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VIRTUAL CLASSES, INTEGRALS, EULER CHARACTERISTICS
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Abstract. We compute tautological integrals over Quot schemes on curves and sur-
faces. After obtaining several explicit formulas over Quot schemes of dimension 0
quotients on curves (and finding a new symmetry), we apply the results to tautological
integrals against the virtual fundamental classes of Quot schemes of dimension 0 and
1 quotients on surfaces (using also universality, torus localization, and cosection local-
ization). The virtual Euler characteristics of Quot schemes of surfaces, a new theory
parallel to the Vafa-Witten Euler characteristics of the moduli of bundles, is defined
and studied. Complete formulas for the virtual Euler characteristics are found in the
case of dimension 0 quotients on surfaces. Dimension 1 quotients are studied on K3
surfaces and surfaces of general type with connections to the Kawai-Yoshioka formula
and the Seiberg-Witten invariants respectively. The dimension 1 theory is completely
solved for minimal surfaces of general type admitting a nonsingular canonical curve.
Along the way, we find a new connection between weighted tree counting and multi-
variate Fuss-Catalan numbers which is of independent interest.
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1. Introduction

1.1. Overview. The main goal of the paper is to study the virtual fundamental classes

of Quot schemes of surfaces. The parallel study for 3-folds was undertaken in [37, 38]

and led to the MacMahon function for Hilbert schemes of points and the GW/DT corre-

spondence for Hilbert schemes of curves. For the surface case, we use several techniques:

the universality results of [8], C?-equivariant localization of the virtual class [17], and
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2 D. OPREA AND R. PANDHARIPANDE

cosection localization [20]. However, the most important input to the surface theory

concerns the parallel study of Quot schemes of curves of quotients with dimension 0

support, which we develop first. By applying the curve results to the surface theory,

we prove several basic results about the virtual fundamental classes of Quot schemes of

quotients with supports of dimension 0 and 1 on surfaces. The subject is full of open

questions.

1.2. Curves. Let C be a nonsingular projective curve. Let QuotC(CN , n) parameterize

short exact sequences

0→ S → CN ⊗OC → Q→ 0 ,

where Q is a rank 0 sheaf on C with

χ(Q) = n .

The scheme QuotC(CN , n) was viewed in [33] as the stable quotient compactification of

degree n maps to the point, where the point is the degenerate Grassmannian G(N,N).

By analyzing the Zariski tangent space, QuotC(CN , n) is easily seen to be a nonsingular

projective variety of dimension Nn, see [33, Section 4.7].

For a vector bundle V → C of rank r, the assignment

Q 7→ H0(C, V ⊗Q)

for [CN ⊗OC → Q] ∈ QuotC(CN , n) defines a tautological vector bundle

V [n] → QuotC(CN , n)

of rank rn. The construction descends to K-theory via locally free resolutions. We define

generating series of Segre1 classes on Quot schemes of curves as follows.

Definition 1. Let α1, . . . , α` be K-theory classes on C. Let

ZC,N (q, x1, . . . , x` |α1, . . . , α`) =
∞∑
n=0

qn
∫
QuotC(CN ,n)

sx1(α
[n]
1 ) · · · sx`(α

[n]
` ) .

Since the integrals in Definition 1 depend upon C only through the genus g of the

curve, we will often write

Zg,N (q, x1, . . . , x` |α1, . . . , α`) = ZC,N (q, x1, . . . , x` |α1, . . . , α`) .

By the arguments of [8], there exists a factorization

(1) Zg,N (q, x1, . . . , x` |α1, . . . , α`) = A
c1(α1)
1 · · ·Ac1(α`)

` · B1−g,

1For a vector bundle V on a scheme X, we write

st(V ) = 1 + ts1(V ) + t2s2(V ) + . . .

for the total Segre class.
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for universal series

(2) A1 , . . . , A` , B ∈ Q[[q, x1, . . . , x`]]

which do not depend on the genus g or the degrees c1(αi). However, the series (2) do

depend on the ranks

r = (r1, . . . , r`) , ri = rank αi

and N . The complete notation for the series (2) is

(3) A1,r,N , . . . , A`,r,N , Br,N ∈ Q[[q, x1, . . . , x`]] ,

but we will often use the abbreviated notation (2) with the ranks ri and N suppressed.

Question 2. Find closed-form expressions for the series Ai,r,N and Br,N .

Integrals over Quot schemes of curves were also studied in [32] via equivariant lo-

calization. In particular, formulas of Vafa-Intriligator [2, 18, 49] were recovered and

extended.

1.3. Symmetric products (N = 1). For curves, the symmetric product C [n] is the

Quot scheme in the N = 1 case,

C [n] = QuotC(C1, n) .

We give a complete answer to Question 2 for N = 1. The result will later play an

important role in our study of Quot schemes of surfaces.

Theorem 3. Let α1, . . . , α` have ranks r1, . . . , r`, and let N = 1. Then

Zg,1(q, x1, . . . , x` |α1, . . . , α`) = A1(q) c1(α1) · · ·A`(q) c1(α`) · B(q)1−g ,

where, for the change of variables

(4) q = t(1− x1t)
r1 · · · (1− x`t)r` ,

we set

Ai(q) = 1− xi · t , B(q) =
(q
t

)2
· dt
dq
.

To compute the series2 Ai(q) and B(q), the change of variables (4) must be inverted

to write t as a function of q with x1, . . . , x` viewed as parameters. By Theorem 3, the

series Zg,1(q, x1, . . . , x` |α1, . . . , α`) is a function in q which is algebraic over the field

Q(x1, . . . , x`).

2For Theorem 3, the complete notation is Ai = Ai,r,1 and B = Br,1.
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Remark 4. Specializing to the case ` = 1, x1 = 1, and r1 = r, and letting V → C be a

rank r vector bundle, we recover the result of [36]:

(5)
∞∑
n=0

qn
∫
C[n]

sn(V [n]) = exp
(
c1(V ) · Â(q) + (1− g) · B̂(q)

)
for the series

Â(t(1− t)r) = log(1− t) ,(6)

B̂(t(1− t)r) = (r + 1) log(1− t)− log(1− t(r + 1)) .

These expressions confirmed and expanded predictions of [57]. The r = 1 case is related

to the counts of secants to projectively embedded curves [6, 24].

Remark 5. To go beyond numerical invariants, we consider a flat family

π : C → S

of nonsingular projective curves with line bundles L1, . . . , L` → C. We write

π[n] : C [n] → S

for the relative symmetric product. A more difficult question concerns the calculation of

the push-forwards
∞∑
n=0

qnπ
[n]
?

(
sx1(L

[n]
1 ) · · · sx`(L

[n]
` )
)
∈ A?(S)

in terms of the classes

κ[a1, . . . , a`, b] = π?

(
c1(L1)a1 · · · c1(L`)

a` · c1(ωπ)b
)
∈ A?(S) .

When π is the universal family over the moduli space of curves, such constructions play

a role in the study of tautological classes [41, 42].

1.4. Higher N (for ` = 1). Our second result concerns the case of arbitrary N , but we

assume ` = 1. The corresponding series is

Zg,N (q |V ) =

∞∑
n=0

qn
∫
QuotC(CN ,n)

s(V [n]) ,

where V → C is a rank r vector bundle.

Theorem 6. The universal Segre series is

Zg,N (q |V ) = A(q)c1(V ) · B(q)1−g ,

where

logA(q) =
∞∑
n=1

(−1)(N+1)n+1

(
(r +N)n− 1

Nn− 1

)
· q

n

n
.
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Remark 7. In case N = 1, Theorem 6 is a special case of Theorem 3. The agreement

of the formulas follows from the identity

− log(1− t) =
∞∑
n=1

(
(r + 1)n− 1

n− 1

)
· q

n

n
for q = t(1− t)r

which will be proven in Lemma 33 below.

Theorem 6 identifies the ` = 1 series A = A1,r,N , but does not specify the series

B = Br,N . However, for rank r = 1, closed-form expressions for the A and B-series are

determined by the following result.

Theorem 8. For rank V = 1, after the change of variables

q = (−1)N t(1 + t)N

we have

A1,1,N (q) = (1 + t)N and B1,N (q) =
(1 + t)N+1

1 + t(N + 1)
.

We also write an explicit power series expansion for the B-series parallel to Theorem 6.

Corollary 9. For rank V = 1, we have

B1,N (q) =

∞∑
n=0

(−1)n(N+1) ·
(

(n− 1)(N + 1)

n

)
· qn.

By comparing the expressions of Theorem 8 with those of equation (6), we obtain the

following new symmetry exchanging N and the rank.

Corollary 10. For any line bundle L→ C, we have∫
QuotC(CN ,n)

s(L[n]) = (−1)n(N−1)

∫
C[n]

s(L[n])N .

In particular, for C = P1, we have∫
Quot P1 (CN ,n)

s(L[n]) = (−1)Nn
(
N degL−N(n− 1)

n

)
.

1.5. Catalan numbers. By specializing Theorem 3 to the case of an elliptic curve C

and using Wick expansion techniques, we are led to a combinatorial identity for Catalan

numbers which appears to be new.3

The mth Catalan number

Cm =
1

m+ 1

(
2m

m

)
3There are many realizations of the Catalan numbers! But we have asked several experts and ours

does not appear to be in the literature. If you know a reference, please tell us.
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is well-known to count unlabelled ordered trees with m+1 vertices [50]. The multivariate

Fuss-Catalan numbers were introduced and studied in [1]. A special case of the definition

is used here. For non-negative integers p1, . . . , pk, the multivariate Fuss-Catalan number

of interest to us is

C(p1, . . . , pk) =
1

p1 + . . .+ pk + 1

(
2p1 + p2 + . . .+ pk

p1

)
· · ·
(
p1 + p2 + . . .+ 2pk

pk

)
.

The case k = 1 corresponds to the usual Catalan number C(m) = Cm. The multivariate

Fuss-Catalan numbers were shown to count certain k-Dyck paths or, alternatively, k-

nary trees, and also arise in connection with algebras of B-quasisymmetric polynomials

[1].

We interpret the Catalan and multivariate Fuss-Catalan numbers as a weighted count

of trees. Let non-negative integers p1, . . . , pk be given. Let

n = p1 + . . .+ pk + 1 .

A labelled k-colored tree of type (p1, . . . , pk) is a tree T with

• n vertices labelled {1, 2, . . . , n},
• n − 1 edges each painted with one of the k different colors such that exactly pj

edges are painted with the jth color.

For each vertex v, we write

d1
v, . . . , d

k
v

for the out-degrees4 of v corresponding to each of the k colors. More precisely, djv counts

edges e incident to v, of color j, such that e connects v to a vertex w satisfying

v > w .

We define the weight of T as the product

wt(T ) =
1

(n− 1)!

∏
v vertex

d1
v! · · · dkv ! .

Theorem 11. The Fuss-Catalan number is the weighted count of ordered k-colored trees

of type (p1, . . . , pk):

C(p1, . . . , pk) =
∑
T

wt(T ) .

Example 12. Let us now specialize to the single color (k = 1) case with m = p1 and

n = m+ 1. The weights then take the form:

wt(T ) =
1

m!

∏
v vertex

dv! =

(
m

d1, . . . , dn

)−1

,

4The term out-degree comes from regarding T as an oriented graph with each edge oriented in the
direction of decreasing vertex label.
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where for each v, dv denotes the out-degree of v. We then obtain the standard mth

Catalan number as a weighted count of labelled trees with m+ 1 vertices:

(7) C(m) =
∑
T

wt(T ) .

The result (7) should perhaps be compared with the realization of C(m) as the unweighted

count of unlabelled ordered trees with m+1 vertices (see [50] for instance). The following

diagram shows the two counts for C(2):

– weighted count

1 2 3 3 1 2 1 3 2

– unweighted count

In the first count, the weights are 1
2 ,

1
2 and 1 respectively and

C(2) =
1

2
+

1

2
+ 1.

1.6. Surfaces: dimension 0 quotients. We can apply the above results for curves to

the calculation of tautological integrals over Quot schemes of dimension 0 quotients of

nonsingular projective surfaces X.

The Quot scheme QuotX(CN , n) of short exact sequences

0→ S → CN ⊗OX → Q→ 0, χ(Q) = n , c1(Q) = 0 , rank(Q) = 0

is known [9, 29] to be irreducible of dimension n(N + 1), but may be singular.5 Since

the higher obstructions for the standard deformation theory lie in

(8) Ext2(S,Q) = Ext0(Q,S ⊗KX)∨ = 0,

the Quot scheme carries a 2-term perfect obstruction theory and a virtual fundamental

cycle of dimension

Ext0(S,Q)− Ext1(S,Q) = χ(S,Q) = Nn .

5An example is given in Section 4 below.
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Question 13. Evaluate the integrals

ZX,N (q, x1, . . . , x` |α1, . . . , α`) =

∞∑
n=0

qn
∫

[QuotX(CN ,n)]vir
sx1(α

[n]
1 ) · · · sx`(α

[n]
` )

where α1, . . . , α` are K-theory classes on X.

By our next result, the surface series of Question 13 are obtained from the parallel

curves series of Question 2. The relationship is not unlike the localization result for the

Gromov-Witten theory of surfaces of general type with respect to a canonical divisor

[20, 25, 39].

Theorem 14. Let the ranks of the classes α1, . . . , α` be given by r = (r1, . . . , r`). Let

the series A1,r,N , . . . ,A`,r,N ,Br,N be defined by the curve integrals (1). Then, we have

ZX,N (q, x1, . . . , x` |α1, . . . , α`) =

A1,r,N (−q)c1(αi)·KX · · ·A`,r,N (−q)c1(α`)·KX ·Br,N (−q)−K2
X .

In case X is a surface of general type with a nonsingular canonical divisor

C ⊂ X ,

then c1(αi) ·KX is the degree of the restriction of αi to C and

−K2
X = 1− genus(C)

by adjunction. We may therefore write Theorem 14 as

ZX,N (q, x1, . . . , x` |α1, . . . , α`) = Zg(C),N

(
−q, x1, . . . , x`

∣∣∣α1|C , . . . , α`|C
)
.

However, Theorem 14 holds for all X (even if X is not of general type).

For N = 1, Theorems 3 and 14 together yield a complete answer for the virtual Segre

integrals over the Hilbert scheme of points,

X [n] = QuotX(C1, n) .

Corollary 15. Let X be a nonsingular projective surface. Then
∞∑
n=0

qn
∫
[X[n]]

vir
sx1(α

[n]
1 ) · · · sx`(α

[n]
` ) = A1(q)c1(α1)·KX · · ·A`(q)c1(α`)·KX · B(q)−K

2
X

where, for the change of variable

q = −t(1− x1t)
r1 · · · (1− xrt)r` ,

we set

Ai(q) = 1− xi · t , B(q) = −
(q
t

)2
· dt
dq
.

Similarly, for higher N , Theorems 8 and 14 yield the following evaluation.
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Corollary 16. Let L→ X be a line bundle on a nonsingular projective surface. Then

∞∑
n=0

qn
∫

[QuotX(CN ,n)]vir
s(L[n]) = A(q)c1(L)·KX · B(q)−K

2
X

where, for the change of variables

q = (−1)N+1 t (1 + t)N ,

we set

A(q) = (1 + t)N , B(q) =
(1 + t)N+1

1 + (N + 1)t
.

Remark 17. Question 13 is well-posed for integrals against the actual fundamental

class of dimension n(N + 1) of QuotX(CN , n) instead of the virtual fundamental class

of dimension nN . The calculation for the actual fundamental class is more complicated.

The N = 1 case is by far the most studied. Then, the series

ZX(q, x1, . . . , x` |α1, . . . , α`) =

∞∑
n=0

qn
∫
X[n]

sx1(α
[n]
1 ) · · · sxr(α

[n]
` )

are generalizations of the Segre integrals considered by Lehn [26]. In fact, Lehn’s case

corresponds to ` = 1 and rank α1 = 1, and was studied in [35, 36, 56]. The case

x1 = . . . = x` = 1

was studied in [34], and a complete solution was given for K-trivial surfaces. The case

` = 2 was analyzed in [58], and the answer was found for all surfaces if

rank α1 = rank α2 = −1

via connections to K-theory.

1.7. Virtual Euler characteristics: dimension 0 quotients. The topological Euler

characteristics of the schemes QuotC(CN , n) and QuotX(CN , n) can be easily computed

via equivariant localization:

∞∑
n=0

qne(QuotC(CN , n)) = (1− q)N(2g−2) ,

∞∑
n=0

qne(QuotX(CN , n)) =

∞∏
n=1

(1− qn)−Nχ(X) .

More subtle is the virtual Euler characteristic of QuotX(CN , n) defined via the 2-term

obstruction theory. A basic result for dimension 0 quotients, proven using a reduction

to the Quot schemes of curves, is the following rationality statement.
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Theorem 18. The generating series of virtual Euler characteristics of QuotX(CN , n) is

a rational function in q which depends only upon K2
X and N ,

∞∑
n=0

qnevir(QuotX(CN , n)) = U
K2
X

N , UN ∈ Q(q) .

We can calculate U1 directly using the evaluations given in Theorem 3:

U1 =
(1− q)2

1− 2q
.

