
DISK ENUMERATION ON THE QUINTIC 3-FOLD

R. PANDHARIPANDE, J. SOLOMON, AND J. WALCHER

Abstract. Holomorphic disk invariants with boundary in the real
Lagrangian of a quintic 3-fold are calculated by localization and
proven mirror transforms. A careful discussion of the underlying
virtual intersection theory is included. The generating function for
the disk invariants is shown to satisfy an extension of the Picard-
Fuchs differential equations associated to the mirror quintic. The
Ooguri-Vafa multiple cover formula is used to define virtually enu-
merative disk invariants. The results may also be viewed as pro-
viding a virtual enumeration of real rational curves on the quintic.
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0. Introduction

0.1. Complex curve enumeration. Let Q ⊂ CP4 be a nonsingular
quintic hypersurface. The virtual count nd of rational algebraic curves
of degree d > 0 on Q admits a computation via Gromov-Witten theory
and mirror symmetry.

Let Nd denote the genus 0 Gromov-Witten invariant of Q in degree
d. The count nd is defined by the Aspinwall-Morrison formula [1],

∑

d>0

Nde
dT =

∑

d>0

∑

k>0

ndk
−3ekdT .

The connection between nd and actual curve counting on Q is discussed
in [16].

The mirror symmetry prediction of Candelas, de la Ossa, Green, and
Parkes [2] relates the genus 0 potential

F(T ) =
5

6
T 3 +

∑

d>0

Nde
dT
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to hypergeometric series. Let Ii(t) be defined by

(1)
3∑

i=0

IiH
i =

∞∑

d=0

e(H+d)t Π
5d
r=1(5H + r)

Πd
r=1(H + r)5

mod H4.

The functions Ii(t) are a basis of solutions of the Picard-Fuchs differ-
ential equation

(2)
( d
dt

)4

I − 5et
(
5
d

dt
+ 1

)(
5
d

dt
+ 2

)(
5
d

dt
+ 3

)(
5
d

dt
+ 4

)
I = 0.

Let the variables T and t be related by T (t) = I1/I0 (t). The prediction,

F(T (t)) =
5

2

(I1
I0

(t)
I2
I0

(t) −
I3
I0

(t)
)
,

was later proven via localization on the space of genus 0 stable maps
to CP4 [5, 11, 13].

0.2. Disk enumeration. Let Q ⊂ CP4 be a nonsingular quintic hy-
persurface defined over R. Let ω be the symplectic form on Q obtained
from the Fubini-Study metric. Complex conjugation determines an
anti-holomorphic involution on Q with fixed locus equal to the set of
real points QR. The inclusion

QR ⊂ Q

is Lagrangian with respect to ω.
The enumeration of disks with boundaries in Lagrangian subman-

ifolds plays a basic role in open string theory and has been studied
mathematically in several contexts. The subject is not a direct ex-
tension of the theory of stable maps. New issues such as orientation
play a crucial role. We provide here a complete calculation of the disk
invariants of Q with boundary in the real Lagrangian QR.

An early treatment of disk enumeration occurs in the construction
of the Fukaya category [3]. Disk enumeration is required to define the
differentials of the Floer complex. However, a symplectic invariant via
disk enumeration is not defined in [3]. Only the cohomology of the
Floer complex is invariant.

Symplectic disk invariants have been defined with respect to the real
Lagrangian associated to an anti-holomorphic involution in [19]. A
previous definition in the presence of a torus action preserving the real
Lagrangian (not directly applicable to Q) can be found in [10, 14]. We
will follow here the definitions of [19].

Let Ndisk
d for d odd denote the degree d disk invariant of Q with

boundary in QR. For a discussion of even degree, see Sections 0.4 and
1.5. In fact, Ndisk

d depends on a choice of a Spin structure on QR.
3



However, changing the Spin structure only effects the sign of Ndisk
d

uniformly for all d. Our conventions are fixed by choosing Ndisk
1 to be

positive. Let Fdisk denote the disk potential,

Fdisk(T ) =
∑

d odd

Ndisk
d edT/2.

Our main result is a calculation of Fdisk. Define

J(t) = 2
∑

d odd

edt/2 (5d)!!

(d!!)5
.

The function J(t) is a solution of the Picard-Fuchs equation (2) with
an added inhomogenous term,

( d
dt

)4

J − 5et
(
5
d

dt
+ 1

)(
5
d

dt
+ 2

)(
5
d

dt
+ 3

)(
5
d

dt
+ 4

)
J =

15

8
et/2.

Alternatively, J(t) may be obtained by evaluation at H = 1/2 of
the (non-truncated) hypergeometric solution (1) of the homogeneous
Picard-Fuchs equation,

J(t) = 30

[
∞∑

d=0

e(H+d)t Π
5d
r=1(5H + r)

Πd
r=1(H + r)5

]

H= 1

2

.

Theorem 1. Via the mirror map T (t) = I1/I0(t),

Fdisk(T (t)) =
J(t)

I0(t)
.

The disk invariants Ndisk
d are typically fractional. Following the

strategy of curve enumeration, virtual disk counts ndisk
d are defined

by the Ooguri-Vafa formula.

Definition 2. We define the counts ndisk
d by

∑

d odd

Ndisk
d edT/2 =

∑

d odd

∑

k odd

ndisk
d/k k

−2ekdT/2.

Definition 2 is justified by the multiple cover calculation of Proposi-
tion 19 in Section 6. The contribution of k-fold covers of a disk in
the appropriate local Calabi-Yau geometry is k−2. We conjecture the
invariants ndisk

d to be integers.

0.3. Real curve enumeration. Each holomorphic disk with bound-
ary in QR can be reflected by the Schwartz principle to yield a real

4



rational curve in Q. Conversely, real curves mapping to Q of odd de-
gree may be halved to yield two disks [19]. The virtual number of real
rational curves of odd degree in Q may be defined by

nreal
d =

1

2
ndisk

d .

Again, nreal
d vanishes for d even. A table of values can be found at the

end of the paper.

0.4. Mirror Symmetry. Let L be a U(1) bundle with flat connection
A0 over the Lagrangian submanifold QR ⊂ Q. The triple

O = (QR,L, A0)

determines an object of the Fukaya category of Q. Homological mirror
symmetry [12] predicts the existence of a corresponding object O∨ of
the derived category of coherent sheaves on the mirror quintic Q∨.
The holomorphic Chern-Simons functional of O∨ is predicted to be
mirror to the standard Chern-Simons functional of O with corrections
from disk instantons [25]. In the following, we briefly explain how
the mirror correspondence between functionals leads to an enumerative
correspondence.

Assume for simplicity that O∨ is a holomorphic vector bundle. De-
note the underlying complex vector bundle by V , and let AO∨ be the
connection on V defining the holomorphic structure of O∨. Let t denote
the complex moduli parameter of Q∨, and let Ωt denote the holomor-
phic 3-form determined by t. The holomorphic Chern-Simons func-
tional of V depends on a second complex connection on V, which we
denote A. We view A as a connection 1-form relative to AO∨ . Define
the holomorphic Chern-Simons functional by

L∨(A, t) =

∫

Q∨

Tr

(
A ∧ ∂̄A

O∨
A+

2

3
A ∧ A ∧ A

)
∧ Ωt.

Critical points of L∨ are holomorphic connections — complex connec-
tions with vanishing (0, 2) component of their curvature. L∨ is constant
on connected components of orbits of the complex gauge group of V.

For the Chern-Simons functional with instanton corrections, we will
require the following terminology for holonomy. If

E → B

is a bundle with connection θ, and P is a parametrized path in B, we
denote the holonomy of θ around P by Hol(P, θ). If B ⊂ Q and

f : (D2, ∂D2) → (Q,B),
5



we write

Pf = {f |∂D2 : ∂D2 → B}.

Moreover, if f is holomorphic, we define ηf to be the sign of f coming
from the determinant line of the Cauchy-Riemann operator.

In defining the Chern-Simons functional with instanton corrections,
we will not try to be entirely precise, but rather give an intuitive
picture. Let M ⊂ Q be a totally real submanifold isotopic to QR,
and let C4 be the cobordism traced out by the isotopy. In particular,
∂C4 = M −QR. Let

LM →M

be a U(1) bundle, and let AM be a connection on LM . Since M is natu-
rally identified with QR, even though LM may be a different topological
bundle then L, we may consider A0 as a perhaps singular connection
on LM . Hence, we may think of AM as a connection 1-form relative to
A0. Moreover, let us choose an embedded disk

(C2, ∂C2) ⊂ (Q,M),

such that ∂C2, represents the Poincare duals of the difference of first
Chern classes c1(L)− c1(LM). Choose an extension ÃM of the connec-
tion 1-form AM to the disk C2. Let T denote the complexified Kahler
moduli parameter of Q and let ωT denote the associated complexified
Kahler form. Define the Chern-Simons function with instanton correc-
tions by

L(M,AM , T ) =

∫

M

AM ∧ (dAM − ωT ) +

∫

C2

(ωT + dÃM) +

∫

C4

ω2
T

+
∑

f :(D2,∂D2)→(Q,M)
∂̄f=0

ηfHol(Pf , AM) exp

(
−

∫

D2

f ∗ωT

)

−
∑

f :(D2,∂D2)→(Q,QR)
∂̄f=0

ηfHol(Pf , A0) exp

(
−

∫

D2

f ∗ωT

)

+
∑

f :S2→Q
∂̄f=0, z∈f−1(C4)

ηf exp

(
−

∫

S2

f ∗ωT

)
(3)

A Lagrangian submanifold M with vanishing obstruction chains in the
sense of [3] and a flat connection AM together constitute a critical
point of L. L is constant on orbits of the Hamiltonian symplectomor-
phism group. The corrections from closed instantons intersecting C4
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are necessary to compensate for codimension one bubbling where all
the energy of a disk instanton is transferred to a sphere bubble [18].
L and L∨ are Lagrangians defining a pair of dual quantum field the-

ories [25]. Their critical values are physically significant and should
be topological invariants. Via the mirror transformation, which ex-
presses T as a function of t, the value of L at a critical point should
be calculable from the value of L∨ at a mirror critical point. However,
we must find non-trivial choices of critical points A and (M,LM , AM)
corresponding under mirror symmetry for all values of T = T (t).

In our case, such (M,LM , AM) can be found using the geometry of
the anti-holomorphic involution. We choose

M = QR.

Since H1(QR) = Z/2,, we can choose (LM , AM) to be the flat U(1)
bundle with monodromy opposite to (L, A0). Since QR is the fixed
point set of an anti-holomorphic involution, QR is a critical point of
L with either flat bundle. The mirror to such a choice of (LM , AM)
should be a unique up to gauge transformation holomorphic connection
A on V not gauge equivalent to AO∨ . In [21], a heuristic argument is
given to show L∨(A, t) is in fact given by J(t). Even after specifying
which holomorphic structure A induces, L∨(A, t) is only defined up to
a period of Ωt. Indeed, changing the choice of A by a complex gauge
transformation not isotopic to the identity changes L∨(A, t) by a period
of Ωt. Therefore, L∨(A, t) should satisfy an extension of the Picard-
Fuchs equation for Q∨. Similarly, changing the choice of C4 in the
definition of L changes L by a multiple of the first derivative of F(T ),
which corresponds to a period under the mirror transform. Changing
the choice of C2 changes L by a multiple of T, and changing AM by a
large gauge transformation changes L by a multiple of 1, both of which
correspond to periods under the mirror transform.

From the preceding discussion, we see both L and L∨ are essentially
relative functionals, depending either on a pair of connections A, AO∨,
or a pair of totally real submanifolds with U(1) bundle, (M,LM) and
(QR,L). Therefore only disks of odd degree, for which the difference
in monodromy of AM and A0 cancels the negative sign in definition
(3), contribute to the physically significant critical value of L∨. The
contributions of even degree disks cancel due to this sign. A priori,
some other physical value may depend on the even degree disks. How-
ever, on mathematical grounds, even degree disks appear not to lead
to interesting invariants, see Section 1.5.
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0.5. Past and future work. The first number ndisk
1 was calculated

in [19]. Theorem 1 was predicted in [21] via low degree graphs sums
and string heuristics. Our technique of proof uses the fully equivari-
ant mirror correspondence of Givental [5]. A previous application can
be found in [7] where disk enumeration for (noncompact) local geome-
tries was considered. The Ooguri-Vafa [15] multiple cover formula of
Definition 2 is by now established in many settings, see [10, 14].

We have chosen the quintic 3-fold as a first case of study, but the
methods of the paper are applicable much more generally. It will be
interesting to see which aspects of the solution persist.

0.6. Acknowledgements. We thank P. Biran, T. Graber, D. Kazh-
dan, N. Nekrasov, L. Polterovich, P. Seidel, E. Shustin, G. Tian, R.
Vakil, E. Zaslow, and A. Zinger for related conversations.

