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Abstract

The virtual geometry of the moduli space of stable quotients is used
to obtain Chow relations among the x classes on the moduli space of
nonsingular genus g curves. In a series of steps, the stable quotient
relations are rewritten in successively simpler forms. The final result
is the proof of the Faber-Zagier relations (conjectured in 2000).
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0 Introduction

0.1 Tautological classes

For g > 2, let M, be the moduli space of nonsingular, projective, genus g

curves over C, and let
T:Cy =M, (1)

be the universal curve. We view M, and €, as nonsingular, quasi-projective,
Deligne-Mumford stacks. However, the orbifold perspective is sufficient for
most of our purposes.

The relative dualizing sheaf w, of the morphism (1) is used to define the
cotangent line class

Y = ci(wy) € AY(C,, Q) .
The k classes are defined by push-forward,

fe = () € ATOM)

The tautological ring
R* (M) € A" (M, Q)

is the Q-subalgebra generated by all of the  classes. Since
ko=29—2€Q

is a multiple of the fundamental class, we need not take ko as a generator.
There is a canonical quotient

@[Iil,lﬁg,ligﬂ .. } i) R*(Mg) — 0.

We study here the ideal of relations among the x classes, the kernel of q.
We may also define a tautological ring RH*(M,) C H*(M,, Q) generated
by the x classes in cohomology. Since there is a natural factoring

Qlk1, Ko, ks, - - -] — R*(M,) - RH*(M,)

via the cycle class map ¢, algebraic relations among the x classes are also
cohomological relations. Whether or not there exist more cohomological
relations is not yet settled.



There are two basic motivations for the study of the tautological rings
R*(My). The first is Mumford’s conjecture, proven in 2002 by Madsen and
Weiss [11],

lim H*(M,,Q) = Q[x1, K2, K3, .. .,

g—0o0

determining the stable cohomology of the moduli of curves. While the &
classes do not exhaust H*(M,, Q), there are no other stable classes. The
study of R*(M,) undertaken here is from the opposite perspective — we are
interested in the ring of k classes for fixed g.

The second motivation is from a large body of cycle class calculations
on M, (often related to Brill-Noether theory). The answers invariably lie in
the tautological ring R*(M,). The first definition of the tautological rings
by Mumford [14] was at least partially motivated by such algebro-geometric
cycle constructions.

0.2 Faber-Zagier conjecture

Faber and Zagier have conjectured a remarkable set of relations among the s
classes in R*(M,). Our main result is a proof of the Faber-Zagier relations,
stated as Theorem 1 below, by a geometric construction involving the virtual
class of the moduli space of stable quotients.

To write the Faber-Zagier relations, we will require the following notation.
Let the variable set

P = { P1,D3, D4, D6: D75 D9s Doy - - - }

be indexed by positive integers not congruent to 2 modulo 3. Define the
series

o0

6i)!
U(t,p)=(1+t¢ t2 t3 <—tl

1=

= (6i)! 6i+1,
tpy + t* t
(P tpa - pr - z_; 30)1(20)! 6i — 1

Since ¥ has constant term 1, we may take the logarithm. Define the constants
Cf*(o) by the formula

10g ZZCFZ tr o

o r=0
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The above sum is over all partitions o of size |o| which avoid parts congruent
to 2 modulo 3. The empty partition is included in the sum. To the partition

o =1m3m4m ... we associate the monomial p? = pi*p5*py* - - -. Let
,YFZ _ Z Z C:Z(O_) RS
o r=0

For a series © € Q[x][[t, p]] in the variables x;, ¢, and p;, let [©]4ps denote
the coefficient of ¢"p? (which is a polynomial in the ;).

Theorem 1. In R"(M,), the Faber-Zagier relation
[exp(=77)],pe =0
holds when g — 1+ |o| < 3r and g =7+ |o|+1 mod 2.

The dependence upon the genus g in the Faber-Zagier relations of Theo-
rem 1 occurs in the inequality, the modulo 2 restriction, and via kg = 29 — 2.
For a given genus g and codimension r, Theorem 1 provides only finitely many
relations. While not immediately clear from the definition, the Q-linear span
of the Faber-Zagier relations determines an ideal in Q|[k1, ko, K3, ...] — the
matter is discussed in Section 6 and a subset of the Faber-Zagier relations
generating the same ideal is described.

As a corollary of our proof of Theorem 1 via the moduli space of stable
quotients, we obtain the following stronger boundary result. If g—1+|o| < 3r
and g =r+ |o| +1 mod 2, then

[exp(—1)] ., € R*(ODT,) - (2)

Not only is the Faber-Zagier relation 0 on R*(M,), but the relation is equal
to a tautological class on the boundary of the moduli space M,. A precise
conjecture for the boundary terms has been proposed in [18].

0.3 Gorenstein rings
By results of Faber [3] and Looijenga [10], we have

dimg RY*(M,) =1, R>9*(M,) = 0. (3)
A canonical parameterization of R9~*(M,) is obtained via integration. Let

E—M,
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be the Hodge bundle with fiber H°(C,w¢) over the moduli point [C] € M,
Let )\, denote the & Chern class of E. The linear map

€ : Qlk1, Ko,y K3, ... — Q, f(r) == [ f(K) - AgAg—1
My
factors through R*(M,) and determines an isomorphism
e: RI*(M,) 2 Q
via the non-trivial evaluation

1 |BQ |
—2AgAg—1 = al 4
/M flg=29%9-1 229-1(2g — D!II' 2¢g )

g9

A survey of the construction and properties of € can be found in [5].

The evaluations under € of all polynomials in the x classes are determined
by the following formulas. First, the Virasoro constraints for surfaces [7]
imply a related evaluation previously conjectured in [3]:

(29 +n—3)1(2g — D! /
T A N\ = oG A
Mg,n% Pn"AgA1 (29 — DT, a; — D J7, 07279700 ©)

where a; > 0. Second, a basic relation (due to Faber) holds:

w‘f‘l ce wz‘")\g)\g71 = Z / /fa')\g)\gfl . (6)
Mg

Mgn o€Sy,

The sum on the right is over all elements of the symmetric group S,,,

Rg = li‘cﬂ e I<L|Cr|
where ¢y, ..., ¢, is the set partition obtained from the cycle decomposition of
o, and
el = > (e = 1)
Jjec;

Relation (6) is triangular and can be inverted to express the € evaluations of
the x monomials in terms of (5).

Computations of the tautological rings in low genera led Faber to formu-
late the following conjecture in 1991.



Conjecture 1. For all g > 2 and all 0 < k < g — 2, the pairing
RF(M) x RI>H(M,) ——— Q (7)
1s perfect.

The pairing (7) is the ring multiplication U of R*(M,) composed with e. A
perfect pairing identifies the first vector space with the dual of the second.
If Faber’s conjecture is true in genus g, then R*(M,) is a Gorenstein local
ring.

Let I, C R*(M,) be the ideal determined by the kernel of the pairing (7)
in Faber’s conjecture. Define the Gorenstein quotient

Ry0r,) =

If Faber’s conjecture is true for g, then J, = 0 and R (M,) = R*(M,).

The pairing (7) can be evaluated directly on polynomials in the k classes
via (4)-(6). The Gorenstein quotient R& (M) is completely determined by
the x evaluations and the ranks (3). The ring R (M,) can therefore be
studied as a purely algebro-combinatorial object.

Faber and Zagier conjectured the relations of Theorem 1 from a concen-
trated study of the Gorenstein quotient R (M,). The Faber-Zagier relations
were first written in 2000 and were proven to hold in R& (M) in 2002. The
validity of the Faber-Zagier relations in R*(M,) has been an open question
since then.

0.4 Other relations?

By substantial computation, Faber has verified Conjecture 1 holds for genus
g < 24. Moreover, his calculations show the Faber-Zagier set yields all
relations among « classes in R*(M,) for ¢ < 24. However, he finds the
Faber-Zagier relations of Theorem 1 do not yield a Gorenstein quotient in
genus 24. Let

FZ, C Q[k1, ko, K3, .. .]

be the ideal determined by the Faber-Zagier relations of Theorem 1, and let

Q[I{la Ko, K3, .. ]

R;Z <M9> = FZ
g




Faber finds a mismatch in codimension 12,
Ry (Mas) # Re (M) - (8)

Exactly 1 more relation holds in the Gorenstein quotient.

To the best of our knowledge, a relation in R*(M,) which is not in the
span of the Faber-Zagier relations of Theorem 1 has not yet been found. The
following prediction is consistent with all present calculations.

Conjecture 2. For all g > 2, the kernel of
@[lih Ko, K3, . . ] i) R*(Mg) — 0
is the Faber-Zagier ideal FZ,,.

Conjectures 1 and 2 are both true for g < 24. By the inequality (8), Conjec-
tures 1 and 2 can not both be true for all g. Which is false?

