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1 The Fourier Transform of Tempered Distribu-

tions

1.1 The Fourier transforms of L1 functions

Theorem-Definition 1.1. Let f ∈ L1(Rn,C). Define its Fourier transform f̂ as
follows:

∀ξ ∈ Rn f̂(ξ) = (2π)−
n
2

∫
Rn

e−ix·ξf(x) dx.

We have that f̂ ∈ L∞(Rn) and

(1.1) ∥f̂∥L∞(Rn) ≤ (2π)−
n
2 ∥f∥L1(Rn).

Moreover f̂ ∈ C0(Rn) and

(1.2) lim
|ξ|→+∞

|f̂(ξ)| = 0.

We shall also sometimes denote the Fourier transform of f by F(f).

Remark 1.2. There are several possible normalizations for defining the Fourier
transform of an L1 function such as for instance

f̂(ξ) :=

∫
Rn

e−2iπx·ξf(x) dx.

None of them gives a full satisfaction. The advantages of the one we chose are the
following:

i) f 7−→ f̂ will define an isometry of L2 as we will see in Proposition 1.5.

ii) With our normalization we have the convenient formula (see Lemma 1.11)

∀k = 1 . . . n ∂ξk f̂ = i ξk f̂

but the less convenient formula (see theorem 1.62)

ĝ ∗ f = (2π)n/2 ĝ f̂ .

Proof of Theorem 1.1. The first part of the theorem that is inequality (1.1) is

straightforward. We prove now that f̂ ∈ C0(Rn). Let fk ∈ C∞
0 (Rn) such that

fk −→ f strongly in L1(Rn).

It is clear that since fk ∈ C∞
0 (Rn) the functions f̂k are also C∞. Inequality (1.1)

gives
∥f̂ − f̂k∥L∞(Rn) ≤ (2π)−

n
2 ∥f − fk∥L1(Rn).

Thus f̂ is the uniform limit of continuous functions and, as such, it is continuous. It
remains to prove that |f |(ξ) uniformly converges to zero as |ξ| converge to infinity.
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In Proposition 1.9 we shall prove that (1.2) holds if f ∈ C∞
0 (Rn). Let f ∈ L1(Rn),

let ε > 0 and let φ ∈ C∞
0 such that

(1.3) ∥f − φ∥L1(Rn) ≤
ε

2
(2π)

n
2 .

There exists R > 0 such that

(1.4) |ξ| > R =⇒ |φ̂(ξ)| ≤ ε

2
.

Combining (1.3) and (1.4) together with (1.1) applied to the difference f − φ, we
obtain

|ξ| > R =⇒ |f̂(ξ)| ≤ ∥f̂ − φ̂∥L∞ + |φ̂(ξ)|
≤ ε.

This implies (1.2) and Theorem 1.1 is proved. 2

Exercise 1.3. Prove that for any a ∈ R∗
+

ê−a|x|2 =
1

(2a)
n
2

e−
|ξ|2
4a .

Prove that for any a ∈ R∗
+

f̂a(x) = an f̂(aξ)

where fa(x) := f(x
a
) for any x ∈ Rn.

It is then natural to ask among the functions which are continuous, bounded in
L∞ and converging uniformly to zero at infinity, which ones are the Fourier trans-
form of an L1 function. Unfortunately, there seems to be no satisfactory condition
characterizing the space of Fourier transforms of L1(Rn). We have nevertheless the
following theorem.

Theorem 1.4. (Inverse of the Fourier transform)

Let f ∈ L1(Rn;C) such that f̂ ∈ L1(Rn;C) then

∀x ∈ Rn f(x) = (2π)−
n
2

∫
Rn

eix·ξ f̂(ξ) dξ.

Proof of Theorem 1.4. We can of course explicitly write

(2π)−
n
2

∫
Rn

eix·ξ f̂(ξ) dξ = (2π)−
n
2

∫
Rn

eix·ξ dξ

∫
Rn

eix·y f(y) dy.

The problem at this stage is that we cannot a-priori reverse the order of integrations
because the hypothesis for applying Fubini’s theorem are not fullfilled:

(ξ, y) 7−→ eiξ(x−y)f(y) /∈ L1(Rn × Rn)

unless f ≡ 0.
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The idea is to insert the Gaussian function e−
ε2|ξ|2

4 where ε is a positive number
that we are going to take smaller and smaller. Introduce

Iε(x) := (2π)−n

∫
Rn

eix·ξe−
ε2|ξ|2

4 dξ

∫
Rn

e−iξ·y f(y) dy.

Now we have

(ξ, y) 7−→ e−
ε2|ξ|2

4 eiξ(x−y)f(y) ∈ L1(Rn × Rn)

and we can apply Fubini’s theorem.

We have in one hand

Iε(x) = (2π)−
n
2

∫
Rn

eix·ξ e−
ε2|ξ|2

4 f̂(ξ) dξ.

We can bound the integrand uniformly as follows:

∀x, ξ ∈ Rn
∣∣∣eix·ξ e− ε2|ξ|2

4 f̂(ξ)
∣∣∣ ≤ |f̂ ∗ ξ)|.

By assumption, the right-hand side of the inequality is integrable and we have
moreover, for every x and ξ

lim
ε⇒0

eix·ξ e−
ε2|ξ|2

4 f̂(ξ) = eix·ξ f̂(ξ).

Hence dominated convergence theorem implies that for any x ∈ R

(1.5) lim
ε⇒0

Iε(x) = (2π)−
n
2

∫
Rn

f̂(x) eix·ξ dξ.

Applying Fubini gives also

Iε(x) = (2π)−n

∫
Rn

f(y) dy

∫
Rn

e−i(y−x)·ξ e−
ε2|ξ|2

4 dξ

= (2π)−
n
2

∫
Rn

f(y)F
(
e−

ε2

4
|ξ|2)(y − x) dy

using Exercise 1.3, we then obtain

Iε(x) = (2π)−
n
2

∫
Rn

f(y) e
−|y−x|2

ε2
2

n
2

εn
dy.

One proves without much difficulties that for any Lebesgue point x ∈ R for f the
following holds

lim
ε⇒0

(2π)−
n
2

∫
Rn

f(y) e−
|y−x|2

ε2
2

n
2

εn
dy = f(x).

Continuing this identity with (1.5) gives the theorem. 2

The transformation

f ∈ L1(Rn) 7−→ (2π)−
n
2

∫
Rn

eix·ξ f(ξ) dξ

will be denoted
∨
f or also F−1(f).
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Proposition 1.5. Let f and g ∈ L1(Rn;C). Then∫
Rn

f(x) ĝ(x) dxn =

∫
Rn

f̂(x) g(x) dxn.

Let f ∈ L1(Rn;C) such that f̂ ∈ L1(Rn;C), then∫
Rn

f(x) f(x) dxn =

∫
Rn

f̂(ξ) f̂(ξ) dξn .

This last identity is called Plancherel identity.

Proof of Proposition 1.5. The proof of the first identity in Proposition 1.5 is a
direct consequence of Fubini’s theorem. The second identity can be deduced from
the first one by taking g := F−1(f) and by observing that

F−1(f) = F(f) . 2

The second identity is an invitation to extend the Fourier transform as an isom-
etry of L2. The purpose of the present chapter is to extend the Fourier transform to
an even larger class of distributions. To that aim we will first concentrate on looking
at the Fourier transform in a “small” class of very smooth function with very fast
decrease at infinity: the Schwartz space.

1.2 The Schwartz Space S(Rn)

The Schwartz functions are C∞ functions whose successive derivatives decrease faster
than any polynominal at infinity. We shall use below the following notations:

∀α = (α1, . . . , αn) ∈ Nn xα := xα1
1 . . . xαn

n

∀β = (β1, . . . , βn) ∈ Nn ∂βf :=
∂β1

∂xβ1

1

. . .
∂βn

∂xβn
n

(f)

and |α| :=
∑
αi.

Definition 1.6. The space of Schwartz functions is the following subspace of C∞(Rn;C):

S(Rn) :=


φ ∈ C∞(Rn;C) s.t.

∀p ∈ N Np(φ) := sup
|α| ≤ p
|β| ≤ p

∥xα ∂βφ∥L∞(Rn) < +∞

 .

The following obvious proposition holds

Proposition 1.7. S(Rn) is stable under the action of derivatives and the multipli-
cation by polynomials in C[x1, . . . , xn].

We prove now the following proposition:
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Proposition 1.8. There exists Cn > 0 s.t. ∀φ ∈ S(Rn)∑
|α| ≤ p
|β| ≤ p

∥xα ∂βφ∥L1(Rn) ≤ Cn Np+n+1(φ).

Proof of Proposition 1.8. We have∫
Rn

|xα ∂βφ(x)| dxn ≤
∫
Rn

dx

(1 + |x|n+1)
(1 + |x|n+1) |xα| |∂βφ|(x) dxn

≤ Cn Np+n+1(φ).

(1.6)

This concludes the proof of the proposition. 2

The following proposition is fundamental in the theory of tempered distributions
we are going to introduce later on.

Proposition 1.9. Let φ be a Schwartz function on Rn, then it’s Fourier transform
is also a Schwartz function. Moreover for any p ∈ N there exists Cn,p > 0 such that

Np(φ̂) ≤ Cn,p Np+n+1(φ).

Hence the Fourier transform is a one to one linear transformation from S(Rn) into
itself. We shall see in the next sub-chapter that it is also continuous for the topology
induced by the ad-hoc Fréchet structure on S(R).

Before proving Proposition 1.9, we need to establish two intermediate elementary
lemmas whose proofs are left to the reader. (They are direct applications respectively
of the derivation with respect to a parameter in an integral as well as integration
by parts. Both operations are justified due to the smoothness of the integrands as
well as the fast decrease at infinity).

We have first

Lemma 1.10. Let φ ∈ S(Rn), then φ̂ is a C1 function and

∀j = 1, . . . , n ∂ξj φ̂(ξ) = F(−ixj φ).

We have also the following lemma:

Lemma 1.11. Let φ ∈ S(Rn), then

∀j = 1, . . . , n ∂̂xj
φ = i ξj φ̂(ξ).

Observe that the two previous lemmas are illustrating the heuristic idea accord-
ing to which Fourier transform exchanges derivatives or smoothness with decrease
at infinity.

Proof of Proposition 1.9. By iterating Lemma 1.10 and Lemma 1.11, we obtain
that φ̂ ∈ C∞ and we have

|ξα ∂βξ φ̂(ξ)| =
∣∣F(∂αx (xβφ))∣∣.
5



Hence using inequality (1.1) we obtain

Np(φ̂) = sup
|α| ≤ p
|β| ≤ p

∥ξα ∂βξ φ̂∥L∞(Rn)

= sup
|α| ≤ p
|β| ≤ p

∥∥F(∂αx (xβφ))∥∥L∞(Rn)

≤ sup
|α| ≤ p
|β| ≤ p

(2π)−
n
2 ∥∂αx (xβφ)∥L1(Rn)

≤ Cn,p sup
|α| ≤ p
|β| ≤ p+ n+ 1

∥xβ ∂αx φ∥L∞(Rn) ≤ Cn,p Np+n+1(φ),

where we used (1.6). This concludes the proof of the proposition. 2

We shall now use the Fourier transform on S(Rn) in order to extend by duality
the Fourier transform to the “dual” space to S(Rn) as the first identity of proposition
1.5 is inviting to do. The idea behind is that S(Rn) is a relatively small space and
we expect the “dual” to be big and we would then extend Fourier to this larger
space. Now the question is to give a precise meaning to the dual space to S(Rn).
The classical framework of Banach space is not sufficient since (S(Rn),Np) is not
complete. We have to build a topology out of the countable family of norms (Np)p∈N.
This is the purpose of the next subsection.

1.3 Fréchet Spaces

Definition 1.12. Let V be a R (or C) vector space

N : V → R+

is a pseudo-norm if

i) ∀λ ∈ R (or C), ∀x ∈ V N (λx) = |λ| N (x)

ii) ∀x, y ∈ V N (x+ y) ≤ N (x) +N (y).

In other words, a pseudo-norm is a norm without the non-degeneracy axiom.

Definition 1.13. (Fréchet Space)

Let V be a R or C vector space equipped with an increasing sequence of pseudo-norms

Np ≤ Np+1

such that the following non-degeneracy condition is satisfied

Np(x) = 0

∀p ∈ N

}
⇐⇒ x = 0.

6



Introduce on V × V the following distance:

∀x, y ∈ V d(x, y) =
+∞∑
p=0

2−pmin{1,Np(x− y)}.

We say that (V, (Np)p∈N) defines a Fréchet space if (V, d) is a complete metric space.

Examples of Fréchet Spaces (left as exercise)

i) A Banach space (V, ∥ · ∥) for the constant sequence of norms Np(·) := ∥ · ∥ is
Fréchet.

ii) The space of smooth functions C∞(Bn
R(0)) over the ball of Rn of center 0 and

radius R is a Fréchet space for the sequence of Cp-norms

∀p ∈ N ∥f∥Cp := sup
x ∈ Bn

1 (0)
|α| ≤ p

|∂αf |(x).

iii) The space C∞(Rn) of smooth functions over Rn is a Fréchet space for the
sequence of Cp-norms over B2p(0)

∀p ∈ N ∥f∥Cp(B2p (0)) := sup
x ∈ Bn

2p(0)
|α| ≤ p

|∂αf |(x).

iv) We first recall the following classical notations.

Let φ ∈ C0(Rn) then we define supp φ := {x, φ(x) ̸= 0}

Let K be a compact subset of Rn. For any p ∈ N denote Cp
K = {φ ∈ Cp(K)

and suppφ ⊂ K} and

∥φ∥Cp =
∑
|α|≤p

∥∂αφ∥∞ .

(Cp
K , ∥ · ∥Cp) is a Banach space.

v) Let K be a compact subset of Rn. Denote

C∞
K = {φ ∈ C∞, supp φ ⊂ K}.

C∞
K is a Fréchet space for the collection of pseudo-norms (norms in fact) Pi(·) =

∥ · ∥Ci .

Proof of the fact that C∞
K is complete for d where d(f, g) =

∑∞
i=0 2

−i min{Pi(f−
g), 1} :
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Let fn be a Cauchy sequence in (C∞
K , d), thanks to proposition 1.15

∀i ∀ε > 0 ∃ N ∈ N Pi(fn − fm) ≤ ε ∀n,m ≥ N.

=⇒ ∀ α : sup
x∈K

|∂αfn(x)− ∂αfm(x)| → 0 for n,m→ ∞.

In other words, for any mmulti-index α ∂αfn converges uniformly towards a
continuous function να which is clearly supported in K. Then the conclusion
follows from the following classical result from Analysis 2 Let fn be a sequence

of C1 functions on Ω and arbitrary open subset of Rn

i) fn converges everywhere to f .

ii) ∂ifn converges uniformly to a continuous map gi.

Then f ∈ C1 and ∂if = gi.

Applying iteratively this result to the situation above gives : ∂αν0 = να. Since
the ∂αfn uniformly converge towards να, Pi(fn − ν0) tends to zero for any i.
This implies that ν0 is in C∞

K and the space is closed for d.

Remark 1.14. Let Ω be an open set of Rn. The space C∞
0 (Ω) of compactly

supported C∞ function of Ω does not have such a simple topology but it is
the union of the spaces C∞

Kj
where Kj is a sequence of compact sets such that

∪j∈NKj = Ω.

vi) The space Lq
loc(Rn) of measurable functions of Rn which are Lq on every com-

pact of Rn(q ∈ [1,∞]) is Fréchet for the family of pseudo-norms(
Lq(B2p(0)

)
p∈N.

vii) (
S(Rn), (Np)p∈N

)
,

whereNp are the pseudo-norms defined in Definition 1.6 define a Fréchet Space.
2

In practice the distance d is never really used and can also be replaced by

da(x, y) :=
∑
p∈N

ap min{1,Np(x− y)},

where a = (ap)p∈N is an arbitrary sequence of positive number such that
∑

p∈N ap <
+∞. The following proposition happens to be very useful in the context of Fréchet
space.

Proposition 1.15. Let F = (V, (Np)p∈N) be a Fréchet space, then the following
three assertions hold true:
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i) Let (fn)n∈N be a sequence of elements from V

fn
d−→

n⇒+∞
f ⇐⇒ ∀p ∈ N Np(fn − f) −→

n⇒+∞
0.

ii) (fn)n∈N is a Cauchy sequence in (F, d) if and only if (fn)n∈N is a Cauchy
sequence for all the pseudo-norms Np.

iii) Each of the pseudo-norm Np is continuous in (F, d).

Proof of Proposition 1.15. First we prove the assertion i):

fn
d−→

n⇒+∞
f =⇒ ∀p ∈ N min{1,Np(fn − f)} −→

n⇒+∞
0

⇐⇒ ∀p ∈ N Np(fn − f) −→
n⇒+∞

0.

We now prove the reciprocal of i):

Let ε > 0 and choose Q ∈ N such that

+∞∑
p=Q

2−p <
ε

2
.

Since Np(fn − f) −→
n→+∞

0 for every p there exists N ∈ N such that

∀p < Q and n ≥ N Np(fn − f) ≤ ε

4
.

Thus ∀n ≥ N :

+∞∑
p=0

2−p min{1,Np(fn − f)}

≤
Q−1∑
p=0

2−p Np(fn − f) +
+∞∑
p=Q

2−p

≤ ε

2
+

ε

2
= ε.

This implies that fn
d−→

n→+∞
f . This proves i).

The same arguments imply ii).

The proof of iii) is straightforward. Indeed, let p ∈ N

d(f, g) ≤ 2−p ε =⇒ Np(f − g) ≤ ε.

This concludes the proof of Proposition 1.15. 2

The following proposition extends a well-known fact in normed space topology.
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Proposition 1.16. Let F = (V, (Np)p∈N) and G = (W, (Mq)q∈N) be two Fréchet
spaces and let L : V → W be a linear map. The following three assertions are
equivalent:

i) L is continuous at 0,

ii) L is continuous everywhere,

iii) ∀q ∈ N ∃Cq > 0 and ∃p ∈ N, s.t. ∀f ∈ F Mq(Lf) ≤ Cq Np(f).

Proof of Proposition 1.16. The implication ii) =⇒ i) is tautological. We are now
proving i) =⇒ iii).

Since L is continuous at 0, for any neighbourhood V of 0 ∈ W , there exists an
open neighbourhood U of 0 ∈ V such that

L(U) ⊂ G.

In other words, U ⊂ L−1(V). Let q ∈ N and choose Vq = M−1
q ([0, 1)). Since Mq

is continuous in (W,dG), due to Proposition 1.16, Vq is an open set containing 0.
Because the topology in F is a metric topology, there exists αq > 0 such that

BdF
αq
(0) ⊂ Uq ⊂ L−1(Vq),

where BdF
αq
(0) denotes the ball of center 0 ∈ V and radius αq for the Fréchet distance

dF . In other words, we have

(1.7)
∑
p∈N

2−p min{1,Np(f)} < αq =⇒ Mq

(
L(f)

)
< 1.

Let p0 ∈ N such that

(1.8)
+∞∑

p=p0+1

2−p ≤ αq

4
.

Since Np is increasing with respect to p

(1.9) Np0(f) <
αq

4
=⇒

∑
p≤p0

2−p Np(f) <
αq

2
.

Hence, combining (1.7), (1.8) and (1.9), we obtain for any f ∈ V

Np0(f) <
αq

4
=⇒ Mq

(
L(f)

)
< 1

using the homogeneity of the two pseudo-norms Mp0 and Mq, we have proved

Mq

(
L(f)

)
≤ 4

αq

Np0(f).

Hence we have proved the implication i) =⇒ iii).
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In order to conclude the proof of Proposition 1.16, it suffices to establish the
implication iii) =⇒ ii).

We assume iii) and we are going to prove that L is continuous. Since the topolo-
gies of both F and G are metric, it suffices to show that for any sequence fn ∈ V
converging to f ∈ V for dF , then

(1.10) lim
n→+∞

dG
(
L(fn), L(f)

)
= 0.

Because of Proposition 1.15 i) in order to establish (1.10), it suffices to prove

(1.11) ∀q ∈ N lim
n→+∞

Mq

(
L(fn − f)

)
= 0.

Let q ∈ N, because we are assuming iii), there exists p0 ∈ N and Cq > 0 such that

∀g ∈ V Mq

(
L(g)

)
≤ Cq Np0(g).

Let ε > 0. Let N be large enough such that

∀n ≥ N Np0 (fn − f) ≤ ε

Cq
,

then we have
∀n ≥ N Mq

(
L(fn − f)

)
≤ ε.

This implies (1.11) and L is continuous everywhere. 2

The following theorem is the extension of Fréchet spaces of the famous Banach-
Steinhaus theorem for normed spaces.

Theorem 1.17. (Banach-Steinhaus for Fréchet Spaces)

Let F = (V, (Np)p∈N and G = (W, (Mq)q∈N) be two Fréchet spaces. Let Ln be a
sequence of linear maps from V into W and assume that each Ln is continuous from
F into G. Assume moreover that for any f ∈ V the sequence Lnf converges to a
limit Lf in W . Then L defines a linear and continuous map.

Proof of Theorem 1.17. The linearity of L is straightforward. It remains to
prove that L is continuous. For any q ∈ N and positive number A we introduce the
following subset of V :

Cq
A := {f ∈ V s.t. ∀n ∈ N Mq(Lnf) ≤ A}.

First, we observe that Cq
A is a closed set. Indeed, it is the intersection of closed sets

Cq
A =

⋂
n∈N

(Mq ◦ Ln)
−1([0, A]).

We now claim that

(1.12)
⋃

A∈R∗
+

Cq
A = V.
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Indeed, by assumption, dF (Lnf, Lf) −→
n→+∞

0, this implies that

∀q ∈ N sup
n∈N

Mq(Lnf) < +∞.

Thus if one takes A > supn∈N Mq(Lnf), one has that f ∈ Cq
A and this proves the

claim (1.12).

Obviously A ≥ A′ =⇒ Cq
A′ ⊂ Cq

A. Thus

V =
⋃
j∈N

Cq
2j
.

By assumption (V, dF ) is a complete metric space to which we can apply Baire’s
theorem and there exists j0 ∈ N such that Cq

2j0
has a non-empty interior:

Ċq

2j0
̸= ∅.

Let f0 ∈ Ċq

2j0
, then there exists α > 0 such that

BdF
α (f0) ⊂ Cq

2j0
=
⋂
n∈N

(Mq ◦ Ln)
−1([0, 2j0 ]).

In other words:

(1.13) dF (f, f0) < α =⇒ sup
n∈N

Mq(Lnf) ≤ 2j0 .

Let p0 ∈ N such that

(1.14)
∞∑

j=p0+1

2−j <
α

4
.

Since Np is increasing with respect to p

Np0(f − f0) <
α

4
=⇒

p0∑
j=0

2−j Np(f − f0) <
α

2
.

Thus, because of (1.13) and (1.14), we deduce

Np0(f − f0) <
α

4
=⇒ dF (f, f0) < α

=⇒ sup
n∈N

Mq(Lnf) ≤ 2j0 .

Since supn∈N Mq(Ln f0) < 2j0 , we have

Np0(h) <
α

4
=⇒ sup

n∈N
Mq(Lnh) ≤ 2j0+1.

The homogeneity of the pseudo-norms gives then

sup
n∈N

Mq(Lnh) ≤
4

α
2j0+1 Np0(h).
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Since Ln h −→
n→+∞

Lh by continuity of Mq, we deduce

Mq(Lh) ≤
α

4
2j0+1 Np0(h).

This holds for arbitrary q ∈ N. Then, from the characterization of continuity given
by Proposition 1.16 iii), we deduce that L is continuous. 2

It is now time to define the dual of the Schwartz Space in the Fréchet Space
theory.

1.4 The space of tempered distributions S ′(Rn)

The Schwartz space S(Rn) is from now on equipped with the Fréchet topology issued
by the sequence of pseudo-norms Np introduced in Definition 1.6.

Definition 1.18. The space of tempered distributions denoted S ′(Rn) is the space
of continuous and linear maps from S(Rn) into C.

We have the following important characterization of tempered distributions: The
action of a linear form T on φ ∈ S ′(Rn) will be denoted either T (φ) or ⟨T, φ⟩.

Proposition 1.19. Let T be a linear map from S(Rn) into C. The following equiv-
alence holds

(1.15)
T ∈ S ′(Rn) ⇐⇒ ∃C > 0 and p ∈ N such that

∀φ ∈ S(Rn) |⟨T, φ⟩| ≤ CNp(φ).

The minimal p ∈ N for which (1.15) holds is called the order of the tempered distri-
bution T .

The space of tempered distribution can be seen as a subspace of the more “coarse”
space of general distributions.

Definition 1.20.

• Let Ω be an arbitrary open subset of Rn, a distribution T in Ω ⊂ Rn is a
linear function between C∞

0 (Ω) and R with the following properties: ∀ K ⊂ Ω
compact ∃ p ∈ N and a constant CK > 0, such that

∀φ ∈ C∞
K : |⟨T, φ⟩| ≤ CK sup

|α|≤p

∥∂αφ∥∞.

(p and CK: depend on T and K.)

• If there is p ∈ N such that for any compact subset K of Ω the above inequality
holds for this fixed p, but where C can be depending on K, the minimal integer
p such that this true is called the “order of T” and denoted ord(T ). If no such
a p exists then we say that T has infinite order.

• D′(Ω) is denoting the space of Ω. □
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Observe that general distributions in D′(Rn) don’t always have an order. The
L1
loc function on R given by t 7−→ et is an element of D′(R) but cannot be an element

of S ′(Rn) for that reason: indeed, one easily proves that for any p ∈ N

sup
φ∈C∞

c (R)

∫
R e

tφ(t) dt

Np(φ)
= +∞.

Consider φ ≥ 0 compactly supported such that
∫
R φ = 1 and take for k ∈ N

φk(t) := φ(t− k). We have Np(φk) ≤ Ckp but

lim
k→+∞

∫
R
k−p et φk(t) = +∞.

Remark 1.21. In other words the space of general distributions on an open subset
Ω of Rn, usually denoted D′(Ω), is the space of linear maps from C∞

0 (Ω) into R and
continuous on each C∞

Ki
(viewed as a Fréchet Space) where Ki are compact subsets

of Rn such that Ki ⊂ Ki+1 and Ω =
⋃

i∈NKi. We won’t be working with D′(Rn) (or
even with D′(Ω)) further and we shall restrict to S ′(Rn). The main reason is that
D′(Rn) is not “compatible” with the Fourier transform, it is too large.

Remark 1.22. The space of tempered distributions S ′(Rn) is exactly the subspace
of general distributions on Rn made of elements of finite order. That is T ∈ S ′(Rn)
if and only if T ∈ D′(Rn) and there exists p ∈ N and C ∈ R∗

+ such that

∀φ ∈ C∞
0 (Rn) |⟨T, φ⟩| ≤ CNp(φ) .

The proof of this last fact is a consequence of the following density result which is
left as a exercise : for any p ∈ N there holds

(1.16) ∀ φ ∈ S(Rn) ∃ (φk)k∈N ∈ (C∞
0 (Rn))N s. t. lim

k→+∞
Np(φk − φ) = 0 .

The proof of Proposition 1.19 follows from a direct application of the characterization
of continuity in Fréchet space given by Proposition 1.16 iii). Indeed, C equipped
with the modulus norm is interpreted as a Fréchet space with

∀a ∈ C Mq(a) := |a|.

Example of elements in S ′(Rn)

i) We have for any p ∈ [1,+∞]

Lp(Rn) ⊂ S ′(Rn).

Indeed, let f ∈ Lp(Rn), for any φ ∈ S(Rn) Hölder inequality gives∣∣∣ ∫
Rn

f(x)φ(x) dx
∣∣∣ ≤ ∥f∥Lp ∥φ∥Lp′ ,

≤ ∥f∥Lp

[ ∫
Rn

(1 + |x|n+1)p
′

(1 + |x|n+1)p′
|φ|p′(x) dx

] 1
p′

≤ Cn,p ∥f∥Lp Nn+1(φ).
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ii) Let a ∈ Rn, the Dirac Mass δa : φ ∈ S(Rn) 7−→ φ(a) is obviously a tempered
distribution of order 0:

|⟨δa, φ⟩| ≤ N0(φ).

More generally, let Ω be a bounded open set. Denote M(Ω) the space Signed
Radon Measures on Ω. This is the dual space to C0(Ω) (see [3]).

Elements of M(Ω) are tempered distributions of order 0.

example: Let N ⊂ Rn be a smooth oriented closed (compact without bound-
ary) sub-manifold of Rn and denote by ωN the volume of the induced metric
on N . We have that φ 7→

∫
N
φωN = ⟨u, φ⟩ a signed Radon measure and a

tempered distribution of orderord(u) = 0 since obviously∣∣∣∣∫
N

φωN

∣∣∣∣ ≤ ∥φ∥∞ ·
∫
N

ωN .

iii) We shall now meet our first Calderón-Zygmund Kernel in this course.

The function t 7−→ 1
t
misses by “very little” to be an L1 function. This is

a measurable function which is only in the L1-weak space (see the following
chapters).

Nevertheless one can construct a tempered distribution out of 1
t
that we shall

denote pv(1
t
) where pv stands for principal value. We proceed as follows.

Observe that

∀φ ∈ S(R) ∀ε > 0

∫
|t|>ε

∣∣∣φ(t)
t

∣∣∣ dt < +∞.

Moreover

(1.17) lim
ε→∞

∫
|t|>ε

φ(t)

t
dt =

〈
pv
(1
t

)
, φ
〉
∈ C

exists. Indeed, we write∫
|t|>ε

φ(t)

t
dt =

∫
|t|>1

φ(t)

t
dt+

∫ −ε

−1

φ(t)

t
dt+

∫ 1

ε

φ(t)

t
dt.

Using the fact that 1
t
is odd, we have also∫

|t|>ε

φ(t)

t
dt =

∫
|t|>1

φ(t)

t
dt+

∫
ε<|t|<1

φ(t)− φ(0)

t
.

Since φ in particular is Lipschitz, we have that φ(t)−φ(0)
t

is uniformly bounded
in L∞ which justifies the passage to the limit (1.17). Moreover we obviously
have ∣∣∣〈pv(1

t

)
, φ
〉∣∣∣ ≤ c

(
∥t φ(t)∥L∞ + ∥φ′∥L∞

)
≤ cN1(φ).
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This proves that pv(1
t
) ∈ S ′(R).

One can also without too much difficulty establish that the order of pv(1
t
) is

exactly 1.

iv) The space C[x1 . . . xn] of complex polynomials in Rn is included in S ′(Rn).

more generally we define

Definition 1.23. The space of slowly growing functions denoted G(Rn) is the sub-
space of C∞ functions f in Rn such that

∀β = (β1, . . . , βn) ∃mβ ∈ N and Cβ > 0

such that
|∂βf |(x) ≤ Cβ(1 + |x|)mβ .

Exercise: Let f ∈ G(Rn) prove that the map

φ ∈ S(Rn) 7−→
∫
f(x)φ(x) dx

defines a tempered distribution that we shall simply denote by f .

Observe that C[x1, . . . , xn] ⊂ G(Rn).

Proposition 1.24. Let f ∈ G(Rn) the multiplication by f

Mf S(Rn) −→ S(Rn)

φ −→ f φ

is a continuous linear map from S(Rn) into itself.

Proof of Proposition 1.24. Let f ∈ G(Rn), q ∈ N and φ ∈ S(Rn) we have using
mostly Leibnitz rule and triangular inequality

Mq(f φ) = sup
|α| ≤ q
|β| ≤ q

∥xα ∂β(f φ)∥L∞(Rn)

≤ sup
|α| ≤ q
|β| ≤ q

∑
γ≤β

Cγ,β∥xα ∂γφ ∂β−γf∥L∞(Rn)

≤ sup
|α| ≤ q
|β| ≤ q

∑
γ≤β

Cγ,β∥ |xα| |∂γφ|(x) (1 + |x|)mβ−γ∥L∞(Rn)

≤ Cq

∑
|β|≤q

Nmβ+q(φ) ≤ C ′
q N q +max mβ

|β| ≤ q

(φ).

This implies the proposition. 2

The following proposition is a direct consequence of Proposition 1.24.
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Definition-Proposition 1.25. Let f ∈ G(Rn) be a slowly increasing function for
any T ∈ S ′(Rn), we define the multiplication of T by f as follows:

∀φ ∈ S(Rn) ⟨f, T, φ⟩ := ⟨T, f φ⟩.

This multiplication denoted f T is a tempered distribution.

1.5 The weak convergence of Distributions

Definition 1.26. A sequence of tempered distributions (Tk)k∈N is said to converge
weakly if for any φ ∈ S(Rn) the sequence ⟨Tk, φ⟩ converges in C. From Banach
Steinhaus theorem for Fréchet spaces we deduce that there exists T ∈ S ′(Rn) such
that

lim
k→+∞

⟨Tk, φ⟩ = ⟨T, φ⟩.

The weak convergence of a sequence (Tk)k∈N in S ′(Rn) towards an element T ∈
S ′(Rn) is denoted

Tk ⇀ T in S ′(Rn).

Example:
uj ∈ Lp, 1 ≤ p <∞, uj

w
⇀ u in Lp

that is

∀f ∈ Lp′(Rn) = (Lp(Rn))∗ :

∫
ujf →

∫
uf

this implies
uj → u in S ′(Rn).

Observe that S(Rn) is dense in Lp′(Ω), p′ ̸= ∞ (Exercise). 2

Exercise: Let φ ∈ C∞
c (Rn) such that

∫
Rn φ(x) dx = 1 denote φk(x) := 2kn φ(2kx).

Prove that
φk ⇀ δ0 in S ′(Rn).

1.6 The derivative of a tempered distribution

Definition-Proposition 1.27. Let T ∈ S ′(Rn) for any j = 1, . . . , n we denote by
∂xj

T the partial derivative of T along the direction xj which is the following element
of S ′(Rn)

(1.18) ∀φ ∈ S(Rn) ⟨∂xj
T, φ⟩ := −⟨T, ∂xj

φ⟩.
2We also have for any (uj)j∈N ∈ L∞ such that

uj
w∗
⇀ u in σ

(
L∞(Rn), L1(Rn)

)
then uj ⇀ u in S ′(Rn).
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Proof of Proposition 1.27. Let T ∈ S ′(Rn). It is clear that the map ∂xj
T defined

by (1.18) is linear. Let p ∈ N and c > 0 such that

|⟨T, φ⟩| ≤ cNp(φ).

By (1.18) we have

|⟨∂xj
T, φ⟩| = |⟨T, ∂xj

φ⟩| ≤ cNp(∂xj
)

≤ cNp+1(φ).

Hence from the characterization of tempered distributions given by Proposition
(1.9), we deduce that ∂xj

T ∈ S ′(Rn) and this concludes the proof of Proposition
1.27. 2

More generally, by iterating proposition 1.27, we deduce that for any T ∈ S ′(Rn)
and any α = (α, . . . , αn) ∈ Nn the linear map on S(Rn) given by

∀φ ∈ S(Rn) ⟨∂αT, φ⟩ := (−1)|α| ⟨T, ∂α, φ⟩

is an element of S ′(Rn).
example:

i) Let T be a C1-function, then, thanks to partial integration, the classical and
the distributional derivatives coincide.

ii) We introduce the function given explicitly by

Hα,a =

 α, for t > a

0, for t ≤ a

and called Heaviside-Function.

Let φ ∈ C∞
0 (R), suppφ ⊂ [−R,R] and a ∈ [−R,R].

⟨H ′
α,a, φ⟩ = −⟨Hα,a, φ

′⟩ = −
∫ R

−R

α1x≥aφ
′ = −α

∫ R

a

φ′

= αφ(a) = ⟨αδa, φ⟩.

This implies
H ′

α,a = αδa .

For the second derivative we have

⟨H ′′
α,a, φ⟩ = −⟨H ′

α,a, φ
′⟩ = −⟨αδa, φ′⟩ = −αφ′(a) = ⟨αδ′a, φ⟩.

This implies
H ′′

α,a = αδ′a .

18



iii) log(x) ∈ L1(R) + L∞(R) ⊂ S ′(R). Let φ a function in C∞
0 ([−R,R]).

⟨(log |x|)′, φ⟩ = −
∫

log |x|φ′

= lim
ε→0

−
∫
ε≤|x|≤R

log |x|φ′

= lim
ε→0

−
(∫ −ε

−R

log |x|φ′ +

∫ R

ε

log |x|φ′
)

= lim
ε→0

(
− log ε φ(−ε) +

∫ −ε

−R

φ(x)

x
+ log ε φ(ε) +

∫ R

ε

φ(x)

x

)

= lim
ε→0

∫ R

|x|≥ε

φ (x)

x
+ log ε [φ(ε)− φ(−ε)]︸ ︷︷ ︸

=0(ε)

 −→
〈
pv

(
1

x

)
, φ

〉
.

From these computations we deduce

log |x|′ = pv

(
1

x

)
.

1.7 The Support of a tempered Distribution

Definition-Proposition 1.28. Let T ∈ S ′(Rn). There exists a maximal open sub
subset of Rn, ω, such that ∀φ ∈ C∞

0 (ω) there holds ⟨T, φ⟩ = 0. Where the property of
being maximal has to be understood in the following sense: For any ω′ open satisfying

ω ⊂ ω′ and ∀φ ∈ C∞
0 (ω′) ⟨T, φ⟩ = 0

then ω = ω′.

ωc = Rn\ω is called the support of T . □

We shall need two intermediate lemma for proving proposition 1.28.

Lemma 1.29. Let K ⊂ Rn, be a compact subset of Rn and let U ⊂ Rn, open such
that K ⊂ U . Then there exists Θ ∈ C∞

0 (U) such that

0 ≤ Θ ≤ 1.

Θ ≡ 1 on K.

Proof of lemma 1.29: Let ε > 0 such that 3ε < dist(K,Uc). Introduce χε(x) to
be the characteristic function of the open set of points which are at a distance less
than ε from K. That is

χε(x) :=

 1 in case dist(x,K) < ε,

0 otherwise
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Let3 g ∈ C∞ such that supp g ⊂ B1(0) and
∫
Rn g = 1. We then introduce

f(x) := (χε ⋆ gε)(x) =

∫
Rn

χε(y) gε(x− y) dy,

where

gε(x) :=
1

εn
gε

(x
ε

)
.

Clearly f ∈ C∞, since χε ∈ L1(Rn) and gε ∈ C∞
0 (Rn). We are now proving

i) f(x) ≡ 1 on K

ii) f(x) ≡ 0 outside U

Proof of i):
supp g ⊂ B1(0) ⇒ suppx gε(x) ⊂ Bε(0) ,

indeed
gε(x) ̸= 0 ⇔

∣∣∣x
ε

∣∣∣ < 1

and
suppy gε(x− y) ⊂ Bε(x) ,

indeed
gε(x− y) ̸= 0 ⇔ |x− y| < ε .

Let now x ∈ K : gε(x − y) ̸= 0 implies dist(y,K) < ε. This gives for such an
x ∈ K ∫

Rn

χε(y) gε(x− y) =

∫
Rn

gε(x− y) =

∫
Rn

g(x) = 1.

Proof of ii): From i) we have: suppy gε(x− y) ⊂ Bε(x). Since x ∈ U c, from the
choice of ε we have∫

Rn

χε(y)gε(x− y) dy = 0, since Bε(x) ∩Kε = {z ∈ Rn, dist (z,K) < ε} = ∅.

Finally we take Θ ≡ f . 2

Lemma 1.30. (Existence of a partition of unity). Let K ⊂ Rn, K be a com-
pact subset of Rn and let O1, . . . , OP a finite covering of K by open sets, that is
K ⊂

⋃P
i=1Oi, Oi open. Then there exists Θi ∈ C∞

0 (Oi) such that 0 ≤ Θi ≤ 1 and∑P
i=1Θi = 1 on K.

Proof of lemma 1.30: Let ε > 0. From the previous lemma, for each Oi there
exists fi with the following properties :

3One can take for instance

g(x) =


e
− 1

(|x|−1)2(|x|+1)2 when |x| < 1,

0 for |x| ≥ 1
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• fi ∈ C∞
0 (Oi)

• 0 ≤ fi ≤ 1

• fi ≡ 1 on (Õi ∩K),

where
Õi := {x ∈ Oi | dist (x,Oc

i ) > ε } .
We now choose ε > 0 small enough in such a way that

Kε := {x ∈ Rn, dist (x,K) < ε} ⊂
P⋃
i=1

Õi

We consider f given by the previous lemma such that

f ≡ 1 on K and f ≡ 0 in U c := Rn \Kε .

Finally we denote f0 := 1− f . Observe that by construction

P∑
j=0

fj ≥ 1 on Rn .

Let

Θi(x) :=


fi(x)∑P
j=0 fj(x)

falls x ∈ Oi

0 otherwise

(Θi)i=1·P is solving the expected requirements and the lemma is proved. □

Proof of proposition 1.28. Let

I := {O|O ⊂ Rn, O open ∀φ ∈ C∞
0 (O) : ⟨T, φ⟩ = 0}

and denote ω :=
⋃

O∈I O. Being a union of open sets, ω is open. Let φ ∈ C∞
0 (ω).

We claim that ⟨T, φ⟩ = 0. Denote by K the support of φ. We have

K ⊂ ω =
⋃
O∈I

O.

Since K is compact, one can extract from (O)O∈I a finite sub covering of K , Hence
there exist P ∈ N and ∃ O1, . . . , OP ∈ I withK ⊂

⋃P
i=1Oi. Thanks to the previous

lemma we have a subordinated partition of unity (Θi)i=1,...,P with
∑P

i=1Θi ≡ 1 on
K and supp Θi ⊂ Oi. We decompose φ accordingly, that is

φ =
P∑
i=1

φi, on K where φi = Θiφ ∈ C∞
0 (Oi).

Since φ is supported on K, the identity holds on the whole of Rn. Since Oi ∈ I we
have ⟨T, φi⟩ = 0. We deduce by linearity of T the desired identity ⟨T, φ⟩ = 0. It
follows moreover from the definition that ω is maximal. 2
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Notation 1.31. We shall be denoting E ′(Rn) the subspace of S ′(Rn) with compact
support.

example

i) δ0 : supp δ0 = {0}

ii) ∂αδ0 : supp ∂αδ0 = {0}

Observe that for a compactly supported distribution, there is a natural extension
of the duality from S(Rn) to C∞(Rn).

Definition-Proposition 1.32. (Duality Extension)
Let T ∈ E ′(Rn), and let θ ∈ C∞

0 (Rn), such that θ ≡ 1 on suppT . We define
∀φ ∈ C∞(Rn)

⟨T, φ⟩E ′,C∞ := ⟨T, θφ⟩S′,S .

⟨T, φ⟩E ′,C∞ is independent of the choice of θ.

Proof of the proposition 1.32: Let θ, θ′ ∈ C∞
0 (Rn) with θ = θ′ = 1 on supp T .

There holds
⟨T, θφ⟩ − ⟨T, θ′φ⟩ = ⟨T, (θ − θ′)φ⟩ = 0,

since
θ − θ′ ≡ 0 on supp u,

which implies
θ − θ′ ∈ C∞

0 ((supp u)C) .

This concludes the proof of proposition 1.32. 2

Proposition 1.33. Let T ∈ E ′(Rn) and let p be the order of T . Consider moreover
φ ∈ C∞

0 (Rn), such that ∂αφ = 0 on supp T for any α such that |α| ≤ p. Then it
holds

⟨T, φ⟩ = 0.

□

Proof of Proposition 1.33: Let K := supp T . By definition K is compact.
Denote 1K2ε the characteristic function of the set of points at a distance to K less
or equal than 2ε

1K2ε (x) =

 1 x ∈ K2ε (x),

0 otherwise

where
K2ε = {z ; dist(z, K) ≤ 2ε} .

Let ψε = 1K2ε ⋆ χε, where

χ ∈ C∞
0 (B1(0)),

∫
Rn

χ = 1 and χε(s) =
1

εn
χ
(s
ε

)
.
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We have that ψε ∈ C∞(Rn) and from the definition of the convolution operator we
have

Supp (1K2ε ⋆ χε) ⊂ Supp (1K2ε) + Supp (χε) ⊂ Supp (1K3ε) .

Hence we deduce
ψε ∈ C∞

0 (Rn) .

We claim that ψε ≡ 1 on Kε. Indeed, let x ∈ Kε, there holds

ψε(x) =

∫
Rn

1K2ε(y)
1

εn
χ

(
x− y

ε

)
dy

Observe that supp
(
χ
(
z
ε

))
⊂ Bε(0). Hence, for χ

(
x−y
ε

)
̸= 0 there need to be |x−y| <

ε which is implying dist(y,Kε) < ε which itself implies y ∈ K2ε. Hence

ψε(x) =

∫
Rn

1

εn
χ

(
x− y

ε

)
dy = 1

which concludes the proof of the claim.

We decompose φ as follows

φ = φψε + (1− ψε)φ.

From the claim we just proved we deduce supp (1 − ψε)φ ⊂ Kc
ε . Hence ⟨T, (1 −

ψε)φ⟩ = 0 since SuppT = K. Thus we have ⟨T, φ⟩ = ⟨T, φψε⟩.
We claim that for any α ∈ Nn there exists of Cα > 0 such that

∥∂αψε∥∞ ≤ Cαε
−|α| :

Indeed, we have on one hand

∂α(1K2ε ⋆ χε) = 1K2ε ⋆ ∂
αχε ,

and on the other hand a direct computation gives

∂αχε = ε−n−|α|(∂αχ) =⇒ ∥∂αχε∥1 = ε−|α|Cα .

Combining these two facts we obtain

|∂αψε(x)|∞ =

∥∥∥∥∫
Rn

1K2ε(y)
1

εn
∂αxχ

(
x− y

ε

)
dy

∥∥∥∥
∞

≤ ∥1K2ε∥∞ ∥∂αχε∥1 ≤ ε−|α|Cα .

This implies the claim.

Let x ∈ K3ε, we consider y ∈ K such that |x − y| ≤ 4ε. Taylor expansion at y
gives for any γ with |γ| ≤ p gives the existence of ξ in the segment [x, y] such that

∂γφ(x) = ∂γφ(y) +
∑
|α|≤p
γ<α

∂αφ(y)
hα−γ

(α− γ)!
+

∑
|β|=p+1

∂βφ(ξ)
hβ−γ

(β − γ)!
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where
1

α!
=

1

α1! . . . αn!

and
x− y = (h1, . . . , hn), h

α = hα1
1 · · ·hαn

n .

From the hypothesis we have for any y ∈ K = Supp(T ) ∂γφ(y) = 0 ∀|γ| ≤ p.
Combining this hypothesis with the Taylor expansion we obtain

∥∂γφ∥L∞(K3ε) ≤ Cφ ε
p+1−|γ| .

