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Abstract. We define the BPS invariants of Gopakumar-Vafa in
the case of irreducible curve classes on Calabi-Yau 3-folds. The
main tools are the theory of stable pairs in the derived category
and Behrend’s constructible function approach to the virtual class.
For irreducible curve classes, we prove the stable pairs generating
function satisfies the strong BPS rationality conjectures.

We define the contribution of each curve C to the BPS invari-
ants and show the contributions lie between the geometric genus
and arithmetic genus of C. Complete formulae are derived for
nonsingular and nodal curves.

A discussion of primitive classes on K3 surfaces from the point
of view of stable pairs is given in the Appendix via calculations
of Kawai-Yoshioka. A proof of the Yau-Zaslow formula for ratio-
nal curve counts is obtained. A connection is made to the Katz-
Klemm-Vafa formula for BPS counts in all genera.
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0. Introduction

Let X be a nonsingular, projective, Calabi-Yau 3-fold. Invariants
counting curves in X via stable pairs have been defined in [26]. A pair
(F, s) consists of a sheaf F on X supported in dimension 1 together
with a section s ∈ H0(X,F ). A pair (F, s) is stable if

(i) the sheaf F is pure,

(ii) the section OX s→ F has 0-dimensional cokernel.

By purity (i), every nonzero subsheaf of F has support of dimension
1. As a consequence, the scheme theoretic support C ⊂ X of F is
a Cohen-Macaulay curve. The support of the cokernel (ii) is a finite
length subscheme Z ⊂ C. If the support C is nonsingular, then the
stable pair (F, s) is uniquely determined by Z ⊂ C. However, for
general C, the subscheme Z does not determine F and s.

The discrete invariants of a stable pair are the holomorphic Euler
characteristic χ(F ) ∈ Z and the class [F ] ∈ H2(X,Z). The moduli
space Pn(X, β) parameterizes stable pairs satisfying

χ(F ) = n, [F ] = β.

After appropriate choices [26], pair stability coincides with stability
arising from geometric invariant theory [20]. The moduli space Pn(X, β)
is a therefore a projective scheme.

To define invariants, a virtual cycle is required. The usual deforma-
tion theory of pairs is problematic, but the fixed-determinant deforma-
tion theory of the associated complex

(0.1) I• = {OX s−→ F} ∈ Db(X)

is shown in [26, 13] to define a perfect obstruction theory for Pn(X, β)
of virtual dimension zero. A virtual cycle is then obtained by [4, 22].
The resulting invariants

Pn,β =

∫

[Pn(X,β)]vir

1

are conjecturally equal to the reduced DT invariants of [23]. Let

Zβ(q) =
∑

n∈Z

Pn,β q
n

be the generating series. Calculations in the toric Calabi-Yau case can
be found in [27].
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Since X is Calabi-Yau1, the above deformation theory of complexes
is self-dual in the sense of [3]. Heuristically, Pn(X, β) may be viewed
locally as the critical locus of a function. The virtual dimension of
Pn(X, β) is 0 and, at nonsingular points of the moduli space, the ob-
struction sheaf is the cotangent bundle. Therefore if Pn(X, β) is every-
where nonsingular then

Pn,β = (−1)dimPn(X,β) e(Pn(X, β)),

where e denotes the topological Euler characteristic.
If singularities are present, Pn,β certainly differs from the (signed)

Euler characteristic. But, Behrend [3] has shown that there exists an
integer-valued constructible function χB over spaces such as Pn(X, β)
with self-dual obstruction theories satisfying

Pn,β = e(Pn(X, β), χB).

Here, e(Pn(X, β), χB) is the weighted Euler characteristic. At nonsin-
gular points,

χB = (−1)dimPn(X,β),

but at singularities χB is a more complicated function. The weighted
Euler characteristic of Pn(X, β) is a deformation invariant.

Behrend’s theory applied to Pn(X, β) allows us to use topological
Euler characteristics and cut-and-paste techniques. We require new
technical results comparing the value of Behrend’s function at a pair
(F, s) to the value at the sheaf F , see Theorem 4 of Section 1. The
arguments turn out to be remarkably simple when β is an irreducible2

class. We prove the following result in Section 2.

Theorem 1. For β irreducible, Zβ(q) is the Laurent series expansion
of a rational function in q.

Serre duality relates a line bundle L on a nonsingular curve C ⊂ X
to L−1 ⊗KC . Since

χ(L) = −χ(L−1 ⊗KC),

Serre duality relates the geometry of Pn(X, β) to P−n(X, β). The com-
patibility of Serre duality with χB proven in Section 2 yields a more
subtle result.

Theorem 2. For β irreducible, the rational function Zβ(q) is invariant
under the transformation q ↔ q−1.

1The Calabi-Yau condition for us is KX
∼= OX . No restriction of the fundamental

group is necessary.
2The definitions of irreducible, primitive, and reduced curve classes are given in

Section 1.
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In fact, we prove Zβ(q) satisfies the full BPS rationality conjectured
in [26].

Theorem 3. For β irreducible,

(0.2) Zβ(q) =

g
∑

r=0

nr,β q
1−r(1 + q)2r−2

where the nr,β are integers and g is the maximal arithmetic genus g of
a curve in class β.

We obtain s a deformation invariant definition of the BPS counts
nr,β of Gopakumar-Vafa [7, 8] for irreducible classes β. In Section 3,
we give a local definition of these BPS invariants for irreducible curve
classes. We define constructible functions over the space of curves in
X with respect to which the weighted Euler characteristics yields the
BPS numbers. We prove the functions are nonzero on C ⊂ X only in
genus g between the geometric and arithmetic genera of C. Complete
evaluations of the functions are obtained for nonsingular and nodal
curves.

In Appendix A, we sketch the extension of Theorems 1 and 2 to
reduced curve classes which are not necessarily irreducible. We also
explain what is needed to show the vanishing of BPS counts in negative
genus in the reduced case.

Interesting examples of irreducible and reduced classes occur on sur-
faces. If C is Gorenstein, the stable pairs with support C are proven
in Appendix B to correspond bijectively to finite length subschemes
Z ⊂ C. The moduli spaces of stable pairs on a surface are then shown
to be isomorphic to relative Hilbert schemes.

In Appendix C, the beautiful theory of primitive classes on K3
surfaces is considered. By results of Kawai-Yoshioka [17], the Katz-
Klemm-Vafa [16] formula for BPS state counts is obtained for the the-
ory of stable pairs. The corresponding calculations in Gromov-Witten
theory have not yet been completed.3

Let r0,g be the number of rational curves of fixed primitive class with
self-intersection 2g−2 on a K3 surface. Using the genus 0 BPS counts
together with the local BPS theory of Section 3, a new proof of the
Yau-Zaslow formula,

∑

g≥0

r0,gq
g =

∏

n≥0

(1− qn)−24,

is obtained.

3A discussion of the Gromov-Witten side can be found in [24].
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The Yau-Zaslow formula was proven in the primitive4 case by Bryan-
Leung [5] via Gromov-Witten theory. Our proof is very close in spirit
to the original sheaf-theoretic motivations for the formula [34]. In par-
ticular, our argument via stable pairs and BPS counts is parallel to
Beauville’s proof using compactified Jacobians and Euler characteris-
tics [2].
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1. χB-functions

Let X be a nonsingular projective variety over C. A nonzero class
β ∈ H2(X,Z) is effective if β is represented by an algebraic curve.

Definition 1.1. A class β ∈ H2(X,Z) is

• irreducible if there is no decomposition β = β1 + β2 into nonzero
effective classes βi,

• primitive if β is not a positive integer multiple of an effective class,

• reduced if in every decomposition β =
∑

i βi into effective classes,
all of the βi are primitive.

For example, classes β of minimal degree
∫

β
c1(L) measured against

any ample class L are irreducible. Any primitive class β on a K3
surface S is irreducible on a generic deformation of S for which β is of
type (1, 1).

Let X be a Calabi-Yau 3-fold. If (F, s) is a a stable pair of irreducible
class β, F is a stable sheaf since all quotient sheaves have 0-dimensional

4A proof of the Yau-Zaslow formula for all curve classes on K3 surfaces has been
recently obtained in [18].
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support.5 There is therefore a map

(1.2) Pn(X, β)
φn−→Mn(X, β)

from the moduli space of stable pairs to the moduli space of stable pure
sheaves of Hilbert polynomial

χ(F (k)) = k

∫

β

c1(L) + n.

Moreover, the fibre of (1.2) over a point {F} is P(H0(F )). By the
irreducibility of β, the cokernel of any nonzero s section is 0-dimensional
and (F, s) is a stable pair.

Since X is Calabi-Yau, both Pn(X, β) [26] and Mn(X, β) [31] have
self-dual obstruction theories. We can therefore apply the results of [3].

Lemma 1.3. The obstruction theory of Pn(X, β) obtained from fixed
determinant deformations in the derived category [26] is self-dual in the
sense of Behrend [3].

