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Abstract

We conjecture an equivalence between the Gromov-Witten theory

of 3-folds and the holomorphic Chern-Simons theory of Donaldson-

Thomas. For Calabi-Yau 3-folds, the equivalence is defined by the

change of variables, e
iu = −q, where u is the genus parameter of GW

theory and q is Euler characteristic parameter of DT theory. The

conjecture is proven for local Calabi-Yau toric surfaces.

1 Introduction

1.1 Overview

Let X be a nonsingular, projective, Calabi-Yau 3-fold. Gromov-Witten the-
ory concerns counts of maps of curves to X. The counts are defined in terms
of a canonical 0-dimensional virtual fundamental class on the moduli space
of maps. The discrete invariants of a map are the genus g of the domain
and the degree β ∈ H2(X, Z) of the image. For every g and β, the Gromov-
Witten invariant is the virtual number of genus g, degree β maps. We sum
the contributions of all genera with weight u2g−2, where u is a parameter.

The Gromov-Witten invariants have long been expected to be express-
ible in terms of appropriate curve counts in the target X. A curve in X
corresponds to an ideal sheaf on X. The discrete invariants of the ideal
sheaf are the holomorphic Euler characteristic χ and the fundamental class
β ∈ H2(X, Z) of the associated curve. Donaldson and Thomas have con-
structed a canonical 0-dimensional virtual fundamental class on the moduli
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space of ideal sheaves on X. For every χ and β, the Donaldson-Thomas
invariant is the virtual number of the corresponding ideal sheaves. We sum
the contributions over χ with weight qχ, where q is a parameter.

We present here a precise mathematical conjecture relating the Gromov-
Witten and Donaldson-Thomas theories of X. Our conjecture is motivated
by the description of Gromov-Witten theory via crystals in [30]. A connection
between Gromov-Witten theory and integration over the moduli space of
ideal sheaves is strongly suggested there. A related physical conjecture is
formulated in [18].

Conjecture. The change of variables, eiu = −q, equates the Gromov-Witten
and Donaldson-Thomas theories of X.

The moduli of maps and sheaves have been related previously by the
Gopakumar-Vafa conjecture equating Gromov-Witten invariants to BPS state
counts determined by the cohomology of the moduli of sheaves [13, 14]. The
Gopakumar-Vafa conjecture has been verified in several cases and has been
a significant source of motivation. However, there have been difficulties on
the mathematical side in selecting an appropriate cohomology theory for the
singular moduli of sheaves which arise, see [17].

Donaldson-Thomas theory concerns integration over the moduli of sheaves.
The subject was defined, along with a construction of the virtual class, by
Donaldson and Thomas in [10, 36] with motivation from several sources,
see [1, 3, 37]. As the Donaldson-Thomas invariant is similar to the Euler
characteristic of the moduli of sheaves, a philosophical connection between
Gromov-Witten invariants and the cohomology of the moduli of sheaves is
implicit in our work. However, the Donaldson-Thomas invariant is not the
Euler characteristic.

As evidence for our conjecture, we present a proof in the toric local Calabi-
Yau case via the virtual localization formula for Donaldson-Thomas theory.
The proof depends upon evaluations of the topological vertex on the Gromov-
Witten side.

1.2 General 3-folds

We believe the Gromov-Witten/Donaldson-Thomas correspondence holds for
all 3-folds. Donaldson-Thomas theory has a natural supply of observables
constructed from the Chern classes of universal sheaves. These Chern classes
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should correspond to insertions in Gromov-Witten theory, see [22]. The
degree 0 case, where no insertions are required, is discussed in Section 2
below. For primary fields, a complete GW/DT correspondence for all 3-folds
is conjectured in [24]. For descendent fields, the correspondence is precisely
formulated for the descendents of a point in [24].

We conjecture the equivariant vertex, discussed in Section 4.9 below, has
the same relation to general cubic Hodge integrals as the topological vertex
does to Calabi-Yau Hodge integrals [9]. A closely related issue is the precise
formulation of the GW/DT correspondence for all descendent fields. We will
pursue the topic in a future paper.

1.3 GW theory

Gromov-Witten theory is defined via integration over the moduli space of
stable maps. Let X be a nonsingular, projective, Calabi-Yau 3-fold. Let
M g(X, β) denote the moduli space of stable maps from connected genus g
curves to X representing the class β ∈ H2(X, Z), and let

Ng,β =

∫

[Mg(X,β)]vir

1,

denote the corresponding Gromov-Witten invariant. Foundational aspects of
the theory are treated, for example, in [4, 5, 20].

Let F
′
GW (X; u, v) denote the reduced Gromov-Witten potential of X,

F
′
GW (X; u, v) =

∑

β 6=0

∑

g≥0

Ng,β u2g−2vβ,

omitting the constant maps. The reduced partition function,

Z
′
GW (X; u, v) = exp F

′
GW (X; u, v) ,

generates disconnected Gromov-Witten invariants of X excluding constant
contributions.

Let Z
′
GW (X; u)β denote the reduced partition function of degree β invari-

ants,

Z
′
GW (X; u, v) = 1 +

∑

β 6=0

Z
′
GW (X; u)β vβ.
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1.4 DT theory

Donaldson-Thomas theory is defined via integration over the moduli space
of ideal sheaves. Let X be a nonsingular, projective, Calabi-Yau 3-fold. An
ideal sheaf is a torsion-free sheaf of rank 1 with trivial determinant. Each
ideal sheaf I injects into its double dual,

0 → I → I∨∨.

As I∨∨ is reflexive of rank 1 with trivial determinant,

I∨∨ ∼
= OX ,

see [29]. Each ideal sheaf I determines a subscheme Y ⊂ X,

0 → I → OX → OY → 0.

We will consider only ideal sheaves of subschemes Y with components of
dimension at most 1. The dimension 1 components of Y (weighted by their
intrinsic multiplicities) determine an element,

[Y ] ∈ H2(X, Z).

Let In(X, β) denote the moduli space of ideal sheaves I satisfying

χ(OY ) = n,

and
[Y ] = β ∈ H2(X, Z).

Here, χ denotes the holomorphic Euler characteristic. The moduli space
In(X, β) is isomorphic to the Hilbert scheme of curves of X [25].

The Donaldson-Thomas invariant is defined via integration against the
dimension 0 virtual class,

Ñn,β =

∫

[In(X,β)]vir

1.

Foundational aspects of the theory are treated in [25, 36].
Let ZDT (X; q, v) be the partition function of the Donaldson-Thomas the-

ory of X,

ZDT (X; q, v) =
∑

β∈H2(X,Z)

∑

n∈Z

Ñn,β qn vβ .
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An elementary verification shows, for fixed β, the invariant Ñn,β vanishes for
sufficiently negative n since the corresponding moduli spaces of ideal sheaves
are empty.

