediately implies

Y . sPP* (2o,
R (MO,n) =CH (MO,n) = (VV[()V(\J/))

From this presentation, we find the desired isomorphism

. — N N sPP*(30.,) N N PP*(Xo,n)
R*(Mo,n) ®spp+(s,.,,) PP (Zo,n) = “(WDWV) Qspp* (5%,,) PP (Zo,n) = WDWV)
which is equal to logCH* (Mo, ,,) by Theorem 11, finishing the proof. O

2.2.3 Toric geometry

Our strategy to prove Theorem 11 is to move the problem from the Chow rings of blowups of My, to the Chow
ring of a certain toric variety. We can then take advantage of the fact that the limit Chow rings are known in the
toric case. The following Proposition will play a central role.

Proposition 12. There exists a nonsingular quasi-projective toric variety Xy ,, with dense torus T < Xy ,, and an
embedding
j : MO,n - XO,n

which satisfies the following properties:

(i) The stack quotient X ,/T] is canonically identified with the Artin fan of M ,,, and the composition

MO n > XO,n i I:XO,n/T:I

s

coincides with natural map

mO,n - A(MO,TH A)
to the Artin fan. In particular, the stratification of Xy, by torus orbits pulls back to the stratification of
Mo,n by topological type.

(ii) If V is a torus orbit closure in Xy, and W is the corresponding stratum of ﬂgm obtained by intersection
with V', then there is an identification of vector bundles bundles on W

Ny #,., = JlwNv/xo.,.-

Proposition 12 is well-known to experts, but since the proof is spread out over many papers in the literature,
we recall the appropriate results and explain how to deduce the claims. We start with a theorem of Kapranov [34,
Section 4.1].

Theorem 13. The moduli space My, is the Chow quotient of the Grassmannian G(2,n) by the action of the
(n — 1)-dimensional dilating torus H.

The Grassmannian G(2,n) embeds in p(3)

~1 via the Pliicker map, and the dilating torus H is a subtorus of the
dense torus of the Pliicker projective space p(3)-1, We therefore have the following result.

Corollary 14. Let X(’)’n be the Chow quotient of p(z)-1 by the torus H. There is a natural embedding:

Mo = X, - (19)

The Chow quotient X , is a toric variety, since it is the Chow quotient of a toric variety by a subtorus of its
dense torus — see [33] for additional details on toric quotients. The properties of the embedding (19) have been
well-studied, by Gibney—Maclagan [22], Hacking—Keel-Tevelev [24], and Tevelev [59]. We collect the results that
we need here.
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Proposition 15. Let ¥, be the fan of the toric variety X ,, and let T be its dense torus. The tropicalization
of My, in its embedding into T is a union of cones in X ,,.

Proof. See [22, Theorem 5.7] of Gibney and Maclagan and use the geometric interpretation of tropicalization [24,
Section 2. 0

Let ¥, be the subfan given by the union of cones in 26,71 which meet the tropicalization of My ,,, and let X 5,
be the associated non-compact torus invariant open in X ,,. Equivalently, X, , < X, is the complement of the
closed strata that are disjoint from Mo ,,.

Proposition 16. The morphism
MO,n - [XO,n/T]

is smooth.
Proof. See [24, Theorem 1.11] of Hacking, Keel, and Tevelev. O

Proof of Proposition 12. We have constructed the toric variety Xy, above, as a torus invariant open inside the
Chow quotient of P(2)=1. It follows from Kapranov’s description that the toric stratification of Xy , pulls back to
the usual stratification of ﬂo,n. The statement about Artin fans follows.

The statement about normal bundles follows by using these results together with the following pair of Cartesian
diagrams:

W Mo

| !

V—— Xon

| |

[V/T] e A(X()’n).

The bottom left of the diagram is the closed stratum in the Artin fan A(V') given by the done dual to V in X .
Since the composite maps from the top row to the bottom are both smooth by Proposition 16, and therefore flat,
the statement about normal bundles now follows from flat base change for the normal bundle. O

We next turn to the Chow description. The following result is due to de Concini—Procesi [17], and is proved in
the more general context of wonderful compactifications of hyperplane arrangement complements. See also [19].

Proposition 17. Let j : Mg, — Xo., be the inclusion above. The pullback map
J*: CH*(Xo,,) — CH* (Mo )

is an isomorphism. The same is true for the pullback map under the inclusion of a stratum of My, into the
corresponding stratum of X .

Proof. Tt is straightforward to see that the pullback is surjective: Keel’s presentation of the Chow ring already
shows that the Chow ring of My, is generated as an algebra by boundary divisors. Moreover, the stratification of
ﬂo,n by topological type is the pullback of the toric stratification on Xg,. In particular, the boundary divisors
pull back to the boundary divisors, which guarantees surjectivity of j*.

The injectivity is slightly more subtle, but follows from more general results on wonderful compactifications of
hyperplane arrangement complements. Indeed, M, is the wonderful compactification of the braid arrangement
complement in C"~3 in the sense of de Concini-Procesi [17, Section 4.3]. The cohomology presentation they
give in [17, Section 5] is the same as that of Keel’s. In this broader context of arrangements, in [19] Feichtner
and Yuzvinsky showed that this explicit presentation is precisely the natural Chow presentation for smooth toric
varieties'® of the toric variety Xo ,. The reader can find a summary of this work in [42, Section 6.7]. These together
show that j* is an isomorphism.

161n terms of invariant divisors with relations given by characters, as in [20, Chapter 5]
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We turn to the statement for strata. Fix a boundary stratum in Mo ,, with marked dual graph T'. This stratum
My is identified with a product of moduli spaces of curves associated to the vertices of I', marked by the flags of
incident edges and markings. The stratum Mr is naturally embedded in a stratum Xt of the toric variety Xg .
The fan 3o, of this toric variety is naturally identified with the cone complex Mggf. The fan of Xr is equal to
the star fan, in Mffjf, of the cone labeled by the type I'. This star fan is also naturally a product over vertices in
T, of the fans associated to vertices of I', marked as above.

Summarizing, the stratum M is a product of M j for various k < n and similarly, the stratum Xr is a product
of Xy, for various £ < n. The induced embedding Mp < Xt is compatible with the product decomposition.

The varieties in question are linear, and therefore satisfy a Kiinneth theorem in Chow cohomology [61]. It
follows that the embedding Mr <> Xt also induces an isomorphism in Chow under pullback. O

2.2.4 Proof of Theorem 11

We will prove the theorem by showing that the directed systems of Chow rings of blowups coincide, and this will be
done by induction on the number of blowups. We can then use the easy isomorphism on the X ,, side. Let us spell
out the argument in the case of a single blowup, before explaining the general case. We start with an isomorphism
on Chow induced by the inclusion

j : Mo)n - XO,n~

Let W be a stratum of My ,. By the proposition above, W is equal to j~(V). Furthermore, under the pullback
j*, the normal bundle of V' becomes that of W. By using Keel’s blowup formula [35], we see that pullback under

j": Blw Mo, = Bly Xo.n

gives rise to a natural isomorphism of Chow rings.

The claimed result now follows by induction. Any stratum of Blwﬂovn is either a blowup of a moduli space
with smaller numerical data, or formed from projective bundles over such a smaller moduli space. By the arguments
above, the map j’ still identifies these strata and their Chow rings by pullback, compatibly with normal bundles.
It follows that the two directed systems of Chow rings are isomorphic.

The stated theorem now follows from the fact that the Chow ring of the toric side is given by piecewise
polynomials modulo linear relations coming from the characters of the dense torus. Since the latter is preserved by
blowups, the result follows. O

2.2.5 Spaces of rational curves

The calculation of logCH*(My_,,) has a natural extension to the logarithmic geometry the moduli of maps. Let Y’
be a nonsingular and projective toric variety, with its canonical log structure coming from the full toric boundary.
Consider the moduli space M (Y') of logarithmic stable maps of genus 0 curves to Y (with respect to the full toric
boundary Ay < Y) with fixed numerical data A, and assume n > 3. By results of [53, 57], the stack M, (Y) is
isomorphic to a logarithmic blowup of Mg, x Y. As a consequence,

logCH* (M (Y)) = logCH* (Mg, x V).
The arguments we have used for My, immediately generalize to prove the following result.
Theorem 18. The logarithmic Chow ring of M (Y) is given by
logCH* (M (Y)) = PP* (Mo, x Y) /(WDVV, Linear) ,

where Linear is the usual space of relations on piecewise linear functions PL*(Y") obtained from the divisor linear
equivalences of the components of the toric boundary of Y.

A parallel calculation without the full toric boundary condition would be interesting. For example, the loga-
rithmic Chow rings of the moduli spaces of genus 0 logarithmic maps to P with the logarithmic structure coming
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from a subset of the toric boundary are well-behaved, and there is evidence that their Chow rings are entirely
tautological (as in the case of My.,), see [36, 48, 49)].

2.3 Results and counterexamples in genus 1

For all g and n, there is a canonical map
fign i PP*(Mgn, A) — logR*(Myg,,,) -

The map pg,y, is surjective in genus 0, and the calculation of logCH* (M, ,,) can be restated as: the kernel of 1o,
is generated by the canonical lifts of the WDVV relations. A more elegant restatement is as an isomorphism:

,ug,n : R*(mo,n) ®5PP*(mo,n,A) PP* (ﬂo,nv A) — |°gR*(mo,n) .

Here, sPP* (/\/lo n) is the algebra of strict piecewise polynomials on the Artin fan of /\/lo ne
In higher genus, the map pf ,, surjects onto logR},, (Mg.n),

(s R (M) ®gpp+ (71, ,.,4) PP (Mg n, A) — l0gR, (Mg.n) -
Question B. Can the kernel of u;n be understood?
A non-trivial kernel of Ms,n can be found even in genus 1.

Proposition 19. For ¢ = 1,n > 3 the map ug ,, 1s not injective.

Proof. Below we construct a non-trivial element in the kernel of ,uﬁg. For n > 3 this element pulls back to a
non-zero element in the kernel of ,u'in under the natural forgetful map.

For n = 3, consider the stable graph I'y with two genus 0 vertices, carrying markings {1, 2} and {3}, respectively,
and connected by two edges. In Figure 1 we depict the star of I'g in the tropicalization ¥, 3 of Mji 3. The cone
of 'y corresponds to the vertical line, and the central dot corresponds to the ray 7, where ¢; = ¢5. The drawn
subdivision T at Tr, corresponds to the blowup /\/l M;. 3 of the stratum associated to I'y. We claim that

0+#1® ((x —y) min(¢y,43)) € ker U?,n (20)

is a nonzero element of the kernel.

To see that it maps to zero under ,ug,n we note that the piecewise linear function min(¢;, ¢3) has value 1 on the
generator of the new ray 7r, and 0 on all other rays of . Thus it corresponds to the exceptional divisor E of the
blowup M > M 3. Multiplying this function by = — y corresponds to pulling back the WDV'V relation under the
projection E — Mp, = My 4, since this relation is given by the piecewise polynomial z = y on X 4. This shows
that (x — y) - min(¢1, £) indeed maps to zero in logR%, (M 3).

Finally, to see that (20) is nonzero, note that the map sPP*(M; 3,A) — R*(My3) is surjective (since the
boundary strata generate the tautological ring in genus 1) and it is an isomorphism in degree at most 1 (since the
boundary divisors in M, 3 are linearly independent by [5]). Thus

R*(My,3) = sPP*(My3,A)/1
with the ideal I generated in the degree at least 2. It follows that the domain of ,u;n is isomorphic to
PP*(My n, A)/I-PP* (Mg, A).

Since the generators of I have degree at least 2, the degree 2 part of I - PP*(M,,,A) agrees with the degree
2 part of I, and thus consists of strict piecewise polynomial functions on ¥q 3. Since (x — y) - min(¢q, £2) is not
strict piecewise polynomial on ¥ 3 (only on its subdivision X), it is not contained in I - PP*(M,,,A), and thus
nonzero. O
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Figure 1: A cross section through the star of 'y in the cone stack of ng. For better visibility, we draw the
double-cover of the actual picture where the two edges with lengths ¢1, /5 are distinguishable. The star of I'y is the
quotient of the figure under reflection along the horizontal axis (the red subdivision defined by ¢; = £3).

Proposition 20. In genus 1, logR%, (M) = logR* (M, ,) for all n > 1

Proof. By Definition 7 it suffices to show that any decorated log stratum [T, f, ] is contained in |ogR;p(m17n).
For this, we note that o € R*(Mr) is a product of strata classes (decorated by s and v-classes) on the factors
ﬂg(v)’n(v) of Mr, where clearly all g(v) < 1. But in genus at most 1, any t-class (and thus after pushforward
any k-class) can be expressed in terms of undecorated boundary strata using the divisorial relations from [5].
Thus the map ® : sPP*(My /) — R*(My /) is surjective for all (¢',n’) with ¢’ = 0,1. This means there exists
hy € SPP*(Eg(v),n(v)) such that

n ®(h,) € R*( Mr)

veV (T)

Let m, : ¥p —> X n(v) be the projection to the factor associated to vertex v in (12). Then it follows that

g(v),

[0, fial =0, f [] hoom,1].

veV (T)

Finally we conclude by noting that for any class [T, g, 1] we have

[T, 9,1] = (tr)«T(g) = 2((er)i*Pg) € logR}, (Mi,n). O
Question C. Find a presentation of logR* (M ).

2.4 Study in higher genus

While logR* (M, ,,) appears larger and more complicated than the standard tautological ring R* (M, ,,), we view the
study as not being essentially more difficult. The calculation of logR* (Mo ,,) is the first evidence of the tractability
of these log Chow rings. We show here how relations in R*(M,,) can be used to determine the structure of
logR* (M, 1,).

The tautological ring R*(M, ) admits a surjection from the strata algebra
Pgn : S;,n - R*(mg,n)v

see [23, Appendix A]. A full description of the tautological rings of the moduli spaces of curves is provided by
presenting a complete set of additive generators of the kernel,

Pyn < ker(dgn),

for all stable g and n. Pixton has conjectured a complete set of generators of P, [52].
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Given the domain Mr of a gluing map ¢r, there is a similar surjection

X Shw)ne) — R*(Mr) € CH* (M),

veV (T)

whose image agrees with the image of the natural composition

X R*( @ CH* (M () () = CH* (M) (21)

veV (T") veV (T

It is natural to expect that the kernel Pr of ¢r is the ideal generated by the tautological relations Py(y) () on

the individual factors S* ) and this would follow if the composition (21) is injective. However, in contrast to

n(v
the case of singular cohom)ol(()gy, the Chow group of a product does not agree with the tensor product of its Chow
groups.

Thus, in order to fully control the Chow groups of all normalizations of strata closures in ﬂg,n we a priori
need the full system of tautological relations Pr. However, there is a sufficient condition to ensure that the Pr
are indeed generated by the Pg(,) n(v): assume that for all pairs g(v),n(v), the system Pg(“) n(v) also gives the

complete system of tautological relations in cohomology. Then we have R*(M(y)n(v)) = RH? *(Mg(v)n(v)) and a
commutative diagram

®UEV(F) R*(mg(v),n(v)) CH* ﬂp)
B g’ (22)

®UeV(I‘) RHQ*(mg(v),n(v)) R— ®116V(F) H2*(mg(v),n(v)) — HQ*(MF)

—~

The injectivity and isomorphisms along the lower left path of the diagram (where the last isomorphism follows
from the Kiinneth formula in cohomology) imply that the upper arrow is injective. As mentioned before, this then
implies that Pr is the ideal generated by the Py n(v)-

Theorem 21. The log tautological ring logR* (M, ) is determined by the set of relations
Ps, = {Pp c St ‘ I" stable graph of genus g with n legs} .

Proof. By assumption, the above system of relations determines the tautological rings R*(Mr) = S}/Pr of all
spaces Mrp. But these are precisely the tautological rings of the monodromy torsors Mr = P,. with o € Ygmn
appearing in the standard tautological system Rﬂg ., on ﬂg,n. Thus by Theorem 120 this information uniquely

determines the tautological system 7* Rﬂq _on any iterated boundary blowup  : M- Mg}n via Fulton’s blowup
exact sequence. Since the iterated boundary blowups are cofinal in the system of all log blowups, we obtain a
description of the log tautological ring logR* (M, ). O

While logR*(M, ,,) is determined by set of tautological relations P

g,n
is not practical. A more useful direction would be to lift the relations known among the tautological classes of

M.

the study via Fulton’s blowup sequence

Question D. Are there canonical lifts of Pixzton’s relations to logR*(M,,,) ?

In the case of Pixton’s double ramification cycle relations, lifts (depending upon a choice of stability condition
for line bundles) have been given in [27] via the formula for the logarithmic double ramification cycle.

Another potential source of relations comes from log double ramification cycles of higher rank. The rank r
logarithmic double ramification cycle is a virtually log smooth compactification of the space of pointed smooth
curves equipped with 7 principal divisors, each with prescribed zeroes and poles at the marked points [28, 46]. The
space is equipped with logarithmic evaluation maps to a certain toric variety [56]. The standard toric boundary
relations give rise to relations on the higher rank log double ramification cycles, and by pushforward, in the log
tautological ring of My ,,.
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3 Homological piecewise polynomials

3.1 Conventions and homological Chow groups

Piecewise polynomials have been an important tool in logarithmic intersection theory on moduli spaces. For log
smooth schemes/stacks, the theory is developed in [45, 28, 27]. However, for log stacks that are not log smooth, such
as the strata of ﬂg’n or the moduli space of log pointed curve Mztn of [29], the theory is not yet well developed. In
singular geometries, Chow homology classes are more natural to study, but piecewise polynomials are cohomology
classes. There is, as yet, no homological version of piecewise polynomials.

We propose here a definition of homological piecewise polynomials for idealised log smooth schemes. We establish
basic properties, state the tropical interpretation, and study the question of proper pushforwards for homological
piecewise polynomials. For log smooth schemes, the theory recovers the usual piecewise polynomials.

In Section 4, we will use language developed here to to define the log tautological ring of ﬂgm (and, furthermore,
to describe the log Chow ring of any scheme with a divisorial log structure).

Definition 22. An idealised log scheme is a tuple (X,a : My — Ox,Kx) where (X, «) is a log scheme and
Kx < a~1(0) is a monoid ideal inside Myx. A morphism of idealised log schemes f : X — Y is a map on the
underlying log schemes such that the map f*Ky — Mx factors through Kx. %

A basic example may be helpful. Affine space A™ has a natural divisorial log structure coming from its coordinate
boundary. Take any monomial subscheme Z < A™ and equip it with the pullback log structure. The monomials
that vanish on Z give a monoid ideal inside the logarithmic structure of Z. See Ogus [47], for a detailed treatment
of idealised log schemes. We record a few examples that are relevant to our goals.