Proof. The obstruction theory of [26] can be described as follows. Let

π : X × Pn(X, β)→ Pn(X, β)

be the projection. There is a universal stable pair [26],

OX×Pn(X,β) → F,

over X ×Pn(X, β). Let I• be the associated complex (with OX×Pn(X,β)

in degree 0). Consider the complex

(1.4) Rπ∗RHom(I•, I• ⊗ ωπ)0[2]

of trace-free Exts, where ωπ denotes the relative canonical bundle. In
[26], the complex (1.4) is shown to be quasi-isomorphic to a 2-term com-
plex of locally free sheaves {E1 → E0} over Pn(X, β), with a canonical
morphism

Rπ∗RHom(I•, I• ⊗ ωπ)0[2]→ L•

Pn(X,β)

to the cotangent complex of Pn(X, β). The morphism is obstruction
theory for Pn(X, β): the induced maps on h0 and h1 are isomorphisms
and surjections respectively.

For X Calabi-Yau, ωπ is trivial. Therefore, by relative Serre duality
for π, we obtain a quasi-isomorphism

Rπ∗RHom(I•, I•)∨0 ≃ Rπ∗RHom(I•, I•)0[3].

5Usually, sheaf stability depends upon the polarization L. However, for sheaves
F with irreducible class β, stability is equivalent to purity. And, no strictly semi-
stable sheaves exist.
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Thus
{E∨

0 → E∨
1 }[1] ≃ {E1 → E0},

which is the definition of self-duality in [3]. �

Let M be a scheme equipped with a self-dual obstruction theory.
Kai Behrend [3] defines a canonical constructible function

χB : M → Z,

depending only on the local scheme structure.6 If M is compact, then
∫

[M ]vir

1 = e(M,χB)

where the right side is the weighted Euler characteristic

e(M,χB) =
∑

n∈Z

n e( (χB)−1(n) )

and e is the usual topological Euler characteristic.
If M is nonsingular, then χB is the constant function (−1)dimM and

∫

[M ]vir

1 = (−1)dimMe(M).

More generally, by Proposition 1.5(i) of [3], if f : M → N is a smooth
map of relative dimension r, then

(1.5) χBM = (−1)rf ∗χBN .

If e(F (f)) is the Euler characteristic of the fibre of f , then

e(M,χBM ) = (−1)re(N,χBN) · e(F (f)).

On Pn(X, β) and Mn(X, β), we obtain functions χP and χM.7 The
invariants

Pn,β =

∫

[Pn(X,β)]vir

1 = e(Pn(X, β), χP ),

Nn,β =

∫

[Mn(X,β)]vir

1 = e(Mn(X, β), χM)

are the weighted Euler characteristics.
The following property holds even though the map (1.2) may be

neither smooth nor surjective. The result underpins the whole paper.

Theorem 4. χP = (−1)n−1φ∗
nχM.

6In fact, χB depends only on the local scheme structure in analytic topology by
Proposition 4.22 of [3].

7For convenience, we will often drop the superscripted B in the notation.
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Proof. We work locally around one point (F, s) of Pn(X, β). By the
irreducibility of β, the Cohen-Macaulay support C of F is reduced and
irreducible. Hence, C is generically nonsingular. There exists a local
smooth divisor DC which intersects C (and all nearby C in the same
homology class) transversally in a single point. We may also assume
DC ∩ C to be disjoint from the zeros of s.

Let k ≥ 0. Tensoring with O(kDC) and the canonical section skDC

yields a map of analytic open sets:

(1.6) Pn(X, β) ⊃ Vn //

φn

��

Vn+k

φn+k

��

⊂ Pn+k(X, β)

Mn(X, β) ⊃ Un
≃

// Un+k ⊂Mn+k(X, β)

.

Here, Un is a sufficiently small analytic neighborhood of F . Since χB-
functions depend only on the local scheme structure [3], the bottom
isomorphism makes the χB-functions of the two sheaf moduli spaces
M locally the same. We call them χM. The open sets

Vn = φ−1
n (Un), Vn+k = φ−1

n+k(Un+k)

contain (F, s) and (F (kDC), s.skDC
) respectively. For k sufficiently

large, φn+k is a smooth Pn+k−1-bundle.
By making Vn+k smaller if necessary, the map Vn → Vn+k admits a

left inverse

Vn
ψ← Vn+k

given by forgetting about the k points close to DC . The map ψ is
locally smooth with fibre the kth symmetric product of an open subset
of a nonsingular curve.

We calculate the χB-function of Vn+k in two different ways round
the commutative diagram (1.6), using (1.5) applied to the two smooth
maps ψ and φn+k. The two resulting expressions are

(−1)n+k−1φ∗
n+kχM = (−1)kψ∗χP .

Pulling back to Vn gives

(−1)n+k−1φ∗
nχM = (−1)kχP .

Multiplying by (−1)k gives the result. �

2. BPS rationality

2.1. Results. Let X be a Calabi-Yau 3-fold and β ∈ H2(X,Z) an
irreducible class. Let g be the maximal arithmetic genus of a curve in
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the class β. Following the notation of Section 1, let

Pn,β =

∫

[Pn(X,β)]

1, Nn,β =

∫

[Mn(X,β)]vir

1

denote the invariants of [26, 31].

Proposition 2.1. N1,β = Nn,β for all n.

Proof. Let F be a stable sheaf determining a moduli point ofM1(X, β).
Let C be the support of F . As in the proof of Theorem 4, let DC be
a transverse divisor meeting C in 1 point. Let U1 ⊂ M1(X, β) be
the analytic open set of sheaves supported on curves with a single
transverse intersection with DC . Tensoring with multiples of O(DC)
makes U1 isomorphic to a corresponding open set Un in eachMn(X, β).

If M1(X, β) is covered by finitely many open sets U i
1 of the above

form, the corresponding open sets U i
n cover Mn(X, β). By construc-

tion, the intersections

U i
1 ∩ U j

1 , U i
1 ∩ U j

1 ∩ Uk
1 , . . .

are isomorphic to the corresponding intersections

U i
n ∩ U j

n, U i
n ∩ U j

n ∩ Uk
n , . . . .

Calculating the weighted Euler characteristics of the spaces M1(X, β)
and Mn(X, β) as a sum of weighted Euler characteristics of the U i

(minus the weighted Euler characteristics of their intersections, plus
the triple intersections and so on), we find N1,β = Nn,β. �

Proposition 2.2. The invariants Pn,β satisfy the following identities:

Pn,β = (−1)n−1nN1,β, g ≤ n,(2.3)

Pn,β − P−n,β = (−1)n−1nN1,β, −g < n < g.(2.4)

Pn,β = 0, n ≤ −g.(2.5)

Proof. An element (F, s) of Pn(X, β) yields an exact sequence

0→ OC s→ F → Q→ 0,

where Q has 0-dimensional support. We obtain the inequality

n = χ(F ) = χ(OC) + χ(Q) ≥ 1− g + 0 > −g.
Therefore Pn(X, β) is empty for n ≤ −g, which implies (2.5). We verify
(2.3) and (2.4) simultaneously by proving (2.4) for all n ∈ Z.

If F is a line bundle on a nonsingular curve C ⊂ X, then Serre
duality relates F and F−1 ⊗KC . More generally, there is a map

Mn(X, β) → M−n(X, β)

F 7→ Ext2X(F,KX).(2.6)
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Since F is pure, F has homological dimension 2 [12, Proposition 1.1.10]
so Ext≥3(F,KX) = 0. Similarly Ext≤1(F,KX) = 0 because F is sup-
ported in codimension 2. Therefore

Ext2(F,KX) ∼= RHom(F,KX)[2],

which has the same Chern classes as elements ofM−n(X, β).
Pick a 3-term locally free resolution of F ,

0→ F2 → F1 → F0 → F → 0.

Applying Hom( · , KX) gives a 3-term locally free resolution

0→ F ∗
0 ⊗KX → F ∗

1 ⊗KX → F ∗
2 ⊗KX → Ext2(F,KX)→ 0

of Ext2(F,KX). Therefore by [12, Proposition 1.1.10] Ext2(F,KX) is
a pure sheaf. By the irreducibility assumption, Ext2(F,KX) is stable
and indeed defines an element ofM−n(X, β).

The map (2.6) is an involution and hence yields an isomorphism

Mn(X, β) ∼=M−n(X, β).

We may therefore consider the projections φn and φ−n (1.2) to fibre
Pn(X, β) and P−n(X, β) over the same spaceMn,β. We have

H0(Ext2(F,KX)) ∼= Ext2(F,KX) ∼= H1(F )∗

by Serre duality on X. The fibres of φn and φ−n over F ∈ Mn(X, β)
are therefore

(2.7) P(H0(F )) and P(H1(F )∗)

respectively.
We stratifyMn(X, β) by the dimension of H0(F ),

Mn(X, β) = ∪rVr,
where Vr is the locus of sheaves F with h0(F ) = r. There are induced
stratifications φ−1

±n(Vr) of Pn(X, β) and P−n(X, β). By [3], we may
calculate the invariants P±n,β via these stratification as

P±n,β =
∑

r

e
(

φ−1
±n(Vr), χP |φ−1

±n(Vr)

)

=
∑

r

(−1)n−1e(φ−1
±n(Vr), φ

∗
±nχM),

with the last equality following from Theorem 4. The χB-function is
the same constant on the fibres of both fibrations φ±n.

