The 0-section of the universal abelian variety

I summarize here some results and questions which emerged from discussions in October 2020 with Sam Molcho and Johannes Schmitt about the 0-section of the universal abelian variety over the moduli space of abelian varieties (partially motivated by conversations with Dhruv Ranganathan and Jonathan Wise on double ramification cycles).

I. Background

Let \mathcal{A}_g be the usual moduli space of PPAVs of dimension g, and let

$$\pi: \mathcal{X}_g \to \mathcal{A}_g$$

be the universal abelian variety π equipped with a universal 0-section

$$s: \mathcal{A}_g \to \mathcal{X}_g$$
.

The 0-section determines an algebraic cycle class¹

$$Z_q \in \mathsf{CH}^g(\mathcal{X}_q)$$
.

The study of Z_g is related to the double ramification cycle (especially over curves of compact type), see the articles by Hain [7] and Grushevsky-Zakharov [5]. A central idea there is to use the beautiful formula

$$Z_g = \frac{\Theta^g}{g!} \in \mathsf{CH}^g(\mathcal{X}_g)\,,\tag{1}$$

where $\Theta \in CH^1(X_g)$ is the universal symmetric theta divisor trivialized along the 0-section. The proof of (1) in Chow uses the Fourier-Mukai transformation and work of Denninger-Murre [4], see [2, 9]. The article [5] provides a more detailed discussion of the history of (1).

II. Compactification $\mathcal{A}_g \subset \overline{\mathcal{A}}_g$

There are various compactifications of \mathcal{A}_g , but I am interested in the second Voronoi which has been given a modular interpretation by Alekseev:

$$\mathcal{A}_g \subset \overline{\mathcal{A}}_g^{\mathsf{Alekseev}}$$

¹All Chow classes are taken here with \mathbb{Q} -coefficients.

As explained in [8], Olsson provides a modular interpretation for the normalization

$$\overline{\mathcal{A}}^{\mathsf{Olsson}} o \overline{\mathcal{A}}_g^{\mathsf{Alekseev}}$$

Our arguments will be valid for both $\overline{\mathcal{A}}^{\mathsf{Olsson}}$ and $\overline{\mathcal{A}}_g^{\mathsf{Alekseev}}$. We will denote the compactification by

$$\mathcal{A}_g \subset \mathcal{A}_g$$
,

where $\overline{\mathcal{A}}_g$ either the space of Alekseev or the space of Olsson.

The four important properties of the compactification $\overline{\mathcal{A}}_g$ as far as the discussion here is concerned are:

- The points of $\overline{\mathcal{A}}_g$ parameterize (before normalization) stable semiabelic pairs which are quadruples (G, P, L, θ) where G is a semiabelian variety, P is projective variety equipped with a G-action, L is an ample line bundle on P, and $\theta \in H^0(P, L)$. The data (G, P, L, θ) satisfy several further conditions, see Section 4.2.16 of [8].
- There is a universal semiabelian variety

$$\overline{\pi}:\overline{\mathcal{X}}_g\to\overline{\mathcal{A}}_g$$

with a 0-section

$$\overline{s}:\overline{\mathcal{A}}_g\to\overline{\mathcal{X}}_g$$

corresponding to the semiabelian variety which is the first piece of data of a stable semiabelic pair (the rest of the pair data will not play a role in our study).

• The usual Torelli map $\tau : \mathcal{M}_g \to \mathcal{A}_g$ extends canonically

$$\overline{\tau}:\overline{\mathcal{M}}_g\to\overline{\mathcal{A}}_g$$

see [1].

• The $\overline{\tau}$ -pullback to $\overline{\mathcal{M}}_q$ of $\overline{\mathcal{X}}_q$ is the universal family

$$\mathsf{Pic}^0_\epsilon o \overline{\mathcal{M}}_g$$

parameterizing line bundles on the fibers of the universal curve

$$\epsilon: \mathcal{C}_g \to \overline{\mathcal{M}}_g$$

which have degree 0 on every component of the fiber [1].