J. S. would like to thank E. Farjoun and the Hebrew University
of Jerusalem for their warm hospitality during the preparation of the
paper. R. P. was partially supported by a Packard foundation fellow-
ship and NSF grant DMS-0500187. J. S. was partially supported by
NSF grant DMS-0111298. J. W. was partially supported by NSF grant
PHY-0503584.

1. Disk invariants

1.1. Overview. We recall the definition of the disk invariant Ndisk
d of

the quintic from [19]. Our conventions for conjugation, real structures,
and stable disk maps are discussed in Sections 1.3. The Euler class
approach to Ndisk

d is presented in Section 1.4.

1.2. Definitions. Fix a symplectic manifold (X,ω) of real dimension
less than or equal to 6 with an anti-symplectic involution φ,

φ∗ω = −ω.

The fixed points L = Fix(φ) define a Lagrangian submanifold of X.
A Pin structure and, if L is orientable, an orientation on L induce a
natural relative orientation on the moduli space MD(X/L, β) of stable
disk maps to (X,L) of degree β. Since MD(X/L, β) is an orbifold
with corners, the definition of cohomology classes on the moduli space
yielding an analog of Gromov-Witten theory is not immediately clear.
However, using φ, certain corners of MD(X/L, β) may be eliminated.

More precisely, the boundary of MD(X/L, β) consists generically of
stable disk maps with two disk components. Replacing one of the two
components by the image under φ yields another two component map.
We define an equivalence relation ∼ on the boundary of MD(X/L, β)
based on this correspondence. For certain components of the boundary,
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the relation ∼ preserves orientation. After quotienting by ∼ on these

components, we obtain a new moduli space M̃D(X/L, β) with fewer

corners which is still relatively orientable. On M̃D(X/L, β), many in-
teresting cohomology classes can be defined. Consequently, a set of
invariants are obtained of the triple (X,ω, φ) reminiscent of standard
Gromov-Witten invariants in many respects.

In good situations, the invariants obtained from M̃D(X/L, d) are
actually enumerative. For example, Welschinger’s signed counts of real
curves [22, 23] arise as specializations of the theory [19].

1.3. Conventions.

1.3.1. Coordinates. Let z0, . . . , z4 be homogeneous coordinates on CP4.
The standard complex conjugation cId on CP4 is

[z0, z1, z2, z3, z4]
cId7→ [z0, z1, z2, z3, z4].

Each g ∈ PGL5 yields an anti-holomorphic involution

cg = g−1 ◦ cId ◦ g : CP4 → CP4

equivalent to cId. In particular, the anti-holomorphic involution c,

(4) [z0, z1, z2, z3, z4]
c
7→ [z0, z2, z1, z4, z3],

is associated to the matrix


1 0 0 0 0
0 1 1 0 0
0 i −i 0 0
0 0 0 1 1
0 0 0 i −i




.

Let CP4
R
⊂ CP4 denote the fixed points of c. The involution c will be

most convenient for our calculation of disk invariants.

1.3.2. Real geometry. A homogeneous polynomial F (z0, z1, z2, z3, z4) on
CP4 is defined over R if

F (z) = F (c(z)).

For example,

(5) z1 + z2 and iz1 − iz2

are both real linear polynomials.
A subvariety of V ⊂ CP4 is defined over R if the ideal I(V ) is

generated by real homogeneous functions. The lines

L = { [0, z1, z2, 0, 0] | z1, z2 ∈ C },

L′ = { [0, 0, 0, z3, z4] | z3, z4 ∈ C }
9



are both defined over R.
The involution c lifts canonically to the line bundles

OCP4(k) → CP4.

The linear polynomials (5) are elements of

H0(CP4,OCP4(1))R ⊂ H0(CP4,OCP4(1))C,

the space of real sections.

1.3.3. Maps. Let u, v be homogeneous coordinates on CP1. Let

c : CP1 → CP1

be the anti-holomorphic involution defined by

[u, v]
c
7→ [v, u].

The c-fixed points, CP1
R
⊂ CP1 form a circle.

A holomorphic disk map

f : (D, ∂D) → (CP4,CP4
R)

can be reflected by the Schwartz principle to yield an algebraic map

f̃ : CP1 → CP4.

By definition, the degree d of the disk map equals the degree of f̃ .
The map f̃ satisfies the following real condition

(6) f̃ ◦ c = c ◦ f̃ .

Conversely, every algebraic map

f̃ : CP1 → CP4

satisfying (6) yields two disk maps with boundary ∂D equal to CP1
R
.

The image of f̃ is a real subcurve of CP4.
Similarly, a stable holomorphic disk map f reflects to a stable genus

0 map f̃ satisfying the real condition (6) with respect to the natural
extension of c to degenerations of CP1. In fact, stability for f can be
defined by stability for f̃ . We will use the notation

f : (D, ∂D) → (CP4,CP4
R)

also for the stable case where D and ∂D are possibly reducible. How-
ever, ∂D is always connected.

In the odd degree case, every stable genus 0 map to CP4 defined over
R is obtained by reflection.
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1.3.4. Moduli. Let MD(CP4/CP4
R
, d) denote the moduli space of un-

pointed disk maps of odd degree d. Reflection yields an étale double
cover of smooth orbifolds

ǫ : MD(CP4/CP4
R, d) →MR(CP4, d)

where MR(CP4, d) denotes the moduli space of unpointed genus 0 alge-
braic maps defined over R. The real dimension of MR(CP4, d) is 5d+1.
In fact, ǫ is an orientation double cover [19].

LetMD(CP4/CP4
R
, d) denote the compactification of the moduli space

MD(CP4/CP4
R
, d) by stable disk maps, and let MR(CP4, d) denote the

space of unpointed genus 0 algebraic stable maps defined over R. The
moduli space MD(CP4/CP4

R
, d) is a smooth orbifold with corners. In

fact, ǫ extends to finite smooth map

ǭ : MD(CP4/CP4
R
, d) → MR(CP4, d),

mapping the corners of MD(CP4/CP4
R
, d) to the boundary divisor of

MR(CP4, d). The cardinality of the fiber over a real stable map with
no components fixed by c is 2no .

In Section 1.1, the construction of the closed orbifold

M̃D(CP4/CP4
R
, d) = MD(CP4/CP4

R
, d)/ ∼

was outlined. A detailed argument is given in Section 5 in the proof
of Proposition 11. The equivalence relation ∼ identifies the corners of
MD(CP4/CP4

R
, d) in such a way that the map ǭ descends to an étale

double cover

ǫ̃ : M̃D(CP4/CP4
R, d) →MR(CP4, d).

There is a natural inclusion

MR(CP4, d) ⊂MC(CP4, d)

in the space of unpointed stable genus 0 algebraic maps defined over
C. The real dimension of MR(CP4, d) is 5d+ 1.

1.4. Euler class formula. Let Q ⊂ CP4 be a nonsingular quintic
hypersurface defined over R with symplectic form obtained from the
Fubini-Study metric. An anti-symplectic involution

φ : Q→ Q

is defined by complex conjugation. The Lagrangian Fix(φ) is the real
locus QR.

We consider maps from the holomorphic disk D to Q of odd degree
with boundary lying in QR,

MD(Q/QR, d) ⊂ MD(CP4/CP4
R, d).
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Since the expected dimension of the moduli space of maps to Q/QR

is 0, the relevant Gromov-Witten invariant Ndisk
d is simply the virtual

cardinality.
In order to calculate Ndisk

d , following [19], we first reformulate Ndisk
d

as the integral of an Euler class of an obstruction bundle over the

moduli space M̃D(CP4/CP4
R
, d). Such integrals may be studied via fixed

point localization. A similar approach was used by Kontsevich [11] in
the closed case.

Let F̂d be the real vector bundle over MD(CP4/CP4
R
, d) with fiber

F̂d|[f :(D,∂D)→(CP4,CP4

R
)] = H0(C, f̃ ∗OCP4(5))R

where
[f̃ : C → CP4] ∈MR(CP4, d)

is the stable rational map obtained from the stable disk map via reflec-
tion, and H0(C, f̃ ∗OCP4(5))R denotes real sections.

The vector bundle F̂d is of real rank 5d + 1 and is oriented on
MD(CP4/CP4

R
, d) by Lemma 8.7 of [19]. The integral of the Euler

class e(F̂d) over MD(CP4/CP4
R
, d) is not well defined because the space

MD(CP4/CP4
R
, d) has non-empty boundary, and F̂d is not trivial near

the boundary. However, F̂d naturally descends to a vector bundle

Fd → M̃D(CP4/CP4
R
, d).

Neither Fd nor M̃D(CP4/CP4
R
, d) are orientable. Let L denote the local

system defined by the determinant of the tangent bundle of the moduli

space M̃D(CP4/CP4
R
, d). In Lemma 13 of Section 5, we prove

detFd ≃ L

as topological bundles. A Spin structure on QR determines the choice
of the isomorphism uniquely up to scaling by a positive constant.
Hence, the Euler class

e(Fd) ∈ H5d+1(M̃D(CP4/CP4
R
, d),L)

is well-defined. Since M̃D(CP4/CP4
R
, d) is a closed orbifold, the integral

∫

fMD(CP4/CP4

R
,d)

e(Fd)

is well-defined. In Section 5, we obtain the following result.

Theorem 3. For d odd,

Ndisk
d =

∫

fMD(CP4/CP4

R
,d)

e(Fd).
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We prove Theorem 3 using the symplectic virtual moduli cycle. The
same technique can be used to prove the analogous well-known result
for the closed invariants.

1.5. Ndisk
d in even degree. A stable disk map of even degree may

still be reflected to obtain an even degree real genus 0 stable map.
However, not all stable genus 0 maps of even degree defined over R are
so obtained. Stable maps defined over R with domains having no real
points cannot be halved.

The even disk invariant Ndisk
d is not well-defined without the addition

of the contributions of real curves without real points. If such contribu-
tions were incorporated, Ndisk

d would be expressible as the Euler class
of an odd dimensional real bundle and hence would presumably vanish.
Hence, the definition Ndisk

d = 0 for d even.

1.6. Dependence on Q. Our formula for Ndisk
d is independent of the

quintic Q ⊂ CP4 defined over R. Since the calculation is done on CP4,
some information is possibly lost. More precisely, let

ǫ : H1(QR,Z/2Z) → H1(CP4
R,Z/2Z)

∼
= Z/2Z.

The invariant Ndisk
d is an integral over all stable disk maps

f : (D, ∂D) → (Q,QR)

of degree d with boundary ∂D determining a class in

ǫ−1(1) ⊂ H1(QR,Z/2Z).

If ǫ is an isomorphism, as is the case, for example, for the Fermat
quintic

Q = (z5
0 + z5

1 + z5
2 + z5

3 + z5
4),

then there is no loss of information. If, however, ǫ has a kernel, more
refined disk invariants of (Q,QR) may sometimes be defined for

γ ∈ ǫ−1(1) ⊂ H1(QR,Z/2Z).

In the latter case,

Ndisk
d =

∑

γ∈ǫ−1(1)

Ndisk
d,γ .
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2. Torus actions

2.1. Tori. Let T denote the complex numbers of unit modulus,

T = {ξ ∈ C | |ξ| = 1 }.

The torus T5 acts diagonally C5. A T5-action on CP4 is obtained by
projectivization, and canonical lifts to the line bundles

OCP4(k) → CP4

are obtained. There is a canonically induced translation action of T5

on MC(CP4, d).
Let ζi ∈ CP4 denote the T5-fixed points,

ζ0 = [1, 0, 0, 0, 0], ζ1 = [0, 1, 0, 0, 0], . . . , ζ5 = [0, 0, 0, 0, 1].

The involution c fixes ζ0 and permutes the others,

ζ1
c
↔ ζ2, ζ3

c
↔ ζ4.

Hence, ζ0 is the unique real T5-fixed point.
Consider the rank 2 subtorus T2 ⊂ T acting by

(ξ1, ξ2) · [z0, z1, z2, z3, z4] = [z0, ξ1z1, ξ1z2, ξ2z3, ξ2z4].

Since T2 preserves CP4
R
, translation defines a T2-action on the moduli

spaces MD(CP4/CP4
R
, d) and M̃D(CP4/CP4

R
, d).

The algebraic torus (C∗)2 acts on CP4 by complexifying the action
of T2,

(ξ1, ξ2) · [z0, z1, z2, z3, z4] = [z0, ξ1z1, ξ
−1
1 z2, ξ2z3, ξ

−1
2 z4].

Of course, (C∗)2 acts on MC(CP4, d) by translation.

2.2. Equivariant weights. We follow the equivariant weight conven-
tions of [5, 16] for the torus T5.

Let λi be the T5-equivariant cohomology class determined by Chern
class of the restriction of OCP4(1) to ζi,

λi = c1(OCP4(1)ζi
) ∈ H∗

T5(pt).