Finally, we note the above discussion might have a different outcome if
the tautological ring RH*(M,) in cohomology is considered instead. Perhaps
there are more relations in cohomology? These questions provide a very
interesting line of inquiry.

0.5 Plan of the paper

We start the paper in Section 1 with a modern treatment of Faber’s classical
construction of relations among the x classes. The result, in Wick form, is
stated as Theorem 2 of Section 1.2. While the outcome is an effective source
of relations, their complexity has so far defied a complete analysis.

After reviewing stable quotients on curves in Section 2, we derive an
explicit set of k relations from the virtual geometry of the moduli space of
stable quotients in Section 3. The resulting equations are more tractable
than those obtained by classical methods. In a series of steps, the stable
quotient relations are transformed to simpler and simpler forms. The first
step, Theorem 5, comes almost immediately from the virtual localization
formula [8] applied to the moduli space of stable quotients. After further
analysis in Section 4, the simpler form of Proposition 10 is found. A change
of variables is applied in Section 5 that transforms the relations to Proposition
15. Our final result, Theorem 1, establishes the previously conjectural set of
tautological relations proposed more than a decade ago by Faber and Zagier.
The proof of Theorem 1 is completed in Section 6.
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A natural question is whether Theorem 1 can be extended to yield explicit
relations in the tautological ring of ﬂgm. A precise conjecture of exactly such
an extension is given in [18]. There is no doubt that our methods here can
also be applied to investigate tautological relations in ﬁgm. Whether the
simple form of [18] will be obtained remains to be seen. A different method,
valid only in cohomology, of approaching the conjecture of [18] is pursued in

17].
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1 Classical vanishing relations

1.1 Construction

Faber’s original relations in his article Conjectural description of the tauto-
logical ring [3] are obtained from a very simple geometric construction. As
before, let

Tm:C =M,

be the universal curve over the moduli space, and let
d. od
T el =M,

be the map associated to the d*" fiber product of the universal curve. For
every point [C,py,...,p4] € (‘32, we have the restriction map

HO(Cv WC') - HO(Ov wC’|p1+---+Pd) : (9)
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Since the canonical bundle we has degree 2g — 2, the restriction map is
injective if d > 2g — 2. Let
Qq — €I

be the rank d bundle with fiber H%(C,wc|p, 4. +p,) over the moduli point
C.p1,...,pd] € Gg. If d > 2g — 2, the restriction map (9) yields an exact
sequence over C%,

0—=E—=Q—=Q4yg—0

where E is the rank g Hodge bundle and @4, is the quotient bundle of rank
d — g. We see

(Qa—g) =0 € A*(C)) for k>d—g.

After cutting the vanishing Chern classes ¢ (Qq—y) down with cotangent line

and diagonal classes in € and pushing-forward via 7¢ to Mg, we arrive at
Faber’s relations in R*(M,).

1.2 Wick form

From our point of view, at the center of Faber’s relations in [3] is the function

d

oo d )dZE
ZH (1+it) g

d=0 i=1

The differential equation
t(r+1) d@+(t+1)@—0
. dx N

is easily found. Hence, we obtain the following result.
Lemma 1. O = (1 4+ )"+ .
We introduce a variable set z indexed by pairs of integers

For monomials

o __ 04,5
2 =1[47,
i,



we define

= Zi(f@j, ’U‘ = Zjai,j .
2 i,J

Of course [Aut(o)| = [, ; 03! -

The variables z are used to define a differential operator
’ i
D= Z 2 (x—) )

After applying exp(D) to O, we obtain
0 = exp(D) @

d d dZ(U t\a\z

= ZZH (1+it) ! 7 JAut(o)]

o d=0 i=1

where ¢ runs over all monomials in the variables z. Define constants C%(o)
by the formula

log( @D Z; Z_l Cd

By an elementary application of Wick’s formula (as explained in Section 1.3.2
below), the ¢ dependence of log(©?) has at most simple poles.
Finally, we consider the following function,

2
~F = Z QZ(QB Ko 2071 —|—ZZ Z C%o) /frtT—z ) (10)

o d=1r=-1

The Bernoulli numbers appear in the first term,

ZBkk' :e“—l '

Denote the t"292° coefficient of exp(—~+F) by

[GXP(—VF)L%dZU € Q[k_1, Ko, K1, Ko, -] -

Our form of Faber’s equations is the following result.
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Theorem 2. In R"(M), the relation

[exp<_/yF)j|trdeo' = O
holds when r > —g + |o| and d > 2g — 2.

In the tautological ring R*(M,), the standard conventions
571:0, 50:2g—2

are followed. For fixed g and r, Theorem 2 provides infinitely many relations
by increasing d. The variables z; ; efficiently encode both the cotangent and
diagonal operations studied in [3]. In particular, the relations of Theorem 2
are equivalent to a mixing of all cotangent and diagonal operations studied
there. The proof of Theorem 2 is presented in Section 1.3.

While Theorem 2 has an appealingly simple geometric origin, the relations
do not seem to fit the other forms we will see later. In particular, we do
not know how to derive Theorem 1 from Theorem 2. Extensive computer
calculations by Faber suggest the following.

Conjecture 3. For all g > 2, the relations of Theorem 2 are equivalent to
the Faber-Zagier relations.

In particular, despite significant effort, the relation in RE (Msy) which is
missing in Rz (Msy) has not been found via Theorem 2. Other geometric
strategies have so far also failed to find the missing relation [19, 20].

1.3 Proof of Theorem 2
1.3.1 The Chern roots of €,

Let ¢; € A'(CZ,Q) be the first Chern class of the relative dualizing sheaf wy
pulled back from the i** factor,

el — €, .

Fori # j,let Dy € A'(€4,Q) be the class of the diagonal C, C €2 pulled-back
from the product of the i** and j** factors,

d
Gg—>€§.

11



Finally, let
A;=Di;+...+Diy; € AY€LQ)

following the convention A; = 0. The Chern roots of €2y,

al@a) = JI1+@i- 2 (11)
= (1+t)- (1 + (g — D12)t) e (1 + <¢d — iDid>t>

are obtained by a simple induction, see [3].
We may expand the right side of (11) fully. The resulting expression is a
polynomial in the d + (;l) variables.

¢1, st 7wda _D127 _D137 R _Ddfl,d .

The sign on the diagonal variables is chosen because of the self-intersection
formula

(—Dij)? = 1i(=Dij) = ¢;(—=Dy;) .

Let M? denote the coefficient in degree 7,
c(Qa) =D M (s, —Dy) 1.
r=0

Lemma 2. After setting all the variables to 1,

o9 d
S M~ -y = 1) ¢ = [Ja+in,
r=0 i=1
Proof. The results follows immediately from the Chern roots (11). O

Lemma 2 may be viewed counting the number of terms in the expansion
of the total Chern class ¢;(€2).
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1.3.2 Connected counts

A monomial in the diagonal variables
D127D137"'7Dd71,d (12>

determines a set partition of {1,...,d} by the diagonal associations. For
example, the monomial 3D}, D; 3D3; determines the set partition

{1,2,3} U {4} U {5,6}

in the d = 6 case. A monomial in the variables (12) is connected if the
corresponding set partition consists of a single part with d elements.
A monomial in the variables

Ipl,...,wd,—Du,—D13,-~~,_Dd71,d (13>

is connected if the corresponding monomial in the diagonal variables obtained
by setting all ¢); = 1 is connected. Let S? be the summand of the evaluation
M2 (¢p; = 1,—D;; = 1) consisting of the contributions of only the connected
monomials.

Lemma 3. We have

Proof. By a standard application of Wick’s formula, the connected and dis-
connected counts are related by exponentiation,

o d d 00 00 d
d 'rx _ d _ R T‘T_
exp( > st E) =1+ > My =1,-Dy =1)t o
d=1 r=0 d=1 r=0
The right side is then evaluated by Lemma 2. O

Since a connected monomial in the variables (13) must have at least d —1
factors of the variables —D;;, we see S¢ = 0 if r < d — 1. Using the self-
intersection formulas, we obtain



To account for the alternating factor (—1)4~! and the x subscript, we define
the coefficients C? by

o d ) 2
ZZCdtrd‘ 1og<1+ZH1+t i ‘2!>.

d=1r>-1

The vanishing S?_, ; = 0 implies the vanishing C¢__; = 0.
The formula for the total Chern class of the Hodge bundle [E on M, follows
immediately from Mumford’s Grothendieck-Riemann-Roch calculation [14],

By, 21
E) =Y 2 —hm i
alB) =, 2i(2i — 1) 2
i>1

Putting the above results together yields the following formula:

33 e @u) 0 =
d=1 r>0 ’
ex —Z —BQi Ko t2 1 — f: Z C? K t’"m—d
P\T & ™ rEar)

d=1r>-1

1.3.3 Cutting

For d > 29 — 2 and r > d — g, we have the vanishing

¢(Qa—g) =0 € A"(€1,Q) .

