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§I. Nonsingular curves

Let C be a complete, nonsingular, irreducible curve of genus g ≥ 2:

The curve C has a complex structure which we can vary (while
keeping the topology fixed).



Riemann studied the moduli space Mg of all genus g curves:

Riemann knew Mg was (essentially) a complex manifold of
dimension 3g-3.
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The boundary strata of the moduli Mg ,n of fixed topological type
correspond to stable graphs.

For a graph Γ, let [Γ] ∈ H∗(Mg ,n,Q) denote the class of the
closure of the stratum (with a multplicity related to symmetries).



The boundary strata of the moduli Mg ,n of fixed topological type
correspond to stable graphs.

For a graph Γ, let [Γ] ∈ H∗(Mg ,n,Q) denote the class of the
closure of the stratum (with a multplicity related to symmetries).



Formally, a stable graph is the structure

Γ = (V,E,L, g)

satisfying the following properties:

• V is the vertex set with a genus function g : V→ Z≥0,

• E is the edge set,

• L, the set of legs (corresponding to the set of markings),

• the pair (V,E) defines a connected graph,

• for each vertex v , the stability condition holds:

2g(v)− 2 + n(v) > 0,

where n(v) is the valence of Γ at v including both edges and
legs.

The genus of a stable graph Γ is defined by:

g(Γ) =
∑
v∈V

g(v) + h1(Γ).



To each stable graph Γ, we associate the moduli space

MΓ =
∏
v∈V
Mg(v),n(v).

There is a canonical morphism

ξΓ :MΓ →Mg ,n , ξΓ∗[MΓ] = [Γ] .

Question: Are there relations in H∗(Mg ,n,Q) among the [Γ] ?

The first boundary relation is almost trivial:

Just an equivalence of two points in M0,4 = CP1.



To each stable graph Γ, we associate the moduli space

MΓ =
∏
v∈V
Mg(v),n(v).

There is a canonical morphism

ξΓ :MΓ →Mg ,n , ξΓ∗[MΓ] = [Γ] .

Question: Are there relations in H∗(Mg ,n,Q) among the [Γ] ?

The first boundary relation is almost trivial:

Just an equivalence of two points in M0,4 = CP1.



First interesting relation was found in genus 1 by Getzler in 1996.

A relation in genus 2, found by Belorousski-P in 1998:

in H4(M2,3,Q) .

Question: Is there any structure to these formulas?
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§III. Pixton’s relations on Mg ,n

We define classes Rd
g ,A associated to the data

• g , n ∈ Z≥0 in the stable range 2g − 2 + n > 0,

• A = (a1, . . ., an), ai ∈ {0, 1},

• d ∈ Z≥0 satisfying d >
g−1+

∑n
i=1 ai

3 .

The elements Rd
g ,A are expressed as sums over stable graphs of

genus g with n legs. Pixton’s relations then take the form

Rd
g ,A = 0 ∈ H2d(Mg ,n,Q) .

Before writing the formula for Rd
g ,A, a few definitions are required.



§III. Pixton’s relations on Mg ,n

We define classes Rd
g ,A associated to the data

• g , n ∈ Z≥0 in the stable range 2g − 2 + n > 0,

• A = (a1, . . ., an), ai ∈ {0, 1},

• d ∈ Z≥0 satisfying d >
g−1+

∑n
i=1 ai

3 .

The elements Rd
g ,A are expressed as sums over stable graphs of

genus g with n legs. Pixton’s relations then take the form

Rd
g ,A = 0 ∈ H2d(Mg ,n,Q) .

Before writing the formula for Rd
g ,A, a few definitions are required.



§III. Pixton’s relations on Mg ,n

We define classes Rd
g ,A associated to the data

• g , n ∈ Z≥0 in the stable range 2g − 2 + n > 0,

• A = (a1, . . ., an), ai ∈ {0, 1},

• d ∈ Z≥0 satisfying d >
g−1+

∑n
i=1 ai

3 .

The elements Rd
g ,A are expressed as sums over stable graphs of

genus g with n legs. Pixton’s relations then take the form

Rd
g ,A = 0 ∈ H2d(Mg ,n,Q) .

Before writing the formula for Rd
g ,A, a few definitions are required.



Let Li be the cotangent line at the i th marking:

We can define the cotangent line class

ψi = c1(Li ) ∈ H2(Mg ,n,Q) .

Via the forgetful map π :Mg ,n+1 →Mg ,n, we define

κi = π∗(ψ
i+1
n+1) ∈ H2i (Mg ,n,Q) .
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B0(T ) =
∑
m≥0

(6m)!

(2m)!(3m)!
(−T )m = 1− 60T + 27720T 2 · · · ,

B1(T ) =
∑
m≥0

1 + 6m

1− 6m

(6m)!

(2m)!(3m)!
(−T )m = 1 + 84T − 32760T 2 · · · .

These series control the original set of Faber-Zagier relations on
H∗(Mg ), but have origins much further back (in the asymptotic
expansion of the Airy function).

For a survey of the occurances of B0 and B1:

[Buryak, Janda, P. arXiv:1502.05150]
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Let f (T ) be a power series with vanishing constant and linear
terms,

f (T ) ∈ T 2Q[[T ]] .