The classes λi generate,

H∗
T5(pt) = Q[λ0, . . . , λ4].

The tangent weights of CP4 at the point ζi are {λi − λj}j 6=i.
Let λ, λ′ be the generators of H∗

T2(pt) defined by the pull-back

ρ∗ : H∗
T5(pt) → H∗

T2(pt)

and the equations

ρ∗(λ1) = −ρ∗(λ2) = λ, ρ∗(λ3) = −ρ∗(λ4) = λ′.
14



The pull-back ρ∗(λ0) vanishes. For notational convenience, we will
often omit the pull-back ρ∗ and write

(7) λ0 = 0, λ1 = −λ2 = λ, λ3 = −λ4 = λ′.

2.3. Localization. The genus 0 Gromov-Witten invariants Nd have
been calculated in [5, 11, 13] via localization on MC(CP4, d) with re-
spect to the T5-action. We will calculate Ndisk

d via localization on

M̃D(CP4/CP4
R
, d) with respect to the T2-action.

3. Localization calculation of Fdisk

3.1. Overview. Let d be odd. The T2-action on the moduli space

M̃D(CP4/CP4
R
, d) lifts canonically to the vector bundle Fd. We calcu-

late the integral

Ndisk
d =

∫

fMD(CP4/CP4

R
,d)

e(Fd)

by localization with respect to the T2-action.
The localization calculation is similar in flavor to the genus 0 Gromov-

Witten calculation of Q in [11]. However, two new issues arise:

(i) The T2-action has fixed loci in M̃D(CP4/CP4
R
, d) with moving

images in CP4.
(ii) The equivariant restriction of e(Fd) to the T2-fixed locus de-

pends upon the orientation of Fd.

Issue (i) is handled by identifying the non-rigid contributions with the
equivariant correlators SQ studied by Givental [5, 16]. Issue (ii) requires
an explicit evaluation of the signs occurring in the orientation. The
derivation is presented in Section 4.

The sum over T2-fixed point loci required for the localization formula
is executed in two steps. Subsums with fixed intersection type with
CP4

R
are evaluated using Givental’s equivariant mirror transformation

for SQ. Finally, the sum over intersection types is evaluated explicitly
after appropriate equivariant specialization. The interaction of the
orientation signs with the localization sum is an interesting aspect of
the calculation. The outcome is a proof of Theorem 1.

3.2. T2-fixed disk maps. We first study the T2-fixed locus of the
moduli space of stable disk maps. Let

[f : (D, ∂D) → (CP4,CP4
R
)] ∈MD(CP4/CP4

R
, d)T

2

be a T2-fixed map.
15



The boundary ∂D distinguishes a minimal, c-invariant, central curve
P ⊂ C of the domain of the reflected map

[f̃ : C → CP4] ∈MR(CP4, d)

satisfying ∂D = PR. The central degree of f is the degree of the re-
striction

f̃P : P → CP4.

The central degree p is positive, odd, and bounded by d. The moduli
point

[f̃P ] ∈ MC(CP4, p)

is fixed for the full complexified action of (C∗)2 on CP4.

Lemma 4. The two lines L,L′ ⊂ CP4 are the only (C∗)2-invariant

curves of odd degree defined over R in CP4.

Proof. A real (C∗)2-invariant subcurve must lie in one of the two planes

{ [z0, z1, z2, 0, 0] | z0, z1, z2 ∈ C },

{ [z0, 0, 0, z3, z4] | z0, z3, z4 ∈ C }.

In the first case, L is the only real (C∗)2-invariant line. Moreover, all
non-linear (C∗)2-orbits are of degree 2. The argument in the second
case is identical. �

A node of PR must map via f̃ to the unique real fixed point ζ0 ∈ CP4.
Since f̃(P ) must equal either L or L′, f̃(P ) can not contain ζ0. Hence,
PR cannot contain a node. We obtain the following result.

Lemma 5. The central curve P is CP1 and

f̃P : P → L or L′

is a Galois cover of odd degree p.

The original disk map f is obtained from one half of f̃ . Hence one
half of P is selected by D. A half of P determines a pair (ζ, p) where

ζ ∈ {ζ1, ζ2, ζ3, ζ4}

is a non-real fixed point and p is the central degree.
The data (ζ, p) is the termed the intersection type of f with the real

Lagrangian CP4
R
⊂ CP4. The half of P selected by D is the intersection

disk.
While we have analyzed MD(CP4/CP4

R
, d)T

2

, we are actually inter-

ested in M̃D(CP4/CP4
R
, d)T

2

. If fact, we have proven

MD(CP4/CP4
R
, d)T

2

= M̃D(CP4/CP4
R
, d)T

2

since the T2-fixed maps are not corner points of MD(CP4/CP4
R
, d).

16



3.3. Intersection disk term. The localization calculation of

Ndisk
d =

∫

fMD(CP4/CP4

R
,d)

e(Fd)

is sum over the contributions of the T2-fixed loci. We may separate
the contributions by intersection type,

Ndisk
d =

4∑

i=1

∑

p odd

Cont(ζi,p)(N
disk
d ).

The intersection disk term I(ζi, p) of Cont(ζi,p)(N
disk
d ) is the contribu-

tion of the unique T2-fixed map

f : (D, ∂D) → (CP4,CP4
R
)

incident to ζi with central degree p and domain consisting only of the
intersection disk.

Define the rational function Cp(λ, λ
′) of degree 0 by the following

formula,

Cp(λ, λ
′) =

(−1)
p−1

2

p

2λ

p

(5p)!!
p!p!!

( λ
2p

)p

∏(p−1)/2
i=0 ((1 − 2i

p
)λ− λ′)((1 − 2i

p
)λ+ λ′)

.

Lemma 6. For an appropriate choice of Spin structure on QR, we

have

I(ζ1, p) = I(ζ2, p) = Cp(λ, λ
′), I(ζ3, p) = I(ζ4, p) = Cp(λ

′, λ).

Changing the Spin structure changes the formulas by −1 for all p.

The proof of Lemma 6 is given in Section 4. The most interesting

aspect is the calculation of the prefactor (−1)
p−1

2 obtained from the
orientations of the moduli space MD(CP4/CP4

R
, p) and the bundle Fp.

3.4. Givental’s correlator SQ. Let M 0,2(CP4, r) be the moduli space
of 2-pointed stable complex algebraic maps to CP4 of genus 0 and
degree r. Let

ei : M 0,2(CP4, r) → CP4

be the evaluation at the ith marking, and let ψi denote the Chern class
of the ith cotangent line. Let

Er → M 0,2(CP4, r)

be the complex vector bundle with fiber

Er|[f :C→CP4] = H0(C, f̃ ∗OCP4(5))C.
17



Following the notation of Section 2.2 of [16], Givental’s equivariant
correlator SQ for the torus T2 is defined by

(8) SQ(T, ~) =
1

5H

∑

r≥0

e(H/~+r)T e2∗(
ctop(Er)

~ − ψ2
) ∈ H∗

T2(CP4)

where H is the hyperplane class,

H = c1(OCP4(1)) ∈ H∗
T2(CP4).

The sum in (8) is over all non-negative integers r. The unstable degree
0 term is defined by

1

5H
e2∗(

ctop(E0)

~ − ψ2

) = 1.

Let [ζi] ∈ H∗
T2(CP4) denote the Poincaré dual of the class of the fixed

point. For classes µ, ν ∈ H∗
T5(CP4), let

〈µ, ν〉 ∈ Q[λ, λ′]

denote the equivariant intersection pairing. For example,

〈H, [ζi]〉 = λi

following convention (7).
The intersection pair of the equivariant correlator will arise in the

localization analysis:

〈SQ(T, ~), [ζi]〉 =
1

5λi

∑

r≥0

e(λi/~+r)T

∫

M0,2(CP4,r)

ctop(Er)

~ − ψ2
e∗2([ζi])

=
~−1

5λi

∑

r≥0

e(λi/~+r)T

∫

M0,1(CP4,r)

ctop(Er)

~ − ψ1
e∗1([ζi])

where the string equation is used in the second line. In degree 0, the
unstable 1-pointed term is defined by the second equality.

3.5. Contributions of type (ζi, p). The T2-fixed loci of the mod-

uli space M̃D(CP4/CP4
R
, d) of type (ζi, p) may be quite complicated.

However, every map

[f ] ∈ M̃D(CP4/CP4
R, d)

T
2

of type (ζi, p) ends in the same intersection disk. By expanding the
localization formula, the intersection disk term I(ζi, p) can be factored
out of Cont(ζi,p)(N

disk
d ) by removing the intersection disk from f .

What remains after the intersection disk is removed from f? In fact,
every genus 0 stable complex map

[f ′] ∈ e−1
1 (ζi) ⊂M 0,1(CP4, r)(C∗)2

18



can be found. The stable disk map f is obtained by attaching the
(ζi, p)-intersection disk to f ′ at the marking.

A direct unraveling of the localization formulas yields the following
fundamental result. Let

Cont(ζi,p)(F
disk) =

∑

d odd

edT/2Cont(ζi,p)(N
disk
d ).

Lemma 7. We have

Cont(ζi,p)(F
disk) = 〈SQ(T,

2

p
λi), [ζi]〉 · I(ζi, p)

for 1 ≤ i ≤ 4.

Proof. The sum on left side can be indexed more conveniently as

Cont(ζi,p)(F
disk) =

∑

r≥0

e(
p

2
+r)T Cont(ζi,p)(N

disk
p+2r).

The right side of the equality may be expanded as

∑

r≥0

e(
p
2
+r)T

∫

M0,1(CP4,r)

ctop(Er)
2
p
λi − ψ1

e∗1([ζi]) ·
I(ζi, p)

(5λi)(
2
p
λi)

.

The Lemma is obtained from the equality

(9) Cont(ζi,p)(N
disk
p+2r) =

∫

M0,1(CP4,r)

ctop(Er)
2
p
λi − ψ1

e∗1([ζi]) ·
I(ζi, p)

(5λi)(
2
p
λi)

.

To prove (9), we apply T2-localization to the integral on the right.
We do not fully expand the T2-localization formula. As was discussed
previously, understanding the geometry of the individual T2-fixed loci
is difficult as there are positive dimensional families of T2-fixed curves.
However, (9) has a much simpler proof. Since both sides are expressed
as T2-residue integrals by localization, we need only match the geome-
tries.

First, the T2-fixed loci of the two sides of (9) are in bijective cor-
respondence. Given a T2-fixed locus on the right, the addition of the
intersection disk I(ζi, p) at the marking 1 yields a T2-fixed locus of the
right side. The reverse direction is obtained by stripping the intersec-
tion disk.

Second, since the T2-fixed loci on the left and right are both nonsin-
gular, the correspondence induces an isomorphism of T2-fixed loci up
to the automorphism factor of the intersection disk.

Finally, we must match the T2-fixed obstruction theories. Let

[fD : D = C ∪ I(ζi, p) → CP4] ∈ M̃D(CP4/CP4
R, p+ 2r)T

2
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be a map with

[fC : C → CP4] ∈ ev−1
1 (ζi) ⊂M 0,1(CP4, r)T

2

.

By the normalization sequence,

0 → Fp+2r|[fD] → Er|[fC ] ⊕ Fp|[I(ζi,p)] → OCP4(5)|ζi
→ 0.

Hence, the numerator in the residue integral on the left of (9) is

(10) e(Fp+2r) = ctop(Er) ·
e(Fp)

5λi
.

Similarly, the denominator of the residue integral on the left of (9) is

(11)
1

e(Nor[fD])
=

1

ctop(Nor[fC ])

ctop(Tanζi
)

(2
p
λi − ψ1)(

2
p
λi)

1

e(Nor[I(ζi,p)])
.

The middle terms are obtained from tangent bundle, node smoothing,
and automorphism factors. Putting (10) and (11) together, we obtain
the exact matching needed for (9).

The factorization of (9) properly reflects the orientation on the mod-

uli space M̃D(CP4/CP4
R
, d). The orientation factorization is easily ob-

tained from [24]. �

Such arguments form the geometric basis of [5, 16]. Though the

T2-action on M̃D(CP4/CP4
R
, d) has fixed loci corresponding to moving

maps, the issue is completely avoided by the Lemma.

3.6. Mirror transforms. We review the mirror transforms relating
SQ(T, ~) to

S∗
Q(t, ~) =

1

5H

∑

r≥0

e(
H
~

+r)t Π5r
s=0(5H + s~)

Π4
j=0Π

r
s=1(H − λj + s~)

following Section 4.4 of [16].
The mirror map T (t) = I1/I0(t) discussed in Section 0.1 can be

written explicitly. Let

F (q) =

∞∑

r=0

qr (5r)!

(r!)5
, Gl(q) =

∞∑

r=1

qr (5r)!

(r!)5

( lr∑

s=1

1

s

)
.