Example 23. Any log scheme with the empty sheaf of ideals forms an idealised log scheme. We call this a log
scheme with trivial idealised structure.

Example 24. Let X be a log scheme with log structure given by a normal crossings divisor D. Let S be a stratum
closure of X endowed with the strict log structure from the embedding i : S — X. For U < X open we have

Mx(U) = {z e Ox(U) : z[p\p € Ox(U\D)}.
As S is a stratum, it is given by an ideal K ¢ Mx. Then
(S, Mg, K|s)
is an idealised log scheme. In particular, if S is a point and dim X = d, then this idealised log scheme is
(pt,N%, N4\0).

Definition 25. A map of idealised log stacks f : X — Y is idealised log smooth if f satisfies the lifting property
for all idealised log thickenings. A log scheme X is idealised log smooth if X is idealised log smooth over the base
point. O
Example 26. All examples of idealised log schemes so far are idealised log smooth. Only those with generically
trivial sheaf of monoids are log smooth.

For an Artin stack X, we let CH,(X) denote Kresch’s Chow group [38] with Q-coefficients. We let CH*(X)
denote the operational Chow ring of X with test objects given by algebraic stacks of finite type stratified by global
quotient stacks, as defined in [8]. For DM-stacks, these correspond to the usual Chow groups and rings. When X
is smooth, there is a natural Poincaré duality isomorphism

CH*(X) => CH,(X),a — a n [X].

Thus, when X carries a log structure and is both smooth and log-smooth, we can define the logarithmic Chow ring
logCH*(X) either as a direct limit of CH*(X) over all log blowups X — X, or as the direct limit of CH,(X) for
smooth log blowups X, and obtain isomorphic results.
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However, when X is only idealized log smooth (as for the strata S from Example 24), there may be log blowups
X — X which are no longer smooth (or even equidimensional). For these cases, we will need a definition of
homological log Chow groups logCH, (X) — and the necessary level of generality is to allow X to be an Artin stack.

When X is a log scheme, a definition logCH, (X) was presented in [10, Definition 2.7]. In remainder of Section
3.1, we recall the treatment of [10].

Definition 27. Log spaces and log stacks:
(i) An algebraic log space is an algebraic space with a log structure.
(ii) An algebraic log stack is an algebraic stack with a log structure.

(iii) A log stack is a stack in groupoids over LogSch, with a log étale cover by a log algebraic stack and with
diagonal representable by log algebraic spaces.

(iv) A log stack X is dominable if it has a log blowup X that is an algebraic log stack. %

Remark 28. Given any algebraic log stack X, the category of log maps S — X is a log stack. For many purposes,
it suffices to study algebraic log stacks: all examples of log stacks that we consider (outside of this Remark) are
algebraic log stacks. However, there are important examples of log stacks which are not represented by an algebraic
log stack.

(i) The log stacks G!°¢ and G!°P, which represent the functors X + Mx(X) and X +— Mx respectively. They

m

are dominable by P! and [P!/G,,] respectively, see [57, Proposition 1]

(ii) The logarithmic Picard group LogPic/S of a log curve C/S, and, in particular, the universal logarithmic Picard
group LogPic, , /ﬂg’n. The space LogPic, ,, has representable log blowups given by universal compactified
Jacobians associated to non-degenerate stability conditions, see [27, Section 4].

(iii) The moduli space LogA, of log abelian varieties of dimension g, first defined in [32]. The standard toroidal
compactifications of the moduli space A, of principally polarized abelian varieties of dimension g, such as the
perfect cone compactification and the second Voronoi compactification, are log blowups of LogA,.

Definition 29. A log stack X is locally free if every stalk of My is isomorphic to N for some 7. %
Example 30. The basic cases for us are:

i) The stack M, ,, with its divisorial log structure is locally free, since the stalk of the ghost sheaf at (C, p1, ..., pn
g,
is isomorphic to N” for r the number of nodes of C.

(ii) A toric variety with the toric log structure is locally free if and only if the underlying toric variety is smooth.

Definition 31. The category of idealised log schemes (X, : Mx — Ox, Kx) is denoted IdLogSch. The subcate-
gory consisting of idealised log schemes with maps f : X — Y satisfying the equality Kx = f*Ky of monoid ideals
is denoted IdLog. An idealised log stack is a log stack X /LogSch together with a map to ldLog/ LogSch. %

Remark 32. The category of maps from idealised log schemes to an idealised log stack forms a stack over ldLogSch,
and any stack over IdLogSch with a smooth cover by an idealised log stack is of this form.

Example 33. For the gluing map ¢ : Mr — M, ,, associated to a stable graph I', we write M;™ for the stack
M endowed with the strict log structure induced from the standard divisorial log structure on ﬂgm via tp. The
stack M is locally free, where the stalk at (Cy,q1,0, - - -, Gn(v),0)vev(r) i

M-— — NE@) M-
MM?",(Cv)v N ® @ MMg(v),n(v)s(CU7q1,va'~~7qn(1)),v) :
veV (T")

To give M5 an idealised log structure, we must give an idealised log structure on S for every map S — M§T. We
let the log ideal Kg € Mg be the ideal generated by the lengths of the edges of T'.
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Definition 34. Let X be a locally free algebraic log stack, and let 7 : X > X bea log blowup of locally free
log stacks. We let 7' denote the virtual relative dimension 0 pullback CH,(X) — CH,(X) constructed in [10,
Construction 2.4]. O

Example 35. Let X be the point with characteristic monoid N2, and let X be the P! obtained by blowing up in
the log ideal (x1,x2). Using the excess intersection formula, we obtain

m[X] = —[H] € CH.(X),
where H is the hyperplane class on P!,

Example 36. Let X > Xbea log blowup of locally free log smooth log stacks. Then, 7' is equal to 7*.

Definition 37. Let X be a dominable log stack. We define the homological log Chow group logCH, (X) to be the
colimit

logCH, (X) = colim CH, (X),
X—-X

where the colimit runs over all locally free algebraic log blowups of X, and the transition maps for a log blowup
7: X1 — X is the Gysin pullback 7' from Definition 34.

We define the cohomological log Chow group logCH*(X) to be the operational Chow ring for logCH, , consisting
of bivariant classes acting on logCH, (T") for maps T'— X, and commuting with saturated proper pushforward, log
flat pullback and all strict Gysin maps (see [10, Definition 2.20]). O

Remark 38. For a log smooth log stack X, we have by [10, Corollary 2.23] a natural isomorphism
logCH*(X) — logCH, (X)
given by acting on the fundamental class [X].

Remark 39. There are several different definitions of logCH” in the literature. For example, in [28], the definition

logCH}sc (X ) = colim CHop(X)
X—-X

is used for log smooth stacks X. In [29], the definition

logCH}ys,(X) = colim CHop(X)
X—-X
is used (where CHop is the operational Chow ring defined in [8]).
There is a map logCHfjs,(X) — logCHfs(X). In [29, Appendix A], a map logCHfg,(X) — logCH"(X) is
constructed. Many constructions in the literature lie in logCHyjs,(X) or can be canonically lifted to logCHfis,(X),
and can then be mapped to logCH*(X).

Remark 40. When X is not log smooth, many nice properties, such as the Poincaré duality isomorphism, fail. In
[10], the notion of a compatible fundamental class [X] € logCH, (X), represented by the fundamental class of any
locally free log blowup of X of maximal dimension, is introduced. However, it is then no longer the case that every
class in logCH, (X) can be obtained from [X] by the action of a logarithmic operational class.

For example, for X = (pt,N?), the group logCH, (pt, N?) is supported in degree 0 and 1 for dimension reasons.
Moreover, it follows from Proposition 63 below that

logCH, (pt, N?) = {f € PP'(R%;) : f(z,0) = f(0,y) = 0 for all z,y € R>o}

is an infinite-dimensional Q-vector space (all functions f = min(az, by) for a,b € Z>, with ged(a,b) = 1 are linearly
independent). On the other hand, since logCHC (pt, N?) = Q, the map

logCH* (pt, N?) — logCH, _, (pt,N?),a — o n [X]
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only covers a 1-dimensional subspace of logCH,(pt,N?). An important motivation for introducing homological
piecewise polynomials in Section 3.4 is to describe significantly larger parts of logCH, (X).

3.2 Cone stacks with boundary

Recall from [15] that a (combinatorial) cone stack is a category fibered in groupoids
C:¥ - RPC/ (23)

over the category RPC/ of rational polyhedral cones (with morphisms being face inclusions). For the precise
technical conditions, see [15, Definition 2.15]. We denote the objects of ¥ by ¢ and the morphisms by o — o’.
Where there is no risk of confusion, we identify the morphisms with the cones and face morphisms that they
correspond to under C'.

The category of Artin fans is usually defined as the category of Artin stacks that are log étale over Speck
and admit a strict étale cover by Artin cones, which are Artin stacks of the form [Spec k[M]/Spec k[M®&P]]. The
category of cone stacks X is naturally isomorphic to the category of Artin fans Ay, see [15, Theorem 6.11] for more
details.

While the Artin fan Ay itself is log smooth, a closed subset B € Ay with its reduced stack structure and
induced log structure will in general only be idealized log smooth. Conversely, as explained in Section 3.3, any
idealized log smooth stack admits a strict and smooth map to such a set 5. In Xy, the set B is described by a
collection of cones og in X x that are closed under taking face maps og — 0. These ideas motivate the following
definition.

Definition 41. A cone stack with boundary (X,%°, A) is a cone stack ¥ together with a full subcategory X0 < ¥
which is forward-closed: for og € ¥° and a morphism o¢g — ¢ in 3, we also have o € £°. We call X0 the interior of
¥ and the complementary full subcategory A = ¥\X its boundary. A morphism

(31,20, A1) — (32, %9, Ag)
of idealized cone stacks is a morphism ¥; — 3, of cone stacks sending X9 to 9. O

For a cone stack with boundary (3,%° A), the subcategory A is a cone stack itself, and the map A — ¥
corresponds to an open embedding Ax — Ay of the corresponding Artin fans. We denote by

Bgo = Az\AA c As,

the complement of Aa with its reduced substack structure. We can extract a colimit presentation of the stack Bso
from the combinatorial data. Indeed, recall the classical presentation of the Artin fan

As = Coligl [Spec k[S5]/ Spec k[SEP]],
o€E

=A,

with S, € oY the semigroup associated to o.

To find the corresponding presentation of the closed substack Bso © Ay, consider the étale cover ]_L, A, — As,
of the Artin fan Aysy, by Artin cones A,. We then identify the closed substack of A, obtained as the preimage of
the union of strata Byo insider As. This preimage is cut out by a toric ideal J, 50 < k[So].

To calculate this ideal, note that in Ay, the strata of Bso contained in the image of A4, correspond to morphisms
o' — o with o’ € 2°. Since X is forward-closed, this forces o € 9. Given such a morphism, one sees by an argument
similar to [16, Exercise 3.2.6] that the functions in k[S,] vanishing on the preimage of the stratum associated to
o’ are given by the ideal'”

Jor o = (X* : s € Sy with s|,» # 0€ (0)) S k[Ss] -

17Note that equation (3.2.7) in [16] has a very unfortunate typo and should read I = (x™|m ¢ 7+ n (¢')¥ A M) € C[(0/)¥ n M] =
C[S,].
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To give an example: when o’ = o = R%, then S, = N" so that k[S,] = k[z1,...,2,]. Then among all elements
s € Sy only s = 0 restricts to zero on the dual cone (¢’) = (R%,)". Thus

Jore = (X7 1 5 € So\{0}) = (z1,...,2n) S k[z1,...,2n]-

And indeed, in the toric variety A™ = Speck[z1,...,z,] associated to o, the cone ¢’ = ¢ itself corresponds to the
origin in A™. Correspondingly, we have that (z1,...,,) is the toric ideal of functions vanishing at the origin.
Returning to the general setting, we define the ideal

Jogo = (| Jorma S K[Ss]
olen?

of all functions in k[S,] vanishing on some preimage of a stratum in Byo. Then we have a presentation

Bso = coelizrgl [Spec (k[S5]/Js,s0) / Spec (k[S5]8°)] - (24)

Compared to the presentation of Ay, we could restrict to those o contained in X9, since the others satisfy J, s = (1)
and thus their contribution to the colimit (24) would be empty. In particular, the presentation (24) shows that
the stack Bso only depends on the category X° and the functor from this category to the category of rational
polyhedral cones.

Remark 42. The construction above gives an equivalence between the category of cone stacks with boundary and
the category of embeddings B — A of a reduced closed substack, where the maps are commutative squares. In
general, the more natural category might be the category of (reduced) closed substacks of Artin fans, where the
maps are maps of algebraic log stacks. For example, Proposition 48 is not true for embedded idealised Artin fans,
per Remark 49.

Combinatorially, this category of reduces closed substacks of Artin fans is equivalent to the category of cone
stacks with boundary localised at maps that are an isomorphism on the interior.

3.3 Scheme theoretic images inside Artin fans

We will use the language of cone stacks (with boundary) and Artin fans to describe the tropicalization of a log
stack X.

Definition 43. For an algebraic log stack X, an Artin fan of X is the data of a strict morphism X — A to an
Artin fan A with geometrically connected fibers (where the empty set is connected) and non-empty fibers over
minimal strata of A.'® Given an Artin fan A of X, the cone stack ¥ associated to A is a tropicalization of X. ¢

Remark 44. Every algebraic log stack X satisfying some mild hypotheses admits a canonical Artin fan X — A"
as constructed in [3, Section 3.2] building on [4]. This canonical Artin fan deserves to be called the Artin fan, but
following this path leads to various well-known issues:

(i) The canonical Artin fan of a log stack is not functorial as a map X — Y of log stacks does not necessarily

induce a map A" — A$" which makes the natural diagram commute (see [2, Section 5.4] for a discussion).

(ii) The stack X = BZ/27Z with trivial log structure is an Artin fan, but A" is point and is therefore not identical
to X. In other words, X is an Artin fan which is not its own (canonical) Artin fan.

(iii) For X = M, and X, ,, the moduli space of tropical curves (Definition 3), the map from X to its (canonical)
Artin fan factors as

My 5 As, 5 Acen (25)

g,m

but the map t’' is not in general an isomorphism. The issue arises since the cone or € Ay associated to

g,n

a stable graph T' can have non-trivial automorphisms acting trivially on the set of edges (by flipping two

18We do not require smoothness of the map X — A, as this does not hold in general for idealised log smooth stacks. We will see in
Lemma 52 that any idealised log smooth stack is smooth over its image in the Artin fan.
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half-edges forming a loop). This automorphism acts trivially on the branches of the boundary divisor cutting
out the stratum associated to I" and is therefore not seen in the canonical Artin stack A%n (see [62, Example
g

4.10] for a related discussion).
All these issues are resolved by the added flexibility of being able to choose an Artin fan:

(i) For any morphism X — Y of log stacks, we have a commutative diagram

X —Y

|

.AX*>,AY

where Ax and Ay are Artin fans for X and Y respectively, see [4, Section 2.5].
(ii) The identity BZ/2Z — BZ/2Z is an Artin fan.
(iii) The map t: My, — As, , is a choice of an Artin fan, as proven in [15, Theorem 4].

Whenever we refer to the Artin fan of a log stack X, we mean a fixed choice of an Artin fan, which we denote
by X — Ax with associated cone stack ¥ x.

Remark 45. A log stack with an Artin fan is automatically algebraic. In Section 3, we often assume the log stack
has an Artin fan, to ease the exposition. For a dominable non-algebraic log stack, one can either blowup to make
it admit an Artin fan, or use the non-algebraic Artin fan (a log stack that admits a log blowup by an Artin fan).

To define homological piecewise polynomials, we first need one more ingredient lying inside the Artin fan.

Definition 46. Let X be a log stack, and X — Ax the map to an Artin fan of X. We define an idealised Artin
fan Bx of X as the scheme theoretic image of X inside its Artin fan. We denote the scheme theoretic image of X
inside its canonical Artin fan X — A" by BE". O

Example 47. Let X be the point with log structure N”. Then we can choose Ax = Axr = [A"/G],], and
Bx = BG],.

Despite the name, the definition of the idealized Artin fan (and other definitions in Section 3) a priori make
sense for any log stack X. However, the only context in which we know them to be well behaved is for idealised
log smooth log stacks, the setting to which we restrict in the following. It is reasonable to expect that much of the
theory we develop below is well behaved for any log stack that is log flat over its image in its Artin fan.

We will now show that any idealised Artin fan admits an étale map to the canonical idealised Artin fan, and
that idealised Artin fans are functorial (in the sense of Remark 44).

Proposition 48. Let X be an idealised log stack, with idealised Artin fan X — Bx and canonical idealised Artin
fan X — BE". There is a strict étale map f : Bx — B$" making the diagram

X
Lo
Bx —— B¢"

commute.

Proof. First note that as the map X — By is strict with geometrically connected fibers we have
H(X,Mx) = H°(Bx, Mz,). (26)

We say X is small if the Artin fan A$™ of X is an Artin cone. We first prove the existence of f for small X,
with associated monoid P. Then Hom(Y, A%") is in bijection with Hom(P, H°(Y, My)). By the equality (26)
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the map X — A" now descends to a map Bx — A$". By functoriality of schematic image we obtain the map
f: Bx — B$™" fitting in the diagram.

Now we show that if X is small, then f is strict étale. For this, we can work étale locally on Ax and on X.
Then we can assume Ay is itself an Artin cone [Spec k[Q]/ Spec k[Q#P]] for some sharp fs monoid @, and X is still
small. Then the argument above shows that Ax — A$" is an isomorphism, and hence the map of idealised Artin
fans is also an isomorphism. All in all, f is étale locally an isomorphism, so f is étale.

Now we will show this proposition holds for general X. We take a groupoid representation By =3 By — Bx
where the By and By are disjoint unions of small idealised Artin fans. Let V' =3 U — X be the representation
obtained by pulling back By = By — Bx. In particular, V' — By and U — By are idealised Artin fans, as they
are strict maps with geometrically connected fibers to idealised Artin fans. We get the diagram

PEAN

gl
NI

Because U and V' are themselves small, we obtain étale maps fr : By — Bi" and fy : By — By" fitting in
the diagram, by the first part of the argument.

Recall that for a log stack Z, the idealised Artin fan B$" is the colimit of BE" =3 BE™ where C 3 D — Z
is a colimit diagram of strict maps and C, D are disjoint unions of small log schemes. Hence B commutes with
colimits of strict maps, and in particular B§" is the colimit of B{?" =3 Bi*". Then fu, fi descend to a strict étale
map Bx — BE". O

Remark 49. Proposition 48 is false for Artin fans. For example, for X = (pt,N) 1 (pt, N), the canonical Artin fan
is [A!/G,,] L [A/G,,]. If one picks Ax = [P!/G,,], then there is no commutative diagram

X%AX

N

can
AR

Lemma 50. Let f: X — Y is a map of log stacks, and assume functoriality of the Artin fan for f, i.e. that there
isa Af: Ax — Ay fitting in the obvious diagram. Then there is a map By: Bx — By fitting in the obvious
diagram.