Finally we bound

|⟨T, φ⟩| = |⟨T, φψε⟩| ≤ C
∑
|α|≤p

∥∂α(φψε)∥L∞(K3ε)

≤ C ·
∑
|α|≤p

∑
|γ|≤|α|

∥∂γφ∥L∞(K3ε)∥∂α−γ ψε∥∞Cγ

≤ C
∑
|α|≤p

C ′′εp+1−|α| ≤ Cφ,T ε .

This holds for any arbitrary small ε hence we deduce |⟨T, φ⟩| = 0. This concludes
the proof of proposition 1.33 2

1.8 The Fourier transform of a tempered distribution

We define now the Fourier transform of a tempered distribution. This definition is
motivated by the first identity in Proposition 1.5.

Definition-Proposition 1.34. Let T be a tempered distribution. We define the
Fourier transform of T that we denote by T̂ or F(T ) to be the following linear map
on S(Rn)

φ ∈ S(Rn) ⟨T̂ , φ⟩ := ⟨T, φ̂⟩,

T̂ is a tempered distribution as well.

Proof of Proposition 1.34. Let T ∈ S ′(Rn) and let p be the order of T and C > 0
such that

∀φ ∈ S(Rn) |⟨T, φ⟩| ≤ cNp(φ).

Using Proposition 1.9 we then deduce

φ ∈ S(Rn) |⟨T̂ , φ⟩| = |⟨T, φ̂⟩| ≤ cNp(φ̂)

≤ c1Np+n+1(φ).

Using one more time the characterization of S ′(Rn) given by Proposition 1.19, we

deduce that T̂ is a tempered distribution.

Example: Let a ∈ Rn we have

∀φ ∈ S(Rn) ⟨δ̂a, φ⟩ = ⟨δa, φ̂⟩ = φ̂(a) = (2π)−
n
2

∫
Rn

e−ia·x φ(x) dx.
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Hence
δ̂a = (2π)−

n
2 e−ia·x ∈ L∞(Rn).

In other words, the Fourier transform exchanges the “most concentrated” measure
into the “most dispersed” wave function. This phenomenon is known as the Heisen-
berg Uncertainty Principle in quantum mechanics. 2

Example: More generally, given α = (α, . . . , αn) ∈ Nn we have, using Lemma 1.10,

⟨∂̂α δa, φ⟩ = (−1)|α| ⟨δa, ∂aφ̂⟩

= (−1)|α|⟨δa, ̂(−i)|α|xαφ⟩

= (i)|α|(2π)−
n
2

∫
Rn

e−ia·x xα φ(x) dx.

Hence we have established

(1.19) ∂̂α δa = (i)|α|(2π)−
n
2 e−ia·xxα ∈ G.

Exercise: Prove that
1̂ = (2π)

n
2 δ0

and more generally
∀α ∈ Nn x̂α = (2π)

n
2 i|α| ∂α δ0.

2

Excercise: We shall now compute the Fourier transform of pv(1
t
). First, we claim

that

(1.20) t pv
(1
t

)
= 1 in S ′(R),

where the product by t has to be understood in the sense given by Proposition 1.25.
Indeed,

∀φ ∈ S(R)
〈
tpv
(1
t

)
, φ
〉
=
〈
pv
(1
t

)
, tφ(t)

〉
= lim

ε→0

∫
|t|>ε

φ(t) dt =

∫
R
φ(t) dt.

This proves (1.20). The computation above of the Fourier transform of 1 gives then

F
(
t pv
(1
t

))
= (2π)

1
2 δ0.

Using now Proposition 1.40, we have

d

dt
p̂v
(1
t

)
= −i ̂

t pv
(1
t

)
= −i

√
2π δ0.

Let H(t) be the Heaviside function equal to the characteristic function of R+. An
elementary calculus gives

d

dt
H(t) = δ0.
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Hence

(1.21)
d

dt

[
p̂v
(1
t

)
+ i

√
2π H(t)

]
= 0.

We shall now need the following lemma:

Lemma 1.35. Let T be an element of S ′(R) such that

d

dt
T = 0,

then T is the multiplication by a constant.

Proof of Lemma 1.35. Let φ ∈ S(R). It is not difficult to prove that if∫ +∞
−∞ φ(t) dt = 0, then t 7−→

∫ t

−∞ φ(s)ds is still a Schwartz function. Hence since
d
dt

∫ t

−∞ φ(s)ds = φ(t), we have by assumption of the lemma ∀φ ∈ S(R) such that∫ +∞
−∞ φ(s) ds = 0

⟨T, φ⟩ = 0.

Let φ ∈ S(R) arbitrary. We have then〈
T, φ(t)− e−t2

∫ +∞
−∞ φ(s) ds∫ +∞
−∞ e−s2 ds

〉
= 0.

This gives

⟨T, φ⟩ =
∫ +∞

−∞

⟨T, e−t2⟩∫ +∞
−∞ e−s2 ds

φ(t) dt.

Hence T is the multiplication by the constant ⟨T,e−t2 ⟩∫+∞
−∞ e−s2 ds

. This concludes the proof

of the lemma. 2

Combining (1.21) and lemma 1.25, we obtain that there exists a constant A ∈ C
such that

p̂v
(1
t

)
= −i

√
2π H(t) + A.

Observe that for any even function φ(t), one has〈
p̂v
(1
t

)
, φ̌
〉
= 0.

It is not difficult to prove that a Schwartz function is even if and only if it’s Fourier
transform is even too. Hence for any even function we have∫ +∞

−∞

(
− i

√
2π H(t) + A

)
φ(t) dt = 0,

this implies that −i
√
2πH(t) + A is odd and we have proved that

p̂v
(1
t

)
= − i

2

√
2π sign(t).

As mentioned above, this function belongs to the family of Calderón-Zygmund mul-
tipliers that we are going to study more systematically in section 7.
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Theorem 1.36. The Fourier transformation realises an isomorphism S ′ → S ′,
whose inverse is given by F−1 = F̄ where F̄ is defined as follows

⟨F̄(T ), φ⟩ := ⟨u, F̄ (φ)⟩.

and F̄ is the operation defined previously on L1(Rn) (and A fortiori on S(Rn)

F̄ : f ∈ L1(Rn) 7−→ (2π)−
n
2

∫
Rn

eix·ξ f(ξ) dξ

will be denoted
∨
f or also F−1(f).

Consider moreover Tj ∈ S ′ → T ∈ S ′ in S ′, then T̂j → T̂ in S ′. □

Proof of theorem 1.36.

∀φ ∈ S(Rn) ⟨ F̄ F(T ), φ⟩ = (⟨F(T ), F̄ (φ)⟩ = ⟨T, FF̄ (φ)⟩ = ⟨T, φ⟩ .

Moreover we have
⟨T̂j, φ⟩ = ⟨Tj, φ̂⟩ → ⟨T, φ̂⟩ = ⟨T̂ , φ⟩,

This implies
T̂j → T̂ in S ′(Rn) .

2

Theorem 1.37. Let T ∈ E ′(Rn), then we have T̂ ∈ G(Rn) and ∀ζ ∈ Rn there
holds

T̂ (ζ) = (2π)−n/2 ⟨T, e−ix·ζ⟩E ′,C∞ .

where the duality E ′, C∞ has to be understood in the sense of proposition 1.32. □

Before proving theorem 1.37 we establish the following lemma.

Lemma 1.38. Let k ∈ N∗ and φ : x ∈ Rn −→ φx ∈ S(Rn) such that for any
p in N φ realizes a Ck map from Rn into the normed space (S(Rn),Np) for every
p ∈ N. Then for any T ∈ S ′(Rn)

x −→ ⟨T (y), φx(y)⟩

is in Ck(Rn) and there holds

∀γ = (γ1 · · · γn) , |γ| ≤ k ∂γx⟨T (y), φx(y)⟩ = ⟨T (y), ∂γxφx(y)⟩

Proof of lemma 1.38 It suffices to establish the lemma for k = 1. The assumption
is saying that for any x0 ∈ Rn there exists ∂xi

φ ∈ C0(R,S(Rn)) such that

lim
h→0

∥∥∥∥φx0+h(y)− φx0(y)−
∑n

i=1 ∂xi
φx0h

i

|h|

∥∥∥∥
Np

= 0

27



In other words we have for any p ∈ N

(1.22) lim
h→0

sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∥yα∂βyφx0+h(y)− yα∂βyφx0(y)−
∑n

i=1 y
α∂βy ∂xi

φx0hi

|h|

∥∥∥∥∥
L∞
y (Rn)

Hence, assuming T has order q there holds

lim
h→0

∣∣∣∣⟨T (y), φx0+h(y)⟩ − ⟨T, φx0(y)⟩ −
∑n

i=1⟨T, ∂xi
φx0⟩hi

|h|

∣∣∣∣
≤ lim

h→0
sup

|α| ≤ q
|β| ≤ q

∥∥∥∥∥yα∂βyφx0+h(y)− yα∂βyφx0(y)−
∑n

i=1 y
α∂βy ∂xi

φx0hi

|h|

∥∥∥∥∥
L∞
y (Rn)

= 0

Hence we have proved that x −→ ⟨T (y), φx(y)⟩ is differentiable at every point and
the differential equals

n∑
i=1

⟨T, ∂xi
φx⟩ dxi .

The continuity of each partial derivative ∂xi
⟨T, φx⟩ = ⟨T, ∂xi

φx⟩ at an arbitrary
point x0 is deduced from the following inequality

|⟨T, ∂xi
φx⟩ − ⟨T, ∂xi

φx0⟩| ≤ C ∥∂xi
φx − ∂xi

φx0∥Nq

combined with the hypothesis asserting the continuity of x −→ ∂xi
φx from Rn into

S ′(Rn). This concludes the proof of lemma 1.38. 2

Proof of theorem 1.37: Let

v := ⟨T, e−ix·ζ⟩E ′,C∞ = ⟨T, θ e−ix·ζ⟩S′,S

where θ ∈ C∞
0 (Rn) and θ ≡ 1 on supp T .

Claim 1: v ∈ G(Rn).

Proof of claim 1: We have using lemma 1.38

∂αζ v = ⟨T, ∂αζ (e−ix·ζ)⟩ = ⟨T, (−i)|α| xαe−ix·ζ⟩.

Since T ∈ E ′(Rn) there holds for some p ∈ N

|⟨T, (−i)|α| xαe−ix·ζ⟩| ≤ C
∑
|β|≤p

∥ ∂βx (xαe−ix·ζ) ∥L∞ (supp u)

≤ C ′ (1 + |ζ|p),
hence

|∂αζ v| ≤ C ′ (1 + |ζ|p)
which implies
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v ∈ G(Rn) .

Claim 2: v = T̂ .

Proof of claim 2: Let φ ∈ S(Rn). Since v ∈ G(Rn), its action on any element in
S(Rn) is given by the classical multiplication followed by the integration operation.
Hence we have

⟨v, φ⟩ = ⟨v(ζ), φ(ζ)⟩ =
∫
Rn

v(ζ) φ(ζ) d ζ

=

∫
Rn

⟨u(x), e−ix·ζ⟩ φ (ζ) d ζ

=

∫
Rn

〈
u(x), e−ix·ζ φ (ζ)

〉
dζ =

〈
u(x),

∫
Rn

e−ix·ζ φ(ζ)

〉

= (2π)n/2 ⟨u(x), φ̂(x)⟩ = (2π)n/2 ⟨û, φ⟩,

where the third inequality is using the first part of the proof of proposition 1.44 .
Hence we have proved the claim 2 and this concludes the proof of theorem 1.37. 2

We shall end this subsection by first proving the following important proposi-
tion known also under the name of “Schwartz Lemma” and then we will apply this
proposition in order to establish a characterization of harmonic tempered distribu-
tions (theorem 1.41).

Proposition 1.39. Let T be a tempered distribution supported at the origin that is
to say ∀φ ∈ S(Rn) such that φ ≡ 0 in a neighborhood of 0, then ⟨T, φ⟩ = 0. Then,
there exists p ∈ N such that for any β = (β1, . . . , βn) satisfying |β| ≤ p, there exists
cβ ∈ C such that

T =
∑
|β|≤p

Cβ ∂
βδ0.

Proof of Proposition 1.39. Let p be the order of T . Let φ ∈ S(Rn) we proceed
to the Taylor expansion of φ to the order p at the origin: for any γ ∈ Nn and |γ| ≤ p
there exists aγ independent of φ such that

φ(x) =
∑
|γ|≤p

aj ∂
γ φ(0)xγ +Rp(x)

where

lim
|x|→0

|Rp(x)|
|x|p

= 0.

Moreover ∀γ, |γ| ≤ p

(1.23) lim
|x|→0

|∂γRp(x)|
|xp−|γ||

= 0.
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Let χ be a non-negative cut-off function in C∞
c (B1(0)) such that χ is identically

equal to one on B 1
2
(0). By assumption

⟨T, φ⟩ = ⟨T, χφ⟩+ ⟨T, (1− χ)φ⟩

= ⟨T, χφ⟩.

We have, using the Taylor expansion of φ,

⟨T, χφ⟩ =
∑
|γ|≤p

aγ ∂
γφ(0) ⟨T, χ(x)xγ⟩+ ⟨T, χ(x)Rp(x)⟩.

Observe that the functions χ(x)xγ are Schwartz functions and hence ⟨T, χ(x)xγ⟩
are well-defined complex numbers. We claim that

(1.24a) ⟨T, χ(x)Rp(x)⟩ = 0.

This claim implies obviously the proposition. Observe that this follows immediately
from Proposition 1.33, but we choose to give a direct proof here. Let

ηε(x) := 1− χ
(x
ε

)
where 0 < ε≪ 1. By assumption we have

⟨T, χRp⟩ = ⟨T, χRp ηε⟩+ ⟨T, χRp χε⟩

= ⟨T, Rp χε⟩,
(1.24b)

where χε(x) = χ(x/ε). Since T is of order p, there exists c > 0 such that

|⟨T, Pp χε⟩| ≤ C Np(Rp χε).

We have, using Leibnitz formula and triangular inequality,

Np(Rp χε) =
∑

|α| ≤ p
|β| ≤ p

∥xα ∂β(Rp χε)∥L∞(Rn)

≤
∑

|α| ≤ p
|β| ≤ p

∑
γ≤β

Cγ ∥xα ∂β−γ Rp ∂
γ χε∥L∞(Rn)

≤ Cp

∑
|β|≤p

∑
γ≤β

∥∂β−γ Rp ∂
γ χε∥L∞(Rn)

(1.25)

We clearly have

(1.26) |∂γ χε|(x) ≤
Cγ

ε|γ|
1βε(0)(x)

where 1Bϵ(0)(x) is the characteristic function of the ball centered at the origin and
of radius ε. Because of (1.23) we have

∥∂β−γ Rp(x)1Bε(0)(x)∥L∞(Rn) = o(εp−|β−γ|).

30



Combining this inequality with (1.25) and (1.26) we obtain

Np(Rp χε) = o
( ∑

|β|≤p

∑
γ≤β

εp−|β−γ|−|γ|
)
.

Since γ ≤ β, we have |β − γ|+ |γ| =
∑

βi − γi +
∑

γi = |β|. Hence

lim
ε→0

Np(Rp χε) = 0

From (1.24b) we deduce (1.24a) and this concludes the proof of Proposition 1.39. 2

Proposition 1.40. Let T ∈ S ′(Rn), then for any α = (α1, . . . , αn) and any β =
(β1, . . . , βn) we have respectively

∂α T̂ = (−i)|α| x̂α T

and

∂̂βT = i|β|ξβ T̂ ,

where the products xαT and ξβT̂ have to be understood in the sense of Proposition
1.25.

Proposition 1.40 is a direct consequence of Lemma 1.10 and Lemma 1.11. We
have the following theorem:

Theorem 1.41. Let T be an harmonic tempered distribution that is an element of
S ′(Rn) satisfying

∀φ ∈ S(Rn) ⟨∆T, φ⟩ = ⟨T,∆φ⟩ = 0.

Then T is a polynomial.

Remark 1.42. This result is a bit “counter-intuitive” since we know many more
harmonic functions than polynomials. For instance in R2 every holomorphic func-
tion is harmonic but is not necessarily a polynomial (i.e. f(z) = ez). This illustrates
the difference between S ′ and D′. S ′ being in a sense the space of distributions for
which one can define a Fourier transform.

Proof of Theorem 1.41. For any φ ∈ S(Rn) we have

0 = ⟨∆T, φ̂⟩ = ⟨T,∆ φ̂⟩

= −⟨T, |̂x|2 φ⟩

= −⟨T̂ , |x|2φ⟩.

(1.27)

Let ψ ∈ S(Rn) such that ψ is identically 0 in a neighborhood of 0. Then ψ(x)/|x|2 =
φ(x) is still an element of S(Rn).
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Then we deduce from (1.27) that for such a ψ we have ⟨T̂ , ψ⟩ = 0. In other
words, the support of the Fourier transform of T is included in the origin. Applying
Proposition 1.39 to T̂ , we deduce the existence of p ∈ N and Cβ ∈ C for any β ∈ Nn

with |β| ≤ p such that

T̂ =
∑
|β|≤p

cβ ∂
β δ0.

Using Proposition 1.40, we deduce that

T =
∑
|β|≤p

Cβ(−i)|β|

(2π)
n
2

xβ.

This implies the theorem. 2

1.9 Convolutions in S ′(Rn)

1.9.1 The convolution of two Schwartz functions

Let φ and ψ be two Schwartz functions, we recall the classical definition of the
convolution

φ ∗ ψ(x) :=
∫
R
φ(x− y)ψ(y) dy

=

∫
Rn

ψ(x− y)φ(y)ldy.

We have the following proposition

Proposition 1.43. Let φ and ψ be two Schwartz Functions, then for any p ∈ N

(1.28) Np(φ ∗ ψ) ≤ Cp,n Np(φ) Np+n+1(ψ).

and then φ ∗ ψ is also a Schwartz function.

Proof of Proposition 1.43.We have

Np(φ ∗ ψ) = sup
|α| ≤ p
|β| ≤ p

∥∥∥∥xβ ∫
Rn

φ(x− y) ∂αψ(y) dy

∥∥∥∥
L∞(Rn)

= sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∫
Rn

(x− y + y)βφ(x− y) ∂αψ(y) dy

∥∥∥∥
L∞(Rn)

.
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Using the binomial formula, we obtain

Np(φ ∗ ψ) ≤ sup
|α| ≤ p
|β| ≤ p

∑
γ≤β

Cβ,γ

∥∥∥∥∫
Rn

|x− y|β−γ |φ(x− y)| |y|γ |∂αψ|(y) dy
∥∥∥∥
L∞(Rn)

≤ Cp Np(φ)

∫ ∑
|α| ≤ p
|β| ≤ p

|y|γ |∂αψ|(y) dy

≤ Cp Np(φ)Np+n+1(ψ) .

This concludes the proof of proposition 1.43. 2

1.9.2 Convolution of a tempered distribution with a Schwartz function

Definition-Proposition 1.44. Let T ∈ S ′(Rn) and let φ ∈ S(Rn).
For any x ∈ Rn we define

T ⋆ φ(x) := ⟨T (y), φ(x− y)⟩S′
y ,Sy .

then

(1.29) T ⋆ φ ∈ C∞(Rn),

and there holds

(1.30) ∀α = (α1, . . . , αn) ∈ Nn ∂α(T ⋆ φ) = T ⋆ ∂αφ = ∂αT ⋆ φ.

Moreover
φ ∈ S(Rn) −→ T ⋆ φ ∈ C∞(Rn) ,

is continuous between the Fréchet spaces S(Rn) and C∞(Rn).

In case T ∈ E ′(Rn), and φ ∈ S(Rn) then

(1.31) T ⋆ φ ∈ S(Rn) .

moreover
φ ∈ S(Rn) −→ T ⋆ φ ∈ S(Rn)

is continuous map between Fréchet spaces.

In case T ∈ E ′(Rn), and φ ∈ C∞
0 (Rn) then

(1.32) T ⋆ φ ∈ C∞
0 (Rn)

and

(1.33) suppT ⋆ φ ⊂ suppT + suppφ.
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Proof of proposition 1.44. Claim 1: We claim that

x ∈ Rn 7→ φ(x− y) = φx(y) ∈ S ′(Rn)

is C∞ as a map from Rn into the normed spaces (S ′(Rn),Np) for any p ∈ N. We fix
p ∈ N arbitrary and we prove that the map is in C1(Rn, (S ′(Rn),Np)). We have∥∥∥∥∥φx0+h − φx0 −

n∑
i=1

∂xi
φx0 h

i

∥∥∥∥∥
Np

= sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∥yβ
(
∂αy φ(x0 + h− y)− ∂αy φ(x0 − y)−

n∑
i=1

∂αy ∂xi
φ(x0 − y)hi

)∥∥∥∥∥
L∞
y (Rn)

Let ε > 0 and R > 0 that we shall fix depending on ε and φ later. We have the
existence of ξx0,h,α,y depending on x0, h, α, y between y and y − h such that
(1.34)

sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∥yβ
(
∂αy φ(x0 + h− y)− ∂αy φ(x0 − y)−

n∑
i=1

∂αy ∂xi
φ(x0 − y)hi

)∥∥∥∥∥
L∞
y (Rn\BR(0))

= sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∥ yβ
(
−

n∑
i=1

∂yi∂
α
y φ(x0 − ξx0,h,α,y)h

i −
n∑

i=1

∂αy ∂xi
φ(x0 − y)hi

)∥∥∥∥∥
L∞
y (Rn\BR(0))

≤ 2Np+1(φ) |h|R−1

We now fix R > 0 large enough so that 2Np+1(φ)R
−1 ≤ ε/2. Now we bound

sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∥yβ
(
∂αy φ(x0 + h− y)− ∂αy φ(x0 − y)−

n∑
i=1

∂αy ∂xi
φ(x0 − y)hi

)∥∥∥∥∥
L∞
y (BR(0))

≤ Cp R
p
∑
|α|≤p

∥∥∥∥∥∂αy φ(x0 + h− y)− ∂αy φ(x0 − y)−
n∑

i=1

∂αy ∂xi
φ(x0 − y)hi

∥∥∥∥∥
L∞
y (BR(0))

≤ Cp R
p
∑
|α|≤p

∥∥∥∥∥−
n∑

i=1

∂yi∂
α
y φ(x0 − ξx0,h,α,y)h

i +
n∑

i=1

∂αy ∂yiφ(x0 − y)hi

∥∥∥∥∥
L∞
y (BR(0))

≤ Cp R
p
∑
|α|≤p

n∑
i=1

∥∥∂yi∂αy φ(x0 − ξx0,h,α,y)− ∂αy ∂yiφ(x0 − y)
∥∥
L∞
y (BR(0))

|hi|

Since φ is C∞ on Rn, for any |α| ≤ p and any i = 1 · · ·n, ∂yi∂αy φ is uniformly
continuous on BR+1(x0) and since |ξx0,h,α,y−y| ≤ |h|, for |h| < δ and δ small enough
we deduce

sup
|α| ≤ p
|β| ≤ p

∥∥∥∥∥yβ
(
∂αy φ(x0 + h− y)− ∂αy φ(x0 − y)−

n∑
i=1

∂αy ∂xi
φ(x0 − y)hi

)∥∥∥∥∥
L∞
y (BR(0))

≤ ε

2
|h|
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Combining the previous we obtain

∀ε > 0 , ∃δ > 0 , s. t. ∀ |h| < δ∥∥∥∥∥φx0+h − φx0 −
n∑

i=1

∂xi
φx0 h

i

∥∥∥∥∥
Np

≤ ε |h|

This implies that x ∈ Rn 7→ φ(x− y) = φx(y) is differentiable everywhere as a map
from Rn into (S ′(Rn),Np) moreover the differential is given by

x ∈ Rn 7→
n∑

i=1

∂xi
φ(x− y) dxi

which is,by iterating the argument above, continuous. Hence x ∈ Rn 7→ φ(x− y) =
φx(y) is in C1(Rn, (S ′(Rn),Np)). By applying the argument above to each of the
maps x ∈ Rn 7→ ∂xi

φ(x − y) we obtain that x ∈ Rn 7→ φ(x − y) = φx(y) is in
C2(Rn, (S ′(Rn),Np)) and claim 1 follows by a straightforward induction.

Applying lemma 1.38 to x ∈ Rn 7→ φ(x − y) = φx(y) and T we obtain (1.29)
and (1.30).

In order to prove (1.31), because of (1.29) and (1.30) it suffices to prove that for
any T ∈ E ′(Rn), any φ ∈ S(Rn) and any β ∈ Nn there holds

(1.35)
∥∥xβ ⟨T (y), φ(x− y)⟩

∥∥
L∞(Rn)

< +∞ .

We write

xβ ⟨T (y), φ(x− y)⟩ = ⟨T (y), φ(x− y)
n∏

i=1

(xi − yi + yi)
βi⟩ .

By developing the expression
∏n

i=1(xi − yi + yi)
βi we obtain the existence of coeffi-

cients cβα,γ ∈ R such that

n∏
i=1

(xi − yi + yi)
βi =

∑
|α|≤|β|,|γ|≤|β|

cβα,γ

n∏
i=1

(xi − yi)
αi

n∏
j=1

y
γj
j .

Observe that for any choice of α and γ in Nn we have that

φα(y) := φ(y)
n∏

i=1

yαi
i ∈ S(Rn) and

n∏
j=1

y
γj
j T ∈ E ′(Rn) .

Hence we deduce (1.35) and (1.31) is proved. The fact that the operation φ ∈
S(Rn) −→ T ⋆ φ ∈ S(Rn) is continuous is left as an exercise.

Assuming now T ∈ E ′(Rn), and φ ∈ C∞
0 (Rn) we prove (1.33). Let x ∈ (suppT +

suppφ)c. This implies that

∀ y ∈ Rn x− y ∈ suppφ

=⇒ y ∈ − suppφ+ (Rn \ (suppT + suppφ)) = Rn \ suppT

Hence for such an x one has T ⋆ φ(x) = 0 which concludes the proof of proposi-
tion 1.44. 2
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Proposition 1.45. Let T ∈ S ′(Rn) and let φ ∈ S(Rn).
Then T ⋆ φ ∈ S ′(Rn) and ∀ψ ∈ S(Rn)

⟨T ⋆ φ, ψ⟩ = ⟨T, φ̌ ⋆ ψ⟩,

where
φ̌(x) = φ(−x).

□

Proof of Proposition 1.45. Under the assumptions of the proposition we have
that T ⋆φ ∈ C∞(Rn). Using the duality extension, and assuming first ψ ∈ C∞

0 (Rn),
we have

⟨T ⋆ φ, ψ⟩ =
∫
x∈Rn

T ⋆ φ(x)ψ(x) dxn =

∫
x∈Rn

⟨T (y), φ(x− y)ψ(x)⟩ dxn ,

Using the fact that ψ ∈ C∞
0 (Rn), claim 1 in the proof of proposition 1.44 implies

that for any i ∈ {1 · · ·n}

x −→
∫ +∞

xi

φ(x− y) ψ(x) dxi

is C∞ from Rn into (S ′(Rn),Np) for any p ∈ N. Applying lemma 1.38 we then
deduce that

∂

∂xi

〈
T (y),

∫ +∞

xi

φ(x− y)ψ(x) dxi

〉
= −⟨T (y), φ(x− y)ψ(x)⟩

=
∂

∂xi

∫ +∞

xi

⟨T (y), φ(x− y)ψ(x) ⟩ dxi

Hence there exists ci ∈ R such that〈
T (y),

∫ +∞

xi

φ(x− y)ψ(x) dxi

〉
=

∫ +∞

xi

⟨T (y), φ(x− y)ψ(x) ⟩ dxi + ci .

Making xi tend to +∞ and using again the fact that ψ ∈ C∞
0 (Rn) we obtain ci = 0.

Using one more time the fact that ψ ∈ C∞
0 (Rn), we can make xi converge to −∞

to obtain〈
T (y),

∫ +∞

−∞
φ(x− y)ψ(x) dxi

〉
=

∫ +∞

−∞
⟨T (y), φ(x− y)ψ(x) ⟩ dxi

Integrating along the n directions and using proposition 1.43 we finally obtain

⟨T ⋆ φ, ψ⟩ =
∫
x∈Rn

⟨T (y), φ(x− y)ψ(x)⟩ dxn =

〈
T (y),

∫
x∈Rn

φ(x− y)ψ(x)

〉
=

〈
T (y),

∫
x∈Rn

φ̌(y − x)ψ(x)

〉
= ⟨T (y), φ̌ ⋆ ψ(y)⟩ .
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Let p be the order of T , combining the previous identity with (1.28) we obtain

∀ ψ ∈ C∞
0 (Rn) |⟨T ⋆ φ, ψ⟩| ≤ CT Np(φ)Np+n+1(ψ) .

Hence T ⋆ φ defines a finite order element in D′(Rn) and thanks to the density
property (1.16), it extends as an element in S ′(Rn) and proposition 1.45 is proved.

□

Corollary 1.46. Let T ∈ S ′(Rn). Then there exists a sequence Ti ∈ C∞(Rn), such
that Ti → T in S ′(Rn).

For proving the corollary we shall make use of the following lemma

Lemma 1.47. Let χ ∈ C∞
0

(
B1(0),R+

)
, such that

∫
Rn χ(x) dx

n = 1 and for any
ε > 0 we denote

χε :=
1

εn
χ
( ·
ε

)
.

Then for any φ ∈ S(Rn) there holds

φ ⋆ χε −→ φ in S(Rn) ,

that is
∀ p ∈ N lim

ε→0
Np(φ ⋆ χε − φ) = 0

Proof of Lemma 1.46. Let p ∈ N, δ > 0 and R > 0 to be fixed later. We bound

sup
|α| ≤ p
|β| ≤ p

∥∥xβ∂αx (φ ⋆ χε − φ)
∥∥
L∞(Rn\BR(0))

≤ R−1 (Np+1(φ ⋆ χε) +Np+1(φ))

Observe that

|∂αx (φ ⋆ χε)| (x) = |∂αxφ ⋆ χε| (x) ≤ ∥∂αxφ∥L∞(Bε(x))
∥χε∥L1(Rn) .

For this reason there holds for ϵ small enough

Np+1(φ ⋆ χε) ≤ 2Np+1(φ) .

Hence we have

(1.36)
sup

|α| ≤ p
|β| ≤ p

∥∥xβ∂αx (φ ⋆ χε − φ)
∥∥
L∞(Rn\BR(0))

≤ 3R−1 Np+1(φ) .

We choose R > 0 such that 3R−1 Np+1(φ) ≤ δ/2. Since ∂αxφ is continuous on Rn it
is uniformly continuous on BR+ε(0) and we deduce for any α ∈ Nn

lim
ε→0

∥∂αxφ ⋆ χε − ∂αxφ∥L∞(BR(0))

= lim
ε→0

∥∥∥∥∫
y∈Rn

[∂αxφ(x− y)− ∂αxφ(x)] χε(y) dy
n

∥∥∥∥
L∞(BR(0))

≤ lim
ε→0

∫
y∈Rn

sup
x∈BR(0)

∥∂αxφ(x− y)− ∂αxφ(x)∥L∞
y (Bε(0))

χε(y) dy
n = 0 .
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Hence we can choose ε0 such that

(1.37) ∀ ε < ε0
sup

|α| ≤ p
|β| ≤ p

∥∥xβ∂αx (φ ⋆ χε − φ)
∥∥
L∞(BR(0))

≤ δ

2
.

Combining (1.36) and (1.37) we obtain

∀ ε < ε0 Np(φ ⋆ χε − φ) ≤ δ .

This concludes the proof of Lemma 1.47 2

Proof of Corollary 1.46. Let χ ∈ C∞
0

(
B1(0),R+

)
, such that

∫
Rn χ = 1. Let

moreover εi := i−1. We introduce

χi(z) =
1

εni
χ

(
z

εi

)
.

From proposition 1.44 and proposition 1.45 we have respectively

T ⋆ χi ∈ C∞.

and for any φ ∈ S(Rn)

⟨T ⋆ χi, φ⟩ = ⟨T, χ̌i ⋆ φ⟩ −→ ⟨T, φ⟩

This concludes the proof of Corollary 1.46. 2

This last proposition therefore shows that the convolution of a distribution with
a Schwartz function is a “natural” operation in the following sense: We can prove
properties of distributions by starting from smooth functions and then moving to
the limit. Furthermore, one can see that with the distributions one has not defined
a much too large object of generalized functions.

Next we consider translations. Let φ ∈ C∞
0 (Rn) and let a ∈ Rn. Then the

translation τa is defined as follows τaφ(x) := φ(x − a). The same procedure is
followed for tempered distributions.

Notation 1.48.
∀T ∈ S ′(Rn) : ⟨τaT, φ⟩ := ⟨T, τ−aφ⟩.

□

Proposition 1.49. ∀ T ∈ S ′(Rn) ∀φ ∈ S(Rn) ∀a ∈ Rn there holds

τa(T ⋆ φ) = (τaT ) ⋆ φ = T ⋆ τaφ.

□
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Proof of Proposition 1.49:

τa(T ⋆ φ(x)) = u ⋆ φ(x− a) = ⟨T (y), φ(x− a− y)⟩

= ⟨T (y), φ(x− (y + a))⟩

= ⟨T (y), τ−aφ(x− y)⟩

= ⟨τaT (y), φ(x− y)⟩

□

Exercise Let T ∈ E ′(Rn) and U : C∞
0 (Rn) → C∞

0 (Rn) be the following map:
U : φ 7→ u ⋆ φ. Prove that U

∣∣
C∞

0
is continuous where C∞

0 (Rn) is viewed as a

sub-vector space of C∞(Rn) viewed as a Fréchet space.

Exercise Let U ∈ C0(C∞
0 (Rn), C∞

0 (Rn)) be linear and commuting with translations,
that is for any a ∈ Rn

Uτaφ = τaUφ.

Then there is a T ∈ E ′(Rn) such that

Uφ = T ⋆ φ

1.9.3 Convolution of two distributions

Definition-Proposition 1.50. Let T ∈ E ′(Rn) and let φ ∈ C∞(Rn). Then we
define

T ⋆ φ(x) := ⟨T (y), φ(x− y)⟩E ′,C∞ .

There holds

i) T ⋆ φ ∈ C∞.

ii) ∂α(u ⋆ φ) = u ⋆ ∂αφ = (∂αu) ⋆ φ. □

Moreover the map which to φ ∈ C∞(Rn) assigns T ⋆ φ ∈ C∞(Rn) is continuous as
a map between Fréchet spaces.

Proof of proposition 1.50: .The proof is identical to the proof of proposition 1.44
after having inserted a cut-off function θ as in proposition 1.32 to extend the duality
from E ′ ↔ S to E ′ ↔ C∞. The fact that the map

φ ∈ C∞(Rn) −→ T ⋆ φ ∈ C∞(Rn)

is continuous as a map between Fréchet spaces is left as an exercise. □
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Definition-Proposition 1.51. (Convolution between S ′ and E ′)
Let T ∈ S ′(Rn) and let S ∈ E ′(Rn).

Then there exists R ∈ S ′(Rn) such that

∀φ ∈ S(Rn) ⟨R, φ⟩ = ⟨T, Š ⋆ φ⟩ ,

where
⟨Š, φ⟩ := ⟨S, φ̌⟩ .

We denote
R = T ⋆ S .

We now define

(1.38) ⟨S ⋆ T, φ⟩S′,S := ⟨S, Ť ⋆ φ⟩E ′, C∞ .

With these notations there holds

(1.39) T ⋆ S = S ⋆ T .

We have moreover
∂

∂xi
(T ⋆ S) =

∂T

∂xi
⋆ S = T ⋆

∂S

∂xi
.

If both T and S in E ′(Rn) holds

supp (T ⋆ S) ⊂ supp T + supp S ,

and
T ⋆ S ∈ E ′(Rn) .

□

Proof of Proposition-Definition 1.51. The fact that R ∈ S ′(Rn) follows from
the fact that for a compactly supported distribution Š the map φ −→ Š ⋆ φ is a
continuous map from S(Rn) into itself see (1.31).

The fact that (1.38) makes sense comes from (1.29) and the continuity of the
map

φ ∈ S(Rn) −→ T ⋆ φ ∈ C∞(Rn) ,

as a map between Fréchet spaces .

We now prove (1.39). Introduce χ ∈ C∞
0 (Rn), supp χ ⊂ B1(0) and

∫
Rn χ = 1 as

well as εi → 0. Denote χi(z) =
1
εni
χ( z

εi
). From the proof of corollary 1.46 we have

Ti := χi ⋆ T −→ T in S ′(Rn) and Si := χi ⋆ S −→ S in S ′(Rn)

moreover Ti ∈ C∞(Rn) and Si ∈ C∞
0 (Rn) with

supp(Si) ⊂ supp(S) + supp(χi) ⊂ supp(S) +Bεi(0) .
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There holds first

⟨Ti ⋆ Si, φ⟩ =
∫
Rn

Ti ⋆ Si(z)φ(z)dz
n

=

∫
Rn

dzn
∫
Rn

Ti(z − y)Si(y)φ(z) dy
n

=

∫
Rn

dzn
[∫

Rn

Ti(y)Si(z − y)dyn
]
φ(z) = ⟨Si ⋆ Ti, φ⟩.

We claim the following.
Claim 1):

(1.40) ⟨Ti ⋆ Si, φ⟩ = ⟨Ti, Ši ⋆ φ⟩ −→ ⟨T, Š ⋆ φ⟩ = ⟨T ⋆ S, φ⟩ .

In order to establish the claim 1 we first prove
Claim 0):

Ši ⋆ φ −→ Š ⋆ φ ∈ S(R) .
We have

Ši ⋆ φ(x) = ⟨Ši(y), φ(x− y)⟩ = ⟨Si(y), φ̌(x− y)⟩

= ⟨S ⋆ χi (y), φ(x+ y)⟩

= ⟨S(y), χ̌i ⋆ φ(x+ y)⟩

Since ∂α(Ši ⋆ φ) = Ši ⋆ ∂
αφ, it suffices to prove that ∀φ ∈ S(Rn) and any β ∈ Nn

∥xβ (⟨S(y), χ̌i ⋆ φ(x+ y)⟩ − ⟨S(y), φ(x+ y)⟩) ∥L∞(Rn) → 0,

Let p be the order of S. Since K := supp v̌ ⊂ Bρ(0) is compact, there exists a

constant CS > 0,such that

|⟨Š, ψ⟩| ≤ CS

∑
|α|≤p

∥∂αψ∥L∞(K), ∀ψ ∈ S(Rn).

Hence we have for any x ∈ Rn

|xβ (⟨S(y), χ̌i ⋆ φ(x+ y)⟩ − ⟨S(y), φ(x+ y)⟩) |

≤ CS

∑
|α|≤p

∥xβ
(
χ̌i ⋆ ∂

α
y φ(x+ y)− ∂αy φ(x+ y)

)
∥L∞

y (K),

Let δ > 0 and R > 2 ρ > 0 to be fixed later on. For x ∈ Rn \BR(0) we bound∥∥|xβ (⟨S(y), χ̌i ⋆ φ(x+ y)⟩ − ⟨S(y), φ(x+ y)⟩) |
∣∣
L∞(Rn\BR(0))

≤ CS

∑
|α|≤p

∥∥∥∥xβ (χ̌i ⋆ ∂
α
y φ(x+ y)− ∂αy φ(x+ y)

)
∥L∞

y (Bρ(0))

∥∥∥
L∞
x (Rn\BR(0))
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Observe that for |x| > R > 2 ρ one has 2|x| > |x+ y| > |x|/2. One has also

|χ̌i ⋆ ∂
α
y φ(x+ y)| ≤ ∥χ̌i∥L1(Rn) ∥∂αφ∥L∞(Bρ+εi (x))

.

Hence we have for any |α| ≤ p

CS

∑
|α|≤p

∥∥∥∥xβ (χ̌i ⋆ ∂
α
y φ(x+ y)− ∂αy φ(x+ y)

)
∥L∞

y (Bρ(0))

∥∥∥
L∞
x (Rn\BR(0))

≤ Cp R
−1 Np+1(φ) .

We choose R such that Cp R
−1 Np+1(φ) < δ/2. R being now fixed, on BR+ρ(0) the

convergence of χ̌i ⋆ ∂
α
y φ towards ∂αy φ is uniform. Hence, for i large enough

CS

∑
|α|≤p

∥∥∥∥xβ (χ̌i ⋆ ∂
α
y φ(x+ y)− ∂αy φ(x+ y)

)
∥L∞

y (Bρ(0))

∥∥∥
L∞
x (BR(0))

≤ δ/2

Combining the above, claim 0) is proved.

In order to prove the claim 1) we write

⟨Ti, Ši ⋆ φ⟩ − ⟨T, Š ⋆ φ⟩ = ⟨Ti − T, Š ⋆ φ⟩ − ⟨Ti, Š ⋆ φ− Ši ⋆ φ⟩

= ⟨Ti − T, Š ⋆ φ⟩ − ⟨T, χ̌i ⋆ (Š ⋆ φ− Ši ⋆ φ)⟩

Since Ti → T in S ′(Rn) we have that ⟨Ti − T, Š ⋆ φ → 0. Let p be the order of T .
We have∣∣⟨T, χ̌i ⋆ (Š ⋆ φ− Ši ⋆ φ)⟩

∣∣ ≤ C
∑

|α| ≤ p
|β| ≤ p

∥∥xβχ̌i ⋆ ∂
α(Š ⋆ φ− Ši ⋆ φ)(x)

∥∥
∞

Observe one more time that∣∣χ̌i ⋆ ∂
α(Š ⋆ φ− Ši ⋆ φ)(x)

∣∣ ≤ ∥χ̌i∥L1(Rn)

∥∥∂α(Š ⋆ φ− Ši ⋆ φ)
∥∥
L∞(Bεi (x))

Hence ∑
|α| ≤ p
|β| ≤ p

∥∥xβχ̌i ⋆ ∂
α(Š ⋆ φ− Ši ⋆ φ)(x)

∥∥
∞ ≤ CNp(Š ⋆ φ− Ši ⋆ φ)

Using claim 0) we obtain that Np(Š ⋆φ− Ši ⋆φ) → 0 and the above we deduce claim
1). Hence we have proved (1.39).

The last assertions of the proposition follow from (1.38), (1.30) and (1.33) and
the details are left as an exercise.

□

Remark 1.52. Attention! associativity does not hold in general.
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□

Example: Consider in S(R). There holds

(1 ⋆ δ′0) ⋆ H1,0 = 0 ,

indeed
⟨1 ⋆ δ′0, φ⟩ = ⟨δ′0, 1̌ ⋆ φ⟩ = −⟨δ0, (1̌ ⋆ φ)′⟩ = −(1̌ ⋆ φ)′(0) = 0.

On the other hand, there holds

δ′0 ⋆ H1,0 = δ0 ⋆ δ0 = δ0 ∈ E ′(R)

and thus
1 ⋆ (δ′0 ⋆ H1,0) = 1 ⋆ δ0 = 1.

(δ0 is the neutral element of the convolution). We have shown

(1 ⋆ δ′0) ⋆ H1,0 ̸= 1 ⋆ (δ′0 ⋆ H1,0).

Theorem 1.53. Assume T, U, V ∈ S ′(Rn) and that two of the 3 have compact
support, then there holds

T ⋆ (U ⋆ V ) = (T ⋆ U) ⋆ V .

Exercise. Prove theorem 1.53.

Remark 1.54. So far we have seen the following cases in which the convolution is
defined between a distribution and a function or another distribution:

• T ∈ S ′, φ ∈ S ,

• T ∈ E ′, φ ∈ C∞ ,

• T ∈ S ′, S ∈ E ′ .

The question now arises as to whether there are other cases in which a convoolu-
tion is defined between two distributions.

In fact, one can define the convolution between T ∈ S ′ and S ∈ S ′, provided

∀R > 0 ∃ δ(R) > 0,

so that

(x ∈ supp T, y ∈ supp S, |x+ y| ≤ R) ⇒ (|x| ≤ δ(R), |y| ≤ δ(R))

One says that T and S have convolutive supports.
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1.10 The use of convolutions to solve linear partial differ-
ential equations with constant coefficients

1.10.1 General Principles

Definition 1.55. A convolution equation is an equation of the form A ⋆ u = f ,
where A ∈ E ′(Ω) and f ∈ E ′(Ω) are given and u ∈ D′(Ω) is unknown. □

Example 1: (Partial Differential Equations) Let A =
∑

|α|≤pCα∂
αδ0, Cα ∈ R

or C

A ⋆ u =
∑
|α|≤p

Cα∂
αδ0 ⋆ u, where ∂

αδ0 ∈ E ′ and u ∈ D′

=
∑
|α|≤p

Cαδ0 ⋆ ∂
αu =

∑
|α|≤p

Cα∂
αu.

Hence
A ⋆ u = f ⇐⇒

∑
|α|≤p

Cα∂
αu = f .

Example 2: A discrete differential equations of the form u(x + h) + u(x − h) −
2u(x) = f can be rewritten as follows:

(δh + δ−h − 2δ0) ⋆ u = f .

Definition 1.56. Let A ∈ E ′(Rn). A solution G ∈ S ′(Rn) of the equation A⋆G = δ0
is called the fundamental solution / Green’s function / kernel of the convolution
equation. □

Theorem 1.57. Let A ∈ E ′(Rn) and let f ∈ E ′(Rn). In addition, let G be a
fundamental solution of the equation associated to A, i.e. A ⋆ G = δ0.

a) Then u := G ⋆ f is a solution to the equation A ⋆ u = f .

b) If u is a solution of A ⋆ u = f and u ∈ E ′(Rn), then u = G ⋆ f and this is the
only solution, if there is one.

Proof of the theorem 1.57:

Proof of a): Let u = G ⋆ f . Then A ⋆ u = A ⋆ (G ⋆ f). Since A, f ∈ E ′(Rn), the
associativity holds thanks to theorem 1.53, so

A ⋆ u = (A ⋆ G) ⋆ f = δ0 ⋆ f = f .

proof of b): Now let u ∈ E ′(Rn) be a solution of A⋆u = f . We have u = δ0 ⋆u =
(A ⋆ G) ⋆ u, and because of the associativity, which holds because of A, u ∈ E ′(Rn),
one obtains

u = (G ⋆ A) ⋆ u = G ⋆ (A ⋆ u) = G ⋆ f.

□
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1.10.2 Solving ∆u = f for f ∈ E ′(Rn)

(Model example for elliptic equations)

We introduce the following function

(1.41) G(x) =


1

2π
log |x| n = 2,

− 1

|∂Bn
1 (0)| |x|n−2(n− 2)

, n > 2, x ∈ Rn.