Before pushing-forward via 7¢, we will cut ¢,.(Qg4_,) with products of classes

in A*(€4,Q). With the correct choice of cutting classes, we will obtain the
relations of Theorem 2.
Let (a,b) be a pair of integers satisfying a > 0 and b > 1. We define the
cutting class
$la,b] = (=1)"" Y WD (15)
|[7|=b
where I C {1,...,d} is subset of order b, D; € Ab_l((‘fg,@) is the class of
the corresponding small diagonal, and ¢; is the cotangent line at the point
indexed by I. The class v; is well-defined on the small diagonal indexed by
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I. The degree of ¢[a,b] is a +b — 1. The number of terms on the right side
of (15) is a degree b polynomial in d,

d db d
= — 4.4 (=12
(b) et 0Ty
with no constant term.

The sign (—1)*~! in definition (15) is chosen to match the sign conventions
of the Wick analysis in Section 1.3.2. For example,

9[0,2] = Z(—Dz‘j) , 9[0,3] = Z (=Dij)(=Djy)-

The number of terms means the evaluation at ¢y = 1 and —D;; = —1.

A better choice of cutting class is obtained by the following observation.
For every pair of integers (i, j) with i > 1 and j > i — 1, we can find a unique
linear combination

q)[l,j] = Z /\a,b . ¢[a7 b]v )\a,b S Q

a+b—1=j

for which the evaluation of ®[¢,j] at ¢y = 1 and —D;; = —1 is d'. By
definition, ®[7, j| is of pure degree j.

1.3.4 Full Wick form

We repeat the Wick analysis of Section 1.3.2 for the Chern class of 04—, cut
by the classes ®[i, j| in order to write a formula for

< e ) S Lzt
Z ZTF* exXp (Z Zz,]t (I)[Zvj]) CT(Qd*gﬁ td !
[N .

d=1 r>0

where the sum in the argument of the exponential is over all ¢ > 1 and
j > 1 — 1. The variable set z introduced in Section 1.2 appears here. Since
®[i, j] yields d' after evaluation at ¢; = 1 and —D;; = —1 and is of pure
degree j, we conclude

d

Z Zﬂf <exp <Z zl-thCI)[z',j]) . cr(ng)f") %% =exp(—") . (16)

d=1 r>0
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Let d > 2g — 2. Since ¢5(Qq_y) = 0 for s > d — g, the t"2%2% coefficient
of (16) vanishes if
r+d—lo|>d—g

which is equivalent to r > —g+ |o|. The proof of Theorem 2 is complete. [

2 Stable quotients

2.1 Stability

Our proof of the Faber-Zagier relations in R*(M,) will be obtained from
the virtual geometry of the moduli space of stable quotients. We start by
reviewing the basic definitions and results of [13].

Let C be a curve which is reduced and connected and has at worst nodal
singularities. We require here only unpointed curves. See [13] for the defini-
tions in the pointed case. Let ¢ be a quotient of the rank N trivial bundle
c,

CV®0c5Q—o0.

If the quotient subsheaf @) is locally free at the nodes and markings of C,
then q is a quasi-stable quotient. Quasi-stability of ¢ implies the associated
kernel,

055S—-C"®0c5Q—0,

is a locally free sheaf on C'. Let r denote the rank of S.
Let C be a curve equipped with a quasi-stable quotient ¢q. The data (C, q)
determine a stable quotient if the Q-line bundle

we @ (A7S*)®e (17)

is ample on C' for every strictly positive € € Q. Quotient stability implies
29 — 2> 0.
Viewed in concrete terms, no amount of positivity of S* can stabilize a
genus 0 component
P'=ZPcC

unless P contains at least 2 nodes or markings. If P contains exactly 2 nodes
or markings, then S* must have positive degree.

A stable quotient (C, ¢) yields a rational map from the underlying curve
C to the Grassmannian G(r, N). We will only require the G(1,2) = P! case
for the proof Theorem 1.
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2.2 Isomorphism

Let C be a curve. Two quasi-stable quotients
C"20c%50Q=0, CVaoc%Q -0 (18)
on C' are strongly isomorphic if the associated kernels
S, 8" cCV¥®0Oq

are equal.
An isomorphism of quasi-stable quotients

¢:(C,q) = (C',q)

is an isomorphism of curves
¢:C =S C

such that the quotients ¢ and ¢*(¢’) are strongly isomorphic. Quasi-stable
quotients (18) on the same curve C' may be isomorphic without being strongly
isomorphic.

The following result is proven in [13] by Quot scheme methods from the
perspective of geometry relative to a divisor.

Theorem 3. The moduli space of stable quotients Qg(G(T, N),d) parameter-
1zing the data
(C,0=S—=CV®0s%Q—0),

with rank(S) = r and deg(S) = —d, is a separated and proper Deligne-
Mumford stack of finite type over C.

2.3 Structures

Over the moduli space of stable quotients, there is a universal curve
m:U— @Q(G(r, N),d) (19)
with a universal quotient
0= Sy =C"®0y % Qu —0.

The subsheaf Sy is locally free on U because of the stability condition.

17



The moduli space @Q(G(T, N),d) is equipped with two basic types of
maps. If 29 — 2 > 0, then the stabilization of C' determines a map

v @Q(G(r, N),d) — M,

by forgetting the quotient.

The general linear group GLy(C) acts on @Q(G(r, N), d) via the standard
action on CV ® O¢. The structures 7, gy, v and the evaluations maps are
all GLy (C)-equivariant.

2.4 Obstruction theory

The moduli of stable quotients maps to the Artin stack of pointed domain
curves

v 1 Q,(G(r,N),d) = M,.

The moduli of stable quotients with fixed underlying curve [C] € M, is
simply an open set of the Quot scheme of C. The following result of [13,
Section 3.2] is obtained from the standard deformation theory of the Quot
scheme.

Theorem 4. The deformation theory of the Quot scheme determines a 2-
term obstruction theory on the moduli space Q,(G(r,N),d) relative to v*
given by RHom(S, Q).

More concretely, for the stable quotient,
055 —=>C"®0c%5Q—0,

the deformation and obstruction spaces relative to v are Hom(S, Q) and
Ext'(S, Q) respectively. Since S is locally free, the higher obstructions

Ext*(S,Q) = H¥(C,S*®Q) =0, k>1

vanish since C' is a curve. An absolute 2-term obstruction theory on the
moduli space Q,(G(r, N), d) is obtained from Theorem 4 and the smoothness
of My, see [1, 2, 7]. The analogue of Theorem 4 for the Quot scheme of a
fized nonsingular curve was observed in [12].

The GLy(C)-action lifts to the obstruction theory, and the resulting
virtual class is defined in GLy(C)-equivariant cycle theory,

[Qy(G(r,N), &))" € AFYYE(Q (G(r, N), d)).
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For the construction of the Faber-Zagier relation, we are mainly interested
in the open stable quotient space

v Qg(Pl,d) — M,

which is simply the corresponding relative Hilbert scheme. However, we will
require the full stable quotient space QQ(PI, d) to prove the Faber-Zagier
relations can be completed over M, with tautological boundary terms.

3 Stable quotients relations

3.1 First statement

Our relations in the tautological ring R*(M,) obtained from the moduli of
stable quotients are based on the function

0= I

d=0 i=1

)dd

8

= (20)

Define the coefficients CN'ﬁl by the logarithm,
o o ~d Txd
log(q)):ZZC’r t o
d=1r=-1

Again, by an application of Wick’s formula in Section 3.3, the ¢ dependence
has at most a simple pole. Let

- Bs; x
=2 gyt St (21)
d=1r=-1
Denote the t"2¢ coefficient of exp(—7) by
[exp(_;y/)}trxd € Q[I{—lv Ro, R1, R2, . . ] .

In fact, [exp(—7)]4rpa is homogeneous of degree r in the k classes.
The first form of the tautological relations obtained from the moduli of
stable quotients is given by the following result.
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Proposition 4. In R"(M,), the relation

[exp(—)],.,0 = 0
holds when g —2d —1 <r and g =r + 1 mod 2.

For fixed r and d, if Proposition 4 applies in genus g, then Proposition
4 applies in genera h = g — 20 for all natural numbers 6 € N. The genus
shifting mod 2 property is present also in the Faber-Zagier relations.

3.2 K-theory class Iy,

For genus g > 2, we consider as before
7 Gz — M, ,
the d-fold product of the universal curve over M,. Given an element
[C,p1,...,pa) € GZ :
there is a canonically associated stable quotient
d
0—>OC(—ij)—>OC—>Q—>O. (22)
j=1
Consider the universal curve
e:U— CZ
with universal quotient sequence
0—=>Sy—>0y—>Qu—0
obtained from (22). Let
Fy = —Re.(S}) € K(€Y)
be the class in K-theory. For example,
Fo=E"-C

is the dual of the Hodge bundle minus a rank 1 trivial bundle.
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By Riemann-Roch, the rank of F; is
re(d) =9g—d—1.