Proof. For this, note that there is (by composition) a map X — By, and so the pullback of By to Ax is a closed
substack of Ax via which X factors. But then (by definition of the scheme theoretic image) we find that Bx is a
subscheme of the pullback of By, so we get a map Bx — By. O

Definition 51. Let X be a log scheme and d € Z. We say X has pure log dimension d if for any log stratum'® Z
with generic point ¢ the local log dimension rkﬂc + dim Z is equal to d. O

Lemma 52. Let X be an idealized log smooth stack over k. Then the morphism X — By is smooth. If X is
pure of dimension e and pure of log dimension d, then Bx has dimension e — d and the map X — Bx has relative
dimension d.

Y9Here with a log stratum, we mean a log stratum on a strict étale cover.
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Proof. We will prove this locally on X. By definition, the map X — Spec(k) to the point with trivial log structure
is idealised log smooth. Using [47, Variant IV.3.3.5], such an idealised log smooth map has charts, which in our
case means that étale locally on X there is a monoid @, an ideal K of ) and a strict smooth?? map

b: X — Speck[Q]/(K) =:Y. (27)
Since the map b is strict, there exists a strict and étale map A" — A" of their canonical Artin fans such that
the rectangular diagram on the right below commutes:

In the diagram above, the surjectivity of X — BS™ implies that we obtain a map BE" — B{*" as indicated, and in

fact it then follows that the lower square diagram is Cartesian, so that this map is also strict and étale. Secondly,
from Proposition 48 it follows that we get a strict étale map Bx — B¢" as indicated.

Summarizing, we have obtained a commutative diagram of maps

X —Y

|

Bx —— Bg™

with X — Y smooth and Bx — B{*" étale. Then if we show that Y — B{*" is smooth, it follows that X — Bx is
also smooth (since smoothness can be checked after composition with the étale morphism By — B{").

All in all we are reduced to proving the claim for log schemes of the form Y = Speck[Q]/(K), and for the
canonical idealised Artin fan. The Artin fan of Spec k[Q]/(K) is

A(Q) = [Speck[Q]/ Spec k[Q%]],

and the idealised Artin fan is the substack cut out by the ideal generated by K. Indeed, the map from Spec k[Q]
to its Artin fan A(Q) is smooth, and the pullback of the substack cut out by (K) is the subscheme cut out by (K).
In particular, the induced map Spec k[Q]/(K) — A(Q) is smooth onto its scheme theoretic image.

The claim on the relative dimension also follows immediately from the same claim for the charts. O

Given an idealised log smooth log stack, we will now use its idealised Artin fan to create a cone stack with
boundary. We recall that there is an equivalence of categories between Artin fans and cone stacks.

Definition 53. Let X be an idealised log smooth log stack and X — Ax an Artin fan. Let X x be the cone stack
corresponding to Ax, and Ax — Ax be the cone stack corresponding to the open embedding Ax\Bx — Ax.
Then we define X% to be ¥ x\Ax, and the tropicalization of X to be the cone stack with boundary (Xx,X%, Ax).
O

Example 54. If X is log smooth, then Ax = Bx, and we get the empty boundary.

Example 55. Given a rational polyhedral cone o, consider the cone stack Faces(o) whose objects are the faces
oo < o and whose morphisms are inclusions of faces induced by the identity of o. If ¢ is smooth, the stack Faces(o)
has 24™ ¢ many pairwise non-isomorphic objects. Declare its interior ¢° to be the full subcategory consisting only
of o itself. Then we obtain a cone stack with boundary (Faces(c),0% A,). If X is the point with characteristic
monoid N” and sheaf of ideals N"\0, then its cone stack (with boundary) is given by ¥x = Faces(R%,).

20[47, Variant TV.3.3.5] claims this map is étale, but is not true (for example, it fails for X a smooth scheme of positive dimension
with trivial log structure). It should say “smooth (resp. étale)”.
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In Section 3.4, we will be interested in the (log) Chow groups of these Artin fans and their substacks, and their
relations with the Chow group of X. We have the following result on the virtual relative dimension 0 pullback used
in Definition 37, the definition of the log Chow group.

Lemma 56. Let m: Ax — Ax be a log blowup. Consider the associated diagram of cartesian squares

Then the virtual relative dimension 0 pullbacks

CH.(X) ™ CH,(X), CH.(Bx) ™ CH,(Bx), CH.(Ax) ™ CH.(Ax)

in Definition 34 are all equal to the Gysin pullback of the log blowup 7.

Proof. This follows immediately from Construction 2.4 of [10]. O

3.4 Definitions

For a log stack X with Artin fan Ay and associated cone stack Y x, we denote the ring of strict piecewise poly-
nomials on Y x by sPP*(X), and similarly the ring of piecewise polynomials on Xx by PP*(X). There are natural
isomorphisms

® : sPP*(X) — CH*(Ax) and ®'°8 : PP*(X) — logCH*(Ax), (28)

of graded algebras (see [28, Section 3.4] for the construction and [45, Theorem 14] for the proof that they give
isomorphisms). Next we introduce homological versions of these polynomials.

Definition 57. Let (X,%°, A) be a cone stack with boundary. Then we define
sPP, (2, A) € sPP*(X) and PP, (X, A) € PP*(X)

to be the set of (strict) piecewise polynomials on ¥ vanishing on all cones of A. These Q-vector spaces carry a
grading with values k € Z<o given by the negative degree of the piecewise polynomial, i.e. sPPy < sPPF. They
also have a natural module structure over sPP*(X) (respectively, PP*(%)).

For X an idealised log smooth log stack of pure log dimension d and (£,%°, A) = (Xx, X%, Ax) the associated
tropicalization of X, we also write

sPP,(X) = sPP,(Xx,Ax) € sPP*(X) and PP,(X) = PP,(Xx,Ax) € PP*(X)
for the sets above. O

Remark 58. A priori sPP, (3, A) depends on the full data of (X,3° A). A posteriori however, it only depends
on X°, as we can also define it as a system of polynomials (f,), for o € 3X° that is compatible with face-pullbacks
for morphisms in 3° and such that for a face 7 < o that is not the image of some object in 3°, we have f,|, = 0.

Theorem 59. Let (X,%°, A) be a cone stack with boundary, with ¥ smooth and denote by i : Bye — Ay the
inclusion of the associated closed substack. Then there is a commutative diagram

sPP,(2,A) ————— sPP*(Y)

Js Js 29

CH, (Bse) —*— CH,(As) = CH*(As)
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where both vertical maps are isomorphisms of graded Q-vector spaces. Similarly we have a diagram

PP,(3,A) —— PP*(Y)
J(\Plog J/q)bg (30)
logCH, (Bs:e) —=— logCH, (As) = logCH* (As;)

with both vertical maps being isomorphisms, even for ¥ not necessarily smooth.

In order to prove the above result, we want to use the theory of higher Chow groups of Artin stacks, applied to
the various Artin fans and their open or closed substacks. This theory was originally developed by Bloch [12] for
schemes, with the purpose of extending the excision exact sequence of Chow groups on the left. It was generalized
to the setting of Artin stacks by Kresch [38], and there are now modern approaches via étale motivic Borel-Moore
homology [37]. For recent applications of these higher Chow groups in intersection theory of moduli spaces see
[9, 39, 40, 11]. Below, we use several formal properties of these higher Chow groups which were proven in [37],
such as their functoriality under proper pushforwards and flat pullbacks, the extension of the excision sequence [37,
Theorem 2.18] and certain (cap) products [37, Section 2.2.6]. The forthcoming paper [7] by Bae and Park will give
a comparison result of those (higher) Chow groups with the ones defined by Kresch (and used in the remaining
paper). The comparison for the (zeroth) Chow groups is established in [37, Example 2.10], and since these are what
we ultimately care about in the proof of Theorem 59, we can use Khan’s formalism in the technical arguments and
specialize to the standard Chow groups in the end.

To set up notation, let X be an algebraic stack of finite type over k, stratified by quotient stacks. Then there
exist the first higher Chow groups CH, (X, 1) with Q-coefficients. If I/ € X is open with complement Z, then there
is an exact sequence

CH.(Z,1) — CH,(X,1) > CH, U, 1) &

CH,(Z) — CH,(X) — CH,(U) — 0. (31)
In general, the groups CH, (X, 1) can be quite large, even for very simple stacks X'. One reason for this is that they
always contain a piece coming from the higher Chow group CHl(k7 1) of the base field k, which is non-trivial in
general. Denote by

CH,.(X,1) = CH.(X,1)/im(CH, 4 1(X) ® CH'(k, 1)) (32)

the indecomposable part of the higher Chow group (see [9, Section 2.3]). The boundary map ¢ in the excision
sequence (31) factors through CH, (U, 1) by [9, Remark 2.18]. In particular, when this latter group vanishes, the
pushforward of Chow groups under the inclusion Z — & is injective. When U = BG], x G for G finite, this
vanishing CH, (i, 1) = 0 follows from [9, Proposition 2.14, Remark 2.21]. The following result allows to extend this
vanishing to a broader range of Artin stacks.

Proposition 60. Let U/ be an algebraic stack of finite type over k, stratified by quotient stacks, such that it has
a locally closed stratification by stacks i; with CH,(U;,1) = 0. Then CH, (U, 1) = 0. In particular, this vanishing
holds if U is a smooth Artin fan.

Proof. We do induction on the number of strata U;, with the base case U = U; being trivial. In the general case,
let V = U; be an open stratum inside U/, with complement Z. Then letting K = CHl(k, 1) and using the excision
sequence (31), we have a diagram

CH 1 (2) Q@ K —— CH  U) ® K —— CHy (i (V)@ K ———— 0

| | | l
(2 (

CH,(Z,1) —— CH,(U,1) ——— CH,(V,1) —— CH,(2) (33)
CH.(2,1) CH.(U,1) CH.(V,1)
—_—— —_—

=0 by induction =0 by assumption
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with exact rows and columns. Here the vertical arrows from the first to the second row are the cap products
mentioned before, which are compatible with the proper pushforward under Z < X" and the open restriction under
Y € U. This shows that the two left squares are commutative, and the commutativity of the right square follows
from [9, Remark 2.18]. Then the four-lemma implies the vanishing of CH, (i, 1). Finally, any smooth Artin fan
has a locally closed stratification with strata BG, x G (corresponding to an object o in the associated cone stack
mapping to RZ, and having automorphism group G). The vanishing of the indecomposable part of the higher
Chow group for these pieces was discussed before, so the proposition applies. O

Proof of Theorem 59. Let Axn € As be the open complement of Bso. Then applying the excision sequence to that
open substack, we have a commutative diagram of solid arrows

(AAa ) *> CH*(BEO) — CH*(AZ) — CH*(AA) — 0

T

00— sPP,(,A) — sPP*(£) — sPP*(A) —— 0

with exact rows (the upper row by excision, the lower by definition of sPP, (X, A). Since the indecomposable part
CH,(Aa,1) of CH,(Aa,1) vanishes and since 0 factors through it, we have that ¢ = 0. Then it follows that a
unique dashed arrow ¥ as above exists and is an isomorphism.

To show the statement for the logarithmic Chow groups, first note that all spaces involved in the diagram (30)
are invariant under replacing ¥ by a refinement and Bse and Ay by the corresponding log blowups. Choosing
a suitable refinement we can reduce to the case that ¥ is smooth. In this setting, note that any log blowup
q: B— Bso is obtained as a total transform of a log blowup p : Ag — Ay for a subdivision S of ¥ Moreover, for
the choice of such a subdivision, the diagram

CH.(B) «— CH.(Ag)

1]

CH,(Bso) «— CH,(Ax)

commutes by Lemma 56. Under the identifications with spaces of strict piecewise polynomials in the first part, this
shows that the virtual Gysin pullback ¢' is given by the standard restriction map

sPP, (3, A) > sPP, (S, A)

to the subdivision & of ¥. Taking the colimit over such subdivisions, we obtain the diagram (30) where the
isomorphism in the lower right corner was proven in [10, Corollary 2.23]. O

Corollary 61. Let X be an idealised log smooth log stack of pure log dimension d. Let i : Bx — Ax denote the
inclusion. Then if X is locally free, there is a commutative diagram

PP, (X) ———— sPP*(X)

l@ L

CH,(Bx) —— CH,(Ax) = CH*(Ax)

where both vertical maps are isomorphisms of graded groups.
The same diagram holds verbatim, replacing sPP by PP and CH by logCH (see (30)), even for X not necessarily
locally free.

Proof. Let (Xx,X%,Ax) be the tropicalization of X. The corollary follows by applying Theorem 59 to the cone
stack (X,3°,A) = (Zx,0%,Ax). O

Assume X is idealized log smooth of pure log dimension d. Composing ¥ and ¥'°¢ with the pullback under the
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map X — Bx, which is strict and smooth by Lemma 52, we obtain maps
W : sPP,(X) — CHupq(X) and ¥'°% : PP, (X) — logCH, | 4(X), (34)

which we denote again by W, ¥!°2 if there is no risk of confusion (and by ¥y, \Ill)(;g otherwise).

Example 62. Consider the log scheme X = (pt,N") with cone stack Xx = (Rx¢)", which is idealized log smooth
of pure log dimension 7. Then sPP,(X) is the free module over sPP*(X) = Q[z1,...,z,] generated by z125 ...z,
of degree —r. We have piecewise polynomial functions

x1Z2 ... 2, € SPP_,(X) and min(zq,...,z,) € PP_1(X).
If P'~! — pt denotes the log blowup obtained by blowing up in the monoid ideal (z1,...,,), then we have
U(x125...2,) = [pt] € CHo(pt) and ¥'°%(min(zy,...,2,)) = [P""!] € logCH,_, (pt)

give the fundamental class of X and the fundamental class of its log blowup P"~!, respectively. To see these
formulas, consider the Artin fan Ay = [A"/G},] and its blowup A — Ax at the origin BG}!, with exceptional
divisor £ < A. We obtain

®(z12y...2,) = [BG"] € CH_,(Ax) and ®%(min(z;, ..., z,)) = [£] € CH_1(A)

using the results of [27, Section 6.2]. Together with the injectivity of the horizontal maps in Corollary 61 this
implies the claimed formulas.

In fact, with some more work we can fully understand the logarithmic Chow group of the log scheme X above.

Proposition 63. For the log scheme X = (pt,N") with cone stack ©¥x = (R>o)" we have that the map
P : PP, (X) — logCH, (pt,N")
is surjective. Its kernel is given by the submodule
={cz1+...+cxr 1 c1,...,c € PP(X)} € PP.(X).

obtained from the ideal I = (zy : k= 1,...,7) € PP*(X) as K = I - PP, (X).

Proof. Consider the stack Bx = (BGI,,N") associated to X and the universal vector bundle 7 : V' = [A"/G] ] — Bx
with its induced strict log structure from the target. Then we have a diagram

X5V 5 By

representing X =~ [G],/G! ] as an open substack (via the map 7) in the vector bundle V. Since the map X — By
induces an isomorphism on Artin fans, any log blowup X of X fits into a fiber diagram

X 5V -—-"3B
LD (55)
X 5V T, By

where 7 is still a vector bundle of rank r, and iis an open embeddlng7 representing X as the open complement of
the union Z of r hyperplane sections Zl, e Zr S V. Let Jk Zk — V be the inclusion, then the map

T
|72
k=1

is proper, representable and surjective and thus induces a surjection of Chow groups. Then the excision sequence

N2
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for Chow groups implies that we have an exact sequence

@ CH.(Z) =9 cn,(7) 5 X - 0. (36)
k=1

Both V and all Zk are vector bundles over g, and thus the composition

~.

PP, (B) % CH.(B) = CH,1. (V)

is an isomorphism (the first map is an isomorphism by Corollary 61, the second by [38, Theorem 2.1.12 (vi)]).
Similarly, we have an isomorphism

~. *

PP, (B) > CH,(B) = CH,yr_1(Zk) .
Using these identifications in (35), the map (ji ), : SPP.(B) — sPP,(B) is given by multiplication with the piccewise
linear function z;.

This shows that sPP, (B) — CH, (B) is surjective with kernel (z : k = 1,..., 7). Taking the direct limit over all
log blowups BB x we obtain the desired statement (where similar to the proof of Theorem 59 we use Lemma
56 to show that the refined Gysin pullbacks between the groups CH*(g) correspond to restrictions of piecewise
polynomials to subdivisions). O

Example 64. Let X be given by the union of the three axes inside A3, with log structure the pullback of the
toric log structure on A3, Then Bx = [X/G3,] and Ax = [A3/G3,]. We have ¥x = R%, and the boundary Ax
consists of the three rays generated by the three basis vectors. The strict piecewise polynomials vanishing on A x
are, as a Q[z,y, z]-module, generated by yz, xz and zy. These three generators map to the classes of the three axes
in CH,(X) under the map .

Example 65. Let X be a log smooth scheme pure of dimension d (which hence is pure of log dimension d). Then
we have a commutative diagram
PP*(X) —=— PP_,(X)

| l

logCH* (X) — logCH,_, (X)

where the horizontal maps are given by acting on the constant function 1 (top) and the fundamental class of X
(bottom) respectively. Note that the isomorphism PP_,(X) — PP*(X) also has a natural interpretation, as the
inclusion of the piecewise polynomials vanishing on the empty boundary Ax = J of Y x inside the set of all
piecewise polynomials.

3.5 Pushing forward piecewise polynomials

We define, for a certain class of maps, a pushforward on the level of homological piecewise polynomials, show the
projection formula, and verify compatibility with the usual pushforward on (log) Chow groups. Our definition
works for maps of so-called relative log dimension 0, as per the following definition.

Definition 66. Let X and Y be two idealised log smooth log stacks of pure log dimension d. Let f: X — Y be a
proper saturated morphism of log stacks which descends to a map on Artin fans.

We say f is of relative log dimension 0 if the map on tropicalisations X x — Xy is a relative dimension 0 map
between the dimension d cone stacks, i.e. any cone o € ¥ x is mapped to a cone of dimension dim(o) in 3y %

Proposition 67. Let X and Y be two idealised log smooth log stacks and f : X — Y be a proper map of relative
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log dimension 0 and of relative Deligne-Mumford type, for which there is a cartesian square

x5y

| o

By —1 By

Then the map By is proper and saturated. Let f*°P : ¥y — Xy be the map associated to As. Then we have a

map

(ftrop)* . SPP*(X) ‘IIN:X CH*(B)() m CH*(BY) ‘12, SPP*(Y)

of sPP*(Y) modules such that the diagram

sPP.(X) Y% sPP, (V)

l‘l’x lwy (38)
CH.(X) —L— CH.(Y)

commutes. The same statement holds verbatim when replacing sPP by PP and CH by logCH.

