
Algebraic geometry of moduli spaces

Rahul Pandharipande

Department of Mathematics
ETH Zürich
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§I. PARTITIONS

How can we write n as a sum of positive numbers?

The full list of partitions of n = 3 is

3, 2 + 1, 1 + 1 + 1

and the full list of partitions of n = 4 is

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

There are 3 partitions of 3 and 5 partitions of 4.

p(n) = Number of partitions of n

so p(3) = 3 and p(4) = 5.



A formula for p(n)?

There is no direct formula for p(n), but there is a formula for the
generating series:

∞∑
n=0

p(n)qn =
∞∏
k=1

(
1

1− qk

)

Expand the right side

∞∑
n=0

p(n)qn =

(
1

1− q

)(
1

1− q2

)(
1

1− q3

)
· · ·

= 1 + q1 + 2q2 + 3q3 + 5q4 + 7q5 + . . .



The product formula for the counting of partitions was found by

Leonhard Euler (1707-1783):



Express partitions as diagrams:

10 = 5 + 4 + 1

can be pictured as

Such a diagram may be viewed as stacking squares in the corner of
a 2-d room (stable for both possible directions of gravity).

What about 3-dimensions?



We would like to stack 3-dimensional boxes in the corner of a
3-dimensional room.

The above is a photo of the installation, Five Boxes, by the
Icelandic artist Egill Sæbjörnsson.



A 3-dimensional partition is a stacking of boxes in the corner of a
room (which is stable for any of the three possible directions of
gravity).

P(n) = Number of 3-dimensional partitions of n .

We see P(1) = 1, P(2) = 3, P(3) = 6, . . . .



A formula for P(n)?

Again, there is no direct formula for P(n), but there is a formula
for the generating series:

∞∑
n=0

P(n)qn =
∞∏
k=1

(
1

1− qk

)k

The formula is due to Percy MacMahon
(1854-1929). Before his mathematical
career, he was a Lieutenant in the British
army. He was said to be at least partially
inspired by stacking cannon balls.



A formula for counting partitions in 4-dimensions?

2-dim
∞∑
n=0

p(n)qn =
∞∏
k=1

(
1

1− qk

)

3-dim
∞∑
n=0

P(n)qn =
∞∏
k=1

(
1

1− qk

)k

%pause

MacMahon proposed
∏∞

k=1

(
1

1−qk

)(k+1
2 )

for the generating series

of 4-dimensional partitions. %pause

He was wrong! Formulas for dimensions 4 and higher are unknown.



§II. IDEALS

Algebraic geometry is the study of zeros of polynomial equations.

C[x , y , z ] is the ring of polynomials in the variables x , y , z .

The zeros of x2 + y2 − z2 form the cone:



An ideal is a vector subspace of polynomials I ⊂ C[x , y , z ]
satisfying

f · I ⊂ I
for every polynomial f ∈ C[x , y , z ].

To each ideal I ⊂ C[x , y , z ], we associate the zero set:

I ←→ VI ⊂ C3 .

To the ideal I = (x2 + y2 − z2, x − y − z + 1), we associate the
curve defined by the intersection:
%pause

VI =



An idea due Alexander Grothendieck
(1928- ) is to parameterize all algebraic
subspaces of C3 by another algebraic
space, the Hilbert scheme.

The Hilbert scheme is an example of a
moduli space in algebraic geometry:
%pause

Every point of the
Hilbert scheme
corresponds to an
algebraic subspace
of C3.



§III. INTEGRATION

In quantum field theories (and string theory), path integrals arise:
integrals over the spaces of functions.

Sometimes (in the presence of supersymmetry and further
constraints), such path integrals are related to integration over
finite-dimensional moduli spaces in algebraic geometry. Examples
in gauge theory, topological string theory, ...



In 1990’s, there was an effort made in algebraic geometry to define
the integration on algebraic moduli spaces predicted by path
integral techniques [Kontsevich, Li-Tian, Behrend-Fantechi].

The idea is to use deformation theory in algebraic geometry. The
moduli spaces, such as the Hilbert scheme, are very singular
spaces, but we have some understanding of their local structure:



The outcome is a virtual fundamental class and a well-defined
theory of integration on many algebraic moduli spaces including
the Hilbert scheme of C3.

What happens if we integrate over the Hilbert scheme of C3?

There are many components of the Hilbert scheme. We integrate
over the components where

dimC
C[x , y , z ]

I
<∞ ,

%pause
Result of Maulik, Nekrasov, Okounkov, P [2003]:∫

Hilbert scheme(C3)
(−q)

dim
(

C[x,y,z]
I

)
=
∞∏
k=1

(
1

1− qk

)k

which is MacMahon’s series for counting 3-dimensional partitions.



The study of such integration over the Hilbert scheme of C3 is
called Donaldson-Thomas theory — viewed as a counting theory of
sheaves.

Donaldson-Thomas theory can be studied for any nonsingular
3-dimensional space, not just C3. For example the Calabi-Yau
quintic,

(x5 + y5 + z5 + w5 = 1) ⊂ C4 .

The outcome is a completely non-linear generalization of the box
counting of MacMahon.

What are the answers?
%pause In basic toric cases, new product formulae have been

found. In elliptic and K3 case, the answers are in terms of modular
forms. Hypergeometric series play a role in the Calabi-Yau 3-fold
cases.



§IV. CURVES

Another counting question began in the 19th century: the counting
of algebraic curves.

An algebraic curve is a complex 1-dimensional manifold, so a real
2-dimensional surface:

Hermann Schubert
(1848-1911) teacher of
of Adolf Hurwitz
(1859-1919)



How many lines meet 4 skew lines in space?

%pause
Answer is 2:

%pause There was a long classical development of curve
enumeration. But the subject has now been recast as
Gromov-Witten theory.



There is a moduli space of maps from curves to algebraic spaces
such as C3.

Instead of C3, other targets such as toric varieties or the
Calabi-Yau quintic can be considered. The study of integration
over the moduli of such maps is Gromov-Witten theory.



The partition function for Gromov-Witten theory is

ZGW(u) =
∑
g

u2g−2Ng

where Ng is the count of the genus g curves in the specified
geometry.

Gromov-Witten theory has origins in
Gromov’s study of holomorphic maps
in symplectic geometry and Witten’s
study of topological string theory.



§V. EQUIVALENCE

Box and curve counting questions in 3-dimensions are equivalent

Let X be any nonsingular 3-fold. Let ZDT(q) be the generating
series for the Hilbert scheme integrals of Donaldson-Thomas
theory. Let ZGW(u) be the generating series for the moduli space
of map integrals of Gromov-Witten theory.

The main conjectured correspondence [MNOP]:

ZDT(q) = ZGW(u)

after the change of variables −q = e iu



The equivalence for C3 generalizes (and provides a proof of) the
topological vertex formula of Aganagic, Klemm, Mariño, Vafa.

For the classical spaces, the correspondence unites the counting
problems of Hurwitz, MacMahon, Schubert, ...

The main correspondence is proven for many geometries and is
open for many geometries. Lots of work to do!
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