For higher N , a more involved computation in Section 4.3 yields an an exact expression

in a different form:

(9) UN (q) =
(1− q)2N

(1− 2Nq)N
·
∏
i<j

(1− (ri − rj)2) ,

where r1(q), . . . , rN (q) are the N distinct roots of the polynomial equation

zN − q(z − 1)N = 0

in the variable z. The shape of the answer is reminiscent of the Vafa-Intriligator formulas

for Quot schemes of curves [2, 18, 32, 49] which yield expressions depending on the roots

of unity.

Using (9), we can easily calculate UN as a rational function of q. The next few cases

are:

U2 =
(1− q)2(1− 6q + q2)

(1− 4q)2
,

U3 =
(1− q)2(1− 22q + 150q2 − 22q3 + q4)

(1− 8q)3
,

U4 =
(1− q)2(1− 62q + 1407q2 − 15492q3 + 1407q4 − 62q5 + q6)

(1− 16q)4
.

Formula (9) implies

(10) UN (q) =
(1− q)2

(1− 2Nq)N
· PN (q) ,

where PN (q) ∈ Z[q] is a palindromic polynomial of degree 2N − 2. A simple functional

equation holds for the transformation q ↔ q−1.

1.8. Surfaces: dimension 1 quotients. Let X be a nonsingular, simply connected,

projective surface, and let D ∈ A1(X) be a divisor class. As observed in [35], the Quot

scheme QuotX(CN , n,D) of short exact sequences

0→ S → CN ⊗OX → Q→ 0, χ(Q) = n , c1(Q) = D , rank(Q) = 0

carries a 2-term perfect obstruction theory and a virtual fundamental class of dimension

χ(S,Q) = Nn+D2.
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Indeed, the higher obstructions vanish

Ext2(S,Q) = Ext0(Q,S ⊗KX)∨ = 0 ,

since Q is a torsion sheaf. Using the above obstruction theory, we define generating

series of virtual Euler characteristics.

Definition 19. Let X be a nonsingular, simply connected 6, projective surface. For a

divisor class D ∈ A1(X) and an integer N ≥ 1, let

ZEX,N,D(q) =
∑
n∈Z

qnevir(QuotX(CN , n,D)) .

For fixed N and D, the Quot schemes QuotX(CN , n,D) are empty for all n sufficiently

negative, so

ZEX,N,D(q) ∈ Z((q)) .

The virtual Euler characteristic results described in Section 1.7 concern the generating

series ZEX,N,0(q) with vanishing divisor class D. In case D 6= 0, exact calculations are

more difficult to obtain.

(i) Rational surfaces

A very rich theory arises for rational surfaces. In Section 5.2, we write general tauto-

logical integrals over Hilbert schemes of points which compute the virtual Euler charac-

teristics. The following result provides an example of an exact solution.

Proposition 20. Let X be the blowup of a rational surface with exceptional divisor E.

We have

ZEX,1,E(q) = q

(
(1− q)2

1− 2q

)K2
X+1

.

The formula of Proposition 20 concerns only the case N = 1. The proof makes use

again of Theorem 3 for curves. Further exact calculations for rational surfaces will require

new techniques. However, we can calculate much more for K3 surfaces and surfaces of

general type.

(ii) K3 surfaces

For K3 surfaces, the standard obstruction theory contains a trivial factor which forces

the virtual invariants to vanish. The natural generating series therefore concerns the

6There is no difficulty to define the generating series in the non-simply connected case, but then D
should be taken in H2(X,Z) instead of A1(X).
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virtual Euler characteristics of the reduced obstruction theory:

ZrE
X,N,D(q) =

∑
n∈Z

qnered(QuotX(CN , n,D)) .

In the N = 1 case, the reduced obstruction theory leads to expressions matching the

curve counts on K3 surfaces. Specifically, let Ng,n be defined by the Kawai-Yoshioka [19]

formula:

(11)

∞∑
g=0

∞∑
n=1−g

Ng,n y
n qg =

(
√
y − 1
√
y

)−2 ∞∏
n=1

1

(1− qn)20(1− yqn)2(1− y−1qn)2
.

The Kawai-Yoshioka formula has played a central role in the Gromov-Witten and the

stable pairs theory of K3 surfaces [40, 45, 46]. For primitive classes, we have complete

results.

Theorem 21. Let X be a K3 surface, and let D be a primitive divisor class of genus

2g − 2 = D2 which is big and nef. We have

ered(QuotX(C1, n,D)) = Ng,n .

The argument matches the reduced virtual Euler characteristic integral of the Quot

scheme to the topological Euler characteristic integral of the moduli space of stable pairs

(the integrands however are not the same).

(iii) Surfaces of general type

Let X be a simply connected surface of general type with pg > 0. In the class of

the canonical divisor KX , we show the vanishing of the virtual Euler characteristics for

N = 1 in almost all cases. The single exception is significant: the Poincaré-Seiberg-

Witten invariants of [5, 7] are recovered,

evir(QuotX(C1, n = −K2
X ,KX)) = (−1)χ(OX) .

For arbitrary N , a vanishing holds for minimal surfaces.7

Proposition 22. Let X be a simply connected minimal surface of general type with

pg > 0. If D is a curve class with[
QuotX(CN , n,D)

]vir 6= 0 ,

then D = `KX for 0 ≤ ` ≤ N .

7We thank M. Kool for very helpful discussions about Seiberg-Witten classes.
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If we further assume the canonical class of X is represented by a nonsingular curve,

we can calculate ZEX,N, `KX (q) completely in all cases. By Proposition 22, we need only

consider ` in the range

0 ≤ ` ≤ N .

Theorem 23. Let X be a simply connected minimal surface of general type with a

nonsingular canonical curve of genus g = K2
X + 1. Then,

ZEX,N, `KX (q) = (−1)`·χ(OX) q`(1−g) ·
∑

1≤i1<...<iN−`≤N
A(ri1 , . . . , riN−`)

1−g ,

where the sum is taken over all
(
N
N−`

)
choices of N−` distinct roots ri(q) of the polynomial

equation

zN − q(z − 1)N = 0

in the variable z. The function A is defined by

A(x1, . . . , xN−`) =
(−1)(

N−`
2 )

NN−` ·
N−`∏
i=1

(1 + xi)
N (1− xi)

xN−1
i

·
∏
i<j

(xi − xj)2

1− (xi − xj)2
.

Since the answer of Theorem 23 is a symmetric function of the roots r1(q), . . . , rN (q),

we have

ZEX,N,`KX (q) ∈ Q(q) .

Theorem 23 is the most advanced calculation of paper. The proof uses essentially all of

the ideas and methods that we have developed.

Example 24. Theorem 23 for N = 2 and ` = 1 specializes to the following formula:

(12) ZEX,2,KX (q) =

(−1)χ(OX)
(q

2

)1−g
((

(1 + r1)2(1− r1)

r1

)1−g
+

(
(1 + r2)2(1− r2)

r2

)1−g)
,

where r1(q) and r2(q) are the two roots of the quadratic equation

z2 − q(z − 1)2 = 0

in the variable z. For a minimal surface of general type X with a canonical curve of

genus 2, formula (12) yields:

ZEX,2,KX (q) = (−1)χ(OX) (16q − 8)

(1− 4q)2
.

For X with a canonical curve of genus 3, the answer is

ZEX,2,KX (q) = (−1)χ(OX) (128q4 − 64q3 + 8q2 − 16q + 8)

q(1− 4q)4
.
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1.9. Rationality. By Theorem 18, the series ZEX,N,0(q) is the expansion of a rational

function in q. Rationality also holds for all the examples discussed in Section 1.8 for

Quot schemes of quotients with dimension 1 support on surfaces.

Conjecture 25. For a nonsingular, simply connected, projective surface X,

ZEX,N,D(q) ∈ Q(q) .

A natural further direction is to study the associated series in algebraic cobordism:

ZCobord
X,N,D =

∑
n∈Z

[QuotX(CN , n,D)]virqn ∈ Ω∗(point)((q)) .

The algebraic cobordism8 class

[QuotX(CN , n,D)]vir ∈ Ω∗(point)

is well-defined by [48]. Are there formulas for ZCobord
X,N,D(q)?

The parallel question for the virtual classes in algebraic cobordism of the moduli

spaces of stable pairs on 3-folds is conjectured to have an affirmative answer, see [48,

Conjecture 0.3]. In the case of toric geometries, Shen is able to prove the rationality of

the cobordism series via the rationality results for the descendent theory of stable pairs

[43, 44].

1.10. Vafa-Witten theory. There has been a series of recent papers studying the vir-

tual Euler characteristics of the moduli spaces of stable bundles (and stable Higgs pairs)

on surfaces [12, 13, 14, 15, 23, 51, 52]. The outcome has been a clear mathematical

proposal for the theory studied earlier by Vafa and Witten [55].

Definition 19 here is motivated by the Vafa-Witten developments. The Quot scheme

geometry, with the associated obstruction theory, provides a straightforward approach

to sheaf counting on surfaces. The idea is that given a stable bundle B of rank N on an

algebraic surface X, we can pick N sections (assuming B is sufficiently positive) which

will generically generate B:

(13) 0→ CN ⊗OX → B → F → 0 ,

where F is supported in dimension 1. By dualizing (13), we obtain a quotient sequence[
0→ B∨ → CN ⊗OX → Q→ 0

]
∈ QuotX(CN , χ(Q), c1(B)) .

Of course, χ(Q) can be computed from the Chern classes of B and X.

The calculations that we have presented, which may be viewed as the beginning of

the study of the virtual Euler characteristics of Quot schemes of surfaces, already show

some features of Vafa-Witten theory: the appearance of the Kawai-Yoshioka formula (in

8See [27] for a foundational treatment of algebraic cobordism and [28] for applications to enumerative
geometry.
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the K3 case) and the appearance of the Seiberg-Witten invariants (in the general type

case). A difference is the rationality in the variable q for the Quot scheme theory versus

modularity in the variable

q = exp(2πiτ)

for Vafa-Witten theory. A basic open question is the following.

Question 26. Formulate the precise relationship of the Quot scheme theory of surfaces

for all N to Vafa-Witten theory and Seiberg-Witten theory.

Moduli spaces of bundles on curves with sections have been considered by many au-

thors, see [3, 53]. Moreover, the relationship between the intersection theory of Quot

schemes and the moduli space of stable bundles on curves has been successfully studied

in [30, 31].

1.11. Higher rank quotients. Let X be a nonsingular projective surface, and consider

the Quot scheme QuotX(CN , n,D, r) of quotients with dimension 2 support,

0→ S → CN ⊗OX → Q→ 0, χ(Q) = n , c1(Q) = D , rank(Q) = r > 0 .

The existence of a virtual fundamental class of QuotX(CN , n,D, r) for del Pezzo surfaces

was first noted in [47], but the study can be pursued more generally.

As in the cases of support of dimension 0 and 1, the higher obstructions of the standard

deformation theory of QuotX(CN , n,D, r) lie in Ext2(S,Q). We have

Ext2(S,Q) = Ext0(Q,S ⊗KX)∨ and Ext0(Q,S ⊗KX) ↪→ Ext0(Q,CN ⊗KX) .

Hence, if Ext2(S,Q) 6= 0, then Ext0(Q,CN ⊗KX) 6= 0. Since Q is generated by global

sections, we conclude that H0(X,KX) 6= 0.

By the above logic, we obtain the following condition: if X satisfies

(14) H0(X,KX) = 0 ,

then the standard deformation theory of QuotX(CN , n,D, r) is 2-term and yields a virtual

fundamental class of dimension χ(S,Q).

There are many surfaces which satisfy H0(X,KX) = 0 including rational surfaces,

ruled surfaces, Enriques surfaces, and even some surfaces of general type. The Quot

scheme virtual Euler characteristic theory for such surfaces is well defined for all r, D,

and n. We leave the investigation for higher r to a future paper.

1.12. Plan of the paper. We start by computing Segre integrals over the symmetric

product

C [n] = QuotC(C1, n)
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in Section 2. In particular, Theorem 3 is proven in Section 2.3. Theorem 11 about the

Fuss-Catalan numbers is obtained via Wick expansion in Section 2.5. Segre integrals

over Quot schemes of curves for higher N are studied in Section 3 where the proofs of

Theorem 6 and the first part of Theorem 8 are presented.

We then consider Quot schemes of surfaces. Section 4 concerns the case of quotients

with dimension 0 support. The second part of Theorem 8 as well as Theorems 14 and

18 are proven there by reducing surface integrals to curve integrals. Section 5 concerns

the case of dimension 1 support. The proofs of Theorems 21 and 23 are presented in

Sections 5.3.2 and 5.4 respectively.
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2. Symmetric products of curves

2.1. Overview. We first present the proof of Theorem 3. Theorem 11 will be obtained

in Section 2.5 by specializing Theorem 3 to genus 1. In fact, all other main results of the

paper (Theorems 6, 8, 14, 18 and 23) proven in later Sections, rely either directly upon

Theorem 3 or upon the analysis of the integrals over C [n] developed here.

2.2. Projective line. To begin the proof of Theorem 3, we observe that the factorization

(15)

∞∑
n=0

qn
∫
C[n]

sx1(α
[n]
1 ) · · · sx`(α

[n]
` ) = A

c1(α1)
1 · · ·Ac1(α`)

` · B1−g ,
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allows us to specialize the calculation to genus 0 where

C ' P1 and C [n] ' Pn .

We write h for the hyperplane class on Pn.

Lemma 27. For a K-theory class α on P1 of rank r and degree d = c1(α) we have

sx(α[n]) = (1− xh)d−nr+r .

Proof. Both expressions are multiplicative in short exact sequences of vector bundles

0→ V1 → V → V2 → 0 .

The claim is clear for the right hand side. For the left hand side, claim is a consequence

of the induced sequence

0→ V
[n]

1 → V [n] → V
[n]

2 → 0 =⇒ sx(V [n]) = sx(V
[n]

1 ) · sx(V
[n]

2 ) .

Since the K-theory of P1 is generated by line bundles, we can restrict to α = OP1(d).

By the proof of Theorem 2 in [36], we have

ch ((OP1(d))[n]) = (d+ 1)− (d− n+ 1) exp(−h) ,

which then gives

sx((OP1(d))[n]) = (1− xh)d−n+1 ,

completing the argument. �

2.3. Proof of Theorem 3 (using P1). Let α1, . . . , α` be K-theory classes of ranks ri

and degree di. Using the Lemma 27, we obtain

ZP1,1(q, x1, . . . , x` |α1, . . . , α`) =

∞∑
n=0

qn
∫
Pn
sx1(α

[n]
1 ) · · · sx`(α

[n]
` )

=
∞∑
n=0

qn
∫
Pn

(1− x1h)d1−nr1+r1 · · · (1− x`h)d`−nr`+r`

=

∞∑
n=0

qn
∫
Pn
f(h)n · g(h)

=
∞∑
n=0

qn · ([tn] f(t)n · g(t)) .

In the third equality,

f(t) = (1− x1t)
−r1 · · · (1− x`t)−r` ,

g(t) = (1− x1t)
d1+r1 · · · (1− x`t)d`+r` .

The brackets denote the coefficient of the suitable power of t.
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We can evaluate such expressions using the Lagrange-Bürmann formula [59]. Assum-

ing f(0) 6= 0, for the change of variables q = t
f(t) , the following general identity holds

(16)
∞∑
n=0

([tn] f(t)n · g(t)) · qn =
g(t)

f(t)
· dt
dq
.

We will use the above identity repeatedly.

In our case, the change of variables takes the form

q = t(1− x1t)
r1 · · · (1− xrt)r` ,

and the Segre series becomes

ZP1,1(q, x1, . . . , x` |α1, . . . , α`) =
∏̀
i=1

(1− xit)di ·
∏̀
i=1

(1− xit)2ri · dt
dq
.

Combined with the factorization (15),

ZP1,1(q, x1, . . . , x`|α1, . . . , α`) = Ad11 · · ·A
d`
` · B ,

the above calculation yields

Ai(q) = 1− xit , B(q) =
∏̀
i=1

(1− xit)2ri · dt
dq

=
(q
t

)2
· dt
dq
.

This completes the proof of Theorem 3. �

For future use, we also record a formula for the logarithms of the functions Ai. Of

course, we may take i = 1 without loss of generality.

Lemma 28. We have

logA1 =
∞∑
n=1

(−1)n
qn

n
· an

where

(17) an(x1, . . . , x`) = x1 ·
∑

p1+...+p`=n−1

(
−nr1 − 1

p1

)
·
(
−nr2

p2

)
· · ·
(
−nr`
p`

)
· xp11 · · ·x

p`
` .

Proof. The argument consists in another application of the Lagrange-Bürmann formula

(16). Indeed, write ãn for the right hand side of (17) and let

L(q) =

∞∑
n=1

(−1)n
qn

n
· ãn .

We must prove logA1 = L. Clearly,

ãn(x1, . . . , x`) = (−1)n−1x1 ·
([
tn−1

]
(1− x1t)

−nr1−1 · (1− x2t)
−nr2 · · · (1− x`t)−nr`

)
= (−1)n−1x1 ·

([
tn−1

]
f(t)n−1 · h(t)

)
.
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where we write as before

f(t) = (1− x1t)
−r1 · · · (1− x`t)−r`

h(t) = (1− x1t)
−r1−1 · (1− x2t)

−r2 · · · (1− x`t)−r` .

We further compute

dL

dq
=

∞∑
n=1

(−1)nqn−1 · ãn

= −x1 ·
∞∑
n=1

qn−1 ·
([
tn−1

]
f(t)n−1 · h(t)

)
= −x1 ·

h(t)

f(t)
· dt
dq

= − x1

1− x1t
· dt
dq
,

where the Lagrange-Bürmann formula (16) was applied in the third equality, for the

same change of variables q = t
f(t) which we used previously. Therefore

dL = − x1

1− x1t
dt =⇒ L = log(1− x1t).