Here the sPP*(Y)-module structure on sPP,(X) is induced from the sPP*(X)-structure on sPP,(X) via the
pullback map sPP*(Y) — sPP*(X).

Proof. Properness is local on the base in the fpgc topology, hence By is proper. And similarly, being saturated is
local in the log smooth topology. Then for strict piecewise polynomials and usual Chow groups, the commutativity
of (38) follows from the compatibility of proper pushforwards and flat pullbacks in the diagram (37). The existence
of a proper pushforward (By). of logarithmic Chow groups and the corresponding commutativity follow from [10,
Construction 2.15, Theorem 2.19] applied to the map By. O

Remark 68. The class of morphisms f as in Proposition 67 contains log blowups, inclusions of strata closures,
and finite G-torsors, and is closed under compositions.

Proposition 69. In the situation of Proposition 67, if f is additionally surjective and of relative DM-type, then

the map
(Bf)« : sSPPL(X) — sPP.(Y)

is surjective.

Proof. Again we can use that surjectivity and being of relative DM-type is local on the base in the fpqc topology,
so these properties descend from f to By. Then the surjectivity follows from [8, Proposition B.19]. O

Proposition 70. Let f : X — Y be as in Proposition 67, with both X,Y of pure log dimension d. We get a
commutative diagram
logCH,; (X) ——— logCH,(Y)

[ [

logCH,_,;(Bx) —— logCH,_,(By)
where the vertical maps are pullbacks and the horizontal maps are pushforwards.
Proof. This follows from [10, Theorem 2.19]. O
Now we apply this theory to the gluing maps.

Definition 71. Let ' be a genus-decorated graph of genus g with n markings. Let M5% be the stack Mp with
log structure a pullback along the gluing map gl : Mp — ﬂg’n. O
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Istr

Lemma 72. The map gI*"" : M5 — ﬂg,n is of relative log dimension 0 with both spaces having log dimension

39 —3 +n.

Corollary 73. There is a map sPP, (M) — sPP,(M,,) that lies over the pushforward map logCH, (M5%) —

logCH, (Mg,,).
While we don’t need the following description, the pushforward of piecewise polynomials can be carried out
explicitly within the language of polynomials on combinatorial cone stacks, using results from Brion.

Definition 74. Let f : ¥’ — X be a map of cone stack, and let 0 € X be a cone. We let x,, s be the groupoid
consisting of elements

(0 -0 0)

where ¢’ € ¥, and ¢’ — ¢ is a minimal factorisation of f|,» — ¥’. The isomorphisms in this groupoid are given by

diagrams

o —

g

_~
s

Q<—0Q9

0_//

¢

Remark 75. If f is a map of cone complexes, then x,, s is the set of ¢’ € ¥’ such that o is the smallest cone
containing f(o”’).

Proposition 76. Let ¢: Y¥x — Yy be a relative dimension 0, proper map between smooth cone stacks. Then
¢« : SPP*(X) — sPP*(Y) is uniquely determined by the fact that for any maximal cone o € ¥y we have

(W*f)a = ¢cr : 2 ;/1 : fg/.

(0/—>0—"50)EX0, f

Here Z(a'—»a%o)exa,,« refers to the groupoid sum, where each term (¢/ — o — o) is counted with weight
#Aut((0! — 0 —> o))" L.

Proof. For a map of cone complexes, this is simply Brion’s formula [13, Theorem 2.3.(iii)]. The general case follows
by taking finite covers by cone complexes. O

We present three examples that fall outside of the scope of Brion’s original formula [13, Theorem 2.3.(iii)].

Example 77. We take f: X — Y to be A2 — [A2/(Z/2Z)]. Let ¢’ denote the unique maximal cone in Yy, and
o the unique maximal cone in Xy. We fix an isomorphism ¢’ — o. Note that o has a non-trivial isomorphism 7.
Then xo, s is the set

(U’HUiU),(OJHO';O’)

Then by Proposition 76 the linear functions  and y on X x both get sent to  + y, and the quadratic function
Ty gets sent to 2xy.

Example 78. We take ¥ to be the cone shown in Figure 2, and ¥’ — ¥ to be the barycentric subdivision in the
maximal cone. Again, with o the unique maximal cone in ¥, the groupoid x.,s is a set of size 2. The formula from

Proposition 76 then gives the equality
1 1 1

— = + :
wy wly—2)  yl@-y)
Example 79. We take f : ¥’ — X to be B(Z/2Z) — {+}. The groupoid x s is B(Z/2Z), and the constant function

1 pushes forward to the constant function %

The following lemma shows that pushing forward homological piecewise polynomials is the same as pushing
forward the corresponding piecewise polynomials.

35



Lemma 80. Let f: Bx — By be a proper, saturated map of idealised Artin fans, extending to a diagram

BX*>BY

|

AX*>.AY

where the map Ax — Ay is a proper, saturated map of Artin fans. Under the identification of logCH, (Bx) with
piecewise polynomials on Y x vanishing on the boundary Ax as per Corollary 61, the pushforward

logCH,_,(Bx) — logCH,_,(By)

is given by pushing forward piecewise polynomial functions as in Proposition 76.

Proof. This immediately follows from the commutative diagram

logCH, (Bx) —— logCH,(By)

| |

logCH, (Ax) — logCH,(Ay)

where all the maps are pushforwards, using the injectivity of the vertical maps and the identifications with spaces
of piecewise polynomials from Corollary 61. O

Example 81. Let X be the point with log structure N2, let Y be P? with toric log structure, and let f : X — Y
be the strict proper map sending X to the origin. Then we get the commutative diagram

X — P2

l |

BG;, — [P?/G)]
and this induces the commutative diagram

logCH, (X) —— logCH, (Y)

[ [

logCH, _,(BG?2) —— logCH, ,[P?/G?2 ]

With the identification from Corollary 61, we have that sPP,(X) consists of PP functions on RZ vanishing on the
boundary, and sPP,(X) of PL functions on the fan ¥ of P2. The pushforward then sends a PP function f on ]R;O
vanishing on the boundary to the PP function on ¥ that is f on R;O and 0 everywhere else.

4 A general treatment of log tautological rings

Let (X, D) be a smooth Deligne-Mumford stack over a characteristic 0 field k. For simplicity assume X to be
connected. We consider X as a smooth log smooth log stack with the divisorial log structure induced by D. Let
X — Ax be an Artin fan as in Definition 43, such that the generic point of Ax has trivial automorphism group.?!
Denote by ¥ x the associated cone stack. The assumptions above guarantee that it has a unique object 0 € ¥ x (up
to isomorphism) mapping to the zero cone, and its automorphism group Aut(0) = {id} in X x is trivial.

Our goal here is to define notions of tautological classes, both in the Chow ring of X itself, as well as for
log blowups of X (leading to a notion of log tautological classes). These classes are constructed by combining
information from piecewise polynomials together with decorations by Chow classes defined on strata closures of

21 As an example, the canonical Artin fan AP always has this property.
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Figure 2: The fan X x defined in Example 82

X. Modeling our definition on the decorated strata classes of ﬂg,n, we require an analogue of the gluing maps
Lr ﬂp - ﬂgyn parameterizing these strata closures.

For this purpose, let 0 € X x be a cone and denote by S, < X the associated locally closed stratum, and
by S, its closure. The normalization §U — S, is smooth. For G, the group of automorphisms of ¢ in Lx we
claim that there is a universal principal G,-bundle p, : P, — §U such that the normal bundle of the composition
P, — §a — X splits as a sum of line bundles. For X = ﬂgyn and o = or the cone associated to a stable graph,
we have G, = Aut(') and we exactly recover that P,. = Mr is the domain of the gluing map ¢r.

The spaces P, were explained in [45, Section 5.1] and [27, Section 6.2.1] when Ax is chosen as the canonical
Artin fan. In this case, the G, can be seen as the monodromy group, acting on the branches of the divisor D
cutting out S,. Analytically locally, the normal bundle of the map §0 — X has one summand for each such branch
of D, and the cover P, — §U precisely ensures that the pullback of this bundle to P, decomposes as a sum of line
bundles. For an arbitrary choice of Artin fan X — Ax we construct P, in Section 4.1.1 below and verify several
properties used in later proofs (see in particular Lemma 88 and Corollary 94).

To provide some intuition and illustrate our constructions, we have the following running example throughout
Section 4.

Example 82. Let Yx be the combinatorial cone stack from [15, Example 2.21], given by??
0— p——=0D (39)

where 0 is the cone point, p is a ray, o is R;O. The two maps p — o are the two inclusions of p as a ray of o,
and the non-trivial automorphism on ¢ is the swap (z,y) — (y,z). A more geometric visualization can be found
in Figure 2.

This is similar to the Z/2Z-quotient of Rio except with trivial stabilizer on the cone point. There are multiple
stacks which have ¥ x as cone stack. A trivial example is the Artin fan Ay, itself. For an example in log algebraic
spaces, one can take the colimit of the diagram

Al xG,, =2 A* D

where the map A? — A? sends (z,y) to (y,7), and the two maps A! x G,, — A? are (z,y) — (x,y) and
(x,y) — (y,r). Here with the colimit we mean the universal log algebraic space Y with maps A! x G,, — Y and

22Note that the diagram below omits the identity morphisms of each object, and the unique morphism 0 — o.
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A? - Y such that the diagram

Al x G, ————2 A D
\Y/

commutes. A final example which we will study further is to take X = A% x G,,, with divisorial log structure
induced by the divisor
D={(z,y,2) e A>x G,y : 2° — 5?2 =0} c A’ x G, .

This example is also known as the punctured Whitney umbrella, and is also treated in detail in [3, Example 3.3.1]
and [2, Example 5.4.1]. The singular locus of D is the z-axis {(0,0)} x G,, = X, which we denote by D®). We
have S, = S, = D@ and P, = G,,, with the map to S, given by

rad 2
P,=G, >G, =S, u—z=u",

corresponding to the automorphism group of o having order 2. For the ray p we have S, = D, and
P, = §p > {(z,y, (u:1)) e A x P : ot = yu}

given by the normalization of D (which is the strict transform of D in the blowup of X at D). The scheme Pg
has generic log structure of rank 1 and log structure of rank 2 along 0 x 0 x P*.

4.1 Preliminaries on cone stacks and monodromy torsors

In the following subsections we start with a purely combinatorial construction of star cone stacks, giving the tropical
analogue of the monodromy torsors above (Section 4.1.1). Via the equivalence of cone stacks and Artin fans, we
use this to define the monodromy torsors (Section 4.1.2). Finally we discuss star subdivisions, which are needed
when analyzing the effect of log blowups on the Chow groups of the monodromy torsors above (Section 4.1.3).

4.1.1 Star cone stacks

Definition 83. Given a cone stack ¥ and o € X, the star cone stack

C : Star, (%) — RPC/

has as objects diagrams (o Lot o ) of morphisms in ¥ such that ¢’ is minimal among objects in ¥ receiving
maps j',j” from o,0”. The functor C' sends this object to

v 11

Clo L o' & 0") =" e RPC/ . (40)

The morphisms in Star, (%) are defined by commuting diagrams

.11

J1
o] «——— of

4
b
72 -/ -1
r 0 " J2 1 J2 "

.7
Mor (o LN o1 <—0l,0 05 < 0h) = 4 o o (41)

\‘
J2

/ "
02 <;j// g2
2

The functor C sends the morphism (41) to ¢” : of — o4.

We define the interior Star, (X)° to be the full subcategory of objects (o ERp-ia o) € Star,(X) such that the

map j” is an isomorphism, and we let A, 5 be its complement. %
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Lemma 84. The tuple (Star,(X), Star,(2)°, A, x) is a cone stack with boundary.

Proof. The only thing to check is that Star, (X)° is forward-closed. Thus assume that we have a morphism

.7 7 -/ -1
J1 r " J2 ;7 J2 "
(050 <—0]) = (0= 0y < 03)

in Star,(X) such that j{ is an isomorphism. This gives a solid diagram as follows:

-1
J1
o] «— o}

J1 , "
2 ¥
i -1
J J2

2
S SNV S (42)
™ + .
\\\ ‘j// .7
@"o(j) rogy w1777 id
"
g9

But one immediately checks that the dashed diagram commutes with the maps in the solid diagram. Therefore,
the assumption that ¢} is minimal among objects receiving maps from o, ¢4 implies that 7 is an isomorphism and
hence (o — ab « o) € Star,(X)" as desired. O

Example 85 (continues Example 82). We compute that Star,(X) is given by the following diagram.

(0% p &L p)
(id,e—p) \(/1/1‘)
id L id
(p—p<) (p—>0 <o)
(h;% m;
(p =0 <= p)

Here the boundary is given by the two objects on the bottom left. Similarly, the star Star,(X) is given by

(0% 0 < p)

(id,y w‘

)
(Ui0<—0) (aiaﬁa)

(id,m (id,2)
d

(00 < p)
with the boundary being everything except (o LERP AL o). Looking at this diagram, we see that Star,(X) =~
Faces(o) = Faces(R%,).

If the unique object 0 € ¥ mapping to the origin of the cones in ¥ has no non-trivial automorphisms, we have
a natural identification Starg(X) = Starg(¥)" =~ X. See also [46, Section 3.3.1] for more applications of the star
construction.

Given a morphism v : 7 — ¢ in ¥ there is an induced map

Star,, : Star,(X) — Star, (%) (43)

-/ 11 n

i J " oY~y g "
(0 =0 <=0") = (1 =7 —
o o) (1 o a’),

where ¢/ — ¢’ is the unique minimal face morphism in ¥ through which the maps j' o1 and j” factor. Its existence
and uniqueness follow the properties of cone stacks in [15, Definition 2.15]. One checks that Star, sends Star,(X)°
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to Star, () and thus defines a map of cone stacks with boundary.

This construction is functorial (in the sense that Star, o Star, = Stary.,), and hence when ¢ : ¢ — ¢ runs
through the automorphisms of o, we obtain a compatible system of automorphisms Stary, of Star,(X) and a quotient
cone stack?® (with boundary)

qo : Stary(X) — Star,(X)/Aut(o) . (44)

Another important functoriality is given by a map from Star,(X) to o itself in the case when ¥ is smooth. To
set this up, recall the cone stack Faces(o) from Example 55 obtained from the rational polyhedral cone o and its
faces oy < o with interior given by the full subcategory consisting only of ¢ itself.

To construct a map Star,(X) — Faces(o) we observe that for each morphism j : 0 — ¢’ in X there exists a
unique map of the underlying cones m; : ¢/ — o which is the projection from ¢’ onto its face 0.?* Clearly we have
mj0j = idg.

Proposition 86. There is a morphism of cone stacks with boundary

TP« (Stary (X), Starg (X)°, Ay 5) — (Faces(0), 0%, A,) (45)

sending an object (o RPN o”) to the face inclusion (7j o j”)(¢”) < o, whose underlying map

i3 n 1" N M
Clo Lo o' & o) = 0" T (0 57)(0")

on cones is likewise given by 7, o j”. Moreover, the morphism satisfies
(riroP)=1(oY) = Star, (%)°. (46)

Proof. The necessary compatibility checks to show that 7%*°P is a morphism of cone stacks are a short chase in
the diagram (41). This uses that adding the projection morphisms 7y and 7y to the diagram, we still have the
relevant maps in the diagram commute.

For proving (46) we have to show that given an object (o EIpY o”) of Star,(X) with 7; : ¢/ — o the
projection onto the face given by j’, we have that the composition 7, o j” surjects onto o if and only if j” is an
isomorphism (the two respective criteria of being in the interior). Clearly it’s true that j” being an isomorphism
implies the surjectivity since the projection m; is surjective. Conversely, if j” is a strict face inclusion, then by the

minimality of ¢’ in the diagram (o RN S ) there must be a ray of o whose image under j’ is not contained

in the image of j”. But then this ray cannot be contained in the image of the composition m; o j” and thus this
composition is not surjective. O

A final result that is necessary later is a compatibility of the star cone stack construction with morphisms of
the ambient cone stacks.

Lemma 87. Let ¢ : & — ¥ be a morphism of cone stacks, and for a choice of & € & denote by o = (&) the image
cone of ¢ in X. Then there exists a well-defined map of cone-stacks

tsmso : Stars (3) — Stary (%), (6 — 6 — ") — (0 — o' = (") — 0" = p(5")) (47)

commuting with the maps Star, (%) — ¥ and Star;(2) — £ %> X. Moreover, the construction is functorial: for a
morphism ¢ — ¢’ in ¥ mapping to o — ¢’ under ¢, we have

Star, o 0 ts/gr = ts_e © Stars_,5 . (48)

Proof. The central point in checking that t;_,, is well-defined is to verify that (¢ — ¢’ < ¢”) is an object of
Star,(X), i.e. that in this diagram, the cone ¢’ is minimal among cones of ¥ receiving maps from o,¢”. This

23The quotient cone stack /G for a finite group G acting on ¥ is the cone stack with objects given by the cones of ¥, and morphisms
given by the compositions g o ¢ of morphisms v in ¥ and elements g € G.
24Here we stress that m; is in general not a morphism of the original cone stack ¥; it’s just a map of rational polyhedral cones!
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follows very easily from the corresponding minimality property of 6" and the fact that 5/ > ¢’ does not factor

through a proper face of ¢’ (by definition of ¢ being a morphism of cone stacks). Thus equation (47) gives a

well-defined map on objects, whose associated map on cones is just 67 < ¢”. Filling in the remaining data and

verifying the compatibilities is straightforward, just like the fact that t5_,, commutes with the maps of its domain
and target to ¥. Finally, one checks the functoriality (48) by observing that both maps act on the cones of X5/ as

(a_/ — a_// — a///) — (o_ — (p(a_//) — (p(a,///)) . D

4.1.2 Monodromy torsors

In the following we use the star cone stacks above to define the monodromy torsors mentioned in the introduction
of Section 4. For this recall that by [15, Theorem 3] the category of cone stacks is equivalent to the category of
Artin fans. Given a cone stack ¥ with associated Artin fan Ay, and a cone o € X, we write

e S, € Ay for the associated locally closed stratum,
e S, for its closure in Ay, and
° gg for the normalization of S,.

Let ¥ be a smooth cone such that 0 € ¥ has trivial automorphism group and let ¢ € ¥ be an object of 3. Then
the natural map Starg_,, : Star, (%) — Starg(X) =~ X factors through the quotient (44). For the morphisms

Star, (3) — Star, (2)/Aut(o) —> 2
of cone stacks with boundary, we obtain associated morphisms of the closed substacks B of their Artin fans
BStar(, (z)o — BStar,, (£)0/Aut(o) — Bs, = AZ . (49)

Moreover, since Aut(c) acts on Star,(X)°, we obtain an induced action of Aut(c) on Bstar, (syo by functoriality.