The degree 0 moduli space In(X, 0) is isomorphic to the Hilbert scheme
of n points on X. The degree 0 partition function,

ZDT (X; q)0 =
∑

n≥0

Ñn,0 qn ,

plays a special role in the theory. The McMahon function,

M(q) =
∏

n≥1

1

(1 − qn)n
,

is the generating series for 3-dimensional partitions, see [33].

Conjecture 1. The degree 0 partition function is determined by

ZDT (X; q)0 = M(−q)χ(X),

where χ(X) is the topological Euler characteristic.

The reduced partition function Z
′
DT (X; q, v) is defined by dividing by the

degree 0 function,

Z
′
DT (X; q, v) = ZDT (X; q, v)

/

ZDT (X; q)0 .

Let Z
′
DT (X; q)β denote the reduced partition function of degree β 6= 0 invari-

ants,

Z
′
DT (X; q, v) = 1 +

∑

β 6=0

Z
′
DT (X; q)β vβ.

Conjecture 2. The reduced series Z
′
DT (X; q)β is a rational function of q

symmetric under the transformation q 7→ 1/q.

We now state our main conjecture relating the Gromov-Witten theory
and the Donaldson-Thomas theory of a Calabi-Yau 3-fold X.

Conjecture 3. The change of variables eiu = −q equates the reduced par-
tition functions:

Z
′
GW (X; u, v) = Z

′
DT (X;−eiu, v) .
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The change of variables in Conjecture 3 is well-defined by Conjecture 2.
Gromov-Witten and Donaldson-Thomas theory may be viewed as expansions
of a single partition functions at different points. Conjecture 3 can be checked
order by order in u and q only if an effective bound on the degree of the
rational function in Conjecture 2 is known.

1.5 Integrality

The Gopakumar-Vafa conjecture for Calabi-Yau 3-folds predicts the following
form for the reduced Gromov-Witten partition function via the change of
variables eiu = −q,

Z
′
GW (X; u)β = qr f(q)

∏k
i=1(1 − (−q)si)2

, f ∈ Z[q], r ∈ Z, si > 0 .

In particular, by the Gopakumar-Vafa conjecture, Z
′
GW (X; u)β defines a series

in q with integer coefficients.
Conjecture 3 identifies the q series with the reduced partition function of

the Donaldson-Thomas theory of X. Integrality of the Donaldson-Thomas
invariants holds by construction (as no orbifolds occur). We may refine Con-
jecture 2 above to fit the form of the Gopakumar-Vafa conjecture.

1.6 Gauge/string dualities

In spirit, our conjecture is similar to a gauge/string duality with Donaldson-
Thomas theory on the gauge side and Gromov-Witten theory on the string
side. While at present we are not aware of a purely gauge theoretic interpre-
tation of Donaldson-Thomas theory, there are various indications such an in-
terpretation should exist. Most importantly, the equivariant vertex measure
which appears in the equivariant localization formula for Donaldson-Thomas
theory, see Section 4.9, is identical to the equivariant vertex in noncommu-
tative Yang-Mills theory. We plan to investigate the issue further.

The interplay between gauge fields and strings is one of the central themes
in modern theoretical and mathematical physics [32]. In particular, the
conjectural Chern-Simons/string duality of Gopakumar and Vafa [12] was
a source of many insights into the Gromov-Witten theory of Calabi-Yau 3-
folds. As a culmination of these developments, the topological vertex was
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introduced in [2]. The topological vertex is a certain explicit function of
three partitions λ, µ, ν, and the genus expansion parameter u, which is an
elementary building block for constructing the Gromov-Witten invariants of
arbitrary local toric Calabi-Yau 3-folds. The gauge/string duality seems to
hold in a broader context, see [22], [31] for evidence in the Fano case.

In [30], the topological vertex was interpreted as counting 3-dimensional
partitions π with asymptotics λ, µ, ν along the coordinate axes. The variable
q = eiu couples to the volume of the partition π in the enumeration. The
global data obtained by gluing such 3-dimensional partitions according to the
gluing rules of the topological vertex was observed in [18, 30] to naturally
corresponds to torus invariant ideal sheaves in the target 3-fold X. The
main mathematical result of our paper is the identification of the topological
vertex expansion with the equivariant localization formula for the Donaldson-
Thomas theory of the local Calabi-Yau geometry.

The GW/DT correspondence is conjectured to hold for all Calabi-Yau
3-folds. While several motivations for the correspondence came from local
Calabi-Yau geometry, new methods of attack will be required to study the
full GW/DT correspondence.

A relation between Gromov-Witten theory and gauge theory on the same
space X has been observed previously in four (real) dimensions in the context
of Seiberg-Witten invariants [35]. There, a deformation of the Seiberg-Witten
equations by a 2-form yields solutions concentrated near the zero locus of the
2-form, an embedded curve.

We expect, in our case, the sheaf-theoretic description of curves will be
identified with a deformed version of solutions to some gauge theory problem.
An outcome should be a natural method of deriving the Donaldson-Thomas
measure. The gauge theory in question is a deformation of the twisted maxi-
mally supersymmetric Yang-Mills theory compactified on our 3-fold X. The
theory, discussed in [3], has BPS solutions and generalized instantons. The
expansion of the super-Yang-Mills action about these solutions gives rise to
a quadratic form with bosonic and fermionic determinants which should fur-
nish the required measure [26, 27].

In case X = C3, the deformation in question is the passage to the non-
commutative R

6, see [28, 38]. Ordinary gauge theories have typically non-
compact moduli spaces of BPS solutions. It is customary in mathematics
to compactify these spaces by replacing holomorphic bundles by coherent
sheaves. The physical consequences of such a replacement are usually quite
interesting and lead to many insights [16, 19, 23]. Sometimes the “compact-
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ified” space is non-empty while the original space is empty. Our problem
corresponds to U(1) gauge fields which do not support nontrivial instantons,
while the compactified moduli space of instantons is non-empty and coincides
with the Hilbert scheme of curves of given topology on X.
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2 Degree 0

2.1 GW theory

Let X be a nonsingular, projective 3-fold (not necessarily Calabi-Yau). The
degree 0 potential FGW (X; u)0 may be separated as:

FGW (X; u)0 = F
0
X,0 + F

1
X,0 +

∑

g≥2

F
g
X,0 .

The genus 0 and 1 contributions in degree 0 are not constants, the variables
of the classical cohomology appear explicitly. Formulas can be found, for
example, in [31].