Combined with Theorem 3, we obtain L = logA1. �

2.4. Wick’s formalism for an elliptic curve. Let C be a nonsingular genus 1 curve.

Let L1, . . . , L` be line bundles on C of degrees d1, . . . , d`. We lift the integrals over the

symmetric product to the n-fold ordinary product via the morphism

pn : C×n = C × · · · × C → C [n] .

We write Dij for the diagonals

Dij = {xi = xj} ⊂ C×n

and further set

∆i = D1,i +D2,i + . . .+Di−1,i .

We also write πi : C×n → C for the canonical projections, 1 ≤ i ≤ n. From the exact

sequence

0→ π?nL(−∆n)→ p?nL
[n] → (π1 × · · · × πn−1)?p?n−1L

[n−1] → 0 ,

we inductively obtain

p?nsx(L[n]) =

n∏
i=1

1

1 + x(π?i c1(L)−∆i)
.
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Consequently,∫
C[n]

sx1(L
[n]
1 ) · · · sx`(L

[n]
` ) =

1

n!

∫
C×n

∏̀
j=1

n∏
i=1

1

1 + xj(π?i c1(Lj)−∆i)
.

By Lemma 28, we know

(18) log

 ∞∑
n=0

qn

n!

∫
C×n

∏̀
j=1

n∏
i=1

1

1 + xj(π?i c1(Lj)−∆i)


=
∞∑
n=1

(−1)n
qn

n
·

∑̀
j=1

a(j)
n · degLj

 ,

where

a(1)
n (x1, . . . , x`) = x1 ·

∑
p1+...+p`=n−1

(
−n− 1

p1

)
·
(
−n
p2

)
· · ·
(
−n
p`

)
· xp11 · · ·x

p`
`

and a
(j)
n (x1, . . . , x`) is given by the correspondingly permuted formula.

We will expand the left hand side of (18) using Wick’s formalism. To connect with

Theorem 11, write

wn(p1, . . . , p`) =
∑
T

wt(T )

weighted count of ordered `-colored trees of type (p1, . . . , p`) with

n = p1 + . . .+ p` + 1 .

Theorem 11 is equivalent to the following claim:

(19) wn(p1, . . . , p`) =
(−1)n−1

n

(
−n
p1

)
· · ·
(
−n
p`

)
.

To establish (19), we set

Wn =
∑

p1+...+pn−1=n−1

wn(p1, . . . , p`) · xp11 · · ·x
p`
` .

Define the differential operator

D1 = 2x1
∂

∂x1
+ x2

∂

∂x2
+ . . .+ x`

∂

∂x`
+ 1

and define D2, . . . ,D` by the correspondingly permuted formulas.

Lemma 29. The following identity holds

log

 ∞∑
n=0

qn

n!

∫
C×n

∏̀
j=1

n∏
i=1

1

1 + xj(π?i c1(Lj)−∆i)

 = −
∞∑
n=1

qn

n
·

∑̀
j=1

xj · degLj · DjWn

 .
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Proof. We refer the reader to Section 1.3 of [42] for a gentle introduction to the Wick

formalism in precisely the context which we require here. By Wick, the logarithm on

the left hand side is given by

(20)
∞∑
n=1

qn

n!
S[n] ,

where S[n] is the connected contribution on n vertices. We will match the connected

contributions S[n] with the right hand side of Lemma 29.

Consider an arbitrary monomial in the diagonal classes. Such a monomial determines

a graph with n vertices, whose edges are given by the diagonal associations. Since C is

an elliptic curve, the squares of diagonals vanish

D2
i,j = 0 ∈ H∗(C×n,Z) .

Hence, a connected graph on n vertices cannot have any cycles, thus it corresponds

exactly to a tree with n − 1 edges determined by the diagonals. The diagonals come

from the expansions of the terms

∏̀
j=1

n∏
i=1

1

1 + xj(π?i c1(Lj)−∆i)
,

and therefore may be considered as carrying colors between 1, . . . , ` depending on the j

index.

Let us first analyze the (simpler) connected contribution for the terms

(21)
∏̀
j=1

n∏
i=1

1

1 + xj(−∆i)
.

We see that the coefficient of xp11 · · ·x
p`
` in the connected contribution with

n = p1 + . . .+ p` + 1

vertices is exactly a sum over labelled `-colored trees of type (p1, . . . , p`). The vertices of

the trees T are labelled by the n ordered factors of C×n. To calculate the weight, we

must expand (21) as

(22)
∏̀
j=1

n∏
i=1

(1 + xj∆i + x2
j∆

2
i + x3

j∆
3
i + . . .) .

If the ith vertex v of T has djv downward edges colored j, the weight receives a factor of

djv! since the coefficient of the monomial in the corresponding diagonal in

xd
j
v
j ∆djv

i
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is exactly djv! . Hence, the full weight is

(23)
∏

v vertex

d1
v! · · · dkv ! = wt(T ) · (n− 1)! .

The actual connected contribution S[n] of (20), which we must calculate, also includes

the insertions of π?i (c1(Lj)). Since the diagonal edges already cut C×n to just a single

elliptic curve C, exactly one insertion from the set{
π?i (c1(Lj))

}
1≤i≤n , 1≤j ≤`

must be chosen. We separate the contribution

S[n] =
∑̀
j=1

S[n, j]

by which Lj is chosen as an insertion. The connected contribution S[n, j] will be matched

with

−xj · degLj · DjWn · (n− 1)!

to complete the proof.

To this end, we calculate the effect of the insertion Lj on the weight of a labelled

`-colored tree of type (p1, . . . , p`) generated by the diagonals. The insertion Lj can occur

at any vertex 1 ≤ i ≤ n. When π?i (c1(Lj)) is selected, the weight receives the factor

−degLj · (djv + 1)!

since the coefficient of the corresponding monomial in

xd
j
v+1
j

(
− π?i (c1(Lj)) + ∆i

)djv+1

is exactly (djv + 1)!. Since the insertion Lj can be placed at any vertex 1 ≤ i ≤ n, we

must modify the weight (23) of T by the prefactor

n∑
i=1

(djv + 1) = pj + n = 2pj +
∑
j′ 6=j

pj′ + 1 .

This prefactor is achieved precisely by the action of the differential operator Dj on Wn.

Collecting all terms, we obtain

∞∑
n=1

qn

n!
S[n] =

∞∑
n=1

∑̀
j=1

qn

n!
S[n, j]

=

∞∑
n=1

∑̀
j=1

(
−q

n

n
xj · degLj · DjWn

)
which completes the calculation. �
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2.5. Proof of Theorem 11 (using an elliptic curve). We prove Theorem 11 here

geometrically by specializing Theorem 3 and Lemma 28 to genus 1 and using the Wick

result of Lemma 29. Alternatively, a direct combinatorial proof of Theorem 11 is provided

in the Appendix.

By setting the right hand side of (18) equal to the right hand side of the formula of

Lemma 29, we obtain

(24) x1D1Wn = (−1)n−1a(1)
n .

The operator D1 acts on the monomial xp11 · · ·x
p`
` as multiplication by (n + p1). By

matching coefficients of xp11 · · ·x
p`
` on both sides of (24), we solve

wn(p1, . . . , p`) =
(−1)n−1

n

(
−n
p1

)
· · ·
(
−n
p`

)
,

which completes the argument. �

3. Quot schemes of curves for higher N

3.1. Overview. We prove here Theorem 6, part of Theorem 8, and the associated Corol-

laries 9 and 10.

We begin with Theorem 6. We specialize directly to the case of an elliptic curve C,

seeking to show that
∞∑
n=0

qn
∫
QuotC(CN ,n)

s(V [n]) = A(q)deg V ,

with the specified formula for A(q) = A1,r,N (q).

3.2. Equivariant localization. The nonsingular projective variety QuotC(CN , n) car-

ries a natural action of the algebraic torus C? defined as follows. Let C? act diagonally

on CN with weights

w1 < w2 < . . . < wN .

The C?-action on QuotC(CN , n) is then induced via the associated C?-action on the

middle term of the exact sequence

0→ S → CN ⊗OC → Q→ 0 .

We will prove Theorem 6 by applying the Atiyah-Bott C?-equivariant localization

formula to compute integrals over QuotC(CN , n). The fixed loci are indexed by partitions

n1 + . . .+ nN = n where

F[n1, . . . , nN ] = C [n1] × . . .× C [nN ]

parameterizes tuples (Z1, . . . , ZN ) of divisors on C with

length(Zi) = ni .
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The inclusion

j : F[n1, . . . , nN ] ↪→ QuotC(CN , n)

corresponds to the invariant sequences

0→ S =
N⊕
i=1

OC(−Zi) ↪→
N⊕
i=1

OC → Q =
N⊕
i=1

OZi → 0 .

The normal bundle to the fixed locus is found from the moving part of the tangent

bundle:

N[n1, . . . , nN ] = Hom(S,Q)mov =
⊕
i 6=j

Hom(O(−Zi),OZj )[wj − wi]

=
⊕
i 6=j

H•(O(Zi)|Zj )[wj − wi]

=
⊕
i 6=j

(H•(O(Zi))−H•(O(Zi − Zj))) [wj − wi]

with the brackets denoting the equivariant weights. We combine the mixed (i, j) and

(j, i) terms by setting

Vij = H•(O(Zi − Zj))[wj − wi]⊕H•(O(Zj − Zi))[wi − wj ] .

Since C is an elliptic curve, Serre duality yields the C?-equivariant isomorphism

Vij ' V∨ij [−1] .

Therefore,

eC?(Vij) = (−1)χ(O(Zi−Zj)) = (−1)ni+nj .

For the remaining terms, we use the K-theoretic relation

H•(O(Zi)) = H1−•(O(−Zi))∨ = −H•(O)∨ +H0(OZi)∨

obtained from the exact sequence

0→ O(−Zi)→ O → OZi → 0 .

While the first summand is trivial, the second summand corresponds to the bundle(
O[ni]

)∨
. We conclude

eC?(N[n1, . . . , nN ]) =
∏
i<j

(−1)ni+nj
∏
i 6=j

e
(

(O[ni])∨[wj − wi]
)

=
∏
i 6=j

eC?(O[ni][wi − wj ]).

Furthermore, the restriction of V [n] to F[n1, . . . , nN ] splits equivariantly as

ι?V [n] = V [n1][w1]⊕ . . .⊕ V [nN ][wN ] .
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Atiyah-Bott localization then yields

ZC,N (q |V ) =

∞∑
n=0

qn
∫
QuotC(CN ,n)

s(V [n])

=
∑

n1+...+nN=n

qn
∫
C[n1]×...C[nN ]

∏
i s(V

[ni][wi])∏
i

∏
j 6=i eC?(O[ni][wi − wj ])

.

An important aspect of the above formula is that, in the genus 1 case, the integral

on the right hand side splits over the individual factors. For any tuple of equivariant

weights (a, b1, . . . , bN−1), we write

PC(q | a | b1, . . . , bN−1) =

∞∑
n=0

qn
∫
C[n]

s(V [n][a])

eC?(O[n][b1]) · · · eC?(O[n][bN−1])
.

We can write the splitting explicitly as

(25) ZC,N (q |V ) =

PC(q |w1 |w1 − w2, . . . , w1 − wN ) · · ·PC(q |wN |wN − w1, . . . , wN − wN−1) .

In fact, equation (25) holds equivariantly. To prove Theorem 6, we must take the non-

equivariant limit: we must extract the free term with respect to the variables w1, . . . , wN

on the right hand side.

3.3. Symmetric products. Our next step is to evaluate the expressions

PC(q | a | b1, . . . , bN−1)

by relating them to the integrals of Theorem 3. For convenience of notation, we write

ŝt(V ) = t−rank V · s1/t(V ) =
∏
i

1

t+ vi
,

where the vi are the roots of a vector bundle V on a scheme S.

Write R = H?
C?(pt) for the equivariant coefficient ring. For α, β1, . . . , βN−1 ∈ R, we

introduce the function

QC(q |α |β1, . . . , βN−1) =

∞∑
n=0

qn
∫
C[n]

ŝα(V [n]) · ŝβ1(O[n]) · · · ŝβN−1
(O[n]) .

Note that

QC(q |α |β1, . . . , βN−1) ∈ K[[q]]

where K denotes the fraction field of R. The calculations below will take place in the

power series ring K[[q]].

For a scheme S endowed with a trivial torus action, and a vector bundle V → S with

nontrivial equivariant weight t, we have

ŝt(V ) = eC?(V [t])−1 ∈ H?(S)⊗ K .
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Applied to our setting, we obtain

(26) PC(q | a | b1, . . . , bN−1) = QC(q | 1 + a | b1, . . . , bN−1) .

The next result computes the logarithm of QC .

Lemma 30. For an elliptic curve C, we have

QC(q |α |β1, . . . , βN−1) = F(q |α |β1, . . . , βN−1) deg V ,

where we define

log F(q |α |β1, . . . , βN−1) =

∞∑
n=1

(−1)n
qn

n
· fn(α |β1, . . . , βN−1) ,

with

(27) fn(α |β1, . . . , βN−1) =
∑

p+q1+...+qN−1=n−1

(
−nr − 1

p

)(
−n
q1

)
· · ·
(
−n
qN−1

)
· α−nr−p−1β−n−q11 · · ·β−n−qN−1

N−1 .

Proof. Using the definitions, we compute

QC (q |α |β1, . . . , βN−1) =
∞∑
n=0

qn
∫
C[n]

ŝα(V [n]) · ŝβ1(O[n]) · · · ŝβN−1
(O[n])

=

∞∑
n=0

(qα−rβ−1
1 · · ·β

−1
N−1)n

∫
C[n]

s 1
α

(V [n])s 1
β1

(O[n]) · · · s 1
βN−1

(O[n])

= ZC(q̂, α−1, β−1
1 , . . . , β−1

N−1 |V,O, . . . ,O) .

Here we set

q̂ = qα−rβ−1
1 · · ·β

−1
N−1 ,

and we remind the reader that the Segre series ZC was introduced in Definition 1. Since

most of the bundles appearing are trivial, only one universal function appears in the

answer:

ZC(q̂, α−r, β−1
1 , . . . , β−1

N−1 |V,O, . . . ,O) = F deg V .

The proof is completed by invoking Lemma 28 which gives an expression for log F match-

ing the one claimed here. �

3.4. Proof of Theorem 6. By equation (25), equation (26), and Lemma 30, we obtain

ZC,N (q |V ) = A(q)deg V ,
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where logA(q) equals

F(q | 1 +w1 |w1 −w2, . . . , w1 −wN ) + . . .+ F(q | 1 +wN |wN −w1, . . . , wN −wN−1) =
∞∑
n=1

(−q)n

n
[fn(1 + w1 |w1 − w2, . . . , w1 − wN ) + . . .+ fn(1 + wN |wN − w1, . . . , wN − wN−1)] .

Our goal is to prove

logA(q) =

∞∑
n=1

(−1)(N+1)n+1

(
(r +N)n− 1

Nn− 1

)
· q

n

n
.

Equivalently, we will show that the free term, with respect to the variables w1, . . . , wN ,

in the expression9

fn(1 + w1 |w1 − w2, . . . , w1 − wN ) + . . .+ fn(1 + wN |wN − w1, . . . , wN − wN−1)

equals

(−1)Nn+1

(
(r +N)n− 1

Nn− 1

)
.

To establish the last claim, we will use the expression for fn provided by equation (27).

Each monomial in the formula contributes the following sum to the final answer

(1 + w1)−nr−p−1(w1 − w2)−n−q1 · · · (w1 − wN )−n−qN−1 + . . .

+(1 + wN )−nr−p−1(wN − w1)−n−q1 · · · (wN − wN−1)−n−qN−1 .

By Lemma 31 below, the free term of the sum equals

(−1)(n+q1)+...+(n+qN−1) ·
(

(nr + p) + (n+ q1) + . . .+ (n+ qN−1)

nr + p

)
= (−1)n(N−1)+q ·

(
(N + r)n− 1

nr + p

)
,

where

q = q1 + . . .+ qN−1 =⇒ p+ q = n− 1 .

Therefore, the free term we seek is∑
p+q1+...+qN−1=n−1

(−1)n(N−1)+q

(
−nr − 1

p

)(
−n
q1

)
· · ·
(
−n
qN−1

)
·
(

(N + r)n− 1

nr + p

)
.

By the Vandermonde identity the middle binomials can be summed:∑
p+q=n−1

(−1)n(N−1)+q

(
−nr − 1

p

)(
−n(N − 1)

q

)(
(N + r)n− 1

nr + p

)
.

After substituting p = n− 1− q and rearranging the factorials, we obtain

(−1)nN+1 · (nN − 1)!

(n− 1)!(n(N − 1)− 1)!

(
(r +N)n− 1

Nn− 1

)
·
n−1∑
q=0

(
n− 1

q

)
· (−1)q

n(N − 1) + q
.

9We use here that taking the free term can be done before or after taking the logarithm.
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Lemma 32 in case x = n(N − 1) evaluates the final sum as

(−1)nN+1

(
(r +N)n− 1

Nn− 1

)
,

which completes the proof of Theorem 6 . �

Lemma 31. Let x1, . . . , xN be fixed positive integers. Set

S(w1, . . . , wN ) = (1+w1)−x1 ·(w1−w2)−x2 · · · (w1−wN )−xN+ all symmetric combinations.

