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§l. Nonsingular curves

Let C be a complete, nonsingular, irreducible curve of genus g > 2:
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The curve C has a complex structure which we can vary (while
keeping the topology fixed).



Riemann studied the moduli space M, of all genus g curves:

s

Riemann knew M, was (essentially) a complex manifold of
dimension 3g-3.
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Die 3p—3 ibrigen Verzweigungswerthe in
jenen Systemen gleichverzweigler pwerthiger Funclionen konnen daher be-
liebige Werthe annehmen; und es héngt also eine Klasse von Systemen gleich-
verzweigler 2p--1fach zusammenhangender Funclionen und die zu ibr gehi-
rende Klasse algebraischer Gleichungen von 3p—3 slelig verinderlichen Grofsen
ab, welche die Moduln dieser Klasse genannt werden sollen.
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Theorie der Abel’schen Functionen.
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liebige Werthe annehmen; und es héngt also eine Klasse von Systemen gleich-
verzweigler 2p--1fach zusammenhangender Funclionen und die zu ibr gehi-
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§ll. Stable curves

Let M, , be the moduli space of stable pointed curves:
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The boundary strata of the moduli M, , of fixed topological type
correspond to stable graphs.
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The boundary strata of the moduli M, , of fixed topological type
correspond to stable graphs.
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For a graph T, let [ € H*(M, », Q) denote the class of the
closure of the stratum (with a multplicity related to symmetries).




Formally, a stable graph is the structure
r=(V.E,Lg)

satisfying the following properties:
e V is the vertex set with a genus function g : V. — Zx,
e E is the edge set,
e L, the set of legs (corresponding to the set of markings),

the pair (V, E) defines a connected graph,

for each vertex v, the stability condition holds:
28(v) — 2+ 1(v) > 0,
where n(v) is the valence of I' at v including both edges and
legs.
The genus of a stable graph T is defined by:

g(N) = g(v) +h'().
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To each stable graph I', we associate the moduli space

Mr = [] My n(v)-

veV

There is a canonical morphism

&roMr— Mg, ErMr]=1.

Question: Are there relations in H*(M, ,, Q) among the [I'] ?



To each stable graph I', we associate the moduli space

Mr = [] My n(v)-

veV

There is a canonical morphism
EriMr = Mg, EnMr]=1r.
Question: Are there relations in H*(M, ,, Q) among the [I'] ?

The first boundary relation is almost trivial:
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Just an equivalence of two points in Mg = CP.
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First interesting relation was found in genus 1 by Getzler in 1996.
A relation in genus 2, found by Belorousski-P in 1998:
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in H4(m273, Q) .

Question: Is there any structure to these formulas?
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§I11. Pixton's relations on M, ,

We define classes RZ,A associated to the data
® g,n € Z>g in the stable range 2g —2+n >0,
e A=(a1,...,an), a€{0,1},
e d € Z>q satisfying d > LZ’LVQ’.

The elements R g.A are expressed as sums over stable graphs of
genus g with n Iegs Pixton's relations then take the form

_0 € sz( gna@)

Before writing the formula for Rg A @ few definitions are required.
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Let £; be the cotangent line at the i*" marking:

£, 5T
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M, > &)

We can define the cotangent line class
Vi = a(L;) € HA(Mgn, Q) .
Via the forgetful map 7 : ﬂg7n+1 — ﬂg’n, we define

Ri = 77*(1#;1111) S H2i(ﬂg,n7(@) .




2--' 3
m>0 ' '

2. ..
1+6m (6m)! (~T)™=1+84T — 3276072 .
Bi(T) = Z 1—6m(2m)!(3m)!

m>0




BT =2 (2n(1§'n(71)3!m)'(_7)m —1-60T 42772072 -,
0 ' !

. 1+6m (6m)! 2
B T - o m: - ...
o n;l—ﬁm(2m)!(3m)!( 7) 1+84T —32760T

These series control the original set of Faber-Zagier relations on
H*(Mg), but have origins much further back (in the asymptotic
expansion of the Airy function).



Bo(T) = %(—T)m =1-60T + 2772072 - - |
‘ 1(3m)!

. 1+6m (6m)! 2
B T - o m: - LECRE I
o n;l—ﬁm(2m)!(3m)!( 7) 1+84T —32760T

These series control the original set of Faber-Zagier relations on
H*(Mg), but have origins much further back (in the asymptotic
expansion of the Airy function).