We will be concerned here with the higher genus terms. For g ≥ 2, a
virtual class calculation yields,

F
g
X,0 = (−1)g u2g−2

2

∫

X

(

c3(X) − c1(X)c2(X)
)

·

∫

Mg

λ3
g−1,

where ci and λi denote the Chern classes of the tangent bundle TX and and
the Hodge bundle Eg respectively. Define the degree 0 partition function of
Gromov-Witten theory by

ZGW (X; u)0 = exp

(

∑

g≥2

F
g
X,0

)

.
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The Hodge integrals which arise have been computed in [11],
∫

Mg

λ3
g−1 =

|B2g|

2g

|B2g−2|

2g − 2

1

(2g − 2)!
, (1)

where B2g and B2g−2 are Bernoulli numbers.
Using the Euler-Maclaurin formula, the asymptotic relation,

ZGW (X; u)0 ∼ M(eiu)
1
2

R

X
c3(X)−c1(X)c2(X) , (2)

may be derived from (1). The precise meaning of (2) is the following: the
logarithms of both sides have identical o(1)-tails in their u → 0 asymptotic
expansion.

2.2 DT theory

We now turn to the degree 0 partition function for the Donaldson-Thomas
theory of X. The first issue is the construction of the virtual class in
Donaldson-Thomas theory.

In [36], the Donaldson-Thomas theory of X is defined only in the Calabi-
Yau and Fano cases. Since the arguments of [36] use only the existence of an
anticanonical section on X, the result can be stated in the following form.

Lemma 1. Let X be a nonsingular, projective 3-fold with

H0(X,∧3TX) 6= 0,

then In(X, β) carries a canonical perfect obstruction theory.

Under the hypotheses of Lemma 1, the Donaldson-Thomas theory of X is
constructed for higher rank sheaves as well as the rank 1 case of ideal sheaves.
The connection, if any, between Gromov-Witten theory and the higher rank
Donaldson-Thomas theories is not clear to us.

A sufficient condition for the construction of the perfect obstruction the-
ory and the virtual class [In(X, β)]vir in [36] is the vanishing of traceless
Ext3

0(I, I) for all [I] ∈ In(X, β). See [36] for the definitions and properties
of tracelessness used here.

For simplicity, let us assume the vanishing of the higher cohomology of
the structure sheaf,

H i(X,OX) = 0, (3)

for i ≥ 1. Then, Ext0(I, I) equals Ext(I, I).
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Lemma 2. Let X be a nonsingular, projective, 3-fold satisfying (3). Then,

Ext3(I, I) = 0,

for all [I] ∈ In(X, β).

Proof. By Serre duality for Ext,

Ext3(I, I) = Ext0(I, I ⊗ KX)∨,

where KX denotes the canonical bundle. We must therefore prove

Hom(I, I ⊗ KX) = 0.

Let U ⊂ X be the complement of the support of Y . Since I restricts to OU

on U ,
Hom(I|U , I|U ⊗ KU) = Γ(U, KU) = H0(X, KX).

The last equality is obtained from the extension of sections since Y has at
most 1-dimensional support. Since I is torsion-free, the restriction,

Hom(I, I ⊗ KX) → Hom(I|U , I|U ⊗ KU),

is injective. Since h0(X, KX) = h3(X,OX), the Lemma is proven.

The proof of the vanshing of Ext3
0(I, I) in the presence of higher cohomol-

ogy of the structure sheaf is similar [25]. Hence, Donaldson-Thomas theory
is well-defined in rank 1 for all 3-folds X — not just the Calabi-Yau and
Fano cases.

The virtual dimension of In(X, 0) is 0 for general 3-folds X. A simple
calculation from the definitions yields the following result.

Lemma 3. Ñ1,0 = −
∫

X
c3(X) − c1(X)c2(X).

Proof. The moduli space I1(X, 0) is the nonsingular 3-fold X. The tan-
gent bundle is Ext1

0(I, I), and the obstruction bundle is Ext2
0(I, I). Using

Serre duality and the local-to-global spectral sequence for Ext, we find the
obstruction bundle is isomorphic to (TX ⊗ KX)∨. Then,

Ñ1,0 = −

∫

X

c3(TX ⊗ KX) = −

∫

X

c3(X) − c1(X)c2(X),

completing the proof.
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The degree 0 Gromov-Witten and Donaldson-Thomas theories are already
related by Lemma 3. However, we make a stronger connection generalizing
Conjecture 1.

Conjecture 1′. The degree 0 Donaldson-Thomas partition function for a
3-fold X is determined by:

ZDT (X; q)0 = M(−q)
R

X
c3(TX⊗KX) .

We will present a proof of Conjecture 1′ in case X is a nonsingular toric
3-fold in [24].

The series M(q) arises naturally in the computation of the Euler charac-
teristic of the Hilbert scheme of points of a 3-fold [8]. It would be interesting
to find a direct connection between the degree 0 Donaldson-Thomas invari-
ants and the Euler characteristics of In(X, 0) in the Calabi-Yau case.

3 Local Calabi-Yau geometry

3.1 GW theory

Let S be a nonsingular, projective, toric, Fano surface with canonical bundle
KS. The Gromov-Witten theory of the local Calabi-Yau geometry of S is
defined via an excess integral. Denote the universal curve and universal map
over the moduli space of stable maps to S by:

π : U → M g(S, β),

µ : U → S.

Then,

Ng,β =

∫

[Mg(S,β)]vir

e(R1π∗µ
∗KS),

for 0 6= β ∈ H2(S, Z). The reduced partition function Z
′
GW (X; u, v) is defined

in terms of the local invariants Ng,β as before.
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3.2 DT theory

Let X be the projective bundle P(KS ⊕ OS) over the surface S. The
Donaldson-Thomas theory of X is well-defined in every rank by the following
observation.

Lemma 4. X has an anticanonical section.

Proof. Consider the fibration π : X → S. We have,

∧3TX = Tπ ⊗ π∗(∧2TS),

where Tπ is the π-vertical tangent line.
Let V denote the vector bundle KS ⊕ OS on S. The π-relative Euler

sequence is:
0 → OX → π∗(V ) ⊗OP(V )(1) → Tπ → 0.

Hence,
Tπ = ∧2π∗(V ) ⊗OP(V )(2).

we conclude,

∧3TX = ∧2π∗(V ) ⊗OP(V )(2) ⊗ π∗(∧2TS) = OP(V )(2).

However, since

H0(X,OP(V )(2)) = H0(S, Sym2V ∗) 6= 0,

the Lemma is proven.

For classes β ∈ H2(S, Z), we define the reduced partition function for the
Donaldson-Thomas theory of the Calabi-Yau geometry of S by

Z
′
DT (S; q)β = Z

′
DT (X; q)β .

While X is not Calabi-Yau, the Donaldson-Thomas theory of X is still well-
defined by Lemma 1 or Lemma 2.

We will prove Conjectures 2 and 3 are true for the local Calabi-Yau ge-
ometry of toric Fano surfaces by virtual localization.
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3.3 Local curves

The constructions above also define the local Calabi-Yau theory of the curve
P1 with normal bundle O(−1) ⊕O(−1). The proof of Conjectures 2 and 3
for local surfaces given in Section 4 below is valid for the local P1 case.