For each Mg ,n, we define

κ(f ) =
∑
m≥0

1

m!
πm∗

(
f (ψn+1) · · · f (ψn+m)

)
∈ H∗(Mg ,n,Q),

where πm :Mg ,n+m →Mg ,n is the forgetful map, and

ψi ∈ H2(Mg ,n+m)

is the cotangent line class.

By the vanishing in degrees 0 and 1 of f , the sum is finite.
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Let Gg ,n be the finite set of stable graphs of genus g with n legs
(up to isomorphism).

For each vertex v ∈ V of a stable graph, we introduce an auxiliary
variable ζv and impose the conditions

ζvζv ′ = ζv ′ζv , ζ2
v = 1 .

The variables ζv will be responsible for keeping track of a local
parity condition at each vertex.
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The formula for Rd
g ,A is a sum over Gg ,n. The summand

corresponding to Γ ∈ Gg ,n is a product of vertex, leg, and edge
factors:

• For v ∈ V , let κv = κ
(
T − TB0(ζvT )

)
.

• For ` ∈ L, let B` = ζa`v(`)Ba`

(
ζv(`)ψ`

)
, where v(`) ∈ V is the

vertex to which the leg is assigned.

• For e ∈ E, let

∆e =
ζ ′ + ζ ′′ − B0(ζ ′ψ′)ζ ′′B1(ζ ′′ψ′′)− ζ ′B1(ζ ′ψ′)B0(ζ ′′ψ′′)

ψ′ + ψ′′

= (60ζ ′ζ ′′ − 84) +
[
32760(ζ ′ψ′ + ζ ′′ψ′′)− 27720(ζ ′ψ′′ + ζ ′′ψ′)

]
· · · ,

where ζ ′, ζ ′′ are the ζ-variables assigned to the vertices adjacent to
the edge e and ψ′, ψ′′ are the ψ-classes corresponding to the
half-edges.
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The numerator of ∆e is divisible by the denominator due to the
identity (discovered by Pixton)

B0(T )B1(−T ) + B0(−T )B1(T ) = 2.

Obviously ∆e is symmetric in the half-edges.

Definition (Pixton 2012)

Let A = (a1, . . . , an) ∈ {0, 1}n. We denote by Rd
g ,A ∈ H2d(Mg ,n)

the degree d component of the class∑
Γ∈Gg,n

1

|Aut(Γ)|
1

2h1(Γ)

[
Γ,
[∏

κv
∏

B`
∏

∆e

]∏
v ζ

g(v)−1
v

]
,

where the products are taken over all vertices, all legs, and all
edges of the graph Γ.

The subscript
∏

v ζ
g(v)−1
v indicates the coefficient of the monomial∏

v ζ
g(v)−1
v after the product inside the brackets is expanded.



The numerator of ∆e is divisible by the denominator due to the
identity (discovered by Pixton)

B0(T )B1(−T ) + B0(−T )B1(T ) = 2.

Obviously ∆e is symmetric in the half-edges.

Definition (Pixton 2012)

Let A = (a1, . . . , an) ∈ {0, 1}n. We denote by Rd
g ,A ∈ H2d(Mg ,n)

the degree d component of the class∑
Γ∈Gg,n

1

|Aut(Γ)|
1

2h1(Γ)

[
Γ,
[∏

κv
∏

B`
∏

∆e

]∏
v ζ

g(v)−1
v

]
,

where the products are taken over all vertices, all legs, and all
edges of the graph Γ.

The subscript
∏

v ζ
g(v)−1
v indicates the coefficient of the monomial∏

v ζ
g(v)−1
v after the product inside the brackets is expanded.



Theorem (P.-Pixton-Zvonkine 2013)

For 2g − 2 + n > 0, ai ∈ {0, 1}, and d >
g−1+

∑n
i=1 ai

3 , Pixton’s
relations hold

Rd
g ,A = 0 ∈ H2d(Mg ,n,Q) .

Proof uses the Givental-Teleman classification of higher genus
structures associated to the semi-simple Frobenius manifold A2

(related to 3-spin curves).

A second proof of Pixton’s relations in Chow has been found by
F. Janda using stable quotients / stable maps to CP1.
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∑
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There is a natural morphism

ρ :Mg (CP1, µ, ν)∼ →Mg ,`(µ)+`(ν)

forgetting everything except the marked domain curve.

The double ramification cycle is the push-forward of the
virtual fundamental class,

DRg ,µ,ν = ρ∗

[
Mg (CP1, µ, ν)∼

]vir
∈ Ag (Mg ,`(µ)+`(ν)) .

Question [Eliashberg 2000]: Can we find a formula for DRg ,µ,ν?



There is a natural morphism

ρ :Mg (CP1, µ, ν)∼ →Mg ,`(µ)+`(ν)

forgetting everything except the marked domain curve.

The double ramification cycle is the push-forward of the
virtual fundamental class,

DRg ,µ,ν = ρ∗

[
Mg (CP1, µ, ν)∼

]vir
∈ Ag (Mg ,`(µ)+`(ν)) .