Introduce the characteristic functions f the unit ball 1B1(0) and the complement of
the unit ball 1R\B1(0)

G = 1B1(0)G+ 1R\B1(0)G ∈ L1 + L∞(Rn) =⇒ G ∈ S ′(Rn) ,

and
G ∈ C∞(Rn\{0}) .

We have the following lemma.

Lemma 1.58. The tempered distribution defined by (1.41) satisfies

∆G =
n∑

i=1

∂2G

∂x2i
= δ0

Proof of lemma 1.58 A direct calculation of the derivatives gives

∆G = 0 in D′(Rn\{0}).

That means that
supp∆G ⊂ {0}

Proposition 1.39 then yields the existence of q ∈ N, so that holds

∆G =
∑
|α|≤q

Cα∂
αδ0 ,

and
Cα ∈ R for all |α| ≤ q .

Let φ ∈ C∞
0 (Rn), suppφ ⊂ BR(0). Observe that E ∈ L1(BR(0)). Thus we can

write

⟨∆G, φ⟩ = ⟨∆G, φ⟩ =
∫
Rn

G∆φ =

∫
BR(0)

G∆φ dxn = lim
ε→0

∫
BR(0)\Bε(0)

G∆φ dxn

Observe that∫
BR(0)\Bε(0)

G∆φ dxn = −
∫
∂ Bε(0)

G
∂φ

∂r
dl∂Bε(0) −

∫
BR(0)\Bε(0)

∇G∇φ dxn .
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Since

∥G∥L∞(∂ Bε(0)) ≤
C

εn−2
for n > 2 and ∥G∥L∞(∂ Bε(0)) ≤ C log ε−1 for n = 2 .

This implies∫
∂ Bε(0)

G
∂φ

∂r
dl∂Bε(0) ≤ Cφ∥G∥L∞(∂Bε(0))|∂Bε(0)| = oε(1) → 0 .

Moreover we have (for n > 2), since ∆G = 0 away from 0

−
∫
BR(0)\Bε(0)

∇G∇φ dxn = −
∫
∂Bε(0)

∂G

∂r
φ dl∂Bε(0) +

∫
BR(0)\Bε(0)

φ∆G dxn

= +

∫
∂Bε(0)

n− 2

|∂Bn
1 |(n− 2)|x|n−1

φ,

A similar computation holds for n = 2.

Finally we have obtained the following result

⟨∆G,φ⟩ = lim
ε→0

∫
∂Bε(0)

1

|∂Bn
1 | |x|n−1

φ dl∂Bε(0) = φ(0) = ⟨δ0, φ⟩ .

This concludes the proof of Lemma 1.58. 2

Combining Lemma 1.58 with the previous subsection we shall derive the following
result.

Theorem 1.59. Let

G(x) =


1

2π
log |x| n = 2,

− 1

|∂Bn
1 (0)| |x|n−2(n− 2)

n > 2,

and let f ∈ E ′(Rn). Then u = G ⋆ f is a solution to ∆u = f , u ∈ S ′(Rn),
u ∈ C∞(Rn\supp f) and u converges uniformly toward 0 at infinity. □

Proof of Theorem 1.59. Because of the previous subsection, the equation ∆u = f
in S ′(Rn) can be rewritten as A ⋆ u = f , where

A =
n∑

i=1

∂2xi
δ0 .

From theorem 1.57 u := G ⋆ f is a solution to this equation and u ∈ S ′(Rn).

We prove now the last part of the theorem, that is first u ∈ C∞(Rn\supp f) and
then the uniform convergence of u towards 0 at infinity.

Let δ > 0 and let θ ∈ C∞
0 (Rn) with θ ≡ 1 on Bn

1 (0) and θ ≡ 0 on Rn\Bn
2 (0).

Denote
θδ(x) = θ

(x
δ

)
.
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Now we decompose G as follows:

G = Gδ
1 +Gδ

2 ,

where Gδ
1 = θδG and Gδ

2 = (1 − θδ)G. Observe that Gδ
1 ∈ L1(Rn) and Gδ

2 ∈
L∞(Rn) ∩ C∞(Rn). By linearity of the convolution u can be written as follows

u = G ⋆ f = Gδ
1 ⋆ f +Gδ

2 ⋆ f .

Further we have

suppGδ
1 ⋆ f ⊂ supp f +Bn

2δ(0) ⊂ (supp f)2δ := {x ∈ Rn; dist(x, supp f) ≤ 2δ} .

Now let φ ∈ C∞
0 (Rn\(supp f)2δ), then the following holds

⟨u, φ⟩ = ⟨Gδ
1 ⋆ f⟩+ ⟨Gδ

2 ⋆ f, φ⟩ = ⟨Gδ
2 ⋆ f, φ⟩ .

From proposition 1.50 we have Gδ
2⋆f ∈ C∞ ∀δ > 0. We deduce u ∈ C∞(Rn\supp f).

Now we write
Gδ

2 ⋆ f(x) = ⟨f(y), Gδ
2(x− y)⟩E ′,C∞

and

(1.42) |⟨f(y), Gδ
2(x− y)⟩| ≤ C

∑
|α|≤p

∥∂αyGδ
2(x− ·)∥L∞(supp f),

where p = ord(f). Let 2 < R <∞, such that supp f ⊂ Bn
R(0). There holds

∀y ∈ BR (0) , |x| > 2R

|∂αyGδ
2(x− y)| = C

∣∣∣∣∂αy 1

|x− y|n−2

∣∣∣∣ ≤ C1

(|x| −R)n−2+|α| −→ 0

uniformly when |x| → +∞. Combining this fact with the bound (1.42) we obtain
the uniform convergence of u toward 0 at infinity. This concludes the proof of
theorem 1.59. 2 □

1.10.3 The resolution of □u = f in E ′(R4)

(Model for hyperbolic equations).

In R4, the differential operator

□u =
∂2

∂t2
u−∆u =

∂2

∂t2
u−

3∑
i=1

∂2u

∂x2i
= f, (x, t) = (x1, x2, x3, t) ∈ R4

is called “wave operator”. We introduce the light cone

t =
√
x21 + x22 + x23 = |x| .
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We denote by T the integration along the light cone with respect to the volume form
of the induced euclidian metric from R4, that is

⟨T, φ⟩ :=
∫
lightcone

φdvollightcone =
√
2

∫
R3

φ(x1, x2, x3, |x|)dx1dx2dx3 .

Denote ρ =
√
x21 + x22 + x23 + t2 and observe that ρ =

√
2|x| along the light cone.

Let φ ∈ S ′(R4). We compute〈
T

ρ
, φ

〉
:=

∫
lightcone

φ

ρ
d vollightcone

=
√
2

∫
R3

1

ρ
φ(x1, x2, x3, |x|) dx1dx2dx3

=

∫
R3

1

|x|
φ(x1, x2, x3, |x|) dx1dx2dx3 .

We ∣∣∣∣〈Tρ , φ
〉∣∣∣∣ ≤ ∥φ∥∞

∫
B3

1(0)

1

|x|
dx1 dx2 dx3 +

∑
|β|≤3

∥xβφ∥∞
∫
B3

1(0)

1

|x|4
dx1 dx2 dx3

= 4π ∥φ∥∞
∫ 1

0

r2dr

r
+ 4 π

∑
|β|≤3

∥xβφ∥∞
∫ +∞

1

r2dr4

r
≤ C N3(φ)

This implies that T/ρ defines an element of S ′(R4).

Proposition 1.60. S := T/ρ is a solution in S ′(R4) of □S = 4π δ0.

Proof of Proposition 1.60: Let φ ∈ S(R4), and for r > 0 and t ∈ R write

φ(r, t) :=
1

4πr2

∫
∂Br(0)

φ(y, t) dσ(y) =
1

4π

∫
S2
φ(ry, t) dσ(y).

In polar coordinates we have that

□φ = ∂2t φ− ∂2rφ− 2

r
∂rφ− 1

r2
∆S2φ.

Thus we can compute, writing the integral in polar coordinates,

⟨S,□φ⟩ =
∫ ∞

0

∫
S2

∂2t φ(ry, r)− ∂2rφ(ry, r)− 2
r
∂rφ(ry, r)− 1

r2
∆S2φ(ry, r)

r
dσ(y) r2dr.

Notice that, by the divergence theorem and the fact that S2 is closed,∫
S2
∆S2φ dσ(y) = 0.
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Hence we get

⟨S,□φ⟩ =
∫ ∞

0

∫
S2

∂2t φ(ry, r)− ∂2rφ(ry, r)− 2
r
∂rφ(ry, r)

r
dσ(y) r2dr

=

∫ ∞

0

∫
S2
r∂2t φ(ry, r)− r∂2rφ(ry, r)− 2∂rφ(ry, r) dσ(y) dr

=

∫ ∞

0

r∂2t φ(r, r)− r∂2rφ(r, r)− 2∂rφ(r, r) dr.

Now observe that d
dr
(rφt(r, r)) = φt(r, r) + rφtt(r, r) + rφrt(r, r) and

d
dr
(rφr(r, r)) =

φr(r, r)+rφrt(r, r)+rφrr(r, r). Integrating by parts and observing that both rφt(r, r)
and rφr(r, r) vanish at 0 and at ∞, we get

⟨□S, φ⟩ = ⟨S,□φ⟩ =
∫ ∞

0

−∂tφ(r, r) + ∂rφ(r, r)− 2∂rφ(r, r) dr

=

∫ ∞

0

−∂tφ(r, r)− ∂rφ(r, r) dr = −
∫ ∞

0

d

dr
(φ(r, r)) dr

= φ(0, 0) =
1

4π

∫
S2
φ(0 · y, 0) dσ(y) = φ(0, 0) = ⟨δ(0,0), φ⟩.

This concludes the proof of Proposition 1.60. 2

Theorem 1.61. Let f ∈ E ′(R4). Then

u :=
T

4π ρ︸︷︷︸
∈S′(R4)

⋆ f︸︷︷︸
∈E ′(R4)

is a solution of □u = f . Moreover

suppu0 ⊂ {(x, t) ∈ R4; ∃ (x0, t0) ∈ supp f such that |x− x0| = |t− t0|}.

(Light cone centred at (x0, t0)). Moreover u is the unique solution to □u = f null
in the past : whose support is included in a half space of the form {(x, t); t > t0}.

Proof of theorem 1.61: The equation □u = f can be rewritten in the form

A ⋆ u = f, where A = ∂2t δ0 −
3∑

i=1

∂2xi
δ0 ∈ E ′(R4) .

Since A, f ∈ E ′(R4), using theorem 1.53, we have

□u = □

(
T

4π ρ
⋆ f

)
= A ⋆

(
T

4 π ρ
⋆ f

)
=

(
A ⋆

T

4π ρ

)
⋆ f = δ0 ⋆ f = f
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This shows that u solves □u = f . We have moreover

suppu ⊂ supp
T

4πρ
+ supp f,

this means that for any (x, t) in suppu there existts

(y, s) ∈ supp
T

4 π ρ
and (x0, t0) ∈ supp f ,

such that
(x, t) = (y, s) + (x0, t0) .

This implies that (x, t)−(x0, t0) ∈ light cone with origin 0. In other words |x−x0| =
|t− t0|, which means that (x, t) ∈ light cone with origin (x0, t0).

Assume there exists another solution ũ, supported in {(x, t); t > t′0} for some t′0.
Denote w := u− ũ, then we have

suppw ⊂ {(x, t); t > t′′0}

and

w = δ0 ⋆ w =

(
T

4π ρ
⋆□ δ0

)
⋆ w.

Let now Θ ∈ C∞
0 (R4) with Θ ≡ 1 on B1(0) and Θ ≡ 0 on B2(0)

c. Denote Θi(x) =
Θ(x/i), i ∈ N. Then we have Θi ≡ 1 on Bi(0) and Θi ≡ 0 on B2i(0)

c. This gives

(1)

(Θi
T

4π ρ︸︷︷︸
∈E ′

⋆□ δ0︸︷︷︸
∈E ′

) ⋆ w︸︷︷︸
∈S′

= Θi
T

4π ρ
⋆ (□ δ0 ⋆ w)

= Θi
T

4π ρ
⋆□w = 0.

Moreover there holds

□

(
Θi

T

4πρ

)
= □

(
T

4πρ

)
= δ0 in D′(Bi(0)) ,

and

□

(
Θi

T

4π ρ

)
= 0 in D′(B2i(0)

c) :

Thus finally

□

(
Θi

T

4πρ

)
= δ0 + hi,

where supphi ⊂ B2i(0)\Bi(0)∩ light cone with origin 0.

Let now φ ∈ C∞
0 (R4) with suppφ ⊂ B4

R(0). Since

(2) ⟨(Θi
T

4π ρ
⋆□δ0) ⋆ w, φ⟩ = ⟨□Θi

T

4π ρ
, w̌ ⋆ φ⟩
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and
supp w̌ ⊂ {(x, t), t < −t′′0} .

This implies
supp w̌ ⋆ φ ⊂ {(x, t), t ≤ −t′′0 +R} .

Thus
⟨hi, w̌ ⋆ φ⟩E ′,C∞ = 0

for i large enugh. Combining the above we have for i large enough

0 =

〈
□Θi

T

4π ρ
, w̌ ⋆ φ

〉
= ⟨δ0 + hi, w̌ ⋆ φ⟩

↑
(1) , (2)

= ⟨δ0, w̌ ⋆ φ⟩

= ⟨δ0, ⟨w(−y), φ(x− y)⟩⟩

= ⟨w,φ⟩ .

Hence we have proved that w = u − ũ = 0 in D′(R4). This holds as well in S ′(R4)
since C∞

0 (Rn) is dense in S(Rn). This concludes the proof of theorem 1.61. 2

.

We have covered two model cases both for linear elliptic and hyperbolic equa-
tions, however, at this stage, the following questions still remain open:

i) How does one find the fundamental solution?

ii) What if f is no longer in E ′(Rn)?
How to define G ⋆ f (resp. E ⋆ f) for general f?

iii) What regularity properties does f ⋆ G (resp. E ⋆ f) have with respect to the
regularity of f?

iv) What about partial differential equations in bounded domains?

1.11 Convolutions and Fourier Transforms

Theorem 1.62. Assume either u ∈ E ′(Rn) and v ∈ S ′(Rn) or u ∈ L1(Rn) and
v ∈ L1(Rn). then we have

û ⋆ v = (2π)n/2 û v̂ .

Proof of theorem 1.62. We consider first u ∈ L1(Rn) and v ∈ L1(Rn).

û ⋆ v (ζ) = (2π)−n/2

∫
Rn

e−ix·ζ
∫
Rn

u(x− y)v(y)dyn dxn.
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Since e−ix·ζ u(x − y) v(y) ∈ L1(Rn × Rn) we can apply the theorem of Fubini to
deduce

û ⋆ v (ζ) = (2π)−n/2

∫
Rn

v(y)

∫
Rn

e−ix·ζ u(x− y) dyn dxn

= (2π)−n/2

∫
Rn

v(y)

∫
Rn

e−i(z+y)·ζ u(z) dzn dyn

= (2π)−n/2

∫
Rn

e−iy·ζ v(y) dyn
∫
Rn

e−iz·ζ u(z) dzn

= (2π)n/2 v̂ (ζ) û (ζ) .

Consider now u, v ∈ E ′, then from proposition 1.51 we know that u ⋆ v ∈ E ′ and
suppu ⋆ v ⊂ suppu+ supp v. Applying now theorem 1.37 we have

û ⋆ v (ζ) = (2π)−n/2 ⟨u ⋆ v(x), e−ix·ζ⟩ = (2π)−n/2 ⟨u(y), v̌x ⋆ e−ix·ζ (y)⟩ .

We have moreover, since v̂ ∈ G(Rn) and φ̂ ∈ S(Rn),

⟨v̌ ⋆ e−ix·ζ , φ⟩ = ⟨e−ix·ζ , v ⋆ φ⟩

=

∫
Rn

e−ix·ζ
∫
Rn

v(x− y)φ(y) dyn dxn

=

∫
Rn

e−i(y+z)·ζ
∫
Rn

v(z)φ(y) dyn dzn

= v̂ φ̂ ∈ S(Rn) .

Consider now more generally v ∈ S ′(Rn).

Claim : There is a sequence vj ∈ E ′ such that vj → v in S ′(Rn).

Proof of the claim: Let ψ ∈ C∞
0 (Rn) such that ψ ≡ 1 on B1(0). We denote

vj := ψ (x/j) v. Then

∀φ ∈ S(Rn)

〈
ψ

(
x

j

)
v, φ

〉
=

〈
v, ψ

(
x

j

)
φ

〉
and then

|⟨vj − v, φ⟩| =
∣∣∣∣〈ψ(xj

)
v − v, φ

〉∣∣∣∣ = ∣∣∣∣〈v, ψ(xj
)
φ− φ

〉∣∣∣∣
≤ C Np

(
ψ
(x
j

)
· φ− φ

)
≤ j−1Np+1

(
ψ
(x
j

)
· φ− φ

)
= oj(1) .
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Hence vj → v in S ′(Rn) and obviously vj ∈ E ′(Rn). This concludes the proof of the
claim.

Consider now u ∈ E ′(Rn) and v ∈ S ′(Rn) as well as vj ∈ E ′(Rn) a sequence which
converges towards v in S ′(Rn). We have already established that û ⋆ vj = (2π)n/2 û v̂j
and we know from theorem 1.37 that û ∈ G(Rn). Since v̂j → v in S ′ we have using
proposition 1.24

û ⋆ vj = (2π)n/2 û v̂j → (2π)n/2 û v̂ in S ′ .

Using proposition 1.51, we have

∀φ ∈ S(Rn) ⟨û ⋆ vj, φ⟩ = ⟨u ⋆ vj, φ̂⟩ = ⟨vj ⋆ u, φ̂⟩ = ⟨vj, ǔ ⋆ φ̂⟩ → ⟨v, ǔ ⋆ φ̂⟩

This concludes the proof of theorem 1.62. 2

1.12 The use of the Fourier transform for solving Cauchy-
Problems in S ′(Rn)

This subsection is devoted to the solvability question of partial differential equations
with initial conditions.

First of all, we shall be considering the following natural question : Is there any
sufficient condition on

A ∈ E ′(Rn) .

that guaranties the existence of exactly one u ∈ S ′(Rn) satisfying A ⋆ u = f for any
given f ∈ S ′(Rn)?

The following theorem is giving an answer to this question assuming A is sup-
ported at the origin.

Theorem 1.63. Let A ∈ E ′(Rn) of the form

A =
∑
|α|≤m

aα ∂
α δ0,

so that the Fourier transform of A, Â =
∑

|α|≤m bα x
α, satisfies the following condi-

tion

(1.43) Â(ξ) ̸= 0 for all ξ ∈ Rn .

If A satisfies (1.43) then4 for any arbitrary f ∈ S ′(Rn) there exists exactly one
u ∈ S ′(Rn), such that A ⋆ u = f .

4If A satisfies the slightly different condition, m = 2p

∀ξ ∈ Rn \ {0}
∑

|α|=m

bα ξ
α ≥ c |ξ|m ,

for some c > 0, one says that A is strongly elliptic. This last condition is very important in
many applications from geometry and physics. From a strictly analysis perspective it is a condition
related to interior regularisation effect and non-degeneracy and uniqueness for prescribed boundary
problems.
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Proof of theorem 1.63: We consider the Fourier transform applied to the equality
A⋆u = f . We have thanks to proposition 1.51 f̂ ∈ S ′(Rn). We have moreover thanks

to theorem 1.62 Â ⋆ u = (2π)n/2 Â·û. Since A ∈ E ′(Rn) we deduce from theorem 1.37
Â ∈ OM (Rn), which itself implies thanks to proposition 1.25 Â · û ∈ S ′(Rn).

Hence the equation
A ⋆ u = f

is equivalent to (2π)n/2 Â · û = f̂ and it posses a unique solution given formally by

(1.44) û = (2π)−n/2 f̂

Â
.

Because of (1.19) Â is a polynomial that never vanishes and consequently its inverse

is a slowly increasing function : Â−1 ∈ G(Rn). Hence f̂

Â
∈ S ′(Rn) and (1.44) makes

sense. The formula implies uniqueness. 2

Example 1.64. The Bessel operator. Let A = −∆δ0 + δ0.

Â(ξ) = (2π)−n/2 (|ξ|2 + 1) .

Thanks to the previous theorem, for any f ∈ S ′(Rn) the unique solution of

−∆u+ u = f in S ′(Rn)

is given by

u := F−1

(
f̂

|ξ|2 + 1

)

Example 1.65. A degenerate case : the Poisson equation.

Let f ∈ E ′(Rn). We aim at solving again the Poisson equation with right-hand-
side equal to f but with the mean of the Fourier transform this time. We look for
u ∈ S ′(Rn) such that

(1.45) ∆u = f ,

that can be rewritten as

∆δ0 ⋆ u(= δ0 ⋆∆u = ∆u) = f, f ∈ E ′(Rn).

We restrict to the case n ≥ 3. After application of the Fourier Transform we obtain

− |ξ|2 û = f̂

. Since f ∈ E ′(Rn), f̂ is C∞ and hence

− f̂

|ξ|2
∈ L1

loc(Rn)
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Let χ ∈ C∞
0 (Rn) such that χ ≡ 1 on Bn

1 (0). Then we have

− f̂

|ξ|2
= −χ(ξ)

f̂

|ξ|2
− (1− χ(ξ))

f̂

|ξ|2
∈ L1(Rn) +G(Rn) ⊂ S ′(Rn),

Hence

u = F̄

(
− f̂

|ξ|2

)
is a solution to the Poisson equation (1.45). Let v be another solution in S ′(Rn).
Then u− v solves the Laplace equation

∆(u− v) = 0 ,

and then, thanks to theorem 1.41, u−v is an harmonic polynomial. Hence the space
of solution to (1.45) in S ′(Rn) is given by

u = F̄

(
− f̂

|ξ|2

)
+ P (x) where P is an harmonic polynomial .

We now compare this expression with theorem 1.59, we must have

(1.46) G ⋆ f = (2π)n F̄

(
− f̂

|ξ|2

)
.

Since G ∈ S ′(Rn) and f ∈ E ′(Rn), we have thanks to theorem 1.62

(2π)n/2 Ĝ f̂ = − f̂

|ξ|2
.

Since this holds for any f ∈ E ′(Rn), one deduces (for f = δ0) from the explicit
expression of the Green Function G given by theorem 1.59 the following Lemma

Lemma 1.66. For any n > 2

(1.47) F
(

1

|x|n−2

)
= (2π)−n/2 (n− 2)

|Sn−1|
|ξ|2

.

Exercise 1.67. Compute in R2 the Fourier transform F(log |x|).

Example 1.68. The Heat Equation:

Let f ∈ S ′(Rn). We are looking for a solution u ∈ C∞(R∗
+,S ′) from the following

problem  ∂tu−∆u = 0

u(0, x) = f(x) .
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where the rigorous way the initial condition u(0, x) = f(x) has to be understood has
to be specified. We proceed first to some computations. One considers the Fourier
transform in x and, assuming that u ∈ S ′

(∂t + |ξ|2)û = 0, û(0, ξ) = f̂(ξ).

It follows immediately
û(t, ξ) = e−t |ξ|2 f̂(ξ).

We now rewrite this identity as follows:

û(t, ξ) = Ĥ(t, ξ) · f̂(ξ),

where
Ĥ(t, ξ) := e−t |ξ|2 ,

That means
u = (2π)−/2H ⋆ f.

We now calculate H(t, x). Recall from exercise 1.3 for any a ∈ R∗
+

ê−a|x|2 =
1

(2a)
n
2

e−
|ξ|2
4a .

We apply this identity for a =
1

4t
and it follows

e−|x|2/4t = F̄F
(
e−|x|2/4t

)
= (2 t)n/2 F̄

(
e−|ξ|2t

)
⇒ H(t, x) =

(
1

2t

)n/2

e−|x|2/4t.

The formal computations above are leading (exercise) to the following result.

Lemma 1.69. For any f ∈ S ′(Rn) there exists u ∈ C∞
loc(R∗

+,S(Rn) solving

∂tu−∆u = 0 in R∗
+ × Rn ,

moreover

(1.48) lim
t→0

u(t, ·) = f weakly in S ′(Rn)

in other words

∀φ ∈ S(Rn) lim
t→0

∫
Rn

u(t, x) φ(x) dxn =< f, φ >S′,S

The solution is unique and there holds

∀t > 0 u(t, x) =

(
1

4πt

)n/2

e−|x|2/4t ⋆ f .

Example 1.70. The Wave Equation
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For any choice of f, g ∈ E ′ we are looking for a solution u in a sense which has
to be precised of

(1.49)


□u = ∂2t u−∆u = 0 ,

u(0, x) = f(x) ,

∂tu(0, x) = g(x),

We perform formal computations first. The Fourier transform of the equation (1.49)

is giving 
(∂2t + |ξ|2)û = 0,

û(0, ξ) = f̂(ξ),

∂tû(0, ξ) = ĝ(ξ)

This leads to the following solution

û(t, ξ) = C(ξ) sin(t|ξ|) + C ′(ξ) cos(t|ξ|).

With
∂tû(t, ξ) = C(ξ) |ξ| cos(t |ξ|)− C ′(ξ) |ξ| sin(t |ξ|)

It follows now
C(ξ) |ξ| = ĝ(ξ)

and
C ′(ξ) = f̂(ξ).

This gives

(⋆) û(t, ξ) = ĝ(ξ)
sin(t |ξ|)

|ξ|
+ f̂(ξ) cos(t |ξ|) .

We have

∀ t ∈ R
sin(t |ξ|)

|ξ|
∈ L∞(Rn) ⊂ S ′(Rn) and cos(t |ξ|) ∈ L∞(Rn) ⊂ S ′(Rn)

After these formal computations we can now develop an argument. Since f and g
are both assumed to be in E ′(Rn), thanks to theorem 1.37 f̂ ∈ G(Rn) and ĝ ∈ G(Rn)
and thanks to proposition 1.25

∀ t ∈ R ĝ(ξ)
sin(t |ξ|)

|ξ|
∈ S ′(Rn) and f̂(ξ) cos(t |ξ|) ∈ S ′(Rn)

Thanks now to proposition 1.51 and theorem 1.62 there holds

∀ t ∈ R F
(
ĝ(ξ)

sin(t |ξ|)
|ξ|

+ f̂(ξ) cos(t |ξ|)
)

= (2π)−n/2 g ⋆ F
(
sin(t |ξ|)

|ξ|

)
+ (2π)−n/2 f ⋆ F (cos(t |ξ|))
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Let φ ∈ S(Rn) and let u(t, x) := F
(
ĝ(ξ) sin(t |ξ|)

|ξ| + f̂(ξ) cos(t |ξ|)
)
. We have

∂2t2⟨u(t, x), φ(x)⟩ − ⟨∆u(t, x), φ(x)⟩

= ∂2t2⟨û(t, ξ),F(φ)(ξ)⟩+ ⟨|ξ|2 û(t, ξ),F(φ)(ξ)⟩

= ∂2t2

〈
ĝ(ξ)

sin(t |ξ|)
|ξ|

+ f̂(ξ) cos(t |ξ|),F(φ)(ξ)

〉
+

〈
|ξ|2 ĝ(ξ) sin(t |ξ|)

|ξ|
+ |ξ|2 f̂(ξ) cos(t |ξ|),F(φ)(ξ)

〉
We claim (exercise) that

⟨u(t, x), φ(x)⟩ =
〈
ĝ(ξ)

sin(t |ξ|)
|ξ|

+ f̂(ξ) cos(t |ξ|),F(φ)(ξ)

〉
∈ C2(R)

and that

∂2t2
〈
ĝ(ξ) sin(t |ξ|)

|ξ| + f̂(ξ) cos(t |ξ|),F(φ)(ξ)
〉

= −
〈
|ξ|2 ĝ(ξ) sin(t |ξ|)

|ξ|
+ |ξ|2 f̂(ξ) cos(t |ξ|),F(φ)(ξ)

〉
Hence we have proved

∀φ ∈ S(Rn) ∂2t2⟨u(t, x), φ(x)⟩ − ⟨∆u(t, x), φ(x)⟩ = 0

Exercise 1.71. Prove that

⟨u(0, x), φ(x)⟩ = ⟨f(x), φ(x)⟩ and ∂t⟨u(t, x), φ(x)⟩|t=0 = ⟨g(x), φ(x)⟩ .

Exercise 1.72. Prove that for n = 3 and t ̸= 0

∀φ ∈ S(R3)

〈
(2π)−3/2F

(
sin(t |ξ|)

|ξ|

)
, φ

〉
=

1

4π t

∫
∂B|t|(0)

φ(x) dvol∂B|t|(0)

and

∀φ ∈ S(R3)
〈
(2π)−3/2F (cos(t |ξ|)) , φ

〉
=

d

dt

(
1

4π t

∫
∂B|t|(0)

φ(x) dvol∂B|t|(0)

)
= ...

We claim that the solution u is unique in the class of solutions which are com-
pactly supported for every t ∈ R.

By linearity, it suffices to prove that any solution u in this class for f = 0 and
g = 0 is identically equal to zero. Let χ ∈ C∞

0 (Rn) such that
∫
Rn χ(x) dx

n = 1 and
for ay ϵ ∈ (0, 1) we denote χϵ(x) := ϵ−n χ(x/ϵ). We have seen

χϵ → δ0 in S ′(Rn) .
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Denote uϵ := u ⋆ χϵ. We have that uϵ(t, ·) ∈ C∞
0 (Rn) for every t ∈ R. We have

uϵ(x, t) =< u(t, y), χϵ(x− y) ><S′,S>. Hence for any x ∈ Rn there holds by assump-
tion

∂2t2⟨u(t, y), χϵ(x− y)⟩ = ⟨∆yu(t, y), χϵ(x− y)⟩ = ⟨u(t, y),∆yχϵ(x− y)⟩

= ⟨u(t, y),∆xχϵ(x− y)⟩ = ∆x⟨u(t, y), χϵ(x− y)⟩

Hence uϵ(t, ·) is a classical solution to the wave equation and in particular it is C2

in x and t. Since we are assuming f = 0 and g = 0 we have for any ϵ > 0

∀x ∈ Rn lim
t→0

⟨u(t, y), χϵ(x− y)⟩ = 0 and lim
t→0

∂t⟨u(t, y), χϵ(x− y)⟩ = 0 .

Introduce

E(uϵ) :=
1

2

∫
Rn

|∂tuϵ|2 + |∇xuϵ|2 dxn

which is finite since uϵ(t, ·) ∈ C∞
0 (Rn). Since uϵ(t, ·) is a classical solution to the

wave equation and in particular it is C2 in x and t we have

∂tE (uϵ) =

∫
Rn

(∂t uϵ)(∂
2
t uϵ) +

∑
(∂t ∂xi

uϵ)(∂xi
uϵ) dx

n

=

∫
Rn

(∂t uϵ) (∂
2
t uϵ −∆uϵ) dx

n = 0

Hence E is constant for all time. Since E(uϵ(0, ·)) = 0 and uϵ(0, ·) = 0 we have

∀ ϵ > 0 ∀ (t, x) ∈ R× Rn uϵ(t, x) = 0 .

This implies that u is identically equal zero which concludes the proof of the unique-
ness.

To summarise we have proved the following result

Theorem 1.73. Let f ∈ E ′(Rn) and g ∈ E ′(Rn). Then there exists a map t ∈ R →
u(t, x) ∈ S ′(Rn) such that

∀φ ∈ S(Rn) ⟨u(t, x), φ(x)⟩ ∈ C2(R) ,

and for any φ ∈ S(Rn) there holds

(1.50) ∂2t2⟨u(t, x), φ(x)⟩ − ⟨∆u(t, x), φ(x)⟩ = 0

together with

(1.51) ⟨u(0, x), φ(x)⟩ = ⟨f(x), φ(x)⟩ and ∂t⟨u(t, x), φ(x)⟩|t=0 = ⟨g(x), φ(x)⟩ .

If n = 3,
u(t, x) := R(t, x) ⋆ f + ∂tR(t, x) ⋆ g

is a solution of (1.50)-(1.51) where for all φ ∈ S(Rn)

⟨R(t, x), φ⟩ = −
∫
∂B|t|(0)

φ(x) dvol∂B|t|(0) .

Moreover u(t, x) is unique among the solutions which are compactly supported for
every t ∈ R.
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2 Hilbert-Sobolev Spaces

2.1 Definition and Fundamental Properties

Definition 2.1. (Hilbert-Sobolev Spaces of integer order). Let m ∈ N and let u ∈
S ′(Rn). Then, u is in the Sobolev space Hm(Rn) if for all α = (α1, . . . , αn) ∈ Nn

with |α| =
∑

i |αi| ≤ m, we have ∂αu ∈ L2(Rn) and we denote

∥u∥Hm :=

∑
|α|≤m

∫
Rn

|∂αu|2 dxn
1/2

.

Remark 2.2. Let u ∈ Hm(Rn), i.e., for all α, |α| ≤ m, we have ∂αu ∈ L2. This
implies

ξα û = C F(∂αu) ∈ L2(Rn) ,

that is

∫
Rn

|ξα|2 |û|2 <∞ ∀α with |α| ≤ m.

This, in turn, implies ∫
Rn

(1 + |ξ|2)m |û|2(ξ) dξn <∞,

that is

(1 + |ξ|2)m/2 û ∈ L2.

Conversely, let u ∈ S ′(Rm), so that (1+ |ξ|2)m/2 û ∈ L2. Then, it follows that for all
α with |α| ≤ m, ξα û ∈ L2, from which it follows again that for all α with |α| ≤ m,
∂α u ∈ L2.

From these considerations, the following proposition follows:

Proposition 2.3. u ∈ Hm(Rn) ⇐⇒ (1 + |ξ|2)m/2 û ∈ L2(Rn).

Definition 2.4. Let s ∈ R. Hs(Rn) is the space of tempered distributions u ∈ S ′(Rn)
for which

(1 + |ξ|2)s/2 û ∈ L2(Rn) .
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Note that (1 + |ξ|)s/2 ∈ G(Rn) and û ∈ S ′(Rn). From this, it follows that
(1 + |ξ|2)s/2û ∈ S ′(Rn).

∥u∥Hs := ∥(1 + |ξ|2)s/2 û∥L2 .

Remark 2.5. For s ∈ N, the definitions 2.1 and 2.4 agree, and from the remark
on Definition 2.1, it is also clear that the two norms

∥u∥Hs = ∥(1 + |ξ|2)s/2 û∥L2

and

∥u∥Hs =

∑
|α|≤m

∫
Rn

|∂α u|2 dxn
1/2

are equivalent.

Proposition 2.6. The mapping

(., .)s : H
s(Rn)×Hs(Rn) → C

(u, v) 7→
∫
Rn

(1 + |ξ|2)s û v̂

is an inner product on Hs(Rn). Furthermore, (Hs(Rn), (., .)s) is complete, that is,
(Hs(Rn), (., .)s) is a Hilbert space.

Proof of Proposition 2.6.∫
Rn

(1 + |ξ|2)s û ¯̂v =

∫
Rn

(1 + |ξ|2)s/2 û(1 + |ξ|2)s/2 ¯̂v.

By the Hölder inequality, it immediately follows

|(u, v)s| ≤ ∥u∥Hs ∥v∥Hs .

It is also true that (u, u)s = ∥u∥2Hs . From this, it follows that (u, u)s is zero if and
only if u = 0, and positive otherwise. This shows that (., .)s is positive definite.
Furthermore, from the definition of (., .)s, it is immediately clear that the following
holds:

(u, λv)s = λ̄ (u, v)s

and

(λu, v)s = λ(u, v)s.

Thus, it is shown that (., .)s is an inner product.
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Now, let us turn to the question of completeness.

Let L denote the following mapping

L : Hs → L2

u 7→ (1 + |ξ|2)s/2 û.

L is obviously linear and bijective. Furthermore, let L′ be the following mapping

L′ : L2 → Hs

v 7→ F−1
(
(1 + |ξ|2)−s/2 v

)
.

Now, it follows that L−1 = L′ and L is moreover an isometry between Hs and L2.
Since (L2, ∥.∥2) is complete (→ cf. Analysis 4), it follows that (Hs, ∥.∥Hs) is a Hilbert
space, where ∥.∥Hs is the norm induced by (., .)s.

Proposition 2.7. The subspace of smooth compactly supported functions is dense
in Hs(Rn) for any s ∈ R :

C∞
0 (Rn)

Hs

= Hs(Rn) .

Proof of Proposition 2.7.

We first prove that S(Rn)
Hs

= Hs(Rn).

Proof of Claim 1: We first show that S(Rn) is dense in L2(Rn). We know from
(1.6) that S(Rn) embeds (continuously) into L1 . Because of the continuity of N0 it
also embeds continuously into L∞. Hence, using (1.6), for any p ∈ [1,+∞] and any
φ ∈ S(Rn) there holds∫

Rn

|φ(x)|p dxn ≤ CnNn+1(φ) N p−1
0 (φ)

which implies the continuity of the embedding of S(Rn) into Lp(Rn) for any p ∈
[1,+∞]. Furthermore, we have S(Rn) ⊃ C∞

0 (Rn) and we moreover claim that

C∞
0

L2

= L2. Indeed, for any u ∈ L2(Rn) we have on one hand

lim
R→+∞

∫
Rn

|1BR(0) u− u|2 dxn = 0

where 1BR(0) is the characteristic function of BR(0). On the other hand, Let χ ∈
C∞

0 (B1(0)) such that
∫
Rn χ(x) dx

n = 1, then for any R > 0 we have∫
Rn

|χε ⋆ uR − uR|2 dxn =

∫
Rn

|[(2π)n/2 χ̂(ε ξ)− 1] û(ξ)|2 dξn

where χε(x) := ε−nχ(x/ε). Observe that since
∫
Rn χ(x) dx

n = 1

χ̂(0) = (2π)−n/2 ,
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Hence we have

[(2π)n/2 χ̂(ε ξ)− 1] û(ξ) −→ 0 almost everywhere,

and obviously

|[(2π)n/2 χ̂(ε ξ)− 1] û(ξ)|2 ≤ [1 + (2π)n/2 ∥χ̂∥∞] |û| almost everywhere.

Hence dominated convergence implies that for any R

lim
ε→0

∫
Rn

|χε ⋆ uR − uR|2 dxn = 0 .

A diagonal argument gives a sequence εR → 0 such that

χεR ⋆ uR −→ u strongly in L2(Rn) as R → +∞ .

From (1.32) we have χεR ⋆ uR ∈ C∞
0 (Rn). Thus we have proved that

C∞
0 (Rn)

L2

= L2(Rn) .

Now consider L−1 : L2 |S→ S. For u ∈ S, û ∈ S(Rn), and since (1 + |ξ|2)−s/2 ∈
G(Rn), we have also (1 + |ξ|2)−s/2 û ∈ S(Rn).

From the proof of Proposition 2.6, it is also known that L−1 is a bijective isometry.
Since S(Rn) is dense in L2(Rn), it follows that L−1

(
S(Rn)

)
= S(Rn) is dense in

Hs(Rn), that is,

S (Rn)
Hs

= Hs(Rn) .

We aim at proving something more refined that is C∞
0 (Rn)

Hs

= Hs(Rn). We
first claim that S(Rn) embeds continuously in Hs(Rn) for any s ∈ R. This comes
from the fact that each of the maps

φ −→ φ̂ −→ (1 + |ξ|2)s/2 φ̂ −→ F−1
(
(1 + |ξ|2)s/2 φ̂

)
is continuous from S(Rn) into itself (proposition 1.9 and proposition 1.24) and the
embedding F−1

(
(1 + |ξ|2)s/2 φ̂

)
∈ S(Rn) into L2(Rn) is continuous. Hence we have

proved that for any s ∈ R, ∃ ps,n ∈ N, ∃ Cs,n > 0, such that ∀φ ∈ S(Rn)

(2.52) ∥φ∥Hs ≤ Cs,n Nps,n (φ) .

Now let u ∈ Hs and ε > 0. There exists a φ ∈ S such that ∥u − φ∥Hs ≤ ε/2.
Further, let θ ∈ C∞

0 (Rn) such that θ ≡ 1 on B1(0). Denote φj(x) := θ(x/j) φ.
Clearly φj ∈ C∞

0 moreover one verifies (exercise)

Np(φj − φ) −→
j→∞

0 .

Choose j0 such that

Np(φj0 − φ) ≤ ε

2Cs

,

63



which implies because of (2.52)

∥φj0 − φ∥Hs ≤ ε/2 .

Thus, we have
∥u− φj0∥Hs ≤ ∥u− φ∥Hs + ∥φj0 − φ∥Hs ≤ ε.

This shows that C∞
0 (Rn) is dense in

(
Hs, (., .)s

)
and this concludes the proof of

proposition 2.7. 2

We are now proving the following theorem.

Theorem 2.8. Let s ∈ R, then

(Hs(Rn))⋆ = H−s(Rn) .

Proof of Theorem 2.8.
Claim 1:

|⟨u, φ⟩| ≤ (2π)−n∥u∥H−s∥φ∥Hs ∀φ ∈ S

Proof of Claim 1:

FF φ̌(x) = (2π)−n/2F
∫
Rn

e−iy·ξ φ̌(y) dyn

= (2π)−n/2F
∫
Rn

e−iy·ξ φ(−y) dyn

= (2π)−n

∫
Rn

e−ix·ξ
∫
Rn

e−iy·ξφ(−y) dyn dξn

= (−2π)−n

∫
Rn

e−ix·ξ
∫
Rn

ei z·ξ φ(z) dzn dξn

= FF̄ φ(x) = φ(x).

From this it follows that

⟨u, φ⟩ = ⟨u, FF φ̌⟩

= ⟨F u, F φ̌⟩S′,S

= ⟨(1 + |ξ|2)−s/2F(u), (1 + |ξ|2)s/2F (φ̌)⟩S′,S .

We have
(1 + |ξ|2)s/2 ∈ G(Rn) and F (φ̌) ∈ S(Rn) .

Hence
(1 + |ξ|2)s/2F (φ̌) ∈ S(Rn) ⊂ L2(Rn)
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Moreover since u ∈ H−s(Rn)

(1 + |ξ|2)−s/2F(u) ∈ L2(Rn) .

Thus, ⟨u, φ⟩ can be rewritten as follows:

⟨u, φ⟩ =
∫
Rn

(1 + |ξ|2)−s/2 û(1 + |ξ|2)s/2 ˆ̌φdξn

≤ ∥u∥H−s∥φ̌∥Hs = ∥u∥H−s∥φ∥Hs ,

where the last inequality holds due to the Cauchy-Schwarz inequality.

Then the mapping

U : S → C
φ 7→ ⟨u, φ⟩S′,S

is a linear, continuous mapping from S(Rn), a dense subset of Hs(Rn), into C. This
implies that U can be uniquely extended to a linear continuous mapping defined on
the entire space Hs(Rn).

Now let L ∈ (Hs(Rn))⋆ be given. The goal is to find a u ∈ Hs(Rn) such that
⟨u, ·⟩ = L(·).

We consider the following mapping:

M : L2 → C

f 7→ L
(
F−1

(
(1 + |ξ|2)−s/2f

))
= L(w) ,

where
w := F−1

(
(1 + |ξ|2)−s/2f

)
.

Observe that M is well defined since F realizes an isometry from L2(Rn) into itself
and therefore, for any f ∈ L2(Rn) there exists u ∈ L2(Rn) such that f = û and
then w ∈ Hs(Rn) by definition. Take f ∈ S(Rn). Since (1 + |ξ|2)s/2 ŵ = f ∈ L2, it
follows that w ∈ Hs(Rn) and we have

∥f∥L2 = ∥w∥Hs .

Since f ∈ S(Rn), it also follows that w ∈ S(Rn). Furthermore, we have

|M(f)| = |L(w)| ≤ C∥w∥Hs = C∥f∥L2 ,

which means
M ∈ (L2(Rn))⋆ .
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Since L2(Rn) = (L2(Rn))⋆, there exists g ∈ L2 such that

M(f) =

∫
Rn

g(ξ) f(ξ) dξn

=

∫
Rn

(1 + |ξ|2)s/2 g(ξ) (1 + |ξ|2)−s/2f(ξ) dξn

=
〈
F
(
(1 + |ξ|2)s/2 g(ξ)

)
, F−1

(
(1 + |ξ|2)−s/2 f(ξ)

)〉
S′,S .

Note that

(1 + |ξ|2)−s/2FF
(
(1 + |ξ|2)s/2 g(ξ)

)
= (1 + |ξ|2)−s/2

(
(1 + |ξ|2)s/2 g(ξ)

)∨
= ǧ(ξ) ∈ L2

=⇒ F
(
(1 + |ξ|2)s/2 g(ξ)

)
∈ H−s(Rn) .

It now follows that

(1) L(w) =M(f) = ⟨F
(
(1 + |ξ|2)s/2g(ξ), w⟩S′,S = ⟨u, w⟩S′,S ,

where
u = F

(
(1 + |ξ|2)s/2 g(ξ)

)
, u ∈ H−s(Rn) .

This holds for any f in S(Rn) and

w := F−1
(
(1 + |ξ|2)−s/2f

)
.

Let w ∈ S, so there exists an f ∈ S(Rn) ⊂ L2(Rn) such that

(1 + |ξ|2)−s/2 f = F(w) .

Hence
w 7→ f = (1 + |ξ|2)s/2F(w)

is a bijection from S(Rn) to S(Rn) and (1) holds for all w ∈ S(Rn). It follows that

L(w) = ⟨u, w⟩ ∀w ∈ S.

From what has already been proven, namely the fact that ⟨u, ·⟩S′,S can be uniquely
extended to a linear, continuous mapping from Hs to C, it follows that

L(·) = ⟨u, ·⟩H−s,Hs .

This concludes the proof of theorem 2.8 . 2
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2.2 Comparison of Hs with other spaces

Lemma 2.9. For all s ≥ 0 and (ξ, η) ∈ Rn × Rn, the following holds:

(1) (1 + |ξ|2)s ≤ 4s
[
(1 + |ξ − η|2)s + (1 + |η|2)s

]
For all s ∈ R and (ξ, η) ∈ Rn × Rn, the following holds:

(2) (1 + |ξ|2)s ≤ 2|s| (1 + |η|2)s (1 + |η − ξ|2)|s|

Proof of Lemma 2.9. Let s ≥ 0. For all a, b ∈ R+, the following inequality
holds:

(3) (a+ b)s ≤ 2s(as + bs)

Furthermore, we have

(1 + |ξ|2) ≤ (1 + 2|ξ − η|2 + 2|η|2)

≤ 2(1 + |ξ − η|2 + 1 + |η|2)

For a := 1 + |ξ − η|2 and b := 1 + |η|2, inequality (3) immediately gives the desired
inequality (1).