The Gromov-Witten theory of a local Calabi-Yau curve of arbitrary genus
has been defined in [6]. We believe the GW/DT correspondence holds for
these geometries as well [7].

4 Localization in Donaldson-Thomas theory

4.1 Toric geometry

Let X be a nonsingular, projective, toric 3-fold. Let T be the 3-dimensional
complex torus acting on X. Let ∆(X) denote the Newton polyhedron of X
determined by a polarization. The polyhedron ∆(X) is the image of X under
the moment map.

The vertices of ∆(X) correspond to fixed points XT = {Xα} of the T-
action. For each Xα, there is a canonical, T-invariant, affine open chart,

Uα
∼= A3,

centered at Xα. We may choose coordinates ti on T and coordinates xi on
Uα for which the T-action on Uα is determined by

(t1, t2, t3) · xi = tixi . (4)

In these coordinates, the tangent representation Xα has character

t−1
1 + t−1

2 + t−1
3 .

We will use the covering {Uα} of X to compute Cech cohomology.
The T-invariant lines of X correspond to the edges of ∆(X). More pre-

cisely, if
Cαβ ⊂ X

is a T-invariant line incident to the fixed points Xα and Xβ, then Cαβ corre-
sponds to an edge of ∆(X) joining the vertices Xα and Xβ.

The geometry of ∆(X) near the edge is determined by the normal bundle
NCαβ/X . If

NCαβ/X = O(mαβ) ⊕O(m′
αβ)
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then the transition functions between the charts Uα and Uβ can be taken in
the form

(x1, x2, x3) 7→ (x−1
1 , x2 x

−mαβ

1 , x3 x
−m′

αβ

1 ) . (5)

The curve Cαβ is defined in these coordinates by x2 = x3 = 0.

4.2 Moduli of ideal sheaves

The T-action on X canonically lifts to the moduli space of ideal sheaves
In(X, β). The perfect obstruction theory constructed by Thomas is canon-
ically T-equivariant [25, 36]. The virtual localization formula reduces inte-
gration against [In(X, β)]vir to a sum fixed point contributions [15].

The first step is to determine the T-fixed points of In(X, β). If

[I] ∈ In(X, β)

is T-fixed, then the associated subscheme Y ⊂ X must be preserved by the
torus action. Hence, Y must be supported on the T-fixed points Xα and the
T-invariant lines connecting them.

Since I is T-fixed on each open set, I must be defined on Uα by a mono-
mial ideal,

Iα = I
∣

∣

Uα
⊂ C[x1, x2, x3] ,

and may also be viewed as a 3-dimensional partition πα

πα =

{

(k1, k2, k3),

3
∏

1

xki

i /∈ Iα

}

⊂ Z
3
≥0 . (6)

The associated subscheme of Iα is 1-dimensional. The corresponding par-
titions πα may be infinite in the direction of the coordinate axes. If the
3-dimensional partition π is viewed as a box diagram, the vertices (6) are
determined by the interior corners of the boxes — the corners closest to the
origin.

The asymptotics of πα in the coordinate directions are described by three
ordinary 2-dimensional partitions. In particular, in the direction of the T-
invariant curve Cαβ, we have the partition λαβ with the following diagram:

λαβ =
{

(k2, k3), ∀k1 xk1
1 xk2

2 xk3
3 /∈ Iα

}

=
{

(k2, k3), xk2
2 xk3

3 /∈ Iαβ

}

,
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where
Iαβ = I

∣

∣

Uα∩Uβ
⊂ C[x±1

1 , x2, x3] .

The vertices of λαβ defined above are the interior corners of the squares of
the associated Young diagram.

In summary, a T-fixed ideal sheaf I can be described in terms of the
following data:

(i) a 2-dimensional partition λαβ assigned to each edge of ∆(X),

(ii) a 3-dimensional partition πα assigned to each vertex of ∆(X) such that
the asymptotics of πα in the three coordinate directions is given by the
partitions λαβ assigned to the corresponding edges.

4.3 Melting crystal interpretation

The partition data {πα, λαβ} corresponding to a T-fixed ideal sheaf I can
be given a melting crystal interpretation [30]. Consider the weights of the
T-action on

H0(X,OY (d)) .

For large d, the corresponding points of Z
3 can be described as follows.

Scale the Newton polyhedron ∆(X) by a factor of d. Near each corner
of d∆(X), the intersection Z

3 ∩ d∆(X) looks like a standard Z
3
≥0, so we can

place the corresponding partition πα there. Since d is large and since, by con-
struction πα and πβ agree along the edge joining them, a global combinatorial
object emerges.

One can imagine the points of Z
3 ∩ d∆(X) are atoms in a crystal and,

as the crystal is melting or dissolving, some of the atoms near the corners
and along the edges are missing. These missing atoms are described by the
partitions πα and λαβ. They are precisely the weights of the T-action on
H0(X,OY (d)).

4.4 Degree and Euler characteristic

Let [I] ∈ In(X, β) be a T-fixed ideal sheaf on X described by the partition
data {πα, λαα′}. We see

β =
∑

α,α′

|λαα′ | [Cαα′ ] ,
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where |λ| denotes the size of a partition λ, the number of squares in the
diagram.

For 3-dimensional partitions π, one can similarly define the size |π| by
the number of cubes in the diagram. Since the partitions πα may be infinite
along the coordinate axes, the number |πα| so defined will often be infinite.
We define the renormalized volume |πα| as follows. Let λαβi

, i = 1, 2, 3, be
the asymptotics of πα. We set

|πα| = #
{

πα ∩ [0, . . . , N ]3
}

− (N + 1)

3
∑

1

|λαβi
| , N ≫ 0 .

The renormalized volume is independent of the cut-off N as long as N is
sufficiently large. The number |πα| so defined may be negative.

Given m, m′ ∈ Z and a partition λ, we define

fm,m′(λ) =
∑

(i,j)∈λ

(−mi − m′j + 1) ,

where the sum is over the interior corners of the Young diagram of λ. Each
edge of ∆(X) is assigned a pair of integers (mαβ , m′

αβ) from the normal bundle
of the associated T-invariant line and a partition λαβ from the T-fixed ideal
sheaf I. By definition, we set

f(α, β) = fmαβ ,m′

αβ
(λαβ) . (7)

Lemma 5. χ(OY ) =
∑

α |πα| +
∑

α,β f(α, β) .

Proof. The result is an elementary calculation in toric geometry. For exam-
ple, a computation of χ(OY ) using the Cech cover defined by {Uα} immedi-
ately yields the result.