However, Fy is not always represented by a bundle. By the derivation of [13,
Section 4.6],
F,=E*—-B,;—C, (23)

where By has fiber H°(C, Oc(zgzl pj)|z¢:1pj) over [C,p1,...,Dd)-
The Chern classes of F; can be easily computed. Recall the divisor D ;
where the markings p; and p; coincide. Set

Ai=Di;+...+ D1,

with the convention Ay = 0. Over [C,py, ..., pa], the virtual bundle Fy is the
formal difference

H'(Oc(pr+ ... +pa)) = H(Oc(pr + ... + pa))-

Taking the cohomology of the exact sequence

O—)Oc(pl—i-...—i—pd_l) —>Oc(p1+...+pd)—>Oc(p1+...+pd)|ﬁd — 0,

we find (Fay)
C\I'g—1
]F —
W) = T A v
Inductively, we obtain
c(E¥)

Cd) = 058 — o0 (T Dr— 0

Equivalently, we have

1
(T+A =) (1+A¢ —a)

o(—By) = (24)

3.3 Proof of Proposition 4

Consider the proper morphism
v:Q,Pd) — M,
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Certainly the class
v, (0°N [Qy(P,d)]") € A*(M,,Q), (25)

where 0 is the first Chern class of the trivial bundle, vanishes if ¢ > 0.
Proposition 4 is proven by calculating (25) by localization. We will find
Proposition 4 is a subset of the much richer family of relations of Theorem 5
of Section 3.4.

Let the torus C* act on a 2-dimensional vector space V = C? with diagonal
weights [0, 1]. The C*-action lifts canonically to P(V') and Q,(P(V),d). We
lift the C*-action to a rank 1 trivial bundle on Q,(P(V),d) by specifying
fiber weight 1. The choices determine a C*-lift of the class

0N [QH(P(V)7 d)]mr € A2d+2g—2—C<Q9(P(v)a d), @)

The push-forward (25) is determined by the virtual localization formula
[7]. There are only two C*-fixed loci. The first corresponds to a vertex lying
over 0 € P(V). The locus is isomorphic to

¢ /s,

and the associated subsheaf (22) lies in the first factor of V' ® O¢ when
considered as a stable quotient in the moduli space Q,(P(V'),d). Similarly,
the second fixed locus corresponds to a vertex lying over oo € P(V).
The localization contribution of the first locus to (25) is

1

aﬂ'f (cg-d-1+c(Fq))  where 7¢: €I — M, .
Let c_(FFy4) denote the total Chern class of F,; evaluated at —1. The localiza-
tion contribution of the second locus is

—1)9—d-1
R

where [y]* is the part of v in A*(€Z, Q).
Both localization contributions are found by straightforward expansion of
the vertex formulas of [13, Section 7.4.2]. Summing the contributions yields

:| g—d—14c

7 (cpane®) + (0 e @)Y = 0 m RmOM)

for ¢ > 0. We obtain the following result.
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Lemma 5. Forc¢> 0 and ¢c =0 mod 2,
Wf(CQ_d_1+C(Fd)> =0 in R"(M,) .
For ¢ > 0, the relation of Lemma 5 lies in R"(M,) where
r=g—2d—1+c.
Moreover, the relation is trivial unless
g—d—1=g—d—-14+c=r—d mod?2. (26)

We may expand the right side of (24) fully. The resulting expression is a
polynomial in the d + (g) variables.

¢17"'a¢d7_D127_D137"'a_Dd—l,d .

Let M,fl denote the coefficient in degree r,
c(—Ba) =Y M (e, —Dyy) 1.
r=0

Let §f,’ be the summand of the evaluation ]\Aff(wi = 1,—D;; = 1) consisting
of the contributions of only the connected monomials.

Lemma 6. We have

Zigdtrx—dzlog<1+§:ﬁ ! m—d>
— "od! 1—it d!

00
d=1r d=1 i=1

Proof. As before, by Wick’s formula, the connected and disconnected counts
are related by exponentiation,

d

d=1 r=0 d=1 r=0
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Since a connected monomial in the variables 1; and —D;; must have at
least d — 1 factors of the variables —D;;, we see S¢ = 0 if r < d — 1. Using
the self-intersection formulas, we obtain

o Tl‘d o o0 . d
ZZWS(CT(—Bd)) t o = exp (Z SU—1) " g t7 E) . (27)
d=1 r>0

To account for the alternating factor (—1)4-1
the coefficients C? by

0 " d o0 1 —1)¢ 4
ZZCftT%:log(l+ZH1_it (td) %) :

d=1r>—1

and the k subscript, we define

The vanishing §f< 4—1 = 0 implies the vanishing C 1 =0.
Again using Mumford’s Grothendieck-Riemann- Roch calculation [14],

Ba: 4
E*) = — ey i thfl )
B = =D S — 1)
i>1

Putting the above results together yields the following formula:

>3 (el ¢ =
d=1 r>0
exp( 22Z<2B Ko 11521 1 chd rtr > .

d=1r>-1

The restrictions on g, d, and r in the statement of Proposition 4 are obtained
from (26). O

3.4 Extended relations

The universal curve

e:U — Q,P', d)

carries the basic divisor classes
*
s=c(S)), w=c(wg)
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obtained from the universal subsheaf Si; of the moduli of stable quotients and
the e-relative dualizing sheaf. Following [13, Proposition 5], we can obtain
a much larger set of relations in the tautological ring of M, by including
factors of e,(s%w”) in the integrand:

i=1

Vi (H €x(s"wh) - 0° N [Qy (P, d)]”") =0 in A*(M,, Q)

when ¢ > 0. We will study the associated relations where the a; are always
1. The b; then form the parts of a partition o.

To state the relations we obtain, we start by extending the function v of
Section 3.1,

B, .
Q@ _ E: i ¥l
7 2 9i(2i — 1) 2

i>1

. > xd dﬁ(a)t|a|pa
Clhyppo) 7= ——— .
+2.0 D Clhne d! |[Aut(o)]
o d=1r=-1
Let 7°¢ be defined by a similar formula,
Bs; ,
—SQ  __ 7 ) _ 4\2i—1
7= D g oyt (D)
i>1
x> J,’d d@(a)t\a\po
Clhyito) (=)= ———m .
o d=1r=-1
The sign of ¢ in ¢/°! does not change in 7°¢. The x_; terms which appear will
later be set to 0.

The full system of relations are obtained from the coefficients of the func-

tions w0 ©° . —w
exp(—7*),  exp(= Y kipt"ppia) - exp(—7)
r=0

Theorem 5. In R"(M), the relation

[exp(_’ySQ)} = (—1)* [exp(— i rt Drsn) - exp(—F%)

trxdpa trxdpo
r=0

holds when g —2d — 1+ |o| < r.
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Again, we see the genus shifting mod 2 property. If the relation holds in
genus ¢, then the same relation holds in genera h = g — 26 for all natural
numbers 6 € N.

In case 0 = (), Theorem 5 specializes to the relation

exp(—F(ta)| | = (17| exp(F(—t.2))]

trad trad

— (1)t [exp(—’i(t: x))} ;

trxd

nontrivial only if ¢ = r + 1 mod 2. If the mod 2 condition holds, then we
obtain the relations of Proposition 4.
Consider the case 0 = (1). The left side of the relation is then

ootte) (-3 3 @)

d=1 s=—1
The right side is
dx?
0 s+1
(—1)9[6Xp( F(—t,x) (—%ot + ;;_:IC Fiss1(— T) ]md :

If g =17+ 1 mod 2, then the large terms cancel and we obtain

ko [exp(~F(t,a)| =0

trxd

Since kg = 2g — 2 and
(9g—2d—14+1<r) = (g—2d—1<r),

we recover most (but not all) of the o = ) equations.
If g = r mod 2, then the resulting equation is

[exp( ~(t, x) (%0 — 2i i C’g /@sHtS“dx ) LT = 0

d=1 s=—1

when g — 2d < r.
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3.5 Proof of Theorem 5

3.5.1 Partitions, differential operators, and logs.

We will write partitions o as (1"12"23"s . ..) with
lo) = an and |o| = Zml :

The empty partition () corresponding to (1°2°3°...) is permitted. In all cases,
we have
|Aut(o)| = nylnglng!--- .

In the infinite set of variables {p1, p2, p3, ...}, let

o d
1 (_1)(1 xd d@(a)t|a|pcr
OP(L,2) = =
(t,2) ;gﬂl—it dl 1 [Aut(o)]

where the first sum is over all partitions 0. The summand corresponding to
the empty partition equals ®(¢,z) defined in (20).
The function ®P is easily obtained from @,

Let D denote the differential operator

D:izlpitx%.