Observe now

(2) ⇐⇒ (1 + |ξ|2)s (1 + |η|2)−s ≤ 2|s| (1 + |ξ − η|2)|s|.

Thus, it is enough to prove the case s ≥ 0 (one may swap ξ and η if necessary). By
homogeneity, it suffices to prove the case s = 1. (The case s = 0 is trivial.)

So let s = 1. As already seen, we have

(1 + |ξ|2) ≤ 2 + 2|ξ − η|2 + 2|η|2

≤ 2 + 2|ξ − η|2 + 2|η|2 + 2|η|2|ξ − η|2

= 2(1 + |ξ − η|2) (1 + |η|2).

This concludes the proof of Lemma 2.9. 2

Theorem 2.10. Let s > n
2
+ k, where k ∈ N. Then Hs(Rn) embeds continuously

into Ck(Rn) : there exists a constant Cs > 0 such that

∥u∥Ck(Rn) ≤ Cs ∥u∥Hs(Rn) .

Furthermore, for all u ∈ Hs(Rn) and for |α| ≤ k we have |∂αu|(x) → 0 uniformly
as |x| → ∞.

Finally, for s > n
2
, then Hs(Rn) is an algebra and there holds

(2.53) ∀u, v ∈ Hs(Rn) ∥u v∥Hs(Rn) ≤ Cs ∥u∥Hs(Rn) ∥v∥Hs(Rn) .
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Proof of Theorem 2.10. Let k ∈ N and s > n
2
+ k. Then for |α| ≤ k, with

s′ = s− k, we write

ξα û = ξα (1 + |ξ|2)s′/2 û(1 + |ξ|2)−s′/2 ,

Observe that since s′ = s− k > n/2 we have

(1 + |ξ|2)−s′/2 ∈ L2(Rn) ,

By assumptions
(1 + |ξ|2)s/2 û ∈ L2(Rn) ,

Hence for |α| ≤ k, |α|+ s′ ≤ s and then

ξα(1 + |ξ|2)s′/2 û ∈ L2 ,

Using Cauchy Schwartz inequality we have then
(2.54)

∥∂αu∥L∞(Rn) ≤ ∥ξα û∥L1(Rn) ≤ ∥ξα(1 + |ξ|2)s′/2 û∥L2(Rn) ∥(1 + |ξ|2)−s′/2∥L2(Rn)

≤ Cs ∥u∥Hs(Rn)

This shows that u ∈ Ck(Rn) and, moreover, using theorem 1.1 we have that ∂αu is
continuous and converges uniformly to zero at infinity.

Now let s > n
2
and u, v ∈ Hs(Rn). We claim that uv ∈ Hs. Applying theo-

rem 1.62 is giving

(1 + |ξ|2)s/2 û v = (1 + |ξ|2)s/2(2π)−n/2

∫
Rn

û(η) v̂(ζ − η) dη,

Now we can estimate further using (1) from Lemma V.2.1:

|(1 + |ξ|2)s/2 û v(ξ)| ≤ C

∫
Rn

|û (η) (1 + |η|2)s/2 | |v̂ (ξ − η)| dηn

+ C

∫
Rn

|û (η)| |v̂ (ξ − η) (1 + |ξ − η|2)s/2 | dηn ,

From the first part of the proof we have that |û| and |v̂| are both in L1(Rn). Hence,
using Young inequality5 : L1 ⋆ L2 ↪→ L2 we have that

∥(1 + |ξ|2)s/2 û v(ξ)∥L2(Rn) ≤ C ∥û (ξ) (1 + |ξ|2)s/2∥L2(Rn) ∥v̂∥L1(Rn)

≤ C ∥û∥L1(Rn) ∥v̂ (ξ) (1 + |ξ|2)s/2∥L2(Rn)

and (2.53) follows from (2.54) for α = 0. This concludes the proof of theorem 2.10.
2

We introduce the spaces of Hölder functions Ck,α(Ω) where Ω is an arbitrary
open subset of Rn. Precisely :

5See Analysis 3 & 4 and next section.
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Definition 2.11. Let Ω is an arbitrary open subset of Rn. Let 0 < α ≤ 1 and
k ∈ N. We denote by Ck,α(Ω) the subspace of functions in Ck(Ω) such that

∀|β| ≤ k sup
x ̸=y

|∂βu(x)− ∂βu(y)|
|x− y|α

< +∞

and we denote

∥u∥Ck,α(Ω) := ∥u∥Ck(Ω) + sup
|β|=k

sup
x ̸=y

|∂βu(x)− ∂βu(y)|
|x− y|α

Exercise 2.12. Prove that for any k ∈ N and α ∈ (0, 1] the quantity ∥ · ∥Ck,α(Ω)

defines a norm and that Ck,α(Ω) is a Banach space.

Exercise 2.13. Let Ω be an open bounded subset of Rn. Prove that for any k ∈ N
α, β ∈ (0, 1] with β < α the canonical embedding

Ck,α(Ω) ↪→ Ck,β(Ω)

is compact.

Theorem 2.14. Let s =
n

2
+ k + α, where k ∈ N and α ∈ (0, 1). Then it holds that

Hs(Rn) embeds continuously into Ck,α(Rn).

Proof of Theorem 2.14: First, let us take k = 0 : s =
n

2
+ α, α ∈ (0, 1) and as-

sume that u ∈ Hs(Rn). Then we write

u(x+ h)− u(x) =< δx+h − δx, u >= ⟨F(δx+h − δx),F(u)⟩

=

(∫
Rn

eix·ξ û(ξ) · (eiξ·h − 1) dξn
)

(2π)−n

Hence

|u(x+ h)− u(x)| ≤ C

∫
Rn

|(1 + |ξ|2)s/2 û(ξ)|(1 + |ξ|2)−s/2|eiξ·h − 1|,

Using the Cauchy-Schwarz inequality we get:

|u(x− h)− u(x)| ≤ C∥u∥Hs

[∫
Rn

(1 + |ξ|2)−s|eiξ·h − 1|2
]1/2

≤ C∥u∥Hs

[∫
|ξ|≤ 1

|h|

(1 + |ξ|2)−s|eiξ·h − 1|2
]1/2

+

[∫
|ξ|≥ 1

|h|

(1 + |ξ|2)−s|eiξ·h − 1|2
]1/2 .
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We first bound∫
|ξ|≤ 1

|h|

(1 + |ξ|2)−s|eiξ·h − 1|2

≤ Cs,n

∫
|ξ|≤ 1

|h|

(1 + |ξ|2)−n/2−α|ξ|2|h|2|ξ|n−1 d|ξ|

≤Cs,n

∫
|ξ|≤ 1

|h|

|ξ|−n−2α|ξ|2|h|2|ξ|n−1 d|ξ| = Cs,n |h|2
[
t2−2α

2− 2α

]1/h|
0

≤ C ′
s,n |h|2α .

Then we bound ∫
|ξ|≥ 1

|h|

(1 + |ξ|2)−s|ξ|n−1 d|ξ| ≤ C|h|2α .

Combining the three previous estimates is giving

|u(x+ h)− u(x)| ≤ Cs,n ∥u∥Hs |h|α.

Thus, the claim follows for k = 0. For k ̸= 0, we have

s =
n

2
+ k + α >

n

2
+ k.

Let u ∈ Hs(Rn), then by Theorem 2.10 u ∈ Ck.

To show the claim u ∈ Ck,α, we perform the above calculations for the derivatives
with |α| ≤ k. This concludes the proof of theorem 2.14. 2

One can ask why are α = 0 and α = 1 excluded? For example, if we perform the
above calculation for α = 1, we get

|u(x+ h)− u(x)| ≤ C|h|(log 1

|h|
)1/2/⇒ u ∈ C0,1

For α = 0 and k = 0 the following result gives a clear answer.

Theorem 2.15. There exists a function u ∈ Hn/2(Rn) such that u /∈ L∞(Rn).

Proof of Theorem 2.15. Consider

û(ξ) :=
(1 + |ξ|2)−n/2

1 + log(1 + |ξ|2)

It holds that

∥u∥2Hn/2 =

∫
Rn

|û|2(ξ)(1 + |ξ|2)n/2 dξn

= C

∫
R

(1 + |ξ|2)−n/2

(1 + log(1 + |ξ|2)2
|ξ|n−1 d|ξ| <∞.
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Thus, u ∈ Hn/2.

We claim that u /∈ L∞(Rn). Observe first û /∈ L1(Rn). Hence, since û(ξ) > 0,

(2.55)

∫
e−ε|ξ| û(ξ) dξn −→

ε→0
∞ .

We have ∫
Rn

e−ε|ξ|2û dξn =

∫
Rn

F(e−ε|ξ|2)u(x) dxn .

Exercise 1.3 gives

F
(
e−ε|ζ|2

)
=

1

(2ε)
n
2

e−
|x|2
4ε

Observe that∫
Rn

∣∣∣F (e−ε|ζ|2
)∣∣∣ dxn =

∫
Rn

1

(2ε)
n
2

e−
|x|2
4ε dxn = 2n/2

∫
Rn

e−|y|2 dyn

Assuming u ∈ L∞(Rn), we bound∫
F(e−ε|ξ|2)u(x) dxn ≤ ∥u∥∞

∫
F(e−ε|ξ|2) dxn = 2n/2 ∥u∥∞

∫
Rn

e−|y|2 dyn .

This is contradicting (2.55). Hence u /∈ L∞(Rn) and this concludes the proof of
theorem 2.15. 2

Proposition 2.16. If s > σ, then Hs(Rn) ⊂ Hσ(Rn).

Proof of Proposition 2.16.

∥u∥2Hσ =

∫
Rn

(1 + |ξ|2)σ |û(ξ)|2 dξn

≤ sup
ξ∈Rn

(1 + |ξ|2)σ−s

∫
Rn

(1 + |ξ|2)s|û(ξ)|2 dξn ≤ ∥u∥2Hs .

2

Proposition 2.17. For all φ ∈ S(Rn) , for any u ∈ Hs(Rn) then φu ∈ Hs(Rn).

Proof of Proposition 2.17.

(1 + |ξ|2)s |φ̂ u (ξ)|2 = (1 + |ξ|2)s
∣∣∣∣∫

Rn

φ̂(ξ − η) û(η) dηn
∣∣∣∣2 (2π)−n.

Using equation (2) from Lemma 2.9 we get

(1 + |ξ|2)s/2 |φ̂ u (ξ)| ≤ Cs

∫
Rn

|φ̂(ξ − η)|(1 + |ξ − η|2)|s|/2 |û(η)| (1 + |η|2)s/2 dηn ,
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we have on one hand since u ∈ Hs(Rn)

|û(η)| (1 + |η|2)s/2 ∈ L2 ,

and on the other hand

φ̂(ξ) (1 + |ξ|2)|s|/2 ∈ S(Rn) ⊂ L1(Rn) ,

Using again Young inequality L1 ⋆ L2 ↪→ L2 we obtain

∥(1+|ξ|2)s/2 |φ̂ u (ξ)|∥L2(Rn) ≤ Cs

∥∥|û(η)| (1 + |η|2)s/2
∥∥
L2(Rn)

∥∥φ̂(ξ) (1 + |ξ|2)|s|/2
∥∥
L1(Rn)

.

This concludes the proof of proposition 2.16. 2

2.3 Solving Cauchy Problems for Elliptic Partial Differen-
tial Equations in Hilbert-Sobolev Spaces

From now on, let

f ∈ S ′(Rn) or f ∈ S ′(C),

u ∈ S ′(Rn) or S ′(C) ,

Let m ∈ N∗ and consider Cα ∈ C for any |α| ≤ m and assume

∃ α0 |α0| = m , Cα0 ̸= 0.

We are now studying linear operators of the form

Lu :=
∑
|α|≤m

Cα ∂
α u = f,

Definition 2.18. The operator L is called elliptic if∑
|α|=m

Cα ξ
α = 0 ⇐⇒ ζ = 0.

Example: L = ∆ = ∂2x1
+ · · ·+ ∂2xn

, that is, ci = 1, 1 ≤ i ≤ n. Obviously

n∑
i=1

ξ2i = 0 ⇔ ξ = 0,

so L = ∆ is elliptic.

On the countrary L = ∂2t −∆ is not elliptic.
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2.3.1 Cauchy Problems in Rn

For f ∈ S ′(Rn) we consider the equation

−∆u+ u = f ⇐⇒ (|ξ|2 + 1) û = f̂ .

Theorem 2.19. ∀s ∈ R The map

Hs+2(Rn) −→ Hs(Rn)

u −→ −∆u+ u

is a continuous isomorphism, and there holds

∥u∥Hs+2(Rn) = ∥ −∆u+ u∥Hs(Rn).

Proof of Theorem 2.19. Let u ∈ Hs+2, then we have∫
Rn

(1 + |ξ|2)s+2 |û|2(ξ) dξn <∞.

Furthermore, using
F(−∆u+ u)(ξ) = (|ξ|2 + 1) û(ξ)

we have∫
Rn

(1 + |ξ|2)s|(−∆u+ u)∧|2 dξn =

∫
Rn

(1 + |ξ|2)s+2 |û|2(ξ) dξn <∞ .

It follows that
∥u∥Hs+2 = ∥ −∆u+ u∥Hs .

Now suppose that f ∈ Hs. Then u := F−1[(1 + |ξ|2)−1 f̂(ξ)] is in Hs+2(R) and
it solves −∆u + u = f . This shows the surjectivity of the above map.It is clearly
also injective and continuous. This concludes the proof of Theorem 2.19. 2

2.3.2 Cauchy-Problem in Rn
+ (Half-space)

We introduce the following notations

Rn
+ := {(x1, . . . , xn) ∈ Rn, xn > 0}

x = (x1, . . . , xn) = (x′, xn) ,

where

x′ = (x1, . . . , xn−1) .
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Then we define

Hs(Rn
+) := Hs(Rn)/∼,

where

u ∼ v ⇐⇒ supp(u− v) ⊂ Rn
−

and

∥u∥Hs(Rn
+) := inf

v∼u
∥v∥Hs(Rn) .

For f ∈ Hs(Rn
+) we aim at solving a problem of the form

(2.56)


−∆u+ u = f in Rn

+ i.e.

∀φ ∈ S(Rn) and Supp(φ) ⊂ Rn
+

∫
Rn

[−∆φ+ φ] u dxn = 0 .

prescribing u(x′, 0) = g(x′) where g is a fixed given tempered Distribution on Rn−1 =
∂Rn

+. Two main questions come then naturally to the reader

i) What is the subspace of S ′(Rn−1) in which we can arbitrary choose g so that
there exists exactly one solution u ∈ Hs+2(Rn

+) to this problem ?

ii) what does it means “prescribing” u(x′, 0) = g(x′) on Rn−1 = ∂Rn
+ ?

Giving satisfying answers to these two questions is the main goal of this subsection.

Theorem 2.20. Let s > 1
2
. Then the linear mapping

T : S(Rn) → S(Rn−1) (trace)

φ(x′, xn) 7→ φ(x′, 0)

can be extended to a surjective, linear, continuous map T : Hs(Rn) → Hs− 1
2 (Rn−1),

that is, there exists a constant Cs,n depending only on s and n such that, for all
φ ∈ Hs(Rn), we have

(2.57) ∥Tφ∥Hs−1/2(Rn−1) ≤ Cs,n ∥φ∥Hs(Rn).

Remark 2.21. It is important to insist on the fact that the assumption s > 1/2
is necessary : arbitrary L2 functions on Rn have no trace in the sense that T (φk)
might not necessarily converge in S ′(Rn−1) for a sequence φk ∈ S(Rn) coonverging
strongly in L2(Rn). Constructing counter-examples is left as an exercise.

Remark 2.22. Observe that the drop of exponent s → s − 1/2 is concomitant to
the drop of dimension n→ n− 1 in a consistent way as illustrated by the following
diagram

Hs(Rn) = Hn/2+α(Rn) ↪→ Co,α(Rn), α ∈ (0, 1)

↓ T ↓ T
Hn/2−1/2+α(Rn−1) ↪→ Co,α(Rn−1).
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Proof of Theorem 2.20.

Claim 1: There exists a constant C > 0 such that for all φ ∈ S(Rn) we have

∥Tφ∥Hs−1/2(Rn−1) ≤ C∥φ∥Hs(Rn).

Proof of Claim 1: Let φ ∈ S(Rn). Then we have

φ(x′, 0) = (2π)−n/2

∫
Rn−1

∫
R
eix

′·ξ′φ̂(ξ′, ξn) d(ξ
′)n−1 dξn

= (2π)−n/2

∫
Rn−1

eix
′·ξ′
[∫

R
φ̂(ξ′, ξn) dξn

]
d(ξ′)n−1

= (2π)−(n−1)/2

∫
Rn−1

eix
′·ξ′φ̃(ξ′, 0) d(ξ′)n−1 ,

where (⋆⋆)

φ̃(ξ′, 0) = (2π)−1/2

∫
R
φ̂(ξ′, ξn) dξn

= (2π)−1/2

∫
R
(1 + |ξ|2)s/2φ̂(ξ′, ξn)(1 + |ξ|2)−s/2 dξn

Thus, using the Cauchy-Schwarz inequality, we obtain

(⋆)

(1 + |ξ′|2)s−1/2|φ̃(ξ′, 0)|2 ≤ (1 + |ξ′|2)s−1/2

2π

∫
R
(1 + |ξ|2)s|φ̂(ξ′, ξn)|2 dξn

×
∫
R
(1 + |ξ|2)−s dξn.

we bound∫
R
(1 + |ξ|2)−s dξn =

∫
R

1

(1 + |ξ′|2 + |ξn|2)s
dξn (<∞, since s > 1/2)

=

∫
R

√
1 + |ξ′|2

(1 + |ξ′|2)s(1 + λ2)s
dλ

= C1(1 + |ξ′|2)−s+1/2 with C1 =

∫
R
(1 + λ2)−s dλ,

where in the second-to-last step, the following variable transformation was used:

ξn = (1 + |ξ′|2)1/2λ

dξn = (1 + |ξ′|2)1/2dλ.
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Integration of (⋆) with respect to ξ′ finally yields

(⋆ ⋆ ⋆) ∥(1 + |ξ′|2)s−1/2|φ̃(ξ′, 0)|2∥L1 ≤ C ∥φ∥2Hs(Rn).

From (⋆⋆) it is further clear that T̂φ = φ̃. Thus (⋆ ⋆ ⋆) is proving the claim.

Since S(Rn) is dense in Hs(Rn) we have proved (2.57). It remains to prove for
the surjectivity of T .

We are now proving the following claim.

Claim 2: There exists C > 0 such that for all g ∈ Hs−1/2(Rn−1), it holds

∃ φ ∈ Hs(Rn) s. t. T (φ) = g

and moreover
∥φ∥Hs(Rn) ≤ C ∥g∥Hs−1/2(Rn−1) .

Proof of Claim 2:First we consider the case g ∈ S(Rn−1). From the proof of
Claim 1, we know that the Fourier transform with respect to the first n−1 variables
of φ is exactly φ̃. Thus, we seek φ ∈ S(Rn) such that

g̃(ξ′) = (2π)−1/2

∫
R
φ̂(ξ′, ξn) dξn.

We now define

φ̂(ξ) := C1
1

(1 + |ξ|2)1/2
e
− |ξn|2

1+|ξ′|2 g̃(ξ′) ,

where C1 will be chosen later. We leave as an exercise the proof that φ̂ and hence
φ are in S(Rn). Then we have

∫
R
φ̂(ξ) dξn = C1 g̃(ξ

′)

∫
R

e
− |ξn|2

1+|ξ′|2

(1 + |ξ′|2 + |ξn|2)1/2
dξn

= C1 g̃(ξ
′) C0.

Now choose C1 such that C1 · C0 = (2π)1/2 and from the first part of the proof
that

T φ = g.

Observe that∫
Rn

(1 + |ξ|2)s |φ̂|2 dξn ≤ |C1|2
∫
Rn−1

|g̃|2(ξ′)

∫
R

e
−2

|ξn|2

1+|ξ′|2

(1 + |ξ|2)1−s
dξn

 d(ξ′)n−1

≤ |C1|2
∫
Rn−1

(1 + |ξ′|2)s−1/2 |g̃|2(ξ′)

[∫
R

e−2λ2

(1 + λ2)1−s
dλ

]
d(ξ′)n−1

and we obtain
∥φ∥Hs(Rn) ≤ C ∥g∥Hs−1/2(Rn−1) .
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Let now g ∈ Hs−1/2(Rn−1), since S(Rn−1) is dense in Hs−1/2(Rn−1) we choose gk ∈
S(Rn−1) such that

gk −→ g in Hs−1/2(Rn−1) .

We consider the sequence φk ∈ S(Rn) given by

φ̂k(ξ) := C1
1

(1 + |ξ|2)1/2
e
− |ξn|2

1+|ξ′|2 g̃k(ξ
′) ,

Because of the previous estimates, φk is a Cauchy sequence in Hs(Rn) and converges
to a limit φ ∈ Hs(Rn) by the continuity of the operator T we just constructed we
have

T φ = g.

Hence T is surjective and this concludes the proof of Claim 2 as well as the proof of
theorem 2.20. 2

Proposition 2.23. Let s > 1
2
and let φ ∈ Hs(Rn) such that suppφ ⊂ Rn

+. Then it
holds

T φ ≡ 0 .

From this proposition one deduces immediately the following corollary.

Corollary 2.24. If u∼Hs v, then Tu = Tv. Consequently the trace is well-defined
on

Hs(Rn
+) for s >

1

2
.

Proof of Proposition 2.23. Let h > 0, and denote

τh φ(x) = φ(x′, xn − h) .

First we claim

Claim 1: τ−h φ→ φ in Hs.

Proof of Claim 1 We have

∥τ−h φ− φ∥2Hs =

∫
Rn

(1 + |ξ|2)s
∣∣φ̂(ξ) (eiζn·h − 1

)∣∣2 dξn,

where
(1 + |ξ|2)s

∣∣φ̂(ξ) (eiξn h − 1
)∣∣2 → 0 everywhere

and since φ ∈ Hs(Rn)

(1 + |ξ|2)s
∣∣φ̂(ξ) (eiξn h − 1

)∣∣2 ≤ 4 (1 + |ξ|2)s |φ̂(ξ)|2 ∈ L1(Rn) ,

claim 1 follows by calling upon the dominated convergence theorem, .
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Further, let χ ∈ C∞
0 with suppχ ⊂ B1(0) and

∫
χ(x) dxn = 1. As in previous

subsections, we denote

χε(x) :=
1

εn
χ
(x
ε

)
.

We claim

Claim 2:
∀u ∈ Hs(Rn) χε ⋆ u −→ in Hs(Rn)

Proof of Claim 2 We have on one hand

∥χε ⋆ u− u∥2Hs(Rn) =

∫
Rn

(1 + |ξ|2)s |χ̂ε(ξ)− 1|2 |û|2(ξ) dξn .

On the other hand
χ̂ε(ξ) = χ̂(ε ξ) .

Since χ ∈ C∞
0 (B1(0)), χ̂ ∈ S(Rn). Moreover, since

∫
χdxn = 1, χ̂(0) = 1. Hence

∀ξ ∈ Rn (1 + |ξ|2)s |χ̂ε(ξ)− 1|2 |û|2(ξ) −→ 0

We have moreover

(1 + |ξ|2)s |χ̂ε(ξ)− 1|2 |û|2(ξ) ≤ (1 + |ξ|2)s [∥χ̂∥∞ + 1] |û|2(ξ) ∈ L1(Rn) .

Dominated convergence again is implying claim 2.

For h > 0 the support of φ−h is included in {ξn ≥ h}. Hence for 0 < ε < h we
have Supp(χε ⋆ φ−h) ⊂ {ξn ≥ h− ε}. Since χε ⋆ φ−h ∈ C∞(Rn) we have then

(2.58) ∀ 0 < ε < h T (χε ⋆ φ−h) ≡ 0

Because of claim 1 and claim 2 we have

∀h ∈ R χε ⋆ φ−h −→ φ−h in Hs(Rn) and φ−h −→ φ in Hs(Rn) .

Hence using a diagonal argument we can find εh → 0 such that 0 < εh < h and such
that

χεh ⋆ φ−h −→ φ in Hs(Rn) as h→ 0 .

From (2.58) moreover we have T (χεh ⋆ φ−h) ≡ 0. Using the continuity of T estab-
lished in the first part of the proof of the proposition we can pass to the limit in this
last identity in order to obtain T (φ) = 0. this concludes the proof of proposition 2.23
2

Theorem 2.25. Let s+ 2 > 1
2
. The mapping

L : Hs+2 (Rn
+) → Hs+3/2 (Rn−1)×Hs (Rn

+)

u 7→ (Tu,−∆u+ u)

is a continuous isomorphism, meaning there exists a constant C > 0 such that

∥u∥Hs+2 (Rn
+) ≤ C

[
∥Tu∥

Hs+3
2 (Rn−1)

+ ∥ −∆u+ u∥Hs (Rn
+)

]
.
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Remark 2.26. This theorem states that the problem

(2.59)

 −∆u+ u = f ∈ Hs (Rn
+)

Tu = g ∈ Hs+3/2 (Rn−1)

has a unique solution u ∈ Hs+2 (Rn) for s+ 2 > 1/2.

Proof of Theorem 2.25. We first consider the following problem. Let g ∈
S(Rn−1) we are looking for a solution w of the following problem

(2.60)

 −∆w + w = 0 on Rn
+

Tw = g on ∂ Rn
+ .

In the following, we shall denote by w̃ the Fourier transform of w with respect to
the first n− 1 variables x′.

Assume there exists a solution to the problem (2.60), applying formally6 the
Fourier transform with respect to the first n − 1 variables and restricting to the
hyperplane {xn = 0}, since everything is smooth we obtain that w̃(ξ′, xn) is a
classical solution to the following problem − ∂2

∂x2n
w̃ +

(
|ξ′|2 + 1

)
w̃ = 0 on Rn

+

w̃(ξ′, 0) = g̃(ξ′) on ∂ Rn
+ .

Explicit computations give

(2.61) w̃(ξ′, xn) = e−xn

√
|ξ′|2+1g̃(ξ′) .

We consider7 ψ ∈ S(R) such that ψ(t) := e−t, t ≥ 0 and we introduce the function
w̃(ζ ′, xn) given by

w̃(ξ′, xn) := ψ
(
xn
√
|ξ′|2 + 1

)
g̃(ξ′).

For every ξ′ ∈ Rn−1 the map xn → w̃(ξ′, xn) is obviously in S(R) and we can take

6We have no information of such a solution that would permit to justify the use of Fourier with
respect to the n− 1 first variables.

7Such a function ψ can be constructed as follows:

ψ(t) := e−t χ ∗ 1t>−2

where 1t>−2 is the characteristic function of the set of reals larger than −2 and χ is a function in
C∞

0 ((−1, 1)) such that
∫
R χ(t) dt = 1.
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its Fourier transform. We denote

φ(ξ′, ξn) := (2π)−1/2

∫
R
e−i ξn xnw̃(ξ′, xn) dxn

= (2π)−1/2 g̃(ξ′)

∫
R
ψ
(
xn
√
|ξ′|2 + 1

)
e−iξn xn dxn

= (2π)−1/2 g̃(ξ′)

∫
R
ψ(z) e

−i ξn
z√

|ξ′|2+1
1√

|ξ′|2 + λ
dz

= g̃(ξ′) ψ̂

(
ξn√

|ξ′|2 + 1

)
1√

|ξ′|2 + 1

and thus∫
Rn

(1 + |ξ|2)s+2|φ|2(ξ) dξn =

∫
Rn

(1 + |ξ′|2 + |ξn|2)s+2

|ξ′|2 + 1
|g̃(ξ′)|2

∣∣∣∣∣ψ̂
(

ξn√
|ξ′|2 + 1

)∣∣∣∣∣
2

dξn

≤ Cs

∫
Rn

(1 + |ξ′|2)s+2√
|ξ′|2 + 1

|g̃(ξ′)|2
∫
R
|ψ̂(z)|2 dz

+Cs

∫
Rn−1

∫
R

|ξn|2·(s+2)

|ξ′|2 + 1

∣∣∣∣∣ψ̂
(

ξn√
|ξ′|2 + 1

)∣∣∣∣∣
2

|g̃(ξ′)|2 dξn d(ξ′)n−1

≤ Cs ∥ψ̂∥2L2(R) ∥g∥2Hs+3/2

+

∫
Rn−1

(1 + |ξ′|2)s+3/2 |ĝ(ξ′)|2 d(ξ′)n−1

∫
R
|z|2(s+2) |ψ̂(z)|2 dz

Hence we have proven the existence of a constant Cs > 0 depending only on s such
that

∥F−1(φ)∥Hs+2(Rn) ≤ Cs ∥g∥Hs+3/2(Rn−1) .

Observe that since we are still working under the assumption g ∈ S(Rn−1), φ ∈
S(Rn). Going backwards in the argument we observe that w := F−1(φ) solves
(2.60) and there holds

(2.62) ∥w∥Hs+2(Rn) ≤ Cs,n ∥g∥Hs+3/2(Rn−1) .

Using one more time the density of S(Rn−1) in Hs+3/2(Rn−1) and the continuity
of the trace operation from Hs+2(Rn) into Hs+3/2(Rn−1) given by theorem 2.20 we
deduce that (2.60) admits a solution w satisfying (2.62) for any g ∈ Hs+3/2(Rn−1).

Consider now f ∈ Hs(Rn) and g ∈ Hs+3/2(Rn−1) arbitrary. From (2.19) there
exists a unique wf ∈ Hs+2(Rn) solving

−∆wf + wf = f in S ′(Rn) and ∥wf∥Hs+2(Rn) ≤ Cs,n ∥f∥Hs(Rn)

From theorem 2.20 there exists a constant Cs,n depending only on s and n such that

∥Twf∥Hs+3/2(Rn−1) ≤ Cs,n ∥wf∥Hs+2(Rn) ≤ C ′
s,n ∥f∥Hs(Rn)
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From the first part of the proof we have the existence of w′ ∈ Hs+2(Rn) solving

(2.63)

 −∆w′ + w′ = 0

Tw′ = g − Twf on ∂ Rn
+ ,

moreover
(2.64)
∥w′∥Hs+2(Rn) ≤ Cs,n ∥g − Twf∥Hs+3/2(Rn−1) ≤ Cs,n ∥g∥Hs+3/2(Rn−1) + C ′

s,n ∥f∥Hs(Rn) .

By linearity w := w′ + wf solves

(2.65)

 −∆w + w = f in Rn
+

Tw = g on ∂ Rn
+ . ,

moreover

(2.66) ∥w∥Hs+2(Rn) ≤ Cs,n ∥g∥Hs+3/2(Rn−1) + C ′
s,n ∥f∥Hs(Rn) .

By linearity, the uniqueness of the solution to (2.60) will follow if we can prove that
any solution w ∈ Hs+2(Rn

+) of

(2.67)

 −∆w + w = 0 in Rn
+

Tw = 0 on ∂ Rn
+ . ,

is zero. Let w be a solution in Hs+2(Rn
+) of (2.67). We introduce

ẘ :=

{
w(x′, xn) for xn ≥ 0

−w(x′,−xn) for xn ≤ 0

We claim that ẘ is a solution of

(2.68) −∆ẘ + ẘ = 0 in S ′(Rn) .

Let φ ∈ S(Rn). Introduce a smooth even “cut-off” function on R (χ(t) = χ(−t))
that we assume to be supported in [−1,+1] and such that χ is equal to 1 on
[−1/2, 1/2]. For any 0 < ε < 1 we introduce χε(t) := χ(t/ε). We write∫
Rn

[−∆φ+φ] ẘ dxn =

∫
Rn

[−∆φ+φ]χε(xn) ẘ dxn+

∫
Rn

[−∆φ+φ] (1−χε(xn)) ẘ dxn

Observe first that∣∣∣∣∫
Rn

[−∆φ+ φ]χε ẘ dxn
∣∣∣∣ ≤ ∥χ∥∞ ∥ −∆φ+ φ∥L2(Rn) ∥ẘ∥L2(|xn|≤ε)

Since w ∈ L2(Rn)

∥ẘ∥L2(|xn|≤ε) = 2 ∥w∥L2(0≤xn≤ε) −→ 0 as ε→ 0 .
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Hence

(2.69)

∫
Rn

[−∆φ+ φ] ẘ dxn = oε(1) +

∫
Rn

[−∆φ+ φ] (1− χε) ẘ dxn .

Now we write

(2.70)

∫
Rn

[−∆φ+ φ] (1− χε) ẘ dxn =

∫
Rn

[−∆(φ (1− χε)) + φ (1− χε)] ẘ dxn

−
∫
Rn

∇φ · ∇χε ẘ dxn −
∫
Rn

φ∆χε ẘ dxn

First we observe that∫
Rn

[−∆(φ (1− χε)) + φ (1− χε)] ẘ dxn

=

∫
Rn
+

[−∆(φ (1− χε)) + φ (1− χε)](x) w(x) dx
n

−
∫
Rn
−

[−∆(φ (1− χε)) + φ (1− χε)](x) w(x,−xn) dxn

Using the fact that for any ψ ∈ S(Rn) −∆x(ψ)(x
′,−xn) = −∆x(ψ(x

′,−xn)), from
(2.56), we deduce that

−
∫
Rn
−

[−∆(φ (1− χε)) + φ (1− χε)](x) w(x,−xn) dxn

= −
∫
Rn
+

[−∆(φ(x′,−xn) (1− χε(x
′,−xn))) + φ(x′,−xn) (1− χε(x

′,−xn))](x) w(x) dxn = 0 .

Hence finally, using that w solves −∆w + w = 0 on Rn
+ we obtain

(2.71)

∫
Rn

[−∆(φ (1− χε)) + φ (1− χε)](x) ẘ(x) dx
n = 0 .

We have moreover∫
Rn

∇φ · ∇χε ẘ dxn = −1

ε

∫ −ε/2

−ε

χ′
(
t

ε

)
dt

∫
xn=t

T−t(w(x
′,−t)) ∂xnφ d(x′)n−1

+
1

ε

∫ ε

ε/2

χ′
(
t

ε

)
dt

∫
xn=t

Tt(w(x
′, t)) ∂xnφ d(x′)n−1

where for any t ∈ R, we denote Tt(w(x
′, t)) := T (τ(0,−t)w) the trace on xn = t of w.

Using the continuity of the trace together with the fact that

τ(0,−t)w −→ w in Hs+2(Rn)

the continuity of T from Hs+2(Rn) into Hs+3/2(Rn−1) together with the continuity
of the embedding Hs+3/2(Rn−1) ↪→ L2(Rn−1) we have

(2.72) lim
t→0

∥Tt(w(x′, t))∥L2(Rn−1) = 0
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Hence we deduce∣∣∣∣∣1ε
∫ −ε/2

−ε

χ′
(
t

ε

)
dt

∫
xn=t

T−t(w(x
′,−t)) ∂xnφ d(x′)n−1

∣∣∣∣∣
≤ oε(1) ∥χ′∥∞ sup

t∈[−ε,−ε/2]

∥∂xnφ(x
′, t)∥L2(Rn−1)

and we bound∫
Rn−1

|∂xnφ(x
′, t)|2 d(x′)n−1 =

∫
Rn−1

1

(1 + |x′|n)2
d(x′)n−1∥(1 + |x′|n) ∂xnφ(x

′, t)∥2∞

≤ Cn Nn+1(φ)
2

Hence we deduce

(2.73)

∫
Rn

∇φ · ∇χε ẘ dxn = o(1) .

Now we write, using the fact that χ′′(t) = χ′′(−t) = χ′′(|t|)∫
Rn

φ∆χε ẘ dxn =
1

ε2

∫
Rn

φ(x′, xn) χ
′′
(
|xn|
ε

)
ẘ dxn

=
1

ε2

∫
Rn
+

[φ(x′, xn)− φ(x′,−xn)] χ′′
(
|xn|
ε

)
w(x′, xn) dx

n

=
2

ε2

∫
|xn|<ε

dxn

∫
Rn−1

|xn| ∂xnφ(x
′, txn(x

′)) χ′′
(
|xn|
ε

)
w(x′, xn) d(x

′)n−1

where txn(x
′) ∈ [−xn, xn]. We then bound using (2.72)∣∣∣∣∫

Rn

φ∆χε ẘ dxn
∣∣∣∣

≤ 2 ∥χ′′∥∞ sup
|xn|≤ε

∥∂xnφ(x
′, txn(x

′))∥L2(Rn−1) sup
|t|≤ε

∥Tt(w(x′, t))∥L2(Rn−1)

≤ oε(1) ∥∥∂xnφ(x
′, xn))∥L∞

xn
([−ε,ε])∥L2(Rn−1) .

We write

∥∥∂xnφ(x
′, xn))∥L∞

xn
([−ε,ε])∥2L2(Rn−1) =

∫
Rn−1

∥∂xnφ(x
′, xn))∥2L∞

xn
([−ε,ε]) d(x

′)n−1

≤
∫
Rn−1

d(x′)n−1

(1 + |x′|n)2
∥(1 + |x′|n) ∂xnφ(x

′, xn)∥2L∞(Rn) ≤ Cn Nn(φ)
2

Combining the two previous bounds we finally obtain

(2.74)

∫
Rn

φ∆χε ẘ dxn = oε(1)

Combining (2.69), (2.70), (2.71), (2.73) and (2.74) we obtain the claim (2.68).
Hence w = 0 and the solution to (2.63) in Hs+2(Rn

+) is unique. This concludes the
proof of the theorem 2.25. 2
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3 Fundamental Properties of Lp spaces

3.1 Hölder, Minkowski and Young inequalities

For any open set Ω ⊂ Rn we refer to Analysis 3 for the definition Lp(Ω). We recall
the Hölder inequality.

Theorem 3.1. Let 1 ≤ p ≤ +∞ and Ω an open set of Rn. We introduce p′ ∈ [1,∞]
given by8

1 =
1

p
+

1

p′
.

Let f ∈ Lp(Ω) and g ∈ Lp′(Ω). Then f g ∈ L1(Ω) and

(3.75)

∫
Ω

|f g|(x) dxn ≤ ∥f∥Lp(Ω) ∥g∥Lp′ (Ω) .

where

∥f∥Lp(Ω) :=

[∫
Ω

|f(x)|p dxn
]1/p

and ∥g∥Lp′ (Ω) :=

[∫
Ω

|g(x)|p′ dxn
]1/p′

Proof of theorem 3.1 The cases p = 1,∞ are straightforward. Hence we restrict
to the case 1 < p < +∞. The concavity of the logarithmic function gives for any x
such that |f(x)| > 0 and |g(x)| > 0

1

p
log |f(x)|p + 1

p′
log |g(x)|p′ ≤ log

[
1

p
|f(x)|p + 1

p′
|g(x)|p′

]
This implies

|f g|(x) ≤ 1

p
|f(x)|p + 1

p′
|g(x)|p′

Obviously this last inequality extends to the case |f(x)| = 0 or |g(x)| = 0 and we
deduce ∫

Ω

|f g|(x) dxn ≤ 1

p

∫
Ω

|f(x)|p dxn + 1

p′

∫
Ω

|g(x)|p′ dxp

Applying this inequality to the pair (tf, g) instead of (f, g) is giving∫
Ω

|f g|(x) dxn ≤ 1

p
tp−1

∫
Ω

|f(x)|p dxn + 1

p′
t−1

∫
Ω

|g(x)|p′ dxp

Choosing t := ∥f∥−1
Lp(Ω) ∥g∥

p′/p

Lp′ (Ω)
is giving (3.75) and this concludes the proof of

theorem 3.1. 2

A corollary of this theorem is the Littlewood inequality whose proof is left as an
exercise.

8We are adopting in the statement of theorem 3.1 the notation convention

“
1

∞
= 0′′
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Corollary 3.2. Let Ω be an open subset of Rn. Let p0 ∈ [1,+∞] and p1 ∈ [1,+∞].
Let t ∈ (0, 1) and denote pt ∈ [1,+∞] given by

1

pt
:=

1− t

p0
+

t

p1
.

Then for any f ∈ Lp0(Ω) ∩ Lp1(Ω), f ∈ Lpt(Ω) and there holds

(3.76) ∥f∥Lpt (Ω) ≤ ∥f∥(1−t)
Lp0 (Ω) ∥f∥

t
Lp1 (Ω) .

We are now proving the following theorem which is a classical result from Func-
tional Analysis 1.

Theorem 3.3. Let 1 ≤ p ≤ +∞ and Ω an open set of Rn. Then Lp(Ω) is a vector
space and ∥ · ∥Lp(Ω) defines a norm, moreover (Lp(Ω), ∥ · ∥Lp(Ω)) is a Banach space.

Proof of theorem 3.3. It is clear that ∥ · ∥L1(Ω) and ∥ · ∥L∞(Ω) define norms. We
now prove that Lp(Ω) is a vector space and ∥·∥Lp(Ω) defines a norm for 1 < p < +∞.
Let f and g in Lp(Ω). We first claim that f + g ∈ Lp(Ω). We have for any x ∈ Ω

|f(x) + g(x)|p ≤ 2p (max{|f(x)|, |g(x)|})p ≤ 2p (|f(x)|p + |g(x)|p) .

integrating this inequality on Ω is giving the integrability of |f(x) + g(x)|p on Ω.
We now prove that ∥ · ∥Lp(Ω) defines a norm. We have using Hölder inequality∫

Ω

|f(x) + g(x)|p dxn =

∫
Ω

|f(x) + g(x)|p−1 |f(x) + g(x)| dxn

≤
∫
Ω

|f(x) + g(x)|p−1 |f(x)| dxn +
∫
Ω

|f(x) + g(x)|p−1 |g(x)| dxn

≤ ∥f + g∥p−1
Lp(Ω) ∥f∥Lp(Ω) + ∥f + g∥p−1

Lp(Ω) ∥g∥Lp(Ω)

This implies
∥f + g∥Lp(Ω) ≤ ∥f∥Lp(Ω) + ∥g∥Lp(Ω) ,

from which we deduce that ∥ · ∥Lp(Ω) defines a norm.

We now prove that (L∞(Ω), ∥ ·∥L∞(Ω)) is complete. Let fn be a Cauchy sequence
in L∞. For every k ∈ N there is a integer Nk such that

(3.77) ∀ m,n ≥ Nk ∥fn − fm∥L∞(Ω) ≤
1

k
.

Denote, for any n,m ≥ Nk

Ek(m,n) :=

{
x ∈ Ω s. t. |fn(x)− fm(x)| >

1

k

}
It is clear from (3.77) that Ek(m,n) has Lebesgue measure zero. Let

Ek :=
⋃

m,n≥Nk

Ek(m,n) .
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A countable union of measure zero set has measure zero. Hence Ek has measure
zero as well. Finally we denote

E :=
⋃
k∈N

Ek .

For the same reason has above E has also Lebesgue measure zero. For any x ∈ Ω\E
there holds

(3.78) ∀ m,n ≥ Nk |fn(x)− fm(x)| ≤
1

k
,

hence fn(x) is a Cauchy sequence. We denote by f(x) its limit. The fact that f(x)
is measurable is left as an exercise. Passing to the limit in (3.78), we have for any
n ≥ Nk

(3.79) ∀x ∈ Ω \ E |f(x)− fn(x)| ≤
1

k
.

Since this holds for any x ∈ Ω \ E and since E has zero measure, we deduce that
for such a n

esssup{|f(x)| ; x ∈ Ω} ≤ 1

k
+ ∥fn∥L∞(Ω) < +∞ .

hence f is in L∞(Ω) and thanks to (3.79), fn → f in L∞(Ω). This implies that
(L∞(Ω), ∥ · ∥L∞(Ω)) is a Banach space.

We consider now the case 1 ≤ p < +∞. Let (fn)n∈N be a Cauchy sequence in
Lp(Ω). It suffices to prove that there exists a subsequence which converges to an
element in Lp(Ω). We first extract a subsequence (fnk

)k∈N such that

∀ k ∈ N
∥∥fnk+1

− fnk

∥∥
Lp(Ω)

≤ 2−k .

Introduce

gk(x) :=
k∑

j=1

|fnj+1
(x)− fnj

(x)| .

Using the triangular inequality there holds

∀ k ∈ N ∥gk∥Lp(Ω) ≤
k∑

j=0

2−j ≤ 2 .

The sequence gk(x)
p is increasing hence, using the Beppo Levi monotone convergence

theorem, we deduce that gp converges in L1(Ω) to a limit gp and we have

∀x ∈ Ω gk(x) ≤ g(x) and ∥g∥Lp(Ω) < +∞ .

Observe that

∀k ≤ l |fnl
(x)− fnk

(x)| ≤ gl−1(x)− gk(x) ≤ g(x)− gk(x) .
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Since gpk converges strongly in L1(Ω) towards gp then gk(x) converges almost every-
where towards g(x) and we deduce that, for almost every x ∈ Ω fnk

(x) is converging
to a limit that we denote f(x). Moreover there holds

∀k ∈ N |f(x)− fnk
(x)|p ≤ gp(x) .

By dominated convergence we deduce that fnk
converges strongly to f in Lp(Ω).

Hence we have proved that for any 1 ≤ p ≤ +∞ the spaces (Lp(Ω), ∥ · ∥Lp(Ω)) are
complete and this concludes the proof of theorem 3.3. 2

We have introduced the convolution between an arbitrary element in S ′(Rn) and
an arbitrary element in E ′(Rn). We are going to extend this operation between an
element in L1(Rn) and an element in Lp(Rn) for any 1 ≤ p ≤ +∞. This is the
famous Young inequality (see a proof in [1] theorem 4.15).

Theorem 3.4. Let 1 ≤ p ≤ +∞. For any f ∈ L1(Rn) and g ∈ Lp(Rn), for almost
every x ∈ Rn the function y ∈ Rn −→ f(x−y) g(y) is integrable on Rn. We denote

(f ⋆ g)(x) :=

∫
Rn

f(x− y) g(y) dyn .

Moreover f ⋆ g ∈ Lp(Rn) and

∥f ⋆ g∥Lp(Rn) ≤ ∥f∥L1(Ω) ∥g∥Lp(Ω)

The Young inequality can be extended as follows.

Theorem 3.5. Let 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞. For any f ∈ Lp(Rn) and
g ∈ Lq(Rn) then f ⋆ g is in Lr(Rn) where

1

r
:=

1

p
+

1

q
− 1 ≥ 0

and there holds
∥f ⋆ g∥Lr(Rn) ≤ ∥f∥Lp(Ω) ∥g∥Lq(Rn)

The proofs of the Young inequalities theorem 3.4 and theorem 3.5 are given in
the series. We shall be proving a generalization of these ineqalities in the framework
of Lorentz spaces in chapter 6 using the notions of decreasing rearrangements (see
theorem 6.43).