Then

T = t+
5(G5(e

t) −G1(e
t))

F (et)

is the mirror map. Exponentiating yields

exp(T ) = exp(t) · exp

(
5(G5(e

t) −G1(e
t))

F (et)

)
.
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The equivariant mirror transformation for the torus T2 is

SQ(T (t), ~) =
1

F (et)
S∗

Q(t, ~).

Transforms for the equivariant pairings are a direct consequence,

〈SQ(T (t),
2

p
λi), [ζi]〉 =

1

F (et)
〈S∗

Q(t,
2

p
λi), [ζi]〉.

3.7. Theorem 1. We now complete the calculation of Fdisk,

Fdisk =

4∑

i=1

∑

p odd

Cont(ζi,p)(F
disk)

=

4∑

i=1

∑

p odd

〈SQ(T,
2

p
λi), [ζi]〉 · I(ζi, p)

=

4∑

i=1

∑

p odd

1

F (et)
〈S∗

Q(t,
2

p
λi), [ζi]〉 · I(ζi, p) .

The i = 1, 2 summands of the last line together yield

4

F (et)

∑

r≥0

∑

p odd

e(
p

2
+r)t (−1)

p−1

2

r!(p+ r)!p

2−(p+2r) (5p+10r)!!
(p+2r)!!∏

1≤i odd≤p+2r(i− px)(i+ px)

written in terms of the homogeneous variable

x =
λ′

λ
.

Similarly, the i = 3, 4 summands together yield

4

F (et)

∑

r≥0

∑

p odd

e(
p

2
+r)t (−1)

p−1

2

r!(p+ r)!p

2−(p+2r) (5p+10r)!!
(p+2r)!!∏

1≤i odd≤p+2r(i− px−1)(i+ px−1)
.

The final step is to observe the localization calculation of Fdisk is a
weight independent global integral. Hence, we may evaluate the sum-
mation in the x→ 0 limit. Only the i = 1, 2 terms survive the limit.

Fdisk =
4

F (et)

∑

r≥0

∑

p odd

e(
p

2
+r)t (−1)

p−1

2

r!(p+ r)!p

2−(p+2r) (5p+10r)!!
(p+2r)!!

(p+ 2r)!!(p+ 2r)!!

The identity for odd d,

(12)
∑

1≤p odd≤d

(−1)
p−1

2

(
d−p
2

)
!(d−p

2
+ p)!p

=
2d−1

(d!!)2
,
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restated in Lemma 8 below concludes the proof of Theorem 1,

Fdisk(T ) =
2

F (et)

∑

d odd

edt/2 (5d)!!

(d!!)5
.

After regrouping the factors and reindexing the sum, the identity
(12) is equivalent to the following result.

Lemma 8. For d odd,

d∑

k=0

(
d

k

)
(−1)k d

d− 2k
= (−1)

d−1

2

22d−1

(
d−1
d−1

2

) .

Proof. An elementary derivation is left to the reader. A geometric proof
is obtained from the multiple cover calculations in Section 6. �

4. Intersection disk terms

4.1. Overview. We now derive the signs needed in the localization
calculation and prove Lemma 6. The orientations of the moduli spaces
and vector bundles used to calculate Ndisk

d arise from the natural orien-
tation of the determinant of the Cauchy-Riemann Pin boundary value
problem developed in [19]. Briefly, a Cauchy-Riemann boundary value
problem consists of topological complex vector bundle E over a Rie-
mann surface with boundary Σ, a totally real sub-bundle F over the
boundary ∂Σ, and a generalized Cauchy-Riemann operator d′′ on E.
Given a Pin structure on F, and a choice of orientation on F if ori-
entable, one may define a canonical orientation of the determinant

det(d′′) := Λmax(ker d′′) ⊗ Λmax(coker d′′)∗.

Reversing the Pin structure on F reverses the canonical orientation
[19, Lemma 2.10].

For the calculations of weights below, we will only be concerned with
the situation where E → D is the restriction of an algebraic vector
bundle Ẽ → CP1 defined over R. We take F = ẼR, and we take d′′ to
be the restriction to D of the ∂̄ operator defined by the holomorphic
structure on Ẽ. The identifications

ker(d′′) = H0(CP1, Ẽ)R, coker(d′′) = H1(CP1, Ẽ)R

are easily obtained. So, an orientation of det(d′′) gives an orientation
of the virtual vector space

H0(CP1, Ẽ)R −H1(CP1, Ẽ)R.

Note, however, the orientation depends on the choice of

D ⊂ CP1 \ CP1
R.
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So, we cannot entirely forget the origins of our orientation in a bound-
ary value problem. For convenience, we introduce the notation

H0(D, Ẽ) := ker(d′′), H1(D, Ẽ) := coker(d′′).

Section 4.2 interprets the symplectic geometric definition of the orienta-
tion algebraically. Section 4.3 calculates the localization contributions
from a fixed point of the torus action using the combinatorics of exact
sequences and the formula for the tensor product of real representations
of S1. The algebraically inclined reader may safely skip all of Section
4.2 besides the statement of Lemma 9.

4.2. Weights of sections of a line bundle. Let Tn denote the real
n-dimensional torus and let tn denote its Lie algebra. A weight is a
homomorphism of real vector spaces from tn to C. Let V be a two-
dimensional real irreducible oriented representation of Tn and let ρ be
the associated homomorphism

ρ : Tn → GL(V ).

Let h : V → C be an orientation preserving real linear homomorphism
such that associated homorphism

h̃ : GL(V ) → GL(C)

satisfies
Im(h̃ ◦ ρ) ⊂ AutC(C) ≃ C×.

Note that h is defined by these conditions up to homothety and hence
h̃ is unique. Differentiating h̃ ◦ ρ we obtain the weight of V.

We denote by Vλ the 2-dimensional real oriented representation of
Tn of weight λ, where λ may be fractional. If λ = 0 we denote by Vλ

the trivial two dimensional representation. Suppose V is an oriented
real representation of Tn isomorphic to Vλ. A priori, V consists of two
data: a Tn action on the vector space V and an orientation of the
vector space V. However, except in the case λ = 0, the Tn action on
V and the knowledge that V ≃ Vλ determine the orientation of V .
Indeed, if λ 6= 0, there is a unique up to homothety Tn equivariant
isomorphism

i : V
∼
→ Vλ,

The orientation on V must agree with the orientation induced by i.
Let m be a positive odd integer. From [19], in order to define the

canonical orientation of det(d′′) mentioned above, a Pin structure p−1

on O(−1)R → ∂D must be chosen. We fix such a Pin structure. Set
Wλ = Vλ ⊗ C. Choosing a connected component of the complement of

CP1
R ⊂ CP1 = CP(Wλ).
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is equivalent to choosing an orientation on Vλ. The action of Tn on
Wλ naturally induces an action on H0(D,O(m)) when we think of D
as the disk that induces the orientation of Vλ. Indeed, as not oriented
vector spaces, clearly

(13) H0(D,O(m)) ≃ Symm(V ∗
λ ).

We only consider the m odd case.
The main goal of this section is to prove the following Lemma which

examines when isomorphism (13) preserves orientation. Equip the vec-
tor space H0(D,O(m)) with the Tn-action induced from V−λ. Let p be
a Pin structure on O(m)R → ∂D. Since m is odd, O(m)R ≃ O(−1)R

as real topological vector bundles.

Lemma 9. Assume that p agrees with p−1. With respect to the canon-

ical orientation induced by p,

(14) H0(D,O(m)) ≃

(m−1)/2⊕

i=0

V(2i+1)λ.

Proof. First, the canonical orientation induced by p can be expressed
as the complex orientation induced by an explicit complex structure on
H0(D,O(m)). Indeed, by gluing sections, we have an exact sequence

0 → H0(D,O(m))
g−1

→

H0(D,O(−1)) ⊕H0(CP1,O((m+ 1)/2))
h
→ C → 0.(15)

By definition [19, Proposition 2.8], after equipping the latter two terms
of the sequence with the complex orientation, the sequence induces the
desired orientation on the first term. Note that g−1, the inverse of the
gluing map, is not canonical, but the set of all choices is connected. So,
the induced orientation is well-defined. To calculate the orientation, we
may fix a particular choice of the gluing map and calculate the induced
complex structure on H0(D,O(m)).

We digress for a moment to explain the relationship between different
possible descriptions of H0(D,O(m)). Let w0, w1 be standard linear
coordinates on Wλ such that w0, w1 are real precisely on the real locus
of Wλ. Then, H0(D,O(m)) may be identified with the vector space of
homogeneous polynomials

p(w0, w1) =

m∑

i=0

aiw
d−j
0 wj

1, ai ∈ R.
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Now, we choose new coordinates z0, z1, such that

z0 = w0 − iw1, z1 = w0 + iw1,

w0 =
z0 + z1

2
, w1 = i

z0 − z1
2

.

Then, since p(z0, z1) = p(z̄1, z̄0), we have

p(z0, z1) =
m∑

j=0

biz
d−j
0 zj

1, bj = b̄d−j .

On the other hand, by definition, H0(D,O(m)) is the space of the
solutions ξ of the Cauchy Riemann equations on unit disk

D = {|z| ≤ 1} ⊂ C

satisfying the totally real boundary conditions

ξ(z) ∈ Rzm/2, |z| = 1.

In the future, we refer to these boundary conditions as L(m). Expand-
ing in power series about z = 0, it is not hard to see that the boundary
conditions imply

(16) ξ(z) =

m∑

j=0

biz
i, bj = b̄d−j .

So, solutions ξ arise naturally from homogeneous polynomials p(z0, z1)
by trivializing O(m) over {z0 6= 0} by the section zm

0 and making the
identification z = z1/z0.

For the following argument, we view sections ξ ∈ H0(D,O(m)) as
in (16). Referring to exact sequence (15), we construct a gluing map

g : ker(h) → H0(D,O(m))

as follows. Suppose we identify the point at which we glue sections
with ∞ ∈ CP1. Then, by taking the standard trivialization of the sheaf
O((m+1)/2) over the standard coordinate chart on CP1 centered at 0,
we may identify ker(h) with the set of polynomials q(z) of degree less
than or equal to (m− 1)/2. Let

β : D → R

be a cutoff function depending only on |z| such that β(0) = 1 and
β(z) = 0 for |z| > 1/2. Given a polynomial q, we define a pre-gluing

q̃(z) = β(z)q(z).

Let
P : C∞((D, ∂D), (C, L(m))) → H0(D,O(m))
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denote the L2 projection. We define g by

g(q) = P q̃.

Due to our choice of gluing map, it is easy to calculate that

g(bzj) = b̄zm−j + bzj .

Let ξ be as in (16) and let I denote the complex structure g induces
on H0(D,O(m)). It follows that

(Iξ)(z) = i

(m−1)/2∑

j=0

bjz
j − bm−jz

m−j .

Finally, we compute the weights of H0(D,O(m)). Since, by defi-
nition of the action on H0(D,O(m)), we have identified D with the
hemisphere of CP1 inducing the intrinsic orientation of Vλ, we must
have that z transforms by z 7→ e−2λz.

Since z = z1

z0
, it follows that in coordinates z0, z1, the action of Tn

takes the form

z0 7→ eiλz0, z1 7→ e−iλz1.

In other words, Tn acts by eI(m−2j)λ on the section

zj
0z

m−j
1 + zm−j

0 zj
1 ∈ H0(D,O(m)).

The decomposition (14) follows. �

4.3. Localization contribution of an isolated fixed point. Let X
and Y be two oriented real vector spaces, and let ei ∈ X and fj ∈ Y
be oriented bases. There are different ways the tensor product X ⊗ Y
can inherent an orientation from X and Y. We use the right-to-left
lexicographical ordering convention. We take

e1 ⊗ f1, e2 ⊗ f1, . . . , e1 ⊗ f2, e2 ⊗ f2, . . .

as an oriented basis of X ⊗ Y.
If X is even dimensional then the orientation ofX⊗Y is independent

of the orientation of Y, and vice versa.
As before, let Vλ be the 2-dimensional real representation of Tn with

weight λ. The following result is a straightforward linear algebra cal-
culation.

Lemma 10. With respect to the right-to-left lexicographical orientation

of the tensor product,

(17) Vα ⊗ Vβ = Vα+β ⊕ Vα−β.
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H0(D,OCP1) //

��

H0(D,OCP1(1) ⊗ U) //

df̃
��

H0(D, TCP1)

df
��

H0(D, f ∗OCP4) //

��

H0(D, f ∗OCP4(1) ⊗W ) //

��

H0(D, f ∗TCP4)

��

0 // Def(D, f) // Def(D, f)

Figure 1.

4.4. Proof of Lemma 6. Let

[f : (D, ∂D) → (CP4,CP4
R
)] ∈MD(CP4/CP4

R
, d)

denote a T2-fixed disk of type (ζ1, p). After permuting indices, the proof
given below applies to the other possible intersection types as well.