By (2.7), over Vr, φn is a Pr−1-bundle and φ−n is a Pr−n−1-bundle.
These fibres have Euler characteristics r and r − n respectively. We
find

Pn,β =
∑

r

(−1)n−1r e(Vr, χM)
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and

P−n,β =
∑

r

(−1)n−1(r − n)e(Vr, χM).

Subtracting gives

Pn,β − P−n,β = (−1)n−1n
∑

r

e(Vr, χM)

= (−1)n−1n e(Mn(X, β), χM) = (−1)n−1nNn,β.

�

By Proposition 2.2, the generating series

(2.8) Zβ(q) =
∑

n

Pn,β q
n

is the Laurent expansion of rational function in q, completing the proof
of Theorem 1. However, a stronger statement can be made. Any
Laurent series such as (2.8) can be written as

(2.9) Zβ(q) =
∑

r

nr,βq
1−r(1 + q)2r−2,

where the sum is over all r ∈ Z and only finitely many terms with
r ≥ 0 are nonzero; see [26]. Moreover the integrality of the coefficients
Pn,β of (2.8) is equivalent to the integrality of the nr,β.

The conditions (2.3–2.5) easily imply the vanishing of nr,β for r < 0
and r > g. Therefore, by Proposition 2.2, ZP,β(q) can be written
uniquely in the BPS form

(2.10) Zβ(q) =

g
∑

r=0

nr,β q
1−r(1 + q)2r−2

for integers nr,β which vanish for r < 0 and for r greater than the
largest genus g of a holomorphic curve in the class β. Since (2.10) is
invariant under q ↔ q−1, Theorems 2 and 3 are proven.

2.2. Remarks. From formula (2.10), we find the genus 0 BPS invari-
ant n0,β equals is the DT invariant of sheaves N1,β in agreement with
the proposal of S. Katz [15]. In fact, Katz expects

n0,β = N1,β

to hold in much greater generality.

Our sheaf theoretic definition of BPS invariants (2.10) in the irre-
ducible case is the first rigorous and manifestly deformation-invariant
approach. Other papers on the subject [10, 30, 32] have defined BPS
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invariants following the original perspective of [7, 8] using (sl2 × sl2)-
actions on sophisticated cohomology theories, but have been unable to
incorporate the virtual class. These definitions are therefore unlikely
to be deformation invariant. Our definition is rather simpler, and more
in line with the viewpoint of [16].

It should be possible to extend our results to the Fano case for any
class β. After imposing the requisite number of incidence conditions to
cut the virtual dimension to 0, the Fano case behaves like the Calabi-
Yau case for irreducible β, as all other invariants vanish. However, at
present, the analogue of χB is missing in the Fano case.

2.3. Wall-crossing. Arend Bayer [1] and Yukinoba Toda [33] have
made the beautiful observation that (2.4) should be seen as a wall-
crossing formula. In fact, the wall-crossing is much simpler than the
wall-crossing conjectured in [26] to equate the invariants Pn,β to the
reduced DT invariants of [23]. For any

I• = {OX → F} ∈ Pn(X, β),

we have the obvious exact triangle

(2.11) F [−1]→ I• → OX .
Taking the derived dual gives

(2.12) OX → (I•)∨ → Ext2(F,KX)[−1],

where Ext2(F,KX) ∈ M−n(X, β) is the sheaf dual to F under the
duality (2.6).

Start with a stability condition for which the complexes I• ∈ Pn,β
and the sheaves F, OX are stable. In particular, the phase of F [−1]
should be less than that of OX due to the exact triangle (2.11). Now
pass through a codimension 1 wall in the space of stability conditions
so that the phase of F [−1] crosses that of OX . The extensions (2.11)
become unstable, while extensions in the opposite direction (2.12) be-
come stable. Therefore, on the other side of the wall, the stable ob-
jects are the derived duals of the complexes made out of stable pairs
in P−n(X, β).

Ideally, wall-crossing should be studied with Bridgeland stability
conditions. However, at present, their existence is conjectural. If in-
stead we use Bayer’s polynomial stability conditions or Toda’s limit
stability conditions, then the analysis can be made precise. These sta-
bility conditions have been constructed, and the stable objects are as
claimed above [1, 33].
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Since the pieces OX , F, Ext2(F,KX) occurring in the complexes are
also stable in these stability conditions, Joyce’s conjectural wall-crossing
formula [14] takes a very simple form. We count only complexes of
trivial determinant throughout. The invariant counting the stable ob-
jects I• ∈ Pn(X, β) on one side of the wall should differ from those
(I•)∨ ∈ P−n(X, β) on the other side by

(2.13) (−1)χ(OX ,F [−1])χ(OX , F [−1]) ·#(OX) ·#(F ),

where

χ(OX , F [−1]) =
∑

i

(−1)i dim Exti(OX , F [−1]) = −n,

and # denotes the virtual number of elements of the moduli space of
stable objects of the corresponding type. For us, (2.13) predicts

(2.14) Pn,β − P−n,β = (−1)−n(−n) · 1 ·Nn,β

in precise agreement with (2.4). Perhaps (2.14) is the first nontrivial
example of a wall-crossing formula in the derived category that can be
rigorously proved.

Toda [33] has gone further with wall crossings for arbitrary (rather
than irreducible) stable pairs. Using the work of Joyce [14], he proves
analogues of Theorems 1 and 2 for the Euler characteristics of the
moduli spaces of stable pairs. Once Behrend’s function χB and the
identities of Kontsevich-Soibelman about the value χB on extensions
[19] have been incorporated into Joyce’s work, Theorems 1 and 2 for
all classes on Calabi-Yau 3-folds should be obtained.

3. Local definition of BPS invariants

3.1. Fixed curve. Let X be a Calabi-Yau 3-fold. Throughout this
Section we fix a Cohen-Macaulay curve C ⊂ X in the irreducible class
β of arithmetic genus g = 1 − χ(OC). The curve C is reduced and
irreducible. Let

Pn(C) ⊂ Pn(X, β) and Mn(C) ⊂Mn(X, β)

denote the loci of stable pairs and pure sheaves supported on C. Define
localised invariants8 by

(3.1) Pn,C = e
(

Pn(X,C), χP |Pn(C)

)

.

In Proposition 2.2, we computed the weighted Euler characteristics of
the spaces Pn(X, β) using the map (1.2) toMn(X, β). We can instead

8These are not invariants of C alone. The dependence on the embedding C ⊂ X

comes through χ
P

.
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restrict attention to the loci Pn(C) ⊂ Pn(X, β), the inverse images
of Mn(C) ⊂ Mn(X, β). The same proof applies, since

⋃

nMn(C) is
invariant under tensoring by line bundles and under the duality (2.6).
We therefore obtain the same identities for localised invariants:

Pn,C = (−1)n−1nN1,C , g ≤ n,
Pn,C − P−n,C = (−1)n−1nN1,C , −g < n < g.

Pn,C = 0, n ≤ −g,

where N1,C = e
(

Mn(C), χM|Mn(C)

)

. Thus, the generating series

(3.2) ZC(q) =
∑

n

Pn,C qn

can be written uniquely as

(3.3) ZC(q) =

g
∑

r=0

nr,C q
1−r(1 + q)2r−2

for integers nr,C, r = 0, . . . , g.

3.2. Chow. Let Chow(X, β) denote the variety of 1-dimensional cycles
in the class β. Since β is irreducible, the cycles have no multiplicities.
In fact, Chow(X, β) parameterises Cohen-Macaulay curves in class β.

The spaces Pn(X, β) andMn(X, β) map to Chow(X, β) with fibres
Pn(C) andMn(C) respectively. We may calculate weighted Euler char-
acteristics of Pn(X, β) andMn(X, β) as weighted Euler characteristics
of Chow(X, β), with weight function the weighted Euler characteristics
of the fibres. More precisely, the integers Pn,C (3.1) define constructible
functions

Chow(X, β) → Z,

C 7→ Pn,C ,

whose weighted Euler characteristics are the integers Pn,β. Similarly,
ZC(q) (3.2) defines a Z((q))-valued constructible function on Chow(X, β)
with weighted Euler characteristic Zβ(q).

Therefore the nr,C (3.3) define constructible functions

ñr,β : Chow(X, β) → Z,

C 7→ nr,C ,

such that the BPS invariants nr,β of (2.10) are the weighted Euler
characteristics

nr,β = e(Chow(X, β), ñr,β).

We call ñr,β(C) = nr,C the contribution of C ⊂ X to nr,β.
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Since these definitions hide behind a lot of formulae, their exact
meaning is rather opaque. We would like to be able to compute the
contributions nr,C directly, without computing all of the stable pairs
invariants Pn,C . In fact, the invariants nr,β are the more fundamental
invariants, from which all others (GW, DT, stable pairs) should follow.
Naively, we expect [7, 8, 16] that within the class β, the invariant nr,β
counts curves of geometric genus r “in X”. In particular, a nonsingular
curve C ⊂ X of genus g should contribute only to ng,β, while a reduced
irreducible curve C ⊂ X of arithmetic genus g and geometric genus
h < g should contribute only to nh, nh+1, . . . , ng.

