
The 0-section of the universal abelian variety

I summarize here some results and questions which emerged from discussions
in October 2020 with Sam Molcho and Johannes Schmitt about the 0-section of
the universal abelian variety over the moduli space of abelian varieties (partially
motivated by conversations with Dhruv Ranganathan and Jonathan Wise on
double ramification cycles).

I. Background

Let Ag be the usual moduli space of PPAVs of dimension g, and let

π : Xg → Ag

be the universal abelian variety π equipped with a universal 0-section

s : Ag → Xg .

The 0-section determines an algebraic cycle class1

Zg ∈ CH
g(Xg) .

The study of Zg is related to the double ramification cycle (especially over
curves of compact type), see the articles by Hain [7] and Grushevsky-Zakharov
[5]. A central idea there is to use the beautiful formula

Zg =
Θg

g!
∈ CH

g(Xg) , (1)

where Θ ∈ CH
1(Xg) is the universal symmetric theta divisor trivialized along

the 0-section. The proof of (1) in Chow uses the Fourier-Mukai transformation
and work of Denninger-Murre [4], see [2, 9]. The article [5] provides a more
detailed discussion of the history of (1).

II. Compactification Ag ⊂ Ag

There are various compactifications of Ag, but I am interested in the second
Voronoi which has been given a modular interpretation by Alekseev:

Ag ⊂ A
Alekseev

g .

1All Chow classes are taken here with Q-coefficients.
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As explained in [8], Olsson provides a modular interpretation for the normal-
ization

A
Olsson

→ A
Alekseev

g .

Our arguments will be valid for both A
Olsson

and A
Alekseev

g . We will denote the
compactification by

Ag ⊂ Ag ,

where Ag either the space of Alekseev or the space of Olsson.
The four important properties of the compactification Ag as far as the dis-

cussion here is concerned are:

• The points of Ag parameterize (before normalization) stable semiabelic
pairs which are quadruples (G,P, L, θ) where G is a semiabelian variety, P
is projective variety equipped with a G-action, L is an ample line bundle
on P , and θ ∈ H0(P,L). The data (G,P, L, θ) satisfy several further
conditions, see Section 4.2.16 of [8].

• There is a universal semiabelian variety

π : X g → Ag

with a 0-section
s : Ag → X g

corresponding to the semiabelian variety which is the first piece of data of
a stable semiabelic pair (the rest of the pair data will not play a role in
our study).

• The usual Torelli map τ : Mg → Ag extends canonically

τ : Mg → Ag ,

see [1].

• The τ -pullback to Mg of X g is the universal family

Pic
0

ǫ → Mg

parameterizing line bundles on the fibers of the universal curve

ǫ : Cg → Mg

which have degree 0 on every component of the fiber [1].

I have followed the notation of [8]. M. Olsson assures me that the last two
Torelli results also hold after his normalization.

The question I am interested in here is to what extent is an equation of the
form of (1) is possible over Ag. A result by Grushevsky and Zakharov along
these line appears in [6]. Let

Zg ∈ CH
g(X g)
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be the class of the 0-section s. Grushevsky and Zakharov calculate the restric-
tion Zg|Ug

of Zg over a particular open set

Ag ⊂ Ug ⊂ Ag

in terms of Θ, a boundary divisor D ∈ CH
1(X g|Ug

), and a class

∆ ∈ CH
2(X g|Ug

) .

The formula of [6] is a useful extension of (1).
The result of Grushevsky-Zarkhov shows that while the naive extension of

(1) does not hold over Ug, the class Zg|Ug
lies in the subring of CH∗(X g|Ug

)
generated by classes of degree 1 and 2.2

III. Bounding the complexity of Zg from below.

Let CH∗(X g) be the operational Chow ring. Since the image of the 0-section
s is a local complete intersection,

Zg ∈ CH
g(X g) .

Let CH
∗
Div(X g) ⊂ CH

∗(X g) be the subring generated by CH
1(X g). The first

result (proven with S. Molcho and J. Schmitt) is the following:

Theorem 1. For all g ≥ 3, we have Zg /∈ CH
∗
Div(X g).

As a consequence, no divisor formula extending (1) is possible for Ag. As
remarked in Footnote 2, Theorem 1 can also be obtained from the analysis of
[6].

Proof. The idea is geometrically very simple. Let

Pic
0

ǫ → Mg

parameterize line bundles on the fibers of the universal curve of multidegree 0
(as discussed in Section II). Let

t : Mg → Pic
0
ǫ

be the 0-section defined by the trivial line bundle. By the properties of

π : X g → Ag

listed in Section II,
τ∗s∗(Zg) = t∗(t[Mg]) .

2Though not stated, the analysis of [6] over Ug can be used to show Zg|Ug
is not in

the subring of CH∗(X g|Ug
) generated by classes of degree 1. I thank Sam Grushevsky for

correspondence about [6].
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By standard analysis of the vertical tangent bundle of Pic0ǫ ,

t∗(t[Mg]) = (−1)gλg ∈ CH
g(Mg) .

The Theorem is then an immediate consequence of the following Lemma (proven
by J. Schmitt). ♦

Lemma 1. For all g ≥ 3, we have λg /∈ CH
∗
Div(Mg) .

Proof. For g = 3, we have complete control of the tautological ring R∗(M3). In
degree 3,

CH
3

Div(M3) ⊂ R
3(M3)

is a 9-dimensional subspace of a 10-dimensional space. Explicit calculations
with the Sage program admcycles [3] shows λ3 /∈ CH

3

Div(M3).
We also understand R∗(M3,1) completely:

CH
3

Div(M3,1) ⊂ R3(M3,1)

is a 28-dimensional subspace of a 29-dimensional space. But remarkably, a
calculation by admcycles shows

λ3 ∈ CH
3

Div(M3,1) !