4.5 The T-fixed obstruction theory

The moduli space In(X, β) carries a T-equivariant perfect obstruction theory,

E0 → E1,

see [25, 36]. Assume the virtual dimension of In(X, β) is 0. The virtual
localization formula [15] may be stated as follows,

∫

[In(X,β)]vir

1 =
∑

[I]∈In(X,β)T

∫

[S(I)]vir

e(Em
1 )

e(Em
0 )

.
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Here, S(I) denotes the T-fixed subscheme of In(X, β) supported at the point
[I], and Em

0 , Em
1 denote the nonzero T-weight spaces. The virtual class,

[S(I)]vir, is determined by the T-fixed obstruction theory.
We first prove S(I) is the reduced point [I]. It suffices to prove the Zariski

tangent space to In(X, β) at [I] contains no trivial subrepresentations. Since
X is toric, all the higher cohomologies of OX vanish,

H i(X,OX) = 0,

for i ≥ 0. Hence, the traceless condition is satisfied, and the Zariski tangent
space of In(X, β) at [I] is Ext1(I, I).

Lemma 6. Let [I] ∈ In(X, β) be a T-fixed point. The T-representation,

Ext1(I, I),

contains no trivial subrepresentations.

Proof. From the T-equivariant ideal sheaf sequence,

0 → I → OX → OY → 0, (8)

we obtain a sequence of T-representations,

→ Ext0(I,OY ) → Ext1(I, I) → Ext1(I,OX) → .

The left term, Ext0(I,OY ), does not contain trivial representations by Lemma
7 below.

We will prove the right term, Ext1(I,OX), also does not contain trivial
representations. By Serre duality, it suffices to study the representation,

Ext2(OX , I ⊗ KX) = H2(X, I ⊗ KX).

The long exact sequence in cohomology obtained from (8) by tensoring with
KX and the vanishings,

H1(X, KX) = H2(X, KX) = 0,

together yield a T-equivariant isomorphism,

H1(X,OY ⊗ KX)
∼
→ H2(X, I ⊗ KX).
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The first Cech cohomology of OY ⊗KX is computed via the representations

H0(Uαβ ,OY ⊗ KX),

where Uαβ = Uα ∩Uβ . Here we use the Cech cover defined in Section 4.1. An
elementary argument shows these representations contain no trivial subrep-
resentations.

Lemma 7. Extk(I,OY ) contains no trivial subrepresentations.

Proof. By the local-to-global spectral sequence, it suffices to prove

H i(Extj(I,OY ))

contains no trivial subrepresentations for all i and j. By a Cech cohomology
calculation, it then suffices to prove

H0(Uα, Extj(Iα,OYα)), H0(Uαβ , Extj(Iαβ ,OYαβ
))

contain no trivial subrepresentations. Triple intersections need not be con-
sidered since OYαβγ

vanishes.
We will study Extj(Iα,OYα) on Uα via the T-equivariant Taylor resolu-

tion of the monomial ideal Iα. The argument for Extj(Iαβ ,OYαβ
) on Uαβ is

identical.
Let Iα be generated by the monomials m1, . . . , ms. For each subset

T ⊂ {1, . . . , s},

let
mT = xr(T ) = least common multiple of {mi|i ∈ T}.

For 1 ≤ t ≤ s, let Ft be the free Γ(Uα)-module with basis eT indexed by
subsets T ⊂ {1, . . . , s} of size t.

A differential d : Ft → Ft−1 is defined as follows. Given a subset T of size
t, let T = {i1, . . . , it} where i1 < · · · < it. Let

d(eT ) =
∑

T ′=T\{ik}

(−1)kxrT −rT ′eT ′.

The Taylor resolution,

0 → Fs → · · · → F2 → F1 → Iα → 0,
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is exact [34]. Moreover, the resolution is equivariant with T-weight r(T ) on
the generator e(T ).

The weights of the generators of Ft are weights of monomials in Iα. How-
ever, the weights of the T-representation OYα are precisely not equal to
weights of monomials in Iα. Hence, Hom(Ft,OYα) contains no trivial sub-
representations. We then conclude Extj(Iα,OY ) contains no trivial subrep-
resentations by computing via the Taylor resolution of Iα.

The obstruction space at [I] ∈ In(X, β) of the perfect obstruction theory
is Ext2(I, I). The following Lemma implies the T-fixed obstruction theory
at [I] is trivial.

Lemma 8. Ext2(I, I) contains no trivial subrepresentations.

Proof. From the T-equivariant ideal sheaf sequence, we obtain,

→ Ext1(I,OY ) → Ext2(I, I) → Ext2(I,OX) → .

The left term, Ext1(I,OY ), does not contain trivial representations by Lemma
7 above.

We will prove the right term, Ext2(I,OX), also does not contain trivial
representations. By Serre duality, it suffices to study the representation,

Ext1(OX , I ⊗ KX) = H1(X, I ⊗ KX).

The long exact sequence in cohomology obtained from by tensoring the ideal
sheaf sequence with KX and the vanishings,

H0(X, KX) = H1(X, KX) = 0,

together yield a T-equivariant isomorphism,

H0(X,OY ⊗ KX)
∼
→ H1(X, I ⊗ KX).

The space of global sections of OY ⊗KX is computed via the representations

H0(Uα,OY ⊗ KX).

As before, an elementary argument shows these representations contain no
trivial subrepresentations.
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The virtual localization formula may then be written as

∫

[In(X,β)]vir

1 =
∑

[I]∈In(X,β)T

e(Ext2(I, I))

e(Ext1(I, I))
.

A calculation of the virtual representation

Ext1(I, I) − Ext2(I, I)

is required for the evaluation of the virtual localization formula.

4.6 Virtual tangent space

The virtual tangent space at I is given by

T[I] = Ext1(I, I) − Ext2(I, I) = χ(O,O) − χ(I, I)

where

χ(F ,G) =

3
∑

i=0

(−1)i Exti(F ,G) .

We can compute each Euler characteristic using the local-to-global spectral
sequence

χ(I, I) =
3
∑

i,j=0

(−1)i+jH i(Extj(I, I))

=

3
∑

i,j=0

(−1)i+j
C

i(Extj(I, I)) ,

where, in the second line, we have replaced the cohomology terms with the
Cech complex with respect to the open affine cover {Uα}. Though these
modules are infinite-dimensional, they have finite-dimensional weight spaces
and, therefore, their T-character is well defined as a formal power series.

Since Y is supported on the curves Cαβ, we have I = OX on the inter-
section of three or more Uα. Therefore, only the C0 and C1 terms contribute
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to the calculation. We find,

T[I] =
⊕

α

(

Γ(Uα) −
∑

i

(−1)iΓ(Uα, Exti(I, I))

)

−
⊕

α,β

(

Γ(Uαβ) −
∑

i

(−1)iΓ(Uαβ , Exti(I, I))

)

. (9)

The calculation is reduced to a sum over all the vertices and edges of the
Newton polyhedron. In each case, we are given an ideal

I = Iα, Iαβ ⊂ Γ(U),

and we need to compute
(

Γ(U) −
∑

i

(−1)i Exti(I, I)

)

over the ring Γ(U), which is isomorphic to C[x, y, z] in the vertex case and is
isomorphic to C[x, y, z, z−1] in the edge case. We treat each case separately.