Expand S(w1, . . . , wN ) in the region

w1 << w2 << . . . << wN .

The free term of this expansion equals

(−1)x2+...+xN

(
x1 + . . .+ xN − 1

x1 − 1

)
.

Proof. We have

(1 + wN )−x1 · (wN − w1)−x2 · · · (wN − wN−1)−xN =

w−x2−...−xNN · (1 + wN )−x1 ·
(

1− w1

wN

)−x2
· · ·
(

1− wN−1

wN

)−xN
.

To extract the free term, we need the coefficient of w0
1 · · ·w0

N−1 · w
x2+...+xN
N in

(1 + wN )−x1 ·
(

1− w1

wN

)−x2
· · ·
(

1− wN−1

wN

)−xN
.

This coefficient equals(
−x1

x2 + . . .+ xN

)
= (−1)x2+...+xN ·

(
x1 + . . .+ xN − 1

x1 − 1

)
.

An entirely parallel computation shows that the remaining terms

(1 + wj)
−x1 · (wj − w1)−x2 · · · (wj − wN )−xN ,

for j 6= N , do not contribute. �

Lemma 32. For positive integers x and n, we have

n−1∑
q=0

(−1)q

x+ q

(
n− 1

q

)
=

(x− 1)!(n− 1)!

(x+ n− 1)!
.
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Proof. We induct on n. For the inductive step, we compute
n∑
q=0

(−1)q

x+ q

(
n

q

)
=

n∑
q=0

(−1)q

x+ q

(
n− 1

q − 1

)
+

n∑
q=0

(−1)q

x+ q

(
n− 1

q

)
= −x!(n− 1)!

(x+ n)!
+

(x− 1)!(n− 1)!

(x+ n− 1)!

=
(x− 1)!n!

(x+ n)!
.

The first line is Pascal’s identity, while the second line uses the induction hypothesis. �

3.5. Binomial identities. We prove here part of Theorem 8 stated in Section 1.4 to-

gether with Corollaries 9 and 10.

Proof of first half of Theorem 8. The first statement in Theorem 8 is purely combinatorial.

In case rank V = 1, the expression of Theorem 6 simplifies:

logA1,1,N (q) =
∞∑
n=1

(−1)(N+1)n+1

(
(N + 1)n− 1

Nn− 1

)
· q

n

n

= N ·
∞∑
n=1

(−1)Nn
(
−Nn− 1

n− 1

)
qn

n
.

The result can be rewritten in the form

A1,1,N (q) = (1 + t)N for q = (−1)N t(1 + t)N

using Lemma 33 (ii) below.

The main point of Theorem 8, however, is the formula

(28) B1,N (q) =
(1 + t)N+1

1 + (N + 1)t
for q = (−1)N t(1 + t)N

proven in Section 4.4 below. The calculation uses a specialization to genus 0 and is

similar in spirit to the computations carried out in Section 4. �

Proof of Corollary 9. Similarly,

B1,N (q) =
(1 + t)N+1

1 + t(N + 1)

=
∞∑
n=0

(−1)nN ·
(
−Nn+N

n

)
· qn

=

∞∑
n=0

(−1)n(N+1) ·
(

(n− 1)(N + 1)

n

)
· qn

where we have used Lemma 33(i) with d = 0 on the second line. �

Lemma 33. For the change of variables q = t(1 + t)r, we have
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(i)
∞∑
n=0

(
d− rn+ r

n

)
· qn =

(1 + t)d+r+1

1 + t(r + 1)
,

(ii)

log(1 + t) =
∞∑
n=1

(
−rn− 1

n− 1

)
· q

n

n
.

Proof. Part (i) is the content of [36, Lemma 3]. For part (ii), the identity to be established

is

(29)
∞∑
n=1

1

n

(
−rn− 1

n− 1

)
· tn(1 + t)rn = log(1 + t) .

For the proof, we set d = −2r − 1 in equation (i)

∞∑
n=0

(
−r(n+ 1)− 1

n

)
· tn(1 + t)rn =

(1 + t)−r

1 + t(r + 1)
,

which we rewrite as
∞∑
n=1

(
−rn− 1

n− 1

)
· tn−1(1 + t)rn−1 · (1 + t(r + 1)) =

1

1 + t
.

The identity (29) is obtained by integration. �

Proof of Corollary 10. The first statement in Corollary 10 follows by directly comparing

Theorem 8 and equation (6). Indeed, up to signs, the two universal functions A and B

agree for both sides. For the second statement, we observe∫
(P1)[n]

s(L[n])N =

∫
Pn

(1− h)N(degL−n+1) = (−1)n
(
N(degL− n+ 1)

n

)
,

where Lemma 27 has been used in the first identity. �

4. Virtual invariants of surfaces: dimension 0 quotients

4.1. Overview. We prove here Theorems 8, 14, and 18. In particular, we study the

virtual intersection theory of the Quot scheme QuotX(CN , n) of short exact sequences

0→ S → CN ⊗OX → Q→ 0, χ(Q) = n , c1(Q) = 0 , rank(Q) = 0

on nonsingular projective surfaces X. As noted in Section 1.6, QuotX(CN , n) carries a

virtual fundamental class [
QuotX(CN , n)

]vir

of dimension Nn. Our basic technique is to relate integrals against the virtual class of

Quot schemes of surfaces to integrals over Quot schemes of curves which we have already

studied. Theorem 14 is the first outcome.
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The idea of dimensional reduction plays a central role in the proof of Theorem 18. In

the N = 1 case, the integrals over the Quot schemes of curves which arise are covered by

Theorem 3. For higher N , a more delicate analysis of the curve integrals is required. A

similar analysis is used to complete the proof of Theorem 8 in Section 4.4 (and appears

also in the proof of Theorem 23 for surfaces of general type in Section 5.4).

4.2. Virtual integrals.

4.2.1. Strategy. We first prove Theorem 14. The argument requires the following two

steps:

(i) We show a universality statement allowing us to reduce to the case of a surface

with nonsingular canonical curve C ⊂ X.

(ii) The claim will then be obtained by direct comparison of the obstruction theories

of the Quot schemes of X and of C.

4.2.2. Universality. We will use equivariant localization to compute the series

ZX,N (q, x1, . . . , x`|α1, . . . , α`) =

∞∑
n=0

qn
∫

[QuotX(CN ,n)]vir
sx1(α

[n]
1 ) · · · sx`(α

[n]
` ) .

The Quot scheme QuotX(CN , n) carries torus action via the diagonal C?-action on the

middle term of the sequence

0→ S → CN ⊗OX → Q→ 0 .

We write w1, . . . , wN for the equivariant weights. Just as in Section 3.2, the fixed loci

are products of Hilbert schemes

F[n1, . . . , nN ] = X [n1] × · · · ×X [nN ]

indexed by partitions n1 + . . .+ nN = n. We write

S = ⊕Ni=1IZi , Q = ⊕Ni=1OZi , length (Zi) = ni

for the fixed kernel and quotient. Furthermore, the induced obstruction theory of

F[n1, . . . , nN ] splits:

Ext•(S,Q)fix = ⊕Ni=1Ext•(IZi ,OZi) .

In fact, the C?-fixed obstruction sheaf is locally free with obstruction bundle

(30)
(
K

[n1]
X ⊕ . . .⊕K [nN ]

X

)∨
.

This is a consequence of equation (31) below. The equivariant virtual normal bundle is

the moving part of the tangent-obstruction theory

N[n1, . . . , nN ]vir = Ext•(S,Q)mov =
⊕
i 6=j

Ext•(IZi ,OZj )[wj − wi] .
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Using the virtual localization theorem of [17], the integral∫
[QuotX(CN ,n)]vir

sx1(α
[n]
1 ) · · · sx`(α

[n]
` )

can be rewritten as∑
n1+...+nN=n

∫
X[n1]×···×X[nN ]

N∏
i=1

e
(

(K
[ni]
X )∨

)
·
∏̀
i=1

sxi(α
[ni]
i [wi]) ·

∏
i 6=j

e(Ext•(IZi ,OZj )[wj−wi])−1 .

As in [16, Theorem 5.1], we regard the above expression as a tautological integral over

the Hilbert scheme of the disconnected surface Y = X tX t . . . tX, so that

Y [n] =
⊔

n1+...+nN=n

X [n1] × · · · ×X [nN ].

The answer depends solely on the Chern numbers of the data involved: monomials in

the Chern classes of αi and Chern classes of the surface X. In the absence of better

notation, we write mk for these monomials enumerated in some order. Thus

ZX,N (q, x1, . . . , x`|α1, . . . , α`) = universal function of mk.

Splitting the surface X = X ′ tX ′′ and the classes αi = α′i t α′′i one sees that

QuotX(CN , n) =
⊔

n′+n′′=n

QuotX′(CN , n′)×QuotX′′(CN , n′′),

and the tangent-obstruction theory and the tautological elements α
[n]
i split as well. We

then conclude the multiplicative form of the generating series

ZX,N (q, x1, . . . , x`|α1, . . . , α`) =
∏

Amk
k .

As usual, Ak are universal functions in the variables q, x1, . . . , x` that may depend on

the ranks of the α’s and N .

To complete the proof of Theorem 14, we may assume X admits a nonsingular canon-

ical curve

C ⊂ X ,

since such surfaces X separate all the monomials mk.

4.2.3. Quot schemes of curves and surfaces. For all nonsingular curves C ⊂ X, there is

a natural embedding

ι : QuotC(CN , n) ↪→ QuotX(CN , n) ,
[
CN ⊗OC → Q

]
7→
[
CN ⊗OX → Q

]
.

In the case of canonical curves, the following result relates the obstruction theories of

the Quot schemes above and plays a crucial role in the proof of Theorem 14.
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Lemma 34. If C is a nonsingular canonical curve, we have

ι?
[
QuotC(CN , n)

]
= (−1)n

[
QuotX(CN , n)

]vir

in the localized C?-equivariant Chow theory of QuotX(CN , n).

Proof. We first consider the case N = 1. The Hilbert scheme X [n] has locally free

obstruction sheaf
(
K

[n]
X

)∨
. The obstruction sheaf is obtained from the following sequence

of canonical isomorphisms:

Ext1(IZ ,OZ) = Ext2(OZ ,OZ)(31)

= Ext0(OZ ,OZ ⊗KX)∨

= Ext0(O,OZ ⊗KX)∨

=
(
K

[n]
X

)∨ ∣∣∣
Z
.

The defining equation s of the canonical curve C ⊂ X yields a section s[n] of K
[n]
X via

the assignment

Z 7→ s|Z ∈ H0(KX ⊗OZ) .

The section s[n] vanishes precisely along

(32) ι : C [n] ↪→ X [n] .

Therefore,

(33)
[
X [n]

]vir
= e

(
(K

[n]
X )∨

)
∩X [n] = (−1)n ι?

[
C [n]

]
,

which completes the proof of Lemma 34 in case N = 1.

Now let N be arbitrary. We apply C?-equivariant localization to both Quot schemes

over X and C using the same weights for the two torus actions. The fixed loci are

FC [n1, . . . , nN ] = C [n1] × · · · × C [nN ] , FX [n1, . . . , nN ] = X [n1] × · · · ×X [nN ]

respectively. Parallel to (32), there is a natural embedding

ι : FC [n1, . . . , nN ] ↪→ FX [n1, . . . , nN ].

We noted in (30) that the obstruction bundle of FX [n1, . . . , nN ] splits as(
(KX)[n1] ⊕ . . .⊕ (KX)[nN ]

)∨
.

Using (33), we find that

(34) ι? [FC [n1, . . . , nN ]] = (−1)ne

((
(KX)[n1] ⊕ . . .⊕ (KX)[nN ]

)∨)
∩ [FX [n1, . . . , nN ]]

= (−1)n [FX [n1, . . . , nN ]]vir .
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We furthermore claim

(35) ι?e(NX [n1, . . . , nN ]vir) = e(NC [n1, . . . , nN ])

where Nvir
X and NC are two normal bundles of the fixed loci.

The proof of (35) requires several steps. First, the difference

ι?NX [n1, . . . , nN ]vir − NC [n1, . . . , nN ]

equals ⊕
i 6=j

Ext•X(IZi/X ,OZj )[wj − wi]−
⊕
i 6=j

Ext•C(IZi/C ,OZj )[wj − wi] .

The latter expression can be further simplified using

Ext•X(IZi/X ,OZj )− Ext•C(IZi/C ,OZj ) = −Ext•X(OZi ,OZj ) + Ext•C(OZi ,OZj )

= −Ext•C(OZi ,OZj ⊗Θ)[−1] ,

where Θ = OC(C) is the theta characteristic of C. For the first equality, we have ex-

pressed the ideal sheaves in terms of structure sheaves in K-theory. The second equality

follows from the exact sequence

. . .→ ExtiC(OZi ,OZj )→ ExtiX(OZi ,OZj )→ Exti−1
C (OZi ,OZj ⊗Θ)→ . . .

proven, for instance, in [54, Lemma 3.42]. Next, in the difference of the normal bundles,

we group the terms corresponding to the pairs (i, j) and (j, i). We define

Vij = Ext•C(OZi ,OZj ⊗Θ)[wj − wi]⊕ Ext•C(OZj ,OZi ⊗Θ)[wi − wj ] ,

and write

ι?NX [n1, . . . , nN ]vir − NC [n1, . . . , nN ] =
⊕
i<j

Vij .

By Serre duality, making use of the fact that Θ is a theta characteristic, we obtain

V∨ij = Vij [1] .

Therefore,

eC?(Vij) = (−1)
χ(OZi ,OZj⊗Θ)

= 1 ,

which proves (35).

Finally, by the virtual localization formula [17], we have[
QuotX(CN , n)

]vir
=

∑
n1+...+nN=n

(jX)?

(
1

e(NX [n1, . . . , nN ]vir)
∩ [FX [n1, . . . , nN ]]vir

)
[
QuotC(CN , n)

]
=

∑
n1+...+nN=n

(jC)?

(
1

e(NC [n1, . . . , nN ])
∩ [FC [n1, . . . , nN ]]

)
.

Using equations (34) and (35) we obtain

ι?
[
QuotC(CN , n)

]
= (−1)n

[
QuotX(CN , n)

]vir
,
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which proves the Lemma. �

Remark 35. The result of Lemma 34 should be expected. In fact, the canonical curve

C gives a cosection

Ob→ OQuot

of the obstruction sheaf of QuotX(CN , n) via the composition

Ext1(S,Q)→ Ext2(Q,Q)
Trace→ H2(OX) = H0(KX)∨ → C .

A careful analysis shows that the cosection vanishes along the quotients supported on

C. By [20], the virtual fundamental cycle is localized along such quotients. However,

the precise determination of the cycle still requires a calculation. The known techniques

require stronger smoothness assumptions than what we can prove in our case, so we have

given a different argument for the proof of Lemma 34.

For example, QuotX(CN , n) is singular for every N ≥ 2 and n ≥ 2 even at quotients

of the form

Q = OZ ⊕OZ , length(Z) =
n

2
.

Indeed, the Zariski tangent space

Hom(S,Q) = Hom(IZ ⊕ IZ ⊕ CN−2 ⊗ OX ,OZ ⊕ OZ)

has dimension (N + 2)n which is higher than the actual dimension (N + 1)n.

4.2.4. Proof of Theorem 14. We argued in Section 4.2.2 that it suffices to consider the

case when X admits a nonsingular canonical curve C. Let αi be classes on X and set

βi = αi|C . By Lemma 34, we have∫
[QuotX(CN ,n)]vir

sx1(α
[n]
1 ) · · · sx`(α

[n]
` ) = (−1)n

∫
QuotC(CN ,n)

sx1(β
[n]
1 ) · · · sx`(β

[n]
` ) .

Theorem 14 follows immediately

ZX,N (q, x1, . . . , x` |α1, . . . , α`) = Zg,N (−q, x1, . . . , x`, β1, . . . , β`)

= A1(−q)c1(αi)·KX · · ·A`(−q)c1(α`)·KX · B(−q)1−g .

�

4.3. Virtual Euler characteristics. Theorem 18 will be proven next. Before present-

ing the argument, we review general statements regarding virtual Euler characteristics.
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4.3.1. Generalities. Let Z be a scheme admitting a 2-term perfect obstruction theory

E• = [E−1 → E0]→ τ [−1,0]LZ ,

and a virtual fundamental class [Z]vir of dimension

d = rank E0 − rank E−1 .

The virtual tangent bundle T virZ is defined in the K-theory of Z as the difference

(E0)∨ − (E−1)∨ .

We define the virtual Euler characteristic

(36) evir(Z) =

∫
[Z]vir

cd(T
virZ) ,

see also [10]. Virtual Euler characteristics are deformation invariants.

In particular, if Z is nonsingular with a locally free obstruction bundle B, then

[Z]vir = e(B) ∩ [Z]

and the virtual tangent bundle is the difference TZ −B. By definition, we obtain

(37) evir(Z) =

∫
Z
e(B) · c(TZ)

c(B)
.

4.3.2. Proof of Theorem 18 for N = 1. We must prove

(38)
∞∑
n=0

qn · evir
(
X [n]

)
=

(
(1− q)2

1− 2q

)K2
X

.