Lemma 88. For a smooth cone stack ¥ with trivial automorphism group of the zero cone 0 € ¥ and for a choice
of o € ¥, there is a canonical isomorphism

Bstar, ()0 /Aut(o) = So -
Moreover, the action of Aut(c) on Bsa,, ()0 makes it a principal Aut(o)-bundle over S,

Definition 89. We call P, = Bstyr, (x)0 — g’g the stacky monodromy torsor associated to ¢ € ¥ and write
to : Py, — A, for the induced map to the Artin fan of X. O

Example 90 (continues Example 82). The cone stack Xy from (39) has an Artin fan with a locally closed
decomposition

As, = pt u BG,, uBG? x (Z/27) .
N o ——— ™ 2
So Sp So

On the other hand, we saw that Star,(2)° =~ Faces(c) so that
Bstar, ()0 = BGZ, S Astar, (z)0 = [A%/G2,].

Correspondingly, the stacky monodromy torsor P, — S, is given by BG2, — BG2, x (7Z/27).

The proof of Lemma 88 proceeds by reduction to the case of toric varieties. We state and prove that case
separately.

Lemma 91. Let ¥ be a smooth fan with toric variety Xx, o € ¥ and consider the strata closure S, < X5. Then
the map of cone stacks with boundary associated to S, € Xy is given by Star,(X) — X. In particular, there is a
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fiber diagram

§g°—>XZ

| |

Bstar, (50 — As

Proof. Tt is immediate to check that the map Star,(X)° — ¥ is a fully faithful embedding, using that the cone
stack (associated to) ¥ has at most one morphism between each of its objects. This implies that Bs,,, ()0 is the
unique closed reduced substack of Ay whose points correspond to the cones of ¥ containing o as a face. By the
toric Orbit-Cone correspondence ([16, Theorem 3.2.6]) the preimage of that substack in X is precisely the orbit
closure S, . O

Proof of Lemma 88. By construction, the Artin fan Ay is a colimit

As = lim [Spec k[ag'] /Spec k[(ag)*"]] (50)
TpEXD ~
Voo T,

of Artin cones [V,,/Ty,] where V,, is the affine toric variety with torus T, associated to the cone oy. Thus we
obtain a strict smooth cover [ [, [Vi,/T5,] — As by quotient stacks of affine toric varieties. We prove the claimed
isomorphisms after pullback to one of the varieties [V, /T, ] of the cover.

To calculate this pullback, note that for the cone stack Faces(oq) associated to the cone oy we have an isomor-
phism [Vi,/T5,] = Afaces(oo)- By the equivalence of 2-categories between cone stacks and Artin fans ([15, Theorem
6.11]), we can calculate the fiber product as the Artin fan

-AStar‘,(E) X As AFaces(o’g) = AStarf,(E)XgFaces(Uo) (51)

associated to the fiber product of Star,(X) and Faces(og) over X. Then the pullbacks of the stacks Bs,r, (xyo and
Bstar, ()0 /aut(o) in (49) under Apyces(o,) — As are closed substacks of (51) associated to the pullback of the interior
Star,(X)Y of Star,(X). We conclude by showing that they are canonically isomorphic to the pullbacks of P, and
§U, respectively.

Spelling out the definition of the fiber product Star,(X)° x5 Faces(og) of cone stacks, its objects are given by
triples

-/ -1
j j
((a — o < 0"), 71 <09,0" = 7')

of an object in Star,(X)° (which thus satisfies that j” is an isomorphism), a face 7 of oy and an isomorphism of
their associated objects in X. Using j” to identify ¢’ and ¢” and applying the provided isomorphism of ¢” and 7,
this is just equivalent (up to unique isomorphism) to the data (¢ — ¢’ < 0g) of a morphism ¢ — ¢’ in ¥ and an
identification of ¢’ as a face of 0.

Before returning to geometry, we need to classify these objects a bit further. Note that we can separate them
into a disjoint union depending on the image im(c) = 7, € o¢ of the morphism ¢ — 0. Any two morphisms
o — oo with the same image 7, are uniquely related by an automorphism of ¢, and thus Aut(o) acts freely on the
objects of Star, (X)? x5 Faces(cg). Dividing out by Aut(c), once we fix a choice of face 7, that can be the image of
a morphism o — 0y, the intermediate face o’ is just any element of the (classical) star of 7, in og. Thus we have

Star, (2)° x5 0o/Aut(0) = | | Star,, (00)°

ToS00

To finish the proof, note that by Lemma 91 the toric variety associated to Star,, (c9)? is precisely the (normalization
of the) strata closure of the stratum of V,,, associated to 7, € 0. Since taking the normalization is compatible
under smooth base change, this descends to the quotient stack Ar,ces(o,) and one verifies that the stacks Bstar, (5y)
indeed glue together to the pullback of the strata closure normalization gg.

Finally, since Star,(X) — Star,(2)/Aut(o) is clearly an Aut(o)-quotient, the equivalence of categories between

cone stacks and Artin fans implies that the associated map P, — S, is a principal Aut(o)-bundle, as desired. [
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An important property of the monodromy torsors considered in [45, 27] was that their normal bundles (for the
natural map to the ambient stack) decomposes into a sum of line bundles. Using the setup above, we can make
this property very explicit for the stacks P,, using the projection morphism 7°P from Proposition 86. For this
observe that there is a natural isomorphism

BFaces(a)o = (BGm)a(l) = H BGm .
pea(l)

For p € (1) let £, be the universal line bundle on Bg,ces(s)o associated to the factor BG,, corresponding to p.
Then the normal bundle of the inclusion

7 BFaces(g’)o - AFaces(U)

is given by the direct sum of £, for p € o(1).

Proposition 92. For a smooth cone stack > such that 0 € 3 has trivial automorphism group and ¢ € ¥ consider
the diagram

Lo

Po = Bstar, (myp — Astar, (n) — As
[ J5. (52
Braces(o)e —— Afaces(o)
where
e 1,7 are the closed embeddings associated to the respective cone stacks with boundary,
e ¢, and the composition t, = g, o i’ are induced from the map Starg_,,,

o T,, 7, are induced from wOP.

Then g, and 7, are étale, and the square diagram is cartesian. In particular, the normal bundle of ¢, splits as

Np,jas = @ 5L, (53)

pea(l)

and ¢1(m5L,) = ®((7i°P)*z,), with z, the (piecewise) linear function on Faces(o) associated to the ray p of o.
Moreover, for F, =[] (miroP)*x, we have F, € sPP,(P,) and ¥(F,) = [P,] € CH_ gim(0)(Ps). In fact

pea(1)

sPP,(P,) = sPP*(P,) - F, (54)

is a free sSPP*(P,)-module with generator F.

Proof. To see that ¢, is étale, note that this property can be checked étale locally on the source (see [60, Tag
036W]). The domain Asgy,, () of ¢ has an étale cover by Artin cones Ay~ for (¢ — o’ < ¢”) € Star,(X). But
the composition Asr — Astar, (5 27, Ay, is just part of the étale cover of Ay, by its own Artin cones. Hence we
conclude that ¢, is étale.

Similarly, to see that %, is smooth, note that w'*°P acts on cones by projection to one of their faces. This
implies, that the domain and target of 7, have compatible covers by Artin cones, such that étale locally 7, has
the form

[A"/GI] — [A™/GR],

where n > n’ and the map is induced by the projection to the first n’ coordinates. It suffices to show that this
map is smooth, which we can check on the smooth cover A” — [A"/GI,] of its domain. But there it is just given
by the composition of the two smooth morphisms

A" > A" — [A™/G™],
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first performing a coordinate projection, followed by a principal G%/—bundle.
To see that the square diagram is cartesian, we only have to prove on the cone stack side that given an object

-/ -1/

(0 L5 0’ <= o") of Star,(X), its image under 7%°P is contained in the interior of Faces(c), and is thus equal to
o < o, if and only if the object is contained in the interior of Star,(X). This was proven in Proposition 86.
Since ¢, is étale and 7, is smooth, we have an isomorphism

_ _ *
NPU/AZ = NPU/AStarU(E) =Ts NBFaces(a)o/AFaces(a) :
—_—

:@p Ln

The formula for ¢; (7} L,) follows since ¢1(L£,) = ®(z,) € CHl(JélFaces(o.))7 essentially by definition of ®.

The claim that F,, vanishes on the boundary of Star, (X) follows since that boundary is precisely the locus where
one of the coordinates x, vanishes. As for the statement about fundamental classes, it follows immediately from
[27, Lemma 40], which shows that

[Po] =@ n (Wf;mp)*fp € CH*(AStara(Z))v

pea(1)

and the injectivity of the pushforward CH.(Py;) — CH,(Astar, (z)) from Corollary 61. Finally, for (54) we simply
observe that the condition of a function f € sPP,(P,) vanishing on the boundary, is equivalent to it being divisible
by Hpeg(l) x, on any of its cones. O

We now return to the geometric situation of a smooth Deligne-Mumford stack X with normal crossings divisor
D, associated cone stack ¥x and Artin fan X — Ax = Ay, as described at the beginning of Section 4. Recall
that the assumptions there ensure that the zero cone 0 € X x has trivial automorphism group.

Definition 93. For 0 € ¥x we call P, = P, x 4, X the monodromy torsor associated to o. O

The action of Aut(c) on P, induces an action on P, and the natural map ¢, : P, — X is invariant under this
action. Using the fact that X — Ax is smooth, the content of Lemma 88 immediately implies the following.

Corollary 94. Given a cone o € X x, we have a fiber diagram

3
b4 ~
q

o

|

Pre—§

I

— X
l (55)
— Ax

— A

with p, an Aut(o)-principal bundle. In particular, the monodromy torsor P, endowed with the strict topology
from ¢, has tropicalization Star,(Xx) and the map of cone stacks associated to ¢, is given by

1P = Starg_,, .
Moreover, given a morphism ¢ : ¢ — ¢’ in ¥ x we obtain an associated map
lo—g! © PU/ i Pg (56)

of principal bundles as the fibre product of the map P, — P, induced by Star,.

Proof. First recall that gg is the normalization of the closure of the stratum S, in Ax, by Lemma 88. Since the
map X — Ay, is smooth and surjective, it follows that the fiber product is indeed the normalization of the closure
of S, in X. This shows that the right diagram is a fiber square. The left square is Cartesian by the definition of

P,. This immediately implies that the tropicalization of ¢, is the map Starg_,, associated to P, — Ax. Finally,

. . St o .
for ) : ¢ — o’ in Tx as above we first obtain a map Star, (Lx) ——— Stary(Xx) SBroze, 53¢ of cone stacks with
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boundary. Again by Lemma 88 this induces a morphism P, — P, — A x of their associated Artin stacks. Taking
the fiber product with X — Ax gives the desired map P, Lomel, p O

Notation 95. To ease the notation slightly in the following, we write ¥, = Star,(Xx) for the cone stack with
trop
o—a’

boundary associated to P,. Given o — ¢’ as above, we also write ¢ : Yy — X, for the map Star,_,,+ associated

to lo—o! - PU/ i Pg.

Example 96 (continues Example 82). Let o € ¥ x be the two-dimensional cone, then the map P, — X factors as

U— u .7)'(’LL!—>.’L'1U,2
P, -G, (0707)Y=A2XGm(7J7)(7J» )X=A2><Gm

As the log structure on X is induced by the divisor D < X, the induced log structure on Y comes from the
pre-image E C Y of D, cut out by the equation 22 — y?u? = (x — yu)(x + yu). We see that E splits in E4 cut out
by x = +yu, with E, n E_ = P,. In particular, as predicted by Proposition 92, the normal bundle of the map
P, — X splits canonically as

Np,)x = O(EL)|p, ®O(E_)|p, .

Remark 97. The Cartesian diagram (55) is also mentioned in [44, Section 3.7]. Using the notation above, that
paper studies the strata homology classes in the Chow groups of P, pulled back from the stack P,. As observed
n [44, Lemma 3.9], pushing forward such classes to X just recovers classes on X defined via strict piecewise
polynomials on ¥ x. In Section 4.2 below we will see how to combine strata homology classes with explicit systems
of decorations on P, itself to obtain potentially larger tautological rings of X.

We conclude Section 4.1.2 with some further results on the monodromy torsors which are needed in later proofs.
The first one concerns the behav1or of the spaces P, under log blowups of X — X. Recall that such a log blowup
corresponds to a subdivision ¢ : I x. On the cone stack side, we saw in Lemma 87 that for o € ) mapping to
0 € Y x we obtain a map

ts—o : Stars(3) — Star, (X).

Taking first the geometric realization of (47) on Artin fans and the fiber product with X — Ax, we obtain a map
S60g : Ps — P, (57)

To gain some geometric intuition: in the proof of Theorem 120 we are going to see that if Ny corresponds to a
blowup X — X of a smooth stratum closure in X, then the map s;_,, is given by either

e a projective bundle, in case that P, — X has image inside the blowup center, or

e a blowup at a disjoint union of smooth strata closures, representing P; as the strict transform of the map
P, — X, otherwise.

Example 98 (continues Example 82). We take & to be the subdivision in the ray p' = ((1, 1)) 0. Then sy,
is a P'-bundle, giving the map from the exceptional divisor to the center of the blowup.

An important construction used below is the fiber product of s;_,, with a map t,_,,s, which corresponds to
restricting s;z_,, to (the parametrization of) a smaller stratum closure inside P,. The following proposition shows
that this fiber product can be covered by a union of monodromy torsors P; for 6/ € 3.

Proposition 99. Let 7 : X > Xbea log blowup with associated map ¢ : S Y x of cone stacks. Let 7 € S be
a cone mapping to 0 € Xx and choose a morphism o — ¢’ in X x. Define P;_,, as the fiber product

[P
P&—»o’ == P&

”“l lsm (58)

lo—o!
P,y ——— P,
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whose associated cone stack X5 xx_ ¥, has interior indexed by commuting diagrams

i .. (59)

O,/ a.// ~ (7”

Let $5.. = {(0 — d',0" — ¢”)} be a set of representatives of diagrams (59) associated to the minimal cones of
(35 x5, ¥57)°. Then for the induced diagram

ls—o
|_|P3r AN P;_ . — Ps

us;,,ﬂ,,l y[,, lsm (60)

UL r " L
|_| PU// o' —0o Po_/

where the disjoint unions go over elements of $5_,,/, we have that the map J is proper, representable and surjective.

Proof. The description of the interior of flg X35, Lo follows directly from the definition of the fiber product of cone
stacks. The minimal cones in this interior correspond to the irreducible components of the fiber product P;_,,-.
Then the properness, representability and surjectivity of J can first be checked on the level of idealised Artin fans
and is preserved under taking the fibre product with X — Ayx. On the level of idealised Artin fans, surjectivity
follows from surjectivity of the corresponding map of cone stacks, representability follows as the map on cones is
injective on automorphism groups. Finally, properness can be checked by a valuative property, which on the level
of cone stacks amounts to the following statement: consider any inclusion of cones

(6 —01,0" = 0f) > (6 > 5y,0" — 03) (61)

in the cone stack of P;_,,/. This corresponds to a morphism between diagrams of the form (59). Now for each cone
(6" — &) of one of the P;» mapping to the left-hand side of (61), we claim that we can find a unique inclusion in
a cone mapping to the right-hand side of (61). Indeed this is the case, since (61) contains the data of an inclusion
o1 — 04 and thus the morphism

@ —3)) — (@' — 51— d3)
in f)g/ given by composing with this face map is the unique solution we are looking for. O

Lemma 100. The strata closure S, associated to o € Xx is smooth if and only if the map
Star, (X)°/Aut(c) — % (62)
is a fully faithful embedding.

Proof. We have that S, is smooth if and only if the normalization map S, — S, is an isomorphism. Reformulating,
this is the case if and only if the map gg — X is a closed embedding. This can equivalently be checked for the
map S‘U — Ax on the Artin fan side. By Lemma 88 the map g‘g — Ax corresponds to the map (62) of cone stacks
with boundary. It is thus a closed embedding if and only if this underlying map of cone stacks is a fully faithful
embedding. O

Let ¥ be a cone stack and X° be a forward-closed subcategory. We say that X0 is connected if the graph whose
vertices are isomorphism classes of objects of £° and whose edges correspond to morphisms in 3° is connected. It’s
straightforward to see that X9 is connected if and only if the associated stack Bso is connected.

Lemma 101. Let X% be a connected forward-closed subcategory in the cone stack ¥ x with complement A. Then
Byy is smooth if and only if there is a stratum o € Y% such that the embedding % — Yx is isomorphic to
Star, (Xx)?/Aut(c) — Zx.
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Proof. First assume Bzg( is smooth. Then since it’s also connected, it must be irreducible and hence has a generic
point corresponding to some minimal stratum o in Yx. Then the equivalence follows from Lemma 100. The
implication the other way is also direct from Lemma 100. O

Example 102 (continues Example 82). We know the stratum D is not smooth, as it has a self-intersection. The
corresponding substack with boundary

by =(p#§09)

does have a unique minimal object, but is is not of the form stated in Lemma 101, as the map Star,(Xx)°/Aut(p) —
Y x is not isomorphic to X — Xx (indeed, the map from the star is not even an embedding).
The stratum D@ is smooth, and does trivially satisfy the condition from Lemma 101.

4.1.3 Star subdivisions

Given a cone 0 € X x as in Lemma 100, the blowup
X=Blg X—>X (63)

is a logarithmic modification, corresponding to the star subdivision ssd,(Xx) — Xx of the cone stack ¥ x. Since
it will be needed later, we give an explicit construction of this subdivision below.

Construction 103. Consider the decomposition Yx = Star,(Xx)°/Aut(c) U R of the objects of ¥ x into subcat-
egories induced by the embedding (62). Objects of Star,(Xx)°/Aut(c) are indexed by morphisms (¢ — ¢') in X x
and we denote & € R the objects of the residual category R.

Then the objects of the star subdivision ssd,(Xx) decompose as

ssd, (X x) = ssd(Star, (Xx)")/Aut(c) LR,

where elements of ssd(Star, (X x)?)/Aut(c) are indexed by diagrams (7 NP 0') in X x such that h is a proper
face morphism (i.e. a morphism in ¥ whose induced map on cones is the inclusion of a proper face of ). Denoting
by b, = >’ pea(1) Up the barycenter of o, the associated cone to this object is the subcone of ¢’ given by the convex
hull
Cir o LR o) = cone({N (b,)} u (K o h)(7) U (¢’ (1)\NW (c(1)))) € &’

of the barycenter b, (or rather its image under h'), the image of 7 in ¢’ and all the rays p € ¢/(1) which are not in
the image of any of the rays of 0. On the other hand, the cone C(&) associated to & € R is just the same cone as
for ¥. See Figure 3 for an example of a star subdivision, showing the cones C(7 LAY ) in red.