I have followed the notation of [8]. M. Olsson assures me that the last two Torelli results also hold after his normalization.

The question I am interested in here is to what extent is an equation of the form of (1) is possible over $\overline{\mathcal{A}}_{g}$. A result by Grushevsky and Zakharov along these line appears in [6]. Let

$$\overline{Z}_q \in \mathsf{CH}^g(\overline{\mathcal{X}}_q)$$

be the class of the 0-section \overline{s} . Grushevsky and Zakharov calculate the restriction $\overline{Z}_g|_{\mathcal{U}_q}$ of \overline{Z}_g over a particular open set

$$\mathcal{A}_g \subset \mathcal{U}_g \subset \overline{\mathcal{A}}_g$$

in terms of Θ , a boundary divisor $D \in \mathsf{CH}^1(\overline{\mathcal{X}}_q|_{\mathcal{U}_q})$, and a class

$$\Delta \in \mathsf{CH}^2(\overline{\mathcal{X}}_g|_{\mathcal{U}_g}).$$

The formula of [6] is a useful extension of (1).

The result of Grushevsky-Zarkhov shows that while the naive extension of (1) does *not* hold over \mathcal{U}_g , the class $\overline{Z}_g|_{\mathcal{U}_g}$ lies in the subring of $\mathsf{CH}^*(\overline{\mathcal{X}}_g|_{\mathcal{U}_g})$ generated by classes of degree 1 and 2.²

III. Bounding the complexity of \overline{Z}_g from below.

Let $\mathsf{CH}^*(\overline{\mathcal{X}}_g)$ be the operational Chow ring. Since the image of the 0-section \overline{s} is a local complete intersection,

$$\overline{Z}_q \in \mathsf{CH}^g(\overline{\mathcal{X}}_q)$$
.

Let $\mathsf{CH}^*_{\mathsf{Div}}(\overline{\mathcal{X}}_g) \subset \mathsf{CH}^*(\overline{\mathcal{X}}_g)$ be the subring generated by $\mathsf{CH}^1(\overline{\mathcal{X}}_g)$. The first result (proven with S. Molcho and J. Schmitt) is the following:

Theorem 1. For all $g \geq 3$, we have $\overline{Z}_g \notin \mathsf{CH}^*_{\mathsf{Div}}(\overline{\mathcal{X}}_g)$.

As a consequence, no divisor formula extending (1) is possible for $\overline{\mathcal{A}}_{g}$. As remarked in Footnote 2, Theorem 1 can also be obtained from the analysis of [6].

Proof. The idea is geometrically very simple. Let

$$\mathsf{Pic}^0_\epsilon o \overline{\mathcal{M}}_g$$

parameterize line bundles on the fibers of the universal curve of multidegree 0 (as discussed in Section II). Let

$$t: \overline{\mathcal{M}}_q \to \mathsf{Pic}^0_\epsilon$$

be the 0-section defined by the trivial line bundle. By the properties of

$$\overline{\pi}: \overline{\mathcal{X}}_g \to \overline{\mathcal{A}}_g$$

listed in Section II,

$$\overline{\tau}^*\overline{s}^*(\overline{Z}_g) = t^*(t[\overline{\mathcal{M}}_g]).$$

²Though not stated, the analysis of [6] over \mathcal{U}_g can be used to show $\overline{Z}_g|_{\mathcal{U}_g}$ is *not* in the subring of $\mathsf{CH}^*(\overline{\mathcal{X}}_g|_{\mathcal{U}_g})$ generated by classes of degree 1. I thank Sam Grushevsky for correspondence about [6].

By standard analysis of the vertical tangent bundle of $\mathsf{Pic}^0_{\epsilon}$,

$$t^*(t[\overline{\mathcal{M}}_g]) = (-1)^g \lambda_g \in \mathsf{CH}^g(\overline{\mathcal{M}}_g)$$

The Theorem is then an immediate consequence of the following Lemma (proven by J. Schmitt). \diamond

Lemma 1. For all $g \geq 3$, we have $\lambda_g \notin \mathsf{CH}^*_{\mathsf{Div}}(\overline{\mathcal{M}}_g)$.