Proof. We observed in Lemma 34 that the Hilbert schemes X [n] have locally free ob-

struction sheaves
(
K

[n]
X

)∨
. By (37), the virtual Euler characteristics are

evir(X [n]) =

∫
X[n]

e
(

(K
[n]
X )∨

)
· c(TX [n])

c
(

(K
[n]
X )∨

) .
The above rewriting of the virtual Euler characteristic shows, via [8, Theorem 4.5], that

expression (38) takes the universal form

U(q)K
2
X · V(q)c2(X) .

To prove

U(q) = (1− q)2 · (1− 2q)−1 , V(q) = 1 ,

we may specialize to surfaces X which admit a nonsingular canonical curve

C ⊂ X .

By (32), we have the embedding

ι : C [n] ↪→ X [n]
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and furthermore, by (33), we have[
X [n]

]vir
= e

(
(K

[n]
X )∨

)
∩X [n] = (−1)n ι?

[
C [n]

]
.

We conclude

evir(X [n]) = (−1)n
∫
C[n]

ι?
c(TX [n])

c
(

(K
[n]
X )∨

) .
Going further, let Θ = OC(C) be the theta characteristic of C. If Z ⊂ C, consider the

exact sequence

0→ OX(−C)→ IZ/X → ι?IZ/C → 0.

Taking Hom(,OZ) we find

0→ TC [n] → ι?TX [n] → Θ[n] → 0 =⇒ ι?c(TX [n]) = c(Θ[n]) · c(TC [n]) .

Moreover, we have

ι?K
[n]
X = Θ[n] .

We conclude

(39) evir(X [n]) = (−1)n
∫
C[n]

c(Θ[n]) · c(TC [n])

c
(
(Θ[n])∨

) .

There are now several ways to evaluate the integral (39), but the most direct path is

to use Theorem 3. We observe

TC [n] =
(
K

[n]
C

)∨
.

Then, we have

evir(X [n]) = (−1)n
∫
C[n]

c(Θ[n]) · c
(

(K
[n]
C )∨

)
c
(
(Θ[n])∨

)
= (−1)n

∫
C[n]

s1((−Θ)[n]) · s−1((−KC)[n]) · s−1(Θ[n]) .

Invoking Theorem 3, we find

∞∑
n=0

qn · evir
(
X [n]

)
= ZC,1(−q, x1 = 1, x2 = −1, x3 = −1 |α1 = −Θ, α2 = −KC , α3 = Θ)

= Adegα1
1 · Adegα2

2 · Adegα3
3 · B1−g .

The change of variables specified by Theorem 3 takes the simple form

−q =
t

1− t
,

and the universal functions are

A1 = 1− t = (1− q)−1 , A2 = A3 = 1 + t = (1− 2q)(1− q)−1 , B = 1 .
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We conclude
∞∑
n=0

qn · evir
(
X [n]

)
=
(
(1− q)2 · (1− 2q)−1

)K2
X ,

which completes the proof of the N = 1 case of Theorem 18. �

Remark 36. Using the same techniques, we can also compute the virtual χ−y genera:

∞∑
n=0

qn · χvir
−y(X

[n]) =

(
(1− q) · (1− yq)

1− q − qy

)K2
X

.

Theorem 18 is then recovered in the limit y → 1.

Remark 37. For future reference, we record the following slight generalization of the

above calculations. For any nonsingular projective surface X and M → X a line bundle,

set

ZX,M =
∞∑
n=0

qn
∫
X[n]

e

((
M [n]

)∨) c(TX [n])

c
((
M [n]

)∨) .
Without the duals placed on tautological bundles, such integrals also appear in the work

[21] on stable pair invariants of local surfaces. The above calculations yield the following

result.

Corollary 38. We have

(40) ZX,M = U(q)c1(M)2 · V(q)c1(M)·KX

where

U(q) = 1− q , V(q) = (1− 2q)−1 · (1− q) .

4.3.3. Proof of Theorem 18 for higher N . Theorem 18 concerns the generating series

(41) ZEX,N,0 =
∞∑
n=0

qnevir(QuotX(CN , n)) .

For notational convenience, we will denote the series (41) by EX(q). We will follow a

strategy similar to that of the proof of Theorem 14:

(i) We will first show the factorization

EX(q) = A(q)K
2
X · B(q)χ(OX)

holds for universal power series A,B ∈ Q[[q]].

(ii) To identify the series A,B, we will use Theorem 14 to localize the calculation to

a nonsingular canonical curve

C ⊂ X .

(iii) The evaluation B = 1 will follow for formal reasons.
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(iv) To determine A, we will use equivariant localization on QuotC(CN , n) for C =

P1. We will find closed form expressions for the localization sums which will

furthermore prove the rationality of Theorem 18.

Remark 39. We warn the reader that both the statement and the proof of the torus

equivariant localization formula for virtual Euler characteristics stated in [10, Corollary

6.6 (3)] are wrong. In particular, application of [10, Corollary 6.6 (3)] to the diagonal

C?-action on CN to calculate ZEX,N,0 in terms of ZEX,1,0 will give incorrect results.10

Step (i). We first apply the virtual localization formula to prove that the series EX(q)

depends only upon K2
X and χ(OX). By definition,

evir(QuotX(CN , n)) =

∫
[QuotX(CN ,n)]vir

c(T virQuotX(CN , n))

where

T virQuotX(CN , n) = Ext0(S,Q)− Ext1(S,Q)

is the virtual tangent bundle. By the virtual localization formula of [17], we obtain

evir(QuotX(CN , n)) =
∑

n1+...+nN=n

∫
[X[n1]×···×X[nN ]]

vir

ι?c(T virQuotX(CN , n))

eC?(N[n1, . . . , nN ]vir)
.

Using

ι?T virQuotX(CN , n) =
⊕
i,j

Ext•(IZi ,OZj )[wj − wi]

and

N[n1, . . . , nN ]vir =
⊕
i 6=j

Ext•(IZi ,OZj )[wj − wi] ,

we rewrite the right hand side of the virtual localization as∑
n1+...+nN=n

∫
X[n1]×···×X[nN ]

N∏
i=1

e
(

(K
[ni]
X )∨

)
· c(Ext•(IZi ,OZi)) ·

∏
i 6=j

c(Ext•(IZi ,OZj )[wj − wi])
e(Ext•(IZi ,OZj )[wj − wi])

.

As in [16, Theorem 5.1], each Hilbert scheme integral depends solely on the Chern

numbers of the surface X, so EX(q) is a function of

K2
X and χ(OX) .

By splitting the surface X = X ′ tX ′′, we see

QuotX(CN , n) =
⊔

n′+n′′=n

QuotX′(CN , n′)×QuotX′′(CN , n′′)

10B. Fantechi and L. Göttsche agree with Remark 39 about the error in part (3), but confirm that
parts (1) and (2) of [10, Corollary 6.6] are correct.
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with a splitting also of the obstruction theory. We therefore conclude

EX(q) = EX′(q) · EX′′(q) ,

which implies the factorization

EX(q) = A(q)K
2
X · B(q)χ(OX) .

Step (ii). When C ⊂ X is a nonsingular canonical curve, we can apply the result of

Lemma 34 to write

ι?
[
QuotC(CN , n)

]
= (−1)n

[
QuotX(CN , n)

]vir
.

Here

ι : QuotC(CN , n)→ QuotX(CN , n)

is the natural inclusion [
CN ⊗OC → Q

]
7→
[
CN ⊗OX → Q

]
.

As a consequence, we obtain

evir(QuotX(CN , n)) =

∫
[QuotX(CN ,n)]vir

c(T virQuotX(CN , n))

= (−1)n
∫

QuotC(CN ,n)
c(ι?T virQuotX(CN , n))

= (−1)n
∫

QuotC(CN ,n)
c(TQuotC(CN , n)) · c(Tn).

Here, Tn → QuotC(CN , n) is the virtual bundle given pointwise by

Tn = Ext•C(Q,Q⊗Θ) ,

where Θ = NC/X is the associated theta characteristic. The last line follows from the

K-theoretic decomposition

(42) ι?T virQuotX(CN , n) = TQuotC(CN , n) + Tn .

To prove (42), let SC denote the kernel of the surjection

CN ⊗OC → Q→ 0

on the curve C, and let S denote the kernel of the similar surjection

CN ⊗OX → Q→ 0

on the surface X. The splitting (42) is a consequence of the following computation:

Ext•X(S,Q)− Ext•C(SC , Q) = −Ext•X(Q,Q) + Ext•C(Q,Q)

= −Ext•C(Q,Q⊗Θ)[−1] .
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For the first equality, we have expressed S, SC in terms of Q in the K-theory of X and

C. The second equality follows from the exact sequence

. . .→ ExtiC(Q,Q)→ ExtiX(Q,Q)→ Exti−1
C (Q,Q⊗Θ)→ . . .

provided by [54, Lemma 3.42].

Step (iii). By (ii), we are now left to evaluating the generating series

EC(q) =
∑

qn(−1)n ·
∫

QuotC(CN ,n)
c(TQuotC(CN , n)) · c(Tn).

By the argument in part (ii), the answer takes the form

EC(q) = A(q)1−g

with g the genus of C. The second series B(q) = 1 since there is no χ(OX)-dependence

in the curve integral above.

Step (iv). To determine the series A, we specialize first to the N = 2 case. We prove

A(q) =
(1− 4q)2

(1− q)2 · (1− 6q + q2)
.

The problem at hand is now purely a curve calculation. We can therefore discard the

surface X and concentrate on the curve C. To find A, we take

C = P1 .

Our goal is then to prove the second equality in the equation

A(q) =
∞∑
n=0

qn(−1)n ·
∫

QuotP1 (C2,n)
c(TQuotP1(C2, n)) · c(Tn)(43)

=
(1− 4q)2

(1− q)2 · (1− 6q + q2)
.

We will apply C?-equivariant localization on QuotP1(C2, n). We write

C2 = C[w1]⊕ C[w2]

for the weights of the diagonal C?-action on C2. The fixed loci are

F[n1, n2] = C [n1] × C [n2] = Pn1 × Pn2
ι
↪→ QuotP1(C2, n) .

The fixed points correspond to the exact sequences

0→ IZ1 ⊕ IZ2 → C2 ⊗OP1 → OZ1 ⊕OZ2 → 0 .

Thus, by Atiyah-Bott localization, we find

(44)

∫
QuotP1 (C2,n)

c(TQuotP1(C2, n)) · c(Tn) =
∑

n1+n2=n

∫
Pn1×Pn2

Contr(n1, n2) .
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Here, we set

Contr(n1, n2) =
c(ι?TQuotP1(C2, n)) · c(ι?Tn)

eC?(N[n1, n2])

for the contribution of the (n1, n2)-fixed locus, where N[n1, n2] denotes the normal bun-

dle. We will evaluate (44) explicitly.

For the analysis of Contr(n1, n2), the notation w = w2 − w1 will be convenient. We

compute

ι?TQuotC(C2, n) = TPn1 + TPn2 + Ext•(IZ1 ,OZ2)[w] + Ext•(IZ2 ,OZ1)[−w] .

The last two terms come from the normal bundle

N[n1, n2] = Ext•(IZ1 ,OZ2)[w] + Ext•(IZ2 ,OZ1)[−w] .

Similarly, ι?Tn can be written as

Ext•(OZ1 ,OZ1(−1)) + Ext•(OZ2 ,OZ2(−1))

+Ext•(OZ1 ,OZ2(−1))[w] + Ext•(OZ2 ,OZ1(−1))[−w].

We now explicitly compute the various tautological structures appearing above. The

arguments follow the proof of [36, Theorem 2]. We observe that the universal subschemes

Z1 ⊂ P1 × Pn1 , Z2 ⊂ P1 × Pn2

take the form

O(−Z1) = OP1(−n1) �OPn1 (−1) , O(−Z2) = OP1(−n2) �OPn2 (−1) .

We require the following three calculations:

Ext•(OZ1 ,OZ1(−1)) = Ext•(O −O(−Z1),OP1(−1)−O(−Z1)⊗OP1(−1))

= Ext•(O −OP1(−n1) �OPn1 (−1),OP1(−1)−OP1(−n1 − 1) �OPn1 (−1))

= Cn1 ⊗OPn1 (−1)− Cn1 ⊗OPn1 (1) ,

Ext•(IZ1 ,OZ2) = Cn1+1⊗OPn1 (1)−Cn1−n2+1⊗OPn1 (1)⊗OPn2 (−1) ,

Ext•(OZ1 ,OZ2(−1)) = −Cn1 ⊗OPn1 (1) +Cn2 ⊗OPn2 (−1) +Cn1−n2 ⊗OPn1 (1)⊗OPn2 (−1) .

As a consequence, we find

ι?TQuotC(C2, n) + ι?Tn
can be calculated as

TPn1 +TPn2 + (Cn1 ⊗OPn1 (−1)− Cn1 ⊗OPn1 (1)) + (Cn2 ⊗OPn2 (−1)− Cn2 ⊗OPn2 (1))

+ (OPn1 (1) + Cn2 ⊗OPn2 (−1)−OPn1 (1) ⊗ OPn2 (−1)) [w]

+ (OPn2 (1) + Cn1 ⊗OPn1 (−1)−OPn1 (−1) ⊗ OPn2 (1)) [−w] .
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We also have

N[n1, n2] =
(
Cn1+1 ⊗OPn1 (1)− Cn1−n2+1 ⊗OPn1 (1) ⊗ OPn2 (−1)

)
[w]

(45) +
(
Cn2+1 ⊗OPn2 (1)− Cn2−n1+1 ⊗OPn1 (−1) ⊗ OPn2 (1)

)
[−w].

We write h1 and h2 for the hyperplane classes on Pn1 and Pn2 respectively. After

substituting the last equation into (44), we find∫
QuotP1 (C2,n)

c(TQuotP1(C2, n)) · c(Tn) =
∑

n1+n2=n

∫
Pn1×Pn2

Contr(n1, n2) ,

where Contr(n1, n2) is given by

(1− h1)n1(1 + h1)(1− h2)n2(1 + h2)(1 + h1 + w)(1− h2 + w)n2(1 + h2 − w)(1− h1 − w)n1

(1 + h1 − h2 + w)(1− h1 + h2 − w)

·(w + h1 − h2)n1−n2+1(−w − h1 + h2)n2−n1+1

(h1 + w)n1+1(h2 − w)n2+1
.

While the expression may seem unwieldy, nonetheless, we will be able to sum the

localization contributions explicitly via the Lagrange-Bürmann formula. We write

(46) Φ1(h1) = (1− h1) · (1− h1 − w) · (h1 + w)−1

Φ2(h2) = (1− h2) · (1− h2 + w) · (h2 − w)−1

Ψ(h1, h2) = (1+h1)·(1+h2)·(1+h1+w)·(1+h2−w)·(1+h1−h2+w)−1 ·(1−h1+h2−w)−1

(h1 + w)−1 · (h2 − w)−1 · (w + h1 − h2)2.

We obtain

Contr(n1, n2) = (−1)n+1 · Φ1(h1)n1 · Φ2(h2)n2 ·Ψ(h1, h2) .

The sign in the last equality is a consequence of rewriting the numerator of the normal

bundle:

(w − h1 + h2)n1−n2+1(−w − h1 + h2)n2−n1+1 = (−1)n+1(w + h1 − h2)2 .

Therefore, we have

A(q) =

∞∑
n=0

qn(−1)n ·
∫

QuotP1 (CN ,n)
c(TQuotP1(CN , n)) · c(Tn)

= −
∞∑
n=0

qn
∑

n1+n2=n

∫
Pn1×Pn2

Φ1(h1)n1 · Φ2(h2)n2 ·Ψ(h1, h2)

= −
∞∑
n=0

∑
n1+n2=n

qn · [hn1
1 · h

n2
2 ] (Φ1(h1)n1 · Φ2(h2)n2 ·Ψ(h1, h2)) .

As before, the brackets indicate taking the suitable coefficient of the expression following

it. Omitted from the notation is the fact that we also need to take the w-free term at

the end.
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The multivariable Lagrange-Bürmann formula of [11, Theorem 2 (4.4)] is:

(47)
∑

n1,n2≥0

tn1
1 tn2

2 · [h
n1
1 · h

n2
2 ] (Φ1(h1)n1 · Φ2(h2)n2 ·Ψ(h1, h2)) =

Ψ

K
(h1, h2)

for the change of variables

t1 =
h1

Φ1(h1)
, t2 =

h2

Φ2(h2)

and for

K(t1, t2) =

(
1− t1

Φ1(t1)
· Φ′1(t1)

)
·
(

1− t2
Φ2(t2)

· Φ′2(t2)

)
.

In our case, by (46), we have

(48) t1 =
h1(h1 + w)

(1− h1)(1− h1 − w)
, t2 =

h2(h2 − w)

(1− h2)(1− h2 + w)
.

Using (46) again, by direct calculation, we find Ψ
K (h1, h2) equals

(1− h2
1) · (1− (w + h1)2) · (1− h2

2) · (1− (w − h2)2) · (w + h1 − h2)2

(2h2
1 + 2h1(w − 1) + w(w − 1)) · (2h2

2 − 2h2(w + 1) + w(w + 1)) · (1− (w + h1 − h2)2)
.

We set t1 = t2 = q and use the above equations (48) to solve

h1 = − q

1− q
− w

2
+

√
q

(1− q)2
+
w2

4
, h2 = − q

1− q
+
w

2
−

√
q

(1− q)2
+
w2

4
.