4.7 Vertex calculation

Let R be the coordinate ring,

R = C[x1, x2, x3] ∼= Γ(Uα).

As before, we can assume the T-action on R is the standard action (4).
Consider a T-equivariant graded free resolution of Iα,

0 → Fs → · · · → F2 → F1 → Iα → 0 , (10)

such as, for example, the Taylor resolution [34]. Each term in (10) has the
form

Fi =
⊕

j

R(dij) , dij ∈ Z
3 .

The Poincare polynomial

Pα(t1, t2, t3) =
∑

i,j

(−1)i tdij
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does not depend on the choice of the resolution (10). In fact, from the
resolution (10) we see that the Poincare polynomial Pα is related to the
T-character of R/Iα as follows:

Qα(t1, t2, t3) := trR/Iα(t1, t2, t3)

=
∑

(k1,k2,k3)∈πα

tk1
1 tk2

2 tk3
3

=
1 + Pα(t1, t2, t3)

(1 − t1)(1 − t2)(1 − t3)
, (11)

where trace in the first line denotes the trace of the T-action on R/Iα.
The virtual representation χ(Iα, Iα) is given by the following alternating

sum

χ(Iα, Iα) =
∑

i,j,k,l

(−1)i+k HomR(R(dij), R(dkl))

=
∑

i,j,k,l

(−1)i+kR(dkl − dij) ,

and, therefore,

trχ(Iα,Iα)(t1, t2, t3) =
Pα(t1, t2, t3) Pα(t−1

1 , t−1
2 , t−1

3 )

(1 − t1)(1 − t2)(1 − t3)
.

We find the character of the T-action on the α summand of (9) is given by:

1 − Pα(t1, t2, t3) Pα(t−1
1 , t−1

2 , t−1
3 )

(1 − t1)(1 − t2)(1 − t3)
.

Using (11), we may express the answer in terms of the generating function
Qα of the partition πα,

trR−χ(Iα,Iα)(t1, t2, t3)

= Qα −
Qα

t1t2t3
+ QαQα

(1 − t1)(1 − t2)(1 − t3)

t1t2t3
, (12)

where
Qα(t1, t2, t3) = Qα(t−1

1 , t−1
2 , t−1

3 ) .

The rational function (12) should be expanded in ascending powers of the
ti’s.
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4.8 Edge calculation

We now consider the summand of (9) corresponding to a pair (α, β). Our
calculations will involve modules over the ring

R = Γ(Uαβ) = C[x2, x3] ⊗C C[x1, x
−1
1 ] .

The C[x1, x
−1
1 ] factor will result only in the overall factor

δ(t1) =
∑

k∈Z

tk1,

the formal δ-function at t1 = 1, in the T-character. Let

Qαβ(t2, t3) =
∑

(k2,k3)∈λαβ

tk2
2 tk3

3

be the generating function for the edge partition λαβ. Arguing as in the
vertex case, we find

− trR−χ(Iαβ ,Iαβ)(t1, t2, t3)

= δ(t1)

(

−Qαβ −
Qαβ

t2t3
+ QαβQαβ

(1 − t2)(1 − t3)

t2t3

)

. (13)

Note that because of the relations

δ(1/t) = δ(t) = tδ(t) ,

the character (13) is invariant under the change of variables (5).

4.9 The equivariant vertex

The formulas (12) and (13) express the Laurent polynomial trT[I]
(t1, t2, t3)

as a linear combination of infinite formal power series. Our goal now is
to redistribute the terms in these series so that both the vertex and edge
contributions are finite.

The edge character (13) can be written as

Fαβ(t2, t3)

1 − t1
+ t−1

1

Fαβ(t2, t3)

1 − t−1
1

, (14)
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where

Fαβ(t2, t3) = −Qαβ −
Qαβ

t2t3
+ QαβQαβ

(1 − t2)(1 − t3)

t2t3
.

and the first (resp. second) term in (14) is expanded in ascending (resp.
descending) powers of t1.

Let us denote the character (12) by Fα and define

Vα = Fα +

3
∑

i=1

Fαβi
(ti′, ti′′)

1 − ti
,

where Cαβ1, Cαβ2, Cαβ3 are the three T-invariant rational curves passing through
the point Xα ∈ XT, and {ti, ti′, ti′′} = {t1, t2, t3}.

Similarly, we define

Eαβ = t−1
1

Fαβ(t2, t3)

1 − t−1
1

−
Fαβ

(

t2 t
−mαβ

1 , t3 t
−m′

αβ

1

)

1 − t−1
1

.

The term Eαβ is canonically associated to the edge. Formulas (12) and (13)
yield the following result.

Theorem 1. The T-character of T[I] is given by

trT[I]
(t1, t2, t3) =

∑

α

Vα +
∑

αβ

Eαβ . (15)

Lemma 9. Both Vα and Eαβ are Laurent polynomials.

Proof. The numerator of Eαβ vanishes at t1 = 1, whence it is divisible by the
denominator. The claim for Vα follows from

Qα =
Qαβ

1 − t1
+ . . . ,

where the dots stand for terms regular at t1 = 1.

From Vα, the equivariant localization formula defines a natural 3-parametric
family of measures w on 3-dimensional partitions πα. Namely, the measure
of πα equals

w(πα) =
∏

k∈Z3

(s, k)−vk ,
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where s = (s1, s2, s3) are parameters, ( · , · ) denotes the standard inner prod-
uct, and vk is the coefficient of tk in Vα. We call the measure w the equivariant
vertex measure.

The equivariant vertex measure simplifies dramatically in the local Calabi-
Yau case to a signed volume — the simplification plays a basic role in the
calculation of Section 4.10. The full equivariant vertex measure is discussed
further in [24].

4.10 Local CY and the topological vertex

We now specialize to the local Calabi-Yau geometry discussed in Section 3.
Let S be a nonsingular, toric, Fano surface with canonical bundle KS.