Proof. For g = 3, we have complete control of the tautological ring $\mathsf{R}^*(\overline{\mathcal{M}}_3)$. In degree 3,

$$\mathsf{CH}^3_{\mathsf{Div}}(\overline{\mathcal{M}}_3) \subset \mathsf{R}^3(\overline{\mathcal{M}}_3)$$

is a 9-dimensional subspace of a 10-dimensional space. Explicit calculations with the Sage program *admcycles* [3] shows $\lambda_3 \notin \mathsf{CH}^3_{\mathsf{Div}}(\overline{\mathcal{M}}_3)$.

We also understand $\mathsf{R}^*(\overline{\mathcal{M}}_{3,1})$ completely:

$$\mathsf{CH}^3_{\mathsf{Div}}(\overline{\mathcal{M}}_{3,1}) \subset \mathsf{R}^3(\overline{\mathcal{M}}_{3,1})$$

is a 28-dimensional subspace of a 29-dimensional space. But remarkably, a calculation by admcycles shows

$$\lambda_3 \in \mathsf{CH}^3_{\mathsf{Div}}(\overline{\mathcal{M}}_{3,1})$$
 !

The containment appears miraculous. Is there a geometric explanation?

The tautological ring $\mathsf{R}^*(\overline{\mathcal{M}}_{4,1})$ is also completely under control:

$$\mathsf{CH}^4_{\mathsf{Div}}(\overline{\mathcal{M}}_{4,1}) \subset \mathsf{R}^4(\overline{\mathcal{M}}_{4,1})$$

is a 103-dimensional subspace of a 191-dimensional space. An adm cycles calculation shows

$$\lambda_4 \notin \mathsf{CH}^4_{\mathsf{Div}}(\overline{\mathcal{M}}_{4,1}) \,. \tag{2}$$

The result (2) implies

$$\lambda_4 \notin \mathsf{CH}^4_{\mathsf{Div}}(\overline{\mathcal{M}}_4)$$

For $g \geq 5,$ a boundary restriction argument is pursued. Suppose, for contradiction,

$$\lambda_g \in \mathsf{CH}^g_{\mathsf{Div}}(\overline{\mathcal{M}}_g)\,. \tag{3}$$

Then, by pull-back, we have

$$\lambda_g \in \mathsf{CH}^g_{\mathsf{Div}}(\overline{\mathcal{M}}_{g,1})\,. \tag{4}$$

Consider the standard boundary inclusion

$$\delta: \overline{\mathcal{M}}_{g-1,1} \times \overline{\mathcal{M}}_{1,2} \to \overline{\mathcal{M}}_{g,1}.$$

As usual, we have

$$\delta^*(\lambda_g) = \lambda_{g-1} \otimes \lambda_1 \,.$$

Then (4) implies

$$\lambda_{g-1} \otimes \lambda_1 \in \mathsf{CH}^g_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1} \times \overline{\mathcal{M}}_{1,2}) \,. \tag{5}$$

Since $\overline{\mathcal{M}}_{1,2}$ has a coarse moduli space with an affine stratification,

$$\mathsf{CH}^*_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1}\times\overline{\mathcal{M}}_{1,2}) = \mathsf{CH}^*_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1}) \otimes \mathsf{CH}^*_{\mathsf{Div}}(\overline{\mathcal{M}}_{1,2})$$

We therefore can write $\mathsf{CH}^g_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1} \times \overline{\mathcal{M}}_{1,1})$ as

$$\begin{array}{l} \mathsf{CH}^{g}_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1}) \otimes \mathsf{CH}^{0}_{\mathsf{Div}}(\overline{\mathcal{M}}_{1,1}) \\ \oplus & \mathsf{CH}^{g-1}_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1}) \otimes \mathsf{CH}^{1}_{\mathsf{Div}}(\overline{\mathcal{M}}_{1,1}) \\ \oplus & \mathsf{CH}^{g-2}_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1}) \otimes \mathsf{CH}^{2}_{\mathsf{Div}}(\overline{\mathcal{M}}_{1,1}) \,. \end{array}$$

$$(6)$$

After multiplying with ψ_1 (corresponding to the original marking of $\overline{\mathcal{M}}_{g,1}$) and pushing both (5) and (6) to the factor $\overline{\mathcal{M}}_{g-1,1}$, we conclude

$$\lambda_{g-1} \in \mathsf{CH}^{g-1}_{\mathsf{Div}}(\overline{\mathcal{M}}_{g-1,1})$$