A direct computation then shows that

Ψ

K
(h1(q), h2(q)) = − (1− w2)− 4q(2− w2) + 4q2(4− w2)

(1− q)2(1− w2 − 2q(3− w2) + q2(1− w2))

so that
Ψ

K
(h1(q), h2(q))

∣∣
w=0

= − (1− 4q)2

(1− q)2(1− 6q + q2)
.

Therefore,

A(q) = −
∞∑
n=0

∑
n1+n2=n

qn · [hn1
1 · h

n2
2 ] (Φn1

1 · Φ
n2
2 ·Ψ) =

(1− 4q)2

(1− q)2(1− 6q + q2)
.

We have completed the proof of the N = 2 case of Theorem 18. �

4.3.4. The case N > 2. . The calculation of ZEX,N=2,0 presented above can be exactly

followed for all higher N . The universal series UN of Theorem 18 is determined by the

equation

(49) U−1
N =

∞∑
n=0

qn(−1)n ·
∫

QuotP1 (CN ,n)
c(TQuotP1(CN , n)) · c(Tn) ,

where Tn is the bundle

Tn = Ext•P1(Q,Q⊗O(−1)) .
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Localization with respect to the diagonal C?-action on CN yields∫
QuotP1 (CN ,n)

c(TQuotP1(CN , n)) · c(Tn) =
∑

n1+...+nN=n

∫
Pn1×···×PnN

Contr(n1, . . . , nN ) .

By an explicit analysis of Contr(n1, . . . , nN ), we can write

(50) Contr(n1, . . . , nN ) = (−1)n(N−1)+(N2 ) · Φ1(h1)n1 · · ·ΦN (hN )nN ·Ψ(h1, . . . , hn)

for rational functions

Φi(hi) =
N∏
j=1

(1− hi + wi − wj) ·
∏
j 6=i

(hi + wj − wi)−1 ,

Ψ =
∏
i

(1 + hi) ·
∏
i<j

(hi − hj + wj − wi)2

·
∏
j 6=i

(1 + hi + wj − wi) · (1 + hi − hj + wj − wi)−1 · (hi + wj − wi)−1 ,

which depend upon N . After applying the Lagrange-Bürmann formula with

ti =
hi

Φi(hi)
= hi ·

N∏
j=1

(1− hi + wi − wj)−1 ·
∏
j 6=i

(hi + wj − wi) ,

we find∑
n1,...,nN

tn1
1 · · · t

nN
N ·
(
[hn1

1 · · ·h
nN
N ] Φ1(h1)n1 · · ·ΦN (hN )nN ·Ψ(h1, . . . , hn)

)
=

Ψ

K
(h1, . . . , hN ) .

After setting

t1 = . . . = tN = q(−1)N

the series (49) becomes

(51) U−1
N = (−1)(

N
2 ) · Ψ

K
(h1, . . . , hN )

where hi solves the equation

q(−1)N =

N∏
j=1

hi + wj − wi
1− hi + wi − wj

.

We must select the analytic solution hi(q) with

hi|q=0 = 0.

We prefer however to work with a single equation. Let H1, . . . ,HN be all solutions to

the i = 1 equation

q(−1)N =

N∏
j=1

h+ wj − w1

1− h+ wj − w1
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with initial values Hj(q = 0) = w1 − wj . Then, by direct computation, we see that

hi = Hi + wi − w1

solves the ith equation. By (51), we obtain

(52) U−1
N = (−1)(

N
2 ) · Ψ

K
(H1, H2 + w1 − w2, . . . ,HN + wN − w1) .

Using the explicit expressions of Ψ and K, we see that the right hand side of (52) is sym-

metric in H1, . . . ,HN . Since symmetric functions in H1, . . . ,HN are rational functions

in w and q (with possible poles at q = 1), the same is true of U−1
N .

In fact, there are no poles of U−1
N at w = 0. Indeed, after setting the equivariant

weights to 0, the series (52) is expressed as a symmetric rational function in the N roots

hi = ri of the polynomial equation

(53) q(−1)N = hN (1− h)−N .

A direct computation shows that the expression (52) becomes

U−1
N = (−1)(

N
2 ) ·

∏N
i=1

(
(1− ri) · (1 + ri)

N
)
·
∏
i<j(ri − rj)2

NN (r1 · · · rN )N−1
·
∏
i<j

(1− (ri − rj)2)−1.

We write

f(h) =
hN − (h− 1)Nq

1− q
=

N∏
i=1

(h− ri)

for the normalized equation (53). Then,

N∏
i=1

(1 + ri) = (−1)Nf(−1) =
1− 2Nq

1− q
,

N∏
i=1

(1− ri) ·
∏
i<j(ri − rj)2

NN (r1 · · · rN )N−1
= (−1)(

N
2 )

N∏
i=1

(1− ri) · f ′(ri)
NrN−1

i

= (−1)(
N
2 ) ·

N∏
i=1

1

1− q
.

Therefore, we find

(54) UN =
(1− q)2N

(1− 2Nq)N
·
∏
i 6=j

(1− (ri − rj)2) .

We can easily calculate UN for each N from formula (54) by elementary algebra. For

instance

U3 =
(1− q)2(1− 22q + 150q2 − 22q3 + q4)

(1− 8q)3
,

U4 =
(1− q)2(1− 62q + 1407q2 − 15492q3 + 1407q4 − 62q5 + q6)

(1− 16q)4
.
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Moreover, since (54) is clearly a symmetric rational function of the roots r1, . . . , rN , the

series UN is a rational function in the elementary symmetric functions of the roots and

hence a rational function of q. �

4.4. Proof of Theorem 8. The methods of Section 4.3 can also be used to give a proof

of the second part of Theorem 8:

B1,N (q) =
(1 + t)N+1

1 + (N + 1)t
for q = (−1)N t(1 + t)N .

The first part of Theorem 8 was proven in Section 3.5.

Recall the A and B-series defined by
∞∑
n=0

qn
∫
QuotC(CN ,n)

s(L[n]) = Adeg L
1,1,N · B1,N (q)1−g ,

for a line bundle L→ C. After specializing to C = P1 and L = OP1 , we obtain

B1,N (q) =
∞∑
n=0

qn
∫
QuotP1 (CN ,n)

s(O[n]) .

As usual, we set B(q) = B1,N (q) for notational convenience.

Consider the standard C?-action on QuotP1(CN , n) with weights w1, . . . , wN . In order

to keep the notation manageable, we specialize to N = 2 (the argument for arbitrary N

is exactly parallel). By localizing, we obtain

B(q) =
N∑
n=0

qn
∑

n1+n2=n

Contr(n1, n2) ,

where each fixed locus Pn1 × Pn2 contributes

Contr(n1, n2) =

∫
Pn1×Pn2

s(O[n1][w1]) · s(O[n2][w2])

eC?(N[n1, n2])
.

Using Lemma 27, we find

s(O[ni][wi]) = (1− wi)−1 · (1− hi + wi)
−ni+1 .

For the normal bundle, we use equation (45):

eC?(N[n1, n2]) = (−1)n+1 · (h1 +w2−w1)n1+1 · (h2 +w1−w2)n2+1 · (h1−h2 +w2−w1)−2 .

We define

Φ1(h1) = (1− h1 + w1)−1 · (h1 + w2 − w1)−1 ,

Φ2(h2) = (1− h2 + w2)−1 · (h2 + w1 − w2)−1 ,

Ψ = (1− w1)−1 · (1− w2)−1 · (1− h1 + w1) · (1− h2 + w2)

· (h1 + w2 − w1)−1 · (h2 + w1 − w2)−1 · (h1 − h2 + w2 − w1)2 .
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Therefore,

Contr(n1, n2) = (−1)n+1 ·
∫
Pn1×Pn2

Φ1(h1)n1 · Φ2(h2)n2 · Ψ(h1, h2)

which gives

B(q) = −
∞∑
n=0

∑
n1+n2=n

(−q)n · ([hn1
1 · h

n2
2 ] Φ1(h1)n1 · Φ2(h2)n2 · Ψ(h1, h2)) .

Using Lagrange-Bürmann inversion, we find

B(q) = −Ψ

K
(h1, h2)

for the change of variables

−q =
h1

Φ1(h1)
= h1 · (1− h1 + w1) · (h1 + w2 − w1) ,

−q =
h2

Φ2(h2)
= h2 · (1− h2 + w2) · (h2 + w1 − w2) .

The first of the two equations

−q = h · (1− h+ w1) · (h+ w2 − w1)

has two solutions H1(q) and H2(q) with

H1(0) = 0 , H2(0) = w1 − w2 .

The root of the second equation

−q =
h2

Φ2(h2)
= h2 · (1− h2 + w2) · (h2 + w1 − w2)

with initial value 0 at q = 0 is then

(55) H̃2(q) = H2(q) + w2 − w1 .

Equation (55) is easily seen by direct substitution. We conclude

B(q) = −Ψ

K

(
H1(q), H̃2(q)

)
= −Ψ

K
(H1(q), H2(q) + w2 − w1) .

Further direct calculation shows

B(q) = −Ψ

K
(H1, H2 + w2 − w1)

equals

− (1−H1 + w1)2 · (1−H2 + w1)2 · (H1 −H2)2∏2
i=1(1− wi) · (3H2

i − 2Hi · (1 + 2w1 − w2) + (1 + w1) · (w1 − w2))
.

We finally take the limit w1, w2 → 0. Write h1, h2 for the two roots of the equation

−q = h2(1− h) , h1(0) = h2(0) = 0 .
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These are power series in q1/2. In the limit wi → 0, we obtain

B(q) = −(1− h1)2 · (1− h2)2 · (h1 − h2)2

(3h1 − 2) · (3h2 − 2) · (h1h2)
.

For general N , a similar analysis yields

B(q) = (−1)(
N+1

2 ) ·
∏
i<j(hi − hj)

2 · (h1 · · · hN )−(N−1) ·
∏
i(1− hi)

2∏
i((N + 1)hi −N)

where h1, . . . , hN solve the equation

(56) (−1)N−1q = hN (1− h) , hi(0) = 0 .

Equation (56) has an additional solution h(q) with h(0) = 1, which we can express in

simple form. Indeed, if

q = (−1)N t(1 + t)N ,

then by direct verification

h(q) = 1 + t .

To complete the proof of Theorem 8, we must show

B(q) =
hN+1

(N + 1)h−N
=

(1 + t)N+1

1 + (N + 1)t
.

Equivalently, we prove the identity

(57) (−1)(
N+1

2 ) ·
∏
i<j(hi − hj)

2 · (h1 · · · hN )−(N−1) ·
∏
i(1− hi)

2∏
i((N + 1)hi −N)

=
hN+1

(N + 1)h−N
.

The identity (57) is straightforward to check. Let

f(h) = hN (h− 1)− q(−1)N = (h− h)

N∏
i=1

(h− hi) .

After setting h = 1, we obtain

N∏
i=1

(1− hi) = −q(−1)N

1− h
.

We compute

f ′(h) = hN−1((N + 1)h−N) .

In particular, we find

f ′(hi) = (hi − h) ·
∏
j 6=i

(hi − hj) = hN−1
i ((N + 1)hi −N)

f ′(h) =

N∏
i=1

(h− hi) = hN−1((N + 1)h−N).
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Therefore,

(−1)(
N+1

2 )
∏
i<j

(hi − hj)
2 =

∏N
i=1 f

′(hi)

f ′(h)
=

∏N
i=1 h

N−1
i ((N + 1)hi −N)

hN−1((N + 1)h−N)
.

After substitution, the left hand side of equation (57) becomes(
−q(−1)N

1− h

)2

· 1

hN−1((N + 1)h−N)
=

hN+1

(N + 1)h−N
,

where equation (56) was used in the last step. �

The same method can be used to determine the series Br,N for arbitrary values of

r = rank (V ). While in general the formulas are less explicit, for rank (V ) = 2 and

N = 2, we obtain

B2,2(−t2) =

(
1 +
√

1− 4t
)4 · (1 +

√
1 + 4t

)4 · (1−
√

1− 16t2
)

2048t2 ·
√

1− 16t2
.

5. Virtual invariants of surfaces: dimension 1 quotients

5.1. Overview. Let X be a nonsingular, simply connected, projective surface, and let

D an effective divisor on X. We compute here invariants associated to the scheme

QuotX(CN , n,D) of short exact sequences

0→ S → CN ⊗OX → Q→ 0, χ(Q) = n , c1(Q) = D , rank(Q) = 0 .

In particular, we will prove Proposition 20, Theorem 21, and Theorem 23.

5.2. Tangent-obstruction theory. Since X is simply connected, the Hilbert scheme

of curves is isomorphic to

QuotX(C1, n,D) ' X [m] × P

where P = |D|. Here

m = n+
D(D +KX)

2
= n+ (g − 1) ,

where g is the genus of a nonsingular curve in the linear series |D|. Indeed, to each pair

(Z,C) with C ∈ |D|, we can associate the sequence

0→ IZ(−C)→ OX → Q→ 0 .

While the actual dimension is 2m + h0(D) − 1, the expected dimension of the Hilbert

scheme equals

m+
D(D −KX)

2
.

The first term m comes from the Hilbert scheme of points, while the second is the virtual

dimension of |D| endowed with its natural obstruction theory as a Hilbert scheme.
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We calculate the tangent-obstruction theory, following [35], in case m > 0. Let

L → |D| and Z ⊂ X [m] ×X

denote the tautological bundleO|D|(1) and the universal subscheme of the Hilbert scheme

respectively. Over QuotX(C1, n,D), we compute

Tan−Obs = Ext•(S,Q)

= Ext•(IZ ⊗OX(−D)⊗ L−1,O − IZ ⊗OX(−D)⊗ L−1)

= Ext•(IZ ⊗OX(−D)⊗ L−1,O)− Ext•(IZ , IZ)

= Ext•(IZ ⊗OX(−D),O)⊗ L− Ext•(IZ , IZ)

= H•(X,OX(D))⊗ L− Ext•(OZ ⊗OX(−D),O)⊗ L− Ext•(IZ , IZ) .

Two further calculations are needed. First,

Ext•(IZ , IZ) = Ext0(IZ , IZ)− Ext1(IZ , IZ) + Ext2(IZ , IZ) = C− TX [m] +H0(KX)∨ ,

where we have used that X is simply connected and Serre duality in the second equality.

Second,

Ext•(OZ ⊗OX(−D),O) = Ext0(OZ ⊗OX(−D),O)− Ext1(OZ ⊗OX(−D),O)

+Ext2(OZ ⊗OX(−D),O)

= H0(KX(−D)⊗OZ)∨ ,

where we used vanishing for dimension reasons and Serre duality. Substituting, we find

Tan−Obs = H•(X,OX(D))⊗ L−
(

(KX(−D))[m]
)∨
⊗ L+ TX [m] − C−H0(KX)∨

= T P−H1(X,OX(D))⊗ L+H2(X,OX(D))⊗ L

−
(

(KX(−D))[m]
)∨
⊗ L+ TX [m] −H0(KX)∨.

For the second equality, we have also used the Euler sequence

0→ O → H0(X,O(D))⊗ L → Tan P → 0 .

In conclusion, we see that the K-theory class of the obstruction bundle equals

H1(X,OX(D))⊗ L−H2(X,OX(D))⊗ L+
(

(KX(−D))[m]
)∨
⊗ L+H0(KX)∨.

After setting M = KX −D, we can rewrite obstruction bundle as

(58) Obs = (H1(M)−H0(M) +M [m])∨ ⊗ L+H0(KX)∨.

By the definition of the virtual Euler characteristic,

evir(QuotX(C1, n,D)) =

∫
X[m]×P

e(Obs)
c(TX [m]) c(TP)

c(Obs)
.
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5.3. Examples (N = 1). We illustrate the calculations above by examples correspond-

ing to several different geometries.

5.3.1. Rational surfaces. A rich theory is obtained when X is a rational surface. Since

H0(KX) = 0 for rational surfaces, the obstruction bundle simplifies to

Obs = (H1(M)−H0(M) +M [m])∨ ⊗ L.

Proof of Proposition 20. Let X be the blow-up of a rational surface at one point with

exceptional divisor E. Take D = E so that

Obs =
(
M [m]

)∨
.

Thus

evir(QuotX(C1, n, E)) =

∫
X[m]

e

((
M [m]

)∨) c(TX [m])

c
((
M [m]

)∨) .
Such integrals have been computed in equation (40) of Corollary 38. We find

∞∑
n=1

qn−1evir(QuotX(C1, n, E)) =
(
(1− q)2(1− 2q)−1

)K2
X+1

.

5.3.2. K3 surfaces. Let X be a K3 surface, and let D be a primitive big and nef curve

class. In particular, we have

H0(M) = H1(M) = 0.

We write g for the genus of D. The obstruction bundle

Obs =
(
M [m]

)∨
⊗ L+H0(KX)∨

has a trivial summand. As a result, all virtual invariants vanish.

A reduced obstruction bundle can be defined by removing the trivial factor. With the

new obstruction theory, we find

(59) ered(QuotX(C1, n,D)) =

∫
X[m]×P

e

((
M [m]

)∨
⊗ L

)
c(TX [m]) c(TP)

c(
(
M [m]

)∨ ⊗ L)
,

for M = OX(−D).

Proof of Theorem 21. Without the dual placed on the tautological bundle M [m], integrals

similar to (59) also appear in Göttsche’s conjecture and are computed by the Kawai-

Yoshioka formula (11):

(60) Ng,n =

∫
X[m]×P

e
(
D[m] ⊗ L

) c(TX [m]) c(TP)

c(D[m] ⊗ L)
.