3.2 Reflexivity and Duals of Lp−Spaces

3.2.1 The uniform convexity and reflexivity of Lp(Ω) for 1 < p < +∞

We recall the definition of a uniform convex normed space

Definition 3.6. A Banach space (E, ∥ · ∥) is said to be uniformly convex if

∀x, y ∈ BE
1 (0) ∀ε > 0 ∃ δ > 0 s. t. ∥x− y∥ > ε =⇒

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ

87



We recall the notion of reflexive spaces.

Definition 3.7. Let E be a Banach space and let J be the canonical injection of E
into (E∗)∗ given by

∀x ∈ E , ∀ l ∈ E∗ ⟨JE(x), l⟩(E∗)∗,E∗ := ⟨l, x⟩E∗,E .

E is called reflexive if J is surjective, that is

(E∗)∗ = JE(E) .

An important property of reflexive Banach spaces is the following

Proposition 3.8. Let (E, ∥ · ∥E) be a reflexive Banach space then (E∗, ∥ · ∥E∗) is
also reflexive

Proof of Proposition 3.8. We denote again JE the canonical isomorphism from
definition 3.7 from E into (E∗)∗. Let φ ∈ ((E∗)∗)∗ the map

x ∈ E −→ ⟨φ, JE(x)⟩((E∗)∗)∗,(E∗)∗

is obviously continuous and linear on E. Hence there exists l ∈ E∗ such that

∀x ∈ E ∀φ ∈ ((E∗)∗)∗ ⟨φ, JE(x)⟩((E∗)∗)∗,(E∗)∗ = ⟨l, x⟩E∗,E = ⟨JE(x), l⟩(E∗)∗,E∗

Since JE is surjective we then have proved

∀σ ∈ (E∗)∗ ⟨φ, σ⟩((E∗)∗)∗,(E∗)∗ = ⟨σ, l⟩(E∗)∗,E∗ .

This shows that JE∗ is also surjective and then E∗ is reflexive. This concludes the
proof of proposition 3.8. 2

We shall also make use of another proposition (see [1] proposition 3.20 for a
proof).

Proposition 3.9. Any closed linear subspace of a reflexive Banach space is also
reflexive.

We recall a classical theorem, called “Milman-Pettis Theorem” and seen in Func-
tional Analysis 1 (see also [1] for a proof).

Theorem 3.10. Every uniformly convex Banach space E is reflexive.

We are now going to prove the uniform convexity of Lp(Ω) for any 1 < p < +∞
where Ω is an arbitrary open set of Rn. First we prove it for 2 ≤ p < +∞ : this will
be the consequence of the so called Clarkson’s first inequality.

Lemma 3.11. Let 2 ≤ p < +∞ then

∀ f, g ∈ Lp(Ω)

∥∥∥∥f + g

2

∥∥∥∥p
Lp(Ω)

+

∥∥∥∥f − g

2

∥∥∥∥p
Lp(Ω)

≤ 1

2

[
∥f∥pLp(Ω) + ∥g∥pLp(Ω)

]
.

88



Proof of Lemma 3.11. Observe that for any q ≥ 1 there holds

∀x, y ≥ 0 xq + yq ≤ (x+ y)q

Let a, b ∈ R and choose x :=
∣∣a+b

2

∣∣2, y :=
∣∣a−b

2

∣∣2 and q := p/2. This gives∣∣∣∣a+ b

2

∣∣∣∣p + ∣∣∣∣a− b

2

∣∣∣∣p ≤
[∣∣∣∣a+ b

2

∣∣∣∣2 + ∣∣∣∣a− b

2

∣∣∣∣2
]p/2

=

[
a2

2
+
b2

2

]p/2
≤ |a|p + |b|p

2
,

where in the last inequality we have used the convexity of t→ tp/2 on R+. Replacing
a by f(x) and b by g(x), integrating with respect to x is giving the desired inequality
and the lemma 3.11 is proved. 2

From the Clarkson’s first inequality we deduce the uniform convexity of Lp(Ω) for
2 ≤ p < +∞. Now we prove that the reflexivity extends to Lp(Ω) for 1 < p < +∞.

Theorem 3.12. Let Ω be an open set of Rn and 1 < p < +∞, then (Lp(Ω), ∥·∥Lp(Ω))
is reflexive.

Proof of theorem 3.12. The reflexivity of Lp(Ω) for 2 ≤ p < +∞ is a consequence
of the uniform convexity property implied by lemma 3.11 thanks to theorem 3.10.

For any p ∈ (1,+∞) we denote p′ := p/(p − 1). Let J be the map which to
f ∈ Lp(Ω) assigns the following linear map from Lp′(Ω) into C given by

∀ g ∈ Lp′(Ω) J(f)(g) :=

∫
Ω

f(x) g(x) dxn .

Thanks to Hölder inequality we deduce that J(f) defines a continuous linear map
and therefore J(f) ∈ (Lp′(Ω))∗. Again, thanks to Hölder inequality we have that

∥J(f)∥(Lp′ (Ω))∗ := inf
∥g∥

Lp′ (Ω)
≤1
J(f)(g) ≤ ∥f∥Lp(Ω)

Introduce the map g(x) which is equal to zero when f(x) = 0 and

g(x) := |f(x)|p−2 f(x)/∥f∥p−1
Lp(Ω)

otherwize. One has

∥g∥Lp′ (Ω) = 1 and J(f)(g) =

[∫
Ω

|f(x)|p dxn
]1/p

.

Hence
∥J(f)∥(Lp′ (Ω))∗ = ∥f∥Lp(Ω)

which implies that J realizes an isometry from Lp(Ω) into (Lp′(Ω))∗ and consequently
in particular J(Lp(Ω)) is closed in (Lp′(Ω))∗.

Consider now 1 < p ≤ 2. Since Lp′(Ω) is reflexive it follows from proposition 3.8
that (Lp′(Ω))∗ is also reflexive. Using this time proposition 3.9 we deduce that
J(Lp(Ω)) is reflexive and since J is an isometry we deduce that Lp(Ω) is reflexive
and this concludes the proof of the theorem 3.12. 2

89



3.2.2 The Dual of Lp(Ω) for 1 ≤ p < +∞

We identify now the dual of Lp(Ω) for any 1 < p < +∞. This is the subject of the
following “Riesz representation type” theorem.

Theorem 3.13. Let 1 < p < +∞ and let l ∈ (Lp(Ω))∗. Then there exists g ∈ Lp′(Ω)
such that

∀ f ∈ Lp(Ω) ⟨l, f⟩ =
∫
Rn

f(x) g(x) dxn ,

moreover
∥g∥Lp′ (Ω) = ∥l∥(Lp(Ω))∗ .

Proof of Theorem 3.13 We consider again the operator J from Lp′(Ω) into
(Lp(Ω))∗ given by

∀ f ∈ Lp(Ω) , ∀ g ∈ Lp′(Ω) ⟨J(g), f⟩(Lp(Ω))∗,Lp(Ω) :=

∫
Rn

f(x) g(x) dxn .

We have using the same argument as in the proof of theorem 3.12

∥J(g)∥(Lp(Ω))∗ := sup
∥f∥Lp(Ω)≤1

∫
Rn

f(x) g(x) dxn = ∥g∥Lp′ (Ω) .

We claim that J is surjective in (Lp(Ω))∗. J realizes an isometry. Let J(Lp′(Ω)),
this is a closed subspace of (Lp(Ω))∗. We claim that F = J(Lp′(Ω)) is dense in
(Lp(Ω))∗. In order to prove this claim we shall be using the following lemma from
Functional Analysis 1, which is a direct consequence of Hahn Banach theorem, and
whose proof can be found in [1] (corollary 1.8)

Lemma 3.14. Let F be a closed linear subspace of a Banach space (E, ∥ · ∥E) such
that E ̸= F . Then there exists l ∈ E∗ such that l ̸= 0 and

∀x ∈ F ⟨l, x⟩E∗,E = 0 .

Proof of theorem 3.13 continuedUsing the previous lemma, assuming J(Lp′(Ω)) ̸=
(Lp(Ω))∗ there exists φ ∈ ((Lp(Ω))∗)∗ such that φ ̸= 0 and

∀ g ∈ Lp′(Ω) ⟨φ, J(g)⟩ = 0

Since Lp(Ω) is reflexive, there exists f ∈ Lp(Ω) such that

∀ l ∈ (Lp(Ω))∗ ⟨φ, l⟩((Lp(Ω))∗)∗,(Lp(Ω))∗ = ⟨l, f⟩(Lp(Ω))∗,Lp(Ω) .

We have in particular

∀ g ∈ Lp′(Ω) 0 = ⟨φ, J(g)⟩ =
∫
Ω

f(x) g(x) dx .

We choose g such that g(x) = 0 whenever f(x) = 0 and g(x) := |f(x)|p−2 f(x)
otherwize. From the previous identity we obtain f ≡ 0 and hence φ = 0 which is a
contradiction. This concludes the proof of the Riesz theorem 3.13. 2

We now consider the cases p = 1 and p = +∞. First we have the following Riesz
representation theorem which says (L1(Ω))∗ = L∞(Ω).
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Theorem 3.15. Let Ω be an open set in Rn and let l ∈ (L1(Ω))∗ then there exists
a unique function g ∈ L∞(Ω) such that

(3.80) ∀ f ∈ L1(Ω) ⟨l, f⟩(L1(Ω))∗,L1(Ω) =

∫
Ω

f(x) g(x) dxn .

Moreover
∥g∥L∞(Ω) = ∥l∥(L1(Ω))∗

Proof of theorem 3.15. First we establish the uniqueness of g. It suffices to show
that

(3.81) ∀ f ∈ L1(Ω)

∫
Ω

f(x) g(x) dxn = 0 =⇒ g ≡ 0 .

We denote Ωk := Ω ∩ B2k(0) and we consider the functions fn(x) := 0 if g(x) = 0

and fk(x) := g(x)
|g(x)| 1Ωk

(x) whenever g(x) ̸= 0, where 1Ωk
(x) is the characteristic

function of Ωk. The hypothesis is then implying

∀ k ∈ N
∫
Ω∩B

2k
(0)

|g(x)| dxn = 0

from which we deduce that g(x) ≡ 0 and we have proved (3.81).

Let l ∈ (L1(Ω))∗. We establish the existence of g such that (3.80) holds. Let
θ ∈ L2(Ω) such that θ := 2−kn on Ωk \ Ωk−1 for k ≥ 1. We consider the map

T : h ∈ L2(Ω) −→ C s. t. T (h) := ⟨l, θ h⟩(L1(Ω))∗,L1(Ω) .

Thanks to theorem 3.13 there exists v ∈ L2(Ω) such that

T (h) =

∫
Ω

v(x)h(x) dxn .

It is then natural to introduce g(x) := v(x)/θ(x). We are going to prove that g is a
solution to our problem. Observe that, since θ is bounded from below by a positive
number on each of the Ωk, g ∈ L2(Ωk) for any k ∈ N. Hence we have for any k ∈ N

(3.82)

∀h ∈ L2(Ω) ⟨l,1B
2k

(0) h⟩(L1(Ω))∗,L1(Ω) =
〈
l, θ 1B

2k
(0)

h
θ

〉
(L1(Ω))∗,L1(Ω)∫

Ω

v(x)1B
2k

(0)
h(x)

θ(x)
dxn =

∫
Ωk

g(x) h(x) dxn

We claim that g ∈ L∞(Ω) and that we have

(3.83) ∥g∥L∞(Ω) ≤ ∥l∥(L1(Ω))∗ .

Let K > 0 and introduce

ωK := {x ∈ Ω ; |g(x)| > K} .
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In order to establish the claim it suffices to prove that ωK has zero measure. We
choose for any x at which g(x) ̸= 0, h := 1ωK

g(x)/|g(x)| and h(x) = 0 otherwize,
where we denote by 1ωK

the characteristic function of ωK . Observe that h ∈ L∞(Ω),
hence, obviously, 1B

2k
(0) h ∈ L1(Ω) and from (3.82) we obtain

K |Ωk∩ωK | ≤
∫
Ωk∩ωK

|h(x)| dxn ≤ ∥l∥(L1(Ω))∗ ∥1B
2k

(0) h∥L1(Ω) = ∥l∥(L1(Ω))∗ |Ωk∩ωK |

Hence for K > ∥l∥(L1(Ω))∗ the measure of |Ωk ∩ ωK | is zero for any k ∈ N and this
implies the claim (3.83).

Let f ∈ L1(Ω). We denote by Tk(f)(x) := f(x) inf{k,|f(x)|}
|f(x)| if |f(x)| ≠ 0 and

Tk(f)(x) = 0 if f(x) = 0. By dominated convergence we have that

1B
2k

(0) Tk(f) −→ f strongly in L1(Ω) .

We have from 3.82

⟨l,1B
2k

(0) Tk(f)⟩(L1(Ω))∗,L1(Ω) =

∫
Ω

g(x)1B
2k

(0) Tk(f)(x) dx
n

Passing to the limit in both sides of the equality we obtain

(3.84) ⟨l, f⟩(L1(Ω))∗,L1(Ω) =

∫
Ω

g(x) f(x) dxn .

It remains to prove that

(3.85) ∥g∥L∞(Ω) = ∥l∥(L1(Ω))∗ .

From (3.84) there holds

∀ f ∈ L1(Ω)
∣∣⟨l, f⟩(L1(Ω))∗,L1(Ω)

∣∣ ≤ ∥g∥L∞(Ω) ∥f∥L1(Ω) .

hence ∥l∥(L1(Ω))∗ ≤ ∥g∥L∞(Ω). Combining this inequality with (3.83) we obtain (3.85)
and this concludes the proof of theorem 3.15. 2

We have seen in serie 1 using Hahn Banach that there exists l ∈ (L∞(Ω))∗\L1(Ω).
Hence we have the following result.

Proposition 3.16. Let Ω be an open set of Rn then L1(Ω) is not reflexive.

3.3 Separability of Lp(Ω) for 1 ≤ p < +∞ and approximabil-
ity properties.

We recall the classical notion from Topology.

Definition 3.17. We say that a metric space E is separable if there exists a subset
D ⊂ E that is countable and dense.

We then have the following theorem
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Theorem 3.18. Let Ω be an open subset in Rn and let 1 ≤ p < +∞. Then Lp(Ω)
is separable.

Regarding L∞(Ω) the answer is negative.

Theorem 3.19. Let Ω be an open subset in Rn. Then L∞(Ω) is not separable.

The theorem 3.18 and theorem 3.19 are proved in the series.

Regarding the approximability property of any element in Lp(Rn) by elements
in C∞

0 (Rn) we have already seen in chapter 2 using the Fourier Transform that

C∞
0 (Rn)

L2

= L2(Rn) .

see the proof of proposition 2.7. We are extending this result to any 1 ≤ p < +∞.
Precisely we have

Theorem 3.20. Let Ω be an open set of Rn and let 1 ≤ p < +∞. Then C∞
0 (Ω) is

dense in Lp(Ω).

Remark 3.21. The theorem 3.20 obviously does not extend to the case p = +∞
since the limits for the uniform convergence of smooth functions are continuous and
C0(Ω) is strictly included in L∞(Ω).

In order to prove the theorem 3.20 we shall need the following lemma.

Lemma 3.22. Let χ ∈ C∞
0 (B1(0)) such that

∫
Rn χ(x) dx

n = 1. For any ε > 0 we
denote χε(·) := ε−n χ(ε−1·). Let 1 ≤ p < +∞ then

(3.86) ∀ f ∈ Lp(Rn) f ⋆ χε −→ f strongly in Lp(Rn) .

Proof of lemma 3.22. First of all we claim that any function f ∈ Lp(Rn) can be
strongly approximated in Lp(Rn) by continuous and compactly supported functions.
The result for p = 1 has been proved in analysis 3 [2]. We are proving the claim
now for 1 < p < +∞. We denote

fk(x) := 0 if f(x) = 0 and fk(x) := 1B
2k

(0) f(x)
max{|f(x)|, k}

|f(x)|
if f(x) ̸= 0 .

where 1B
2k

(0) is denoting the characteristic function of the ball B2k(0). From the
dominated convergence theorem we have

fk(x) −→ f(x) strongly in Lp(Ω) .

Let ε > 0. There exists kε ∈ N such that

(3.87) ∀ k ≥ kε ∥f − fk∥Lp(Rn) ≤
ε

2
.

Since fkε is supported in a bounded set B2kε (0) and since ∥fkε∥L∞(Rn) ≤ kε we have
fkε ∈ Lq(Rn) for any q ∈ [1,+∞]. Hence, using the claim proved for p = 1, for any
δ > 0 there exists gδ ∈ C0

c (Ω) such that

∥fkε − gδ∥L1(Ω) ≤ δ .
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By replacing gδ by

g̃δ(x) := 1B
2kε

(0) gδ(x)
max{|gδ(x)|, kε}

|gδ(x)|
if gδ(x) ̸= 0

and g̃δ(x) = 0 if gδ(x) = 0. We have for any x

|fkε(x)− gδ(x)| ≥ |1B
2kε

(0) (fkε(x)− gδ(x))| = |fkε(x)− 1B
2kε

(0) gδ(x)|

Using that the map from πk from C into Bk(0) given by πk(y) = y if |y| ≤ k and
πk(y) = k y/|y| for |y| ≥ k is a Lipschitz contraction (i.e ∥∇yπk(y)∥∞ ≤ 1) we have
for any x

|fkε(x)− gδ(x)| ≥ |fkε(x)− 1B
2kε

(0) πk(gδ(x))| = |fkε(x)− g̃δ(x)| .

Hence we have

∥fkε − g̃δ∥L1(Rn) ≤ δ , g̃δ ∈ C0
0(Rn) and ∥g̃δ∥L∞(Rn) ≤ k .

Hence we have

(3.88) ∥fkε − g̃δ∥Lp(Rn) ≤ ∥fkε − g̃δ∥1/pL1(Rn) ∥fkε − g̃δ∥1−1/p
L∞(Rn) ≤ δ1/p (2 kε)

1−1/p .

We then choose δ such that δ1/p (2 kε)
1−1/p = ε/2. Combining (3.87) and (3.88) is

giving finally the existence of g̃δ ∈ C0
0(Rn) such that

∥f − g̃δ∥Lp(Rn) ≤ ε .

This implies the claim that any function f ∈ Lp(Rn) can be strongly approximated
in Lp(Rn) by continuous and compactly supported functions.

Let g ∈ C0
0(Rn), g is uniformly continuous and then for any δ > 0 there exists

ε0 > 0 such that for any 0 < ε < ε0

∀x ∈ Rn |χε ⋆ g(x)− g(x)| ≤ 1

εn

∫
Bε(0)

∥χ∥∞ |g(x− y)− g(x)| dyn ≤ δ .

This implies that

∀ g ∈ C0
0(Rn) lim

ε→0
∥χε ⋆ g − g∥L∞(Rn) = 0

Since g has compact support and since Supp(χε ⋆ g) ⊂ Supp(g) +Bε(0), we deduce

(3.89) ∀ g ∈ C0
0(Rn) ∀1 ≤ q ≤ +∞ lim

ε→0
∥χε ⋆ g − g∥Lq(Rn) = 0 .

Let f ∈ Lp(Rn) and let δ > 0. From the first part of the proof, there exists
gδ ∈ C0

0(Rn) such that
∥f − gδ∥Lp(Rn) ≤ δ ,
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Hence we have for any ε > 0, using Young inequality

∥f − χε ⋆ f∥Lp(Rn) ≤ ∥(f − gδ)− χε ⋆ (f − gδ)∥Lp(Rn) + ∥χε ⋆ gδ − gδ∥Lp(Rn)

≤ [1 + ∥χ∥L1(Rn)] ∥f − gδ∥Lp(Rn) + ∥χε ⋆ gδ − gδ∥Lp(Rn) .

Because of (3.89), for ε small enough we deduce

∥f − χε ⋆ f∥Lp(Rn) ≤ [2 + ∥χ∥L1(Rn)] δ

This implies (3.86) and lemma 3.22 is proved. 2

Proof of theorem 3.20. From the proof of lemma 3.22, for any δ > 0 there exists
gδ ∈ C0

0(Rn) such that
∥f − gδ∥Lp(Rn) ≤ δ/2 .

For any ε > 0 we write

∥f − χε ⋆ gδ∥Lp(Rn) ≤ ∥f − gδ∥Lp(Rn) + ∥χε ⋆ gδ − gδ∥Lp(Rn)

The map gδ ∈ C0
0(Rn) being fixed, from (3.89), for ε small enough we have

∥g − χε ⋆ gδ∥Lp(Rn) ≤ δ/2 .

Combining the three previous inequalities we have found g := χε ⋆ gδ ∈ C∞
0 (Rn)

such that
∥f − g∥Lp(Rn) ≤ δ .

This holds for any δ > 0 hence this concludes the proof of theorem 3.20. 2

3.4 Riesz-Thorin interpolation theorem and the Fourier Trans-
form of an Lp function for 1 ≤ p ≤ 2.

The interpolations of operators is an important method in Functional Analysis. We
shall now prove a first result in the theory for linear operators and show how this
can be applied to prove new inequalities. This result is known as Riesz Thorin
Interpolation Theorem or Riesz Convexity Theorem.

Theorem 3.23. Let 1 ≤ pj ≤ +∞ and 1 ≤ qj ≤ +∞ for i = 0, 1 with max{q0, q1} >
1. Let Ω be an open set of Rn and T be a bounded linear operator from Lp0(Ω) +
Lp1(Ω) into Lq0(Ω) + Lq1(Ω) such that

T : Lpj(Ω) −→ Lqj(Ω) continuously.

Let t ∈ (0, 1) and denote

1

pt
=

1− t

p0
+

t

p1
and

1

qt
=

1− t

q0
+

t

q1

with the usual convention 1/∞ = 0. Then

T : Lpt(Ω) −→ Lqt(Ω) continuously

and there holds

|||T |||Lpt (Ω)→Lqt (Ω) ≤ |||T |||(1−t)
Lp0 (Ω)→Lq0 (Ω) |||T |||

t
Lp1 (Ω)→Lq1 (Ω)
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Remark 3.24. Observe that Lpt(Ω) is in the domain of definition of T since for
1 ≤ p0 < pt < p1 ≤ +∞ we have that Lpt(Ω) ⊂ Lp0(Ω) + Lp1(Ω). Indeed we write
for λ > 0 to be fixed later

f(x) := f(x)1|f(x)|≤λ + f(x)1|f(x)|>λ

and we have respectively∫
Ω

|f(x)1|f(x)|≤λ|p1 dxn ≤ λp1−pt

∫
Ω

|f(x)1|f(x)|≤λ|pt dxn

hence
∥f(x)1|f(x)|≤λ∥Lp1 (Ω) ≤ λ1−pt/p1 ∥f(x)1|f(x)|≤λ∥pt/p1Lpt (Ω)

and

λpt |{x ∈ Ω ; |f(x)| > λ}| ≤
∫
Ω

|f(x)1|f(x)|>λ|pt dxn < +∞

which gives

|{x ∈ Ω ; |f(x)| > λ}|
pt−p0

pt ≤ λ−(pt−p0)

[∫
Ω

|f(x)1|f(x)|>λ|pt dxn
] pt−p0

pt

moreover∫
Ω

|f(x)1|f(x)|>λ|p0 dxn ≤
[∫

Ω

|f(x)1|f(x)|>λ|pt dxn
] p0

pt

|{x ∈ Ω ; |f(x)| > λ}|1−
p0
pt

≤ λp0−pt

∫
Ω

|f(x)1|f(x)|>λ|pt dxn

Thus
∥f(x)1|f(x)|>λ∥Lp0 (Ω) ≤ λ1−pt/p0 ∥f(x)1|f(x)|>λ∥pt/p0Lpt (Ω)

Hence we have for any λ > 0

∥f(x)1|f(x)|>λ∥Lp0 (Ω) + ∥f(x)1|f(x)|≤λ∥Lp1 (Ω)

≤ λ1−pt/p0 ∥f(x)∥pt/p0Lpt (Ω) + λ1−pt/p1 ∥f(x)∥pt/p1Lpt (Ω)

We then choose ⟨= ∥f(x)∥Lpt (Ω) and we deduce

∥f(x)1|f(x)|>λ∥Lp0 (Ω) + ∥f(x)1|f(x)|≤λ∥Lp1 (Ω) ≤ 2 ∥f(x)∥Lpt (Ω)

Then we have proved that for any f ∈ Lpt(Ω) there exists g ∈ Lp0(Ω) and h ∈ Lp1(Ω)
such that f = g + h and

∥g∥Lp0 (Ω) + ∥h∥Lp1 (Ω) ≤ C ∥f∥Lpt (Ω) .

Hence Lpt(Ω) embeds continuously into the Banach space9 Lp0(Ω)+Lp1(Ω) given by

Lp0(Ω) + Lp1(Ω) :=
{
f ∈ L1

loc(Ω) ; ∃(g, h) ∈ Lp0(Ω)× Lp1(Ω) s. t. f = g + h
}

and
∥f∥Lp0 (Ω)+Lp1 (Ω) := inf

{
∥g∥Lp0 (Ω) + ∥h∥Lp1 (Ω) ; f = g + h

}
.

9Recall from Functional Analysis 1 that the sum of two Banach spaces which both embed
continuously in an Hausdorff topological space - here that would be the Fréchet space L1

loc(Ω) - is
again a Banach space.
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Proof of theorem 3.23 The goal is to show that for any f ∈ Lpt(Ω) and g ∈ Lq′t(Ω),
where 1/q′t = 1− 1/qt there holds
(3.90)∫

Ω

T (f)(x) g(x) dxn ≤ |||T |||(1−t)
Lp0 (Ω)→Lq0 (Ω) |||T |||

t
Lp1 (Ω)→Lq1 (Ω) ∥f∥Lpt (Ω) ∥g∥Lq′t (Ω)

.

Observe that we can assume that pt < +∞. Indeed, if pt = +∞ then p0 = p1 = +∞
then we have that T is mapping continuously L∞(Ω) to Lq0(Ω) ∩ Lq1(Ω) that is

∀ f ∈ L∞(Ω)


∥T (f)∥Lq0 (Ω) ≤ |||T |||L∞(Ω)→Lq0 (Ω)

∥T (f)∥Lq1 (Ω) ≤ |||T |||L∞(Ω)→Lq1 (Ω)

We have by Littlewood inequality (corollary 3.2)

∥T (f)∥Lqt (Ω) ≤ ∥T (f)∥1−t
Lq0 (Ω) ∥T (f)∥

t
Lq1 (Ω)

≤ |||T |||(1−t)
L∞(Ω)→Lq0 (Ω) |||T |||

t
L∞(Ω)→Lq1 (Ω) ∥f∥L∞(Ω)

and the theorem is proved in this particular case.
Observe that we can moreover assume 1 < qt. Indeed, if qt = 1 for instance, this

imposes q0 = q1 = 1 which is excluded by the hypothesis .
The proof for general pt < +∞ and 1 < qt < +∞ is based on a “complex

interpolation” strategy. It is convenient to introduce αj := 1/pj and βj := 1/qj and

∀ z ∈ C α(z) := (1− z)α0 + zα1 and β(z) := (1− z)β0 + zβ1

Let f and g be two step functions on Ω of the form

f :=
m∑
k=1

ak 1Ek
and g :=

r∑
l=1

bl 1Fl

where ak, bl ∈ C and Ek and Fl are measurable subsets of Ω. We first aim at proving
(3.90) for these kinds of functions. Without loss of generality we fix ∥f∥Lpt (Ω) = 1.
We introduce θk and ϕl such that

ak = |ak| ei θk and bl = |bl| ei ϕl .

We define

fz :=
m∑
k=1

|ak|α(z)/α(t) ei θk 1Ek

and

gz :=
r∑

l=1

|bl|(1−β(z))/(1−β(t)) ei ϕl 1Fl
.

We introduce

F (z) :=

∫
Ω

T (fz) gz dx
n =

m∑
k=1

r∑
l=1

|ak|α(z)/α(t) |bl|(1−β(z))/(1−β(t)) γkl
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where

γkl := ei (θk+ϕl)

∫
Ω

T (1Ek
) 1Fl

dxn .

The function F is holomorphic. We write z = x + iy and we restrict to the strip
S := {z = x+ iy ∈ C ; 0 ≤ x ≤ 1}. We have for any k ∈ {1 · · ·m}

|ak|α(z)/α(t) = |ak|α0/α(t) |ak|x(α1−α0)/α(t) |ak|i y (α1−α0)/α(t) .

Hence ∣∣|ak|α(z)/α(t)∣∣ = |ak|x(α1−α0)/(t α0+(1−t)α1)

Since x ∈ [0, 1] we have
∥|ak|α(z)/α(t)∥L∞(S) < +∞

and similarly for any l = 1 · · · r

∥|bl|(1−β(z))/(1−β(t))∥L∞(S) < +∞ .

Thus we deduce
∥F∥L∞(S) < +∞ .

We shall make use of the following lemma

Lemma 3.25. Let F be and holomorphic uniformly bounded function on S := {z =
x+ iy ∈ C ; 0 ≤ x ≤ 1}. Let M0 > 0 and M1 > 0 such that

∥F (iy)∥L∞
y (R) ≤M0 and ∥F (1 + iy)∥L∞

y (R) ≤M1 ,

then
∀x ∈ [0, 1] ∥F (x+ iy)∥L∞

y (R) ≤M
(1−x)
0 Mx

1 .

Proof of Lemma 3.25. The proof is more or less a direct application of the
Maximum Principle. We replace F by the function

F̃ (z) :=
F (z)

M
(1−z)
0 M z

1

.

The new function F̃ is again holomorphic, bounded and we have by assumption

∥F̃∥L∞(∂S) ≤ 1 .

Let

F̃k(z) := F̃ (z) e
z2−1

k

Since F̃ is bounded, we have

|F̃k(z)| ≤ ∥F̃∥L∞(S) e
− y2

k e
x2−1

k .

Hence
∥F̃k(x+ iy)∥L∞

x ([0,1]) −→ 0 uniformly as y → +∞ .
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Applying the Maximum Principle (see the Complex Analysis course in 3rd semester)
on sufficiently large rectangles we obtain

∀k ∥F̃k∥L∞(S) ≤ 1 .

Passing to the limit k → +∞ we deduce ∥F̃∥L∞(S) ≤ 1 and the lemma is proved.2

Proof of theorem 3.23 continued. Using the previous lemma we have

∀ z ∈ S |F (z)| ≤
[
sup
y∈R

∣∣∣∣∫
Ω

T (fiy) giy dx
n

∣∣∣∣]1−x [
sup
y∈R

∣∣∣∣∫
Ω

T (f1+iy) g1+iy dx
n

∣∣∣∣]x
We have

fiy :=
m∑
k=1

|ak|α(iy)/α(t) ei θk 1Ek
and giy :=

r∑
l=1

|bl|(1−β(iy))/(1−β(t)) ei ϕl 1Fl
.

Hence in particular almost everywhere

|fiy|p0 = |f |pt and |giy|q
′
0 = |g|q′t .

Thus
∥fiy∥Lp0 (Ω) = ∥f∥pt/p0Lpt (Ω) and ∥giy∥Lq′0 (Ω)

= ∥g∥q
′
t/q

′
0

Lq′t (Ω)

Using the fact that T is continuous from Lp0(Ω) into Lq0(Ω) we have∣∣∣∣∫
Ω

T (fiy) giy dx
n

∣∣∣∣ ≤ |||T |||Lp0 (Ω)→Lq0 (Ω) ∥fiy∥Lp0 (Ω) ∥giy∥Lq′0 (Ω)

≤ |||T |||Lp0 (Ω)→Lq0 (Ω) ∥f∥
pt/p0
Lpt (Ω) ∥g∥

q′t/q
′
0

Lq′t (Ω)
.

Similarly we have∣∣∣∣∫
Ω

T (f1+iy) g1+iy dx
n

∣∣∣∣ ≤ |||T |||Lp1 (Ω)→Lq1 (Ω) ∥f1+iy∥Lp0 (Ω) ∥g1+iy∥Lq′1 (Ω)

≤ |||T |||Lp1 (Ω)→Lq1 (Ω) ∥f∥
pt/p1
Lpt (Ω) ∥g∥

q′t/q
′
1

Lq′t (Ω)
.

Hence we have∣∣∣∣∫
Ω

T (f) g dxn
∣∣∣∣ = ∣∣∣∣∫

Ω

T (ft) gt dx
n

∣∣∣∣
≤ |||T |||(1−t)

Lp0 (Ω)→Lq0 (Ω) |||T |||
t
Lp1 (Ω)→Lq1 (Ω) ∥f∥Lpt (Ω) ∥g∥Lq′t (Ω)

.

Since step functions are dense in Lq′t(Ω) we deduce

(3.91) ∥T (f)∥Lqt (Ω) ≤ |||T |||(1−t)
Lp0 (Ω)→Lq0 (Ω) |||T |||

t
Lp1 (Ω)→Lq1 (Ω) ∥f∥Lpt (Ω)

Hence the result is proved if f is a step function.
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Let f be an arbitrary function in Lpt(Ω) and, since we are considering the case
pt < +∞, there exists fk step functions such that

lim
k→+∞

∥f − fk∥Lpt (Ω) = 0 .

Because of remark 3.24, Lpt(Ω) embeds continuously into Lp0(Ω)+Lp1(Ω) and there-
fore there exists gk ∈ Lp0(Ω) and hk ∈ Lp1(Ω) such that

∥gk∥Lp0 (Ω) + ∥hk∥Lp1 (Ω) −→ 0 and f − fk = gk + hk .

Using the hypothesis on T we have that

T (fk)− T (f) −→ 0 in Lq0(Ω) + Lq1(Ω) .

Hence in particular

T (fk) −→ T (f) almost everywhere .

Using (3.91) for fk we have

lim sup
k→+∞

∥T (fk)∥Lqt (Ω) ≤ |||T |||(1−t)
Lp0 (Ω)→Lq0 (Ω) |||T |||

t
Lp1 (Ω)→Lq1 (Ω) ∥f∥Lpt (Ω)

Since 1 ≤ qt < +∞, we have

|T (fk)|qt −→ |T (f)|qt almost everywhere and lim sup
k→+∞

∫
Ω

|T (fk)|qt(x) dxn < +∞

Using Fatou Lemma we conclude that T (f) ∈ Lqt(Ω) and there holds

∥T (f)∥Lqt (Ω) ≤ |||T |||(1−t)
Lp0 (Ω)→Lq0 (Ω) |||T |||

t
Lp1 (Ω)→Lq1 (Ω) ∥f∥Lpt (Ω)

This concludes the proof of the theorem 3.23

We present now two applications of the Riesz-Thorin interpolation theorem.
First we recall that the Fourier transform realizes an isometry from L2 into itself
moreover we have proved (1.1)

∀f ∈ L1(Rn) ∥f̂∥L∞(Rn) ≤ (2π)−n/2 ∥f∥L1(Rn)

Combining these two facts with the Riesz-Thorin interpolation theorem we obtain
the famous Hausdorff Young inequality

Theorem 3.26. Let p ∈ [1, 2] and denote by t ∈ [0, 1] the number such that

1

p
= (1− t) +

t

2
= 1− t

2
i.e p =

2

2− t
,

then F realizes a continuous mapping from Lp(Rn) into Lp′(Rn) and there holds

∀ f ∈ Lp(Rn) ∥f̂∥Lp′ (Rn) ≤ (2π)
(t−1)n

2 ∥f∥Lp(Rn) .
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The second application of the theorem is a proof of theorem 3.5.

Proof of theorem 3.5. From theorem 3.4 we know that for any g ∈ Lp(Rn) and
p ∈ [1,+∞] the convolution wit g is a continuous linear operator from L1(Rn) into
Lp(Rn) and there holds

∀ f ∈ L1(Rn) ∥g ⋆ f∥Lp(Rn) ≤ ∥g∥Lp(Rn) ∥f∥L1(Rn) ,

moreover, the convolution with g is obviously mapping Lp′(Rn) into L∞(Rn) and
there holds

∀ f ∈ Lp′(Rn) ∥g ⋆ f∥L∞(Rn) ≤ ∥g∥Lp(Rn) ∥f∥Lp′ (Rn) .

Hence, using Riesz Thorin theorem, we deduce that for any t ∈ [0, 1] and pt ∈ [1, p′]
given by

1

pt
:= (1− t) + t

(
1− 1

p

)
= 1− t

p

there holds

∀ f ∈ Lpt(Rn) ∥g ⋆ f∥Lqt (Rn) ≤ ∥g∥Lp(Rn) ∥f∥Lpt (Rn)

where
1

qt
=

1− t

p
=

1

p
+

1

pt
− 1

Since p is arbitrary in [1,+∞] and pt ∈ [1, p′] is also arbitrary this concludes proof
of theorem 3.5. 2
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4 Riesz Potentials and Sobolev Embeddings

4.1 The Marcinkiewicz Interpolation Theorem

Definition 4.1. Let 1 ≤ p, q ≤ ∞ and let T be a mapping from Lp(Rn) to the space
of measurable functions. For 1 ≤ q ≤ ∞, we say that the mapping T is of strong
type (p, q) – or simply of type (p, q) – if

∥Tf∥Lq ≤ C ∥f∥Lp ,

where the constant C is independent of f ∈ Lp(Rn). For the case of q <∞, we say
that T is of weak type (p, q) if

µ({x ∈ Rn : |Tf(x)| > α}) ≤ C

(
1

α
∥f∥Lp

)q

,

where the constant C is independent of f and α > 0. For q = ∞, we say that T is
of weak type (p,∞) if T is of type (p,∞).

Remark 4.1. Observe that for q <∞, and for any measurable function g we have
trivialy

(4.92) sup
α<+∞

αq |{x : |g(x)| > α}| ≤ ∥g∥qLq .

Applying this inequality to g = Tf we obtain the fact that T being of type (p, q) is
also of weak type (p, q). Let Ω be an open subset of Rn. The space of measurable
functions g on Ω satisfying

|g|q,∞ :=

[
sup

α<+∞
αq |{x ∈ Ω : |g(x)| > α}|

]1/q
is called the weak Lq Marcinkiewicz space and denoted Lq,∞(Ω). Lq,∞(Ω) is strictly
larger than Lq(Ω). Indeed, for any x0 ∈ Ω, |x − x0|n/q is in Lq,∞(Ω) and not in
Lq(Ω). It is a quasi-Banach space (see the next chapter) and for 1 < q it defines
a Banach space in the sense that the quasi-norm | · |q,∞ is equivalent to a norm
for which the space Lq,∞(Ω) is complete. For q > 1 functions in Lq,∞(Rn) define
tempered distributions (see chapter 6). These spaces are important in PDE and
potential theory, harmonic analysis... because it contains the important family of
Riesz operator |x|n−β in an optimal way : |x|n−β ∈ Ln/(n−β),∞(Rn) but |x|n−β /∈
Ln/(n−β)(Rn).

We are now proving a new interpolation theorem for which we are considering
applications in the following subsections and chapters.

Theorem 4.2 (Marcinkiewicz Interpolation Theorem- The Lp case). Let 1 < r ≤
∞ and suppose that T is a subadditive operator from L1 + Lr(Rn) to the space of
measurable functions, i.e., for all f, g ∈ L1+Lr(Rn), the following pointwise estimate
holds:

(4.93) for a. e. x ∈ Rn |T (f + g)|(x) ≤ |Tf |(x) + |Tg|(x) .
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Moreover, assume that T is of weak type (1, 1) and also of weak type (r, r). Then,
for 1 < p < r, we have that T is of type (p, p) meaning that

∥Tf∥Lp ≤ C ∥f∥Lp ,

for all f ∈ Lp(Rn).

Proof of theorem 4.2.
To simplify the presentation we restrict to the case r < +∞. As in the proof of

theorem 5.5, for an arbitrary parameter α > 0, we introduce the following function

f1(x) :=

 f(x) if |f(x)| > α

0 if |f(x)| ≤ α ,

and we denote f2(x) := f(x) − f1(x) in such a way that |f2(x)| ≤ α. The sub-
additivity of T gives then |Tf(x)| ≤ |Tf1(x)| + |Tf2(x)| and from this we deduce
that

{x ; |Tf(x)| > α} ⊂ {x ; |Tf1(x)| > α/2} ∪ {x ; |Tf2(x)| > α/2} .

Hence, using (5.3) and (5.4), we bound dTf (α) = |{x ; |Tf(x)| > α}| as follows

(4.94)

dTf (α) ≤ dTf1(α/2) + dTf2(α/2)

≤ 2C1

α
∥f1∥L1 +

2r Cr
r

αr
∥f2∥rLr

≤ 2C1

α

∫
Eα

|f(y)| dy + 2r Cr
r

αr

∫
Rn\Eα

|f(y)|r dy

where Eα denotes as usual the set {x ; |f(x)| > α},

C1 = sup
|Tf |L1

w

∥f∥L1

,

and

Cr = sup
|Tf |Lr,∞

∥f∥Lr

,

and where we have also applied inequality (4.92).
Expressing now the Lp norm of Tf by the mean of lemma 5.2 and combining it

with (4.94) we get, using Fubini in the third line,

1

2r

∫
Rn

|Tf(x)|p dx =
p

2r

∫ +∞

0

αp−1 dTf (α) dα

≤ pC1

∫ +∞

0

αp−2 dα

∫
Eα

|f(y)| dy + pCr
r

∫ +∞

0

αp−1−r dα

∫
Rn\Eα

|f(y)|r dy

= pC1

∫
Rn

|f(y)| dy
∫ |f(y)|

0

αp−2 dα + pCr
r

∫
Rn

|f(y)|r dy
∫ +∞

|f(y)|
αp−1−r dα

≤ 2r p

(
C1

p− 1
+

Cr
r

p− r

) ∫
Rn

|f(y)|p dy ,

which proves the theorem. 2 There is a stronger version of this theorem
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Theorem 4.3 (Marcinkiewicz Interpolation Theorem- The Lp − Lq case ). Let
1 ≤ pi ≤ qi ≤ +∞ for i = 0, 1 with p0 < p1 and q0 ̸= q1 Let T is a sub additive
operator from Lp0 +Lp1(Rn) to the space of measurable functions, i.e., for all f, g ∈
L1 + Lr(Rn), the following pointwise estimate holds:

(4.95) for a. e. x ∈ Rn |T (f + g)|(x) ≤ |Tf |(x) + |Tg|(x) .

Moreover, assume that T is of weak type (p0, q0) and also of weak type (p1, q1). Let
t ∈ (0, 1) and denote

1

pt
=

1− t

p0
+

t

p1
and

1

qt
=

1− t

q0
+

t

q1

Then T is of strong type (pt, qt), that is

∥Tf∥Lqt (Rn) ≤ C ∥f∥Lpt (Rn) ,

for all f ∈ Lpt(Rn) and C > 0 is independent of t.

See a proof in Appendix B of [4].

4.2 The Hardy-Littlewood-Sobolev Theorem for fractional
integration and the Lp theory for the fractional Lapla-
cians (−∆)α/2

In this part we are interested with the operator

Iα : f ∈ S(Rn) −→ 1

|x|n−α
⋆ f ∈ S ′(Rn)

where α ∈ (0, n). Observe that 1
|x|n−α ∈ L1(Rn) + L∞(Rn). Indeed

1

|x|n−α
=

1

|x|n−α
1B1(0) +

1

|x|n−α
1Rn\B1(0)

Thanks to Young inequality (remember that S(Rn) ↪→ L1(Rn) ∩ L∞(Rn) continu-
ously) we have that for any f ∈ S(Rn)∥∥∥∥ 1

|x|n−α
⋆ f

∥∥∥∥
L1∩L∞(Rn)

≤ Cα,n ∥f∥L1∩L∞(Rn)

The purpose of the following theorem is to show that Iα extends to a continuous op-
erator on some Lp(Rn) spaces into to some Lq(Rn). Precisely we have the following.

Theorem 4.4. Let 0 < α < n and let 1 ≤ p < n/α. Denote

(4.96)
1

q
:=

1

p
− α

n
.
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Assume first p > 1 then, Iα extends as a continuous operator from Lp(Rn) into
Lq(Rn), that is, there exists Cp,α,n > 0 such that

∀ f ∈ Lp(Rn)

∥∥∥∥ 1

|x|n−α
⋆ f

∥∥∥∥
Lq(Rn)

≤ Cp,α,n ∥f∥Lp(Rn) .

Moreover, for any f ∈ L1(Rn) the map Iα(f) ∈ L1(Rn) + L∞(Rn) satisfies∣∣∣∣ 1

|x|n−α
⋆ f

∣∣∣∣
Lq,∞(Rn)

:= sup
λ>0

λ |{x ∈ Rn ; |Iα(f(x))| > λ}|
1
q ≤ Cα,n ∥f∥Lp(Rn) .

where Cα,n > 0 is independent of f .

Remark 4.5. Recall from Serie 4 that

F
(

1

|x|n−α

)
(ξ) = 2α−

n
2

Γ
(
α
2

)
Γ
(
n−α
2

) |ξ|−α

Hence there exists γα,n > 0 such that

∀ f ∈ S(Rn) F (Iα(f)) (ξ) := F
(

1

|x|n−α
⋆ f

)
(ξ) = γα,n |ξ|−α f̂

Recall that
∀ f ∈ S(Rn) F (−∆f) (ξ) = |ξ|2 f̂ .

This justify the notation (common in the literature)

Iα = γα,n (−∆)−α/2 .

The fractional laplacian (−∆)α/2 plays a central role in several areas of mathematics
going from stochastic processes to the geometric analysis of “free boundaries”...etc.

Proof of theorem 4.4. We first aim at proving that for any 1 ≤ p < n/α the
operator Iα is of weak type (p, q) where q is given by (4.96). Let µ > 0 to be fixed
later. We proceed to the decomposition

1

|x|n−α
=

1

|x|n−α
1Bµ(0) +

1

|x|n−α
1Rn\Bµ(0) .

We denote respectively

K1(x) :=
1

|x|n−α
1Bµ(0) , K∞(x) :=

1

|x|n−α
1Rn\Bµ(0) and K = K1+K∞ =

1

|x|n−α
.

Let f ∈ Lp(Rn) such that ∥f∥Lp(Rn) = 1. Since K1 ∈ L1(Rn), K1 ⋆ f ∈ Lp(Rn) and
since K∞ ∈ Lq(Rn) for any q > n/(n−α) (i.e. q−1 < 1− α

n
), since 1

p′
= 1− 1

p
< 1− α

n
,

we have that K∞ ∈ Lp′(Rn) and K∞ ⋆ f ∈ L∞(Rn). Thus

∀ f ∈ Lp(Rn) K ⋆ f ∈ L1(Rn) + L∞(Rn) ↪→ S ′(Rn) .
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We have obviously for any λ > 0

{x ∈ Rn ; |K ⋆ f(x)| > 2λ} ⊂ {x ∈ Rn ; |K1 ⋆ f(x)| > λ}∪{x ∈ Rn ; |K∞ ⋆ f(x)| > λ}

and consequently

(4.97)
|{x ∈ Rn ; |K ⋆ f(x)| > 2λ}| ≤ |{x ∈ Rn ; |K1 ⋆ f(x)| > λ}|

+ |{x ∈ Rn ; |K∞ ⋆ f(x)| > λ}| .