3.3. Nonsingular curves. The BPS contributions nr,C of a nonsin-
gular curve C are easy to compute. First, we need to understand the
local deformation theory of the pairs spaces Pn(X, β) about the locus
Pn(C) of pairs supported on C. The answer turns out to be very simple
with all of the χB-functions χP of these spaces being equal, up to sign,
to the same constant χM(OC). Here, as before, χM is the χ-function
of the moduli space

M1−g(X, β) ∋ OC
of sheaves of Hilbert polynomial k 7→ k

∫

β
c1(L) + (1− g).

Lemma 3.4. χP |Pn(C) = (−1)n−1χM(OC) is constant.

Proof. We follow the proof of Theorem 4. As there, in a neighbourhood
of the locus

M1−g(C) ⊂Mn(X, β)

of sheaves supported on C,M1−g(X, β) is isomorphic to all other such
moduli spaces

M1−g+i(X, β) ∋ OC(D),

where D is a divisor on C of degree i. We use the same argument as
before: extend D to a local divisor in X (using the nonsingularity of
C) and map

M1−g(X, β)
⊗O(D)

//M1−g+i(X, β),

taking OC to OC(D). Thus

χM(OC) = χM(OC(D))

and the χB-function is identically constant over the loci of sheaves
supported on C, since D is arbitrary. By Theorem 4, the χB-functions
of all of the moduli spaces P1−g+i(X, β) of pairs take the constant value
(−1)−g+iχM(OC) on restriction to P1−g+i(C). �
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The space of pairs P1−g+i(C) supported on C is the ith symmetric
product SiC of C (a proof of a more general fact is given in Proposition
B.5 below). By Lemma 3.4, the local stable pairs invariants are

P1−g+i,C = (−1)−g+iχM(OC)e(SiC).

In this case the interpretation of the formula (3.3) is clear. For any
manifold M , the generating function for the numbers (−1)ie(SiM) is

(3.5) (1 + q)−e(M) = 1− e(M)q +
e(M)(e(M) + 1)

2
q2 − . . . .

Therefore ZC(q), the contribution of C to ZP,β(q), is

(−1)gχM(OC)
(

q1−g − e(C)q2−g + e(S2C)q3−g − e(S3C)q4−g + . . .
)

= (−1)gχM(OC)q1−g(1 + q)2g−2.

Since q1−g(1 + q)2g−2 is precisely the contribution of ng,C to (3.3), we
have proved the following.

Proposition 3.6. A nonsingular curve C ⊂ X of genus g contributes

ng,C = (−1)gχM(OC)

to ng,β. And nr,C = 0 for r 6= g.

3.4. Singular curves: discussion. For smooth curves, the geometry
of the formulae (3.3) is very simple. Remarkably, the BPS formalism
makes sense in the singular case also. To start, we expand the formulae
(3.3) out and read off the nr,C inductively:

P1−g,C = ng,C ,

P2−g,C = −e(Σg) ng,C + ng−1,C ,(3.7)

P3−g,C = e(S2Σg) ng,C − e(Σg−1) ng−1,C + ng−2,C ,

and so on. Here and below we denote a smooth compact 2-manifold of
genus g by Σg.

The formulae (3.7) tell us, inductively, what C contributes to each
BPS number. The moduli space P1−g(C) consists of the single point
(OC , 1). By Theorem 4, P1−g,C = (−1)gχM(OC), so by (3.7),

ng,C = (−1)gχM(OC).

The contribution of the ng,C term to P2−g,C is then

(3.8) −(−1)ge(Σg)χM(OC).

If C is nonsingular, (3.8) is precisely the contribution of the space of
pairs P2−g(C) ∼= C supported on C, but for C singular P2−g,C is the
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more complicated weighted Euler characteristic

e(P2−g(C), χP |P2−g(C)).

We define ng−1,C to be the discrepancy between these two Euler char-
acteristics:

(3.9) ng−1,C = P2−g,C + (−1)ge(Σg)χM(OC).

For example, consider a curve C ⊂ X with 1 node for which the
moduli space of sheavesM1−g(X, β) is nonsingular in a neighbourhood
of M1−g(C). Let ± denote the sign (−1)g+dimM1−g(X,β). Then ng,C =
±1, P2−g(C) ∼= C, and so

ng−1,C = ±(−e(C) + e(Σg)) = ∓1.

We proceed inductively by viewing C as contributing ng,C nonsin-
gular curves of genus g and ng−1,C nonsingular curves of genus g − 1.
These genus g and g − 1 curves contribute

e(S2Σg)ng,C − e(Σg−1)ng−1,C

to P3−g,β, as in (3.7). The discrepancy

ng−2,C = P3−g,C − e(S2Σg)ng,C + e(Σg−1)ng−1,C

is what we define to be the number of genus g− 2 curves supported on
C ⊂ X.

These formulae quickly become unmanageable, which is why we use
the more concise generating functions (3.3), to which they are equiv-
alent. A number of miraculous cancellations of Euler characteristics
and χB-functions must occur for a singular curve of geometric genus h
to have nr,C = 0 for r < h. We will obtain these cancellations from an
interplay between Serre duality and Theorem 4.

3.5. Singular curves: results. Let Pic(C) denote the group of line
bundles of degree 0 on C. There is an action of Pic(C) on Mn(C) by
tensoring. Let

{Oi ⊂Mn(C)}i∈I
be the set of Pic(C)-orbits. The index set I need not be finite. By
convention we fix O0 to be the orbit consisting of line bundles of degree
n− 1 + g on C.

Fix a local effective divisor DC intersecting C transversely at a non-
singular point. Tensoring with multiples of O(DC) fixes local isomor-
phisms between all of the Mn(X, β) in a neighbourhood of Mn(C).
These isomorphisms preserve the orbit types Oi. Therefore, we think
of theMn(X, β) and their subloci Oi as (locally) independent of n.
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The duality (2.6) maps every orbit Oi ⊂ Mn(C) to another orbit
Oi′ ⊂M−n(C) since

Ext2(F ⊗ L,KX) ∼= L−1 ⊗ Ext2(F,KX)

for any (local) line bundle L. Hence, we obtain an involution

(3.10) i↔ i′

on the indexing set I.

Lemma 3.11. The restriction χM|Oi
of the χB-function of Mn(X, β)

is a constant χi on each orbit Oi (independent of n). Moreover χi = χi′.

Proof. Every line bundle L ∈ Pic(C) can be trivialised over the finite
singular set of C, so is linearly equivalent to a (noneffective) divisor
supported on the nonsingular locus of C. The latter can be extended
to a local divisor in X. Therefore L is the restriction of a line bundle
L defined on a neighbourhood of C ⊂ X. Then, the map

Mn(X, β)
⊗L

//Mn(X, β),

defined only locally in a neighbourhood of Mn(C), is a local isomor-
phism and so preserves χB-functions. Thus,

χM(F ) = χM(F ⊗ L)

for any F ∈Mn(C) ⊂Mn(X, β) and L ∈ Pic(C).
Since the construction commutes with the isomorphisms

Mn(C)→Mn+1(C)

given by tensoring with O(DC), χi is independent of n. Since the
duality (2.6) preserves χB-functions, χi = χi′ . �

Let Z ⊂ C be the support of the singularities of C, and let

C0 = C\Z
be the nonsingular locus. Let

µZ = (2− 2g)− e(C0)

be the Euler characteristic of the Milnor fibre of Z: the sum over the
components of Z of one minus the Milnor number of the component.
The invariant µZ depends only on the analytic germ of Z ⊂ C. Define

Qn(C,Z) ⊂ P1−g+n(C)

to be the locus of pairs whose cokernel Q (which has length n) is
supported entirely at Z.
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Define an admissible subset

(3.12) J =
⋃

n

Jn ⊂
⋃

n

Mn(C)

to be a constructible subset invariant under tensoring with line bundles
on C of any degree, and invariant under the duality (2.6). Equivalently
J is a (possibly infinite) union of orbit pairs Oi ∪ Oi′ (if i = i′ is fixed
by the duality (3.10) then this is just Oi) and their translations by line
bundles of nonzero degree.

We set Qn(C,Z)J to be the locus of points in Qn(C,Z) whose un-
derlying sheaf lies in J .

Proposition 3.13. For any admissible J , the generating function of
signed topological Euler characteristics

∞
∑

n=0

(−1)ne(Qn(C,Z)J) q
n

can be written as
g
∑

r=0

nr(J) qg−r(1 + q)2r−2g−µZ

for integers nr(J), r = 0, . . . , g.