Having defined the two types of objects (7 LR ) and & of ssd,(Xx), the morphisms between them are

given as follows:

h1 hll /
T —> 0 — 01

h1 hy ’ ho hy
Morsq, () (T1 —> 0 —> 0,70 —> 0 —> 0) = l
h/
2 2 /
Ty — 0 —— 0}

h h ~
Morssd(,(Ex)(T — 0 — 0,70) =

MOleaa, (551 (3, 7 2> & 25 07) = {(7 > 0") € Morsy (7, 07) : im(i) € C(r 2> 7 15 o)}

Morgsy, (2x)(G1,02) = Mors, (71, 52)

Both the composition of such morphisms and their associated face maps under the functor C : ssd,(Xx) — RPC/
are straightforward to define. Similarly, one verifies that ssd,(Xx) is a cone stack and it has a natural map

’

BIP ssd, (Bx) = Sy, (15 0 L o) o 0! 5 o 5 (64)

o, 3 x
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T24 T24
@4 P2

P2 @4

P2 = T12 — T12

T12 T34 0— T2 — T2 T34
P1 — T12 — T12
Ple P3 P Ps3
T13
Yx SSdT12 (EX)

Figure 3: A cone stack Y x and its star subdivision at an object 712, with new cones on the right indicated in red.
We draw here a slice through the underlying 3-dimensional picture.

Proposition 104. The morphism by,x, : Assd, (ux) = Az, induced by the map bzr’osz is the blowup of the strata
closure S, < Ay, .

Proof. As in the proof of Lemma 88, it is sufficient to verify the claim on the toric atlas Haerx Voo = Asy- On
the fan of each such V,,,, there are two cases for the pullback of the subdivision bgi%px under the map g — X x:

e If there exists a map ¢ — oy in Xx, the condition from Lemma 100 implies that the image of ¢ in g is
unique. Then the pullback subdivision is the star subdivision at the image of the barycenter of o in oy (which
only depends on the image of o).

e If there exists no map o — og, the cone o¢ is not subdivided when pulling back ssd,(Xx) — Y x under
gy — Zx.

Comparing with the classical toric correspondence between star subdivisions and blowups of smooth strata ([16,
Proposition 3.3.15]), we see that this precisely corresponds to the blowup of the preimage of S, under the map
Vs — Asx. This correspondence is also compatible on the overlaps of the V,, and thus the original map is given
by the blowup of S, in Ay, as claimed. O

Example 105 (continues Example 82). We consider the star subdivision in the two dimensional cone . We see
we end up with the following cone stack ¥ = ssd, (X x):

0 p »(p—o—o0)

On the scheme level, the blowup X of X in D@ has two codimension one strata: the strict transform of D and the
exceptional divisor. They intersect in a single connected stratum that is abstractly isomorphic to G,,. And indeed
we can obtain X as the fiber product



making X — A a choice of an Artin fan (in the sense of Definition 43). R

However, we warn the reader that ¥ is not the canonical cone stack Y% of the blowup X, as ¥3 does not have
a non-trivial automorphism of the exceptional divisor while 3 does. In fact, ¥ is the relative cone stack (or the
cone stack corresponding to the relative Artin fan), and there is no map X3 — 3. In fact, X — X is the standard
example where functoriality of the canonical Artin fan fails, see [2, Section 5.4]. In contrast, the star subdivision
is functorial, by construction.

4.2 Tautological systems

In the following, given a normal crossings pair (X, D) with choice of cone stack ¥x and Artin fan Ax, we define
the notion of tautological classes on X. These will not be fully intrinsic to (X, D), but depend on an additional
choice of systems of Chow classes on the monodromy torsors P, from Definition 93. For this recall that the strata
Sy of X correspond to the cones o € X x, and for a given cone we defined a map P, — §U — X parameterizing the
normalization §g of the strata closure of S,. We denoted by (X,,A,) the cone stack with boundary associated to
P, (Notation 95).

Definition 106. A system of tautological rings Rx = (R*(P,))sexn, on (X, D) is data of a tautological subring
U(sPP*(X,,A,)) = ¥(sPP,(P,)) € R*(P,) = CH*(P,) (66)

which contains all classes induced from strict piecewise polynomials on ¥, vanishing on the boundary.
Furthermore, we assume that pushforward and pullback under ¢,_,, give maps

to—ox : R*(Py) = R*(P,) and ¢, _, . : R*(P,) — R*(P,/) (67)
respecting the tautological subrings on the monodromy torsors P, and P,. O

Note that pushing the tautological ring on P, forward under the principal bundle map P, — gﬂ gives the
tautological ring
R*(S,) = poR*(P,) = R*(P,)A?) (68)

where the equality with the Aut(o)-invariant part of R*(P,) follows from [9, Lemma 2.20].

Example 107. The Chow system CHx of tautological rings on (X, D) is given by setting R*(P,) = CH*(P,) to
be the full Chow ring. This trivially satisfies the compatibility conditions (66) and (67).

Example 108. For X = Mg’n with its usual boundary divisor we take X x = X, ,,. Its cones o are associated to
stable graphs I' and for o = or we have an associated principal bundle

Pr = Mp — Sp = Mp/Aut(T)

for the monodromy group Aut(c) = Aut(T") (see [27, Section 6.2.5]). The standard system of tautological rings
R, ., is defined by setting R*(Pr) = R*(Mr) to be the image of the tensor product of tautological rings of the

factors Mg(v)m(v) as usual. The relevant ring of strict piecewise polynomials is given by

PP (Mp) = | [] 10| & sPP*(Sg(w)nw) ®g QLe : e € E(I)].
ecE(T) veV(T)
Under the map W, the strict piecewise polynomials on the fans ¥, ,(,) map to tautological classes in R* (ﬂg(v)m(v)),
whereas for an edge e = (h,h') € E(T'), the length function ¢, maps to —,, — tp,. In particular, this implies the
desired inclusion (66) of classes from strict piecewise polynomials in the tautological rings of Mr.
Finally, the morphisms or» — or in X, are in correspondence with stable graph morphisms ¢ : I' — I and
the associated map of principal bundles is a partial gluing morphism

Ly * ﬂr g mr/ 5 (69)
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which glue together all pairs of nodes associated to edges in E(T')\E(I") (see [58, Notation 2.8]). By [23, Appendix
A], the pushforward and pullback under ¢, indeed preserves the tautological rings, so that condition (67) holds.

Given a smooth log blowup 7 : (X, D) — (X, D) associated to a subdivision ¢ : & — Sy, we claim that there is
a natural system of tautological rings (R*(P5)), s on (X, D). To describe it, let € ¥ be a cone of the subdivision,
and o = p(7) € Ly its image in ¥x. Then given any map ¢ — ¢’ in £x we can take the fibre product®”

ls—o!,

Py or —= P;

mr| Jso (70)

by 5o/
PJ,%PU

as in Proposition 99. The cone stack ¥5_,,+ associated to Ps_,, is given by the analogous fiber product ia X35, Do
in the category of cone stacks and has a natural boundary A% Denote by

o—0"

SPP,(P5_4/) = sSPP* (X5 4, A2

50) (71)
the strict piecewise polynomials on ¥5;_,, vanishing on the boundary, as usual.

Definition 109. Let 7 : ()A(, ﬁ) — (X, D) be a smooth log blowup associated to a subdivision ¢ : S Y. Let
5 €3 be a cone mapping to o = ¢(d) € Lx. A decorated log-strata class on Py is described by a triple [0/, f, 7]
of a cone o/ € ¥x admitting a map?® ¢ — ¢’ in Xx, a piecewise polynomial f € sPP,(P5_,,/) and a decoration
v € R*(P,/). Its associated class in CH*(X) is given by

[0 ;9] = tsers (m5y - W(f)) € CH™(P5). (72)
We denote by (7*Rx)(P5) the Q-vector subspace of CH*(P;) spanned by all decorated log-strata classes. O
Our next goal is to prove the following:
Theorem 110. The collection R = ((7*Rx)(F5)) ;.5 forms a system of tautological rings on (X, D).

Definition 111. Given a smooth log blowup 7 : ()2'7 ﬁ) — (X, D), and a system Rx of tautological rings on X,
we denote by R = 7*Rx the induced tautological system on X from Theorem 110. O

Remark 112. As the tautological system Rx contains classes of homological piecewise polynomials per definition,
there are also pushforward maps 7, : R¢(P5) — Rx(P,) for a cone & € ¥ mapping to o € ¥x.

This shows that once we define tautological classes on X and its strata, we obtain a notion of tautological
classes on any smooth log blowup of X, allowing us to define log tautological rings in Section 4.4.

To start approaching the proof of Theorem 110, the first step is to give a slightly different generating set of
(7*Rx)(P5), for which some of the calculations are easier to express explicitly. For this choose & — ¢’ a morphism
in S mapping to ¢ — ¢’ under ¢ : $ > Y. From equation (48) we see that we have a commutative diagram

Ls—5/
Pa-l —_— Pa—

S&’—nr’J/ J{S&aa

LO*)G'/

P, — P,
Given 8 € Rx(P,/) and g € sPP.(P;/) we can define the class
{09, 8} = (t65)+((s5-01)"B - W(g)) € CH'(P5), (73)

which we call a strictly decorated log stratum class.

25Note that since the map ¢,_,,s below is strict, the fibre product in the category of fs log stacks agrees with the fibre product of
stacks, by [47, Remark I11.2.1.3].
26In fact the class depends on the choice of such a map, but for simplicity we suppress this in the notation.
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Lemma 113. Inside CH*(P;), the Q-linear spans of all classes [0”, f,~] from (72) and of all classes {77, g, 3} from
(73) coincide.

Proof. Consider a decorated log-stratum class [o”, f, 7] recall from Proposition 99 that we have the diagram

Lo o
|_|Par AN P;_,, —5 Ps

I_|S5/*>UUJ/ J/ﬂ'o./ J/Sa_,g

L ’

[y ”
|_| PO—// o/ 5o Po'/ oc—o Po-

with the disjoint union indexed by (¢ — ¢',¢’ — ¢”) € $;_, and the map J being proper, representable and
surjective. By Proposition 69, we can then find g5/ € sSPP,(Ps/) for (¢ — 6',0" — ¢") € $H5_,,+ such that

(Jtrop)*(Z gs') = [ €sPP.(Ps_o) .

Then we can conclude

[0l7f7 ’7] = Z {a—lagGHL;’—»a”’Y} )

(6—6",0'—>0")ENG_ 51

where we use that the tautological system on X is closed under pullbacks by the maps to/ o

On the other hand, fix a strictly decorated log-stratum class {5”, g, 3} with ¢©(6’') = ¢’ € £x. Then we have a
solid diagram of morphisms

J Lo

P&’ ***** >P5’~>a”4>P5'

Tt S50
S5/ ol
L

(7'—?(7,
P, =o' p,

which is commutative by (the geometric realization of) Lemma 87. Then the dashed arrow j exists by the universal
property of the fiber product Ps_,,» and we have

{Elagvﬁ} = [lejiropgaﬁ] .

Thus we have expressed all classes [0”, f,7] as linear combinations of cycles {¢’, g, 8}, and vice versa, and hence
their linear spans coincide. O

An important first step in the proof of Theorem 110 is to show that each group (7*Rx)(P5) forms a Q-algebra,
i.e. is closed under intersection products. In fact, it is possible to give an explicit formula for the product of two
decorated log-strata, analogous to the formula for products of decorated boundary strata in ﬂg,n presented in [23,
Appendix A]. We begin by defining the relevant notation to state this formula.

Definition 114. Given two maps o1 < o — 03 in Xx, a generic (o1, 09)-structure over o is given by a triple
(0/,p1:01 > 0, pa:09 — ') of a cone ¢’ € Lx and morphisms @1, p2 in Xy such that the diagram

o —— 01

l lsm (74)

Y2
o9 — o'

commutes, and such that each ray of ¢’ is in the image of either 1 or vs.
A second triple (o7, ¢}, ¢h) is called isomorphic if there is an isomorphism ¢” — ¢’ in ¥ x making the obvious
diagrams commute. Denote by &, s, the set of isomorphism classes of generic (o7, o3)-structures. O
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When o = 0 is the trivial cone, we will often just write

601702 = 6<71<—<7—><72 .

Lemma 115. Given two cone stack morphisms (2°P : ¥, — X, associated to maps o — o; in Xx (for i = 1,2)

o—0;

consider the map of cone stacks with boundary

| ] Yot = Yo, X3, Loy (75)

(07,01,02)€8 01 00y

induced by the commutative diagram

trop

|_| Yo —— 202
f;fpj/ trop lbffgy"2 : (76)
Sy T,
Then the map (75) induces an isomorphism
|_| Zg’ — (201 XSy Z01)0 (77)

(07,01,02)€8 5, o0y
on the interiors of its domain and target.

Proof. By definition of the fiber product, the existence of the map (75) follows from the commutativity of the
diagram (76). This commutativity in turn follows from the commutativity of the diagram (74) and the functoriality

Stary' oy o = Stare/oy—se -

It remains to verify that (75) induces an isomorphism on the interiors. For this, recall that objects of the cone
stack fiber product X,, x5 _ ¥,, are indexed by objects in 31, 32 together with an isomorphism of their images in
Y. This data boils down to a diagram of the form

./
J1 / "
ag g1 (71 " Ul

N, BTk

J2 / "
09 —— 09 &—— 04y

-1
J2

in ¥ with ¢/, ¢” isomorphisms. The original objects are contained in X9, %9 if and only if also j{, j§ are isomor-
phisms. In this case, denoting ¢” = o4 the data of the diagram boils down (up to unique isomorphism) to the data

of the maps

Gr=¢"0o() ojio1 > 0" and G2 = (j3) " ojyron — 0",
commuting with the morphisms from ¢. By the properties of the cone stack ¥ x, there is a unique minimal
morphism j : ¢’ — ¢” such that @1, $o factor through j:

/
\

"

Q )
% f‘ ©

Then by the minimality of j we have (¢/,p1,¢2) € &4, 6o, and (o’ ERpA ") gives an object of X2,.

Conversely it’s straightforward to check that (¢ gfp, Lg;)p) sends this object back to the original cone in ¥,, x5 ¥s,,
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and that these inverse functors induce isomorphisms on the cone C(c4) = C(0”) associated to the objects in domain
and target by the structure of their respective cone stacks. O

Proposition 116. Let X x be the cone stack of (X, D) and 1 < ¢ — o9 morphisms in ¥ x. Then there is a fiber
diagram
|| P, —225 P,

Lml i . (78)

P, —2 P,
where the disjoint union is over (¢/, 1, ¢2) € Bgyomo,. Let v € CH*(P,,) and f; € sPP,(P,,) for i = 1,2 and
denote by F, € sPP,(P,) the strict piecewise polynomial with U(F,) = [P,] from Proposition 92. Then we have
an equality

(oot - U (1)) - (a2 - U(f2)) = D (u;m) (5y72) - W (““’? DR ) )) (79)

L *F,
(UI)LPI7LP2)€®0'1<—U—>O'2 ( o”—»a) o

in CH,(P,), where we use that the above fraction gives a well-defined element of sPP,(P,/).

Proof. The fact that (78) is a fiber diagram just follows from the geometric realization of the isomorphism (77)
above. For proving the formula of the intersection product (79) consider, similar to Fj, the polynomials F,, €
sPP.(P,,) with U(F,,) = [P,,] (and analogously for ¢’). It follows immediately that

v = (L) 7],

where ® : sPP*(P,,) — CH*(P,,) is the usual map. Here the fraction f;/F,, is well-defined by (54). Using
Proposition 92, we obtain a piecewise linear function z, on P,, for each p € 0;(1) and have that

F,, = n Ty = Ty, 1) and For = H Tp = Tgr(1) -
peo;(1) pea’(1)

Moreover, again from Proposition 92, the top Chern classes of normal bundles of the two horizontal maps in the
diagram (78) are given by

Loy Lot
eN,, )= H T, |=® (gv(l)> and e(N,,,) = @ 1_[ z, | =@ (x(1)> .
peo1(1)\o(1) a(1) pea’ (1)\o2(1) o2(1)

By the excess intersection formula [21, Proposition 17.4.1], the intersection product (79) is given by a sum of
contributions from the components P, of the fiber product (78), with the contribution of P,/ given by

(u;m (L) (L))o (ﬁ) - [Pﬂ) .

Using the formula h*®(g) = ®((h'"°P)*g) for h = 14, , ty,, together with the formulas derived above (and identifying

rays of 0,01, 09 as elements of the common set ¢’(1) via the cone morphisms @1, ¢2), this simplifies to

. ) (Ltrop)*fl . (Ltrop)*f2 z, -z
e () () - (TR g (T T ) g )

Loy (1) Loa(1) Lo(1) " Tor(1)

Using that ®(f) - U(g) = U(f - g), this readily simplifies to the formula (79). O

Given a subdivision 3 — Yx and ¢; : ¢ — 0; a morphism in fl, we denote by @; : ¢/ — o; the induced
morphism in Y x given as the image of ; under the map ¥ — X x of cone stacks.
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Proposition 117. Given a cone 7 € i, the product of two strictly decorated log-strata on Pj is given by

L (2P g (12) g
’ %
(¢ 50" [ esny o

{al’gl’ﬁl}.{a2792762}= Z

(6",$1,$2)€G5, 55,

 (1,)" B - (%)*32} : (80)

Proof. This follows immediately by applying the formula from Proposition 116 on the cone stack $ with v =
(85;—0,;)*Bi, which explains the summation over &5, 5,5, and the decoration by strict piecewise polynomials. To
see how the decorations (i, )*3; arise, we observe that

L:o,% = (88/_’0/)*(L¢i)*/8i
and apply the definition of strictly decorated log strata classes. O

Continuing with preparations for the proof of Theorem 110 we show functoriality of tautological classes along
the map s5_,,.

Lemma 118. Pushforward and pullback under the morphism s;_,, induce well-defined maps

S5—ox - (F*Rx)(Pa) — Rx(Pg) and Sgﬁa : Rx(PU) — (W*Rx)(Pa). (81)
Proof. For the pushforward consider a strictly decorated log-stratum class {G’, g, 8} on P; defined via the commu-
tative diagram

U(g)Py 2= P

Safﬂa/l lé‘aea .

by 5o/
B Py —= P,

Then we have

S&—»U*{a—/agvﬂ} = (La'—m'/)* (ﬂ ' 5&’—»0’*\:[/(9)) = (LU—N—"')* (ﬁ : \Il((stﬁrlcfg/)*g)) € RX(PO’) .

where the last containment follows as the tautological system Rx contains classes in the image of ¥ and is closed
under intersection products and pushforwards via ¢, .. In the equality we also used that the map s;_,, is proper
of relative log dimension 0 (Definition 66) and thus its tropicalization sf;ipﬂ : f)g — Y, admits a pushforward
compatible with the map ¥ (as in Proposition 67).