Expanding the exponential of D, we obtain

1 1
PP = <I>+D<I>+§D2<I>+6D3<I>+... (28)
e D<I>+1D2(I>+1D3¢>+
2 6 @ )

Let v* = log(®) be the logarithm,



After applying the logarithm to (28), we see
1
log(®P) = ~*+log (1 + Dy + §(D2'y* + (Dy*)?) + >

1

where the dots stand for a universal expression in the D*v*. In fact, a
remarkable simplification occurs,

log(®P) = exp ( g pitzxﬁ> v .
i=1

The result follows from a general identity.

Proposition 7. If f is a function of x, then

log (exp (Ax%) f) = exp ()\x%) log(f) .

Proof. A simple computation for monomials in x shows

exp (Ax%) 2 = (erx)h .

Hence, since the differential operator is additive,

d
exp <)\m%> f(z) = f(etz) .
The Proposition follows immediately. O

We apply Proposition 7 to log(®P). The coefficients of the logarithm may
be written as

ox(@9) = 3737 Gl iy

o d=1r=-1

— ZZCd tr—exp <dezt’)
d=1 r=-—1
2 - = Lad diotlelpe
R

We have expressed the coeflicients éf(o) of log(®P) solely in terms of the
coefficients C? of log(®).
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3.5.2 Cutting classes

Let 0; € AY(U, Q) be the class of the i section of the universal curve
e:U—Cl (29)

The class s = ¢1(S};) on the universal curve over @ (P!, d) restricted to the
C*-fixed locus C7/Sy and pulled-back to (29) yields

s=0,+...+04 EAl(U,@).
We calculate
efsw’) =Pl ...+ € A€ Q). (30)
3.5.3 Wick form

We repeat the Wick analysis of Section 3.3 for the vanishings

Vs (H ex(sw”) - 0°N [Q, (P, d)]“") =0 in A*(M,, Q)

i=1
when ¢ > 0. We start by writing a formula for
- > . . 1 $d
d i i .
Z Zﬂ-* (eXp (szt 6*(56{} )) . Cr(]Fd)t ) t_dﬁ .
d=1 r>0 i=1

Applying the Wick formula to equation (30) for the cutting classes, we
see

oo oo ' ' 1 CCd
d i i r _ oy
Z ZW* <exp <Zpit €x(sw )) e (Fa)t ) i exp(—=7°%)  (31)
d=1 r>0 i=1
where 7°? is defined by
=T gyt 22 Y Gl v v
=~ 2i(2i —1) " R | B

We follow here the notation of Section 3.5.1,

oo d
1 (_1)(1 Z’d dﬁ(a)t|a|pa
DP(¢ = il
(t,2) ;;E1ﬂf d @ [Aut(o)]
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ox(9) = 73" 3 i) v

o d=1r=-1

In the Wick analysis, the class ¢, (sw’) simply acts as dt®.
Using the expression for the coefficents C%(o) in terms of C? derived in
Section 3.5.1, we obtain the following result from (31).

Proposition 8. We have
d

Z wa <exp (Zpitie*(swi)> . cT(Fd)tT> tld% = exp(—7*?) .

d=1 r>0

3.5.4 Geometric construction

We apply C*-localization on Q,(P!,d) to the geometric vanishing

¢
Vs (H €. (sw”) - 0° N [Q4 (P, d)]”") =0 in A*(M,,Q) (32)

i=1
when ¢ > 0. The result is the relation

l

T ( [T e (sw") - coamrie@a)+

=1

~

p= [T (s D) -eo®] ™ ") =0 39)

=1

in R*(M,). After applying the Wick formula of Proposition 8, we immedi-
ately obtain Theorem 5.
The first summand in (33) yields the left side

[exp(‘VsQ)] tradpe

of the relation of Theorem 5. The second summand produces the right side

(1 [esp(= 3 m ) (7). (34)

trxdpo
r=0 p
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Recall the localization of the virtual class over co € P! is

(~1)

]

Of the sign prefactor (—1)9=4-1,
e (—1)7!is used to move the term to the right side,
e (—1)~%is absorbed in the (—t) of the definition of 75¢
e (—1)Y remains in (34).

The —1 of s — 1 produces the the factor exp(— - Kt Dri1).
Finally, a simple dimension calculation (remembering ¢ > 0) implies the
validity of the relation when g —2d — 1+ |o| < r. O

4 Analysis of the relations

4.1 Expanded form

Let 0 = (1129239 .. .) be a partition of length /(o) and size |o|. We can
directly write the corresponding tautological relation in R"(M,) obtained
from Theorem 5.

A subpartition o' C o is obtained by selecting a nontrivial subset of the
parts of 0. A division of ¢ is a disjoint union

c=cVUc@uc® . (35)

of subpartitions which exhausts o. The subpartitions in (35) are unordered.
Let 8(o) be the set of divisions of o. For example,

s(12h) = {(1'2"), 1Hu(2") },
$(1F) = { (1), @®Hu@E)}.

We will use the notation ¢® to denote a division of ¢ with subpartitions

o@. Let
1 |Aut(o)|

) = R T [Aut(0®)]
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Here, Aut(c*®) is the group permuting equal subpartitions. The factor m(c*®)
may be interpreted as counting the number of different ways the disjoint
union can be made.

To write explicitly the p” coefficient of exp(7°?), we introduce the func-
tions

[CSIINCN) d*r d

Fan(t0) = =30 32 8 it L
d=1 s=—1 '

for n,m > 1. Then,
[Aut(o)] - [exp(—1*)] =
trl.dpa
L(o®)
[eXp(—”v'(t,w))- doom H Foinjoor | |, -

o*€8(o)
Let ¢** be a division of o with a marked subpartition,
c=c"UcWuscPus® . | (36)

labelled by the superscript *. The marked subpartition is permitted to be
empty. Let §*(o) denote the set of marked divisions of o. Let

__ 1 [Aut(o)]
[Aut(o*)] |Aut(o*)] TTLG ) [Aut(a®)]

The length ¢(c**) is the number of unmarked subpartitions.
Then, |Aut(o)| times the right side of Theorem 5 may be written as

(~1) ¥ Aut(o)| - | exp(—(~t,)):

£(o*) L(c**)
Z m(o*") H ma;,l(—t)aj—l H Fg(a(i)%‘a(m(—t,l‘) i
o0 e8* (o) j=1 i=1 v

To write Theorem 5 in the simplest form, the following definition using
the Kronecker ¢ is useful,

mi(o*’) = (1 + (507|g*|> : m(a*").
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There are two cases. If g = r + |o| mod 2, then Theorem 3 is equivalent to
the vanishing of

K(U*’.)

£(c*)
|Aut(0-)| [eXp(_:\)//). Z mi (0’*7.) H /ig;%fltg;_l H Fe(0<l))7|g(’b)| i|trwd.
) j:l =1

o**e8* (o
If g=r+|o|+ 1 mod 2, then Theorem 5 is equivalent to the vanishing of

E(U*’.)

£(c*)
|Aut(0)| [exp(—?)- Z m+(g*,o) H no;_ltlﬁ—l H Fg(g(i)),|g(z‘)| erd.
j=1 i=1

o**€8* (o)

In either case, the relations are valid in the ring R*(M,) only if the condition
g—2d— 1+ |o| <r holds.

We denote the above relation corresponding to g, r, d, and o (and de-
pending upon the parity of g — r — |o|) by

R(g,r,d,0) =0

The |Aut(o)| prefactor is included in R(g,r,d, o), but is only relevant when
o has repeated parts. In case of repeated parts, the automorphism scaled
normalization is more convenient.

4.2 Further examples

If o = (k) has a single part, then the two cases of Theorem 5 are the following.
If g=r—+k mod 2, we have

[exp(—ﬁ) : "fk—ltk_l} P 0
t"x
which is a consequence of the o = ) case. If g =r + k + 1 mod 2, we have
[GXP(—% (Rrt" T+ 2F ) } =0
trxd

If 0 = (k1k2) has two distinct parts, then the two cases of Theorem 5 are
as follows. If g = r + ky + ko mod 2, we have

[eXp(—ﬁ) . (ﬁkl—lﬁkg—ltlirbiZ

+ likl_ltkl_lFl,]Q + Iik2_1tk2_1F1,kl)i| =0.

trad
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If g=7r+k +ky+ 1 mod 2, we have

[GXP(—% . (/fkrl/ﬁkgqtkﬁkz’ﬂ + gyt T P,

+ :‘ikg—ltkg—lFLkl + 2F2’k1+k2 + 2F17k1 Fl’kQ)L =0.

roped

In fact, the ¢ = r + k1 + k2 mod 2 equation above is not new. The genus
g and codimension r; = r — ky + 1 case of partition (k;) yields

[exp(—?) ’ (Hklfltklil + 2F1,k1) i| =0.