Using Young inequality we have first

λp |{x ∈ Rn ; |K1 ⋆ f(x)| > λ}| ≤
∫
|K1⋆f(x)|>λ

|K1 ⋆ f(x)|p dxn

≤ ∥K1 ⋆ f∥pLp(Rn) ≤ ∥K1∥pL1(Rn) ∥f∥
p
Lp(Rn)

and we compute

∥K1∥L1(Rn) =

∫
|x|≤µ

|x|−n+α dxn = cn,α µ
α .

Hence finally we obtain

|{x ∈ Rn ; |K1 ⋆ f(x)| > λ}| ≤ cpn,α µ
pα λ−p ∥f∥pLp(Rn) = cpn,α µ

pα λ−p .

For the contribution issued from K∞ ⋆ f we proceed as follows

∥K∞ ⋆ f∥L∞(Rn) ≤ ∥K∞∥Lp′ (Rn) ∥f∥Lp(Rn) = ∥K∞∥Lp′ (Rn) .

We compute

∥K∞∥Lp′ (Rn) =

[∫
Rn

|x|(−n+α) p′ dxn
]1/p′

= c̃n,α,p µ
−n/q

For λ fixed we choose c̃n,α,p µ
−n/q = λ so that

|{x ∈ Rn ; |K ⋆ f(x)| > λ}| ≤ λ−p ∥K1∥pL1(Rn) = cpn,α

(
µα

λ

)p

= Cn,α,p

(
λ−

α q
n

λ

)p

= Cn,α,p λ
−q .

Hence by linearity we have finally proved

(4.98) ∀ f ∈ S(Rn) |K ⋆ f |Lq,∞(Rn) ≤ Cn,α,p ∥f∥Lp(Rn) .

Thus is weak (p, q) for every p ∈ [1, n/α). Let 1 < p < n/α. We choose p0 = 1 and
p < p1 < n/α. We have that T is of weak type (1, n/(n− α)) and that T is of weak
type (p1, q1) where

1

q1
=

1

p1
− α

n
.
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Let t such that
1

p
= 1− t+

t

p1
.

We have

1

q
= (n− α)

1− t

n
+

t

q1
= (n− α)

1− t

n
+

t

p1
− t

α

n
=

1

p
− α

n
.

Using Marcinkiewicz Interpolation theorem 4.3. This concludes the proof of theo-
rem 4.4. 2

4.3 Sobolev Inequalities

An application of the Hardy-Littlewood-Sobolev Theorem for fractional integration
is the following Sobolev inequality.

Theorem 4.6. Let 1 < p < n and let 1 < p∗ < +∞ given by

1

p∗
=

1

p
− 1

n

then there exists Cp,n > 0 such that

∀ f ∈ S(Rn) ∥f∥Lp∗ (Rn) ≤ Cs,n ∥∇f∥Lp(Rn) .

This inequality is an example of a vast family of inequalities called Sobolev
inequalities on bounded or unbounded domains (see [1]).

Proof of theorem 4.6. Let G be the fundamental solution to the laplacian in Rn

given by theorem 1.59. We have

∀ f ∈ S(Rn) f = δ0 ⋆ f = ∆G ⋆ f = −
n∑

j=1

∂xj
G ⋆ ∂xj

f .

Hence

(4.99) ∀ x ∈ Rn |f(x)| ≤
n∑

j=1

|∂xj
G| ⋆ |∂xj

f |(x)

Observe from the explicit expression of G given by theorem 1.59 we obtain the
existence of Cn > 0 such that

(4.100) ∀ x ∈ Rn |∇G|(x) ≤ Cn

|x|n−1
.

Combining (4.99), (4.100) and Hardy-Littlewood-Sobolev Theorem for fractional
integration we obtain theorem 4.6. 2
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5 The Hardy-Littlewood Maximal Function

5.1 Definition

The Lebesgue measure on Rn will be denoted by µ. By measurable function or
measurable set in this book we implicitly mean measurable function with respect
to µ or measurable set with respect to µ unless we precise the underlying measure.
Integration along a variable x in Rn with respect to the Lebesgue measure on Rn

will be simply denoted by dx.
If E is a measurable set, we denote by χE it’s characteristic function.

Definition 5.1. For a measurable function f : Rn −→ R, we define its associated
distribution function by

df (α) = µ({x ∈ Rn : |f(x)| > α}) ,

with α ≥ 0.

With these notations we establish the following lemma.

Lemma 5.2. For a measurable function f and 0 < p <∞, we have

(5.1) ∥f∥pLp = p

∫ ∞

0

αp−1df (α) dα .

Proof of lemma 5.2. From elementary calculus, we get

|f(x)|p = p

∫ |f(x)|

0

αp−1 dα = p

∫ ∞

0

αp−1χ{x :α<|f(x)|} dα .

By integration over Rn and Fubini’s theorem, it then follows

∥f∥pLp = p

∫ ∞

0

αp−1

(∫
Rn

χ{x : |f(x)|>α} dx

)
dα = p

∫ ∞

0

αp−1df (α) dα .

2

For every x in Rn and every r > 0 we denote by Br(x) the euclidian ball of center
x and radius r.

Definition 5.3. For a locally integrable function f ∈ L1
loc(Rn), we define its associ-

ated Hardy-Littlewood maximal function at the point x by

(5.2) Mf(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f(y)| dy ∈ R+ ∪ {+∞} .

We now prove the following elementary proposition.

Proposition 5.4. Let f be a locally integrable function, then Mf is measurable
function into [0,+∞]. Moreover, if f ∈ L1(Rn) then Mf(x) is finite almost every-
where.
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Proof of Proposition 5.4. For any measurable function in L1
loc one easily check

that the map

(r, x) −→ Arf(x) =
1

µ(Br(x))

∫
Br(x)

|f(x)| dy

is continuous. It implies in one hand that, for a fixed r, Arf(x) is measurable and it
also implies, in the other hand, that taking the supremum at a point x among the
real radii, r ∈ R, coincide with the supremum among rational radii, r ∈ Q. Since the
supremum function of countably many measurable functions is measurable ( 1.1.2
in [?]), we deduce that Mf(x) is measurable. The second part of the statement
in proposition 5.4 is a direct consequence of Lebesgue-Besicovitch differentiation
theorem (1.7.1 in [?]). It also follows from Theorem 5.5 below. 2

From the Lebesgue-Besicovitch differentiation theorem (1.7.1 in [?]) we deduce
the pointwise estimate |f(x)| ≤ |Mf(x)| which holds almost everywhere for any
locally integrable function. Therefore, for every p ∈ [1,+∞], and for every function
f in Lp(Rn), we obtain the identity

∥f∥Lp(Rn) ≤ ∥Mf∥Lp(Rn) .

The following important result gives the reverse estimate when p > 1 and ”almost”
but not quite the reverse estimate when p = 1.

5.2 Hardy-Littlewood Maximal Function Theorem

Theorem 5.5 (Hardy-Littlewood Maximal Function Theorem). Let 1 < p ≤ ∞
and f ∈ Lp(Rn). Then, we have

(5.3) ∥Mf∥Lp ≤ 2

(
5n p

p− 1

)1/p

∥f∥Lp .

Moreover, for f ∈ L1(Rn) and α > 0, we have

(5.4) µ({x : Mf(x) > α}) ≤ 5n

α
∥f∥L1 .

Remark 5.1. The last identity (5.4) is saying that the maximal function of an L1

function is in the space L1−weak (denoted also L1
w(Rn)). This space is given by the

subset of measurable functions on Rnsatisfying

(5.5) |f |L1
w
= sup

α>0
{α µ({x ∈ Rn : |f(x)| > α})} .

L1−weak functions do not define a-priori distributions. A typical example of a func-
tion in L1

w is |x|−n in Rn. | · |L1
w
defines a quasi-norm on L1

w - the triangle inequality
is satisfied modulo a constant, which is 2 in the present case - and L1

w is complete
for this quasi-norm which makes L1

w to be a quasi-Banach space by definition. How-
ever it is very important to remember that L1

w cannot be made to be a Banach space
with a norm equivalent to the quasi norm given by | · |L1

w
. If it would be the case

Calderón-Zygmund theory, and this book in particular, would dramatically shrink to
almost nothing ! We discuss this fact later in this chapter when we come to the
Singular Integral Operators.
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The proof of the Hardy-Littlewood Maximal Function Theorem that we are
giving uses the following famous covering lemma.

Lemma 5.6 (Vitali’s Covering Lemma). Let E be measurable subset of Rn and let
F = {Bj}j∈J be a family of euclidian balls with uniformly bounded diameter i.e.,
supj diam(Bj) = R < ∞, such that E ⊂

⋃
j Bj. Then, there exists an at most

countable subfamily {Bjk}k∈N of disjoint balls satisfying

(5.6) µ(E) ≤ 5n
∞∑
k=1

µ(Bjk) .

Proof of lemma 5.6. For any i ∈ N we denote

Fi =
{
Bj ∈ F ; 2−i−1R < diam Bj ≤ 2−iR

}
.

We shall now extract our sub-covering step by step in Fi by induction on i.

• Denote by G0 a maximal disjoint collection of balls in F0.

• Assuming G0, · · · ,Gk have been selected, we choose Gk+1 to be a maximal
collection of balls in Fk+1 such that each ball in this collection is disjoint from
the balls in ∪k

i=0Gi.

We claim now that G = ∪∞
i=0Gi is a suitable solution to the lemma.

It is by construction a sub-family of F made of disjoint balls. Let Bj be in F .
There exists i ∈ N such that Bj ∈ Fi. If Bj would intersect none of the balls in Gi

it would contradict the fact that Gi has been chosen to be maximal. Hence, for any
Bj ∈ Fi there exist B ∈ Gi such that B ∩ Bj ̸= ∅. Since the ratio between the two

diameters of respectively B and Bj is contained in (2−1, 2), the concentric ball B̂ to
B having a radius 5 times larger than the one of B contains necessarily Bj. This

proves that E ⊂ ∪B∈GB̂ and this finishes the proof of the lemma. 2

Proof of theorem 5.5. We first consider the case p = 1 and prove (5.4). Let

Eα = {x ∈ Rn ; Mf(x) > α} .

By definition, for any x ∈ Eα there exists an euclidian ball Bx of center x such that

(5.7)

∫
Bx

|f(y)| dy > αµ(Bx) .

Since f is assumed to be in L1, the size of the balls Bx is controlled as follows :
µ(Bx) ≤ α−1∥f∥L1 . Hence the family {Bx}x∈Eα realizes a covering of Eα by balls
of uniformly bounded radii. We are then in the position to apply Vitali’s covering
lemma 5.6. Let (Bk)k∈K be an at most countable sub-family to {Bx} given by this
lemma 5.6. (Bk) are disjoint balls satisfying∑

k∈K

µ(Bk) ≥
1

5n
µ(Eα) .
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Combining this last inequality and (5.7) gives

∥f∥L1(Rn) ≥
∫
∪+∞
k∈KBk

|f(y)| dy > α
∑
k∈K

µ(Bk) ≥
α

5n
µ(Eα) .

This is proves the desired inequality (5.4).

We establish now (5.3) for 1 < p < +∞ (the case p = +∞ being straightfor-
ward). Define

f1(x) :=

{
f(x) if |f(x)| ≥ α/2

0 if |f(x)| < α/2 .

This definition implies the following inequalities |f(x)| ≤ |f1(x)| + α/2 and also
|Mf(x)| ≤ |Mf1(x)|+ α/2 which hold for almost every x ∈ Rn . Hence we have

(5.8) Eα = {x ∈ Rn ; Mf(x) > α} ⊂ {x ∈ Rn ; Mf1(x) > α/2} .

Observe that, for any α > 0, f1 ∈ L1(Rn). Indeed∫
Rn

|f1(y)| dy ≤
(
2

α

)p−1 ∫
Rn

|f(y)|p dy < +∞ .

Thus we can apply identity (5.4) to f1 and this gives, using (5.8),

(5.9)

µ(Eα) ≤ µ ({x ∈ Rn ; Mf1(x) > α/2}) ≤ 2·5n
α
∥f1∥L1

≤ 2·5n
α

∫
{x : |f(x)|≥α/2} |f(y)| dy .

Next, we deduce from Lemma 5.2 that

∥Mf∥pLp = p

∫ ∞

0

αp−1µ(Eα) dα

(5.9)

≤ p

∫ ∞

0

αp−1

(
2 · 5n

α

∫
{x : |f(x)|≥α/2}

|f(x)| dx
)
dα

= p

∫ ∞

0

αp−1

(
2 · 5n

α

∫
Rn

χ{x : |f(x)|≥α/2}|f(x)| dx
)
dα .

Using Fubini’s theorem it follows

∥Mf∥pLp ≤ 2 · 5n p
∫
Rn

|f(x)|

(∫ 2|f(x)|

0

αp−1

α
dα

)
dx

=
2C p

p− 1

∫
Rn

|f(x)| 2p−1|f(x)|p−1 dx ,

since p > 1 by assumption. Thus we arrive at the desired result

∥Mf∥Lp ≤ 2

(
5n p

p− 1

)1/p

∥f∥Lp .
2

111



Remark 5.7. The best constant in the previous theorem, both in (5.3) and in (5.4),
is far from being known. For 1 < p < ∞, a remarkable result by Stein is that
the optimal constant stays bounded as n goes to infinity. Whether this holds or not
for the optimal constant in (5.4) is still an open problem. However, one can easily
replace 5n with 2n. Indeed, observe that the constant 5 in Vitali’s covering theorem
can be replaced with 3 + 3ϵ for every ϵ > 0 (just using (1 + ϵ) in place of 2 when
comparing the radii of the balls). Moreover, here we are interested in a disjoint
family of balls whose dilations cover just the set of centers of the original family:
this allows to replace 5n with (2 + 2ϵ)n for every ϵ.

5.3 The limiting case p = 1.

It is important to emphasize that inequality (5.3) does not extend to the limiting
case p = 1 : the maximal operator M is not bounded from L1(Rn) into L1(Rn).
Assume f is a non zero integrable function on Rn then Mf is not integrable on Rn.
Indeed, for a non zero f there exists an euclidian ball Br(0) such that∫

Br(0)

|f(y)| dy = η ̸= 0 .

Let x be an arbitrary point in Rn\Br(0). For such a point x one has Br(0) ⊂ B2|x|(x),
hence, it follows that

Mf(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f(y)| dy

≥ 1

µ(B2|x|(x))

∫
B2|x|(x)

|f(y)| dy

≥ 1

µ(B2|x|(x))

∫
Br(0)

|f(y)| dy ≥ C η

|x|n
,

showing that the integrability of Mf fails at infinity.

Even worth, the integrability of the function f does not ensure the local integra-
bility of Mf . We illustrate this fact by the following example: For n = 1 consider
the positive function

f(t) =
1

t(log t)2
χ(0,1) ,

which is integrable on [0, 1/2].For t ∈ (0, 1/2), let Bt(t) = (0, 2t) and we have

Mf(t) ≥ 1

2t

∫ 2t

0

1

t(log t)2
dt

=
1

2t

(
− 1

log t

)∣∣∣∣2t
0

= − 1

2t(log 2t)
.

This directly gives that Mf is not integrable over the interval [0, 1/2].
If we assume ”slightly” more than the integrability of f one can reach the local

integrability of Mf . Denote by L1 logL1(Rn) the following Orlicz space

L1 logL1(Rn) =

{
f ∈ L1(Rn) ;

∫
Rn

|f |(y) log

(
e+

|f(y)|
∥f∥L1

)
dy < +∞

}
.
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This space is of particular interest for applications due to the fact in particular
that the L1 logL1 control of a non-negative integrable function f can be interpreted
as an ”entropy control” of the probability f - assuming it has been normalized in
such a way that

∫
Rn f = 1 -. Back to real-variable function space theory per se,

we shall probably see in the next chapter that L1 logL1 coincide with the non-
homogeneous Hardy space for non-negative functions which makes also L1 logL1

particularly interesting.

Observe that a norm can be assigned to this subspace of integrable functions by
taking the Luxembourg norm :

∥f∥L1 logL1 := ∥f∥L1 + inf

{
t > 0 ;

∫
Rn

|f(y)|
t

log+
|f(y)|
t

dy

}
.

Theorem 5.8. Let f be a measurable function in L1 logL1(Rn), thenMf ∈ L1
loc(Rn)

and for any measurable subset A of finite Lebesgue measure the following inequality
holds

(5.10)

∫
A

|Mf |(y) dy ≤ Cn

∫
Rn

|f |(y) log

(
e+ µ(A)

|f(y)|
∥f∥L1

)
dy ,

where Cn > 0 only depends on n.

Proof of theorem 5.8. From lemma 5.2 we express the L1 norm of Mf as follows∫
A

|Mf |(y) dy ≤
∫ +∞

0

µ ({x ∈ A; |Mf |(x) > α}) dα .

Denote µA the restriction of the Lebesgue measure to A and use again the notation
Eα = {x ∈ Rn; |Mf |(x) > α}. Let δ > 0 to be chosen later on. We write

(5.11)

∫
A
|Mf |(y) dy ≤

∫ δ

0
µA(Eα) dα +

∫ +∞
δ

µA(Eα) dα

≤ δ µ(A) + 2
∫ +∞
δ/2

µ(E2α) dα .

Applying inequality (5.9) to (5.11) gives∫
A
|Mf |(y) dy ≤ δ µ(A) + 2 · 5n

∫ +∞
δ/2

dα
α

∫
{x ; |f(x)|>α} |f(y)| dy

≤ δ µ(A) + 2 · 5n
∫
Rn |f(y)| log+ 2|f(y)|

δ
dy ,

where log+ · = max{0, log ·}. Choosing δ =
∫
Rn |f(y)| dy/2µ(A) gives inequality

(5.10) and theorem 5.8 is proved. 2

A converse of theorem 5.8 will be given in the next subsection - see theorem 7.4
- once we will have at our disposal the Calderón-Zygmund decomposition.
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6 Quasi-normed vector spaces

6.1 Definition and examples

In the following, K will denote either R or C (since the theory below works equally
well for real or complex coefficients).

Definition 6.1. A topological vector space over K is a K-vector space V with a
topology τ such that

• the sum, i.e. + : V × V → V , is continuous,

• the multiplication by scalar, i.e. · : K× V → V , is continuous,

• the topology τ is Hausdorff.

Example 6.2. A normed vector space (V, ∥ ∥) is a topological vector space with the
topology induced by the canonical distance, namely d(x, y) := ∥x− y∥.
Definition 6.3. Let V be a K-vector space. A quasi-norm on V is a function
| · | : V → [0,∞) such that

• |x| = 0 if and only if x = 0,

• for all λ ∈ K and all x ∈ V we have |λx| = |λ||x|,

• there exists a constant C ≥ 1 such that, for all x, y ∈ V , we have

|x+ y| ≤ C(|x|+ |y|).

The couple (V, | |) is called a quasi-normed vector space.

Remark 6.4. For C = 1 this is exactly the definition of a norm. In general, we
use the notation | · | in place of ∥ · ∥ to recall that we are in presence of a quasi-
norm. Notice that the last property in the definition, which replaces the usual triangle
inequality, does not allow to say that the function d(x, y) := |x−y| is a distance any
longer! Nonetheless, we will see that a quasi-norm induces a canonical topology and
that this topology is always metrizable (by means of a highly nontrivial construction
of a true distance function d).

Example 6.5. Given f : Rn → K measurable, let |f |L1,∞ := supα>0 αµ{|f | > α}
and let L1,∞(Rn) be the set of all functions f such that |f |L1,∞ < ∞. Notice that,
by Chebyshev–Markov inequality, L1(Rn) ⊆ L1,∞(Rn) and |f |L1,∞ ≤ ∥f∥L1. Also,
| · |L1,∞ is a quasi-norm (with C = 2): given two functions F, g : Rn → K, for any
α > 0 we have

µ({|f + g| > α}) ≤ µ
({

|f | > α

2

})
+ µ
({

|g| > α

2

})
≤ 2|f |L1,∞ + 2|g|L1,∞

(since {|f + g| > α} ⊆ {|f | > α
2
} ∪ {|g| > α

2
}). Hence, |f + g|L1,∞ ≤ 2|f |L1,∞ +

2|g|L1,∞. The second requirement in the definition is satisfied since, for λ ̸= 0,
αµ({|λf | > α}) = |λ| α

|λ|µ({|f | >
α
|λ|}), while the first one is trivial.

In terms of this quasi-norm, Hardy–Littlewood maximal inequality (for p = 1)
says that |f |L1,∞ ≤ 5n∥f∥L1.
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6.2 The topology of quasi-normed vector spaces

Theorem 6.6. A quasi-normed vector space (V, | |) has a unique vector space topol-
ogy such that

Bα(0) := {x ∈ V : |x| < α}, α > 0

is a local basis of neighborhoods of 0.

The above requirement should be compared with the situation of a normed vector
space, where Bα(0) is the standard ball of radius α and center 0. Notice that the
theorem is not asserting that Bα(0) is an open set in this canonical topology (which
could be false in general)!

Proof of Theorem 6.6 If such a topology τ exists, then the sets

Bα(y) := {x ∈ V : |y − x| < α}, α > 0

form a local basis of neighborhoods of y for any y ∈ V : this is because the translation
by y, namely the map x 7→ x + y, is continuous and has continuous inverse x 7→
x− y (with respect to τ), hence it is a homeomorphism and carries a local basis of
neighborhoods of 0 into a local basis at y. So the open sets of τ must be the sets

U ⊆ V such that ∀y ∈ U ∃α > 0 s.t. Bα(y) ⊆ U.(6.12)

This shows that, if τ exists, it is necessarily unique. To show existence, let us declare
that the open sets are the ones satisfying (6.12). They define a topology, since the
axioms for a topology are clearly satisfied. Let us check that the sets Bα(0) form a
local basis at 0: since every open set contains one such set by definition, it suffices
to check that Bα(0) includes an open set U containing 0. Let

U := {x ∈ V : ∃δ > 0 s.t. Bδ(x) ⊆ Bα(0).

Clearly, 0 ∈ U and U ⊆ Bα(0). In order to show that U satisfies 6.12, given x ∈ U
let δ > 0 such that Bδ(x) ⊆ Bα(0). We claim that Bσ(x) ⊆ U , with σ := δ

2C
(which

will conclude the proof that U is open in τ).
Indeed, if y ∈ Bσ(x) then Bσ(y) ⊆ Bδ(x) ⊆ Bα(x), since

|z − x| ≤ C(|z − y|+ |y − x|) < 2Cσ = δ for all z ∈ Bσ(y).

This shows that y ∈ U (by definition of U), i.e. that Bσ(x) ⊆ U , which is what
we wanted. In order to show that τ is Hausdorff, given x ̸= y it suffices to observe
that Bα(x) ∩ Bα(y) = ∅, where α := |x−y|

2
> 0: indeed, we just proved that Bα(x)

and Bα(y) are neighborhoods of x and y respectively (being τ clearly translation
invariant).

Finally, we have to check that the operations are continuous. If x + y = z and
U is an open neighborhood of z, then there exists α > 0 such that B2Cα(z) ⊆ U .
Hence, given x′ ∈ Bα(x) and y

′ ∈ Bα(y), we have

|x′ + y′ − z| = |(x′ − x) + (y′ − y)| ≤ C |x′ − x|+ C |y′ − y| < 2Cα,

so that the sum maps Bα(x)×Bα(y) to a subset of U . Since Bα(x) and Bα(y) contain
open neighborhoods of x and y respectively, this shows that the sum is continuous.
The continuity of the multiplication by scalar is similar and is left to the reader. 2
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6.3 The metrizability of quasi-normed vector spaces

The metrizability of quasi-normed vector spaces was proved independently by Tosio
Aoki and Stefan Rolewicz between 1941 and 1957.

Theorem 6.7. (Aoki-Rolewicz)

The canonical topology of a quasi-normed vector space (V, | |) is metrizable. In fact,
it is induced by a translation-invariant distance d(x, y) := Λ(x − y), for a suitable
function Λ : V → [0,∞) satisfying Λ(z) = Λ(−z), Λ(z + w) ≤ Λ(z) + Λ(w) and
vanishing only at 0.

Remark 6.8. In general, one cannot hope to have a distance induced by a norm
(meaning that Λ is a norm, i.e. it also satisfies Λ(αx) = |α|Λ(x) for α ∈ K): in
this case (V, τ) would be a locally convex topological vector space, but we will see in
Remark 6.17 that this fails for L1,∞(Rn).

We will deduce Aoki–Rolewicz theorem from the following lemma.

Lemma 6.9. Let 0 < p ≤ 1 be defined by 21/p := 2C. Given x1, . . . , xn ∈ V we have

|x1 + · · ·+ xn|p ≤ 4(|x1|p + · · ·+ |xn|p).

Proof of Lemma 6.9. This proof illustrate the utility of decomposing dyadically a
range of values. This idea will turn out to be fruitful also later in the course. Define
H : V → [0,∞) by the following formula:

H(x) :=

{
0 if x = 0

2j/p if 2(j−1)/p < |x| ≤ 2j/p.

Notice that |x| ≤ H(x) ≤ 21/p|x|. We show, by induction on n, that

|x1 + · · ·+ xn| ≤ 21/p(H(x1)
p + · · ·+H(xn)

p)1/p.(6.13)

By the observation just made, (6.13) clearly implies the statement. Also, (6.13)
holds for the base case n = 1. We now show that it holds for a generic n, assuming
it holds for n− 1. By symmetry, we can assume that

|x1| ≥ |x2| ≥ · · · ≥ |xn| ,

which implies that H(x1) ≥ H(x2) ≥ · · · ≥ H(xn). We distinguish two cases.

i) There exists an index 1 ≤ i0 < n such that H(xi0) = H(xi0+1): let 2j0/p be
the common value of H at xi0 and xi0+1 and notice that, since

|xi0 + xi0+1| ≤ C(|xi0|+ |xi0+1|) ≤ 2C · 2j0/p = 2(j0+1)/p,

we have H(xi0 + xi0+1) ≤ 2(j0+1)/p. This gives

H(xi0 + xi0+1)
p ≤ 2j0+1 = H(xi0)

p +H(xi0+1)
p

and so, grouping x1 + · · ·+ xn = x1 + · · ·+ xi0−1 + (xi0 + xi0+1) + xi0+2 + . . .
and using induction,

|x1 + · · ·+ xn| ≤ 21/p(H(x1)
p + · · ·+H(xi0 + xi0+1)

p + · · ·+H(xn)
p)1/p

≤ 21/p(H(x1)
p + · · ·+H(xi0)

p +H(xi0+1)
p + · · ·+H(xn)

p)1/p.

116



ii) We have a strictly decreasing sequence H(x1) > H(x2) > · · · > H(xn): in
this case we must have H(xi) ≤ 2−(i−1)/pH(x1) for all i. Also, iterating the
approximate triangle inequality we obtain

|x1 + · · ·+ xn| ≤ C(|x1|+ |x2 + · · ·+ xn|)
≤ max{2C|x1|, 2C|x2 + · · ·+ xn|
≤ max{2C|x1|, (2C)2 |x2| , (2C)2 |x3 + · · ·+ xn|
≤ · · · ≤ max

i
(2C)i|xi|

≤ max
i

2i/pH(xi)

≤ 21/pH(x1)

and (6.13) trivially follows. 2

Proof of Theorem 6.7. For all x ∈ V we define

Λ(x) := inf
n∑

i=1

|xi|p, x =
n∑

i=1

xi, n ≥ 1,

meaning that the infimum is taken over all possible representations of x as a finite
sum of elements of V . Since a possible choice is n = 1 and x1 = x, we trivially have
Λ(x) ≤ |x|p. Moreover, the previous lemma gives

|x|p = |x1 + · · ·+ xn|p ≤ 4(|x1|p + · · ·+ |xn|p)
for all such possible representations, so Λ(x) ≥ 1

4
|x|p. In particular, this implies that

Λ vanishes only at 0. From the definition it is clear that Λ(−x) = Λ(x).
Also, Λ(x+y) ≤ Λ(x)+Λ(y): given ϵ > 0, if x = x1+· · ·+xm and y = y1+· · ·+yn

are chosen so that
∑m

i=1 |xi|p < Λ(x) + ϵ and
∑n

j=1 |yj|p < Λ(y) + ϵ, then (being
x+ y =

∑
i xi +

∑
j yj)

Λ(x+ y) ≤
m∑
i=1

|xi|p +
n∑

j=1

|yj|p < Λ(x) + Λ(y) + 2ϵ.

Hence, defining d : V × V → [0,∞) by d(x, y) := Λ(x − y) gives a distance on V .
This induces the same topology as the quasi-metric since

Br1/p(x) ⊆ {y ∈ V : d(x, y) < r} ⊆ B(4r)1/p(x)

for all x ∈ V and all r > 0. 2

Remark 6.10. The space Lp(E), with 0 < p < 1, is a quasi-normed vector space,
with quasi-norm

|f |Lp :=
(∫

E

|f |p
)1/p

,

which yields a constant 21/p−1 in the approximate triangle inequality. The construc-
tion Aoki–Rolewicz metric is reminiscent of the distance

d(f, g) :=

∫
E

|f − g|p

on Lp(E) (for 0 < p < 1), which induces the same topology as the quasi-norm but
is built in a nonlinear way.
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6.4 Lorentz spaces

We will now see important concrete examples of quasi-normed vector spaces, namely
Lorentz spaces, which refine the classical Lebesgue spaces in terms of control over
the integrability of a function. Standard estimates such as Sobolev’s embedding or
Young’s inequality can be slightly (but crucially for some applications) improved
using these more refined spaces.

6.5 The space Lp,∞

Definition 6.11. Let E ⊆ Rn be a set of positive measure. Given 1 ≤ p < ∞ and
a measurable function f : E → K, we let

|f |Lp,∞ := sup
α>0

αµ({|f | > α})1/p

and we define Lp,∞(E) to be the set of all functions f : E → K with |f |Lp,∞ < ∞.
We also let |f |L∞,∞ := ∥f∥L∞, so that L∞,∞(E) = L∞(E). The space Lp,∞ is called
weak Lp (however, it is totally unrelated to the weak topology on the Lp space!).

Remark 6.12. Notice that this specializes to Example 6.5 when p = 1. Again, we
have Lp(E) ⊂ ∥f∥Lp). For p < ∞, this inclusion is strict in general: take e.g.
E := Rn and f(x) := |x|−n/p, which lies in Lp,∞(Rn) \ Lp(Rn) (the inclusion is
actually always strict for subsets of Rn, as can be seen taking |x− x0|−n/p with x0 a
density point for E).

Remark 6.13. Using the inequality (α + β)1/p ≤ α1/p + β1/p and arguing as in
Example 6.5, we see that Lp,∞(E) is a quasi-normed vector space, with C = 2.

Definition 6.14. A quasi-normed vector space is called quasi-Banach if every | |-
Cauchy sequence converges to a (necessarily unique) limit in the canonical topology,
or equivalently converges with respect to the quasi-norm.

Remark 6.15. Notice that a sequence is Cauchy with respect to the quasi-norm if
and only if it is Cauchy with respect to the Aoki-Rolewicz distance. The same holds
for convergence.

Proposition 6.16. The space Lp,∞(E) is a quasi-Banach space.

Proof. Omitted.

Remark 6.17. The space L1,∞(Rn) is not locally convex, meaning that it does not
possess a local basis of neighborhoods of 0 made of open convex sets. This rules
out the possibility of finding a norm equivalent to its quasi-norm, which is the main
difficulty in Calderón–Zygmund theory for singular convolution kernels (so that, as
we will see, not all kernels in L1,∞(Rn) but only those with enough cancellation and
regularity give rise to the important L1 → L1,∞ bound). Let us see this failure of
convexity when n = 1, for simplicity.

For all integers m ≥ 2 and 1 ≤ k ≤ m let

fm,k(x) :=
1

logm
|x− k

m
|−1.
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Observe that fm,k ∈ L1,∞(R), with |fm,k|L1,∞ ≤ 2
logm

, so that fm,k → 0 in L1,∞(R)
as m → ∞ (uniformly in the index k). On the other hand, the arithmetic mean of
fm,1, . . . , fm,m is pointwise bounded from below on (0, 1):

Fm :=
fm,1(x) + · · ·+ fm,m(x)

m
≥ 1

logm

m∑
j=1

1

j
≥ c > 0,

since if k0
m
< x < k0+1

m
then the left-hand side is at least

1

m logm

(m
k0

+ · · ·+ m

1
+
m

1
+ · · ·+ m

m− k0

)
(the first part being not present if k0 = 0). So |Fm|L1,∞ ≥ c, implying that Fm cannot
converge to 0. This however should hold if L1,∞(R) were locally convex!

6.6 Decreasing rearrangement

In order to define all the Lorentz spaces Lp,q we have to introduce the notion of
decreasing rearrangement.

Definition 6.18. Given f : E → K measurable, we define its decreasing rearrange-
ment f∗ : [0,+∞] → [0,+∞] as

f∗(t) := inf{0 ≤ λ ≤ +∞ : µ({|f | > λ}) ≤ t},(6.14)

with the convention that 0 · ∞ = ∞ · 0 = 0 (as it is customary in measure theory).

Remark 6.19. The infimum in (6.14) is actually always a minimum: if λ1 ≥ λ2 ≥
. . . are values such that µ({|f | > λi}) ≤ t and λ∞ := limi→∞ λi, then we still have
µ({|f | > λ∞}) ≤ t (since the last set is the increasing union of the sets {|f | > λi}).
Hence, µ({|f | > f∗(t)}) ≤ t.

Remark 6.20. Define df (λ) := µ({|f | > λ}) (as a function from [0,+∞] to itself),
which is called distribution function, or tail distribution in probability theory. It
is clear that df and f∗ are decreasing and df is right-continuous. Also f∗ is right-
continuous: given 0 ≤ t0 < +∞, setting λ̄ := limt→t+0

f∗(t) we have

µ({|f | > λ̄}) = lim
t→t+0

µ({|f | > f∗(t)}) ≤ lim
t→t+0

t = t0,

where the first equality holds since we have a decreasing union of sets with finite
measure. Hence, f∗(t) ≤ λ̄. Since the converse inequality also holds (being f∗
decreasing), the claim follows. One can show that df and f∗ are “pseudo-inverses”
of each other:

• as already said, dλ ◦ f∗(t) ≤ t and, assuming 0 < t, f∗(t) < +∞, equality holds
if and only if f∗(t

′) > f∗(t) for all t′ < t;

• similarly with f∗ and df interchanged.
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Proposition 6.21. The functions f and f∗, although defined on different domains,
have the same distribution function (meaning that df = df∗) and the same decreasing
rearrangement (meaning that f∗ = (f∗)∗).

Proof. Fix 0 ≤ λ ≤ +∞ and notice that, given 0 ≤ t < +∞,

µ({|f | > λ}) ≤ t⇔ λ ≥ f∗(t) ⇔ {f∗ > λ} ⊆ [0, t) ⇔ µ({f∗ > λ}) ≤ t.

The penultimate equivalence follows from the fact that f∗ is decreasing, while the
last one follows from the right-continuity of f∗ (so that one cannot have {f∗ > λ} =
[0, t]). Both statements now follow from this chain of equivalences (observe that
f∗(+∞) = (f∗)∗(+∞) = 0).

Corollary 6.22. For any measurable f : E → K, we have |f |Lp,∞ = |f∗|Lp,∞ for all
1 ≤ p ≤ ∞. Also, we have ∥f∥Lp = ∥f∗∥Lp since

∥f∥pLp =

∫ ∞

0

pλp−1df (λ) dλ =

∫ ∞

0

pλp−1df∗(λ) dλ = ∥f∗∥pLp

for 1 ≤ p <∞ and ∥f∥L∞ = inf{λ : df (λ) = 0} = ∥f∗∥L∞.

The following two lemmas are very useful in practice, for instance when approx-
imating a function by mollification or by simple functions.

Lemma 6.23. If |fk| → |f∞| pointwise a.e., or more generally if |f∞| ≤ lim infk→∞ |fk|
a.e., then df∞ ≤ lim infk→∞ dfk and (f∞)∗ ≤ lim infk→∞(fk)∗.

Proof. Let N ⊂ E be a negligible subset such that |f∞| ≤ lim infk→∞ |fk| everywhere
on E \N . Given 0 ≤ λ ≤ +∞, if x ̸∈ N has |f∞(x)| > λ then |fk(x)| > λ eventually,
so

χ{|f∞|>λ}\N ≤ lim inf
k→∞

χ{|fk|>λ}\N .

Integrating and applying Fatou’s lemma gives the first claim. Now let 0 ≤ t ≤ +∞
and

λk := (fk)∗(t), λ̄ := lim inf
k→∞

λk.

Passing to a subsequence, we can assume that λ̄ = limk→∞ λk. Notice that the
hypothesis still holds (in both versions). Again, if |f∞(x)| > λ̄ (and x ̸∈ N) then
|fk(x)| > λk eventually, so as before we obtain

µ({|f∞| > λ̄}) ≤ lim inf
k→∞

µ({|fk| > λk}) ≤ t

by Remark 6.19. By definition of decreasing rearrangement, it follows that (f∞)∗(t) ≤
λ̄ = lim infk→∞(fk)∗(t).

Lemma 6.24. If |fk| ↑ |f∞| pointwise a.e. (meaning that |f∞| is the increasing
limit of |fk|), then dfk ↑ df∞ and (fk)∗ ↑ (f∞)∗ everywhere.
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Proof. Let N ⊂ E be a negligible subset such that |fk| ↑ |f∞| everywhere on E \N .
For every 0 ≤ λ ≤ +∞, since {|f∞| > λ} ∩ E is the increasing union of the sets
{|fn| > λ} ∩ E, we get

df∞(λ) = µ({|f∞| > λ}) = lim
k→∞

µ({|fk| > λ}) = lim
k→∞

dfk(λ).

Given 0 ≤ t ≤ +∞, we set λk := (fk)∗(t) (for k ∈ N ∪ {∞}) and λ̄ = limk→∞ λk.
This limit exists and is at most λ∞ as

λ1 ≤ λ2 ≤ · · · ≤ λ∞.

We also have

µ({|f∞| > λ̄}) = lim
k→∞

µ({|fk| > λ̄})

= lim
k→∞

µ({|fk| > λk})

≤ lim inf
k→∞

µ({|fk| > λk}) ≤ t,

so λ∞ = (f∞)∗(t) ≤ λ̄. We conclude that λ∞ = λ̄, i.e. (fk)∗(t) ↑ (f∞)∗(t).

6.7 The Lorentz spaces Lp,q

Definition 6.25. Given 1 ≤ p <∞ and 1 ≤ q ≤ ∞, we set

|f |qLp,q :=

∫ ∞

0

tq/pf∗(t)
q dt

t

and we call Lp,q(E) the set of all measurable functions f : E → K with |f |Lp,q <∞.
We also set |f |L∞,q := ∥f∥L∞ (so that L∞,q(E) = L∞(E)).

Remark 6.26. As we will see, even if f∗ is hit by the exponent q, the first exponent
p is the dominant one.

Proposition 6.27. The quantity | · |Lp,q is a quasi-norm.

Proof. It suffices to show that (f + g)∗(t) ≤ f∗(
t
2
) + g∗(

t
2
). Actually, if 0 ≤ s, s′, t ≤

+∞ and s+ s′ ≤ t, it always holds that (f + g)∗(t) ≤ f∗(s) + g∗(s
′), since

µ({|f + g| > f∗(s) + g∗(s
′)}) ≤ µ({|f | > f∗(s)}) + µ({|g| > g∗(s

′)}) ≤ s+ s′ ≤ t.

Remark 6.28. It follows that Lp,q(E) is a quasi-normed vector space for all ex-
ponents 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Again, one can show that it is always a
quasi-normed vector space. For p > 1, as opposed to the case of L1,∞, we will see
that the quasi-norm admits an equivalent norm, giving thus rise to a genuine Banach
space.
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Remark 6.29. The Lorentz quasi-norm | |Lp,q measures the integrability of the func-
tion, rather than the regularity. In the language of probability, it depends only on
the law of f , since it is defined in terms of f∗ (which in turn depends only on df).
Rearranging the places where the values are attained, thus possibly making the func-
tion very irregular, does not alter the Lp,q-quasinorm. One can define it in the same
way on general measure spaces. What we just observed can be made precise as fol-
lows: if h : E → E ′ is a measure-preserving map between two measure spaces, then
|f ◦ h|Lp,q = |f |Lp,q for any f : E ′ → K (since df = df◦h and thus f∗ = (f ◦ h)∗).

The definition of the Lp,q-quasinorm when q <∞ suggests the following equiva-
lent definition when q = ∞.

Proposition 6.30. For 1 ≤ p <∞ we have |f |Lp,∞ = sup0≤t≤+∞ t1/pf∗(t).

Proof. (≤): given λ > 0 with df (λ) > 0, set t := df (λ)− ϵ (where ϵ > 0 is arbitrary
and will tend to 0). Letting λ′ := f∗(t), being df (λ

′) ≤ t = df (λ)− ϵ we must have
λ′ > λ. Hence,

λ(df (λ)− ϵ)1/p ≤ λ′t1/p = f∗(t)t
1/p ≤ sup

0≤t≤+∞
t1/pf∗(t)

and the inequality follows letting ϵ ↓ 0 and then taking the supremum over λ.
(≥): analogous.

Similarly, the Lp,q-quasinorm can be expressed in terms of the distribution func-
tion.

Proposition 6.31. For all 1 ≤ p <∞ and 1 ≤ q <∞ we have

|f |Lp,q = p1/q
(∫ ∞

0

λq−1df (λ)
q/p dλ

)1/q
.

Proof. We start with the trivial observation that one has f∗(t) > λ if and only if
df (λ) > t, thanks to Remark 6.19. This, together with Fubini, gives

|f |qLp,q =

∫ ∞

0

tq/p−1

∫ f∗(t)

0

qλq−1 dλ dt

= q

∫
{(t,λ):f∗(t)>λ}

tq/p−1λq−1 dt dλ

= q

∫ ∞

0

∫ df (λ)

0

tq/p−1λq−1 dt dλ

= p

∫ ∞

0

df (λ)
q/pλq−1 dλ.

Proposition 6.32. If |fk| → |f∞| pointwise a.e., or more generally if |f∞| ≤
lim infk→∞ |fk| a.e., then

|f∞|Lp,q ≤ lim inf
k→∞

|fk|Lp,q .
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If fk → f∞ and |fk| ↑ |f∞|, then

|fk − f∞|Lp,q → 0,

provided that f∞ ∈ Lp,q(E) and 1 ≤ p, q < ∞. In particular, simple functions are
dense in Lp,q(E) if 1 ≤ p, q <∞

Proof. The first part follows immediately from Lemma 6.23 and Fatou. The second
part follows from the pointwise convergence (fk)∗ → (f∞)∗ given by Lemma 6.24,
together with the dominated convergence theorem.

Proposition 6.33. We have

(1) Lp,p(E) = Lp(E),

(2) Lp,q(E) ⊆ Lp,r(E) if q < r,

(3) Lp,q(E) ⊆ Lt,u(E) if µ(E) <∞ and p > t (regardless of q and u).

Proof. (1) From the definition of the Lp,p-quasinorm and Corollary 6.22 we have
|f |pLp,p = ∥f∗∥pLp = ∥f∥pLp .

(2) We assume p < ∞ without loss of generality. We first deal with the case
r = ∞: since f∗ is decreasing, we deduce

t1/pf∗(t) =
(q
p

∫ t

0

sq/p−1f∗(t)
q ds
)1/q

≤
(q
p

∫ t

0

sq/p−1f∗(s)
q ds
)1/q

≤
(q
p

)1/q
|f |Lp,q

for all 0 ≤ t < +∞. Taking the supremum over t, we deduce that |f |Lp,∞ is
estimated by |f |Lp,q and the inclusion follows. If r <∞, notice that

|f |Lp,r =
(∫ ∞

0

sr/pf∗(s)
r ds

s

)1/r
≤
(∫ ∞

0

sq/pf∗(s)
q ds

s

)1/r
sup

0≤s≤+∞
s(r−q)/(pr)f∗(s)

(r−q)/r

= |f |q/rLp,q |f |(r−q)/r
Lp,∞

≤ C(p, q, r)|f |q/rLp,q |f |(r−q)/r
Lp,r

by the previous case. Dividing both sides by |f |(r−q)/r
Lp,r and raising to the power r

q
,

the claim follows.
(3) From the definition of f∗ it follows that f∗(s) = 0 for all s ≥ µ(E). In view

of (2), it suffices to deal with the case u = 1, q = ∞. If p <∞ we have

|f |Lt,u =

∫ µ(E)

0

s1/tf∗(s)
ds

s
≤
(∫ µ(E)

0

s1/t−1/p ds

s

)
sup

0≤s≤µ(E)

s1/pf∗(s).

Since 1
t
− 1

p
> 0, the first integral is a finite constant, while the supremum equals

|f |Lp,∞ by Proposition 6.30. If p = ∞, it suffices to bound f∗(s) by ∥f∥L∞ right
after the first equality.
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Remark 6.34. The inclusion Lp,q(E) ⊆ Lp,r(E) is always strict: assuming 0 ∈ E
is a density point without loss of generality, it is easy to check that

• |x|−n/p ∈ Lp,∞(E) \
⋃

q<∞ Lp,q(E),

• |x|−n/p log(|x|−1)−αχB1/2
(x) ∈ Lp,q(E) if and only if αq > 1, for all α > 0.

We now turn to the promised fact that Lp,q is normable for p > 1.

Theorem 6.35 (normability of Lp,q). For all 1 < p ≤ ∞ the Lp,q-quasinorm has an
equivalent norm, for all 1 ≤ q ≤ ∞.

Lemma 6.36. Define f∗∗ : (0,+∞) → [0,+∞] by

f∗∗(t) :=
1

t

∫ t

0

f∗(s) ds.

This modification of the decreasing rearrangement satisfies

f∗∗(t) =
1

t
sup{

∫
F

|f | ; F ⊆ E, µ(F ) ≤ t}.(6.15)

Proof. The statement holds if f is a nonnegative simple function, namely f =∑N
i=1 λiχAi

with λ1 ≥ λ2 ≥ . . . and Ai ∩ Aj = ∅: indeed, it is easy to check
that both sides of (6.15) equal

1

t

k∑
i=1

λiµ(Ai) + δµ(Ai+1)

where k is such that
∑k

i=1 µ(Ai) ≤ t <
∑k+1

i=1 µ(Ai) (k = N if t ≥
∑N

i=1 µ(Ai)) and

δ := t −
∑k

i=1 µ(Ai). In general, we approximate |f | pointwize from below with
nonnegative simple functions fk. By Lemma 6.24 and the monotone convergence
theorem, both sides of (6.15) converge from below to the desired quantities.