First, we calculate the equivariant Euler class of the tangent space to
MD(CP4/CP4

R
, d) at [f ] which we denote Nf . We use the deformation

exact sequence

(18) 0 → Aut(D) → Def(f) → Def(D, f) → 0.

Here, Def(f) denotes the space of first-order deformations of the map
f, and Def(f,D) denotes the first-order deformations of f modulo repa-
rametrization — the tangent space toMD(CP4/CP4

R
, d) at [f ]. To carry

out the corresponding closed calculation, the weights of each of the first
two terms are computed and divided with cancelling 0-weights. In the
open case, more information is needed about the weight 0 components
since isomorphisms of two copies of the trivial real representation of
Tn need not preserve orientation. We will use the real Euler sequence
to linearize the exact sequence (18) to get a better handle on the sign.

Let X = Vλ1/p and Y = R ⊕ Vλ1
⊕ Vλ3

. Let

U = X ⊗ C, W = Y ⊗ C.

Let Y ′ ⊂ Y denote the 2-dimensional linear subspace corresponding
to Vλ1

and let Y ′′ denote the Tn-invariant complement. Consider the
commutative diagram in Figure 1. All rows and columns are exact.
The rows are the sections functor applied to the Euler sequence. The
rightmost column is obtained from the deformation exact sequence by
the identifications

Aut(D) = H0(D, TCP1), Def(f) = H0(D, f ∗TCP4).

In order to discuss the orientations of the vector spaces in Figure
1, we must digress for a moment on the subject of Pin structures. In
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the following, p denotes a Pin structure on CP4
R
, p′ denotes a Pin

structure on OCP4(5)R and s denotes a Spin structure on QR. To define
Ndisk

d , a structure s was fixed. By Lemma 12 of Section 5, any two
of p, p′, s, naturally determine the third. As explained in the proof of
Lemma 13 of Section 5, the choice of p and p′ compatible with s induces
the isomorphism det(Fd) ≃ L used to determine the sign of e(Fd). In
particular, if we orient Nf and (Fd)f using p and p′ compatible with s,
we will be calculating the weights of the T2-action correctly.

In order to facilitate calculations, we choose p in a convenient way.
Then we let s and p induce p′. Indeed, choose first a Pin structure p̂

on OCP4(1)R. Via the natural homomorphism,

Pin(1) → Pin(5),

induce a Pin structure p̃ on OCP4(1)R ⊗ Y. In addition, equip OCP4

R

with the canonical Spin structure. By [19, Lemma 8.1], via the Euler
sequence, p̃ induces a Pin structure p on TCP4

R
. Since we have chosen

Pin structures compatibly, by [19, Lemma 8.4], the middle row of
the diagram in Figure 1 respects orientation. The columns respect
orientation by definition.

At this point, we focus attention on the middle column of Figure 1,
which is the desired linearization of the deformation exact sequence.
Because of the way we have induced p̃ from p̂, by an argument simi-
lar to the proof of [19, Lemma 8.4], we may assume that the natural
isomorphism

H0(D, f ∗OCP4(1) ⊗W ) ≃ H0(D, f ∗OCP4(1)) ⊗ Y

preserves orientation. Here, we have used the right-to-left lexicographi-
cal orientation of the tensor product. Up to a degree independent sign,
we may assume that the isomorphism

H0(D,O(1) ⊗ U) ≃ H0(D,O(1)) ⊗X

also preserves sign. So, it remains to compute the third term of the
exact sequence,

(19) 0 → H0(D,O(1)) ⊗X
df̃
→ H0(D,O(p)) ⊗ Y → Def(D, f) → 0,

from the first two.
We assume without loss of generality that the induced T2-action on

H0(D, f ∗OCP4(1)) ≃ H0(D,O(p))

has weights
λ1

p
,
3λ1

p
, . . . ,

28



as opposed to their negatives. That is, we assume the action on the
underlying vector space considered in Section 4.2 has weight λ = λ1/p.
This depends on the choice of p̂. One way or another, the opposite disk
has the opposite sign, so we can always interchange ζ1 and ζ2 to satisfy
our assumption. Note, however, that the full localization contribution
of [f ] including the weights of the obstruction bundle is invariant under
the symmetry

λ1 7→ λ2 = −λ1, λ3 7→ λ4 = −λ3.

Let Y ′ ⊂ Y denote the 2-dimensional linear subspace corresponding
to Vλ1

and let Y ′′ ≃ Vλ3
⊕R denote its T2-invariant complement. Note

Im(df̃) ⊂ H0(D,O(p)) ⊗ Y ′.

We study the induced morphism,

df̃ ′ : H0(D,O(1)) ⊗X → H0(D,O(p)) ⊗ Y ′,

carefully in order to calculate the weights of the cokernel with attention
to sign — necessary because of the trivial representations that occur
in the domain and the range. Indeed, by formulas (17) and (14), we
have

H0(D,O(1)) ⊗X ≃ V0 ⊕ V2λ1/p(20)

H0(D,O(p)) ⊗ Y ′ ≃

(p−1)/2⊕

i=0

V(2i+1+p)λ1/p ⊕

(p−3)/2⊕

i=0

V(2i+1−p)λ1/p ⊕ V0.

The map df̃ ′ is determined up to homothety on the summand V2λ1/p

by T2-equivariance. Since, homotheties of an even dimensional vec-
tor space preserve orientation, we need calculate no further. However,
we need more information to determine df̃ ′ on the trivial representa-
tion summand V0. It is possible to explicitly write down oriented bases
of X and Y ′ and see that df̃ ′ preserves orientation on the summand
V0. However, that would lead to considerable notational complications.
Our strategy is to modify the action of T2 on X and Y ′ so that df̃ is
still equivariant, but there are no copies of the trivial representation
in the decomposition to irreducibles. To check equivariance, we may
work over the complex numbers, thus simplifying formulas.

Choose coordinates z1 and z2 on U such that under the action of T2,

z1 7→ eiλ1/pz1, z2 7→ e−iλ1/pz2.

Then f is given explicitly by

[z1 : z2] 7→ [zp
1 : zp

2 : 0 : 0 : 0].
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Let e1, e2, be a basis of U, dual to z1, z2. A section

ξ ∈ H0(CP1,O(1) ⊗ U)

takes the form,
ξ = ξ1e1 ⊕ ξ2e2,

where ξ1, ξ2, are linear functions on U. Let c1, c2, be the basis of Y ′

corresponding to e1, e2. Then

df̃ ′(ξ) = ξ1pz
p−1
1 c1 + ξ2pz

p−1
2 c2.

In the following, we denote by ǫ a small rational number. If we allow
T2 to act on X by λ1(1/p + ǫ) and on Y ′ by λ1(1 + ǫ), then df̃ will
remain equivariant. The summands V0 in decompositions (20) both
change to V−λ1ǫ. Choosing ǫ small enough, we may assume no new
trivial summands appear. Since the direct sum decomposition doesn’t
change on the level of vector spaces as we change weights, we conclude
that df̃ ′ maps V0 to V0 preserving orientation. Hence, the cokernel of
df̃ ′ has equivariant Euler class,

e(coker(df̃ ′)) = λp−1
1 p1−p(p+ 1)(p+ 3) . . . (2p)×

× (1 − p)(3 − p) . . . (−4)

= (−1)(p−1)/22p−1p!p1−pλp−1
1 .

Now, H0(D,O(p)) ⊗ Y ′′ contributes directly to Def(D, f) as follows.
Decomposing Y ′′ ≃ Vλ3

⊕ R, and using formulas (17) and (14), we
calculate

e
(
H0(D,O(p)) ⊗ Vλ3

)
=

(p−1)/2∏

i=0

((
1 −

2i

p

)
λ1 − λ3

)
×

×

((
1 −

2i

p

)
λ1 + λ3

)
,

and,

e
(
H0(D,O(p)) ⊗ R

)
= p!!p−(p+1)/2λ

(p+1)/2
1 .

In conclusion,

e(Nf ) = (−1)(p−1)/22p−1p−(3p−1)/2p!p!!λ
(3p−1)/2
1 ×

×

(p−1)/2∏

i=0

((
1 −

2i

p

)
λ1 − λ3

) ((
1 −

2i

p

)
λ1 + λ3

)
.

On the other hand, by (14) the Euler class of the obstruction bundle
is just

e ((Fd)f ) = e(H0(D,O(5p)) = (5p)!!p−(5p+1)/2λ
(5p+1)/2
1 .
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Here, we are assuming that the Pin structure that p′ induces on

O(5p)R ≃ f ∗OCP4(5)R

agrees with p−1. If for a given p′ this is not true, reversing p′ changes
the sign of e ((Fd)f) by −1 for all p by [19, Lemma 2.10]. So, we reverse
s, thus reversing p′. Hence, the dependence of the total sign of I(ζ1, p)
on s as claimed. Combining everything, we obtain

I(ζ1, p) = 4
(−1)

p−1

2

p

(5p)!!
p!p!!

(
λ1

2p

)p+1

∏(p−1)/2
i=0

((
1 − 2i

p

)
λ1 − λ3

) ((
1 − 2i

p

)
λ1 + λ3

) .

The extra factor of 1
p

comes from the orbifold structure of the moduli

space M̃D(CP4/CP4
R
, d) at [f ]. �

5. Proof of the Euler class formula

5.1. Construction of M̃D(CP4/CP4
R
, d). A detailed construction was

not required in [19] to prove the invariance of Ndisk
d . However, to apply

the Atiyah-Bott localization formula as in the proof of Theorem 1 and
Proposition 19, as well as for the obstruction bundle argument in the
proof of Theorem 3, we need the following result.

Proposition 11. M̃D(CP4/CP4
R
, d) is a smooth closed orbifold and Fd

is a smooth orbibundle.

Proof. First, we give a detailed definition of M̃D(CP4/CP4
R
, d). The

moduli space MD(CP4/CP4
R
, d) is a smooth orbifold with corners. A

point in a corner of codimension k corresponds to an open stable map
with k + 1 disk components. Such a stable map may have arbitrar-
ily many sphere components. However, since we consider open stable
maps of genus 0, each sphere component belongs to a tree of sphere
components attached to a unique disk. We define the total degree of
a disk component to be its own degree plus the degree of all attached
spheres components.

We classify corners of MD(CP4/CP4
R
, d) by the intersection types I

of the open stable maps. The intersection type I = (TI , ℓI) of an open
stable map f of genus zero consists of a tree TI and a labelling ℓI of
the vertices of TI by non-negative integers. The vertices of the tree
correspond to disk maps and the edges correspond to nodes connecting
two disks. The labelling of a vertex is the total degree of the corre-
sponding disk component. We denote by |I| the number of vertices
of TI , — the codimension of the corresponding corner. Let I be an
intersection type, and let e be an edge of TI connecting vertices v1 and
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v2. Gluing I at e to obtain I ′ means contracting e so that v1 and v2

become a single vertex v of I ′ and defining ℓI′(v) = ℓI(v1) + ℓI(v2).
We define a partial ordering on the set of intersection types by I1 < I2
if I1 may be obtained from I2 by a sequence of gluings. We use the
notation ∂IMD(CP4/CP4

R
, d), to denote the corner of MD(CP4/CP4

R
, d)

of intersection type I.
We refer to codimension one corners as boundary components. Points

of the boundary correspond to stable maps with two disk components.
The intersection type I, |I| = 2, of such a stable map is essentially an
unordered pair {d1, d2}, where the numbers di are the total degrees of
each disk component. Here d1 + d2 = d. For each possible such I, we
define a smooth involution cI of the corresponding boundary compo-
nent as follows. Choose a vertex vI of TI . Since the total degree is odd,
vI can be chosen as the unique vertex of odd degree. For

[f ] ∈ ∂IMD(CP4/CP4
R
, d),

define cI(f) to be the open stable map obtained by replacing the disk
component corresponding to vI and all attached sphere maps by their
conjugates.

We extend cI to the closure

∂IMD(CP4/CP4
R
, d) =

⋃

I′≥I

∂I′MD(CP4/CP4
R
, d)

as follows. Let [f ] ∈ ∂I′MD(CP4/CP4
R
, d) for some I ′ > I. Let {vi

I′} be
the set of vertices of I ′ that glue to form vI . We define cI(f) to be the
open stable map obtained by replacing the disk-maps corresponding to
the vi

I′ and all attached spheres maps by their conjugates.
Next, we define an equivalence relation ∼ on MD(CP4/CP4

R
, d) as

follows. Let [p], [q] ∈ ∂I′MD(CP4/CP4
R
, d). We write p ∼ q if there

exists I ≤ I ′ with |I| = 2 such that cI(p) = q. Finally, we can define

M̃D(CP4/CP4
R, d) = MD(CP4/CP4

R, d)/ ∼ .