We view the total space of KS as an open toric Calabi-Yau 3-fold. Let X be
the toric compactification defined in Section 3. By definition,

Z
′
DT (S; q)β = ZDT (X; q)β

/

ZDT (X; q)0 , (16)

for β ∈ H2(S, Z).
We may compute the right side of (16) by localization. Let

D = X \ KS

denote the divisor at infinity. Let [I] ∈ In(X, β) be a T-fixed ideal sheaf.
We have seen the weights of the virtual tangent representation of [I] are
determined by the vertices and edges of the support of Y . Since β is a class
on S, the support of Y lies in KS except for possibly a finite union of zero
dimensional subschemes supported on D. Therefore, as a consequence of the
virtual localization formula for the Donaldson-Thomas theory of X, we find,

Z
′
DT (S; q)β =

∑

n qn
∑

[I]∈In(KS ,β)
e(Ext2(I,I))

e(Ext1(I,I))
∑

n qn
∑

[I]∈In(KS ,0)
e(Ext2(I,I))

e(Ext1(I,I))

. (17)

Here, only the ideal sheaves I for which Y has compact support in KS are
considered. In particular, the local Donaldson-Thomas theory should be
viewed as independent of the compactification X.

The open set KS has a canonical Calabi-Yau 3-form Ω. There is 2-
dimensional subtorus,

T0 ⊂ T,
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which preserves Ω. We will evaluate the formula (17) on the subtorus T0.
Let Uα ⊂ KS be a chart with coordinates (4). The subgroup T0 is defined

by
t1t2t3 = 1 .

By Serre duality for a compact Calabi-Yau 3-fold, we obtain a canonical
isomorphism

Ext1
0(I, I) = Ext2

0(I, I)∗.

We will find the T0-representations to be dual in the local Calabi-Yau geom-
etry as well. Formula (17) will be evaluated by canceling the dual weights
and counting signs.

The following functional equation for the character (15) expresses Serre
duality. On the subtorus t1t2t3 = 1, the character is odd under the involution
f 7→ f defined by

(t1, t2, t3) 7→ (t−1
1 , t−1

2 , t−1
3 ) .

Below we will see, in fact, each term in (15) is an anti-invariant of this
transformation.

A crucial technical point is that no term of (15) specializes to 0 weight
under the restriction to T0. Since the specializations are all nonzero, the
localization formula for T may be computed after to restriction to T0. We
leave the straightforward verification to the reader.

We will split the edge contributions of (15) in two pieces

Eαβ = E
+
αβ + E

−
αβ

satisfying

E
+

αβ

∣

∣

∣

t1t2t3=1
= −E

−
αβ

∣

∣

∣

t1t2t3=1
, (18)

where
Eαβ(t1, t2, t3) = E(t−1

1 , t−1
2 , t−1

3 ).

The total count of (−1)’s contributing to Eαβ is then determined by the
parity of the evaluation of E

+
αβ at the point (t1, t2, t3) = (1, 1, 1) so long as

the constant term of
E

+
αβ

∣

∣

∣

t1t2t3=1

is even. Concretely, we set

F+
αβ = −Qαβ − QαβQαβ

1 − t2
t2
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and define E
+
αβ in terms of F+

αβ using the same formulas as before. A straight-
forward check verifies (18). The constant term will be discussed in Section
4.11.

Observe that

E
+
αβ

∣

∣

∣

t1=1
=

(

mαβ t2
∂

∂t2
+ m′

αβ t3
∂

∂t3
− 1

)

F+
αβ ,

Hence, we conclude

Eαβ(1, 1, 1) ≡ f(α, β) + mαβ|λαβ | mod 2 , (19)

where the function f(α, β) was defined in (7). The second term in (19) comes
from applying ∂

∂t2
to the (1 − t2) factor in the QQ-term.

Naively, a similar splitting of the vertex term

Vα = V
+
α + V

−
α

satisfying

V
+

α

∣

∣

∣

t1t2t3=1
= −V

−
α

∣

∣

∣

t1t2t3=1

is obtained by defining F+
α to be equal to

Qα − QαQα

(1 − t1)(1 − t2)

t1t2
.

However, the definition is not satisfactory since rational functions and not
polynomials are obtained. The

(1 − t1)(1 − t2)(1 − t3)

t1t2t3
(20)

factor in the QQ-term in (12) can be split in three different ways and no
single choice can serve all terms in the QQ-product. The correct choice of
the splitting is the following. Define the polynomial Q′

α by the equality

Qα = Q′
α +

3
∑

i=1

Qαβi

1 − ti
.

Now for each set of bar-conjugate terms in the expansion of the QQ-product,
we pick its own splitting of (20), so that, for example, the term

−
Qαβ1Qαβ1

(1 − t1)(1 − t−1
1 )

(1 − t1)(1 − t2)

t1t2
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cancels the corresponding contribution of F+
αβ1

, and for i 6= j the terms

−

(

Qαβi
Qαβj

(1 − ti)(1 − t−1
j )

+
Qαβi

Qαβj

(1 − t−1
i )(1 − tj)

)

(1 − ti)(1 − tj)

titj

are regular and even at (1, 1, 1). The constant term of

V
+
α

∣

∣

∣

t1t2t3=1

will be shown to be even in Section 4.11.
Using splitting defined above, we easily compute

V
+
α (1, 1, 1) ≡ Q′

α(1, 1, 1) mod 2 . (21)

From the discussion in Section 4.4, we find

Q′
α(1, 1, 1) = |πα| . (22)

Equations (19) and (22) together with Lemma 5 yield the following result.

Theorem 2. Let I be a T-fixed ideal sheaf in In(KS, β),

e(Ext2(I, I))

e(Ext1(I, I))
= (−1)χ(OY )+

P

αβ mαβ |λαβ | ,

where the sum in the exponent is over all edges and

O(mαβ) ⊕ O(m′
αβ)

is the normal bundle to the edge curve Cαβ.

As a corollary of Theorem 2, we prove the Gromov-Witten/ Donaldson-
Thomas correspondence for toric local Calabi-Yau surfaces.

Theorem 3. For toric local Calabi-Yau surfaces S,

Z
′
GW (S; u, v) = Z

′
DT (S;−eiu, v)

holds.
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Proof. The proof is obtained from Theorem 2 by direct comparison with the
topological vertex calculation of Z

′
GW (S; u, v).

The topological vertex [2] is a conjectural evaluation of the Gromov-
Witten theory of all toric Calabi-Yau 3-folds. In the case of local toric Calabi-
Yau surfaces, the topological vertex conjecture has been proven in [21].

To match our Donaldson-Thomas calculation, the melting crystal inter-
pretation of the topological vertex is required [30]. In the melting crystal
interpretation, the Gromov-Witten contribution of a T-fixed ideal sheaf I in
In(KS, β) is

ContributionI(Z
′
GW (S; u, v)) = eiuχ(OY )(−1)

P

αβ mαβ |λαβ |vβ .

The Donaldson-Thomas contribution of I is

ContributionI(Z
′
DT (S; q, v)) = (−q)χ(OY )(−1)

P

αβ mαβ |λαβ |vβ

by Theorem 2. The number 1 + mαβ has the same parity as the framing of
corresponding edge in the topological vertex formalism.

4.11 Constant terms

The calculation of Section 4.10 requires the constant terms after restriction
to t1t2t3 = 1 of the vertex and edge splittings V

+
α and E

+
αβ to be even.