Proof. We first use the same argument as in Proposition 2.2, applied
to the Euler characteristics of the fibres of the map φn from

Pn(C)J = φ−1
n (J)

to Jn. The fibres are empty for n ≤ −g.
The fibre P(H0(F )) over F ∈Mn(C) has Euler characteristic h0(F )

while the fibre P(H1(F )∗) over the dual

Ext2X(F,KX) ∈M−n(C)

has Euler characteristic h1(F ). If F ∈ Jn, then Ext2(F,KX) ∈ J−n.
Since the difference between these two Euler characteristics is n, we
obtain

en − e−n = (−1)n+g−1n e(J1), and en = 0, n ≤ −g,
where we have defined

en = (−1)n+g−1e(Pn(C)J)

and used Jn ∼= J1 for all n. Hence, we can write

(3.14)
∑

n

enq
n =

g
∑

r=0

nr(J) q1−r(1 + q)2r−2
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uniquely with integers nr(J), r = 0, . . . , g, with n0(J) = (−1)ge(J1).
Restricted to the nonsingular locus C0, every stable pair corresponds

to a nonzero section of a line bundle. The orbit type of the underlying
sheaf is determined by its restriction to the germ of Z ⊂ C. Therefore,
stratifying Pn(C)J by the length of that part of the cokernel Q = F/OC
of the pair supported on Z, we obtain the decomposition

(3.15) Pn(C)J =

n+g−1
∐

k=0

Qk(C,Z)J × Sn+g−1−k(C0).

Taking generating series of signed Euler characteristics gives, by (3.5),

∑

n

enq
n =

∞
∑

k=0

(−1)ke(Qk(C,Z)J) q
k+1−g (1 + q)−e(C

0).

Substituting (3.14) gives

g
∑

r=0

nr(J)q1−r(1+ q)2r−2 = q1−g(1+ q)2g−2+µZ

∞
∑

k=0

(−1)ke(Qk(C,Z)J) q
k.

Rearranging implies the result. �

The advantage of the spaces Qk(C,Z) is that they depend only on
the germ of Z ⊂ C (in the analytic topology), and not on C or the
genus g.

Lemma 3.16. Any curve with the same singularity germ as Z ⊂ C
has orbits Oi, i ∈ I and admissible subsets J in 1-1 correspondence
with those of C. Moreover, the spaces Qk(C,Z) and Qk(C,Z)J and the
duality i↔ i′ depend only on the germ of Z ⊂ C.

Proof. Stable pairs supported on C with given cokernel Q are deter-
mined by the extension

0→ OC → F → Q→ 0

whose class lies in

Ext1
C(Q,OC) = H0(Ext1C(Q,OC)).

The right side is just Ext1C(Q,OC) thought of as a C-module. Thus the
stable pair is determined by data entirely local to the support of Q.

Since the pairs Qk(C,Z) ⊂ P1−g+k(C) have cokernel supported en-
tirely at Z, they are determined by the germ of Z ⊂ C.

The sheaf F underlying a stable pair is a line bundle on C0. Hence,
the orbit type is determined by the restriction of F to the germ of
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Z ⊂ C. Similarly we claim the action of the duality (2.6) on orbits Oi

is determined locally about Z ⊂ C by

F 7→HomC(F, ωC).

Here, we consider F as an OC-module and use relative Serre duality
for the embedding ι : C →֒ X:

RHomX(ι∗F,KX) ∼= ι∗RHomC(F, ωC)[−2].

Taking h2 of both sides and using the exactness of ι∗ gives

Ext2X(ι∗F,KX) ∼= ι∗HomC(F, ωC)

as required.
Hence, the admissible subsets J are also determined by the germ of

Z ⊂ C. �

We can now compare C to a curve of minimal genus with the same
singularities. We let g = g(C) denote the arithmetic genus of C, and
g(C̄) its geometric genus – the genus of the normalisation

p : C̄ → C.

The δ-invariant of Z is the difference:

δ(Z) = g(C)− g(C̄) = length
(

(p∗OC̄)
/

OC
)

.

The δ-invariant depends only on the germ of Z ⊂ C (since (p∗OC̄)/OC
is supported at Z). It is the minimal arithmetic genus of a curve C ′

containing Z as a singularity: the arithmetic genus of a rational curve
with singularity Z. Such curves exist in Calabi-Yau 3-folds.

Lemma 3.17. Given a germ of a singularity Z ⊂ C of a space curve
C, there exists a smooth projective 3-fold X ′ containing a compact ra-
tional curve C ′ with singularities Z ′ such that the germ of Z ′ ⊂ C ′

is isomorphic to the germ of Z ⊂ C. We may also arrange that the
canonical bundle KX′ is trivial on all curves close to C ′.

Proof. Normalise C at Z,

p : C̄ → C,

and take an analytic neighbourhood of p−1(Z) consisting of a finite
union of discs. Embed these discs into P1 and reapply p to them to
give a rational curve C ′ with singularities exactly Z.

The curve C ′ can be embedded in PN and then mapped to P3 by a
generic projection. Since the Zariski tangent spaces all have dimension
≤ 3, the map C ′ → P3 will still be an embedding.

Fix a nonsingular divisor D ⊂ P3 of degree 2 which intersects C ′

transversally away from Z. Blow up D ∩ C ′ to give a 3-fold X ′ with
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exceptional divisor E. The proper transform C̄ ′ ∼= C ′ is a rational
curve in X ′.

All nearby curves are also the proper transforms C̄ ′′ of curves

C ′′ ⊂ P3

which pass through the points D ∩ C ′. For all such curves, KP3|C′′ is
isomorphic to the divisor −(2D ∩ C ′) ⊂ C ′′. Therefore,

KX′ |C̄′′
∼= KP3 |C′′ + 2E ∩ C ′′ = −2D ∩ C ′ + 2D ∩ C ′

is trivial. �

Instead of studying Qk(C,Z) through C of genus g, we can study the
same space Qk(C

′, Z ′) (by Lemma 3.16) through C ′ of minimal arith-
metic genus δ(Z). By Proposition 3.13, we obtain a stronger result:

(3.18)

∞
∑

n=0

(−1)ne(Qn(C,Z)J)q
n =

δ(Z)
∑

r=0

nr(J) qδ(Z)−r(1+ q)2r−2δ(Z)−µZ .

Theorem 5. The curve C contributes only to the BPS numbers nr for
r between the geometric and arithmetic genera of C:

nr,C = 0 for r < g(C̄) or r > g(C).

Proof. For each j ∈ Z set

J(j) =
⋃

n

J(j)n ⊂
⋃

n

Mn(C)

to be the locus where the χB-function χM restricted from Mn(X, β)
equals j. By Lemma 3.11, J(j) is invariant under tensoring with line
bundles and under the duality (2.6). Hence, J(j) is admissible (3.12):
a (possibly infinite) union of orbit pairs Oi ∪ Oi′ and their translates
by line bundles of nonzero degree.

By (3.15) we have the stratification

Pn(C)J(j) =

n+g−1
∐

k=0

Qk(C,Z)J(j) × Sn+g−1−k(C0),

where, by Lemma 3.16, the loci Qk(C,Z)J(j) depend only on the germ
of Z ⊂ C. By Theorem 4 and (3.5), Pn(C)J(j) contributes

∞
∑

k=0

(−1)k−gj e(Qk(C,Z)J(j)) q
k+1−g(1 + q)−e(C

0)
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to ZC(q). By (3.18), the above equals

(−1)gj

δ(Z)
∑

r=0

nr(J(j)) qδ(Z)−r+1−g(1 + q)2r−2δ(Z)−µZ−e(C0).

Setting s = r + g(C̄), we rewrite the contribution as

(−1)gj

g
∑

s=g(C̄)

ns−g(C̄)(J(j))q1−s(1 + q)2s−2.

Since χM takes only finitely many values, we add up over finitely
many J(j) to get

ZC(q) =

g
∑

s=g(C̄)

ns,C q
1−s(1 + q)2s−2,

where ns,C = (−1)g
∑

j jns−g(C̄)(J(j)). We have obtained the required

BPS form, with nonzero BPS numbers ns,C only for g(C̄) ≤ s ≤ g. �

3.6. Nodal curves. We illustrate the results of Section 3.5 in the case
of nodal curves, where the formulae are rather simpler.

Consider first an irreducible elliptic curve C with one node and nor-
malisation

P1 ∼= C̄
p−→ C.

The moduli space of sheavesM1(C) is just a copy of C. There are two
orbits Oi of Pic(C): O0 is the smooth part C0 of C corresponding to
degree one line bundles on C, andO1 is the nodal point Z corresponding
to the pure sheaf p∗OC̄ .

The corresponding constant χM-functions are

χ0 = χM(OC), χ1 = χM(p∗OC̄).

As we have seen,

n1,C = (−1)gχ0 = −χ0.

Already for n = 1 we have cohomology vanishing and P1(C) is a
P0-bundle over M1(C) ∼= C. Therefore,

P1,C = χ0e(C
0) + χ1e(Z) = χ1.

By (3.9),

n0,C = P1,C − 0.χ0 = χ1.

By Theorem 5, these are the only two BPS numbers: n1,C coming from
OC and n0,C coming from p∗OC̄ .
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To see the geometry involved in the formulae for the local invariants,
consider P2(C). The moduli space P2(C) is a P1-bundle overM2(C) ∼=
C. Hence,

(3.19) P2,C = −2P1,C .

Since C is Gorenstein, we have the identification

Pn(C) ∼= Hilbn(C)

by Proposition B.8 of Appendix B. Stratifying by both the number
of points supported at the node Z and by the type of the underlying
sheaf (the subscript 0 denoting a line bundle, 1 the push-down of a line
bundle from the normalisation), we expand the equality (3.19) as

−χ0e(S
2C0)−χ1e(C

0)e(Z)−χ0e(Hilb2(C,Z)0)−χ1e(Hilb2(C,Z)1)

= −2(χ0e(C
0) + χ1e(Z)).