For the pullback via s;_,,, let v € Rx(P,) and let F € sPP,(P5) be the piecewise polynomial from Proposition
92 which satisfies U(F;) = [P5]. Then taking ¢’ = o in the fiber diagram

P, —4 P;

””l lsm (82)

p, 4 . p

we see
[Ja F&v 7] = (Id)*ﬂ-;’y : \IJ(Fa) = Sg—uﬂ”

proving that the pullback of tautological classes on P, under sz_,, indeed lands in (7*Rx)(P5). O

Proof of Theorem 110. For the entire proof fix o € $ and let o = ©(0) be its image in X x. By Proposition 117 we

have that R*(P;) = CH*(P;) is a sub-Q-algebra. To see that it contains the class ¥(f) for any f € sPP.(P5), just
note that

(I)(f):[d,f,l],

by a computation similar to the one presented in the proof of Lemma 118.
On the other hand, consider any morphism ¢ — ¢’ in X, mapping to the morphism ¢ — ¢’ under . Then we
want to check invariance of the rings under pushforwards and pullbacks by t5_.5 : P; — P;. By Lemma 113 we
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can verify this property on the generators of the tautological rings of Ps;, P;: given by strictly decorated log-strata
classes.

For the pushforward, let ' — &” be another morphism in 3. Then the class {¢”,g,8} on Ps is defined by the
following commutative diagram

U(g)Ps» —— Py ~22% P,

I

/3 PUN E— Pg/ Emd PU

Then we just observe
(La'ﬁa'/)*{ a” agaﬁ} = { a” ag76} € (F*RX)(P&)a
5" —5! 5" —&
where for clarity we have temporarily undone the abuse of notation discussed in Footnote 26.
On the other hand, counsider a class {7, g, 8} on Ps for a morphism ¢ — &y with o9 = ¢(dp). Then from
Proposition 117 we know that the fiber product Ps, xp. Ps is given by the disjoint union of spaces Ps» for
(", ¢1,92) € B5,—5-5. Then we obtain a commutative diagram

I_l Pa./// Pa./
L L&.jy Lo—5!
\IJ(g)PgO J PE’
|_| P(P(a'/l/) Po-/
Afow}(a"’) /
B Ps, P,

whose top face is a fiber diagram. Similar to the proof of Proposition 116 we use that

U(g) =@ <g> [Ps,] and [Psn] =W | [] =,

Hpeﬁg(l) Lp pe&" (1)

Then by a short diagram chase (using commutativity of proper pushforwards and Gysin pullbacks in the top fiber
diagram) and the excess intersection formula, we have

L§_>3/{30; g, 6} = 2 {6,//7 (L:?r(?iﬁl//)*g : 1_[ Tp, (Lao—uﬁ(a’”))*ﬂ} € (’/T*RX)(P&’) .

(6",p1,02)€6 5 5 51 ped’ (M\im(& (1))
This shows that the tautological rings are indeed closed under pushforwards and pullbacks by the maps t5_,5/,
concluding the proof. O

We conclude Section 4.2 with a basic compatibility check, verifying that the process of inducing tautological
rings is transitive for a composition of log blowups.

Proposition 119. Let Xo =% X; =5 X be a sequence of log blowups with X7, X5 smooth and assume that X
carries a system of tautological rings Rx. Then n3njRx = (m o m2)*Rx.

Proof. Let ¥y 22 ¥ £5% Sy be the sequence of subdivisions associated to the above sequence of smooth log
blowups. Given o2 € Y9 a cone, we check the claimed equality of tautological systems on X, by verifying that
they give the same subring of CH*(P,,). For this, we recall that both (r37iRx)(P,,) and ((m1 o m2)*Rx)(Py,)
are defined as the Q-linear span of certain generators, given by (strictly) decorated strata classes. Our proof will
proceed by showing that each type of generator of one ring can be expressed in terms of the generators of the other.

Denote by 01 = @2(02) and o = ¢1(071) the images of o in X1, %, respectively. For a choice of 093 — o) in
Y5, we have that generators of ((m1 o m2)*Rx)(P,,) are given by the classes {d%, g, 8} defined via the commutative
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diagram
W(Q)Paé ? P0'2

L

Py —— P,

ope]| |

3 P, — P,
By Lemma 118 we know that s;,l_)gﬁ € (m{Rx)(Ps;), and thus

{057935} = {0—/279”9;-’1_"7&} € (WE,’TIRX)(PCD)'

For the other inclusion, we recall that a set of generators

{05, 92.{07, 91, B}} € (m3mRx)(Po,) (83)
by strictly decorated log-stratum classes is specified by
e choosing a morphism o3 — 0% in ¥s, mapping to 0 — o1 under s, and an element g € SPP.(Py; ),

e choosing a morphism o] — of in ¥; mapping to 0’ — ¢” in ¥ under ¢, an element g; € sPP*(PU/l/) and a
tautological class 8 € Rx (Py~).

These fit into the following commutative diagram of solid arrows

|_| P52 ————— ‘\\\\\\
N
! \\,\ pY \11(92)
559551 | PO"Q—NJ'” —_— Paé e Pa’2
< Lot l l l 84
|_|P[~,1 ffffff 1*> Pa'lll Pa’ Pffl ( )
| \Ij(ql)l l l
|| Ps -222=% P,y Py Py

where the disjoint union is indexed by (05 — Ga,07 — 1) € Hyy, .or. As before let g1, g2 be strict piecewise
polynomials such that W(g1) = ®(g1) - [Poy] and ¥(g2) = ®(g2) - [Po,]. Abusing notation, we’ll use the same
notation for their pullback to the components Ps, of the disjoint union in the above diagram.

To conclude, note that the definition of the class (83) involves pushing forward along Pyr — P, and pulling
back along Py, — F,;. First, we use compatibility of Gysin pullbacks with proper maps to reroute this via a refined
Gysin pullback to and pushforward from Py v

To analyze the result of this procedure, we first observe that since all spaces involved are idealized log smooth,
and all maps are pulled back from corresponding maps of Artin fans, we conclude that the fiber product Py o is
reduced, and indeed idealized log smooth. Then we claim that the above refined Gysin pullback can be calculated
via the normalization morphism J. Indeed, the main term?” will be given by taking a Gysin pullback from Pyr to
the disjoint union of the spaces Py,, multiplying by the Euler class of a suitable excess bundle E and then pushing
forward to F,;. As before, the Euler class of E comes from some piecewise polynomial gg 5, on Pz,. Combining

27For similar excess intersection theory calculations see, for example, [14, Section 5].
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this with the usual projection formula, one can conclude that the main term of the class (83) is given by

Z {02,012 9B.5, - Fo,, (Lor—5) B} € (M2 0 1) Rx ) (Foy)
(oh—052 ’Ui'ﬂ?fl)eﬁaéﬂag
where F, is the usual piecewise polynomial with ®(Fy,) = [Ps,].

In general, there will also be correction terms coming from intersections of different components Ps, in the
normalization. These are again supported on smaller strata Py, and their contribution is given by a similar refined
Gysin pullback of 3 from P,~, acting on a class of a homological piecewise polynomial on Ps, and then pushed
forward to P, . In particular, all these correction terms are also given by strictly decorated log strata classes giving
generators of (w2 o 7m1)*Rx)(P,,). This concludes the argument. O

4.3 Tautological rings of log blowups

Next, we want to show that for particularly simple log blowups X > X , which correspond to the blowup of a
smooth stratum closure in X, the pullback of a tautological system on X to X is determined purely by the data of
the original tautological system and the combinatorial data of the blowup (and does not require further knowledge
of the geometry of X).

The basic tool for computing the system of tautological rings on the blowup are the projective bundle formula
and the blowup formula for Chow groups. Recall that for p : E = P(£) — S the projectivization of a vector bundle
& of rank r on a smooth stack S, we have

CH*(E) = CH*(S)[€]/(cr(E) + cr1(E)E+ ... + 1 (E)EH +£7). (85)

Here the isomorphism is induced by the map sending p* : CH*(S) — CH*(E) via pullback and sending ¢ to
c1(0Og(1)). N
On the other hand, let X be a smooth stack and Z € X a smooth closed substack. Consider the blowup X of
X at Z, fitting into a fibre diagram
E—15 X
g x (86)
Z =X

where E = P(N) — Z is the exceptional divisor, given by the projectivization of the normal bundle N' = Ny x.
Denote by Q = 73N /Og(—1) the universal quotient bundle on E and consider the map

h:CH(Z) > CH*(E),a— —cp_1(Q)ng(a).

Then there is an exact sequence

0 — CH*(2) 8, e (x) @ cH* () L2225, eyr(%) S 0. (87)

This sequence represents the Chow group of X as a quotient of CH*(X)@® CH*(E), where CH*(E) is determined by

equation (85). In fact, the natural ring structure on CH*(X) descends from a product on CH*(X) @ CH*(E) given
by the rules

(1,0) - (@2,0) = (0a2,0),  (,0)-(0,8) = (0, 8- wpi*a),  (0,51) - (0, 52) = (0,=P1- P2 - ),

with € = ¢1(Og(1)) as before. For a reference see [21, Exercise 8.3.9] for the case where X is a variety and [6,
Theorem 7.1] for the case when X is a quotient stack.

Theorem 120. For a log blowup 7 : X — X that can be represented as a sequence of blowups of smooth
strata closures, and a tautological system Rx on X, the data of the tautological rings (66) and the pushforward
and pullback maps (67) between them determine the induced tautological system 7*Ry via applications of the
projective bundle formula (85) and the blowup exact sequence (87).
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Proof. By Proposition 119 it suffices to show the claim for a single blowup of a smooth stratum closure S, = S,
for some o € ¥x. As we have seen in Lemma 100, the fact that S, is smooth is reflected on the cone stack side
by the map %0 /Aut(c) — ¥ being a fully faithful embedding of categories. By Proposition 104, the blowup map
X > X corresponds to the map

BIP S =ssd, (Tx) — Dx

O',EX

from the star-subdivision of Y x at o that we specified in Construction 103. The claim of the above theorem is
then that for any & € ssd, (X x) it is possible to understand the subring (7*Rx)(Ps) = CH*(P;) purely in terms of
the tautological maps (66), (67) of the original system, and the combinatorics of o € ¥ x. Using the description of
the objects 7 € ssd, (X x) from Construction 103, we distinguish two cases:

Case 1: 6 = (1 >0 — ')

The cone & corresponds to a stratum of X inside the exceptional divisor of 7. The map S — ¥ sends & to o’ ,
so as in (57) we obtain a map q = sz, : P — P,. We claim that this map can be identified canonically as the
projective bundle

q: P =P(&y) > P, for &.o = @ mL, (88)
pea(\7(1)
where the line bundles 7; £, are defined as in Proposition 86. Intuitively this is plausible, as we are considering a
stratum in the exceptional divisor of the blowup. For a slightly more rigorous argument, recall that the strata of
P,/ correspond to the objects (¢! — ') € £Y, in the interior of the cone stack ¥,/. Unravelling the definitions, the
strata of P; mapping to them are then indexed by objects in f]g corresponding to diagrams

~

—— 0 ——

Q

~

Al
Q+—2Qq
%

QJ

—— 0 ——

where the rightmost arrow is the one given by (¢’ — @’). Using the remaining automorphisms of such objects, we
can make the middle arrow ¢ — ¢ be the identity. Then combinatorially, the objects are indexed by composition
of face inclusions (7 < 7 < o), whose associated cone C(7 < 7 < o) is spanned by b,,7(1) and the rays of & not
in the image of o. The unique smallest (or primitive) object in this collection is given by choosing 7 = 7. Using
the theory of fibers of toric morphisms (see [30, Proposition 2.1.4]), one then confirms the identification (88) of P;
as a projective bundle over P,,. The direct summands of the vector bundle &, _,,, corresponding to the rays of o
not in 7, are determined by the fact that an object (7 < 7 < o) as above is precisely determined by the choice of
FU\r(1) € o(D)\r(1):

By the projective bundle formula (85), the Chow group of P; is determined as
CH*(P;) = CH* (Po)[€]/(cr(Erso) + Cro1(Ermo)E oo H 1 (Ermo )1 +E7). (89)
We claim that the same equality holds when replacing the full Chow group CH with the tautological rings:
(T"Rx)(P5) = R (Po)[€]/(cr(Erse) + crot(Ermso) + o+ c1(Ermso)E T +€7). (90)

If we prove this, then indeed (7*Rx)(P5) is determined by Rx(P,/) as the Chern classes ¢;(€,_,,) are simply the
elementary symmetric polynomials in ¢; (7} L,), coming from piecewise linear functions on P, by Proposition 92.
Moreover, we note that there is a piecewise linear function e € SPP*(fJ;,) such that ®(e) = £. Indeed we can choose
e as the pullback of —min(z, : p € 0(1)) from Faces(c).

To show the inclusion < of (90) note that the generators of (7*Rx)(Ps) are given by the decorated log strata

classes [0”, f,~] for a choice of ¢/ — ¢” in ¥ x, a homological strict piecewise polynomial f € sPP,(Ps_,~) and
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v € Rx(P,), appearing in the diagram

\I](f) P ,on —— P5

ol

Y PUN M) Pa’
To prove that [0”, f,~] is contained in the right-hand side of (90), it is sufficient to show that
a([0", f,7] - €*) € Rx(Py) for all 0 < a < 7.

Indeed it is a general result that for a cycle v in a projective bundle, its coefficients (as Chow classes on the base)
in the projective bundle formula (89) can be reconstructed from the pushforwards g.(v-£%), a = 0,...,r, in terms
of a matrix of classes depending only on the Chern classes of the bundle. But noting that £ = ®(e) = ¥(e - F3),
with F5 € sPP.(P,) as in Proposition 92, we have [¢”, f,v] - & € (7*Rx)(P5). Therefore its pushforward under
q = S5_,o 1s tautological by Lemma 118, concluding the proof of the inclusion <.

To show the inclusion 2 of (90) it remains to observe that by Lemma 118 we have ¢*Rx (P,) € (7*Rx)(P5).
Since also £ = ¥(e - F3) is contained in this ring, we have concluded the equality (90) and Case 1.
Case 2: 0 = ¢ for 7 € ¥ x not containing o as a face

A cone o of this type corresponds to a stratum of X that is the strict transform of the stratum in X corresponding
to &. In the following we always write & for the cone in i, and & for the cone in ¥ x. We claim that the map

q: Pg = B|Z5,UP§ — Pg (91)

is a blowup of a union Z3 , & P5 of smooth and disjoint strata closures in Py, which are precisely the preimage of
the blowup center S, € X under the map 13 : Py — X. To characterize this preimage of S,, note that the map
to : P, — X has exactly image S, and forms an Aut(o)-torsor over this image. Then from Proposition 117 we
know that that the fiber product of t5 and the map ¢, is given by the disjoint union

Zsy = ] P (92)
(U'a@@)e(’ja,a

" & ). These fit in an iterated fiber diagram as

. . .y~ ~ @
over all isomorphism classes of generic (7, 0)-structures (¢ = o
follows

Z&,a Ps

23 o
N &
P, Sy X
~_ “

Lo

Since the pullback of the Aut(o)-torsor P, — S, is again such a torsor, we have that the center

Z5.q = L] P |/Aut(o) (94)

(o', 8,p)EG5 &

of the blowup ¢ is a union of strata closures of Py. Let 7 : ' — Z5 , be the exceptional divisor of ¢. Then from
the blowup formula (87) we obtain the exact sequence

0 — CH*(Zs.5) 22 CHY (Py) @ CH* (B) 2220 0) ey (py 0. (95)
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In this sequence, the representation (94) of Zz , shows that its Chow group is given as

Aut(o)
CH*(ZFI,U) = < @ CH*<P0’)> (96)

(c/,8,0)E65 5

and the Chow group CH*(E) is given as a finite algebra over CH*(Z3 ,) by a suitable projective bundle formula
(85). Thus we see that if we have full control over all Chow rings (CH*(Py,))s,exy, the natural pushforward maps
between them and the Chern classes of normal bundles of the maps ¢s,, then we also have full control over the
Chow rings of the spaces P; above. We claim that replacing the full Chow rings with the relevant tautological
rings, the same result holds, and in particular

* ix,h * * a,B)—q" (a i *
0 — RY (Zs.) = Ry (Py) @ R (B) 2220, (2R () — 0. (97)

Here R% (Z5 ) is defined by the tautological analogue of the formula (96), and R% (E) is defined by the projective
bundle formula over it. The fact that the first map (i,, h) in the sequence (97) is well defined follows from the
invariance of tautological rings under the pushforwards tz_,,4 and the fact that the Chern classes of their normal
bundles come from piecewise polynomial functions. For the second arrow, the pullback map ¢* : R%(P;) —
(m*Rx)(P5) is well-defined by Lemma 118. To see that j, : R%(E) — (7*Rx)*(P5) is well-defined, observe that
taking the fiber diagram of E — Z5 , with the Aut(o)-torsor Z;,U — Zs », we obtain a similar torsor E - E. By
the previous step of the proof, one sees easily that

E= |_| Py, 5

(0/,6,0)EG5 &

where b, € o’ is the barycenter of o', and (b,/,5) is the sub-cone of ¢’ spanned by b, and the face @ : 6 — o’.
This cone is part of ¥ and the natural morphism & — (b,/, &) induces a codimension 1 map Py, 5 — Ps. Again
by Case 1 of the current proof, the tautological ring of E is given by the projective bundle formula over R X(Zgw)
and hence

Aut(o)
RY(B) = (m*Ry)" (E)M) = ( S (w*RX)(P@U,@)) :
(0/,8,0)EG5 &
Then the fact that j. is well-defined follows from the invariance of 7*Rx under pushforward by the maps Py, , 5, —
P;. Thus we conclude that the sequence (97) is well-defined.

To show its exactness, we note that each term is naturally a subset of the full sequence (95), which is exact.
From this, exactness of (97) at R%(Z5,) is automatic. For exactness in the middle, assume that there is a class
(a, B) € R%(P5) @ R% (E) mapping to zero in (7*Rx)*(P5). Then by exactness of (95) it comes from some class
v € CH*(Z3 ) and we must show that ~ is tautological. But the map («a, 3) — (7g).f is a section of the map
(ix, h), and thus v = (7g).8. Since the pushforward by mg sends tautological classes to tautological classes (see
Lemma 118), we have that ~ is tautological as desired.