This was noted in [22, Section 4].
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To prove the claim of Theorem 21,

ered(QuotX(C1, n,D)) = Ng,n ,

we will use formulas (59) and (60). Since X [m] is holomorphic symplectic, we can replace

the tangent bundle in (59) with the isomorphic cotangent bundle. Thus, we must show

∫
X[m]×P

e

((
M [m]

)∨
⊗ L

) c
((
TX [m]

)∨)
c(TP)

c(
(
M [m]

)∨ ⊗ L)

=

∫
X[m]×P

e
(
D[m] ⊗ L

) c(TX [m]) c(TP)

c(D[m] ⊗ L)
.

After integrating out the hyperplane class on P, we are led to the statement∫
X[m]

P

(
ci

((
M [m]

)∨)
, cj

((
TX [m]

)∨))
=

∫
X[m]

P
(
ci(D

[m]), cj(TX
[m])
)

where P is a uniquely defined universal polynomial in the Chern classes of various tau-

tological bundles on the Hilbert scheme X [m]. After removing the duals (since X [m] is

even dimensional), we must show

(61)

∫
X[m]

P
(
ci(M

[m]), cj(TX
[m])
)

=

∫
X[m]

P
(
ci(D

[m]), cj(TX
[m])
)
.

Equality (61) is then a consequence of [8, Theorem 4.1]. Expressions such as the ones

in (61) are given by universal formulas in the Chern numbers. For the left hand side,

these Chern numbers are

c1(M)2 , K2
X , c1(M) ·KX , c2(X) .

The right hand side is similar, with the relevant numbers being

c1(D)2 , K2
X , c1(D) ·KX , c2(X) .

Since X is a K3 surface, all the Chern numbers match, including

c1(M) ·KX = c1(D) ·KX = 0 ,

which may in general sign change. �

The case D = 0 is not covered by Theorem 21. However, in the K3 case, we can

consider the reduced theory of the Hilbert scheme of points X [n] obtained by removing

the canonical trivial factor from the obstruction bundle
(
O[n]

)∨
. The reduced virtual

dimension is n+ 1, and the obstruction bundle equals

Obs =
(
O[n] −O

)∨
→ X [n] .

While the question does not involve any curve classes, the calculation below makes use

of Theorem 21 for curves of genus 1.
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Proposition 40. We have
∞∑
n=1

qnered(X [n]) =
24q

(1− q)2
.

Proof. We have

ered(X [n]) =

∫
X[n]

e(Obs) · c(TX
[n])

c(Obs)
=

∫
X[n]

e

((
O[n] −O

)∨) c(TX [n])

c
((
O[n] −O

)∨) .
For n > 0, we will prove

(62) ered(X [n]) = N1,n .

We start by writing α1, . . . , αn for the roots of O[n] with the convention that α1 = 0

corresponds to the trivial summand of the obstruction bundle. Then, claim (62) becomes

(63)

∫
X[n]

n∏
i=2

−αi
1− αi

· c(TX [n]) = N1,n .

By deformation invariance, we may assume X is an elliptically fibered K3 with fiber

class f . We apply Theorem 21 for the curve class D = f . The associated line bundle D

has no higher cohomology, and the proof of Theorem 21 applies even though D is not

big. We find

N1,n =

∫
X[n]×P1

e

((
M [n]

)∨
⊗ L

)
c(TX [n]) c(TP1)

c(
(
M [n]

)∨ ⊗ L)
,

where M = OX(−f).

We write µ1, . . . , µn for the roots of M [n], and let ζ be the hyperplane class on the

projective line. The above integral becomes

N1,n =

∫
X[n]×P1

n∏
i=1

ζ − µi
1 + ζ − µi

· c(TX [n])(1 + 2ζ)

=

∫
X[n]

2

n∏
i=1

−µi
1− µi

+
n∑
i=1

1

(1− µi)2

∏
j 6=i

−µj
1− µj

 c(TX [n]) ,

where, in the second equality, we have integrated out the hyperplane class on P1. The

resulting integral is a universal polynomial in the quantities

(64) M2 , M ·KX , K2
X , c2(X) .

Indeed, the expression

2
n∏
i=1

−µi
1− µi

+
n∑
i=1

1

(1− µi)2

∏
j 6=i

−µj
1− µj

can be written in terms of the Chern classes of M [n]. The claimed universality then

follows from [8, Theorem 4.1].
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Since the four numerical invariants (64) are the same if M = −f or M = 0, we are

free to replace the µi’s by the αi’s without changing the answer. Therefore,

N1,n =

∫
X[n]

2

n∏
i=1

−αi
1− αi

+

n∑
i=1

1

(1− αi)2

∏
j 6=i

−αj
1− αj

 c(TX [n]) .

Since α1 = 0, we obtain

N1,n =

∫
X[n]

∏
j 6=1

−αj
1− αj

· c(TX [n]) ,

as claimed in (63).

Finally, using the Kawai-Yoshioka formula (11), we find

N1,n = [q · yn]

(
√
y − 1
√
y

)−2 ∞∏
n=1

1

(1− qn)20(1− yqn)2(1− y−1qn)2
= 24n ,

for n > 0. �

5.3.3. Surfaces of general type. Let X be a nonsingular, simply connected, projective

surface of general type with pg(X) > 0. For D = KX , The obstruction bundle (58) takes

the form

Obs = (O[m] −O)∨ ⊗ L+H0(KX)∨ .

Due to the presence of a trivial summand, the virtual Euler characteristic vanishes

evir(QuotX(C1, n,KX)) = 0

for m > 0. The case

m = 0 ⇐⇒ n = −K2
X

is special, yielding the answer

evir(QuotX(C1, n,KX)) =

∫
P

1

c(L)
= (−1)pg+1 = (−1)χ(OX),

in agreement with [5, 7].

Proof of Proposition 22. Let D be an arbitrary effective curve class. To start, we take

N = 1 and assume

D 6= 0 , D 6= KX ,

since these cases have already been considered. Recall

Obs = (H1(M)−H0(M) +M [m])∨ ⊗ L+H0(KX)∨.

If M = KX − D is not effective, then H0(M) = 0. The virtual class is then forced to

vanish by the trivial summand H0(KX)∨ of the obstruction bundle.

We may therefore assume M to be effective. By Serre duality,

rank Obs = h1(D)− h2(D) +m+ pg .
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We also have [
QuotX(C1, n,D)

]vir
= e(Obs) ∩

[
P×X [m]

]
,

where

dimP = h0(D)− 1 .

We write h ∈ A1(P) for the hyperplane class and αi for the Chern roots of M [m] on X [m].

The virtual class then equals the degree pg +m+ h1(D)− h2(D) part of

(65) c(Obs) = (1 + h)h
1(D)−h2(D) ·

m∏
i=1

(1 + h− αi) .

The expression (65) contains terms of the form

hk · symmetric polynomial of degree at most m in the roots αi ,

where k ≤ h0(D)−1 for dimension reasons. All terms therefore have degree bounded by

(66) h0(D)− 1 +m < h1(D)− h2(D) +m+ pg .

Consequently, the Euler class vanishes.

To justify inequality (66), we use the following chain of equivalences:

h0(D)− 1 < h1(D)− h2(D) + pg ⇐⇒ χ(D) < 1 + pg = χ(OX)

⇐⇒ D · (D −KX) < 0

⇐⇒ D ·M > 0 .

The inequality D · M > 0 holds since the pair (D,M) is a nontrivial effective split-

ting of KX (the canonical class is 1-connected for minimal surfaces of general type [4,

Proposition 6.1]). The proof of Proposition 22 for N = 1 is complete.

ForN > 1, we use C?-equivariant localization. The natural C∗-action on QuotX(CN , n,D)

has fixed loci

F[(n1, D1), . . . , (nN , DN )]

indexed by all possible effective splittings

n1 + . . .+ nN = n , D1 + . . .+DN = D .

The corresponding subsheaves are

S =
N⊕
i=1

IZi ↪→ CN ⊗OX , c1(Zi) = Di , χ(OZi) = ni .

The induced virtual class of

F[(n1, D1), . . . , (nN , DN )] = QuotX(C1, n1, D1)× · · · × QuotX(C1, nN , DN )

is determined by the fixed part of

Ext•(S,Q)fix =
⊕

Ext•(IZi ,OZi)
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and, therefore, splits over the factors. Using the case N = 1 already established, in order

to obtain a nontrivial virtual fundamental class on the ith factor, we must have

Di = 0 or Di = KX =⇒ D = `KX for 0 ≤ ` ≤ N .

By the paragraph preceding the proof of Proposition 22, the choice Di = KX forces Zi

to be supported only on canonical curves, without any point contributions. �

5.4. Proof of Theorem 23. The N = 1 case of Theorem 23 is a consequence of the

calculations of Section 5.3.3. In the N = 2 case, Theorem 23 can be derived from The-

orem 3: the localization contributions can be expressed as integrals over the symmetric

product with 7 Segre factors.11 However, we will treat all the cases N ≥ 1 together using

the strategy of the the proof Theorem 18.

Let X be a nonsingular, simply connected, minimal surface of general type admitting

a nonsingular canonical curve C ⊂ X of genus

g = K2
X + 1 .

Let 0 ≤ ` ≤ N . Let

ZEX,N,`KX (q) =
∑
n∈Z

qnevir(QuotX(CN , n, `KX)) .

The formula of Theorem 23 is

ZEX,N,`KX (q) = (−1)`·χ(OX) q`(1−g) ·
∑

1≤i1<...<iN−`≤N
A(ri1 , . . . , riN−`)

1−g .

The sum is taken over all
(
N
N−`

)
choices of N − ` distinct roots of the equation

zN = q(z − 1)N .

Furthermore,

A(x1, . . . , xN−`) =
(−1)(

N−`
2 )

NN−` ·
N−`∏
i=1

(1 + xi)
N (1− xi)

xN−1
i

·
∏
i<j

(xi − xj)2

1− (xi − xj)2
.

In case ` = N , the formula is interpreted as

ZEX,N,NKX (q) = (−1)N ·χ(OX) qN(1−g) .

To prove the claimed evaluation, we consider the C?-action on QuotX(CN , n, `KX)

with weights w1, . . . , wN on the middle term of the sequence

0→ S → CN ⊗OX → Q→ 0 .

We write

n = m+ `(1− g) .

11We leave the argument to the intrepid reader.
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For convenience, we set

k = N − ` .

By the last sentence in the proof of Proposition 22, the contributing fixed loci correspond

to kernels of the form

S =
⊕̀
i=1

OX(−Di)⊕
k⊕
j=1

IZj ↪→ CN ⊗OX ,

where Di ∈ |KX | and Zj is a 0-dimensional scheme of length mj . Of course, we have

k∑
j=1

mj = m.

The weights w1, . . . , wN are distributed over the summands of S in
(
N
k

)
possible ways,

depending on the location of the curves and points. The fixed loci are therefore indexed

by tuples (m1, . . . ,mk) as well as choices of
(
N
k

)
summands of CN . For a fixed partition

(m1, . . . ,mk), there are
(
N
k

)
fixed loci all isomorphic to

F[m1, . . . ,mk] =

(∏̀
i=1

P

)
×

 k∏
j=1

X [mj ]

 .

Here, P denotes the linear series |KX |. The obstruction bundle splits into obstruction

bundles over the factors,

Obs =
∑̀
i=1

pr?i
(
H0(KX)∨ − L

)
+

 k∑
j=1

K
[mj ]
X

∨ .
We therefore obtain

[F[m1, . . . ,mk]]
vir = e

∑̀
i=1

pr?i
(
H0(KX)∨ − L

)
+

 k∑
j=1

K
[mj ]
X

∨
=

∏̀
i=1

pr?i
1

1 + c1(L)
·
k∏
j=1

e

((
K

[mj ]
X

)∨)
= (−1)`χ · (−1)mι?

(
[pt]× · · · × [pt]×

[
C [m1] × · · · × C [mk]

])
.

Here, χ = χ(OX), and, for the canonical curve C ⊂ X, we have written

ι : [pt]× · · · × [pt]×
(
C [m1] × · · · × C [mk]

)
↪→

(∏̀
i=1

P

)
×
(
X [m1] × · · · ×X [mk]

)
for the natural morphism.

We write

j : F[m1, . . . ,mk] ↪→ QuotX(CN , n, `KX)
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for the natural inclusion. The integral

evir
(
QuotX(CN , n, `KX)

)
=

∫
[QuotX(CN ,n,`KX)]vir

c(T virQuotX)

can be calculated by C?-equivariant localization. Each fixed locus F = F[m1, . . . ,mk]

yields a contribution

(67)

∫
[F[m1,...,mk]]vir

c(j? T virQuotX)

e(Nvir)
= (−1)m+`χ

∫
C[m1]×···×C[mk]

ι?
(
c(T virF) c(Nvir)

e(Nvir)

)
.

We will analyze these contributions separately. We assume the weights w1, . . . , w` are

distributed on the curve summands and the weights w`+1, . . . , wN are distributed on the

point summands. In other words, the kernels are

S =
⊕̀
i=1

OX(−Di)[wi]⊕
k⊕
j=1

IZj [wj+`] .

We will use the indices i, i′ to refer to the curve summands, while the indices j, j′ will

be reserved for the point summands. We obtain

T virF =
∑̀
i=1

TP +
k∑
j=1

TX [mj ] −Obs

=
∑̀
i=1

TP +
k∑
j=1

TX [mj ] −

∑̀
i=1

pr?i
(
H0(KX)∨ − L

)
+

k∑
j=1

(
(KX)[mj ]

)∨ ,

which yields

ι?T virF =
∑̀
i=1

Cpg−1 +
k∑
j=1

ι?TX [mj ] −

∑̀
i=1

Cpg−1 +
k∑
j=1

ι?
(

(KX)[mj ]
)∨

=

k∑
j=1

(
TC [mj ] + Θ[mj ] −

(
Θ[mj ]

)∨)

=
k∑
j=1

((
K

[mj ]
C

)∨
+ Θ[mj ] −

(
Θ[mj ]

)∨)
.

Here, Θ = OX(C)|C is the theta characteristic. The last equality was shown in the proof

of Theorem 18, see (39). There are no equivariant weights for ι?T virF.

The virtual normal bundle splits into four terms

Nvir = N1 + N2 + N3 + N4
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where

N1 =
∑̀
i=1

k∑
j=1

Ext•(OX(−Di),OZj )[wj+` − wi] ,

N2 =
∑̀
i=1

k∑
j=1

Ext•(IZj ,ODi)[wi − wj+`] ,

N3 =
∑̀
i=1

∑
i′ 6=i

Ext•(OX(−Di),ODi′ )[wi′ − wi] ,

N4 =

k∑
j=1

∑
j′ 6=j

Ext•(IZj ,OZj′ )[wj′+` − wj+`] .

We would normally include the tautological line bundle L in the expression of the sub-

sheaf, but, since we are in the end restricting to a point via ι, there is no need.

We write Nij1 for the ij-summand of N1. We find

ι?Nij1 = ι?(KX)[mj ][wj+` − wi] = Θ[mj ][wj+` − wi] .

Similarly

ι?Nij2 = ι?
(
Ext•(O −OZj ,O −K

−1
X )[wi − wj+`]

)
= ι?

(
H•(O)−H•(K−1

X )−
(

(KX)[mj ]
)∨

+
(

(K⊗2
X )[mj ]

)∨)
[wi − wj+`] ,

where we have used, suppressing indices, that

Ext•(OZ ,O) = Ext2−•(O,KX ⊗OZ)∨ =
(

(KX)[m]
)∨

,

Ext•(OZ ,K−1
X ) = Ext2−•(K−1

X ,KX ⊗OZ)∨ =
(

(K⊗2
X )[m]

)∨
.

Since

H•(O)−H•(K−1
X ) = −Cg−1 ,

we have

ι?Nij2 = −Cg−1[wi − wj+`]−
(

Θ[mj ]
)∨

[wi − wj+`] +
(
K

[mj ]
C

)∨
[wi − wj+`] .

For the third term of the virtual normal bundle,

ι?Nii
′

3 =
(
H•(O(Di))−H•(O(Di −D′i))

)
[wi′−wi] = (H•(KX)−H•(OX)) [wi′−wi] = 0.

For the fourth term, we have already computed in equation (35) of the proof of Lemma

34, for j 6= j′,

ι?
(
Njj

′

4

)
= Tjj′ + Njj′ ,
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where

Tjj′ = Ext•C(OZj ,OZj′ ⊗Θ)[wj′+` − wj+`] ,

Njj′ = Ext•C(IZj ,OZj′ )[wj′+` − wj+`] .

We also had observed there that, as a consequence of Serre duality,

e(Tjj′ + Tj′j) = 1 .