We now prove M̃D(CP4/CP4
R
, d) is a closed orbifold. We refer the

reader to [4, Section 2] for a quick review of orbifolds. We essentially
follow the notation established there. Let

π : MD(CP4/CP4
R
, d) → M̃D(CP4/CP4

R
, d)

denote the quotient projection. Being a closed orbifold is a local prop-
erty, so we restrict our attention to small neighborhood of a point

[p] ∈ M̃D(CP4/CP4
R, d).
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If π−1([p]) lies away from the corners of MD(CP4/CP4
R
, d), there is

nothing to prove.
If π−1([p]) meets the corners, we construct an orbifold chart in a

neighborhood of [p] in a canonical way. Let [p̃] ∈ π−1([p]). We assume

[p̃] ∈ ∂Ip
MD(CP4/CP4

R
, d), k = |Ip| − 1 ≥ 1.

Let (Vp̃,Γp̃, ψp̃) be an orbifold chart on MD(CP4/CP4
R
, d) at p̃. Here Vp̃

is a neighborhood of 0 in

Rn
+k = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, . . . k},

Γp̃ is a finite group acting on Vp̃, and ψp̃ is a Γp̃ invariant homomorphism
from Vp̃ to a neighborhood of [p̃]. From the definition of the orbifold
structure on MD(CP4/CP4

R
, d), the groups Γp̃ for [p̃] ∈ π−1([p]) are all

isomorphic. So, we may define a group Γ̃p with isomorphisms Γ̃p ≃ Γp̃.
We define,

∂IVp̃ = ψ−1
p̃

(
∂IMD(CP4/CP4

R
, d)

)
.

By definition of an orbifold with corners, ∂IVp̃ is contained in a subset of
Rn

+k where |I| − 1 of the coordinates x1, . . . , xk, are zero. By definition
of a smooth map of an orbifold, possibly shrinking the charts Vp̃, we

may assume that cI induces a smooth Γ̃p equivariant involution of the
disjoint union of the corners ∂I′Vp̃, I

′ ≥ I over all [p̃] ∈ π−1([p]).
Let I1, . . . , Ik enumerate the set of I ≤ Ip such that |I| = 2, the

intersection types of the boundary components adjacent to p. For a
multi-index

E = (ǫ1, . . . , ǫk) ∈ (Z/2Z)k,

we define an involution cE of ∂Ip
MD(CP4/CP4

R
, d) by

cE =
k∏

j=1

c
ǫj

Ij
.

So, the group (Z/2Z)k acts on ∂Ip
MD(CP4/CP4

R
, d), and by definition

of π, acts transitively on π−1([p]). Define

Gp ⊂ (Z/2Z)k

to be the stationary subgroup of [p̃] ∈ π−1([p]). The definition does
not depend on the choice of [p̃] because we are considering a transitive
action of an abelian group. Define

V̂p =
∐

[p̃]∈π−1([p])

Vp̃ ×Gp, Vp = V̂p/ ∼
∗,

where the equivalence relation ∼∗ is defined as follows. Let

Ej ∈ (Z/2Z)k
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denote the multi-index with ǫi = 0 for i 6= j and ǫj = 1. For

(q, E), (q′, E ′) ∈ V̂p

define (q, E) ∼∗ (q′, E ′) if q = cIj
(q′) and E = E ′ + Ej for some j.

Define

Γp = Γ̃p ×Gp.

The group Γp acts naturally on Vp. Finally, let ψp be the Γp invariant

map from Vp to M̃D(CP4/CP4
R
, d) naturally induced by the ψp̃. Since

Vp is obtained by gluing together 2k neighborhoods of 0 ∈ Rn
+k on

matching corners, Vp is a neighborhood of 0 ∈ Rn. The triple (Vp,Γp, ψp)
is easily seen to specify a natural orbifold structure in a neighborhood
of p.

The involutions cI lift naturally to the bundles

F̂d|∂IMD(CP4/CP4

R
,d)
.

Then, the exact same proof extends to construct the structure of an
orbibundle on Fd. �

In the following, p denotes a Pin structure on CP4
R
, p′ denotes a Pin

structure on OCP4(5)R and s denotes a Spin structure on QR.

Lemma 12. Any two of s, p, p′ determines the third.

Proof. By the adjunction formula, the normal bundle NQ of Q in CP4

satisfies NQ ≃ O(5)|Q. So, the Lemma follows from the exact sequence,

0 → TQR → TCP4
R → NQR

→ 0,

and [19, Lemma 8.1]. �

We denote the determinant of the tangent bundle of M̃D(CP4/CP4
R
, d)

by L.

Lemma 13. There exists a topological isomorphism detFd ≃ L. More-

over, such an isomorphism is determined canonically up to homotopy

by the choice of a Spin structure on QR.

Proof. Choose p and p′ compatible with s. Then p induces an orien-
tation on MD(CP4/CP4

R
, d) and p′ induces an orientation on F̂d. So,

there exists a unique up to homotopy isomorphism,

det
(
MD(CP4/CP4

R
, d)

)
≃ det(F̂d),

preserving orientation. We must check the identifications involved in

the construction of M̃D(CP4/CP4
R
, d) are compatible with the above

isomorphism: the sign of cI on ∂IMD(CP4/CP4
R
, d) must be the same
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as the sign of cI on F̂d|∂IMD(CP4/CP4

R
,d). This follows easily from [19,

Lemma 2.12]. �

5.2. Kuranishi structures. 1

We denote by MD(Q/QR, d) the moduli space of open stable maps to
(Q,QR). In general, the space MD(Q/QR, d) is a compact metrizable
space. In the following proof, we use the theory of Kuranishi struc-
tures with corners developed in [4, 3] to define intersection theory on
MD(Q/QR, d). The Kuranishi structures used here were shown to exist
in [4, 3]. See [19, Appendix A and Section 7] for a very brief sum-
mary of this theory, from which we take our notational conventions.
In the following, unless explicitly noted, all Kuranishi structures are
Kuranishi structures with corners.

We will need the following definition, which is similar to the notion of
an involution of a Kuranishi structure [19, Definition 7.1], but without
property (E1). Suppose (X,K) and (X ′,K′) are spaces with Kuranishi
structure

K = (Vp, Ep,Γp, sp, ψp, Vpq, hpq, ϕpq, ϕ̂pq),

K′ = (V ′
p , E

′
p,Γ

′
p, s

′
p, ψ

′
p, V

′
pq, h

′
pq, ϕ

′
pq, ϕ̂

′
pq).

Let f : X → X ′ be a continuous map.

Definition 14. An extension f̃ of f to a map of spaces with Kuranishi
structure consists of Γp-equivariant maps

fp : Vp → V ′
f(p), f̂p : Ep → E ′

f(p)

covering fp such that

(M1) s′f(p) ◦ fp = f̂p ◦ sp.

(M2) ψ′
f(p) ◦ fp|s−1

p (0) = f ◦ ψp.

(M3) fq maps Vpq ⊂ Vq to V ′
f(p)f(q) ⊂ V ′

f(q).

(M4) fp ◦ ϕpq = ϕ′
f(p)f(q) ◦ fq and f̂p ◦ ϕ̂pq = ϕ̂′

f(p)f(q) ◦ f̂
′
q.

Now, suppose that (X,K) has a tangent bundle given by Φpq and

(X ′,K′) has a tangent bundle given by Φ′
pq. We say that f̃ is smooth if

Φ′
f(p)f(q) ◦ f̂q = f̂p ◦ Φpq.

1Here, we use the virtual moduli cycle construction of [3], based on Kuranishi
structures. In Sections 5.2-5.3, we assume the coordinate transforms and Kuranishi
maps are smooth, as explained in [3, Appendix A1.4]. Alternatively, we could
assume only stratified smoothness, as explained in [20]. We anticipate that with
the completion of the generalized Fredholm theory currently being introduced in
[8, 9], the ideas of Section 5.2-5.3 will translate into a proof of Theorem 3 based on
that framework.
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We say that f̃ is an embedding if fp are all embeddings and f̂p are all
injective bundle maps. The preceding definition of maps of spaces with
Kuranishi structure is very rigid and not likely to make a very nice
category. A better definition for a general morphism of spaces with
Kuranishi structure would be something like the diagram of Figure 2.

We will also need the notion of vector bundles over a space with
Kuranishi structure and their Euler classes. Vector bundles over a space
with Kuranishi structure were constructed in a very general form in [4,
Section 5] so as to include the tangent bundle to a Kuranishi structure.
The bundles we use here correspond to the special case in which F2 of
[4] is taken to have rank 0 everywhere. We let (X,K) denote a general
space with Kuranishi structure as above.

Definition 15. A vector bundle F over (X,K) consists of

(1) For each p ∈ X, a Γp-equivariant vector bundle F p → Vp.
(2) For each p ∈ X and q ∈ Imψp, an hpq-equivariant vector bundle

isomorphism ΦF
pq : Fq|Vpq

→ Fp|Im(ϕpq) covering ϕpq.

The Euler class of a vector bundle over a space with Kuranishi struc-
ture should determine a cohomology class in a cohomology theory for
Kuranishi spaces. However, such a theory has not been developed.
Since the Euler classes considered here always have critical dimension,
essentially all the information in the Euler class is contained in a single
number: the integral of the Euler class over the fundamental class. So,
we focus on defining the integral of the Euler class.

Let F denote a vector bundle over (X,K) of rank equal to the ex-
pected dimension of (X,K). Let LK denote the determinant of the
tangent bundle of (X,K), i.e., the line bundle over (X,K) determined
locally by the line bundles

det(TVp) ⊗ det(Ep)
∗ → Vp.

Assume that an isomorphism

(21) det(LK) ≃ det(F )

has been specified. Choose a transverse perturbation of the space with
Kuranishi structure (X,K). See [19, Theorem A.4] for a brief review of
notation. Choose multi-valued sections ξ′p of F ′

p such that multi-valued
section ξ′p+s

′
p,n of E ′

p⊕F
′
p is transverse. Let σ denote the 0-dimensional

rational simplicial complex determined by the vanishing set of ξ′p +s′p,n.
The orientation of σ is determined by the isomorphism (21). Let |σ|
denote the rational weighted cardinality of σ.
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Definition 16. We define the Euler class of F by
∫

[X,K]

e(F ) = |σ|.

Straightforward cobordism arguments show the definition does not
depend on the choice of section ξ or the perturbation of Kuranishi
structure. See [4, Sections 4 and 17].

5.3. Proof of Theorem 3. We continue to employ the notation of the
proof of Proposition 11. Since MD(Q/QR, d) consists of open stable
maps, we may define

∂IMD(Q/QR, d) ⊂MD(Q/QR, d)

to be the subspace consisting of all open stable maps of intersection
type I. Similarly, we may define the involution cI of the corner of

intersection type I ′ for I ′ ≥ I, and the quotient space M̃D(Q/QR, d).
Let KQ be a Kuranishi structure with corners on MD(Q/QR, d). By
the arguments of [19, Section 7], the involutions cI extend smoothly
to the Kuranishi structure KQ|∂IMD(Q/QR,d). Recapitulating the proof

of Proposition 11, KQ induces a Kuranishi structure without boundary

K̃Q on M̃D(Q/QR, d).
A transverse perturbation of the space with Kuranishi structure

(M̃D(Q/QR, d), K̃Q) defines a simplicial complex consisting of a finite
number of 0-simplices with rational weights. The weighted count of
the 0-simplices is Ndisk

d . While the definition is not exactly the same as
the definition given in [19], the equivalence is not hard to verify.

An orbifold structure is a special case of a Kuranishi structure for
which all the bundles Ep are rank 0. Let K0 denote the Kuranishi
structure on MD(CP4/CP4

R
, d) coming from the orbifold structure, and

let K̃0 denote the Kuranishi structure on M̃D(CP4/CP4
R
, d) coming from

the orbifold structure constructed in Proposition 11. Also, let

i : M̃D(Q/QR, d) → M̃D(CP4/CP4
R, d)

denote the natural inclusion. We would like to construct a Kuranishi
structure K̃ on M̃D(CP4/CP4

R
, d) for which we have the diagram of

spaces with Kuranishi structure shown in Figure 2.

The structure K̃ may be obtained from a Kuranishi structure on
MD(CP4/CP4

R
, d) that admits extensions of the involutions cI for which

the diagram of Figure 2 holds with tildes replaced by bars. For each
[p] ∈ MD(Q/QR, d), we extend the Kuranishi neighborhood

(V Q
p , E

Q
p ,Γ

Q
p , s

Q
p , ψ

Q
p )
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(M̃D(CP 4/CP 4
R

, d), K̃)

(M̃D(CP 4/CP 4
R

, d), K̃0)

eId
44iiiiiiiiiiiiiiiii

(M̃D(Q/Q
R

, d), K̃Q)

ei
jjUUUUUUUUUUUUUUUU

Figure 2.

given by KQ to a Kuranishi neighborhood (Vp, Ep,Γp, sp, ψp) for the
space MD(CP4/CP4

R
, d). We detail the construction of the extension

for p an irreducible stable map. The construction for p a reducible
stable map is similar but notationally more complicated.