Consider first the constant term of the vertex splitting. The finite case is
immediate.

Lemma 10. Let γ be a finite 3-dimensional partition. Then, the constant
term of

Qγ − QγQγ

(1 − t1)(1 − t2)

t1t2
(23)

after the restriction t1t2t3 = 1 is even.

Proof. Assume the result hold for partitions with fewer boxes than γ. Let
b ∈ γ be an extreme box on the highest level in the t3 direction. We show
the change in the constant term of (23) after removing b is even.

Let (b1, b2, b3) be the coordinates of the box b indexed by the corner closest
to the origin. A box b′ ∈ γ can interact with b in the constant term of the
second summand of (23) in two ways:

(i) Constant(b b′ (1−t1)(1−t2)
t1t2

),
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(ii) Constant(b′ b (1−t1)(1−t2)
t1t2

).

Here, Constant denotes the constant term after restriction to t1t2t3 = 1. If
b′ = b, only contribution (i) is included.

The type (i) contribution for the box (b′1, b
′
2, z) exactly equals the type

(ii) contribution for the box (b′1, b
′
2, z−1). The cancelation mod 2 is therefore

perfect except for

(a) the b′ = (b′1, b
′
2, b

′
3) contributions to (ii) for which (b′1, b

′
2, b

′
3 + 1) does

not lie in γ,

(b) the b′ = (b′1, b
′
2, 0) contributions to (i).

There are no contributions of type (a). If b′3 = b3, there are no contribu-
tions since b is extremal and b′ 6= b. If b′3 < b3, there are no contributions
since either b′1 > b1 or b′2 > b2.

We study now the b′3 = 0 contributions to (i). If b is not on the main
diagonal (x, x, x), then the b′3 = 0 contributions to (i) are either 0, 2 or 4. If
b is on the main diagonal, then the b′3 = 0 contribution is 1.

The box b contributes 1 to the constant term of Qγ if and only if b is on
the main diagonal. Hence, the change of the constant term of (23) after the
removal of b is even.

Let A, B be 3-dimensional partitions which are cylinders in distinct direc-
tions ti, tj with cross sections given by the 2-dimensional partitions λ(A), λ(B),

QA =
Qλ(A)

1 − ti
, QB =

Qλ(B)

1 − tj
.

Let CA be a suitably large cut-off of A, and let CB be a suitably large cut-off
of B. For any Laurent polynomial F (t1, t2, t3),

Constant
(

(FQA + FQA)
(1 − ti)(1 − tk)

titk

)

=

Constant
(

(FQCA
+ FQCA

)
(1 − ti)(1 − tk)

titk

)

(24)
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since the extreme parts of A can not contribute to the constant after restric-
tion to t1t2t3 = 1. Similarly,

Constant
(

(QAQB + QAQB)
(1 − ti)(1 − tj)

titj

)

=

Constant
(

(QCA
QCB

+ QCA
QCB

)
(1 − ti)(1 − tj)

titj

)

(25)

since the extreme parts of A and B cannot combine to form constants after
t1t2t3 = 1. We conclude only cut-offs are needed to calculate the constants.

The following observation is crucial for the constant calculation of the
vertex splitting.

Lemma 11. We have,

Constant
(

(FQCA
+ FQCA

)
(1 − ti)(1 − tk)

titk

)

mod 2 =

Constant
(

(FQCA
+ FQCA

)
(1 − t1)(1 − t2)

t1t2

)

mod 2.

Proof. Without loss of generality, we assume i = 1 and k = 3. Then,

(1 − t1)(1 − t3)

t1t3
−

(1 − t1)(1 − t2)

t1t2
= (t2t3 − 1)

(

1

t3
−

1

t2

)

=

(

t2 +
1

t2

)

−

(

t3 +
1

t3

)

,

where we have used t1t2t3 = 1.
The difference of the constants in the Lemma is

Constant

(

(FQCA
+ FQCA

)

(

t2 +
1

t2
− t3 −

1

t3

))

=

Constant
(

FQCA
t2 + FQCA

1

t2

)

+ Constant
(

FQCA

1

t2
+ FQCA

t2

)

−Constant
(

FQCA
t3 + FQCA

1

t3

)

− Constant
(

FQCA

1

t3
+ FQCA

t3

)

Since each line on the right side is of the form G+G, the right side is even.
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The same argument yields

Constant
(

(QAQB + QAQB)
(1 − ti)(1 − tj)

titj

)

mod 2 =

Constant
(

(QCA
QCB

+ QCA
QCB

)
(1 − t1)(1 − t2)

t1t2

)

mod 2.

We can now show the vertex splitting has even constant term after the
restriction t1t2t3 = 1. Following the notation of Section 4.10, the vertex
splitting V

+
α is

Q′
α − Q′

αQ
′

α

(1 − t1)(1 − t2)

t1t2

−
3
∑

i=1

(

Q′
α

Qαβi

1 − t−1
i

+ Q
′

α

Qαβi

1 − ti

)

(1 − ti)(1 − t̂i)

tit̂i

−
∑

i<j

(

Qαβi
Qαβj

(1 − ti)(1 − t−1
j )

+
Qαβj

Qαβi

(1 − t−1
i )(1 − tj)

)

(1 − ti)(1 − tj)

t1tj
.

To calculate the constant term after restriction, replace all occurances of

Qαβi

1 − ti

by cut-offs QCαβi
satisfying (24) with F = Q′

α and (25). Then, replace all
occurances of

(1 − ti)(1 − t̂i)

tit̂i
,

(1 − ti)(1 − tj)

titj

by (1−t1)(1−t2)
t1t2

. The moves do not change the value mod 2 of the constant
term after restriction.

Let γ be the cut-off partition so

Qγ = Q′
α +

3
∑

i=1

QCαβi
.

By Lemma 10,

Constant
(

Qγ − QγQγ

(1 − t1)(1 − t2)

t1t2

−
3
∑

i=1

QCαβi
− QCαβi

QCαβi

(1 − t1)(1 − t2)

t1t2

)

= 0 mod 2. (26)
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After expanding, we find (26) equals

Constant
(

Q′
α − Q′

αQ
′

α

(1 − t1)(1 − t2)

t1t2

−
3
∑

i=1

(

Q′
αQCαβi

+ Q
′

αQCαβi

) (1 − t1)(1 − t2)

t1t2

−
∑

i<j

(

QCαβi
QCαβj

+ QCαβi
QCαβj

) (1 − t1)(1 − t2)

t1t2

)

.

Since the latter is the constant term after restriction of V
+
α , we have proven

the constant term of the vertex splitting is even.
The constant term of the edge splitting E

+
αβ after restriction to t1t2t3 = 1

is much more easily studied. A direct analysis from the definitions shows the
edge splitting constant is even. We leave the details to the reader.
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