We use Hilbi(C,Z) to denote the subset of Hilbi C supported at Z.
Since C0 ∼= C∗, e(Si(C0)) = 0 for all i, and Z is a single point. We
obtain

−χ0e(Hilb2(C,Z)0)− χ1e(Hilb2(C,Z)1) = −2χ1.

As in Section 3.5, the equation can be considered as two equations
holding independently for χ0 and χ1 by applying Serre duality over
the appropriate orbit Oi ⊂M2(C) instead of the whole moduli space.
Then, we find

(3.20) e(Hilb2(C,Z)0) = 0 and e(Hilb2(C,Z)1) = 2.

Similarly Pn(C) is a Pn−1-bundle over C, so Pn,C = (−1)n−1nP1,C . We
obtain the following generalization of (3.20):

(3.21) e(Hilbn(C,Z)0) = 0 and e(Hilbn(C,Z)1) = n ∀n ≥ 1.

These consequences of Serre duality are what ensure there are no
further BPS numbers. In such a simple case, they can be verified
directly. Since C has 2-dimensional Zariski tangent space at Z,

Hilb2(C,Z) ∼= P1,

with two distinguished points {0,∞} corresponding to the directions
of the two branches of C at Z. Then,

Hilb2(C,Z)0 = P1\{0,∞} ∼= C∗ and Hilb2(C,Z)1 = {0,∞},
implying (3.20). Similarly Hilbn(C,Z)1 is n points, corresponding to
the n different ways of distributing (n − 1) points between the two
points in C̄ = P1 that lie over Z. Finally, since Hilbn(C,Z)0 admits a
C∗-action without fixed points, we recover (3.21).
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In general, it is much harder to obtain the required results without
Serre duality and the BPS generating function formalism. Even when
the singularity has a C∗-action, localisation is of limited use as it is
hard to know on which orbit Oi a fixed point lies.

Next, we consider curves with more nodes. Fix C with arithmetic
genus g, geometric genus g − r, and r nodes. Let i = 0, . . . , 2r−1

enumerate all of the partial normalisations

pi : C̄i → C

of C including the identity p0. These also enumerate the orbits of
Pic(C) on the moduli spaces of sheavesMn(C), where Oi corresponds
to push-downs pi∗ of line bundles from Ci.

Stable pairs can also be pushed down from a partial normalisation
C̄i. Given a stable pair on C̄i,

OC̄i

s→ L,

we can push down L and s and compose with the canonical section of
pi∗OC̄i

,

OC → pi∗OC̄i

pi∗s−→ pi∗L,

to give a stable pair on C. Let gi denote the arithmetic genus of C̄i,
and let C̄0

i ⊂ C̄i be the nonsingular locus. We see

Sn−1+gi(C̄0
i ) ⊂ Pn(C)

by the push-down construction.
In fact, by (3.21) applied to both C and the C̄i, the only parts of the

stratification (by Oi orbit type) of the moduli space Pn(C) of stable
pairs that contribute to Pn,C are

(3.22) Sn−1+g(C0) ⊔
∐

i

Sn−1+gi(C̄0
i ).

The ith stratum contributes with constant χB-function (−1)n−1χi. The
Euler characteristic of the nonsingular locus C0 equals e(Σg) and

e(SjC0) = e(SjΣg).

Similarly

e(SjC̄0
i ) = e(SjΣgi

).

Therefore, (3.22) yields

Pn,C = (−1)n−1

(

χ0e(S
n−1+g(Σg)) +

∑

i

χie(S
n−1+gi(Σgi

))

)

.
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Since the ith term is the same as the contribution of ±χi genus gi
nonsingular curves in X, we see

nh,C =
∑

i : gi=h

(−1)giχi.

Proposition 3.23. nh,C = (−1)r
∑

i : gi=h
χi. �

Hence, the contributions of C to nh come from all of the partial
normalisations of C. Proposition 3.23 is closely related to an early
interpretation of the Gopakumar-Vafa invariants nh as the number of
h-dimensional tori in the moduli spaces Mn(C) of sheaves. The tori
may be viewed to be the orbits Oi, the (push-downs of) Jacobians of
the curves C̄i.

Appendix A. Reduced curve classes

The methods of Section 1 do not extend to reduced classes β since
the sheaf F underlying a stable pair (F, s) need not be stable. For
instance, F could be reducible with non-scalar automorphisms. Hence,
viewing stable pairs via the underlying sheaves decorated with a section
is no longer profitable.

However, the local approach of Section 3, viewing pairs via their cok-
ernels, works much the same as in the irreducible case. In fact, since
the singularities Z ⊂ C of any reduced curve also appear, locally ana-
lytically, in an irreducible curve, the proof of Theorem 5 goes through
almost unchanged. We require the analogue of Theorem 4 for reduced
reducible curves and check the invariance of χB under dualisation (2.6).

Theorem 6. Let (F, s) be a stable pair on X, and let L be a degree ℓ
line bundle on the support of F . Then,

χP (F, s) = (−1)ℓχP (F ⊗ L, t), χP (F, s) = χP (Ext2(F,KX), t),

whenever the sections t on the right define stable pairs.

Proof. The result can be proved for arbitrary stable pairs — the details
will appear in a future paper [28]. For the application to reduced β,
we only need the result for stable pairs with reduced support. So, we
work locally about a pair (F, s) with support given by a reduced curve
C with m irreducible components.

Just as in the proof of Theorem 4, there exists a smooth local divisor
DC which intersects each irreducible component of C transversally in
a single smooth point of C, disjoint from the zeros of s. Hence, DC

also intersects all nearby curves C ′ in m smooth points.
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Let k ≫ 0. Tensoring sheaves F with O(kDC) and multiplying
their sections s by the canonical section skDC

of O(kDC) yields a local
embedding,

(A.1) Pn(X, β) ⊃ Vn �

� φ
// Vn+mk ⊂ Pn+mk(X, β) .

Here, Vr is a sufficiently small analytic neighbourhood of the locus
Pr(C) ⊂ Pr(X, β) of stable pairs supported on C.

By making Vn+mk smaller if necessary, φ admits a left inverse

Vn Vn+mk
ψ

oo

given by forgetting the mk points close to DC . More precisely, in
a neighbourhood of DC we replace any pair with support C ′ by the
trivial pair (OC′, 1). Since these are smooth points of C ′, the map ψ is
locally a smooth fibre bundle with fibre the (mk)-th symmetric product
of an open set of a smooth curve.

By relation (1.5), φ and ψ simply multiply χB-functions by (−1)mk.
Therefore, replacing (F, s) by the image (F (kDC), si · skDC) under φ,
we may assume that F has no higher cohomology.

We first explain how to prove Theorem 6 in case L is trivial. Let
Qn(X, β) denote the moduli space of triples (F, s1, s2), where

• F is a pure sheaf with 1-dimensional support and Hilbert poly-
nomial χ(F (k)) =

∫

β
c1(O(k)) + n,

• s1, s2 ∈ H0(F ) such that OX ⊕OX
(s1,s2)

// F has finite cokernel,

modulo the obvious equivalence induced by automorphisms of F . While
the corresponding moduli functor is easily seen to be separated and
proper (and these triples have no automorphisms), the moduli space
does not seem to have been constructed by GIT in the literature,
though some very similar moduli problems have been treated in [11, 21].
Recently Schmitt [29] has constructed just such a moduli space of tor-
sion free sheaves, and his methods certainly extend to the pure sheaves
above. Further details will appear in [28].

Let U ⊂ Qn(X, β) denote the open set on which both sections si have
finite cokernel. There are two projections from U to Pn(X, β), mapping
(F, s1, s2) to (F, s1) and (F, s2). Both maps are smooth with fibre an
open set in H0(F ) of dimension n since H1(F ) = 0. By Proposition
1.5(i) of [3],

χP (F, s1) = (−1)nχQ(F, s1, s2) = χP (F, s2),

as required.
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Consider now F ⊗ L for some degree 0 line bundle L defined in a
neighbourhood of the support C of the F . Since L can be trivialised
over any finite number of points of C, we can write

L ∼= O(D1 −D2)

for effective locally defined Cartier divisors Di intersecting C transver-
sally in points disjoint from the singularities of C and the cokernel of
the sections si. Let d denote the degree of D1 (and D2) on C.

By the same working as in (A.1), the χB-functions of

(A.2) (F, s) and (F (D1 + kDC), s · sD1
· skDC

)

differ only by (−1)d+mk. Similarly for

(A.3) (F ⊗ L, t) and (F ⊗ L(D2 + kDC), t · sD2
· skDC

).

By construction,

F (D1 + kDC) = F ⊗ L(D2 + kDC).

Then, the χB-functions of (A.2) and (A.3) agree by the previous proven
case.

If F ⊗ L where the degree L is nonzero, we apply (A.1) separately
to both F and F ⊗ L and reduce to the degree 0 case.