71 d

After multiplication with xy,_1#*271, we obtain

[eXp(_% Ky g1t 4 20, 72T R ) } =0.

trad

Summed with the corresponding equation with k; and ks interchanged yields
the above g = r 4 ki + ko mod 2 case.

4.3 Expanded form revisited

Consider the partition o = (kqks - - - k;) with distinct parts. Relation R(g,r,d, o),
in the g = r + |o] mod 2 case, is the vanishing of

L(o*)

e(o.* .)
exp(—7) - Z (1 —do,j0+|) H ﬁg;_ltgfl H Foo),100)] i
j=1 i=1

o**e8* (o)

since all the factors m(o**) are 1. In the ¢ = r + |o] + 1 mod 2 case,
R(g,r,d, o) is the vanishing of

") o)
exp(=7) - | D (o) [] worat™™ [T Froonowr ||,
oS (o) j=1 i=1

for the same reason.

If o has repeated parts, the relation R(g,r,d, o) is obtained by viewing
the parts as distinct and specializing the indicies afterwards. For example,
the two cases for o = (k?) are as follows. If g = r + 2k mod 2, we have

[exp(—i) YT /Y A FM)} 0.

trad

34



If g=r—+2k+ 1 mod 2, we have

[exp(_ﬁ) ’ (’{k‘—l"{k—thk_2 + 2/fk_1tk_1F17k

+ 2F5 9, + 2F1,kF1,k)} =0.

trzd
The factors occur via repetition of terms in the formulas for distinct parts.

Proposition 9. The relation R(g,r,d,o) in the g = r + |o| mod 2 case is
a consequence of the relations in R(g,r’,d,o’) where g ="+ |o'| + 1 mod 2
and o' C o is a strictly smaller partition.

Proof. The strategy follows the example of the phenonenon already discussed
in Section 4.2.
If g =7+ |o| mod 2, then for every subpartition 7 C o of odd length, we
have
g=r—|r|+47)+|o/T|+1 mod 2

where o /7 is the complement of 7. The relation
HHTZ g,?”—|7'|+€( )d70-/7—)

is of codimension 7.
Let g =7 + |o| mod 2, and let o have distinct parts. The formula

R(g,r,d,o) =
L(7)+2
; ( f( ) 1 ) BE(T)—H HI{TZ ’ (g,T - ‘T| + E(T)7d7 0/T> (37>
follows easily by grouping like terms and the Bernoulli identity
n 22k+1 -9 2n+2 -9
- " )By=—-(—)B, 38
;(%-1)( 2k ) 2 (n—l—l) - (38)

for n > 0. The sum in (37) is over all subpartitions 7 C ¢ of odd length.
The proof of the Bernoulli identity (38) is straightforward. Let

2i+2 _ 9 i 7t
CLZ'_< i1 )Bprl, A(x)—;azﬁ
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Using the definition of the Bernoulli numbers as

x g
_ B
er —1 Z Yl
=0

we see
2 o o 2 2@ x 2
Alx) = — 2'—-1)B,— = — — = — .
(z) x;( ) rl x(ezl’—l ex—1> (l—l—ex)

The identity (38) follows from the series relation
e"A(r) = —Ax) — 2.

Formula (37) is valid for R(g,, d, o) even when o has repeated parts: the
sum should be interpreted as running over all odd subsets 7 C o (viewing
the parts of o as distinct). O

4.4 Recasting

We will recast the relations R(g,r,d, o) in case ¢ = r + |o| + 1 mod 2 in a
more convenient form. The result will be crucial to the further analysis in
Section 5.

Let g =7+ |o| 4+ 1 mod 2, and let S(g,r,d, o) denote the x polynomial

660,1 7

- P
At[ (¢, (FUJ Gl C,,) } .
|Aut| | exp | =7(t,2) + %@ fonlel T 5= )] | g

We can write S(g,r,d, o) in terms of our previous relations R(g, ', d, o’) sat-
isfying g =7’ + |0’| + 1 mod 2 and ¢’ C o
If g =7+ o]+ 1 mod 2, then for every subpartition 7 C o of even length
(including the case 7 = (), we have
g=r—|r|+471)+|o/T|+1 mod 2

where o /7 is the complement of 7. The relation

[I5n-1-Rig,r = I7| + €(7),d,0/7)
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is of codimension 7.
In order to express S in terms of R, we define z; € Q by

2 S
= an
e* e * : 7!

=0

Let g =7+ |o| +1 mod 2, and let ¢ have distinct parts. The formula

Ze(r
S(97T7 d7 U) = Z QK(Z:)J)rl : H/{Ti—l ' R(g,?“ - |7_| + g(T),d, G/T> (39)

TCOo

follows again grouping like terms and the combinatorial identity

n Z; Zn 1
, = — - — 40

>0

for n > 0. The sum in (39) is over all subpartitions 7 C o of even length.
As before, there the identity (40) is straightforward to prove. We see

2z 1
Z(:E) = Z 2i+1ﬁ - ez/2 + e—z/2

=0
The identity (40) follows from the series relation
e*Z(x) = e"'? — Z(x).

Formula (37) is valid for S(g,r,d, o) even when o has repeated parts: the
sum should be interpreted as running over all even subsets 7 C o (viewing
the parts of o as distinct). We have proved the following result.

Proposition 10. In R"(M,), the relation

oz

~ 0¢(0) 1 p
[GXP —y(t,x) + Z (Fz(a),\a| + L/f|a|—1> T STIRYI

Jy e =0
gyt 2 |Aut(o)| | leraipe

holds when g —2d — 1+ |o| <r and g =r + |o| + 1 mod 2.
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5 Transformation

5.1 Differential equations

The function ® satisfies a basic differential equation obtained from the series

definition: P p )
— (O —tz—P)=—-] .
dx( $dw ) t

After expanding and dividing by ®, we find
L2 ) D, 1

e T

o ) ) t

—tx

which can be written as
—tPay,, = () + Py —tyy — 1 (41)

where, as before, v* = log(®). Equation (41) has been studied by Ionel in
Relations in the tautological ring [9]. We present here results of hers which
will be useful for us.

To kill the pole and match the required constant term, we will consider

the function
Bo, 2i—1
= —¢ - L— i 42
(ZQi(Qi—l) +7> (42)

i>1

The differential equation (41) becomes
talpe = 2(T)* + (1 — ), — 1.

The differential equation is easily seen to uniquely determine I' once the
initial conditions

B2i 2
T(0) = — S D% _pi
(.0)= =2 5!

i>1

are specified. By Ionel’s first result,

oo k

—1+v1+4x t i ; ik

F:):: t+1 (—x) (1 4 J 1
2x +1+4x+;; qrj(—z) (1 +4x)™ 72

where the postive integers ¢ ; (defined to vanish unless & > j > 0) are
defined via the recursion

N
—_

—1
Qe = 2k +4j —2)@r—1j-1 + (G + D@1 + AmQk—1—m,j—1-1

.

3
]
=)
I
o
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from the initial value goo = 1.
Ionel’s second result is obtained by integrating I', with respect to x. She
finds

N1

ook
I =T(0,2z)+ Zlogl—i-llx SN ey (—x) (14 dx) 7

k=1 5=0

where the coefficients ¢ ; are determined by
= (2k +4j)cr; + (J + Derjn

fork>1and k> 7 >0.

While the derivation of the formula for I, is straightforward, the formula
for I is quite subtle as the intial conditions (given by the Bernoulli numbers)
are used to show the vanishing of constants of integration. Said differently,
the recursions for g ; and ¢ ; must be shown to imply the formula

- Bitq
PO k(R 1)
A third result of Ionel’s is the determination of the extremal ¢, j,
= = 6k)! Z\*
(5505 )
; Chike = 108 ; (2k)1(3k)! \72

The formula for I" becomes simpler after the following very natural change

of variables,
t —T

u:\/ﬁ and V=1 (43)
The change of variables defines a new function
f(u,y) =T(t,z) .
The formula for I implies
1+ 1= 1 X e }
T y) = 1T(0,y) = log(1 +4y) — Zuy Ty

Ionel’s fourth result relates coefficients of series after the change of vari-
ables (43). Given any series

P(t,z) € Q[[t, ],
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let P(u,y) be the series obtained from the change of variables (43)
proves the coefficient relation

[P(t, JJ)} gl =

. Ionel

(1)1 +4y) "% - Plu,y)]

5.2 Analysis of the relations of Proposition 4

We now study in detail the simple relations of Proposition 4

[exp(—7)] s =0 € R(M,)
when g —2d — 1 <r and g =r + 1 mod 2. Let

;V\(UM y) = i(t’ :L‘)

be obtained from the variable change (43). Equations (21), (42), and (44)
together imply

o~ k
~ K .
T y) = P log(L+4y) + Y D wecrju'y’

k=1 j=0
modulo k_; terms which we set to 0.
Applying Ionel’s coefficient result

[exp(=7)],.0 = [(1+4y)~5

- exp( —?)] uryd

(4 5 - 3 )|
L 'rd

k=1 7=0

RSV w5 e r) I
uyd

k=1 5=0 ury
In the last line, the substitution ko = 2g — 2 has been made

Consider first the exponent of 1 + 4y. By the assumptions on g and r in
Proposition 4,

r—g+2d—1 >0
5 >

and the fraction is integral. Hence, the y degree of the prefactor

(1 + 4y) r—g+22d—1
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is exactly %. The y degree of the exponential factor is bounded from

above by the v degree. We conclude

[e%s) k
(L+4y) ™5 exp(= D0 maguty’)| =0
k=1 j=0 u

is the trivial relation unless

Rewriting the inequality, we obtain 3r > g+ 1 which is equivalent to r > | £].
The conclusion is in agreement with the proven freeness of R*(M,) up to (and
including) degree |%].