Question [Eliashberg 2000]: Can we find a formula for DRg ,µ,ν?



There is a natural morphism

ρ :Mg (CP1, µ, ν)∼ →Mg ,`(µ)+`(ν)

forgetting everything except the marked domain curve.

The double ramification cycle is the push-forward of the
virtual fundamental class,

DRg ,µ,ν = ρ∗

[
Mg (CP1, µ, ν)∼

]vir
∈ Ag (Mg ,`(µ)+`(ν)) .

Question [Eliashberg 2000]: Can we find a formula for DRg ,µ,ν?



Best to place ramification data in a vector

(µ1, . . ., µ`(µ),−ν1, . . .,−ν`(ν)) .

For any vector A = (a1, . . . , an) with
∑

i ai = 0, we have

DRg ,A ∈ Ag (Mg ,n) .

Pixton conjectured a beautiful formula for DRg ,A in 2014.
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§V. Pixton’s DR formula

Let A = (a1, . . ., an) be double ramification data.

Let Γ be a stable graph of genus g with n legs.
An admissible weighting is a function on the set of half-edges,

w : H(Γ)→ Z,

which satisfies:

(i) ∀hi ∈ L(Γ), w(hi ) = ai ,

(ii) ∀e ∈ E(Γ) consisting of the half-edges h(e), h′(e) ∈ H(Γ),

w(h) + w(h′) = 0 ,

(iii) ∀v ∈ V(Γ),
∑

v(h)=v w(h) = 0.
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A stable graph Γ may have infinitely many admissible weightings w .

Let r be a positive integer. An admissible weighting mod r of Γ is
a function,

w : H(Γ)→ {0, . . ., r − 1},

which satisfies (i-iii) above mod r .

For example, for (i), we require

w(hi ) = ai mod r .

Let WΓ,r be the set of admissible weightings mod r of Γ.

The set WΓ,r is finite.
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Let WΓ,r be the set of admissible weightings mod r of Γ.

The set WΓ,r is finite.



Definition (Pixton 2014)

Let r be a positive integer. We denote by Pd ,r
g ,A ∈ Ad(Mg ,n) the

degree d component of the class

∑
Γ∈Gg,n

∑
w∈WΓ,r

1

|Aut(Γ)|
1

rh1(Γ)
ξΓ∗

[
n∏

i=1

exp(ai
2ψhi )·

∏
e=(h,h′)∈V(Γ)

1− exp(−w(h)w(h′)(ψh + ψh′))

ψh + ψh′

]
.

For fixed g , A, and d , the class

Pd ,r
g ,A ∈ Ad(Mg ,n)

is polynomial in r for sufficiently large r .
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We denote by Pd
g ,A the value at r = 0 of the polynomial,

Pd
g ,A is the constant term.

Pixton conjectured in 2014 the following result:

Theorem (Janda-P.-Pixton-Zvonkine 2015)

DRg ,A = 2−g Pg
g ,A ∈ Ag (Mg ,n) .

We use the Gromov-Witten theory of the target CP1 with:

• orbifold BZr -point at 0 ∈ CP1,

• relative point ∞ ∈ CP1.

So the proof uses orbifold GW theory, relative GW theory, virtual
localization.
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§VI. Chern characters of the Verlinde bundle

Let G be a complex, simple, simply connected Lie group.
For genus g and n irreducible representations

µ1, . . ., µn

of the Lie algebra ĝ at level `, the Verlinde bundle

Eg (µ1, . . ., µn)→Mg ,n

is constructed via the theory of conformal blocks.

The fiber of the Verlinde bundle over [C , p1, . . ., pn] ∈Mg ,n is the
space of non-abelian theta functions: global sections of
(determinant line)` over the moduli of parabolic G -bundles on C .
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The Verlinde formula calculates the rank

rkEg (µ1, . . ., µn) = dg (µ1, . . ., µn)

which is the constant term of the Chern character

chEg (µ1, . . ., µn) ∈ H∗(Mg ,n) .

Question: Can we find a formula for chEg (µ1, . . ., µn) ?
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Full solution found [Marian-Oprea-P.-Pixton-Zvonkine] for all G
and ` using following geometric inputs

• the Chern character ch E defines CohFT,

• the genus 0 part is semisimple (the fusion algebra),

• the bundle Eg (µ) is projectively flat over Mg ,n,

• c1(Eg (µ)) is calculated over Mg ,n by [Tsuchimoto 1993]

together with the Givental-Teleman classification of semisimple
CohFTs.

Example of our formula in the first non-trival case:

G = SL2 and ` = 1 .
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Theorem (Marian-Oprea-P.-Pixton-Zvonkine 2014)

Let � be the standard representation of SL2. For ` = 1,

chEg (�, . . .,�) =

e−
λ
2

∑
Γ∈Geven

g,n

2g−h
1(Γ)

|Aut(Γ)|
ξΓ∗

[
n∏

i=1

exp

(
ψhi

4

)
·

∏
e=(h,h′)∈V(Γ)

1− exp( 1
4 (ψh + ψh′))

ψh + ψh′

]
,

Geven
g ,n is the set of stable graphs with even valence at every vertex.
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The End