Let BD(Q/QR, d) and BD(CP4/CP4
R
, d) denote the Banach manifolds

of W 1,r maps

(D, ∂D) → (Q,QR), (D, ∂D) → (CP4,CP4
R
),

respectively. Let

EQ → BD(Q/QR, d), E → BD(CP4/CP4
R
, d),

be defined fiberwise by

EQ
f = Lr(D,Ω0,1(f ∗TQ)), f ∈ BD(Q/QR, d),

Ef = Lr(D,Ω0,1(f ∗TCP 4)), f ∈ BD(CP4/CP4
R, d).

Let ∂̄Q (resp. ∂̄) denote the section of EQ (resp. E) given by the
non-linear Cauchy-Riemann operator on maps to Q (resp. CP4). Let
D∂̄Q and D∂̄ denote choices of the vertical parts of their respective
linearizations.

We briefly outline the construction [4, 3] of the Kuranishi neighbor-
hood (V Q

p , E
Q
p ,Γ

Q
p , s

Q
p , ψ

Q
p ) in order to explain how to extend it. First,

choose a finite dimensional subspace ÊQ
p ⊂ EQ

p so that

D∂̄Q : TpBD(Q/QR, d) → EQ
p /Ê

Q
p

is surjective. Extend ÊQ
p to a vector bundle ĚQ

p over a neighborhood
of p in BD(Q/QR, d) by parallel transport. Over a sufficiently small
neighborhood of p, D∂̄Q surjects onto EQ/ĚQ

p . So, we may define a
smooth manifold

Ṽ Q
p = (∂̄Q)−1(ĚQ

p ).

We define V Q
p to be an appropriate section of the action of the infin-

itesimal reparametrization group on Ṽ Q
p . Then, we take EQ

p = ĚQ
p |V Q

p

and

sQ
p (x) = ∂̄Q(x) ∈ EQ

p , x ∈ V Q
p .
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The group ΓQ
p arises from the remaining discrete part of the reparam-

etrization group of p.
To extend the Kuranishi neighborhood (V Q

p , E
Q
p ,Γ

Q
p , s

Q
p , ψ

Q
p ) to a

Kuranishi neighborhood for MD(CP4/CP4
R
, d), we extend ĚQ

p by par-

allel translation to a vector bundle Ěp over a neighborhood of p in
BD(CP4/CP4

R
, d). Since CP4 is a homogeneous space, the operator D∂̄

is surjective onto Ep at every [p] ∈MD(CP4/CP4
R
, d). So, we may define

a smooth manifold

Ṽp = (∂̄)−1(Ěp).

The definitions of Vp, Ep, sp and Γp, are just as before. In the case
when p is a reducible stable map, the extension procedure is similar
except for one extra detail: we must be careful to perform parallel
translations using a c-invariant metric so that the involutions cI extend
to the corners of the extended Kuranishi neighborhood. See [19, Section
7] for a discussion of this issue.

For each point in [p] ∈ MD(Q/QR, d) we have just constructed a
Kuranishi neighborhood (Vp, Ep,Γp, sp, ψp) for MD(CP4/CP4

R
, d). It is

straightforward to extend transition data Vpq, hpq, φpq, φ̂pq, to these
extended neighborhoods. In order to complete the construction of K it
remains to define Kuranishi neighborhoods of points

[p] ∈MD(CP4/CP4
R
, d) \MD(Q/QR, d).

For such points, we take an orbifold coordinate chart as a Kuranishi
neighborhood, letting Ep be a trivial bundle of rank zero. Because the
bundles Ep are rank zero, it is again easy to construct the associated

transition data Vpq, hpq, φpq, φ̂pq. The existence of embeddings as in the
diagram of Figure 2 follows immediately from the construction of K.

We proceed to extend the bundle Fd of Section 1.4 to a bundle F̃d

over the space with Kuranishi structure (M̃D(CP4/CP4
R
, d), K̃). Again,

it suffices to construct a bundle F̌d over the space with Kuranishi struc-
ture (MD(CP 4/CP 4

R
, d),K) so that F̌d admits an extension of the invo-

lutions cI . We define the fiber of F̌ p
d at f ∈ Vp as follows. By construc-

tion, f is a W 1,p-stable map satisfying the equation ∂̄f ∈ Ẽp. Since f
may not be holomorphic, we have to be careful how we define the com-
plex structure on f ∗OCP 4(5). Choose a c-invariant metric on OCP 4(5).
The associated complex connection on OCP 4(5) will also be c-invariant.
Equip f ∗OCP 4(5) with the complex structure induced from the (0, 1)
part of the pull-back connection. Then, we define as before,

F̌d|f = H0(D, f ∗OCP 4(5)).
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The transition functions ΦFd
pq are tautological. Because we used a c-

invariant connection to induce the complex structure on f ∗OCP 4(5),
the involutions cI lift to involutions of F̌d|∂I′MD(CP 4/CP 4

R
,d) for I ′ ≥ I.

Hence, F̌d descends to a bundle F̃d over (M̃D(CP 4/CP 4
R
, d), K̃). Further-

more, the proof of Lemma 13 shows that the isomorphism det(Fd) ≃ L

extends to an isomorphism det(F̃d) ≃ LeK.
Let ξ ∈ H0(CP4,OCP4(5)) be the section defining the hypersurface

Q ⊂ CP4. For general f ∈ Vp, the pull-back f−1ξ is not a holomorphic
section of f ∗OCP 4(5). Let

Pf : W 1,r(D, f ∗OCP4(5)) → H0(D, f ∗OCP4(5))

denote the L2 projection with respect to a c-invariant metric. We define
a section ξ̌p of F̌ p

d by

(22) ξ̌p(f) = Pf

(
f−1ξ

)
, f ∈ Vp.

The local sections ξ̌p clearly match under the transition functions ΦFd
pq

to define a global section ξ̌ of F̌d. Since ξ is c-invariant and Pf is defined

with respect to a c-invariant metric, we conclude that ξ̌ is compatible
with the involutions cI . So, ξ̌ descends to a section ξ̃ of F̃d.

Lemma 17. If the Kuranishi neighborhoods Vp are chosen sufficiently

small, then the sections ξ̌p vanish precisely on the image of the embed-

ding of spaces with Kuranishi structure

(MD(Q/QR, d),K
Q)

ĩ
→ (MD(CP4/CP4

R, d),K).

Moreover, the sections ξ̌p are transverse to zero.

We postpone the proof of Lemma 17 until we complete the proof of
Theorem 3. Indeed, we calculate

∫

[fMD(CP4/CP4

R
,d), eK]

e(F̃d)

in two different ways. First, we construct a transverse perturbation

PQ of (M̃D(Q/QR, d), K̃
Q). Let σQ denote the 0-dimensional simplicial

complex defined by PQ. By definition Ndisk
d = |σQ|. Now, extend PQ

to a transverse perturbation P of (M̃D(CP4/CP4
R
, d), K̃). By Lemma

17, the local sections ξ̃′p + s̃′p,n of F̃ p
d + Ẽp vanish transversely exactly

on σQ. Assuming the following lemma, this implies that

(23)

∫

[fMD(CP4/CP4

R
,d), eK]

e(F̃d) = Ndisk
d ,
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Lemma 18. The orientation induced on each zero simplex in σQ by

the Kuranishi structure K̃Q agrees with the orientation induced by the

Kuranishi structure K̃ and the vector bundle F̃d.

We postpone the proof of Lemma 18 until the end of the section.

On the other hand, the sections s̃p of Ẽp are transverse without any
perturbation since CP4 is convex. So, we may choose a transverse
multi-valued section η0 of Fd, and extend it to a multi-valued section

η̃ of F̃d over (M̃D(CP4/CP4
R
, d), K̃) such that the local sections η̃p + s̃p

will be transverse. This shows that

(24)

∫

[fMD(CP4/CP4

R
,d), eK]

e(F̃d) =

∫

fMD(CP 4/CP 4

R
,d)

e(Fd).

Combining equations (23) and (24), we deduce Theorem 3. �

Proof of Lemma 17. We may focus on ξ̌p for [p] ∈ MD(Q/QR, d). In-
deed, for other p, the Kuranishi neighborhood Vp is just an orbifold
chart on MD(CP4/CP4

R
, d). So, for all f ∈ Vp the pull-back f−1ξ is

holomorphic and non-zero. So, ξ̌p(f) is never zero. In case

[p] ∈MD(Q/QR, d),

we need to show that ξ̌p vanishes transversely on

V Q
p ⊂ Vp,

but nowhere else.
First, we establish some notation. Let ∇ denote a complex c-invariant

connection on OCP4(5) and let ∇f denote its pull-back to f ∗OCP4(5).
Let Y p → Vp and Zp → Vp denote the Banach space bundles with fibers

Y p
f = W 1,r(D, f ∗OCP4(5)), Zp

f = Lr
(
D,Ω0,1(f ∗OCP4(5))

)
.

Define a map of Banach-space bundles

d′′ : Y p → Zp

by

d′′f =
(
∇f

)0,1
: W 1,r(D, f ∗OCP4(5)) → Lr

(
D,Ω0,1(f ∗OCP4(5))

)
.

Since ker(d′′f) = H0(D, f ∗OCP4(5)), and d′′f is surjective for all f, we
have a short exact sequence

0 → F̌ p
d → Y p d′′

→ Zp → 0

Let

R : Zp → Y p
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denote the unique right inverse of d′′ such that the image of Rf is the
L2 complement of ker(d′′f). Let

P : Y p → F̌ p
d

denote the L2 projection. Define a section ξ̂p of Y p by

ξ̂p(f) = f−1ξ.

Throughout the following, we use ‖ · ‖ to denote a context dependent
norm. That is, for sections of Banach space bundles, ‖ · ‖ is the appro-
priate Banach space norm and for operators, ‖ · ‖ is the appropriate
operator norm.

Reformulating the definition of ξ̌p given in (22), we have

ξ̌p = P ξ̂p = ξ̂p −Rf ◦ d′′f(ξ̂p).

We will argue that for f close enough to p, we have

(25) ‖Rf ◦ d
′′
f(f

−1ξ)‖1,r ≤ ǫ dist(f, V Q
p )

for arbitrary epsilon. Here, dist(·, ·) denotes an arbitrary distance func-

tion. Since ξ vanishes transversely at Q, we know that ξ̂p vanishes
transversely on V Q

p . That is, we know that

‖f−1ξ‖1,r ≥ ǫ0 dist(f, V Q
p ).

Choosing ǫ < ǫ0, estimate (25) shows that after we perturb ξ̂p by Rf ◦

d′′f(ξ̂p) to obtain ξ̌p, it is still transverse and vanishes only on V Q
p .

In order to prove estimate (25), we calculate d′′f(f
−1ξ). Let j denote

the complex structure on D, let J denote the complex structure on CP4

and let I denote the complex structure on OCP4(5). Assume that

(26) ∂̄f = ηf ∈ (Ěp)f .

We calculate,

d′′f(f
−1ξ) = ∇f (f−1ξ) + I∇f(f−1ξ) ◦ j(27)

= ∇ξ ◦ du+ I(∇ξ ◦ du) ◦ j

= ∇ξ ◦ du+ I (∇ξ ◦ (−J ◦ du ◦ j + ηf )) ◦ j

= I∇ξ ◦ ηf ◦ j.

The third equality uses equation (26) and the fourth equality uses the
holomorphicity of ξ to cancel I and −J.

Composition with ∇ξ defines a linear map

∇ξ◦ : Ep → Zp.
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Observe that for f ∈ V Q
p , we have

(Ep)f = (EQ
p )f ⊂ EQ

f = Lp
(
D,Ω0,1(f ∗TQ)

)
.

Since ξ vanishes on Q, we see that ∇ξ◦ maps (Ep)f to zero for f ∈ V Q
p .

By continuity, we have

‖(∇ξ◦)f‖ ≤ C dist(f, V Q
p ).

So, we infer from calculation (27) that

(28) ‖d′′f(f
−1ξ)‖ ≤ C dist(f, V Q

p )‖ηf‖.

Furthermore, we can assume a uniform bound

(29) ‖Rf‖ ≤ C ′

for all f ∈ Vp. For any ǫ′ > 0, we can choose Vp so small that for all
f ∈ Vp we have

(30) ‖ηf‖ ≤ ǫ′.

So, choosing ǫ′ such that ǫ′CC ′ < ǫ and combining estimates (28),
(29) and (30), we conclude estimate (25). This completes the proof of
Lemma 17. �

Proof of Lemma 18. The following proof is a generalization of the ar-
gument given in [19, Section 8, Proposition 8.8]. In the following, we
will abbreviate

TB := TBD(CP 4/CP 4
R
, d), TBQ := TBD(Q/QR, d).