Finally, consider Ext2(F,KX). Here, we form a moduli space of
triples (F, s1, s2), where

• F is a pure sheaf with 1-dimensional support and Hilbert poly-
nomial χ(F (k)) =

∫

β
c1(O(k)) + n,

• s1 ∈ H0(F (r)) has finite cokernel,
• s2 ∈ H0(Ext2(F,KX)(r)) has finite cokernel,

and r is a fixed integer.
The corresponding problem is separated (but not proper) and also

has a quasi-projective moduli space which has never been explicitly
written down in the literature. The moduli space maps to Pr+n(X, β)
by forgetting s2 and to Pr−n(X, β) by forgetting s1. These maps are
smooth fibrations of relative dimensions r − n and r + n respectively
for r >> 0. Hence, the χB-function of the triple (F, s1, s2) equals both

(−1)r−nχP (F (r), s1) and (−1)r+nχP (Ext2(F,KX)(r), s2).

The required result is then obtained from previous cases. �
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The proof of Theorem 5 now applies verbatim to give an expression

(A.4) ZC(q) =

g
∑

s=g(C̄)

ms,C q
1−s(1 + q)2s−2,

as before, proving Theorems 1 and 2 for reduced curve classes.
However, there is difference now. For a reducible curve,

g(C̄) = 1− e(C̄)/2

might be negative. Here, the Gopakumar-Vafa conjecture takes the
form of a sum over decompositions of C into reducible components9:

ZC(q) =
∑

P

i Ci=C

gi
∑

ri=0

∏

i

(

nri,Ci
q1−ri(1 + q)2ri−2

)

.

To properly define the BPS counts of C, we would need to show that all
of the negative genus contributions of (A.4) can be written inductively
as products of BPS counts of lower degree curves. We currently have
only partial results in this direction.

Appendix B. Stable pairs on Gorenstein curves

B.1. Gorenstein curves. The scheme theoretic support C of a sta-
ble pair (F, s) is always Cohen-Macaulay. Equivalently, the dualising
complex of C is a sheaf ωC . If ωC is a line bundle, then the curve is
Gorenstein. Plane curves are basic examples. If C can be embedded
in a nonsingular surface S, then

ωC ∼= ωS(C)|C
where ωS is the canonical line bundle of S. Hence, C is Gorenstein.

Let (F, s) ∈ P1−g+n(C) be a stable pair supported on a Gorenstein
curve C. Dualising

OC s−→ F

on C yields the map

(B.1) F ∗ −→ OC .
We will show (B.1) is the ideal sheaf of a length n subscheme Z ⊂ C.
Conversely, we associate a stable pair to each subscheme [Z] ∈ Hilbn(C)
and establish a bijection

P1−g+n(C)↔ Hilbn(C).

9The Ci have maximal arithmetic genus gi, but need not be irreducible. We do
not sum over different orderings of the Ci.
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In Appendix B.2, the corresponding isomorphism of schemes is estab-
lished for curves C in surfaces.

Lemma B.2. Let C be a Gorenstein curve, and let F be a sheaf on C
which is generically locally free. Then, F is pure if and only if

ExtiC(F,OC) = 0 ∀i > 0 .

Proof. Suppose F is pure. Since F is generically locally free, the sheaf
ExtiC(F,OC) is supported at a finite number of points. Hence, the
vanishing

(B.3) H0(ExtiC(F,OC)⊗L) = 0 ∀i > 0

for any line bundle L on C implies the Lemma.
Using the Gorenstein condition on C, let L = ωC⊗L. For L≫ 0, by

the local-to-global spectral sequence and vanishing, (B.3) is isomorphic
to

ExtiC(F ⊗ L∗, ωC) ∼= H1−i(F ⊗ L∗)∗,

using Serre duality. But L∗ ≪ 0 and F is pure, so H0(F ⊗ L−1) = 0.
Thus H1−i(F ⊗ L−1) = 0 for all i > 0.

Conversely, suppose F is generically locally free on C with vanishing
Ext1(F,OC). Consider the sequence

(B.4) 0→ K → F → E → 0

where K is the largest subsheaf of F with 0-dimensional support. The
quotient E is pure and generically locally free. We have proven above
the vanishing

Exti(E,OC) = 0 ∀i > 0 .

By (B.4), we conclude

Ext1(K,OC) = Ext1(F,OC),

which vanishes by assumption. Hence,

0 = H0(Ext1(K,OC)) = Ext1(K ⊗ ωC , ωC) = H0(K ⊗ ωC)∗

by Serre duality. Since K has 0-dimensional support, K must vanish.
Therefore, F is pure. �

Proposition B.5. A stable pair supported on a Gorenstein curve C is
equivalent to a 0-dimensional subscheme of C. Under the equivalence,
the pair

(B.6) 0→ OC s→ F → Q→ 0
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is associated to the subscheme

OC ∼= Ext0(OC ,OC)→ Ext1(Q,OC)→ 0 .

Proof. Given a stable pair (F, s) ∈ P1−g+n(C), we apply HomC( · ,OC)
to the sequence (B.6). By the purity of OC and Lemma B.2, we obtain
the exact sequence

0→ F ∗ → OC → Ext1(Q,OC)→ 0.

Hence, F ∗ is an ideal sheaf and Ext1(Q,OC) is isomorphic to the struc-
ture sheaf of a subscheme of C. The higher terms in the sequence yield
the vanishing of Ext≥2(Q,OC), so Ext1(Q,OC) has length n. We have
defined a map of sets from P1−g+n(C) to Hilbn(C).

Given a subscheme [Z] ∈ Hilbn(C), the dual of the exact sequence

0→ IZ → OC → OZ → 0

starts as

(B.7) 0→ OC → I
∗
Z → Ext1(OZ ,OC)→ 0.

By Lemma B.2, the higher terms in the sequence yield the vanishing of
Ext≥2(OZ ,OC), so Ext1(OZ ,OC) has length n and I ∗

Z has holomorphic
Euler characteristic 1− g + n.

Since Ext≥1(IZ ,OC) vanishes by Lemma B.2, I ∗
Z = RHom(IZ ,OC).

By applying RHom( · ,OC) again, we obtain

RHom(I ∗
Z ,OC) = IZ .

Therefore, Ext≥1(I ∗
Z ,OC) vanishes and I ∗

Z is pure by Lemma B.2. We
conclude

OC → I
∗
Z

determines a stable pair in P1−g+n(C). We have defined a map of sets
from Hilbn(C) to P1−g+n(C).

As the two constructions are easily seen to be inverse to each other,
a bijection is established. �

Simple examples where the quotient Q of (B.6) fails to be a structure
sheaf can be found on nodal curves. However, Ext1(Q,OC) is always a
structure sheaf. For the equivalence of Proposition B.5, the duals are
necessary.

The equivalence of Proposition B.5 is continuous. For Gorenstein
curves, the moduli of pairs P1−g+n(C) is homeomorphic as a topological
space to the Hilbert scheme Hilbn(C). If C is also reduced, we can apply
the result of Proposition 3.13, and the method of Theorem 5, replacing
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the χB-function by (−1)dim. The result is that the generating function
of Euler characteristics

∞
∑

i=0

e(Hilbi(C))qi

can be written in the form
g
∑

r=g(C̄)

nr,C q
g−r(1− q)2r−2

for integers nr,C , where r runs from the geometric genus g(C̄) to the
arithmetic genus g = g(C) of C.

B.2. Surfaces. Let S be a nonsingular projective surface, and let
β ∈ H2(S,Z). Let M denote the moduli space of pure dimension 1
subschemes of S in class β. Since the holomorphic Euler characteristic
of such subschemes is determined by adjunction,M is a Hilbert scheme
of curves. Let

C ⊂ S ×M
denote the universal curve.

By Proposition B.5, P1−g+n(S, β) is in bijective correspondence with
the relative Hilbert scheme Hilbn(C/M), where

2g − 2 =

∫

S

KS · β + β2 .

We now show the correspondence is an isomorphism of schemes.

Proposition B.8. The moduli space of pairs P1−g+n(S, β) is isomor-
phic to the relative Hilbert scheme Hilbn(C/M).

Proof. Let P denote the space of pairs P1−g+n(S, β), and let (F, s)
denote the universal stable pair on S ×P . The kernel of the canonical
map

OS×P s−→ F

is the ideal sheaf of a relative curve D flat over P . By the universal
property ofM, we obtain a map

f : P →M
such that D = (1S × f)∗C is the pull-back of the universal curve.

We have the canonical exact sequence

0→ OD
s−→ F→ Q→ 0,
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with the universal quotient Q also flat over P . Applying HomD( · ,OD)
yields

(B.9) 0→ F∗ → OD → Ext1(Q,OD)→ Ext1(F,OD).

The last term vanishes by flatness, base change, and Lemma B.2. Sim-
ilarly Ext≥2(F,OD) = 0, which implies Ext≥2(Q,OD) = 0. Therefore
Ext1(Q,OD) is flat over P with relative length n.