A similar connection between Proposition 4 and Ionel’s relations in [9]

has also been found by Shengmao Zhu [21].

5.3 Analysis of the relations of Theorem 5

For the relations of Theorem 5, we will require additional notation. To start,

let
oo k
= Z Z /-ikcmukyj .

k=1 j=0
By Ionel’s second result,
1 1 o k
k
ZP = ;F(O, x) + log(l + 4x) Z Ztkck] I(1+4x)72 . (45)
k=1 5=0

Let ) ; = ¢k ;. We define the constants ¢} ; for n > 1 by

d\"1 A\ /-1 1
) cr= (2% I/
<xd:p) t (xdas) (Qt A x)

oo k+n

—ZZtkcm (14 4x)™7 iy

k=0 5=0
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Lemma 11. Forn > 0, there are constants by satisfying

(x%) (Qt\/1+4x> :jzobju Y
Moreover, b _; = —2"72 . (2n — 5)!l where (—1)!! =1 and (-3)!! = —1.

Proof. The result is obtained by simple induction. The negative evaluations
(—1)!' =1 and (—3)!! = —1 arise from the I'-regularization. O

Lemma 12. Forn > 0, we have cfj,, = 4"'(n — 1)\.

Proof. The coefficients f} ,, are obtained directly from the ¢° summand § log(1+

4x) of (45). O
Lemma 13. Forn > 0 and k > 0, we have

G im = () (6K +4) - (6k + 4(n — 1)) cp.

Proof. The coefficients ¢, ., are extremal. The differential operators x%

must always attack the (1 + 42)~~% in order to contribute Chpin- The
formula follows by inspection. O]

Consider next the full set of equations given by Theorem 5 in the ex-
panded form of Section 4. The function F;, ,,, may be rewritten as

Fom(t,x) = — i i 6‘5 /fs+mt3+md7;—fd

d=1 s=—1
d\" = e— ~ x?
= —t"z— C4 Kgot®—
( d.fC) ;sz—l ’ ’ d|

We may write the result in terms of the constants b7 and ¢, ;,

t—(m—n)an:_ nlﬁ,mil
' T2
oo k+n
(S 33 )
k=0 j=0
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Define the functions G, ., (u,y) by

oo k+n

n, n— l n , ki+n,j
Gnm(u,y) E Km—107u E E Kk4mCp 0"y’

k=0 j=0

Let o = (1%12%23% ...) be a partition of length /(o) and size |o|. We
assume the parity condition

g=r+lo|+1. (46)
Let G£(u,y) be the following function associated to o,

£(c®)

oy,
Gi (u, y) Z H (Ge o), 0@ £ e 5 D! V1+4y "‘ia(z‘>|_1> :

o*€8(o) 1=1

The relations of Theorem 5 in the the expanded form of Section 4.1 written
in the variables u and y are

(14 4y) ™" exp(—1°) (G +G5) | =0

ur7|a|+f(o)yd

In fact, the relations of Proposition 10 here take a much more efficient form.
We obtain the following result.

Proposition 14. In R"(M,), the relation

rolo|-g+2d-1
[(1+4y) e | - %G/f "’||Aut (o) ]uwwwydpv_o

holds when g —2d — 1+ |o| <7 and g =r + |o| + 1 mod 2.

Consider the exponent of 1+ 4y. By the inequality and the parity condi-
tion (46),
r—lol—g+2d—1 >0
5 2
and the fraction is integral. Hence, the y degree of the prefactor

—|o|—g+2d—1

(1+4y)— = (47)
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is exactly 71_"7|_++2d_1. The y degree of the exponential factor is bounded

from above by the u degree. We conclude the relation of Theorem 4 is trivial
unless

r—lo|—g+2d—1 T—|a|+g—i—1
2 B 2 2

r—|o|+{l(oc) >d—
Rewriting the inequality, we obtain
3r>g+1+3lo| —20(0)
which is consistent with the proven freeness of R*(M,) up to (and including)
degree |£].

5.4 Another form

A subset of the equations of Proposition 14 admits an especially simple de-
scription. Consider the function

Hym(w) = 277220 — 5 Ky g™t 4+ 4" (0 — 1)) Kpu”
+ Y (6k)(6k +4) -+ (6k +4(n — 1))cpp Appmu"
k=1

Proposition 15. In R"(M,), the relation

[e.e]
|:eXp - Z Ck7k/{ku Z HE |U‘ ‘Aut )‘ ur7|0|+5(d)p0' - 0
k=1 o#0

holds when 3r > g+ 1+ 3|o| — 2¢(0) and g =r + |o| + 1 mod 2.
Proof. Let g =1+ |o| + 1, and let

3 1 1 3

By the parity condition, § is an integer. For 0 < 6 < A, let

oa

p
ut( )| ur=lol+e(o) yr—lo|+£(c) = po

E5(g,r,a) = [exp - +ZGZ |0'||A
o0
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The 6 = 0 case is special. Only the monomials of G,,,, of equal v and
y degree contribute to the relations of Proposition 14. By Lemmas 11 -
13, H,m(uy) is exactly the subsum of G, consisting of such monomials.
Similarly,

Z Ck,k/fkuk?/k
k=1
is the subsum of 7¢ of monomials of equal u and y degree. Hence,
EO (gv r, O‘) =
. k, k p’
[eXp =D ey’ - ZHaa)M(uy)m Lu Jolol e
k=1 o#0 4 P
o0 . pa-
[GXP - chyk’”vk“ - Zﬂaww(@m Lr_h,wg((,) -
k=1 o#0 P

We consider the relations of Proposition 14 for fixed ¢, r, and o as d
varies. In order to satisfy the inequalty g — 2d — 1 + |o| < 7, let

—r+g+1+]o|
2
For 0 <6 < A, relation of Proposition 14 for g, r, o, and d(g) is

> o(%) Esutar =0,

As o varies, we therefore obtain all the relations

d(5) = +5, for 5>0.

E(5 (g7 r, U) =0 (48>
for 0 < 9 < A. The relations of Proposition 15 are obtained when § = 0 in
(48). O

The main advantage of Proposition 15 is the dependence on only the

function
= (6k)! zZ \F
ZC“Z = log (Z (2k)1(3k)! <5> ) ' (49)

Proposition 15 only prov1des finitely many relations for fixed g and r. In Sec-
tion 6, we show Proposition 15 is equivalent to the Faber-Zagier conjecture.
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5.5 Relations left behind

In our analysis of relations obtained from the virtual geometry of the moduli
space of stable quotients, twice we have discarded large sets of relations. In
Section 3.4, instead of analyzing all of the geometric possibilities

Vs (H ex(s%wb) - 0° N [Qy (P, d)]””) =0 in A*(M,,Q) ,

i=1

we restricted ourselves to the case where a; = 1 for all 7. And just now,
instead of keeping all the relations (48), we restricted ourselves to the § = 0
cases.

In both instances, the restricted set was chosen to allow further analysis.
In spite of the discarding, we will arrive at the Faber-Zagier relations. We
expect the discarded relations are all redundant (consistent with Conjecture
2), but we do not have a proof.

6 Equivalence

6.1 Notation

The relations in Proposition 15 have a similar flavor to the Faber-Zagier
relations. We start with formal series related to

= (60)! Z\i
Alz) = z; (30)1(2i)! (5) ’

we insert classes k,, we exponentiate, and we extract coefficients to obtain
relations among the k classes. In order to make the similarities clearer, we
will introduce additional notation.