By descending induction, we contradict (2). Therefore (4) and hence also (3) must be false. \diamondsuit

The proof of Lemma 1 above shows

$$\lambda_g \notin \mathsf{CH}^g_{\mathsf{Div}}(\overline{\mathcal{M}}_{g,1}) \tag{7}$$

for $g \ge 4$. By using (7) as a starting point, we can study

$$\lambda_g \in \mathsf{CH}^g(\overline{\mathcal{M}}_{g,n})$$

for $g \ge 4$ and $n \ge 2$ using the boundary restrictions

$$\widehat{\delta}: \overline{\mathcal{M}}_{g,n-1} \times \overline{\mathcal{M}}_{0,3} \to \overline{\mathcal{M}}_{g,n}$$

The argument used in the proof then easily yields a statement with markings:

Lemma 2. For all $g \ge 4$ and $n \ge 0$, we have

$$\lambda_g \notin \mathsf{CH}^g_{\mathsf{Div}}(\overline{\mathcal{M}}_{g,n})$$
.

IV. Higher degree generators and the Chern classes of the Hodge bundle

Define the subring of tautological classes

$$\mathsf{R}^*_{\mathsf{D} < k}(\overline{\mathcal{M}}_{g,n}) \subset \mathsf{R}^*(\overline{\mathcal{M}}_{g,n})$$

generated by classes of (complex) degrees less than or equal to k. Since all divsors are tautological,

$$\mathsf{R}^*_{\mathsf{D}\leq 1}(\overline{\mathcal{M}}_{g,n}) = \mathsf{CH}^*_{\mathsf{Div}}(\overline{\mathcal{M}}_{g,n})$$

Other such relationships are discussed below. The arguments in Section III naturally generalize to address the following question: *when is*

$$\lambda_{g-r} \in \mathsf{R}^{g-r}_{\mathsf{D} < k}(\overline{\mathcal{M}}_{g,n})$$
?

A crucial case of the question (from the point of view of boundary restriction arguments) is for n = 1. Let $Q_q(r, k)$ be the statement

$$\lambda_{g-r} \notin \mathsf{R}^{g-r}_{\mathsf{D} < k}(\overline{\mathcal{M}}_{g,1})$$

which may be true or false.

For example, $Q_q(r, g - r)$ is false essentially by definition. In fact,

$$Q_q(s, g-r)$$
 for all $s \ge r$

is false for the same reason. By Mumford's formula for the Chern character of the Hodge bundle (and the vanishing of even Chern characters), $Q_g(r-1, g-r)$ is false whenever g - r is odd.

The boundary arguments used in the proofs of Lemmas 1 and 2 yield the following two results.

Theorem 2. If $Q_g(r,k)$ is true, then $Q_{g+1}(r,k)$ and $Q_{g+1}(r+1,k)$ are true.

Theorem 3. If $Q_g(r,k)$ is true, then

$$\lambda_{g-r} \notin \mathsf{R}^{g-r}_{\mathsf{D} \leq k}(\overline{\mathcal{M}}_{g,n})$$

for all $n \geq 0$.

Since the $D \leq 1$ case has already been studied in Section III, we consider $D \leq 2$. The first relevant *admcycles* calculation is

$$\lambda_3 \notin \mathsf{R}^3_{\mathsf{D}<2}(\overline{\mathcal{M}}_{4,1})\,,$$

so $Q_4(1,2)$ is true. The corresponding subspace here is of dimension 91 inside a 93 dimensional space. As a consequence of Theorems 2 and 3, we find

$$\lambda_{g-1} \notin \mathsf{R}^{g-1}_{\mathsf{D}<2}(\overline{\mathcal{M}}_{g,n})$$

for all $g \ge 4$ and $n \ge 0$.