Moreover, N =
∑

j 6=j′ Njj′ is identified with the normal bundle of the fixed locus

C [m1] × · · · × C [mk] ↪→ QuotC(Ck,m) ,

where the C?-action has weights w`+1, . . . , wN on Ck.
After collecting all terms, the fixed locus contribution becomes

(−1)m+`χ ·
∫
C[m1]×...×C[mk]

k∏
j=1

c

((
K

[mj ]
C

)∨)
· c(Θ[mj ])

c
((

Θ[mj ]
)∨) ·

∏̀
i=1

k∏
j=1

c(Θ[mj ][wj+` − wi])
e(Θ[mj ][wj+` − wi])

·
∏̀
i=1

k∏
j=1

e
((

Θ[mj ]
)∨

[wi − wj+`]
)

c
((

Θ[mj ]
)∨

[wi − wj+`]
) · c

((
K

[mj ]
C

)∨
[wi − wj+`]

)
e

((
K

[mj ]
C

)∨
[wi − wj+`]

) · (wi − wj+`)g−1

(1 + wi − wj+`)g−1

·
∏

1≤j 6=j′≤k
c(Tjj′)c(Njj′) ·

1

e(N)
.

We note a cancellation between the Euler classes in the denominator of the second

product and the numerator of the third product, yielding the answer

(68) (−1)m+`χ · (−1)`m ·
∫
C[m1×...×C[mk]

k∏
j=1

c

((
K

[mj ]
C

)∨)
· c(Θ[mj ])

c
((

Θ[mj ]
)∨)

·
∏̀
i=1

k∏
j=1

c(Θ[mj ][wj+` − wi])

c
((

Θ[mj ]
)∨

[wi − wj+`]
) · c

((
K

[mj ]
C

)∨
[wi − wj+`]

)
e

((
K

[mj ]
C

)∨
[wi − wj+`]

) · (wi − wj+`)g−1

(1 + wi − wj+`)g−1

·
∏

1≤j 6=j′≤k
c(Tjj′)c(Njj′) ·

1

e(N)
.

Let Contr[m1, . . . ,mk] ∈ Q((w)) denote the integral thus obtained (without including

the sign (−1)(`+1)m+`χ). We have

(69) ZEX,N,`KX (q) =
∑
n∈Z

qnevir
(
QuotX(CN , `KX , n)

)
=
∑

Z[m1, . . . ,mk] ,
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where

Z[m1, . . . ,mk] =
∞∑
m=0

(−1)(`+1)m+`χ q`(1−g)+m · Contr[m1, . . . ,mk] .

As usual, the sum on the right in the equation (69) has
(
N
k

)
terms depending on the

placement of the weights (and is also over m1, . . . ,mk). We will set w = 0 at the end.

We will transform the above contribution formulas into integrals over the Quot scheme

QuotC(Ck,m). Recall, from the proof of Theorem 18, the virtual bundle

Tm = Ext•C(Q,Q⊗Θ)

on QuotC(Ck,m). The tautological bundle

L[m] → QuotC(Ck,m)

associated to a line bundle L on C was defined in Section 1.2. We define

ZC,k(q |w1, . . . , w` |w`+1, . . . , wN ) =

∞∑
m=0

qm
∫
QuotC(Ck,m)

c(TQuotC(Ck,m))·c(Tm)·
∏̀
i=1

c(Θ[m][−wi])

c
((

Θ[m]
)∨

[wi]
) · c

((
K

[m]
C

)∨
[wi]

)
e

((
K

[m]
C

)∨
[wi]

) .

In the integrand, twists by trivial bundles with nontrivial equivariant weights are in-

cluded. We consider the function above as a C?-equivariant integral given by the C?-
action on the Quot scheme with weights w`+1, . . . , wN . The function ZC,k depends on q

and on the weights w. By an algebraic cobordism argument, we see

ZC,k = A1−g

where

A = A(q |w1, . . . , w` |w`+1, . . . , wN )

is a universal function which does not depend on the genus g of C.

We will apply C?-equivariant localization to the integrals appearing in the formula for

ZC,k. The result is related to (68): each integral in ZC,k becomes a sum of contributions

of the fixed loci

ι : C [m1] × · · · × C [mk] ↪→ QuotC(Ck,m) .

We note the restrictions

ι?TQuotC(Ck,m) =

k∑
j=1

TC [mj ] +
∑
j 6=j′

Njj′ ,

ι?Tm =
∑
j 6=j′

Tjj′ +
k∑
j=1

(Θ[mj ] − (Θ[mj ])∨) .
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Here, for j = j′, we have used

Ext•(OZ ,OZ ⊗Θ) = Θ[m] −
(

Θ[m]
)∨

.

Furthermore, the C?-equivariant restrictions of the tautological bundles Θ[m] on the Quot

scheme to the fixed loci are given by

ι?Θ[m][−wi] =

k∑
j=1

Θ[mj ][wj+` − wi] ,

ι?
(

Θ[m]
)∨

[wi] =
k∑
j=1

(Θ[mj ])∨[wi − wj+`] ,

where the sign −wj+` on the second line appears because the dual was taken. Finally,

ι?
(
K

[m]
C

)∨
[wi] =

k∑
j=1

(K
[mj ]
C )∨[wi − wj+`] .

The above C?-equivariant localization terms of ZC,k match expression (68) up to a com-

mon factor and signs. Summarizing, we find:

ZEX,N,`KX (q) = (−1)`χ q`(1−g) ·
∑∏̀

i=1

k∏
j=1

1 + wi − wj+`
wi − wj+`

1−g

· A((−1)`+1q |w1, . . . , w` |w`+1, . . . , wN )1−g .

We write

Ã(q |w1, . . . , w` |w`+1, . . . , wN ) =
∏̀
i=1

k∏
j=1

1 + wi − wj+`
wi − wj+`

· A((−1)`+1q |w1, . . . , w` |w`+1, . . . , wN ) ,

so we have

ZEX,N,`KX (q) = (−1)`χ q`(1−g) ·
∑

Ã(q |w1, . . . , w` |w`+1, . . . , wN )1−g.

The last remaining step is to determine the function A. After specializing the curve

C = P1, we have

A(q |w1, . . . , w` |w`+1, . . . , wN ) =

∞∑
m=0

qm
∫
QuotP1 (Ck,m)

c(TQuotC(Ck,m))·c(Tm)·
∏̀
i=1

c(Θ[m][−wi])

c
((

Θ[m]
)∨

[wi]
) ·c

((
K

[m]
C

)∨
[wi]

)
e

((
K

[m]
C

)∨
[wi]

) .
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All tautological structures in the above integral have been understood in the proof of

Theorem 18. In fact, compared to the integrals which appear in the proof of Theorem

18, the only new terms are

∏̀
i=1

k∏
j=1

c(Θ[mj ][wj+` − wi])

c
((

Θ[mj ]
)∨

[wi − wj+`]
) · c

((
K

[mj ]
C

)∨
[wi − wj+`]

)
e

((
K

[mj ]
C

)∨
[wi − wj+`]

)
considered over the product

(70) Pm1 × · · · × Pmk .

As before, we write h1, . . . , hk for the hyperplane classes on the respective projective

spaces in the product (70). Using Lemma 27, we obtain

c
(

Θ[m][w]
)

= (1− h+ w)m , c
(

(Θ[m])∨[−w]
)

= (1 + h− w)m ,

c

((
K

[m
C

)∨
[−w]

)
=

(1 + h− w)m+1

1− w
, e

((
K

[m]
C

)∨
[−w]

)
=

(h− w)m+1

−w
.

The new terms contribute the expression∏̀
i=1

k∏
j=1

(1− hj + wj+` − wi)mj
(hj + wi − wj+`)mj

·
1 + hj + wi − wj+`

1 + wi − wj+`
·

wi − wj+`
hj + wi − wj+`

.

Therefore, using (50), the contribution of the fixed locus of Quot1P(Ck,m) corresponding

to the partition (m1, . . . ,mk) equals

(−1)m(k−1)+(k2)
∫
Pm1×...×Pmk

Φ1(h1)m1 · · ·Φk(hk)
mk ·Ψ(h1, . . . , hk)

where

Φj(hj) =

k∏
j′=1

(1−hj+wj+`−wj′+`)·
∏
j′ 6=j

(hj+wj′+`−wj+`)−1 ·
∏̀
i=1

1− hj + wj+` − wi
hj + wi − wj+`

,

and

Ψ =
∏
j′<j

(hj−hj′+wj′+`−wj+`)2 ·
∏
j,j′

(1+hj+wj′+`−wj+`)·(1+hj−hj′+wj′+`−wj+`)−1

·
∏
j 6=j′

(hj + wj′+` − wj+`)−1 ·
∏̀
i=1

k∏
j=1

1 + hj + wi − wj+`
hj + wi − wj+`

·
wi − wj+`

1 + wi − wj+`
.

Only the products involving i are different from the expressions written in the proof of

Theorem 18.

We now apply the Lagrange-Bürmann formula for the change of variables

tj =
hj

Φj(hj)
=

N∏
α=1

hj + wα − wj+`
1− hj + wj+` − wα

.
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In the above product, the index α collects the terms in Φj corresponding to both i and

j′ into a uniform expression. We find

A = (−1)(
k
2) · Ψ

K
(h1, . . . , hk)

where

q(−1)k−1 = tj =
N∏
α=1

hj + wα − wj+`
1− hj + wj+` − wα

,

Let

Ψ̃ =
∏
j′<j

(hj−hj′+wj′+`−wj+`)2 ·
∏
j,j′

(1+hj+wj′+`−wj+`)·(1+hj−hj′+wj′+`−wj+`)−1·

∏
j 6=j′

(hj + wj′+` − wj+`)−1 ·
∏̀
i=1

k∏
j=1

1 + hj + wi − wj+`
hj + wi − wj+`

.

We find

Ã(q |w1, . . . , w` |w`+1, . . . , wN ) = (−1)(
k
2)

Ψ̃

K
(h1, . . . , hk)

where, taking all signs into account, we have

q(−1)(k−1)+(`+1) =

N∏
α=1

hj + wα − wj+`
1− hj + wj+` − wα

.

In the limit w → 0, the above equation becomes

q(−1)N = hN (1− h)−N .

The limit is justified as in the proof of Theorem 18: we let H1, . . . ,HN be the roots

of the single equation

q(−1)N =
N∏
α=1

h+ wα − w1

1− h+ w1 − wα
,

and then we have

hj = Hj+` + wj+` − w1 .

The final answer is a sum of
(
N
k

)
terms corresponding to choices of subsets of k roots

out of H1, . . . ,HN . Using the explicit expressions for Ψ̃ and K, the answer is seen to be

symmetric in the H’s and, therefore, expressible in terms of the elementary symmetric

functions which are polynomials in w.

We find Ψ̃
K simplifies in the limit to the expression

∏
j<j′

(hj − hj′)2 · (1 + hj)
k ·
∏
j,j′

(1− (hj′ − hj))−1 ·
k∏
j=1

h
−(k−1)
j ·

k∏
j=1

(1 + hj)
`

h`j
·
k∏
j=1

1− hj
N
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where the last product comes from the K-term. Further simplification yields

1

Nk

∏
j<j′

(hj − hj′)2

1− (hj − hj′)2
·
k∏
j=1

(1 + hj)
N · (1− hj)
hN−1
j

,

which is precisely the formula stated in Theorem 23. �

Appendix A. A combinatorial proof of Theorem 11

We present here a purely combinatorial argument for Theorem 11. For simplicity of

notation, we consider trees whose edges are painted in only two colors denoted A and

B. The generalization to several colors does not require additional ideas.

We write a for the total number of A edges, b for the number of B edges, and n for

the number of vertices of a tree T . Clearly

a+ b = n− 1 .

For each vertex v, we write av and bv for the number of outgoing edges colored A and

B respectively. Therefore,

wt(T ) =
1

(n− 1)!

∏
v

av ! bv ! .

We set

wn(a, b) =
∑
T

wt(T ) .

Let

tn(a, b) =
1

n

(
2a+ b

a

)(
a+ 2b

b

)
.

The claim of Theorem 11 in the case of two colors is

(71) wn(a, b) = tn(a, b) .

Define the generating series

W(q |x, y) =

∞∑
n=1

∑
a+b=n−1

wn(a, b) · xaybqn ,

T(q |x, y) =
∞∑
n=1

∑
a+b=n−1

tn(a, b) · xaybqn .

By Lemmas 41 and 42 below, both W and T satisfy the cubic equation

(72) Z · (1− xZ) · (1− yZ) = q , Z|q=0 = 0 .

Since the solution of (72) is unique, we obtain

W = T
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which implies (71) and completes the proof of Theorem 11.

Lemma 41. We have

T · (1− xT) · (1− yT) = q .

Proof. The argument exactly follows the proof of Lemma 28. Set

f(t) = (1− xt)−1(1− yt)−1 .

For a+ b = n− 1, we have

tn(a, b) =
(−1)n−1

n

(
−n
a

)(
−n
b

)
.

Therefore,

T(q) =
∞∑
n=1

qn

n
·
([
tn−1

]
(1− xt)−n(1− yt)−n

)
=

∞∑
n=1

qn

n
·
([
tn−1

]
f(t)n−1 · f(t)

)
.

Then,

dT

dq
=

∞∑
n=1

qn−1 ·
([
tn−1

]
f(t)n−1 · f(t)

)
=
dt

dq
,

where equation (16) was used above for the change of variables q = t
f(t) . Hence, we

obtain

T = t ,

and the change of variables proves the Lemma. �

Lemma 42. We have

W · (1− xW) · (1− yW) = q .

Proof. We will prove a recursion for wn(a, b) which implies the cubic equation of the

Lemma. For convenience, we set wn(a, b) = 0 whenever a+ b 6= n+ 1.

Fix a labelled 2-colored tree T with n vertices. Consider the vertex ? with the highest

label n. After removing the vertex ? and all its incident edges from the tree T , we obtain

disjoint subtrees T1, . . . , T`. We set up the following notation:

• r and s denote the number of edges incident to the vertex ? which are colored A

and B respectively (where ` = r + s),

• n1, . . . , n` are the number of vertices of the subtrees T1, . . . , T` respectively,

• (a1, b1), . . . , (a`, b`) are the numbers of edges of each color for subtrees T1, . . . , T`.
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The above quantities satisfy various constraints which are most easily expressed using

partitions. We denote an ordered partitions by

α• = (α1, . . . , α`) ,

and we write |α•| for the sum of parts. Then

|n•| = n− 1 , |a•|+ r = a (counting A edges) , |b•|+ s = b (counting B edges) .

The removal of the vertex ? yields the following recursion:

(73) wn(a, b) =
∑

ηn• · wn1(a1, b1) · · ·wn`(a`, b`)

with the combinatorial factor

ηn• =
r!

Aut(n1, . . . , nr)
· s!

Aut(nr+1, . . . , n`)
.

Indeed, the vertex ? contributes r! s! to the weight of T , while the other vertices are

contained in one of the trees T1, . . . , T`. Therefore

wt(T ) =
1

(n− 1)!
r ! s! ·

∏̀
j=1

(nj − 1)! wt(Tj) .

After summing over all trees, we obtain

wn(a, b) =
∑
T

wt(T ) =
∑

cn• ·
1

(n− 1)!
r ! s! ·

∏̀
j=1

(nj − 1)!wnj (aj , bj) .

The combinatorial factor

cn• = (n1 · · ·n`) ·
(

n− 1

n1, . . . , n`

)
· 1

Aut(n1, . . . , nr)
· 1

Aut(nr+1, . . . , n`)

arises as follows

• the term n1 · · ·n` counts all possible ways to attach the vertex ? to one of the nj

vertices of the tree Tj , for 1 ≤ j ≤ `,
•
(

n−1
n1,...,n`

)
counts all possible ways of distributing the labels {1, . . . , n− 1} to the

trees T1, . . . , T`,

• the last two terms account for automorphisms.

Equation (73) then follows by collecting terms.

For notational convenience, we define the relabelling

n′j = nj+r , a′j = aj+r , b′j = bj+r, 1 ≤ j ≤ s .

In the new notation, recursion (73) takes the form:

wn(a, b) =
∑ r!

Aut(n•)
· s!

Aut(n′•)
·
r∏
j=1

wnj (aj , bj) ·
s∏
j=1

wn′j (a
′
j , b
′
j) .
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We define

Wn =
∑

a+b=n−1

wn(a, b) · xayb

satisfying

W =

∞∑
n=1

∑
a+b=n−1

wn(a, b) · xaybqn =

∞∑
n=1

qnWn .

We compute

W

q
=

∞∑
n=1

wn(a, b)xaybqn−1

=
∑ r!

Aut(n•)
· s!

Aut(n′•)
·
r∏
j=1

wnj (aj , bj) ·
s∏
j=1

wn′j (a
′
j , b
′
j) · x|a

•|+|a′•|y|b
•|+|b′•|xrysq|n

•|+|n′•|

=
∑ r!

Aut(n•)
· s!

Aut(n′•)
·
r∏
j=1

Wnj ·
s∏
j=1

Wn′j
· xrysq|n•|+|n′•|

=

∑ r!

Aut(n•)

r∏
j=1

Wnj · xrq|n
•|

 ·
∑ s!

Aut(n′•)

s∏
j=1

Wn′j
· ysq|n′•|


= (1− xW)−1 · (1− yW)−1 ,

where, on the third line, we have summed over the a’s and b’s.

For the last line, we have used the identity

(74)
1

1− xW
=
∑ r!

Aut(n•)

r∏
j=1

Wnj · xrq|n
•|

which is easily derived from the Binomial Theorem. Indeed, after setting

αn = Wn · xqn , α =
∑

αn = xW ,

equation (74) becomes

1

1− α
=
∑ r!

Aut(n•)

r∏
j=1

αnj ,

which is true since the two sides are different ways of expressing
∑

r α
r. �
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[14] L. Göttsche, M. Kool, Virtual refinements of the Vafa-Witten formula, arXiv:1703.07196.
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