Corollary 6.37. We have (f + g)∗∗ ≤ f∗∗ + g∗∗.

Proof. This immediately follows from the inequality
∫
F
|f + g| ≤

∫
F
|f |+

∫
F
|g| and

the last lemma.

Lemma 6.38 (Hardy’s inequality). Given 1 < p < ∞, 1 ≤ q < ∞ and f :
(0,+∞) → [0,+∞], it holds(∫ ∞

0

(1
x

∫ x

0

f(t) dt
)p
dx
)1/p

≤ p′
(∫ ∞

0

f(x)p dx
)1/p

and more generally(∫ ∞

0

xq/p−1
(1
x

∫ x

0

f(t) dt
)q
dx
)1/q

≤ p′
(∫ ∞

0

xq/p−1f(x)q dx
)1/q

.
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Proof. We argue by duality. In order to show the first inequality, let g ≥ 0 with
∥g∥Lp′ = 1. We get∫ ∞

0

(1
x

∫ x

0

f(t) dt
)
g(x) dx =

∫ ∞

0

(∫ 1

0

f(sx) dt
)
g(x) dx

=

∫ 1

0

(∫ ∞

0

f(sx)g(x) dx
)
ds

≤
∫ 1

0

∥f(s·)∥Lp∥g∥Lp′ ds

=

∫ 1

0

s−1/p∥f∥Lp ds

= p′∥f∥Lp .

The proof of the second inequality is identical, working rather with the measure
space X := ((0,∞), xq/p−1 dx) and using the duality (Lq(X))∗ = Lq′(X), observing
that we still have ∥f(s·)∥Lq(X) = s−1/p∥f∥Lq(X).

Proof of Theorem 6.35. We assume without loss of generality that 1 < p < ∞. We
let

∥f∥Lp,q :=
(∫ ∞

0

tq/pf∗∗(t)
q dt

t

)1/q
for 1 ≤ q < ∞ and ∥f∥Lp,∞ := sup0<t<∞ t1/pf∗∗(t), i.e. we are merely replacing f∗
with f∗∗ in the definitions. From Corollary 6.37 it follows that this is a norm (when
q <∞ we also use Minkowski’s inequality for Lq(X), where X is the same measure
space as in the previous proof). Finally, since f∗ is decreasing, we have f∗∗ ≥ f∗ and
thus ∥f∥Lp,q ≥ |f |Lp,q . Conversely, by Hardy’s inequality applied to f∗,

∥f∥Lp,q ≤ p′|f |Lp,q .

This shows that the norm ∥ ∥Lp,q is equivalent to the quasi-norm | |Lp,q .

Remark 6.39. By Fatou’s lemma, the conclusions of Lemmas 6.24 and 6.23 are
still true with f∗∗ in place of f∗. Hence, Proposition 6.32 still holds with | |Lp,q

replaced with ∥ ∥Lp,q .

The dual spaces of Lorentz spaces are the expected ones, for p > 1.

Theorem 6.40 (Dual spaces). For 1 < p <∞ and 1 ≤ q <∞ we have

(Lp,q(E))∗ = Lp′,q′(E),

where duality is represented by integration.

Proof. Omitted.
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6.8 Functional inequalities for Lorentz spaces

Theorem 6.41 (Hölder’s inequality). Assume that f ∈ Lp1,q1(E) and g ∈ Lp2,q2(E)
with

1 < p1, p2, p <∞, 1 ≤ q1, q2, q ≤ ∞,

1

p1
+

1

p2
=

1

p
,

1

q1
+

1

q2
≥ 1

q
.

Then fg ∈ Lp,q(E), with ∥fg∥Lp,q ≤ C∥f∥Lp1,q1∥g∥Lp2,q2 (where C depends on
p1, p2, q1, q2).

Proof. Thanks to Proposition 6.33, we can replace q1 and q2 with possibly higher
exponents and assume, without loss of generality, that 1

q1
+ 1

q2
= 1

q
. Given 0 ≤

t1, t2 ≤ +∞, notice that

µ({|f | > f∗(t1)}) ≤ t1, µ({|g| > g∗(t2)}) ≤ t2,

so that, since |fg| > f∗(t1)g∗(t2) implies either |f | > f∗(t1) or |g| > g∗(t2), we infer

µ({|fg| > f∗(t1)g∗(t2)}) ≤ t1 + t2

and thus

(fg)∗(t1 + t2) ≤ f∗(t1)g∗(t2).

This, together with the classical Hölder’s inequality for Lebesgue spaces with expo-
nents q1

q
and q2

q
(on the measure space (0,+∞)), gives

|fg|Lp,q = ∥t1/p−1/q(fg)∗(t)∥Lq

≤ ∥t1/p−1/qf∗

( t
2

)
g∗

( t
2

)
∥Lq

= C ′∥t1/p1−1/q1f∗(t) t
1/p2−1/q2g∗(t)∥Lq

≤ C ′∥t1/p1−1/q1f∗(t)∥Lq1∥t1/p2−1/q2g∗(t)∥Lq2

= C ′|f |Lp1,q1 |g|Lp2,q2 .

Remark 6.42. Of course, Hölder’s inequality works also if (p1, q1) = (∞,∞) (or
similarly if (p2, q2) = (∞,∞)), since in this case it reduces to the inequality

∥fg∥Lp,q ≤ ∥f∥L∞∥g∥Lp,q ≤ C∥f∥L∞,∞∥g∥Lp2,q2 .

Theorem 6.43 (Young’s inequality). Assume that f ∈ Lp1,q1(Rn) and g ∈ Lp2,q2(Rn)
with

1 < p1, p2, p <∞, 1 ≤ q1, q2, q ≤ ∞,

1

p1
+

1

p2
= 1 +

1

p
,

1

q1
+

1

q2
≥ 1

q
.

Then the convolution f ∗ g is a.e. defined (meaning that the integral defining f ∗ g
exists a.e.) and f ∗ g ∈ Lp,q(Rn), with ∥fg∥Lp,q ≤ C∥f∥Lp1,q1∥g∥Lp2,q2 (where C
depends on p1, p2, q1, q2).
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Remark 6.44. In some cases, this improves the classical Young’s inequality for
Lebesgue spaces: for instance, it gives L3/2∗L3/2 ⊆ L3,1 rather than just L3/2∗L3/2 ⊆
L3.

The proof, due to O’Neil, is now given.

Lemma 6.45. If f, g ≥ 0 are measurable functions on Rn and f ≤ αχE0, then

(1) (f ∗ g)∗∗ ≤ αµ(E0)g∗∗,

(2) ∥(f ∗ g)∗∗∥L∞ ≤ αµ(E0)g∗∗(µ(E0)).

Proof. Given 0 < t < +∞ and F ⊆ Rn with µ(F ) ≤ t, then by (6.15)

t−1

∫
F

f ∗ g ≤ αt−1

∫
F

∫
E0

g(x− y) dy dx

= α

∫
E0

t−1

∫
F−y

g(x) dx dy

≤ α

∫
E0

g∗∗(t) dy

= αµ(E0)g∗∗(t),

so that taking the supremum over F and using (6.15) the first claim follows. Simi-
larly, notice that

αt−1

∫
F

∫
E0

g(x− y) dy dx = αt−1

∫
F

∫
x−E0

g(y) dy dx

≤ αt−1µ(F )µ(E0)g∗∗(µ(E0))

≤ αµ(E0)g∗∗(µ(E0)),

as µ(x− E0) = µ(E0). This gives the second claim.

Lemma 6.46. For f, g ≥ 0 and 0 < t < +∞, we have

(f ∗ g)∗∗(t) ≤ tf∗∗(t)g∗∗(t) +

∫ ∞

t

f∗g∗.

Proof. We can assume that f is simple and finite, so we can write

f =
N∑
i=1

αiχEi

with αi ≥ 0 and R =: E0 ⊋ E1 ⊋ · · · ⊋ EN ⊋ EN+1 := ∅. Possibly adding
artificially a set with measure t, we can assume that t = µ(Ei0) (with 1 ≤ i0 ≤ N).
Using the previous lemma we have

(f ∗ g)∗∗(t) ≤
i0−1∑
i=1

αiµ(Ei)g∗∗(µ(Ei)) +
N∑

i=i0

αiµ(Ei)g∗∗(t).(6.16)
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Observe that f∗ equals
∑j

i=1 αi on the set [µ(Ej+1, µ(Ej)). The first sum in (6.16)
equals

i0−1∑
i=1

αi

∫ µ(Ei)

0

g∗ =

i0−1∑
i=1

N∑
j=i

∫ µ(Ej)

µ(Ej+1)

αig∗ =
N∑
j=1

min{j,i0−1}∑
i=1

∫ µ(Ej)

µ(Ej+1)

αig∗

and the contribution for j < i0 is precisely

i0−1∑
j=1

∫ µ(Ej)

µ(Ej+1)

j∑
i=1

αig∗ =

i0−1∑
j=1

∫ µ(Ej)

µ(Ej+1)

f∗g∗ =

∫ µ(E1)

µ(Ei0
)

f∗g∗ =

∫ ∞

t

f∗g∗.

On the other hand, the contribution for j ≥ i0 is

N∑
j=i0

min{j,i0−1}∑
i=1

∫ µ(Ej)

µ(Ej+1)

αig∗ =
N∑

j=i0

i0−1∑
i=1

αi(µ(Ej)g∗∗(µ(Ej))− µ(Ej+1)g∗∗(µ(Ej+1)))

=

i0−1∑
i=1

αiµ(Ei0)g∗∗(µ(Ei0)) =

i0−1∑
i=1

αiµ(Ei0)g∗∗(t),

where µ(EN+1)g∗∗(EN+1) has to be replaced with 0. Finally, notice that

i0−1∑
i=1

αiµ(Ei0)g∗∗(t) +
N∑

i=i0

αiµ(Ei)g∗∗(t) =
(∫

Ei0

f∗

)
g∗∗(t) = tf∗∗(t)g∗∗(t)

by (6.15).

Proof of Young’s inequality. We assume q < ∞. The case q = ∞ (where q1 = q2 =
∞) is far easier and left to the reader. It is clear that

∥t1/p−1/q+1f∗∗(t)g∗∗(t)∥Lq = ∥t1/p1−1/q1f∗∗(t) t
1/p2−1/q2g∗∗(t)∥Lq

≤ ∥t1/p1−1/q1f∗∗(t)∥Lq1∥t1/p2−1/q2g∗∗(t)∥Lq2

= ∥f∥Lp1,q1∥g∥Lp2,q2

(assuming without loss of generality that 1
q1
+ 1

q2
= 1

q
). Moreover, changing variables

t = 1
u
, s = 1

r
and using Hardy’s inequality,(∫ ∞

0

tq/p−1
(∫ ∞

t

f∗(s)g∗(s) ds
)q
dt
)1/q

=
(∫ ∞

0

uq/p
′−1
(1
u

∫ u

0

r−2f∗(r
−1)g∗(r

−1) dr
)q
du
)1/q

≤ C
(∫ ∞

0

uq/p
′−1u−2qf∗(u

−1)qg∗(u
−1)q du

)1/q
= C

(∫ ∞

0

tq+q/p−1f∗(t)
qg∗(t)

q dt
)1/q

= C∥t1/p1−1/q1f∗(t) t
1/p2−1/q2g∗(t)∥Lq ,
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which can be estimated by |f |Lp1,q1 |g|Lp2,q2 as before. The inequality follows from
the fact that

∥f ∗ g∥Lp,q ≤ ∥t1/p−1/q+1f∗∗(t)g∗∗(t) + t1/p−1/q

∫ ∞

t

f∗g∗∥Lq

by the previous lemma.

Let us now see an important consequence when n ≥ 2.

Corollary 6.47 (improved Sobolev’s embedding). We have the continuous embed-
ding W 1,p(Rn) ⊆ Lp∗,p(Rn) for all 1 < p < d, where 1

p∗
= 1

p
− 1

n
.

Sketch of proof. By mollification and cut-off, it suffices to show that ∥f∥Lp∗,p ≤
C∥f∥W 1,p whenever f ∈ C∞

c (Rn) (since, by Lemma 6.23 and Fatou’s lemma, the
Lp,q-quasinorm is lower semicontinuous under pointwise convergence a.e.). We have

f = G ∗∆f,

where G is Green’s function for the Laplacian. Recall that, up to a multiplicative
constant, G equals log |x| if n = 2 and |x|2−n if n ≥ 3. In all cases, commuting a
derivative with the convolution, we get

f =
n∑

i=1

∂G

∂xi
∗ ∂f

∂xi

(this is legitimate since G ∈ W 1,q
loc (Rn) for any q < n

n−1
) and, observing that ∂G

∂xi

equals xi

|x|n up to a multiplicative constant, we get | ∂G
∂xi

| ∈ Ln/(n−1),∞(Rn). The claim
follows from Young’s inequality for Lorentz spaces.

Remark 6.48. The improved Sobolev’s embedding also holds for p = 1, although
this is not immediately clear from this proof. Instead, it can be shown using the
coarea formula and the isoperimetric inequality. Assuming without loss of generality
f ∈ C∞

c nonnegative,

|f |L1∗,1 = 1∗
∫ ∞

0

µ({f > λ})1/1∗ dλ

≤ C

∫ ∞

0

Hn−1({f = λ}) dλ

= C

∫
|∇f | ,

where the first equality is Proposition 6.31, the inequality is the isoperimetric in-
equality for the set {f > λ} (which is a smooth bounded domain for a.e. λ; notice
that 1/1∗ = (n− 1)/n) and the last equality is the coarea formula.

Proposition 6.49. In spite of the fact that W 1,n(Rn) ̸⊆ L∞(Rn), a function f ∈
L1
loc(Rn) with weak gradient in the Lorentz space Ln,1(Rn) has a continuous repre-

sentative and satisfies

∥f − c(f)∥L∞ ≤ C∥∇f∥Ln,1

for a suitable constant function c(f).
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Proof. The main point is that, if f ∈ C∞
c (Rn), the same proof as Corollary 6.47

gives

∥f∥L∞ ≤ C∥∇f∥Ln,1 .

Instead of Young’s inequality, we just use this version of Hölder: Ln,1·Ln/(n−1),∞ ⊆ L1

(same proof as Theorem 6.41). This allows to say that

|f(x)| ≤
∫ ∣∣∣∂G

∂xi

∣∣∣(y)∣∣∣ ∂f
∂xi

∣∣∣(x− y) dµ(y) ≤ ∥∇G∥Ln/(n−1),∞∥∇f∥Ln,1

for all x. The rest of the work is to reduce to this situation.
Notice first that the convolution with a nonnegative function ρϵ ∈ C∞

c (Rn), with
support in Bϵ(0) and

∫
ρϵ = 1, satisfies

∥∇f −∇(ρϵ ∗ f)∥Lp,q ≤ sup
|h|≤ϵ

∥∇f −∇f(·+ h)∥Lp,q(6.17)

for all 1 < p ≤ ∞, 1 ≤ q ≤ ∞: indeed, being f ∈ W 1,1
loc (Rn), ρϵ ∗ f is smooth and its

gradient equals ρϵ ∗ ∇f , which can be thought as a pointwise limit of convex com-
binations of functions ∇f(· + h), with |h| ≤ ϵ (e.g. approximating the convolution
with a finite sum as for a Riemann integral). The claim follows from Remark 6.39
and the fact that ∥ ∥Lp,q is a norm invariant under translations in Rn.

As a consequence, if 1 ≤ p, q < ∞ then ∇(ρϵ ∗ f) → ∇f : in fact, g(· + h) → g
as h → 0 when g = χE is a characteristic function (with µ(E) < ∞) because
µ(E∆(E − h)) → 0 and (χE − χE−h)∗ = χ[0,µ(E∆(E−h))), so by Corollary 6.32 this
holds also for a generic g ∈ Lp,q(Rn) and the claim follows from (6.17). So there
exist smooth functions fk such that fk → f in L1

loc(Rn) and ∇fk → ∇f in Ln,1(Rn).
For any R ≥ 1, the embedding W n,1(Rn) ⊂ L2n(Rn) and Poincaré’s inequality

give

∥fk − ck,R∥L2n(B2R) ≤ CR1/2∥∇fk∥Ln(B2R) ≤ CR1/2∥∇fk∥Ln,1(B2R)

(with ck,R := −
∫
B2R

fk) and thus, as the proof of Proposition 6.33(3) shows, we get

fk − ck,R∥Ln,1(B2R) ≤ CR∥∇fk∥Ln,1 .

Finally, choosing a smooth cut-off function ϕR with ϕ = 1 on BR, ϕR = 0 outside
B2R and |∇ϕR| ≤ 2

R
,

∥∇(ϕR(fk − ck,R))∥Ln,1 ≤ 2

R
∥fk − ck,R∥Ln,1(B2R) + ∥∇fk∥Ln,1 ≤ C∥∇fk∥Ln,1

and thus, by the initial part of the proof,

∥fk − ck,R∥L∞(BR) ≤ ∥ϕR(fk − ck,R)∥L∞ ≤ C∥∇fk∥Ln,1 .

The constants ck,R are obviously equibounded (in k,R), since this inequality gives
in particular

| −
∫
B1

fk − ck,R| ≤ C∥∇fk∥Ln,1 .

Hence, letting R → ∞ along a suitable sequence depending on k, we get ∥fk −
ck∥L∞ ≤ C∥∇fk∥Ln,1 (with supk |ck| < ∞). Letting k → ∞, again along a subse-
quence, we get the statement.
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6.9 Dyadic characterization of some Lorentz spaces and an-
other proof of Lorentz–Sobolev embedding

In this part we show that, when q ≤ p, the Lp,q-norm of a function f can be measured
in terms of a dyadic decomposition of f according to its values.

In the sequel, φ : R → R is a smooth function supported in the annulus B̄2(0) \
B1/2(0) and such that∑

j∈Z

φ(2−jt) = 1, for all t ∈ R \ {0}.(6.18)

In order to construct φ, take for instance any ψ ∈ C∞
c (B2) such that ψ = 1 on B1,

and set φ(t) := ψ(t)− ψ(2t). For any t ∈ R \ {0}, it holds∑
j∈Z

φ(2−jt) = lim
N→∞

N∑
j=−N

(ψ(2−jt)− ψ(2−(j−1)t)) = lim
N→∞

(ψ(2−N t)− ψ(2N+1t)) = 1;

the sum is well defined and the first equality holds, since at most two terms in the
sum are nonzero: if 2k ≤ t ≤ 2k+1, then φ(2−jt) = 0 for j ̸= k, k+ 1 since φ(2−j·) is
supported in the annulus B̄2j+1 \B2j−1 .

Given f : Rn → R, we split it according to its values: we set

fj := f φ(2−j|f |),

so that the piece fj vanishes at x if |f |(x) is not in the range (2j−1, 2j+1). Notice
that, thanks to (6.18),

f =
∑
j∈Z

fj

where the sum is actually finite at each point (since at most two terms are nonzero).
This decomposition should not be confused with the Littlewood–Paley decomposition,
encountered later in the course, which involves the phase space rather than the values
of f !

Lemma 6.50. For 1 < p <∞ and 1 ≤ q ≤ p we have

C−1∥f∥Lp,q ≤
(∑

j∈Z

∥fj∥qLp

)1/q
≤ C∥f∥Lp,q

for some C depending on p, q.

Proof. Since fj ≤ 2j+1χ|f |>2j−1 , we have∑
j∈Z

∥fj∥qLp ≤ 2q
∑
j∈Z

2qjµ({|f | > 2j−1})q/p

= 8q
∑
j∈Z

2qjµ({|f | > 2j+1})q/p

≤ 8q
∑
j∈Z

∫ 2j+1

2j
λq−1µ({|f | > λ})q/p dλ

= 8q
∫ ∞

0

λq−1µ({|f | > λ}) dλ.
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Conversely, using the subadditivity of t 7→ tq/p (true as q ≤ p),

∑
j∈Z

∫ 2j+1

2j
λq−1µ({|f | > λ})q/p dλ ≤ 2q−1

∑
j∈Z

2qjµ({|f | > 2j})q/p

= 2q−1
∑
j∈Z

2qj
(∑

k≥j

µ({2k < |f | ≤ 2k+1})
)q/p

≤ 2q−1
∑
j∈Z

∑
k≥j

2qjµ({2k < |f | ≤ 2k+1})q/p

≤ 2q
∑
k∈Z

2qkµ({2k < |f | ≤ 2k+1})q/p.

For a given x ∈ E with f(x) ̸= 0, if k ∈ Z is such that 2k < |f(x)| ≤ 2k+1 then
2k ≤ |f(x)| = |fk(x) + fk+1(x)|, so

2pkµ({2k < |f | ≤ 2k+1}) ≤
∫

|fk + fk+1|p ≤ 2p−1

∫
|fk|p + 2p−1

∫
|fk+1|p.

Hence, raising to the power q
p
,

2q
∑
k∈Z

2qkµ({2k < |f | ≤ 2k+1})q/p ≤ 4q
∑
k∈Z

(∫
|fk|p +

∫
|fk+1|p

)q/p
≤ 2 · 4q

∑
k∈Z

∥fk∥qLp .

The claim now follows from Proposition 6.31.

We now present an alternative proof of the Lorentz–Sobolev embeddingW 1,p(Rn) ⊂
Lp∗,p(Rn) for n ≥ 2 and 1 ≤ p < n.

Given f ∈ C∞
c (Rn), we apply the classical Sobolev embedding to the pieces fj

to get

∥f∥p
Lp∗,p ≤ C

∑
j∈Z

∥fj∥pLp∗ ≤ C
∑
j∈Z

∥∇fj∥pLp .

Since ∇fj = φ(2−jf)∇f + 2−jfφ′(2−jf)∇f is bounded by |∇f |χ{2j−1<|f |<2j+1} up
to constants (being |2−jf | ≤ 2 on the support of φ′(2−jf)), we finally get∑

j∈Z

∥∇fj∥pLp ≤ C
∑
j∈Z

∫
|∇f |pχ{2j−1<|f |<2j+1} ≤ C

∫
|∇f |p.

(as it is customary, in the above estimates the value of C can change from line to
line). The conclusion follows as in the previous proof.
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7 The Calderón-Zygmund decomposition

7.1 Calderón-Zygmund convolution operators

The Calderón-Zygmund decomposition of an integrable function is the key ingredient
for proving the continuity of the sub-linear Maximal Operator M in Lp spaces and
the continuity of Calderón-Zygmund Operators in Lp Spaces as well. The later being
the starting point to the analysis of elliptic PDE in Lp and more generally in non
Hilbertian Sobolev or Besov Spaces.

We adopt the following denomination : A cube of size δ > 0 in Rn is a closed
set of the form C =

∏n
i=1[ai, ai + δ] where (ai) is an arbitrary sequence of n real

numbers.

Theorem 7.1 (Calderón-Zygmund Decomposition). Let f ∈ L1(Rn) with f ≥ 0
and let α > 0. Then there exists an at most countable family of cubes (Ck)k∈K
having disjoint interiors such that

(i) The average of f on all cubes is bounded from below and above by

(7.1) α <
1

µ(Ck)

∫
Ck

f(x) dx ≤ 2nα .

(ii) On the complement Ωc of the union Ω =
⋃

k∈K Ck, we have

(7.2) f(x) ≤ α a.e. .

(iii) There exists a constant C = C(n) depending only on the dimension n such
that

(7.3) µ(Ω) ≤ C

α
∥f∥L1 .

Remark 7.1. An alternative way to look at the result is the following. The Calderón-
Zygmund Decomposition of threshold α > 0 is a non-linear decomposition of any
function f ∈ L1 of the form f = g + b where g and b are two functions respectively
in L1 ∩ L∞(Rn) and in L1(Rn) satisfying

i) ∃ (Ck)k∈K a family of disjoint cubes of Rn such that

b =
∑
k∈K

bk with bk ≡ 0 in Rn \ Ck .

ii) For all k ∈ K hold the two following conditions∫
Ck

bk(y) dy = 0 and
1

µ(Ck)

∫
Ck

|bk(y)| dy ≤ 2n+1 α .

iii) g satisfies the following pointwise inequalities |g(x)| = |f(x)| ≤ α for a.e. x ∈ Rn \ ∪k∈KCk ,

|g(x)| ≤ 2n α for a.e. x ∈ ∪k∈KCk
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iv) The L2 norm of g is controlled as follows

∥g∥2L2(Rn) ≤ 22n α ∥f∥L1(Rn) .

v) The Lebesgue measure of the so called ”bad set” Ω = ∪k∈KCk satisfies

µ(Ω) =
∑
k∈K

µ(Ck) ≤
1

α
∥f∥L1(Rn) .

The link between our construction in the proof of theorem 7.1 (applied to |f |) and
the decomposition f = g + b satisfying i) · · · v) is made by taking

bk :=

(
f − 1

µ(Ck)

∫
Ck

f(y) dy

)
χCk

,

and i)...v) follow from simple estimates. It is worth remembering that Calderón-
Zygmund decomposition is not unique.

Example 7.2. Consider the function f = χ[0,1], the characteristic function of the
segment [0, 1] in R. A Calderón-Zygmund decomposition of f with threshold 2−i−1

is given by g = 2−iχ[0,2i] and the set Ω is made of a unique cube : [0, 2i]. b = 0
outside [0, 2i] and b = χ[0,1] − 2−iχ[0,2i] has indeed average 0 on the unique cube of
the decomposition.

Proof of theorem 7.1.
We divide Rn into a mesh of equal cubes chosen large enough such that their

volume is larger or equal than ∥f∥L1/α. Thus, for every cube C0 in this mesh, we
have

(7.4)
1

µ(C0)

∫
C0

f(x) dx ≤ α .

Every cube C0 from the initial mesh is decomposed into 2n equal disjoint cubes
with half of the side-length. For the resulting cubes, there are now two possibilities:
Either (7.4) still holds or (7.4) is violated. Cubes of the first case are called the
good cubes, the set of good cubes is denoted by Cg

1 , and the set of non good cubes,
the bad cubes, is denoted by Cb

1. In a next step, we decompose all cubes in Cg
1 into

equal disjoint cubes with half side-length and leave the cubes in Cb
1 unchanged. The

resulting cubes for which an estimate of the form (7.4) still holds are denoted by Cg
2 -

they are called good cubes as well - and the remaining ones by Cb
2. Then, we proceed as

before dividing the cubes in Cg
2 and leaving the cubes in Cb

2 unchanged. – Repeating
this procedure for each cube in the initial mesh, we can define Ω =

⋃
k∈K Ck as

the union of all cubes which violate in some step of the decomposition process an
estimate of the form (7.4). (These are precisely those cubes with an upper index b
for bad.)

Note that for a cube Cb
i in Cb

i obtained in the i-th step, we have

(7.5)
1

µ(Cb
i )

∫
Cb

i

f(x) dx > α .
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Since 2nµ(Cb
i ) = µ(Cg

i−1), where C
g
i−1 is any cube in Cg

i−1, we then deduce

α <
1

µ(Cb
i )

∫
Cb

i

f(x) dx ≤ 2n

µ(Cg
i−1)

∫
Cg

i−1

f(x) dx ≤ 2n α .

This shows (i) of the theorem.
In order to show (ii), we note that by Lebesgue’s differentiation theorem, almost

everywhere the following holds

f(x) = lim
d→0

1

µ(Cx,d)

∫
Cx,d

f(y) dy ,

where Cx,d denotes a cube containing x ∈ Rn with diameter d. By construction of
the decomposition, there exists for every x ∈ Ωc a diameter dx > 0 such that all
cubes Cx,d with diameter d < d0 satisfy an estimate of the form (7.4). This implies
directly that f(x) ≤ α for a.e. x ∈ Ωc.

The last part (iii) of the theorem can be established as follows:

µ(Ω) =
∑
k∈K

µ(Ck)
(7.5)
<

1

α

∫
Ω

f(x) dx ≤ 1

α
∥f∥L1 .

2

7.2 An application of Calderón-Zygmund decomposition

The following theorem gives a statement which is close to a converse to theorem 5.8.
The proof of this theorem we give is an interesting application of the Calderón-
Zygmund decomposition.

Theorem 7.3. Let f be an integrable function on Rn supported on an euclidian ball
B. Then Mf ∈ L1(B) if and only if f ∈ L1 logL1(B).

The proof of theorem 7.3 is using the following lemma.

Lemma 7.4. Let f be a locally integrable function on Rn. Let B be an open euclidian
ball of Rn such that Mf ∈ L1(B) then f ∈ (L1 logL1)loc(B) .

Proof of lemma 7.4. Let ω be an open subset strictly included in B - i.e. ω ⊂ B.
Denote by fω the restriction of f to ω. It is clear that the inequality Mf(x) ≥
Mfω(x) holds for almost every x ∈ Rn. Hence, for every β > 0 the following holds

(7.6) µ ({x ; Mf(x) > β}) ≥ µ ({x ; Mfω(x) > β}) .

In order to show that fω ∈ L1 logL1(Rn), we use the following “reverse” inequal-
ity to (5.9) for the Hardy-Littlewood maximal function : there exists a constant c
depending only on n such that

(7.7) µ({x ∈ Ω : Mfω(x) > cα}) ≥ 1

2nα

∫
{x∈Rn : |fω(x)|>α}

|fω(x)| dx
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where Ω = ∪k∈KCk is the union of bad cubes for a Calderón-Zygmund decomposition
of mesh α applied to fω on Rn and given by the previous theorem 7.1.

Proof of inequality (7.7). For any α > 0 theorem 7.1 gives, for the function fω,
a family of cubes (Ck)k∈K of disjoint interiors such that (see (7.1))

(7.8)

 2nα ≥ 1
µ(Ck)

∫
Ck

|fω(x)| dx ≥ α and

∀x ∈ Rn \ Ω |fω(x)| ≤ α .

Thus, if x ∈ Ck, it follows that Mfω(x) > cα, where the constant c > 0 is an
adjustment which permits to pass from cubes to balls in the definition of the maximal
function. As a direct consequence, we have that

µ({x ∈ Ω : Mfω(x) > cα}) ≥
∞∑
k=1

µ(Ck)
(7.8)

≥ 1

2nα

∫
Ω

|f(x)| dx .

Since |fω(x)| ≤ α, for x ∈ Rn \ Ω, the desired inequality (7.7) is established.

Let δ > 0 such that for every cube C

(7.9) µ(C) ≤ δ and C ∩ ω ̸= ∅ =⇒ C ∩ Rn \B = ∅ .

δ has been chosen in such a way that, for any α > α0 =
∫
ω
f/δ, the bad set Ω is

included in B - this lower bound on α ensures indeed the fact that the mesh of the
starting cubes in the associated Calderón-Zygmund decomposition is less than δ .
Hence we deduce using (7.6), for any α > α0, that

µ({x ∈ B : Mf(x) > cα})≥ 1

2nα

∫
{x∈ω ; |f(x)|>α}

|f(x)| dx .

Using the previous estimate we compute

∥Mf∥L1(B) =

∫
B

Mf(x) dx
(5.1)

≥
∫ ∞

cα0

µ({x ∈ B : Mf(x) > α}) dα

(7.7)

≥ c

∫ ∞

α0

(
1

2nα

∫
{x∈ω : |f(x)|>α}

|f(x)| dx
)
dα

= c

∫
ω

|f(x)|

(∫ max{α0,|f(x)|}

α0

1

α
dα

)
dx

= c

∫
ω

|f(x)| log+ |f(x)|
α0

dx .

This proves the lemma. 2

Proof of theorem 7.3.
One direction in the equivalence has been established in theorem 5.8. It suf-

fices then to establish that Mf ∈ L1(B) and f supported in B imply that f ∈
L1 logL1(B).
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Let’s take to simplify the presentation B to be the unit ball of center the origin
B := B1(0). First we show the following statement

(7.10) f ≡ 0 in Rn \B1(0) and Mf ∈ L1(B1(0)) =⇒Mf ∈ L1(B2(0)) .

Once we will have proved this implication, using the previous lemma, we will deduce
that f ∈ L1 logL1(B) and this will finish the proof of theorem 7.3.

Proof of (7.10). Let x be a point in B2(0) \ B1(0). Since every point in
B1(0) is closer to x/|x|2 than to x, for |x| > 1, one obtains that BR(x) ∩ B1(0) ⊂
BR(x/|x|) ∩B1(0). We then deduce∫

BR(x)

|f(y)| dy ≤
∫
BR(x/|x|2)

|f(y)| dy ,

which implies that Mf(x) ≤Mf(x/|x|2) for |x| > 1. Thus∫
B2(0)\B1(0)

Mf(x) dx ≤ 22n
∫
B1(0)\B1/2(0)

Mf(y) dy .

This last inequality implies (7.10) and theorem 7.3 is then proved. 2

7.3 Singular Integral Operators over Lp

Singular integral operators are special cases of Calderón-Zygmund type operators.
They are the ”historical” ones : the first one introduced by Calderón and Zygmund
in the 50’s-60’s corresponding to the principal values of singular integrals. They
are the key notion giving access to the Lp theory (and more generally to the non
hilbertian theory) of elliptic operators. Roughly speaking a typical question relevant
to the theory of Singular Integral Operators is the following : if the Lp norm of the
laplacian of a function is in Lp is it true or not that every second derivatives of this
function are in Lp ?

This question is answered easily in the case p = 2 by the mean of Fourier trans-
form but requires a more sophisticated analysis for being considered for p ̸= 2. Of
course the interest and the use of Singular Integral Operators goes much far beyond
the resolution to this question and we will see applications of them all along this
book.

A singular integral operator is formally a linear mapping of the form T : f →
K ⋆f where K is the kernel which misses to be in L1 or even L1

loc from ”very little”.
If K would be in L1 then the continuity of T from Lp into itself would be a simple
consequence of Young’s inequality on convolutions. Usually the pointwise expression
of the Kernel K is only in L1−weak :

sup
α>0

α µ ({x ; |K(x)| > α}) < +∞ .

A typical example of such a convolution operator is the one which to f = ∆u assigns
the second derivative of u along the i and j directions : ∂xi

∂xj
u (modulo harmonic

functions of course). This operator is given formally for i ̸= j by

∂xi
∂xj

u = Cn

∫
Rn

(xi − yi) (xj − yj)

|x− y|n+2
f(y) dy .
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It is a convolution type operator T of kernel K(x) = Cn xixj/|x|n+2. K is in
L1−weak but it is not a priori a distribution and this makes the use of the convolu-
tion operation and the definition of T problematic or singular. Calderón-Zygmund
operators of the first generation share the same difficulty. The reason why the
Calderón-Zygmund Kernels K can be made to be a distribution is a cancellation
property. In the previous example the cancellation property happens to be (recall
that we look at the casei ̸= j) ∫

Sn−1

xixj
|x|n+2

dy = 0 .

Because of this later fact, for a smooth given compactly supported function f , it is
not difficult to show that

(7.11) lim
ϵ→0

Cn

∫
Rn\Bϵ(x)

(xi − yi) (xj − yj)

|x− y|n+2
f(y) dy

exists for every x. This singular integral is the convolution between f and the
distribution called Principal Value of K denoted PV (K).

One of the spectacular result of Calderón-Zygmund theory says the following :
the limit (7.11) PV (K) ⋆ f(x) exists almost everywhere whenever f is in Lp(Rn) for
p ∈ [1,+∞] and is also in Lp(Rn) if f is in Lp(Rn) for p ∈ (1,+∞).

Another example of Singular Integral Operator is the Hilbert Transform on R -
which corresponds in Fourier space by multiplying f̂(ξ) by the sign of ξ - that is :
f → f ∗ 1

iπ x
. This singular integral has to be understood as being the limit of the

following process

(7.12) lim
ϵ→0

1

iπ

∫
|y|>ϵ

f(x− y)

y
dy .

at least when f is smooth and compactly supported, since x−1 is odd, one easily
check that this limit exists everywhere. It is equal to the convolution between f and
the Principal Value of x−1, PV (1/x). Here again Calderón-Zygmund theory will
tell us that the limit (7.12) PV (x−1) ⋆ f exists almost everywhere whenever f is in
Lp(Rn) for p ∈ [1,+∞] and is also in Lp(Rn) if f is in Lp(Rn for p ∈ (1,+∞).

In a way which is reminiscent to the Lp−theory of the maximal operator in
the previous sections, the Hilbert transform and more generally Calderón-Zygmund
operator won’t map L1 functions into L1 functions but to L1−weak functions only. In
analogy with the previous section again, Calderón-Zygmund operator will however
send L1 logL1 functions into L1. The parallel with the results obtained for the
maximal operator in the previous section has some limit since, as we will see, L∞

functions won’t be map by Calderón-Zygmund operators to L∞ functions but to
∩p<+∞L

p
loc(Rn) functions only.

Here again the Calderón-Zygmund decomposition will be the key instrument in
the proofs. This use of Calderón-Zygmund decomposition is also known under the
name of the real variable method of Calderón and Zygmund.

Let us finish the introduction to this very important section by making the
following amusing remark. If the L1−weak would have been a Banach space for a

138



norm ∥·∥⋆ equivalent to the quasi-norm L1
w - (5.5) -, then the Lp theory of Calderón-

Zygmund operator would be trivially true without any assumption on the Kernel K
except that it is in L1−weak and that T : f → K ⋆ f sends L2 into L2. Indeed,
for any finite set of k points a1, · · · , ak in Rn and any family of k reals λ1 · · ·λk one
would have using the triangular inequality∥∥∥∥∥

k∑
i=1

K(x− ai) λi

∥∥∥∥∥
⋆

≤ ∥K∥⋆
k∑

i=1

|λi| ,

and we would directly deduce that T sends L1 into L1
w. The Marcinkiewicz interpo-

lation theorem 4.2 would then imply that T is continuous from Lp into Lp for any
p ∈ (1, 2] and the continuity for p ∈ [2,+∞) would be obtained by a simple duality
argument.

We shall see three different formulations of the continuity of a Singular Integral
Operator in Lp spaces, each of these formulations are based on different assumptions
on the Kernel K.

7.3.1 A “primitive” formulation

In this subsection we prove the following ”primitive” formulation of the Lp−continuity
of Calderón-Zygmund convolution operator. The sense we give to the adjective
”primitive” here should not be interpreted as something pejorative about this for-
mulation, which has the clear pedagogical advantage to bring us progressively to
more elaborated ones in the next subsections. In this formulation the difficulties
caused by the singular nature of the convolution does not appear since the kernel
K is ”artificially” assumed to be in L2.

Theorem 7.5. Let K ∈ L2(Rn) and assume the following:

(i) The Fourier transform K̂ of K is bounded in L∞

(7.13) ∥K̂∥L∞ < +∞ .

(ii) The function K satisfies the so-called Hörmander condition : there exists 0 <
B < +∞ such that

(7.14)

∫
2∥y∥≤∥x∥

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , ∀y ̸= 0 .

Moreover, let T be the well-defined convolution operator on L1(Rn) ∩ Lp(Rn), with
1 < p <∞, given pointwise by

(7.15) Tf(x) = K ⋆ f(x) =

∫
Rn

K(x− y)f(y) dy .

Then, there exists a constant Cp = C(n, p, ∥K∥∞, B) – independent of the L2-norm
of K – such that

(7.16) ∥Tf∥Lp ≤ Cp ∥f∥Lp .
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Moreover there exists a constant C1 = C(n, ∥K∥∞, B) – independent of the L2-norm
of K – such that for any f ∈ L1(Rn)

(7.17) sup
α>0

α µ({x ∈ Rn ; |K ⋆ f(x)| > α}) ≤ C1 ∥f∥L1

Remark 7.2. a) Note that T is a densely defined linear operator on Lp(Rn). More
precisely, the operator is well-defined on the dense linear subset L1(Rn)∩Lp(Rn) of
Lp(Rn) and from (7.16) we can deduce that T can be extended to all of Lp(Rn) by
this.

b) In the previous theorem, the kernel K is assumed to be in L2(Rn). This
happens to be ”artificial” in the following sense : it permits to make the convolution
operator T well defined on L1(Rn) ∩ Lp(Rn), for 1 < p < ∞ indeed by Young’s
inequality we have

∥Tf∥L2 ≤ ∥K∥L2∥f∥L1 .

However the final crucial estimate leading to the continuity of T from Lp into Lp is
independent of the L2 norm of K.

c) Observe that the Hörmander condition (7.14) holds, for instance, whenever
K is locally Lipschitz on Rn \ {0} and there exists C > 0 such that

∀x ∈ Rn \ {0} |∇K|(x) ≤ C

|x|n+1
.

This comes from the following estimate : Let y ̸= 0 and denote v = y/|y|, then the
following holds

(7.18)

∫
2∥y∥≤∥x∥

∣∣K(x− y)−K(x)
∣∣ dx

=
∫
2∥y∥≤∥x∥

∣∣∣∫ |y|
0

∂K
∂v

(x+ t v) dt
∣∣∣ dx

≤
∫ |y|
0
dt
∫
2∥y∥≤∥x∥ |∇K|(x+ tv) dx

≤ |y|
∫
∥y∥≤∥z∥ |∇K|(z) dz ≤ Cn

|y|
|y| = Cn .

where we have proceeded to the change of variable z = x+ tv.

Proof of theorem 7.5 The proof is divided in the following three steps: First,
we show that the convolution operator T is of strong type (2, 2). In a second
step, we establish that T is of weak type (1, 1) - i.e. inequality (7.17), which is
the most difficult part of the proof. Finally we obtain the inequality (7.16) from
Marcinkiewicz’s interpolation theorem and a duality argument.

First step: Let f ∈ L1(Rn) ∩ L2(Rn), then for the Fourier transform T̂ f of
Tf ∈ L2(Rn), we have

∥T̂ f∥L2 = ∥K̂ ⋆ f∥L2 = ∥K̂ f̂∥L2

(7.13)

≤ ∥K∥∞ ∥f∥L2 .

Since ∥T̂ f∥L2 = ∥Tf∥L2 by Plancherel’s theorem, we then obtain

(7.19) ∥Tf∥L2 ≤ ∥K∥∞ ∥f∥L2 .
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This shows that T is of type (2, 2), which also implies that T is of weak type (2, 2)
as we mentioned in remark 4.1, precisely

(7.20) ∀α > 0 µ({x : |Tf(x)| > α}) ≤ ∥K∥2∞
α2

∥f∥2L2 .

Second step: Let f ∈ L1(Rn) and α > 0. We apply the Calderón-Zygmund
Decomposition 7.1 of threshold α to f . The resulting family of disjoint ”bad cubes”
will be denoted by {Ck}k∈K and we write Ω =

⋃∞
k=1Ck for their union.

Now, we define

(7.21) g(x) =

 f(x) for x ∈ Ωc

1

µ(Ck)

∫
Ck

f(y) dy for x ∈ Ck .

Following remark 7.1 C-Z Decomposition permits to write f as sum of a ”good” and
a ”bad” function, namely f = g+b - ”good” and ”bad” stand for the fact that there
is a better control, namely L∞, on g than on b - where

(7.22) b =
∑
k∈K

bk ,

with

bk(x) =

(
f(x)− 1

µ(Ck)

∫
Ck

f(y) dy

)
χCk

(x) .

From the linearity of the convolution operator T and the triangular inequality we
have for all x ∈ Rn

(7.23) |Tf(x)| ≤ |Tg(x)|+ |Tb(x)| .

Hence we deduce

µ({x : |Tf(x)| > α}) ≤ µ({x : |Tg(x)| > α/2})
+µ({x : |Tb(x)| > α/2}) .(7.24)

In order to get an estimate for the first term on the right-hand side of (7.24),
we first use the fact that g is an element of L2(Rn)- see remark 7.1 iv) - with the
following control

∥g∥2L2(Rn) ≤ 22n α ∥f∥L1(Rn) .

As a consequence, we can apply (7.20) to g ∈ L2(Rn) in order to get the following
estimate for the first term on the right-hand side of (7.24):

µ({x : |Tg(x)| > α/2}) ≤ 4∥K∥2∞
α2

∥g∥2L2

≤ 22n+2 ∥K∥2∞
α

∥f∥L1(Rn) .(7.25)

Next, we estimate the second term on the right hand-side of (7.24). – For this
purpose, we expand each cube Ck in the Calderón-Zygmund decomposition by the
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factor 2
√
n leaving its center ck fixed. The new bigger cubes are denoted by C̃k

and its union by Ω̃ =
⋃

k∈K C̃k. It is easy to see that Ω ⊂ Ω̃, Ω̃c ⊂ Ωc and

µ(Ω̃) ≤ (2
√
n)n µ(Ω). Moreover, for x ̸∈ C̃k, we have

(7.26) ∥x− ck∥ ≥ 2 ∥y − ck∥ , for all y ∈ Ck .

Now, let ck denote the center of the cube Ck. Then, we can write

Tb(x) =
∑
k∈K

Tbk(x) =
∑
k∈K

∫
Ck

K(x− y)bk(y) dy

=
∑
k∈K

∫
Ck

(
K(x− y)−K(x− ck)

)
bk(y) dy ,

being a direct consequence of the fact that for all Ck∫
Ck

bk(y) dy =

∫
Ck

(
f(y)− 1

µ(Ck)

∫
Ck

f(z) dz

)
dy = 0 ,

- condition ii) in remark 7.1 -. This then leads to∫
Ω̃c

|Tb(x)| dx ≤
∑
k∈K

∫
Ω̃c

(∫
Ck

∣∣K(x− y)−K(x− ck)
∣∣ ∣∣bk(y)∣∣ dy) dx

≤
∑
k∈K

∫
C̃c

k

(∫
Ck

∣∣K(x− y)−K(x− ck)
∣∣ ∣∣bk(y)∣∣ dy) dx

=
∑
k∈K

∫
Ck

(∫
C̃c

k

∣∣K(x− y)−K(x− ck)
∣∣ dx)∣∣bk(y)∣∣ dy .

Setting x̄ = x − ck, ȳ = y − ck and using (7.26), the integral in parenthesis ca be
bounded this way∫

C̃c
k

∣∣K(x− y)−K(x− ck)
∣∣ dx ≤

∫
2∥ȳ∥≤∥x̄∥

∣∣K(x̄− ȳ)−K(x̄)
∣∣ dx̄ .

The assumption (7.14) of the theorem hence implies that

(7.27)

∫
Ω̃c

|Tb(x)| dx ≤ B
∑
k∈K

∫
Ck

|bk(y)| dy ≤ C ∥f∥L1 .