For a survey of the occurances of By and Bj:
[Buryak, Janda, P. arXiv:1502.05150]



Let f(T) be a power series with vanishing constant and linear
terms,
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Let f(T) be a power series with vanishing constant and linear
terms,

F(T) e T2QT]] -

For each ﬂgy,,, we define

W(E) = 3 e (FWni2) - F(nim)) € H* (Mg, Q)

m>0
where 7, : ﬂg#ﬂrm — ﬂg,n is the forgetful map, and
wi € Hz(mg7n+m)

is the cotangent line class.

By the vanishing in degrees 0 and 1 of f, the sum is finite.



Let Gg , be the finite set of stable graphs of genus g with n legs
(up to isomorphism).



Let Gg , be the finite set of stable graphs of genus g with n legs
(up to isomorphism).

For each vertex v € V of a stable graph, we introduce an auxiliary
variable ¢, and impose the conditions

Cva/ = (vl (3 =1.

The variables {, will be responsible for keeping track of a local
parity condition at each vertex.
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corresponding to r € Gg p is a product of vertex, leg, and edge
factors:
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The formula for RdA is a sum over Gg ,. The summand
corresponding to r € Gg p is a product of vertex, leg, and edge
factors:

e ForveV, letr, =r(T—TB(¢T)).

eFor/cL,let By = gj&) Ba, (Cy(eyte), where v(() € V is the
vertex to which the leg is assigned.

e Fore e E, let
C/ + C// _ BQ(c/wl)C//Bl(CIIw//) _ C/Bl(CI¢I)BO(C”wH)
1/)/ _|’_ w//
= (60¢¢" — 84) + [32760(¢"y)" + ¢"") — 27720(¢"y" + ("Y)] -+,

A, =

where ¢’, (" are the (-variables assigned to the vertices adjacent to
the edge e and 1/, 1" are the 1)-classes corresponding to the
half-edges.



The numerator of A¢ is divisible by the denominator due to the
identity (discovered by Pixton)

Bo(T)Bl(—T) —+ BQ(—T)Bl(T) = 2.

Obviously A¢ is symmetric in the half-edges.



The numerator of A¢ is divisible by the denominator due to the
identity (discovered by Pixton)

Bo(T)Bl(—T) + BQ(—T)Bl(T) =2

Obviously A¢ is symmetric in the half-edges.

Definition (Pixton 2012)

Let A= (a,...,a,) € {0,1}". We denote by RS , € H*(M, ;)
the degree d component of the class

2 |Aut1( 2h1(F [ [H“VHBEHA} 45@)1],

reGy,

where the products are taken over all vertices, all legs, and all
edges of the graph I'.

v

The subscript ], C§(V)_1 indicates the coefficient of the monomial
I1, g§(v’*1 after the product inside the brackets is expanded.
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Theorem (P.-Pixton-Zvonkine 2013)

For2g —2+n >0, a; € {0,1}, and d > %Zlea, Pixton's
relations hold o
RIA=0 € H* (Mg, Q).

Proof uses the Givental-Teleman classification of higher genus
structures associated to the semi-simple Frobenius manifold A
(related to 3-spin curves).

A second proof of Pixton's relations in Chow has been found by
F. Janda using stable quotients / stable maps to CP.
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To define a cycle on ﬂgm, the degenerate curves must be
considered. The moduli space

mg(cpl7 y V)N

parameterizes stable relative maps to rubber with ramification
profiles pi, v.



To define a cycle on ﬂgm, the degenerate curves must be
considered. The moduli space

mg(cpl7 y V)N

parameterizes stable relative maps to rubber with ramification
profiles pi, v.
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There is a natural morphism
p: Mg(CPI, )~ — mgj(u)_;,_g(y)

forgetting everything except the marked domain curve.



There is a natural morphism
p: Mg(CPI, )~ — mgj(u)_;,_g(y)

forgetting everything except the marked domain curve.

The double ramification cycle is the push-forward of the
virtual fundamental class,

vir

DRgv = ps [Mg(CPW, V)N] € A8 (Mg o(uy+0(v)) -



There is a natural morphism
p: Mg(CPI, )~ — mgj(u)_;,_g(y)

forgetting everything except the marked domain curve.

The double ramification cycle is the push-forward of the
virtual fundamental class,

vir

DRgv = ps [Mg(CPW, V)N] € A8 (Mg o(uy+0(v)) -

Question [Eliashberg 2000]: Can we find a formula for DR, ,, ,,?
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Best to place ramification data in a vector

(ul, . .,,ug(#), U1y _Vé(z/)) .

For any vector A = (ai,...,a,) with >~ a; =0, we have
DRg7A S Ag(ﬂg7n) .

Pixton conjectured a beautiful formula for DR, 4 in 2014.
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§V. Pixton’s DR formula
Let A= (a1,...,a,) be double ramification data.