If F' is a formal power series in z,

o0
F= E crz”
r=0

with coefficients in a ring, let

[e.9]

{F}. = Z Crkp2”

r=0
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be the series with k-classes inserted.
Let A be as above, and let

S (6i) 6i+1 gz
B(z) = z_; (3)1(20) 6i — 1 <5>

)

be the second power series appearing in the Faber-Zagier relations. Let

B
C=7.

and let
E = exp(—{log(A)},) = exp (— Z ckvk/{kzk> :
k=1
We will rewrite the Faber-Zagier relations and the relations of Proposition 15

in terms of C' and E. The equivalence between the two will rely on the
principal differential equation satisfied by C,

d
1222d—g =1+442C - C~ (50)

6.2 Rewriting the relations

The relations conjectured by Faber and Zagier are straightforward to rewrite
using the above notation:

E-exp(—{10g(1+p32+p622+---

+ C(p1+paz +pr2® + - ))}H)] —0 (51)

Z’l‘pa

for 3r > g+ |o|+1 and 3r = g+ |o| + 1 mod 2. The above relation (51) will
be denoted FZ(r, o).

The stable quotient relations of Proposition 15 are more complicated to
rewrite in terms of C' and E. Define a sequence of power series (C),),>1 by

27"C, = 2"7%(2n — 5)" T 4 4" (i — 1)1

+ i(ﬁk)(&g FA) - (6 + A(n — 1)) g ez

k=1
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We see
Hym(2) =27"2"""2"7"C .

The series C,, satisfy

C,=C, Ciy= (12z2di — 42‘2) C;. (52)

z

Using the differential equation (50), each C), can be expressed as a polynomial
in C' and z:

ClzC, 02:1—02, 03:—82—20—|—203,..., .

Proposition 15 can then be rewritten as follows (after an appropriate
change of variables):

ol~t(o P’
E -exp _Z{Zl |—¢( )Cf(a)}nm =0 (53)
o#D

o
for 3r > g+ 3|o| —20(0) + 1 and 3r = g+ 3|o| —2¢(c) + 1 mod 2. The above
relation (53) will be denoted SQ(r, o).

The FZ and SQ relations now look much more similar, but the relations
in (51) are indexed by partitions with no parts of size 2 mod 3 and satisfy
a slightly different inequality. The indexing differences can be erased by
observing that the variables ps;. are actually not necessary in (51) if we are
just interested in the ideal generated by a set of relations (rather than the
linear span). This observation follows from the identity

—FZ(r,o U3a) =k, FZ(r — a,0) + Z FZ(r,7),

where the sum runs over the /(o) partitions 7 (possibly repeated) formed by
increasing one of the parts of ¢ by 3a.

If we remove the variables ps;, and reindex the others by replacing psj1
with pgy1, we obtain the following equivalent form of the FZ relations:

[E-exp(—{log(1+0(p1 + Doz +p322+---))}ﬁ)} =0 (54)

ZTpo'

for 3r > g+ 3|o| — 2¢(c) + 1 and 3r = g + 3|o| — 2¢(c) + 1 mod 2.
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6.3 Comparing the relations

We now explain how to write the SQ relations (53) as linear combinations
of the FZ relations (54) with coefficients in Q[ko, k1, K2,...]. In fact, the
associated matrix will be triangular with diagonal entries equal to 1.

We start with further notation. For a partition o, let

FZ, = [exp (= {log(1 + C(p1 +paz +ps2” +-- )}, )]

and

ol—t(o P’
SQO_ = |exp _Z{Z| |—£( )CZ(U)}NW
oA

pO'
be power series in z with coefficients that are polynomials in the x classes.
The relations themselves are given by

FZ(r,0) = [E-FZ,].-, SQ(r,0) = [E-SQ,].- .

It is straightforward to expand FZ, and SQ, as linear combinations of
products of factors {z?C%} for a > 0 and b > 1, with coefficients that are
polynomials in the kappa classes. When expanded, FZ, always contains
exactly one term of the form

(290} {220 - {2 O} (55)

All the other terms involve higher powers of C'. If we expand SQ,, we can
look at the terms of the form (55) to determine what the coefficients must
be when writing the SQ, as linear combinations of the FZ,. For example,

1 1 1
SQ(lll) = _6{03}% + §{CQ}H{01}H - g{cl}i
1

4 1 1, o 2 Lo s
= 3/112 -+ g{C}n — g{c }n + 5(50 - {C }ﬂ){c}ﬂ - E{C}K

— (gmz> + ((% + %) {C}n>
i <_%{C3}K _ %{C?}H{C}H — é{C}i)
1 kg

4
— glilz FZQ) + (—g - ?) FZ(l) + FZ(111) .
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In general we must check that the terms involving higher powers of C' also
match up. The matching will require an identity between the coefficients of
C; when expressed as polynomials in C. Define polynomials f;; € Z[z] by

CZ‘ - Zl: fijCj.
7=0

It will also be convenient to write fi; = >, fijx2", so

If we define

P14 3 Gy c Q)

then we will need a single property of the power series F.

Lemma 16. There exists a power series G € Q|2][[z]] such that F = e¥C.

Proof. The recurrence (52) for the C; together with the differential equation
(50) satisfied by C' yield a recurrence relation for the polynomials f;;:

firig =G+ Dfigr+40G —9)2fi; — (G — 1D fij

This recurrence relation for the coefficients of F' is equivalent to a differential
equation:
F, = —ylb,, +4zyl, — 4zxF, + yF.

Now, let G € Q[z][[z, y]] be é times the logarithm of f (as a formal power
series). The differential equation for F' can be rewritten in terms of G:

G, = —2G, — yG,, — (G +yG,)* + 42(G + yG,) — 420G, + 1.

We now claim that the coefficient of z*y' in G is zero for all k > 0,1 > 1,
as desired. For k = 0 this is a consequence of the fact that F' = 14 O(xy)
and thus G = O(z), and higher values of k follow from induction using the
differential equation above. ]

We can now write the SQ, as linear combinations of the FZ,.
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Theorem 6. Let o be a partition. Then SQ, — FZ, is a Q-linear combination

of terms of the form
H#Z“u‘ FZ.,

where p and T are partitions (u possibly containing parts of size 0) satisfying

1) < (o), 3|lu| + 3|7| — 20(1) < 3|lo| — 2¢(0), and
3|p| + 3|7| — 20(7) = 3|lo| —2¢(c) mod 2 .

Proof. We will need some additional notation for subpartitions. If o is a
partition of length ¢(o) with parts oy, 09,... (ordered by size) and S is a
subset of {1,2,...,¢(0)}, then let g C o denote the subpartition consisting
of the parts (0;);es.

Using this notation, we explicitly expand SQ, and FZ, as sums over set
partitions of {1,...,¢(o)}:

1 os|—|S|+k i
SQU:W Z H(Z f|S| k{zl =11 C}>

PH{1,....6(c)} SEP

1 os
FZ, = At(o)] Z H DISI(|S] = 1)1{los!=I8Iglsty )

PH{1,....4(c)} SEP

Matching coefficients for terms of the form (55) tells us what the linear
combination must be. We claim

B | Aut(o’)]
°Qr = Z Aut(o)] (56)
RH{1,...6(c)}
PLQ= R
k:R—Z>o
T (= fistones) rosi—isicres) 27 75O TT (fis1.0kes)) FZor,
Sep 5€Q

where ¢’ is the partition with parts |og| — |S| + 1+ k(S) for S € Q. Using
the vanishing f; j, = 0 unless j + 3k < i and j + 3k =4 mod 2, we easily
check the above expression for SQ,, is of the desired type.

Expanding SQ, and FZ, in (56) and canceling out the terms involving

51



the fi o coefficients, it remains to prove

> Chissss (77O

QH{1,...0(0)} S€Q

k‘:Q—)ZZO
7:Q—N
= Z H(fISI,Lk(S)) Z H ((—1)|S|(|S] _ 1)!{Z|(a’)s|*‘S‘C|S|}H) _
QH{1,...6(0)} SEQ PH{1,...(c")} SEP
k:Q%ZzO

A single term on the left side of the above equation is determined by
choosing a set partition Qe of {1,...,¢(0)} and then for each part S of
Qefs choosing a positive integer j(S) and a nonnegative integer kjeg(S). We
claim that this term is the sum of the terms of the right side given by choices
Qrights Fright, P such that Quigne is a refinement of Qe that breaks each part
S in Qe into exactly j(S) parts in Quignt, P is the associated grouping of
the parts of Quignt, and the kygne(S) satisty

kleft(s) = Z kright(T> :

TCS

These terms all are integer multiples of the same product of {z2C®},, factors,
so we are left with the identity

(1!
mfio,jo,ko = Z H J151,1,k(5)- (57)
Jo ' PH{1,...ig} S€P
[P=j0
k:P—Z>o
|k|=ko
to prove.
But by the exponential formula, identity (57) is simply a restatement of
Lemma 16. O

The conditions on the linear combination in Theorem 6 are precisely those
needed so that multiplying by E and taking the coefficient of 2" allows us to
write any SQ relation as a linear combination of FZ relations. The associated
matrix is triangular with respect to the partial ordering of partitions by size,
and the diagonal entries are equal to 1. Hence, the matrix is invertible. We
conclude the SQ relations are equivalent to the FZ relations.
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