By the universal property of Hilbn(C/M), the quotient sequence
(B.9) defines a map from P to Hilbn(C/M) through which f factors.
The inverse map is similarly a relative version of the map in the proof
of Proposition B.5. �

Appendix C. K3 surfaces

C.1. Nonsingularity. Interesting irreducible classes on Calabi-Yau 3-
folds can be found on K3 fibrations. Let

π : X →△
be a fibration of a Calabi-Yau 3-fold over a nonsingular curve satisfying
the following properties:

(i) the fibres of π are K3 surfaces,
(ii) S = π−1(0) carries a irreducible (1,1)-class β ∈ H2(S,Z),
(iii) π is transverse to the Noether-Lefschetz locus associated to β.

For the above geometry, we do not require X to be compact.
Condition (iii) is equivalent to requiring the Kodaira-Spencer class

κ ∈ H1(S, TS) ∼= H1,1(S)

to evaluate to something nonzero on β. By (iii), a curve on S in class
β does not deform, even to first order, away from S. Therefore,

(C.1) Pn(S, β)→ Pn(X, ι∗β)

is a bijective correspondence with a component of the moduli space of
pairs, where

ι : S → X.

We will show (C.1) is a local isomorphism of schemes in Lemma C.7
below.

The moduli space Pn(S, β) is empty if n < 1− g, where

2g − 2 =

∫

S

β2

as before.

Proposition C.2. For β irreducible, the moduli space Pn(S, β) is non-
singular of dimension n+ 2g − 1.
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Proof. We briefly recall the deformation theory of pairs on surfaces
[9, 20, 21]. The deformations of the pair OS → F are governed by
Hom(I•, F ) and the obstruction theory by Ext1(I•, F ). The maps

(C.3) Ext1(I•, F )→ Ext2(F, F )
tr−→ H2(OS)

take the obstructions to deforming OS → F first to the obstructions
to deforming the sheaf F and then to the obstruction to deforming
the determinant OS(C) of the sheaf F , where C is the support of F .
By [25], the latter obstruction vanishes. Hence, the obstructions to
deforming F can be taken to lie in the trace-free group Ext2(F, F )0,
and the obstructions to deforming the pair OS → F lie in the kernel of
the map

Ext1(I•, F )→ H2(OS)
obtained from (C.3). If the kernel is 0, then by the analysis in [9, 20, 21],
the moduli space is nonsingular.

The deformation and obstruction spaces sit inside the exact sequence

(C.4) 0→ Hom(F, F )→ H0(F )→ Hom(I•, F )→ Ext1(F, F )→
H1(F )→ Ext1(I•, F )→ Ext2(F, F )→ 0,

induced by the triangle I• → OS → F . We claim that the first arrow
on the second line is zero, or equivalently, that

Ext1(F, F )→ H1(F )

is onto. It is enough to show the composition

(C.5) H1(OC)
id−→ H1(Hom(F, F )) ⊆ Ext1(F, F )→ H1(F )

is onto. But (C.5) is multiplication by the section s, sitting in the exact
sequence

H1(OC)
s→ H1(F )→ H1(Q).

Since the support of Q is 0-dimensional, H1(Q) vanishes.
The support C of F is reduced and irreducible since C is Cohen-

Macaulay and β is irreducible. Since the rank of F on C is 1, F is
simple. Therefore the identity map

H0(OS) id−→ Hom(F, F )

is an isomorphism. By Serre duality and KS
∼= OS , the trace map

Ext2(F, F )
tr−→ H2(OS)

is also an isomorphism.
So (C.4) has become the sequences

0→ H0(F )
/

〈s〉 → Hom(I•, F )→ Ext1(F, F )→ H1(F )→ 0
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and

(C.6) Ext1(I•, F )
∼−→ Ext2(F, F ) ∼= H2(OS) = C.

Therefore, the obstruction space

ker
(

Ext1(I•, F )→ H2(OS)
)

vanishes, and the moduli space is nonsingular.
The dimension can be easily computed. The space of curves of class

β has dimension g. For a nonsingular curve C, the dimension of the
space of pairs Pn(C) is n+ g − 1. Hence, the dimension of Pn(S, β) is
n+ 2g − 1. �

Proposition C.2 was first proven by Kawai-Yoshioka in [17], where
the space of stable pairs on a surface is interpreted as a moduli space
of D2-D0 branes. We include the above argument for completeness
here. With hindsight, one can see many of the techniques we use in
3-dimensions in the 2-dimensional analysis of [17].

Lemma C.7. For β irreducible, Pn(S, β) ⊂ Pn(X, ι∗β) is isomorphic
to a component of the moduli space of pairs.

Proof. Let I•

X = {OX → ι∗F} and I•

S = {OS → F}. There is a
canonical exact triangle

F (−S)→ Lι∗(I•

X)→ I•

S

on S. Applying HomS( · , F ) gives

0→ HomS(I
•

S, F )→ HomX(I•

X , ι∗F )→ HomS(F, F (S))

→ Ext1
S(I

•

S, F )→ Ext1
X(I•

X , ι∗F )→ . . . .

From the simplicity of F , we see

HomS(F, F (S)) ∼= H0(OS(S)).

Using the identification (C.6), we can rewrite the above long exact
sequence as

0→ HomS(I
•

S, F )→ HomX(I•

X , ι∗F )→ H0(OS(S))→ H2(OS)→ . . .

The map from H0(OS(S)) ∼= T0△ to H2(OS) ∼= C takes a normal
direction to the fibre S ⊂ X to the obstruction to deforming the de-
terminant of I• sideways. The determinant is OS(−C), where C is the
support of F , and the obstruction to deforming sideways is 〈κ, β〉 6= 0.
Therefore

HomS(I
•

S, F ) ∼= HomX(I•

X , ι∗F ).

All the deformations of the pair (ι∗F, ι∗s) are the push-forwards of
deformations of the pair (F, s). By Proposition C.2, the moduli space
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of the latter is nonsingular. Hence, the moduli space of the former is
also nonsingular and the push-forward map is a local isomorphism. �

C.2. BPS states. Let Pn(S, h) denote the moduli space for an irre-
ducible class β satisfying

(C.8) 2h− 2 =

∫

S

β2.

Let ΩP be the cotangent bundle of the moduli space Pn(S, h). The self-
dual obstruction theory on Pn(S, h) induced from the inclusion (C.1)
has obstruction bundle ΩP . Hence, the contribution of Pn(S, h) to the
stable pairs invariants of X is

ZS
h (y) =

∑

n

(−1)n+2h−1e(Pn(S, h)) y
n.

Fortunately, the topological Euler characteristics of Pn(S, h) have
been calculated by Kawai-Yoshioka. By Theorem 5.80 of [17],

∞
∑

h=0

∞
∑

n=1−h

e(Pn(S, h)) y
nqh =

(√
y − 1√

y

)−2 ∞
∏

n=1

1

(1− qn)20(1− yqn)2(1− y−1qn)2
.

For our pairs invariants, we require the signed Euler characteristics,

∞
∑

h=0

ZS
h (y) qh =

∞
∑

h=0

∞
∑

n=1−h

(−1)n+2h−1e(Pn(S, h)) y
nqh.

Therefore,
∑∞

h=0Z
S
h (y) qh is

−
(√−y − 1√−y

)−2 ∞
∏

n=1

1

(1− qn)20(1 + yqn)2(1 + y−1qn)2
.

Let rg,h be the BPS invariant in genus g and class β satisfying (C.8).
By the definition of the BPS invariants for the theory of stable pairs
(2.9),

∞
∑

h=0

ZS
h (y) qh =

∞
∑

g=0

∞
∑

h=0

(−1)g−1rg,h

(√−y − 1√−y

)2g−2

qh.

Putting all the formulae together yields the following result.
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Proposition C.9. We have

∞
∑

g=0

∞
∑

h=0

(−1)grg,h

(√
z − 1√

z

)2g

qh =

∞
∏

n=1

1

(1− qn)20(1− zqn)2(1− z−1qn)2
.

Proposition C.9 is exactly the Katz-Klemm-Vafa [16] prediction for
BPS state counts for irreducible classes on a K3 surface. Our proof
is really just an interpretation of the calculation of Kawai-Yoshioka in
the theory of stable pairs.

If β ∈ H2(S,Z) is primitive, then the geometry can be deformed
to make β irreducible, and Proposition C.9 still applies. If β is not
primitive, the Katz-Klemm-Vafa formula prediction is not yet proven.
On the Gromov-Witten side, the Katz-Klemm-Vafa formula is open
even in the primitive case. See [24] for a discussion.

C.3. Yau-Zaslow. We can specialize the Katz-Klemm-Vafa formula
of Proposition C.9 to genus 0 by letting z → 1,

(C.10)
∞
∑

h=0

r0,hq
h =

∞
∏

n=1

(1− qn)−24 .

Consider the linear system of curves on S of irreducible class β sat-
isfying

2h− 2 =

∫

S

β2.

By Theorem 5, only curves of geometric genus 0 contribute to the BPS
count r0,h. By the main result of [6], the only genus 0 curves on a
generic K3 (with algebraic class β) are nodal. By Proposition 3.23, a
nodal rational curve C contributes

(−1)0
∑

i : gi=0

χi = (−1)0(−1)n−1χBPn(C) = (−1)n−1(−1)n+2g−1 = 1

to r0,h.
We conclude the strong enumerative form of the Yau-Zaslow formula:

r0,h exactly counts rational curves on a generic K3 surface with β
algebraic.
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