Let I' be a stable graph of genus g with n legs.
An admissible weighting is a function on the set of half-edges,

w:H(IN) — Z,

which satisfies:
(i) Yhi € L(T), w(h;) = aj,
(ii) Ve € E(I') consisting of the half-edges h(e), h'(e) € H(T),

w(h) + w(h) =0,

(iii) ¥v € V(I), Xy n=y w(h) = 0.
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A stable graph I may have infinitely many admissible weightings w.

Let r be a positive integer. An admissible weighting mod r of T is
a function,
w:H() —{0,...,r—1},

which satisfies (i-iii) above mod r.

For example, for (i), we require

w(h;) =a; mod r.

Let Wr , be the set of admissible weightings mod r of T
The set Wr, is finite.



Definition (Pixton 2014)

Let r be a positive integer. We denote by Pg’:\ € Ad(M, ) the
degree d component of the class

1 1 n
2. 2 TAut(n)] A0 o [T exe(a*en,)-
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e=(h,h")eV(I)




Definition (Pixton 2014)

Let r be a positive integer. We denote by Pg’:\ € Ad(M, ) the
degree d component of the class

1 1 n
2. 2 TAut(n)] A0 o [T exe(a*en,)-
rEGg,n WGWF,r i1
I1 1 — exp(—w(h)w(h)(Wp + Pw))
wh = wh’

e=(h,h")eV(I)

For fixed g, A, and d, the class
d,r <7
Pon € AY(Mq,n)

is polynomial in r for sufficiently large r.
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We denote by ngA the value at r = 0 of the polynomial,
Pg_A is the constant term.

Pixton conjectured in 2014 the following result:

Theorem (Janda-P.-Pixton-Zvonkine 2015)

DRg.a =278 P8 , € AS(Mp,) .

We use the Gromov-Witten theory of the target CP! with:

e orbifold BZ,-point at 0 € CP!,
e relative point co € CPL.

So the proof uses orbifold GW theory, relative GW theory, virtual
localization.
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§VI. Chern characters of the Verlinde bundle

Let G be a complex, simple, simply connected Lie group.
For genus g and n irreducible representations

K155 fn
of the Lie algebra g at level ¢, the Verlinde bundle
Eg(ll/]_7 ceey Mn) — ﬂg7n

is constructed via the theory of conformal blocks.

The fiber of the Verlinde bundle over [C, p1,. .., ps] € Mg, is the
space of non-abelian theta functions: global sections of
(determinant line)’ over the moduli of parabolic G-bundles on C.



The Verlinde formula calculates the rank
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which is the constant term of the Chern character

chEg(pi1,. .. ptn) € H (Mg,n) .



The Verlinde formula calculates the rank

rkEg(Mh .. .,,LL,,) = dg(,ulu .. .,,U,n)

which is the constant term of the Chern character

chEg(pi1,. .. ptn) € H (Mg,n) .

Question: Can we find a formula for chEg (11, ..., tn) ?



Full solution found [Marian-Oprea-P.-Pixton-Zvonkine] for all G
and /¢ using following geometric inputs

e the Chern character ch E defines CohFT,

e the genus 0 part is semisimple (the fusion algebra),

e the bundle Eg(s) is projectively flat over Mg p,

e c1(Eg(p)) is calculated over My , by [Tsuchimoto 1993]

together with the Givental-Teleman classification of semisimple
CohFTs.



Full solution found [Marian-Oprea-P.-Pixton-Zvonkine] for all G
and ¢ using following geometric inputs

e the Chern character ch E defines CohFT,

e the genus 0 part is semisimple (the fusion algebra),

e the bundle Eg(s) is projectively flat over Mg p,

e c1(Eg(p)) is calculated over My , by [Tsuchimoto 1993]

together with the Givental-Teleman classification of semisimple
CohFTs.

Example of our formula in the first non-trival case:

G=SL, and /=1.



Theorem (Marian-Oprea-P.-Pixton-Zvonkine 2014)
Let [ be the standard representation of SlLy. For { =1

chEg(D,...,0) =
g— hl(r)
=5 Z 2 [Hexp <¢h>
reGgen [Aut(T)]
10 1— exp(i(whwh/))]
e=(h,h)eV(T) Vi +vw

GEYe" js the set of stable graphs with even valence at every vertex
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Theorem (Marian-Oprea-P.-Pixton-Zvonkine 2014)
Let [ be the standard representation of SlLy. For { =1

chE.(0,...,0) =
A hi( r)
e 2 Z 2g [Hexp (11}17) .
reGgen [Aut(T)]
1— exp(§(¥n + w»]
e:(h,}/_)IGV(I') Yh+ i 7

GS¥S" s the set of stable graphs with even valence at every vertex
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The End