It remains to prove exactness on the right. So let § € (7*Rx)(P5) then by the exactness of the sequence of
Chow groups, there exist (o, 8) € CH*(P5z) ® CH*(F) mapping to §. By modifying this pair via a class coming from
CH*(Z5 ), we can assume that ( satisfies (7g). = 0. Equivalently, writing

B=PBo+ B+ ..+ B2 2+ o1& € CHY(E)
for unique B; € CH*(Z5 ), we can assume f,_; = 0. But from this it follows
4+0 = @ 0 + qujup = a +in (1) = .
=0

Since ¢, sends tautological classes to tautological classes by Lemma 118, we have @ € Rx(P5). By replacing §
with § — ¢*«, we may assume without loss of generality that o = 0 and thus 6 = 5,8 € (7*Rx)*(P5). Since the
tautological system 7*Ry is closed under pullback by the map j (from Theorem 110), we have j*§ € Rx(E). But
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on the other hand
J=3%GuB=B-E = BoE+BiE + ...+ Bro e Rx(E).

Uniqueness of this representation implies that all 8; € Rx(Z3,), and hence also our original 3 was contained in
Rx(E). This concludes the proof of exactness of (97), the claim of Case 2 and thus of the theorem itself. O

4.4 Log tautological rings and a generating set for logCH* (X, D)

Let (X, D) be a smooth normal-crossings pair as before. Then using the notion of induced tautological systems on
log blowups X of X, we can define the notion of a log tautological class.

Definition 121. For R = Rx a tautological system on X, we define the logarithmic tautological ring of X as the
colimit

~

logR*(X) = lim (7"Rx)(X) < logCH"(X). (98)
XX
of the induced tautological rings on smooth log blowups X of X. O

By Remark 112, this is indeed a logarithmic lift of the tautological ring R(X) < CH(X).
Proposition 122. The image of logR*(X) under the pushforward map logCH(X) — CH(X) is R*(X).

Since the induced tautological rings above are by definition spanned by decorated log strata classes, we can
write down a formal Q-algebra with an explicit surjection onto logR*(X).

Definition 123. Let Rx be a tautological system on X, then its associated log strata algebra is given by

logS*(X) = @ PP.(3,) ®ppr(s,) Rx(Ps), (99)

O'GEX

where the sum goes over a set of representatives of isomorphism classes 0 € Y¥x and Rx(P,) is a module over
sPP*(2,) via the map ®. It admits a natural map

* N * —> . IOg
l0gS" (X) — logCH(X), Y fo @7 = 3 (to)s (70 - VE(S) (100)
gEX x ocEX X
::[a7f0'7’yO']
to the logarithmic Chow ring of X. O

Our first remark is that the notation [, fs, v ] above is compatible with the notation for decorated strata classes
in Definition 109. Indeed, for the piecewise polynomial f, on 3, we can find a subdivision I Y., making it a
strict piecewise polynomial. Choose a subdivision I x which contains the image of all new walls in 5. Then
the image of [0, f,,7,] is a decorated stratum class (given by the same notation). Indeed, in Definition 109 we
choose 6 =0€ S mapping to 0 € ¥ x, which admits a map 0 — ¢ in ¥ x. The crucial insight is simply that we can
see f, as an element of sPP,(Py_), since by construction, the cone stack ¥, x5 S is a refinement of 7.

We can define a natural multiplication on the log strata algebra logS*(X) by

[o1, fi, 1] - [o2, fa. 2] = 2 [0, (Lfifp)*fl : (prr;)p)*f% L;ﬂl : L;ﬂz] . (101)
(0",01,92)€B 51 0y

Theorem 124. The formula (101) defines a product on the log strata algebra logS* (X ), making the map logS*(X) —
logCH*(X) from (100) a ring homomorphism with image logR*(X).

To show this theorem, we prove a more general result about intersections of classes combining piecewise poly-
nomials and operational Chow classes.
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Proposition 125. Let X1, X5,Y be log algebraic stacks with X7, X5 idealized log smooth and Y smooth and log
smooth. Assume that the diagram
zZ 25 X,

|k

X]T>Y

is a fiber diagram with the maps ¢; being strict. Let + : Z — Y be the map induced from this diagram.
Then for any v; € CHZ,(X;) and f; € sPP,(X;) we have

(&) (1)) - (G2 (2 0 W(f2))) = u ((PT1) - (P372) O W ((PY)" fr - (p5F)" f2)) € CHL(Y). (102)

Proof. First, observe that both sides of (102) are bilinear in fi, fo. Our goal is to decompose f1, fo into a sum
of simpler contributions, which can be analyzed separately using standard excess intersection theory. To find this
decomposition, we claim that for ¢ = 1,2, the map

D(T")

(‘B sPP. (PU)

min
o’Gin

sPP.(X5), (103)

min

is surjective, where o runs through representatives of the minimal cones X" of the cone stack of X; and ¢, : Py —
X; is the associated map from the monodromy torsor associated to o. This is just a translation of the fact that
the representable, surjective and proper map

[] P-—Bx

min
UEZXi

induces a surjection on Chow groups, using the identification in Theorem 59 and the compatibility of tropical and
Chow pushforwards in Proposition 67. Using the surjectivity of (103) we can without loss of generality assume

trop

; )*ﬁ for some monodromy torsor ¢; : P; — X; of X;. Given this data,

that the polynomials f; are of the form (v
we form the following fiber diagram:

P (104)

Assume for now that we are able to show the claim of the proposition for (X;, f;, ;) replaced by (P;, fi, (¢:)*i)-
Then we would have shown that the left-hand side of (102) is equal to

(o0 ((C011) - (Coke) 2 WIEP) Fr - @7 ) (105)
Using the projection formula, the desired equality with the right-hand side of (102) then follows once we prove
(CoP) (@) Fu @) F2) = (B P) () Fi - (5™ (5P o (106)
To see (106), we first make a couple of remarks:

a) Associated to the fiber diagram (104) there exists a corresponding fiber diagram of cone stacks, connected by
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the maps (P, E}“’P etc. In particular, slightly abusing notation®® we have

Sp = AP, 2) " (0:) = 5P (2)}
S5 =A{p1,p2,2) 1 P (pi) = pi"(2) for i = 1,2} . (107)

b) The maps LT°P are associated to star fans of cones in ¥ x;, and it follows that for each cone o € £ p, the map

i
t . . . . .
t; P defines an isomorphism from o to its image cone in ;.

c¢) This implies that for both the maps ¢; and their base changes, the pushforwards of piecewise polynomials can
be computed as

(Pl @)= > gp),

pie(ey™ )~ (x:)

where we take an appropriate groupoid sum as in Proposition 76. Since (**°P is a composition of base-changes
of the ¢{"P, the same formula holds for (¢**°P),.

To prove formula (106) we now evaluate it at a point z € ¥z. The left-hand side gives

D i) - falpe). (108)

(p1,p2,2)€X 5

On the other hand, the right-hand side evaluates to

>, fi(p) - >, Fa(pa). (109)

P1E(}" )71 (07" () Pp2€(15 ) 71 (05" (2))

Comparing with the description in (107) it follows that these two expressions are equal.
We are left with showing the claim of the proposition for X; of the form P; as above. The one advantage that
the monodromy torsors have over the general situation is that they are smooth stacks and by (54) they satisfy

sPP.(P,) =~ Fp. - sPP*(P}), (110)

where Fp, € sPP,(P;) is the polynomial with ¥(Fp,) = [P;] € CH,.(F;). Then the calculation can be finished using
a standard excess intersection analysis modelled on the proof of Proposition 116. O

Proof of Theorem 124. By Lemma 115 we have a fiber diagram

|_|0"P0" 4>P0’2

l l (111)

P, —— X

where the disjoint union is over (¢/, 1, p2) € &4, »,. Now in general, the polynomials f; € PP.(F,,) will not be
strict piecewise polynomials on P,,. To remedy this, we can find a non-singular log blowup X — X such that for
the fiber diagram

B, —* 4 X

obtained by base-change of (111) we do have f; € sPP*(ﬁgi). Then the left-hand side of (101) is defined as the

28To avoid such an abuse, one could spell out the fiber product of cone stacks, saying: ”Objects of Y5 are pairs of cones (o,7) €

3 p, XXz together with isomorphisms of their image cones in X;”. Since all relevant morphisms of cone stacks below induce isomorphisms
on all their cones (see point b)), the set-theoretic description we give is sufficient to finish the argument.
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intersection

(&1)« (’}’1|13(,1 N W(fl)) (&2)« (72\1% N ‘1’(f2)) . (112)

This is precisely the type of intersection covered by Proposition 125. Comparing with equation (102) we see that
the above intersection is precisely given by the right-hand side of (101) (using that P, — P, is a log blowup on
which (¢20P)* f1 - (142P)* f2 is a strict piecewise polynomial).

Finally, the fact that the image of (100) equals logR*(X) simply follows as the tautological classes on a log

blowup X — X are defined as the span of decorated log strata classes as above. O

Remark 126. a) For S , the strata algebra of R*(M, ;) as defined in Section 1.2.2 there is a natural morphism
S; . — 10g5"(My,) of Q-algebras. It sends a decorated stratum class [I',v] (with v a product of k- and
Y-classes on Mr) to the class [I', FT, 7] where IT = [ [.cpr) le € SPP+(Mr) is the piecewise polynomial with
U(Fr) = [Mr]. From this equation, it’s clear that the element in R*(M, ) associated to [I',7] equals the
image of the decorated log stratum [I', Fir,7]. Moreover, the fact that S}, — logS*(M,,,,) is a morphism

of Q-algebras follows from the standard product formula for decorated strata classes combined with the fact

that in (99) we take the tensor product over the strict piecewise polynomials. This allows us to convert
higher powers of /. into decorations —t5, — v, appearing in the excess intersection formula in S ,, for edges

e=(h,h')e E(T).

b) In the definition of the log strata algebra logS* (M, ), the allowed decorations are Chow classes yr € R*(Mr).
A purely symbolic strata algebra logS} ,, surjecting onto logS*(My,,,) was defined in (4), where the allowed
symbols yr are decorated strata classes (i.e. stable graphs with k,1-decorations). One input that is needed

for the tensor product appearing in (4) is the existence of a natural factorization

P

T

SPP*(3r) —— @uev(r) Sy ey — R*(Mr)

of the map ® from strict piecewise polynomials on X to tautological classes on Mr via the strata algebra
of Mr. Such a factorization exists due to the identification of images of ® with normally decorated strata

classes. Here polynomials on the factors ¥, n(y) of Xr map to decorated strata in Sy, n(v), Whereas the
additional coordinate functions £, for ¢ = (h,h’) € E(T') map to —t, — ¢y, in the tensor product of strata
algebras.

*
g,n

that at least one of the +, is supported on some proper stratum of the space Mg(v)m(v). Then the associated
decoration v in R* (ﬂp) is a pushforward (trv—r)«70 of a product vy of £ and +-polynomials on the vertices
and edges of some specialization IV of I". Using the projection formula and the pullback of homological

c¢) Consider a generator [T, f,~] € logS , where v = HUEV(F) v, is a product of decorated strata classes such

piecewise polynomials for the partial gluing map ¢ —r (see the proof of Theorem 110), one can show that
[, for] = [T (e Bp)* f) - [T 0] € logCH (M)
ee E(I")\imE(T")

Thus logR* (M, ,,) is generated by decorated log strata classes [I, F,~y] where 7o is a product of x and
1p-classes.

Taking the maximal tautological system CHx of all Chow classes from Example 107, the blowup formula also
implies that the induced tautological system on an iterated blowup of smooth strata is still maximal:

Proposition 127. For an iterated blowup = : X — X of smooth strata, we have CHg = 7*CHx.

Proof. Using Proposition 119 we can again reduce to the case of a single blowup of a smooth stratum. Then we
have to show that for each & € X we have an equality (7*CHx)(P;) = CH*(P;). As in the proof of Theorem 120
the cones & come in two variants (according to whether they describe strata in the exceptional divisor or not). The
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desired equality then comes from combining equations (89) and (90) in one case, and equations (95) and (97) in
the other. 0

Since the above blowups are cofinal in the system of all log blowups, the logarithmic tautological ring induced
from R = CHx on X is indeed the full log Chow ring logCH*(X). Combining this with Theorem 120 one immediately
obtains:

Corollary 128. The log Chow group logCH*(X) is generated as a Q-vector space by decorated log strata [, f,v]
for 0 € Xx, f € PP.(P,) and v € CH*(P,). It is uniquely determined by the collection of maps

U : sPP,(P,) —» CH*(P,)
for 0 € ¥ (together with the Aut(c)-action on both sides) as well as the pushforwards and pullbacks
to'—ox : CH*(Py) —» CH*(P,) and %, : CH*(P,) —» CH*(Py)
for any morphism ¢/ — o in Xy.

Remark 129. Using the techniques from Section 4.4, we can also easily define the log tautological group of a
smooth idealised log smooth DM stack, such as a stratum Mrp with its strict induced log structure by the gluing
map tp. We give a brief sketch of the construction: for X smooth and idealised log smooth, let (3, X%, A) be its cone
stack with boundary. Then for (3,39, A) a smooth subdivision let 5 € 50 be a cone mapping to o = (&) € 2.
To define a decorated log-strata class on P; consider a triple [¢" — o, f,7] of a morphism ¢/ — ¢ in Xx, a
piecewise polynomial f € sPP,(Ps_,,/) and a decoration v € R*(P,/). Its associated class in logCH, (X) is given by
the pushforward of
[0, £,7] = tors (87 - W()) € CH' (P5) (113)

under the map P; — X. The collection of these form the log tautological group of X
logR, (X) < logCH, (X).

If X is log smooth, then under the Poincaré isomorphism logCH, (X) = logCH*(X), the log tautological group
logR, (X) is identified with the log tautological ring logR*(X).

There is no direct analogue of Proposition 117, as logCH, (X') does not have a ring structure. The direct analogue
of Corollary 128 does hold, with the same proof.

4.5 Functoriality of log tautological classes on moduli of curves

Proposition 130. Let p : X — Y be a log lci map of smooth, log smooth DM-stacks, with a tropicalization
p: Yx — Yy. Assume that for each map of cones ¢ — ¢’ with o € X,0’ € ¥/ with induced pullback p* :
CH*(P,/) — CH*(P,) we have p*(R*(P,)) < R*(P,).
Then the pullback map
p* : logCH*(Y) — logCH*(X)

restricts to a pullback back on log tautological classes
p* : logR*(Y) — logR*(X)

Proof. Take a log tautological class [0”, f,v] € logR*(Y), with ¢’ € . The pullback 7 = Star,/(%')" x5 X is a union
of cones of ¥. Write Pr =Y x 4., B;. Then f pulls back to a homological piecewise polynomial p! € sPP,(P;), and
~ pulls back to a tautological class on P,. It suffices to show that the class p*vy - U(p* f) € logCH*(P;) is a linear
combination of pushforwards of log tautological classes on P, for ¢ € 7. This follows by induction on the number
of cones in 7. O
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Proposition 131. The forgetful map 7 : My ;1 — M, ,, induces a pushforward map

Ty logR* (Mg 1) — logR* (My ).

Proof. Let (I, f,v] € logR* (M 41). Let T be the graph obtained from I' by forgetting the marking n + 1 and
stabilizing. Then we have a commutative diagram

J— 5 J—
Mp —— Mg

lﬂr lﬂ (114)

R & JE—
Mg —— My,

Note that [T, f,v] = (&r).y- U'°8(f) is a log pushforward from Mp. Since log pushforwards are functorial, it suffices
to show that
(7r)wy - W°¥(f) € logCH, (M) (115)

is log tautological. By this we mean that it is of the form 7 - W'°8(f). Indeed, then we would have

(L, f,7] = [T, f, 7] € logR* (M),

finishing the proof.
To prove the claim that (115) is log tautological, take a diagram

~

MF Emd ﬂr‘
frr Jﬂr (116)
My =T Me

where the horizontal maps are log blowups, 71 is tropically transverse and f € sPP, (./\/71/1‘) Then the pushforward
(7r)wy - U'°8(f) € logCH, (M) is defined as (Fr).(v - ¥(f)). Let ./T/l\p/ﬂr‘ denote the pullback of Mf/ﬂf. Then
7r factors as

Rp 25 By 2 Mo

Here p; is a log blowup, and since v is a pullback from Mr, we have
(1)« (v-2(f)) =7 - T ((p1)IP f)

After replacing f with its tropical pushforward under p;, we can thus assume without loss of generality that
My = ./T/l\r7 that is, (116) is a fiber square.

The graph T either has a single contracted edge, or no contracted edge. We first treat the case where there is
a single contracted edge e. In this case, the map

7~TF . Mr i Mf
is an isomorphism of underlying algebraic stacks, and the map on the level of cone stacks with boundary is
EI‘ = EF X (Rzo,O) - EF

We write £, € sPP*((Rx0,0)) for the piecewise linear function associated to the contracted edge. Then f € sPP,.(Xr)
is a sum of terms of the form f-¢% with b > 1, and f € sP P.(35). The cohomological piecewise polynomial function
¢, € sSPP*(Mr) maps to the operational Chow class —t, — ¥y € R*(Mr). We find

v-U(f) = (v- @(62_1)) : W(?'Ee)
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As 71 is an isomorphism, this pushes forward to
A (v O(0071) - U(F) € CHL (Mp).

This is a tautological class multiplied by a homological piecewise polynomial, hence it is log tautological.

Now we treat the case where I' has no contracted edges. Then sPP, (Mr) is generated by homological piecewise
polynomials on smaller strata and pullbacks of homological piecewise polynomial on M. By Remark 126¢) we
can reduce to the second case. There the statement follows from the projection formula.

O

Proposition 132. Let I' be a stable graph with associated gluing map & : M5 — M, ,,. Then pushforward by
ér induces a map

(€r)s: ) 10gR" (My(u),n(v)) — logR* (M) - (117)
veV (T)

Proof. To define the map (117) on the level of the full log Chow groups, note that we have log maps m, : M5 —
M g(v),n(v) and so we can first pull back from the factors logCH* (M y(y) n(v)) to logCH* (M), take the product,
and push forward under £r. It remains to show that this map sends products of log tautological classes [['y, fi, Vo] €

logR* (My(),n(v)) to tautological classes. To see this, let I'” be the stable graph obtained by gluing all graphs I,
into the vertices of I". Then we have a diagram

— — _
My —— MPF —— My,

| Ju

. REE A —
wee(f,)  TL, MPT === TT, Mg@)ne)

Yo

(118)

where the left square is Cartesian. The vertical maps in the diagram forget the extra log structure coming from the
edges E(T'). Correspondingly, the pullback of log classes under these vertical maps corresponds to multiplication by
HeeE(F) ®(x.), where z, € sPPl(ﬂ%tr) is the piecewise linear function associated to the edge e. Then the diagram
together with compatibility of log pushforwards and pullbacks shows that

&) [T mofowl = |15 T for [T @e [] i | € logR* (Myn). O

veV(T") veV (T") ecE(T") veV (T")
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