We continue to use the bundles Y and Z introduced in the proof of
Lemma 17. Since V Q

p = ξ̌−1(0) ⊂ Vp, and by Lemma 17, ξ̌ is transverse

to 0, we conclude that dξ̌ induces and isomorphism

det(TV Q
p )

∼
→ det(TVp) ⊗ det(F̌d)

∗.

along V Q
p . Using the fact that by construction EQ

p = Ep|V Q
p
, we can

tensor the above isomorphism with det(EQ
p )∗ = det(Ep)

∗ to obtain an
isomorphism

(31) LKQ

dξ
−→ LK ⊗ det(F̌d)

∗.

The lemma will follow if we show that isomorphism (31) respects the
canonical orientations of each of the three deteminant bundles LKQ ,LK,
and det(F̌d). For this purpose, we introduce the commutative diagram

of vector bundles over Ṽ Q
p of Figure 3. Here, we implicitly consider the

restrictions of TB, TBQ, E , EQ, TVp and Ep to V Q
p . We denote by π

and πQ the canonical projections to the quotient.
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EQ
p

∼ //

��

Ep
//

��

0

��

T Ṽ Q
p

dsQ
p

::uuuuuuuuuu

//

��

T Ṽp

dsp

<<
y

y
y

y
y

y
y

y
y

dξ̌
//

��

F̌p

AA
�

�
�

�
�

�
�

�

��

EQ //

πQ

��

E
dξ

//

π

��

Z

��

TBQ

D∂̄Q

99rrrrrrrrrrr

//

πQ◦D∂̄Q

��

TB

D∂̄

::
uuuuuu

uuuu dξ
//

π◦D∂̄

��

Y

d′′
??

~
~

~
~

~
~

~
~

d′′

��

EQ/EQ
p

// E/Ep
// Z

EQ/EQ
p

∼
::ttttttttt

// E/Ep

∼

<<
x

x
x

xx
x

x
xx

// Z

∼

@@
�

�
�

�
�

�
�

�
�

Figure 3.

In order that all squares in the diagram of Figure 3 commute, we
must choose the complex connection ∇ on OCP 4(5) carefully. Indeed,
dξ|Q induces an isomorphism of complex vector bundles

dξ|Q : TCP 4|Q/TQ
∼

−→ OCP 4(5).

So, we are free to choose ∇ to be the complex connection induced by
dξ|Q from the connection on TCP 4|Q/TQ induced by the Levi-Civita
connection of CP 4 with respect to the standard Kahler metric. This
ensures that

d′′ ◦ dξ = dξ ◦D∂̄,

i.e. that the middle right horizontal square of the diagram commutes.
Moreover, the proof of Lemma 17 implies that

iF ◦ dξ̌ = dξ ◦ i,

i.e. that the front upper right vertical square of the diagram commutes.
The commutativity of the remaining squares is straightforward.

Moreover, all columns and rows of Figure 3 are exact. We think
of the diagram as an exact square of two-step complexes. Applying
the determinant functor to the long exact sequence of a short exact
sequence of two step complexes yields an isomorphism of determinant
bundles. In particular, the five non-trivial rows and columns of Figure 3
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ker(ds
Q
p ) //

��

ker(dsp) //

��

F̌d
δ //

��
TV

Q
p

//

��

TVp
dξ̌

//

��

F̌d

��
E

Q
p

//

��

Ep
//

��

0

��δ // coker(ds
Q
p ) // coker(dsp) // 0

Figure 4.

LKQ
//

dξ̌
��

det(dsQ
p ) //

��

det(D∂̄Q)

��

LK ⊗ det(Fd)
∗ // det(dsp) ⊗ det(Fd)

∗ // det(D∂̄) ⊗ det(d′′)

Figure 5.

give isomorphisms

det(dsQ
p ) ≃ det(D∂̄Q), det(dsp) ≃ det(D∂̄), det(F̌d) ≃ det(d′′),

det(D∂̄) ≃ det(D∂̄Q) ⊗ det(d′′)∗, det(dsQ
p ) ≃ det(dsp) ⊗ det(F̌d)

∗.

(32)

Taking determinants of the rows and columns of the diagram of Fig-
ure 4, we obtain isomorphisms

det(dsQ
p ) ≃ LKQ

, det(dsp) ≃ LK

LKQ
≃ LK ⊗ det(F̌d)

∗, det(dsQ
p ) ≃ det(dsp) ⊗ det(F̌d)

∗.(33)

Clearly the last isomorphism of (32) agrees with the last isomorphism
of (33). Putting all the isomorphisms of (32) and (33) together, we
obtain the diagram of Figure 5. The left square of Figure 5 commutes
by the commutativity of Figure 4. The right square of Figure 5 com-
mutes by the commutativity of Figure 3. The rows of Figure 5 preserve
orientation by definition. The right column of Figure 5 preserves orien-
tation by [19, Section 8, Proposition 8.4] and the compatibility of s, p,
and p′. By commutativity the left column of Figure 5 also preserves
orientation, completing the proof. �
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6. Multiple cover formula

6.1. Local CP1. Consider CP1 with the anti-holomorphic involution c
defined in Section 1.3.3. The involution c lifts canonically to OCP1(−1).
The total space of the rank 2 bundle

OCP1(−1) ⊕OCP1(−1) → CP1

with the associated anti-holomorphic involution may be viewed as local
model for a rational curve in Q.

The local disk invariants of CP1 are, by definition,

Ldisk
d =

∫

fMD(CP1/CP1

R
,d)

e(Gd ⊕Gd),

where Gd is the real vector bundle over with fiber

Gd|[f :(D,∂D)→(CP1,CP1

R
)] = H1(C, f̃ ∗OCP1(−1))R.

Here,

[f̃ : C → CP1] ∈MR(CP1, d)

is the stable rational map obtained from the stable disk map via reflec-
tion. As before, we consider only the d odd case.

Proposition 19. For d odd, Ldisk
d = 2d−2.

The factor of 2 on the right occurs since the original CP1 consists
of 2 disks. Hence, Proposition 19 may be viewed as the calculation of
twice the multiple cover contribution of a single disk.

We emphasize that d is the degree of the stable rational map ob-
tained from the stable disk map by reflection. In particular, the degree

of a map f in M̃D(CP1/CP1
R
, d) restricted to ∂D may be any odd in-

teger less than or equal to d. This is necessary in order to perform the
analogue of the construction of Proposition 11 for target space CP 1,
as the diffeomorphisms cI do not preserve boundary degree. In this
regard, our approach differs from the approach of [10].

6.2. Torus action. Let the torus T act on CP1 by

ξ · [u, v] = [ξu, ξv].

The fixed points are

ζ1 = [1, 0], ζ2 = [0, 1]

with tangent weights 2λ and −2λ respectively. The T-action preserves
CP1

R
, and therefore determines a translation action on the moduli space

of disks M̃D(CP1/CP1
R
, d).
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The T-action lifts to OCP1(−1) with fiber weights −λ and λ over ζ1
and ζ2 respectively, the unique lift which respects the real structure on
OCP1(−1).

6.3. Proof of Proposition 19. We give two different proofs.

First proof. The invariants Ldisk
d are calculated by T-equivariant local-

ization. Since the steps are so similar to the proof of Theorem 1, we
give an abbreviated account.

As before, to each map [f ] ∈ MD(CP1/CP1
R
, d)T, we associate an

intersection disk. The intersection disk terms I(ζ1, p) and I(ζ2, p) are
both equal to

(−1)
p−1

2

21−e

p

(p!!)2

p!
.

The sign (−1)
p−1

2 comes from the normal bundle to the disk map just
as in the proof of Lemma 6. We do not have to calculate the orientation
of H1(C, f̃ ∗OCP1(−1))R because it appears twice.

Givental’s equivariant correlator SL for the local geometry is defined
by

SL(T, ~) =

∑

r≥0

e(H/~+r)T e2∗(
ctop(H

1(O(−1)) ⊕H1(O(−1)))

~ − ψ2
) ∈ H∗

T
(CP1)

where

e2 : M 0,2(CP1, d) → CP1

is the evaluation map. The calculation of SL in [6] is much easier than
SQ,

SL(T, ~) =
∑

r≥0

erT

∏r−1
s=0(H + s~)2

∏r
s=1(H − λ+ s~)(H + λ+ s~)

.

No mirror transform is needed.
The local disk potential Fdisk

L is defined by summing over odd de-
grees,

Fdisk
L =

∑

d odd

edT/2Ldisk
d .

As before,

Fdisk
L =

∑

p odd

〈SL(T,
2

p
λ), [ζ1]〉 · I(ζ1, p) +

∑

p odd

〈SL(T,−
2

p
λ), [ζ2]〉 · I(ζ2, p).
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Evaluation yields

Fdisk
L = 2

∑

r≥0

∑

p odd

e(
p

2
+r)T 21−p−2r

(p+ 2r)2

(−1)
p−1

2

p

(p!!)2

p!r!

∏r
i=1(p + 2i)2

∏r
i=1(p+ i)

.

The proof of the Proposition is concluded by extracting the edT/2 terms
on the right and executing the sum,

Ldisk
d =

2

d2

∑

1≤p odd≤d

(d!!)2

2d−1

(−1)
p−1

2

(
d−p
2

)
!
(

d−p
2

+ p
)
!p

=
2

d2
.

Remarkably, the binomial identity required is exactly (12)! �

Second proof. Although each copy of OCP1(−1) admits a unique real
T-action, there is some freedom in the choice of action on the sum

OCP1(−1) ⊕OCP1(−1).

Indeed, we can choose the action induced by the isomorphism of vector
bundles with real structure,

(34) OCP1(−1) ⊕OCP1(−1) ≃ OCP1(−1) ⊗C Wλ.

Here, Wλ = Vλ ⊗ C and Vλ is the real representation of the torus of
weight λ.

With the T-action determined by the right side of (34), the localiza-
tion contribution from any reducible open stable map vanishes. Indeed,
we work this out explicitly for a torus fixed open stable map f with re-
ducible domain D consisting of one disk component Do and one sphere
component Dc. The general case is similar.

Denote the single node of D by z. Consider the exact sequence

0 → H0(z, f ∗OCP1(−1) ⊗Wλ) → H1(D, f ∗OCP1(−1) ⊗Wλ)

→ H1(Do, f
∗OCP1(−1) ⊗Wλ) ⊕H1(Dc, f

∗OCP1(−1) ⊗Wλ) → 0.

We claim that H0(z, f ∗OCP1(−1) ⊗Wλ) contains a zero weight space
and therefore so does H1(D, f ∗OCP1(−1) ⊗ Wλ). which immediately
implies that the localization contribution of [f ] vanishes. Indeed,

H0(z, f ∗OCP 1(−1) ⊗Wλ)

is just the fiber of f ∗OCP 1(−1)⊗Wλ at z. Denoting by Cλ the complex
representation of the torus of weight λ we have

Wλ ≃ Cλ ⊕ C−λ, f ∗OCP 1(−1)z ≃ C±λ.
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Hence,
H0(z, f ∗OCP 1(−1) ⊗Wλ) = C0 ⊕ C±2λ.

as claimed.
It remains to calculate the localization contribution from the single

torus fixed irreducible open stable map of degree d. This is easily seen
to be 2

d2 . �

The two proofs of Proposition 19 together provide a geometric eval-
uation of the binomial sum of Lemma 8.

6.4. Integrality. The virtual disk counts ndisk
d of Definition 2 have

not yet been proven to be integers. However, the table in Section 7
provides substantial evidence for the integrality claim.

7. Tables

Table 1 shows the value of the disk Gromov-Witten invariant Ndisk
d

for small d.

Table 1.

d Ndisk
d

1 30

3 4600
3

5 5441256
5

7 47823842250
49

9 28973369597500
27

11 160812279574853640
121

13 301152359429255569200
169

15 2528247216911976710478

17 1081454384062665012504422250
289

19 2066166201384849550431238897500
361

21 440336544802747748968402664543390
49

23 7625558614788648016004683159051585650
529

25 2942308498496733293257158606365620128756
125

27 9481608375404186315963625791852891724001750
243

29 55101515400393595065761084565358564820821590000
841
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Table 2 shows the corresponding virtually enumerative invariants
ndisk

d . Recall the virtual counts nreal
d of real curves in Q differ by a

factor of 1/2,

nreal
d =

1

2
ndisk

d .

Table 2.

d ndisk
d

1 30
3 1530
5 1088250
7 975996780
9 1073087762700
11 1329027103924410
13 1781966623841748930
15 2528247216911976589500
17 3742056692258356444651980
19 5723452081398475208950800270
21 8986460098015260183028517362890
23 14415044640432226873354788580437780
25 23538467987973866346057268850924917500
27 39018964507836157678862657579522297754750
29 65519043282275380577599387116954298241167170
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