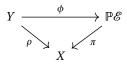
The symmetric power is a projective bundle over the Jacobian for n > 2g - 2

Xianyu Hu, Adam Dauser

DEFINITION 1. A **projective bundle** of dimension *r* over a scheme *X* is a map π : $Y \to X$ such that for any point $p \in X$ there exists an open neighborhood $U \subset X$ of *p* in *X* with $Y \times_X U \simeq U \times \mathbb{P}^r$ as *U*-schemes, which agree on overlaps.

PROPOSITION 1 (Universal property of Proj). Given a vector bundle \mathscr{E} on a scheme X, $Proj(Sym \mathscr{E}^{\vee}) \rightarrow X$ is a projective bundle called the **projectivization of** \mathscr{E} . Commutative diagrams of maps of schemes of the form:



are in natural 1 : 1 correspondence with with subbundles $\mathcal{L} \subset \rho^* \mathcal{E}$ which are linebundles.

Note that the points of $\mathbb{P}\mathscr{E}$ correspond to pairs (x,ξ) with $x \in X$ and $\xi \subset \mathscr{E}_x$ onedimensional subspaces of the fiber. So the bundle $\pi^*\mathscr{E}$ comes equipped with a **tautological subbundle of rank 1** $\mathscr{O}_{\mathbb{P}\mathscr{E}}(-1)$ whose fiber at a point (x,ξ) is ξ . On trivialisations, it becomes the pullback of $\mathscr{O}_{\mathbb{P}^r}(-1)$ along $Y \times_X U \simeq U \times \mathbb{P}^r$. We get a surjection $\pi^*\mathscr{E}^{\vee} \to \mathscr{O}_{\mathbb{P}\mathscr{E}}(1) := \mathscr{O}_{\mathbb{P}\mathscr{E}}(-1)^{\vee}$.

We will also need two lemmas of sheaf cohomology to prove our statement.

THEOREM 1 (Base change). Let $\pi : X \to Y$ be a projective morphism of varieties and \mathscr{F} a coherent sheaf on X flat over Y. If the dimension of $H^0(\mathscr{F}|_{\pi^{-1}(b)})$ is independent on the closed point $b \in B$, then $\pi_*\mathscr{F}$ is a vector bundle of rank dim_C $H^0(\mathscr{F}|_{\pi^{-1}(b)})$.

THEOREM 2 (Proper base change). Given a proper morphism of schemes $f : X \to Y$ and coherent sheaf \mathscr{F} flat over Y, then $\chi(X_{\nu}, \mathscr{F}_{\nu})$ is locally constant.

THEOREM 3. Given a smooth morphism of projective schemes $\pi : Y \to X$ whose fibers are all isomorphic to \mathbb{P}^r and there exists a Cartier divisor $D \subset Y$ intersecting a general fiber $Y_x \simeq \mathbb{P}^r$ of π in a hyperplane. Then $Y \simeq \mathbb{P}\pi_* \mathscr{O}_Y(D)$ as X-schemes.

PROOF. Note that it follows that π is also projective and thus our base-change theorems become applicable. By 2, the Euler characteristic of a sheaf in a flat family is constant, the restriction to any fiber, $\chi(\mathscr{O}_Y(D)_X) = \chi(\mathscr{O}_{\mathbb{P}^r}(1))$. Any line bundle on \mathbb{P}^r is isomorphic to $\mathscr{O}_{\mathbb{P}^r}(m)$ for some $m \in \mathbb{Z}$, $\chi(\mathscr{O}_{\mathbb{P}^r}(m)) = \binom{m+n}{n}$, so the Euler characteristic is a complete invariant. It follows, that $\mathscr{O}_Y(D)_X \simeq \mathscr{O}_{\mathbb{P}^r}(1)$ for any point. It follows by theorem 1, that $\mathscr{E} = \pi_* \mathscr{O}_Y(D)$ is a vector bundle with fiber $H^0(\mathscr{O}_{\mathbb{P}^r}(1))$ at p.

Defining a morphism $\alpha : Y \to \mathbb{P}\mathscr{E}$ is by the universal property 1 equivalent to giving a line bundle that is a subbundle of $\pi^*\mathscr{E}$.

XIANYU HU, ADAM DAUSER

By adjunction, we get a map $\beta : \pi^* \pi_* \mathcal{O}_Y(D) \to \mathcal{O}_Y(D)$. We can check that β is surjective on stalks; restricted to a fiber, by the discussion before, this becomes the surjection $\mathscr{E}_p \otimes \mathscr{O}_{\mathbb{P}\mathscr{E}_p} \to \mathscr{O}_{\mathbb{P}(\mathscr{E}_p)}(1)$. We define α as the corresponding morphism to the dual of β .

Now we need to show α is an isomorphism. We show it is a set-theoretic isomorphism and étale. We have $\mathscr{L}_{\pi^{-1}(p)} \simeq \mathscr{O}_{\mathbb{P}^r}(1)$. So the map α is an isomorphism as it restricts to the map $\pi^{-1}(p) \simeq \mathbb{P}^r \simeq \mathbb{P}^r$ given by the complete linear series $|\mathscr{O}_{\mathbb{P}^r}(1)|$.

To show it is étale, we only need to show that it induces an isomorphism on completions. By smoothness, the completions of the stalks on both sides are isomorphic to $\widehat{\mathcal{O}_{X,x}}[z_1, ..., z_n]$. Since α commutes with the projections, it induced the identity modulo the maximal ideal. Hence it gives an isomorphism and the proposition follows.

THEOREM 4. For a smooth projective curve of genus g, given a point $x_0 \in C$ and number n > 2g - 2. Then the Abel-Jacobi map $\pi := AJ(\sigma - nx_0) : Sym^{(n)}C \rightarrow Jac(C)$ exhibits the symmetric power as a projective bundle over Jac(C).

PROOF. We seek to apply 3 to show it is a projective bundle.

First, we compute the fibers. From the lecture, we know that $\pi^{-1}(\mathcal{L}) = |\mathcal{L}|$, with Riemann-Roch and Serre Duality;

$$\begin{split} H^0(C,\mathcal{O}(p_1+\ldots+p_n)) - H^0(C,K(-p_1-\ldots-p_n)) &= \deg(\mathcal{O}(p_1+\ldots+p_n)) - g + 1 = d-g+1 \\ \text{Furthermore} \ \deg(K(-p_1-\ldots-p_n)) &= 2g-2-n < 0, \text{ so } H^0(C,K(-p_1-\ldots-p_n)) = 0. \text{ Now } \\ H^0(C,\mathcal{O}(p_1+\ldots+p_n)) &= n-g+1. \ |\mathcal{L}| = \mathbb{P}^{d-g}. \end{split}$$

Now we have to find a suitable Cartier divisor. Take D the divisor consisting of effective divisors containing x_0 . Thus D This intersects each fiber in a hyperplane automatically.

We conclude $Sym^{(n)}C \simeq \mathbb{P}\pi_*\mathcal{O}_{Sym^{(n)}C}(D)$.