The containment appears miraculous. Is there a geometric explanation?
The tautological ring R∗(M4,1) is also completely under control:

CH
4

Div(M4,1) ⊂ R4(M4,1)

is a 103-dimensional subspace of a 191-dimensional space. An admcycles calcu-
lation shows

λ4 /∈ CH
4
Div(M4,1) . (2)

The result (2) implies
λ4 /∈ CH

4
Div(M4) .

For g ≥ 5, a boundary restriction argument is pursued. Suppose, for contra-
diction,

λg ∈ CH
g
Div(Mg) . (3)

Then, by pull-back, we have

λg ∈ CH
g
Div(Mg,1) . (4)

Consider the standard boundary inclusion

δ : Mg−1,1 ×M1,2 → Mg,1 .

As usual, we have
δ∗(λg) = λg−1 ⊗ λ1 .
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Then (4) implies

λg−1 ⊗ λ1 ∈ CH
g
Div(Mg−1,1 ×M1,2) . (5)

Since M1,2 has a coarse moduli space with an affine stratification,

CH
∗
Div(Mg−1,1 ×M1,2) = CH

∗
Div(Mg−1,1)⊗ CH

∗
Div(M1,2) .

We therefore can write CH
g
Div(Mg−1,1 ×M1,1) as

CH
g
Div(Mg−1,1)⊗ CH

0

Div(M1,1) (6)

⊕ CH
g−1

Div (Mg−1,1)⊗ CH
1
Div(M1,1)

⊕ CH
g−2

Div (Mg−1,1)⊗ CH
2

Div(M1,1) .

After multiplying with ψ1 (corresponding to the original marking of Mg,1)
and pushing both (5) and (6) to the factor Mg−1,1, we conclude

λg−1 ∈ CH
g−1

Div (Mg−1,1) .

By descending induction, we contradict (2). Therefore (4) and hence also (3)
must be false. ♦

The proof of Lemma 1 above shows

λg /∈ CH
g
Div(Mg,1) (7)

for g ≥ 4. By using (7) as a starting point, we can study

λg ∈ CH
g(Mg,n)

for g ≥ 4 and n ≥ 2 using the boundary restrictions

δ̂ : Mg,n−1 ×M0,3 → Mg,n .

The argument used in the proof then easily yields a statement with markings:

Lemma 2. For all g ≥ 4 and n ≥ 0, we have

λg /∈ CH
g
Div(Mg,n) .

IV. Higher degree generators and the Chern classes of the Hodge bundle

Define the subring of tautological classes

R∗
D≤k(Mg,n) ⊂ R∗(Mg,n)
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generated by classes of (complex) degrees less than or equal to k. Since all
divsors are tautological,

R∗
D≤1(Mg,n) = CH

∗
Div(Mg,n) .

Other such relationships are discussed below. The arguments in Section III
naturally generalize to address the following question: when is

λg−r ∈ R
g−r
D≤k(Mg,n) ?

A crucial case of the question (from the point of view of boundary restriction
arguments) is for n = 1. Let Qg(r, k) be the statement

λg−r /∈ R
g−r
D≤k(Mg,1)

which may be true or false.
For example, Qg(r, g − r) is false essentially by definition. In fact,

Qg(s, g − r) for all s ≥ r

is false for the same reason. By Mumford’s formula for the Chern character of
the Hodge bundle (and the vanishing of even Chern characters), Qg(r−1, g− r)
is false whenever g − r is odd.

The boundary arguments used in the proofs of Lemmas 1 and 2 yield the
following two results.

Theorem 2. If Qg(r, k) is true, then Qg+1(r, k) and Qg+1(r + 1, k) are true.

Theorem 3. If Qg(r, k) is true, then

λg−r /∈ R
g−r
D≤k(Mg,n)

for all n ≥ 0.

Since the D ≤ 1 case has already been studied in Section III, we consider
D ≤ 2. The first relevant admcycles calculation is

λ3 /∈ R
3
D≤2(M4,1) ,

so Q4(1, 2) is true. The corresponding subspace here is of dimension 91 inside
a 93 dimensional space. As a consequence of Theorems 2 and 3, we find

λg−1 /∈ R
g−1

D≤2
(Mg,n)

for all g ≥ 4 and n ≥ 0.
A much more complicated admcycles calculation (modulo Pixton’s conjec-

ture) shows
λ5 /∈ R5

D≤2(M5,1) ,
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so Q5(0, 2) is true. The corresponding subspace here is of dimension 1314 inside a
1371 dimensional space – a longer admcycles calculation should be possible here
using Poincaré duality to prove Pixton’s conjecture for M5,1. As a consequence
of Theorems 2 and 3, we find

λg /∈ R
g
D≤2

(Mg,n)

for all g ≥ 5 and n ≥ 0. For large g, the following equality is known3

R2(Mg) = H4(Mg) .

We then obtain a new obstruction for generalizing (1) by running the above
discussion in cohomology.

Theorem 4. Not only is no divisor formula extending (1) possible for Ag, no
formula including codimension 2 classes as by Grushevsky-Zakharov [6] can be
extended over Ag.

Conjecture. No extension of (1) over Ag for all g can be written with classes
of uniformly bounded degree.

V. Parallel study in CH
∗
log(Mg,n)

We can consider the parallel questions also in CH
∗
log(Mg,n) where CH

∗
log is

defined via the limit of all iterated blow-ups of Mg,n along boundary strata.
The most basic question is:

Question. Does λg lie in the subring of CH∗
log(Mg) generated by divisors?

I would guess the answer is no except for perhaps finitely many g. However,
David Holmes thinks the answer is yes based on a view of the log Chow groups
of LogPic.

Rahul, 19 October 2020
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