A much more complicated *admcycles* calculation (modulo Pixton's conjecture) shows

$$\lambda_5 \notin \mathsf{R}^5_{\mathsf{D}<2}(\overline{\mathcal{M}}_{5,1})\,,$$

so $Q_5(0, 2)$ is true. The corresponding subspace here is of dimension 1314 inside a 1371 dimensional space – a longer *admcycles* calculation should be possible here using Poincaré duality to prove Pixton's conjecture for $\overline{\mathcal{M}}_{5,1}$. As a consequence of Theorems 2 and 3, we find

$$\lambda_g \notin \mathsf{R}^g_{\mathsf{D}\leq 2}(\overline{\mathcal{M}}_{g,n})$$

for all $g \ge 5$ and $n \ge 0$. For large g, the following equality is known³

$$\mathsf{R}^2(\overline{\mathcal{M}}_g) = H^4(\overline{\mathcal{M}}_g).$$

We then obtain a new obstruction for generalizing (1) by running the above discussion in cohomology.

Theorem 4. Not only is no divisor formula extending (1) possible for $\overline{\mathcal{A}}_g$, no formula including codimension 2 classes as by Grushevsky-Zakharov [6] can be extended over $\overline{\mathcal{A}}_g$.

Conjecture. No extension of (1) over $\overline{\mathcal{A}}_g$ for all g can be written with classes of uniformly bounded degree.

V. Parallel study in $\mathsf{CH}^*_{\mathsf{log}}(\overline{\mathcal{M}}_{g,n})$

We can consider the parallel questions also in $\mathsf{CH}^*_{\mathsf{log}}(\overline{\mathcal{M}}_{g,n})$ where $\mathsf{CH}^*_{\mathsf{log}}$ is defined via the limit of all iterated blow-ups of $\overline{\mathcal{M}}_{g,n}$ along boundary strata. The most basic question is:

Question. Does λ_g lie in the subring of $\mathsf{CH}^*_{\mathsf{log}}(\overline{\mathcal{M}}_g)$ generated by divisors?

I would guess the answer is no except for perhaps finitely many g. However, David Holmes thinks the answer is yes based on a view of the log Chow groups of LogPic.

Rahul, 19 October 2020

References

 V. Alekseev, Compactified Jacobians and the Torelli map, Publ. Res. Inst. Math. Sci. 40 (2004), 1241–1265.

³My memory is for $g \ge 8$ by Polito, but should be checked.

- [2] C. Birkenhake and H. Lange, Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften 302, Springer-Verlag, Berlin, 2004.
- [3] V. Delecroix, J. Schmitt, and J. van Zelm, admcycles a Sage package for calculations in the tautological ring of the moduli space of stable curves, arXiv:2002.01709.
- [4] C. Deninger and J. Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201–219.
- [5] S. Grushevsky and D. Zakharov, The double ramification cycle and the theta divisor, Proc. AMS. 142 (2014), 4053–4064.
- [6] S. Grushevsky and D. Zakharov, The zero section of the universal semiabelian variety and the double ramification cycle, Duke Math. J. 163 (2014), 953–982.
- [7] R. Hain, Normal functions and the geometry of moduli spaces of curves, Handbook of moduli, Vol. I, Adv. Lect. Math. (ALM), Int. Press., Somerville, MA, 2013, 527–578.
- [8] M. Olsson, Compactifications of the moduli of abelian varieties: an introduction, Current developments in algebraic geometry, 295–348, Math. Sci. Res. Inst. Publ. 59, Cambridge Univ. Press, Cambridge, 2012.
- [9] C. Voisin, Chow rings, decomposition of the diagonal and the topology of families, Annals. of Math. Stud. 187, Princeton Univ. Press., Princeton, NJ, 2014.