At this stage, we are ready to give the following estimate for the second term in
(7.24):

µ({x ∈ Rn : |Tb(x)| > α

2
}) ≤ µ({x ∈ Ω̃c : |Tb(x)| > α/2}) + µ(Ω̃)

(7.27)

≤ 2C

α
∥f∥L1 + (2

√
n)n µ(Ω)

(7.3)

≤ 2C

α
∥f∥L1 +

C

α
∥f∥L1 ≤ C

α
∥f∥L1 .

(7.28)
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Where C only depends on n, ∥K∥∞ and B. Combining (7.25) with (7.28), we end
up with the existence of a constant C1 > 0 such that

(7.29) µ({x : |Tf(x)| > α}) ≤ C1

α
∥f∥L1 ,

showing (7.17) and hence that the convolution operator T is of weak type (1, 1).

Third step: Note that we have already shown the inequality (7.16) in the case of
p = 2 in (7.19). – Putting r = 2 in Marcinkiewicz Interpolation Theorem 4.2 and
using the fact that T is of weak type (1, 1), respectively (2, 2), by (7.20), respectively
(7.29), we conclude that

(7.30) ∥Tf∥Lp ≤ C ∥f∥Lp ,

for 1 < p < 2 and where C only depends on n, p, ∥K∥∞ and B the constant in the
Hörmander condition.

For the case 2 < p < ∞, we will use a duality argument. – Consider the dual
space Lp′(Rn) of Lp(Rn) with 1/p+1/p′ = 1. We easily see that 1 < q < 2. Consider
now f ∈ L1(Rn)∩Lp(Rn). Since Lp is itself the dual space to Lp′ and since L1 ∩Lp′

is dense in Lp′ , the Lp-norm of Tf is given by the following expression:

(7.31) ∥Tf∥Lp = sup
g∈L1∩Lp′

∥g∥
Lp′≤1

∣∣∣∣∫
Rn

Tf(x)g(x) dx

∣∣∣∣ .
We calculate∣∣∣∣∫

Rn

Tf(x)g(x) dx

∣∣∣∣ =

∣∣∣∣∫
Rn

(∫
Rn

K(x− y)f(y) dy

)
g(x) dx

∣∣∣∣
=

∣∣∣∣∫
Rn

(∫
Rn

K(x− y)g(x) dx

)
f(y) dy

∣∣∣∣ ,
where Fubini’s theorem was applied because of K ∈ L2(Rn) and the assumptions
on g and f . For the first integral, we conclude from (7.30) that it is an element of
Lp′(Rn). Using Hölder’s inequality, we end up with

sup
g∈L1∩Lp′

∥g∥
Lp′≤1

∣∣∣∣∫
Rn

Tf(x)g(x) dx

∣∣∣∣ ≤
∫
Rn

∣∣∣∣(∫
Rn

K(x− y)g(x) dx

)
f(y)

∣∣∣∣ dy
(7.30)

≤ C ∥g∥Lp′∥f∥Lp ≤ C ∥f∥Lp .

This establishes the theorem. 2

7.3.2 A singular integral type formulation

In the present formulation of the Lp continuity for convolution type Calderón-
Zygmund Operator we will skip the too strong assumption that the kernel K is
in L2 and will assume only a L1−weak type pointwise control of K + a cancellation
property together, still with the Hörmander condition. We will be then facing the
heart of the matter : how can we deal with the singular integral K ⋆ f when f is
only assumed to be in Lp ?
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Theorem 7.6. Let K : Rn −→ R be a measurable function such that there exists
A,B > 0 for which the following holds

|K(x)| ≤ A

∥x∥n
, ∀ x ̸= 0 .(7.32a) ∫

2∥y∥≤∥x∥

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , ∀ x ̸= 0 .(7.32b) ∫

∂Br(0)

K(x) dx = 0 , for a. e. r > 0 .(7.32c)

For ε > 0 and f ∈ Lp(Rn) with 1 ≤ p <∞, we set

(7.33) Tεf(x) =

∫
∥y∥≥ε

f(x− y)K(y) dy .

Then, for any 1 < p < +∞ there exists a positive constant C such that for any
ε > 0 and any f ∈ Lp(Rn),

(7.34) ∥Tεf∥Lp ≤ C ∥f∥Lp ,

where the constant C = C(p, n,A,B) is independent of ε and f . Moreover, there
exists Tf ∈ Lp(Rn) such that

(7.35) Tεf −→ Tf in Lp (ε −→ 0) .

For any f ∈ L1(Rn) there exists a measurable function Tf in L1−weak such that

(7.36) Tεf −→ Tf in L1
w

and there exists a constant positive C(n,A,B) independent of f and ϵ such that

(7.37) sup
α>0

α µ({x ∈ Rn ; |Tf(x)| > α}) ≤ C(n,A,B) ∥f∥L1

Remark 7.3. The singular integral defined in (7.33) is, for a fixed ϵ, absolutely
convergent. To see this, note that due to (7.32a) we have that K ∈ Lp′(Rn \ Bε),
where 1 < p′ is the Hölder conjugate exponent of p. From Young’s inequality, it then
follows that ∥Tεf∥∞ ≤ ∥f∥Lp∥K∥Lp′ .

A substantial part of the proof of theorem 7.6 will be to derive from the as-
sumptions (7.32a), (7.32b) and (7.32c) an L∞ bound for the Fourier transform of
Kε(y) := K(y) χRn\Bε(0) independent of ε. This estimate will permit us to invoke
theorem 7.5 at some point in our proof. Precisely the following lemma holds.

Lemma 7.7. Let K : Rn −→ R be a measurable function such that

|K(x)| ≤ A

∥x∥n
, for x ̸= 0 .(7.38a) ∫

2∥y∥≤∥x∥

∣∣K(x− y)−K(x)
∣∣ dx ≤ B , for y ̸= 0 .(7.38b) ∫

∂Br(0)

K(x) dx = 0 , for a. e. r > 0 .

(7.38c)
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Moreover, for every ε > 0, we define

(7.39) Kε(x) =

{
K(x) if ∥x∥ ≥ ε
0 if ∥x∥ < ε .

Then, there exists a constant C = C(n,A,B), independent of ε, such that

(7.40) ∥K̂ε∥∞ ≤ C .

Before to prove this L∞ bound we would like to show first how the hypothesis
relative to the cancellation property (7.32c) is essential. How cancellation property
can lead to decisive improvements in the estimates will be a leitmotiv in this book -
see in particular the chapter on Hardy spaces and the integrability by compensation
phenomenon.

Example 7.8. Consider the function on R given by K(t) = 1
|t| It is not difficult to

check that K satisfies hypothesis (7.38a) and (7.38b) but the cancellation assump-
tion (7.38c) is violated. we now prove that for this function K the conclusion of
lemma 7.7 fails. We have

K̂ε(ξ) := limr→0

∫
ε<|t|<r

e2πit ξ dt
|t| = limr→0

∫
ε<|t|<r

cos(2πt ξ) dt
|t| ,

= 2sgn(ξ)
∫ +∞
ε|ξ|

cos 2πs
s

ds ,

where we have used the parity and the imparity respectively of cos(2πt ξ)/|t| and
sin(2πt ξ)/|t|. Now, since

∫ +1

0
cos s/s ds = +∞ we deduce that K̂ε(ξ) goes to +∞

as ε goes to zero for non zero ξ.
Observe that a change of sign for K that would ensure the cancellation property

(7.38c) - by taking 1/t instead of 1/|t| - would lead to the integral
∫ +∞
0

sin s/s,

which converges, instead of the previous integral
∫ +∞
0

cos s/s which diverges. This
illustrate the importance of the cancellation assumption (7.38c)

Proof of lemma 7.7.
For any 0 < ε < R Denote Kε,R := K(x) χBR(0)\Bε(0). For a fixed ξ such that

ε < |ξ|−1 < R, we write

K̂ε,R(ξ) =

∫
ε<|x|<R

e2πi x·ξ K(x) dx

=

∫
ε<|x|<|ξ|−1

e2πi x·ξ K(x) dx+

∫
|ξ|−1<|x|<R

e2πi x·ξ K(x) dx

= I1 + I2 .

We bound I1 first. Using the cancellation assumption (7.38c), we have

I1 =

∫
ε<|x|<|ξ|−1

(e2πi x·ξ − 1) K(x) dx .
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Hence we deduce the following bound, using this time assumption (7.38a)

|I1| ≤ 2π |ξ|
∫
ε<|x|<|ξ|−1

|x| |K(x)| dx ≤ Cn A .

In order to bound I2 we introduce z = ξ/2|ξ|2. Observe that the choice of z has been
made in such a way that exp(2π iz · ξ) = −1, hence a change of variable x→ x+ z
will generate a minus sign in front of the integral and formally we would have∫

Rn

e2πi x·ξ K(x) dx =
1

2

∫
Rn

e2πi x·ξ K(x)−K(x− z) dx

which would put us in position to make use of the Hörmander condition (7.38b).
The only difficulty is to keep track of the domains of integrations that we precise
now.

2I2 =

∫
|ξ|−1<|x|<R

e2πi x·ξ K(x) dx−
∫
|ξ|−1<|x−z|<R

e2πi x·ξ K(x− z) dx

We write ∫
|ξ|−1<|x−z|<R

e2πi x·ξ K(x− z) dx =

∫
|ξ|−1<|x|<R

· · · dx

−
∫
|x−z|<|ξ|−1<|x|

· · · dx−
∫
|x|<R<|x−z|

· · · dx

+

∫
|x|<|ξ|−1<|x−z|

· · · dx+
∫
|x−z|<R<|x|

· · · dx .

The following elementary inclusions are longer to state than to prove...

{x ; |x− z| < |ξ|−1 < |x|} ⊂ {x ; |x− z| < |ξ|−1 < |x− z|+ |z|}

{x ; |x| < R < |x− z|} ⊂ {x ; |x− z| − |z| < R < |x− z|}

{x ; |x| < |ξ|−1 < |x− z|} ⊂ {x ; |x− z| − |z| < |ξ|−1 < |x− z|}

{x ; |x− z| < R < |x|} ⊂ {x ; |x− z| < R < |x− z|+ |z|} .

Using these inclusions and the fact that |z| = 1/2|ξ|, we can bound I2 in the following
way

(7.41)

2|I2| ≤
∫
|ξ|−1<|x|<R

|K(x)−K(x− z)| dx

+

∫
1
2
|ξ|−1<|x|< 3

2
|ξ|−1

|K(x)| dx+
∫
R− 1

2
|ξ|−1<|x|<R+ 1

2
|ξ|−1

|K(x)| dx

Since |z| = 1
2
|ξ|−1 we can invoke the Hörmander condition (7.38b) and bound the

first integral in the right-hand-side of (7.41) by B. For the second integral we use
(7.38a) and bound it by a constant Cn A and the third integral is treated in the
same way using the fact that |ξ|−1 < R which implies that the quotient of R+ 1

2
|ξ|−1

by R − 1
2
|ξ|−1 is bounded by 3. Hence I2 is bounded by B + 4Cn A. So we have
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proved that |K̂ε,R(ξ)| is uniformly bounded by a constant depending only on n, A
and B, which is the desired result. 2

Proof of theorem 7.6.
Combining lemma 7.7 and theorem 7.5 we obtain (7.34) and (7.37) where Tf is

replaced by Tεf . It remains to show the Lp convergence (7.35), the L1
w convergence

(7.36) and inequality (7.37) for Tf itself.
We consider first a smooth function f ∈ C∞

0 (Rn) and using the cancellation
property (7.32c) we write

Tεf(x) =

∫
1≤∥y∥

f(x− y)K(y) dy +

∫
ε≤∥y∥≤1

f(x− y)K(y) dy

=

∫
Rn

f(x− y)K1(y) dy +

∫
ε≤∥y∥≤1

(
f(x− y)− f(x)

)
K(y) dy .

(7.42)

Because of the regularity of f , using assumption (7.32a), we have the following
bound which holds for every x in Rn and y ̸= 0

(7.43)
∣∣(f(x− y)− f(x)

)
K(y)

∣∣ ≤ ∥∇f∥∞ ∥y∥ |K(y)|
(7.32a)

≤ ∥∇f∥∞
A

∥y∥n−1
.

Hence, inserting the bound (7.43) in (7.42) we can define for every x the limit

(7.44) Tf(x) := lim
ε→0

Tεf(x) =

∫
Rn

f(x− y)K(y) dy .

Observe that at this stage Tf is a distribution obtained by the convolution between
a smooth compactly supported function and the principal value of K, p.v.K, which
is an order 1 distribution. However using (7.43) again we have

(7.45)
∀x ∈ Rn |Tf(x)− Tεf(x)| ≤

∫
Bε(0)

|f(x− y)− f(x)| |K(y)| dy

≤ Cn∥∇f∥∞ A ε .

Thus Tεf converges uniformly to Tf and hence in Lp
loc(Rn) for any p ≥ 1. Let R > 1

such that f ≡ 0 in Rn \BR(0). For |x| > 4R

K(y)[f(x− y)− f(x)] = K(y) f(x− y)

is supported in BR(x) and one has |K(y) f(x − y)| ≤ 2n∥f∥∞A/|x|n. Hence the
bound (7.45) can be completed by a behavior at infinity as follows :

(7.46)

∀x ∈ Rn |Tf(x)− Tεf(x)| ≤
∫
Bε(0)

|f(x− y)| |K(y)| dy

≤ Cn A
εn

|x|n
∥f∥∞ .

This later inequality implies that Tεf → Tf in Lp(Rn) for any p > 1 and that
|Tεf − Tf |L1

w
converges to zero.
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Let us take now f ∈ Lp(Rn) for p ≥ 1. Since C∞
0 (Rn) is dense in Lp(Rn), using

inequalities (7.16) and (7.17) for Kε ⋆ g - where g is a difference between f and
a finer and finer approximation of it in C∞

0 for the Lp norm - a classical diagonal
argument implies that, for p > 1, Tεf converges strongly in Lp and that, for p = 1,
Tε is Cauchy for the quasi-norm L1

w. This concludes the proof of theorem 7.6. 2

Remark 7.4. The exact cancellation assumption (7.38c) can be relaxed in the state-
ment of theorem 7.6 by requiring only the existence of a constant C > 0 such that
for any 0 < r < R < +∞

(7.47)

∣∣∣∣∫
BR(0)\Br(0)

K(x) dx

∣∣∣∣ ≤ C .

Under this weakened assumption however the convergence of Tεf to Tf does not
necessarily hold in Lp or even almost everywhere but in the distributional sense only
(see a counterexample in [?]). The nature of this convergence nevertheless is not
a main point in the theory the most important one being given by the inequalities
(7.34) and (7.37) which still hold under the weakest assumption (7.47).

7.3.3 The Lp theory for Calderón-Zygmund convolution operators: the
case of homogeneous kernels

It is interesting to look at the case of homogeneous kernels which correspond to
operators of special geometric interest - such as Hilbert Transform for instance. The
following result is obtained as a corollary of theorem 7.6 and has the advantage
to provide a ”translation”, in the special case of homogeneous Kernels, of general
assumptions on K that imply (7.32a), (7.32b) and (7.32c). Precisely we consider
kernels K of the form

(7.48) K(x) =
Ω(x)

∥x∥n
,

where Ω is an homogeneous function of degree 0, i.e., Ω(δx) = Ω(x), for δ > 0. In
other words, the function Ω is radially constant and therefore completely determined
by its values on the sphere Sn−1. Note also that K is homogeneous of degree −n,
i.e., K(δx) = δ−nK(x).

Proposition 7.9. Let K : Rn −→ R be a measurable function given by K(x) =
Ω(x)/∥x∥n where Ω is an homogeneous function of degree 0 satisfying

i)

(7.49)

∫
Sn−1

Ω(x) dσ(x) = 0 .

ii) If we set
ω(δ) = sup

∥x−y∥≤δ
x,y∈Sn−1

∣∣Ω(x)− Ω(y)
∣∣ ,

the following integral is finite:

(7.50)

∫ 1

0

ω(δ)

δ
dδ <∞ .
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Then K satisfies the conditions (7.32a)–(7.32c) and theorem 7.6 can be applied to
K.

Remark 7.5. Observe that the so called Dini condition ii) implies that Ω is con-
tinuous on Sn−1. Moreover observe that if Ω is assumed to be Hölder continuous,
C0,α(Sn−1), for some exponent 1 > α > 0 then the Dini condition ii) is automatically
satisfied.

Proof of proposition 7.9.
The conditions (7.32a), respectively (7.32c), follow directly from (7.50), respec-

tively (7.49) and integration in polar coordinates. In order to establish (7.32b), we
first observe that∫

2∥y∥≤∥x∥

∣∣K(x− y)−K(x)
∣∣ dx ≤

∫
2∥y∥≤∥x∥

∣∣Ω(x− y)− Ω(x)
∣∣

∥x− y∥n
dx

+

∫
2∥y∥≤∥x∥

|Ω(x)|
∣∣∣∣ 1

∥x− y∥n
− 1

∥x∥n

∣∣∣∣ dx .
(7.51)

Since Ω is bounded due to (7.50) and as a consequence of the mean value theorem∣∣∣∣ 1

∥x− y∥n
− 1

∥x∥n

∣∣∣∣ ≤ C∥y∥
∥x∥n+1

,

we conclude by integration in polar coordinates that the second integral on the
right-hand side of (7.51) is finite. Note also that∣∣Ω(x− y)− Ω(x)

∣∣ =

∣∣∣∣Ω( x− y

∥x− y∥

)
− Ω

(
x

∥x∥

)∣∣∣∣
≤ ω

(∥∥∥∥ x− y

∥x− y∥
− x

∥x∥

∥∥∥∥)
by definition of the function ω. Moreover, if 2∥y∥ ≤ ∥x∥, then 1/∥x−y∥n ≤ C/∥x∥n
and also ∥∥∥∥ x− y

∥x− y∥
− x

∥x∥

∥∥∥∥ ≤ C
∥y∥
∥x∥

.

Inserting these estimates in the first integral on the right-hand side of (7.51), we
obtain ∫

2∥y∥≤∥x∥

∣∣Ω(x− y)− Ω(x)
∣∣

∥x− y∥n
dx ≤ C

∫
2∥y∥≤∥x∥

ω
(
C ∥y∥

∥x∥

)
∥x∥n

dx

≤ C

∫ ∞

2∥y∥

ω
(
C ∥y∥

r

)
r

dr .

Changing coordinates δ = C∥y∥/r and using (7.50), we deduce that the last integral
is finite showing that (7.32b) holds and proposition 7.9 is proved. 2
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7.3.4 A multiplier type formulation

It is useful to explicit sufficient conditions on K̂ only that implies the strong type
(p, p) ( for 1 < p < +∞) and the weak type (1, 1) properties of the corresponding

convolution operator T . Such results are calledmultiplier theorems -m(ξ) := K̂(ξ) is
the multiplier associated to T . We shall give more and more sophisticated multiplier
theorem in this book that will play a crucial role in characterizing real-variable
function spaces using the Fourier transform. Multiplier theorems are moreover the
basic tools in the analysis of pseudo-differential operators. Here is maybe the most
elementary one that we will deduce from the previous sections.

Theorem 7.10. Let m be a C∞ function on Rn satisfying :

(7.52)
∀ l ∈ N ∃Cl > 0 s. t. ∀ξ ∈ Rn

|∇lm|(ξ) ≤ Cl |ξ|−l .

Let p ∈ [1,+∞). Define Tm on Lp ∩ L2 by

∀f ∈ Lp ∩ L2(Rn) ∀ξ ∈ Rn T̂mf(ξ) := m(ξ) f̂(ξ) .

Then for p ∈ (1,+∞) there exists Cp,m > 0 such that for any f ∈ Lp ∩ L2

(7.53) ∥Tmf∥Lp ≤ Cp,m ∥f∥Lp ,

and there exists C1,m > 0 such that for any f ∈ L1 ∩ L2

(7.54) sup
α>0

α µ({x ∈ Rn ; |Tmf(x)| > α}) ≤ C1,m ∥f∥L1 .

Hence Tm extends continuously as a linear operator of strong type (p, p) - 1 < p <
+∞ - and weak type (1, 1).

Remark 7.6. It is important to compare at this stage already, before to proceed to
the proof of theorem 7.10 itself, the difference between the assumption (7.52) and
the assumptions we made on K in the previous subsections. Take for instance the
condition |∇K|(x) ≤ C/|x|n+1 that implies the Hörmander condition (7.14) - as it
is established in remark 7.2 c) - would hold if, for instance, we would assume ∇n+1m
to be in L1. Observe that this later condition is just ”at the border” to be implied,
but is not implied, by our assumption (7.52). As it will be seen later in the book,
assumption (7.52) is however very relevant to the theory.

Proof of theorem 7.10. Theorem 7.10 will a direct consequence of theorem 7.5
once we will have proved that assumption (7.52) implies the Hörmander condition
(7.14) for K := m̂ - Observe that (7.52) contains (7.13) already.

In order to establish the Hörmander condition we cannot afford to be as little
cautious as we were in establishing the bound (7.18). We shall use a more refined
argument based on dyadic decomposition in the Fourier variable ξ - the phase space.
This techniques is making use of the Littlewood-Paley decomposition presented in
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chapter ??. Precisely let ψ ∈ C∞
0 (B2(0)) be a smooth non negative function with

compact support in the ball B2(0) such that ψ equals identically 1 on B1(0) and let
ϕ(ξ) := ψ(ξ)−ψ(2ξ). It follows from this definition that ϕ ∈ C∞

0 (Rn \{0}) and that

1 ≡
∑
k∈Z

ϕ(2−kξ) on Rn .

For k ∈ Z we denote
mk(ξ) := ϕ(ξ) m(2−kξ) .

Observe that with this notation

m(ξ) =
∑
k∈Z

mk(2
kξ) .

Denoting Kk(x) := m̂k(x), we have :

(7.55) K(x) := m̂(ξ) =
∑
k∈Z

2−k nKk(2
−kx) .

Using now the assumption (7.52) on m and the definition of mk, it is not difficult
to see that

(7.56) ∀l ∈ N ∃Cl > 0 s.t. ∀k ∈ Z ∥∇lmk∥L∞(Rn) ≤ Cl .

Moreover, since the mk are supported in the fixed compact set B2(0) \ B1/2(0), we
deduce that every Hs norm of mk is bounded independently of k.

Take s > n/2, we then have the existence of C, independent of k such that∫
Rn

(1 + |x|2)s/2|Kk(x)|2 dx = ∥mk∥2Hs ≤ C .

Hence, using Cauchy-Schwarz, we deduce the following bound

(7.57)

∫
|x|>|y|

|Kk(x)| dx

≤
[∫

|x|>|y|

1

(1 + |x|2)s/2
dx

] 1
2
[∫

Rn

(1 + |x|2)s/2|Kk(x)|2 dx
] 1

2

≤ C

(1 + |y|)−n/2+s/4

where C is possibly a new constant but again independent of k.
Similarly as before, ξ mk(ξ) is a function supported in the fixed compact set

B2(0) \B1/2(0) and, hence, (7.56) implies that

(7.58) ∀ l ∈ N ∃Cl > 0 s.t. ∀k ∈ Z ∥∇l(ξ mk(ξ))∥L∞(Rn) ≤ Cl .

Hence for the same reasons as above we obtain a uniform bound, independent of k,
for ∇Kk. Precisely there exists C > 0 such that for every k ∈ Z

(7.59)

∫
Rn

|∇Kk(x)| dx ≤ C < +∞ .
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Let now y ∈ Rn and denote v = y/|y|, we have

(7.60)

∫
Rn

∣∣Kk(x− y)−Kk(x)
∣∣ dx =

∫
Rn

∣∣∣∣∣
∫ |y|

0

∂Kk

∂v
(x+ t v) dt

∣∣∣∣∣ dx
≤ |y|

∫
Rn

|∇Kk|(z) dz ≤ C |y| .

Consider again y ∈ Rn \ {0} and let k0 be the largest integer less than log2 |y|:
k0 = [log2 |y|]. Using (7.57), we obtain∫

|x|>2|y|

∣∣∣∣∣∑
k≤k0

2−nk
[
Kk(2

−k(x+ y)−Kk(2
−kx)

]∣∣∣∣∣ dx
≤ 2

∑
k≤k0

∫
|z|>2−k|y|

|Kk(z)| dz ≤
∑
k≤k0

C

(1 + 2−k|y|)α

where α = −n/2 + s/4 > 0. Hence, we have in one hand

(7.61)

∫
|x|>2|y|

∣∣∣∣∣∑
k≤k0

2−nk
[
Kk(2

−k(x+ y)−Kk(2
−kx)

]∣∣∣∣∣ ≤ C
∑
k≤k0

2α(k−k0)

≤ C

1− 2α
.

In the other hand, using (7.60), we have

(7.62)

∫
|x|>2|y|

∣∣∣∣∣∑
k≥k0

2−nk
[
Kk(2

−k(x+ y)−Kk(2
−kx)

]∣∣∣∣∣
≤
∑
k≥k0

∫
|z|>2−k|y|

∣∣Kk(z + 2−ky)−Kk(z)
∣∣ dz

≤ C
∑
k≥k0

2−k|y| ≤ 2C
∑
k≥k0

2k0−k ≤ 4C

Combining (??), (7.61) and (7.62) gives

(7.63)

∫
|x|>2|y|

|K(x+ y)−K(x)| dx ≤ B < +∞ ,

where B is independent of y ∈ Rn \ {0}. This is the Hörmander condition (7.14)
and theorem 7.10 is proved. 2

7.3.5 Applications: The Lp theory of the Riesz Transform and the Laplace
and Bessel Operators

In this subsection we apply to the Riesz Transform and the Laplace Operator the
Lp continuity of the convolution type Calderón-Zygmund operators that we proved
above.
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For j = 1, . . . , n, we now consider the kernels Kj(x) = Ωj(x)/∥x∥n with

(7.64) Ωj(x) = cn
xj
∥x∥

,

where

cn =
Γ
(
n+1
2

)
π(n+1)/2

.

Observe first that Ωj = cnxj is smooth on Sn−1 and moreover, since Ωj is an odd
function the cancellation property∫

Sn−1

Ωj(x) dσ(x) = 0

also holds. Hence proposition 7.9 can be applied to the kernels Kj. For any 1 ≤ p <
∞, any j = 1 · · ·n and any f ∈ Lp(Rn) the following limit exists (in Lp or L1

w when
p = 1)

(7.65) Rjf(x) = lim
ε→0

Rj,εf(x) ,

where

Rj,εf(x) =

∫
ε≤∥y∥

f(x− y)Kj(y) dy

= cn

∫
ε≤∥y∥

f(x− y)
yj

∥y∥n+1
dy .

Definition 7.11. Riesz Transform For any function f ∈ Lp(Rn), 1 ≤ p < +∞,
the Rn valued measurable map given almost everywhere by

Rf(x) := (R1f(x), · · · , Rnf(x)) ,

is called the Riesz transform of f .

Theorem 7.6 implies the following proposition

Proposition 7.12. For any 1 < p < +∞ and any f ∈ Lp(Rn)

(7.66) ∥Rf∥Lp ≤ Cn,p ∥f∥Lp .

Moreover, for any f ∈ L1(Rn)

(7.67) sup
α>0

α µ({x ∈ Rn ; |Rf(x)| > α}) ≤ Cn ∥f∥L1 .

We now derive the multiplier m(ξ) = (m1(ξ), · · · ,mn(ξ)) corresponding to the
Riesz transform. Precisely we establish the following result.

Proposition 7.13. The following holds

(7.68) R̂jf(ξ) =
i ξj
|ξ|

f̂(ξ) = mj(ξ) f̂(ξ)

i.e. the multiplier corresponding to Rj is

mj(ξ) = i
ξj
|ξ|

.
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Remark 7.7. Observe that the multipliers mj(ξ) of the components Rj of the Riesz
transform R satisfy the main assumption (7.52) of theorem 7.10. Hence combin-
ing the previous proposition together with the theorem 7.10 provides a new proof of
proposition 7.12.

Proof of proposition 7.13. For a C∞
0 function f we have that

Kj ⋆ f = cn PV

(
xj

|x|n+1

)
⋆ f = − cn

n− 1

∂

∂xj
|x|−n+1 ⋆ f .

Hence

(7.69) mj(ξ) = 2iπ
cn

n− 1
ξj ̂|x|−n+1 .

In order to identify mj it remains to compute the Fourier transform of |x|−n+1.
Denoting dσn−1 the canonical volume form on the n− 1 sphere, one has for ξ ̸= 0:

̂|x|−n+1(ξ) = lim
δ→0

̂e−π δ |x|2

|x|n−1
(ξ)

=

∫ +∞

0

∫
Sn−1

e−π δ ρ2 e2π i ρ ζ·ξ dσn−1(ζ) dρ .

Denote Sn−1
ξ := {ζ ∈ Sn−1 ; ζ · ξ ≥ 0}. Using this notation, the previous identity

becomes

̂|x|−n+1(ξ) =

∫ +∞

0

∫
Sn−1
ξ

e−π δ ρ2 e2π i ρ ζ·ξ dσn−1(ζ) dρ

+

∫ +∞

0

∫
Sn−1\Sn−1

ξ

e−π δ ρ2 e2π i ρ ζ·ξ dσn−1(ζ) dρ

=

∫ +∞

0

∫
Sn−1
ξ

e−π δ ρ2
[
e2π i ρ ζ·ξ − e−2π i ρ ζ·ξ] dσn−1(ζ) dρ

=

∫
Sn−1
ξ

dσn−1(ζ)

∫
R
e−π δ ρ2 e2π i ρ |ξ|α dρ ,

where α := ζ · ξ/|ξ|. Using the fact that the Fourier transform of e−π δ t2 is equal at

the point τ to δ−1/2 e−π (τ/
√
δ)2 , we obtain

(7.70) ̂|x|−n+1(ξ) =

∫
Sn−1
ξ

1√
δ
e
−π

(
|ξ|α√

δ

)2

dσn−1(ζ) .

We interpret α = z1 as being the first coordinate of a positive orthonormal basis
containing the unit vector ξ/|ξ| as first vector. We have

dσn−1 =
n∑

i=1

(−1)i−1 zi dz1 · · · dzi−1 ∧ dzi+1 · · · dzn .

154



We decompose dσn−1 is the following way : dσn−1 = dz1 ∧ dσn−2 + z1 dz2 · · · dzn

(7.71)

∫
Sn−1
ξ

1√
δ
e
−π

(
|ξ|α√

δ

)2

dσn−1(ζ) =

∫
Sn−2

dσn−2

∫ 1

0

1√
δ
e
−π

(
|ξ| z1√

δ

)2

dz1

+

∫
Sn−1
ξ

z1√
δ
e
−π

(
|ξ| z1√

δ

)2

dz2 · · · dzn .

Since , as δ goes to zero, z1√
δ
e
−π

(
|ξ| z1√

δ

)2

is converging to zero uniformly on any

compact subset of Sn−1
ξ \ {ξ/|ξ|}, we obtain that

(7.72)

∫
Sn−1
ξ

1√
δ
e
−π

(
|ξ|α√

δ

)2

dσn−1(ζ) = |Sn−2| |ξ|−1

∫ |ξ|√
δ

0

e−πt2 dt+ oδ(1) ,

where |Sn−2| denotes the volume of the n−2 unit sphere which is equal to 2 π(n−1)/2/Γ((n−
1)/2) - Γ is the Euler Gamma Function. Recall that∫ +∞

0

e−πt2 dt =
1

2
.

Hence, combining (7.69) and (7.72) we obtain that

mj(ξ) = 2i
π

n+1
2

Γ
(
n−1
2

) cn
n− 1

ξj
|ξ|

=
π

n+1
2

Γ
(
n+1
2

) cn ξj|ξ| = i
ξj
|ξ|

.

where we have used that Γ(z + 1) = z Γ(z). We have proved proposition 7.13. 2

Let f ∈ C2
0(Rn) and note that the Fourier transform of its second order partial

derivatives are given by

∂̂k∂jf(ξ) = (i ξk)(i ξj) f̂(ξ) = −ξkξj f̂(ξ) .

In particular, we have for the Fourier transform of the Laplace operator ∆̂f(ξ) =

−∥ξ∥2 f̂(ξ). This enables us to write the following:

∂̂k∂jf(ξ) = −ξkξj f̂(ξ) =
i ξk
∥ξ∥

i ξj
∥ξ∥

∆̂f(ξ)

(7.68)
=

i ξk
∥ξ∥

R̂j(∆f)(ξ)
(7.68)
= ̂(

Ri(Rj(∆f))
)
(ξ) .

Thus, we get

(7.73) ∂i∂jf = Ri

(
Rj(∆f)

)
.

From (7.66), it then follows for 1 < p < +∞ that

∥∂i∂jf∥Lp =
∥∥Ri

(
Rj(∆f)

)∥∥
Lp

≤ Cn,p ∥Rj(∆f)∥Lp ≤ C2
n,p ∥∆f∥Lp ,

Using the density of C∞
0 (Rn) in the Sobolev space W 2,p(Rn), we have proved the

following result.
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Proposition 7.14. Let 1 < p < +∞. There exists a positive constant Cp > 0 such
that, for any function f in the Sobolev Space W 2,p(Rn) the following identity holds

∥∇2f∥Lp(Rn) ≤ Cp ∥∆f∥Lp(Rn) .

where ∇2f denotes the Hessian matrix of f .

The previous result can be improved when the operator ∆ is made inhomoge-
neous and more coercive by adding −id to it. Precisely, the following result which
says that the inverse of the Bessel Operator, given by (∆− id)−1, is continuous from
Lp(Rn) into W 2,p(Rn) is a direct application of theorem 7.10.

Proposition 7.15. Let 1 < p < +∞. Let f be an Lp function on Rn. Then there
exists a unique tempered Distribution u in S ′(Rn) such that (∆− id)u = f moreover
u belongs to the Sobolev Space W 2,p(Rn) and the following inequality holds

∥u∥W 2,p ≤ Cp ∥f∥Lp(Rn) .

Proof of Proposition 7.15. A tempered Distribution f being given and f̂ being
its Fourier transform, −(1+|ξ|2)−1f̂(ξ) is the Fourier transform of the only tempered
Distribution solution to

∆u− u = f in S ′(Rn) .

It is straightforward to check that the multipliers −(1+ |ξ|2)−1, −iξj (1+ |ξ|2)−1 and
ξk ξj (1 + |ξ|2)−1 satisfy the assumption (7.52) of theorem 7.10 and hence proposi-
tion 7.15 follows. 2

7.3.6 The cases p = 1 and p = +∞

As for the sub-linear maximal operator, Calderón-Zygmund convolution operators
are usually not bounded from L1 into L1. The following proposition illustrates this
fact.

Proposition 7.16. Let R be the Riesz Transform and let f ∈ L1(Rn) such that
f ≥ 0 on Rn and f ̸≡ 0 then the measurable function Rf is not in L1(Rn).

Proof of proposition 7.16. Since f is in L1(Rn), f̂ is a continuous function

and moreover f̂(0) =
∫
Rn f(x) dx > 0.

mj(ξ) = ξj/|ξ| is discontinuous at the origin and hence, since f̂ is continuous at

the origin and since f̂(0) ̸= 0, mj(ξ) f̂(ξ) is also discontinuous at the origin.

Assuming Rf ∈ L1(Rn) this implies that R̂f is continuous too on Rn and in
particular at 0, which contradicts the previous assertion. 2

Lemma 7.17. There exists f ∈ L1(R2) such that, for any u ∈ S ′(R2) satisfying

(7.74) ∆u = f in S ′(R2),

then ∇2 /∈ L′
Loc(R2).
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Proof of Lemma 7.17. We choose

f(x) :=
1D2

1/2
(x)

|x|2 Log2|x|
,

where 1D2
1/2

(x) is the characteristic function of the disc of radius 1/2 and centered

at the origin. One easily verifies that f ∈ L1(R2). We are now looking for an axially
symmetric solution of (7.74) in S ′(R2). That is, we look for u(x) = v(|x|) and we
use the conventional notation r = |x|. V should then satisfy

V̈ +
V̇

r
=

1[0,1/2](r)

r2 Log21/2
in R∗

+

or, in other words,
d

dr
(r V̇ ) =

1[0,1/2](r)

r Log2 r
.

For this to be satisfied, it suffices

V̇ (r) =


1

r Log r−1
for r ∈

(
0,

1

2

]
1

r Log r2
for r >

1

2

.

This holds in particular if

V (r) =


+ Log

[ 1

Log r−1

]
for r ∈

(
0,

1

2

]
1 +

Log r

Log 2
− Log Log 2 for r >

1

2

.

Observe that u(x) := v(|x|) ∈ S ′(R2). By construction, we have

∆u(x) = f(x) in S ′(R2\{0}) .

Let χ(x) be a cut-off function in C∞
c B1(0)) with χ ≡ 1 on B1/2(0). Denote χε(x) =

χ(x
ε
). For any φ ∈ S(R2) one has∫

φ[∆u− f(x)] dx+

∫
χεφ[∆u− f(x)] dx.

Since f ∈ L1(R2)

(7.75) lim
ε→0

∫
χεφ f(x) dx = 0.

We write ∫
R2

χεφ(x)∆u(x) dx = −
∫
R2

∇χε ∇u φ(x) dx

+

∫
R2

χε ∇u · ∇φ(x) dx.
(7.76)
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Oberseve that for |x| < 1
2

∇u = V̇ (r)
∂

∂r
=

1

r Log r−1

∂

∂r
.

Since ∫
Bε(0)

|∇u|2 dx = 2π

∫ ε

0

dr

r(Log r−1)2
=

2π

Log ε−1
,

we have

lim
ε→0

∫
Bε

|∇u|2 dx = 0.

Hence this last fact implies

lim
ε→0

∣∣∣∣ ∫
R2

χε ∇u · ∇φ(x) dx
∣∣∣∣ ≤ lim

ε→0
∥∇φ∥∞ ∥χ∥∞ ε

[ ∫
Bε(0)

|∇u|2 dx
] 1

2

= 0.

Moreover we have also

lim
ε→0

∣∣∣∣ ∫
Rn

∇χε · ∇uφ
∣∣∣∣ ≤ lim

ε→0

[ ∫
Bε(0)

|∇u|2 dx
] 1

2

= 0.

Hence we have proved
∆u = f in S ′(R2).

A classical computation gives for |x| < 1
2

2∑
i,j=1

xi xj
r2

∂2u

∂xi, ∂xj
=
∂2u

∂r2
= − 1

r2 Log r−1
+

1

r2(Log r)2
.

Hence ∫
B1/2

∣∣∣∣ 2∑
i,j=1

xi xj
r2

∂2u

∂xi ∂xj

∣∣∣∣ dx = +∞

and we cannot have that ∆2u ∈ L1
loc(R2).

This being established, if we make a slightly stronger integrability assumption
on the function f such as f ∈ L1 logL1(Rn), then, in the similar way to the case of
the maximal sub-linear operator, Tf is in L1

loc.

Theorem 7.18. Let T be a convolution operator satisfying the assumptions of either
theorem 7.5, theorem 7.6, theorem 7.10 or proposition 7.9. Let f be a measurable
function in L1 logL1(Rn), then Tf ∈ L1

loc(Rn) and for any measurable subset A of
finite Lebesgue measure the following inequality holds

(7.77)

∫
A

|Tf(y)| dy ≤ CT

∫
Rn

|f(y)| log

(
e+ µ(A)

|f(y)|
∥f∥L1

)
dy ,

where CT > 0 only depends on T .
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Proof of theorem 7.18. We use the notations from the proof of theorem 7.5. For
any positive number α we proceed to the Calderón-Zygmund decomposition of f :
f = gα + bα. -we add the subscript α in order to insists on the fact that the result
of the decomposition depends on α. Let δ > 0 to be fixed later and write

(7.78)

∫
A

|Tf |(x) dx =

∫ δ

0

µ ({x ∈ A ; |Tf(x)| > α}) dα

+

∫ +∞

δ

µ ({x ∈ A ; |Tf(x)| > α}) dα .

We use the decomposition f = gα + bα in order to deduce :

(7.79)
µ({x : |Tf(x)| > α}) ≤ µ({x : |Tgα(x)| > α/2})

+µ({x : |Tbα(x)| > α/2}) .

We recall that, given f ∈ L1
loc(Rn), its Hardy–Littlewood maximal function is

Mf(x) := sup
r>0

−
∫
Br(x)

|f |(y) dy.

We have, using the embedding L2(Rn) ↪→ L2,∞(Rn)

(7.80)

∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| >

α

2

})
dα ≤ cn

∫ +∞

δ

∥gα∥2L2(Rn)

dα

α2
.

We decompose ∫
Rn

|gα|(x)2dx =

∫
Rn\Ωα

|gα|2(x) dx+
∫
Ωα

|gα|2(x) dx,

where Ωα is the “bad set” away from which gα ≡ f . Recall moreover that

sup
x∈Ωα

|gα|(x) ≤ 2nα

and
|f(x)| ≤ α in Rn\Ωα.

Combining these facts with (7.80) give:∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| <

α

2

})
dα ≤ Cn

∫ +∞

δ

dα

α2

∫
|f |≤α

|f |2(x) dx

+

∫ +∞

δ

22n
α2

α2
µ(Ωα) dα.

(7.81)

Using Fubini, we have in one hand∫ +∞

δ

dα

α2

∫
|f |≤α

|f |2(x) dx =

∫
Rn

|f |2(x) dx
∫ +∞

max{δ,|f |(x)}

dα

α2

≤
∫
Rn

|f |2(x)
max{δ, |f |(x)}

dx ≤ ∥f∥L1(Rn).

(7.82)
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In the other hand, we recall that the bad set Ωα is the union of disjoint cubes (Ck)k∈N
and on each of these cubes the average of |f | is larger than α. Hence we have

µ(Ωα) =
∑
k∈N

µ(Ck) ≤ α−1
∑
k∈N

∫
Ck

|f |(x) dx

= α−1

∫
Ωα

|f |(x) dx.

We write then

µ(Ωα) ≤ α−1

∫
Ωα

|f |(x) dx =α−1

∫
Ωα∩{x;|f |(x)>α

2
}
|f |(x) dx

+ α−1

∫
Ωα∩{x;|f |(x)<α

2
}
|f |(x) dx

≤ µ(Ωα)

2
+ α−1

∫
|f |>α

2

|f |(x) dx.

Thus we just proved

(7.83)
µ(Ωα)

2
≤ α−1

∫
|f |>α

2

|f |(x) dx.

Combining (7.81), (7.82) and (7.83), we finally obtain

∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| >

α

2

})
dα ≤ Cn

[
∥f∥L1 +

∫ +∞

δ

dα

α

∫
|f |>α

2

|f |(x) dx
]

≤Cn

[
∥f∥L1 +

∫
|f |(x) Log +

(2|f |(x)
δ

)]
.

(7.84)

Now we bound the contribution of the action of T on the bad part. We have seen
in the proof of the primitive formulation of Lp theorem for convolution Calderón-
Zygmund kernels that the following inequality holds∫

Rn\Ω̃α

|T bα| ≤ C(T )

∫
Ω̃α

|f |(x) dx,

where Ω̃α =
⋃

k∈N C̃k and C̃k are the cubes obtained from the Ck by dilating by the
factor 2

√
n leaving the cube centers fixed.

For any β > 0, we bound

µ({x ∈ A : |Tbα|(x) ≥ β}) ≤ µ(Ω̃α) + µ({x ∈ Rn\Ω̃α; |T bα(x)| > β}

≤ (2
√
n)n µ(Ωα) +

Cn

β

∫
Rn\Ω̃α

|T bα|(x) dx

≤ (2
√
n)n µ(Ωα) +

Cn

β

∫
Ω̃α

|f |(x) dx.
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We apply this inequality to β = α
2
and we integrate between δ and +∞. We obtain∫ +∞

δ

µ
({
x ∈ A : |Tbα|(x) ≥

α

2

})
dα ≤ Cn

∫ +∞

δ

µ(Ωα) dα

+ Cn

∫ +∞

δ

dα

α

∫
Ω̃α

|f |(x) dx.

We decompose again

1

α

∫
Ω̃α

|f |(x) dx ≤ 1

α

∫
{x∈Ω̃α;|f |(x)<α

2
}
|f |(x) dx+ 1

α

∫
|f |>α

2

|f |(x) dx

≤ Cn µ(Ωα) +
1

α

∫
|f |>α

2

|f |(x) dx.

Hence we have proved∫ +∞

δ

µ
({
x ∈ A : |Tgα(x)| ≥

α

2

})
dα ≤ c

∫ +∞

δ

µ(Ωα) dα

+ c

∫ +∞

δ

dα

α

∫
|f |> dα

α

|f |(x) dx.

Using (7.83) again, we then have

(7.85)

∫ +∞

δ

µ
({
x ∈ A : |Tbα|(x) ≥

α

2

})
≤ c

∫
Rn

|f |(x) Log +
(2|f |(x)

δ

)
dx,

where c depends on T . Combining (7.84) and (7.85) together with (7.85), we obtain∫
A

|T f |(x) ≤ δ µ(A) + c

∫
Rn

|f |(x) Log
[
e+

2|f |(x)
δ

]
.

The inequality (??) follows by taking δ = 2 ∥f∥L1/µ(A). This concludes the proof of
theorem 7.18. 2
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8 The Lp−Theorem for Littlewood Paley decom-

positions

8.1 Bernstein and Nikolsky inequalities

Theorem 8.1. (Bernstein inequality)

Let p ∈ [1,+∞]. There exists a constant Cn,p > 1 such that, for any k ∈ N∗ and
any f ∈ Lp(Rn) satisfying

supp f̂ ⊂ B2k(0)\B2k−1(0),

then ∇f ∈ Lp(Rn) and we have

(8.1) C−1
n,p ∥f∥Lp(Rn) ≤ 2−k ∥∇f∥Lp(Rn) ≤ Cn,p ∥f∥Lp(Rn).

2

Proof of Theorem 8.1. Let χ be a cut of function in C∞
c (Rn) such that{

χ ≡ 0 in B 1
4
(0) ∪

(
Rn\B4(0)

)
χ ≡ 1 in B1(0)\B 1

2
(0).

By assumption we have

f̂(ξ) = χ(2−kξ) f̂(ξ) in S ′(Rn).

Using Proposition ??, we deduce

f(x) = (2π)−
n
2 χ̌(2kx) 2kn ∗ f(x).

This implies for any j = 1, . . . , n (using Proposition ??)

∂xj
f = (2π)−

n
2 2k(n+1) ∂xj

χ̌(2kx) ∗ f in S ′(Rn).

Since χ ∈ C∞
c (Rn), ∂xj

χ̌ ∈ S(Rn) and then in particular ∂xj
χ̌ ∈ L1(Rn). Using

Young inequality, we deduce that

∥∇f∥Lp(Rn) ≤ Cn 2k ∥∇χ̌∥L1(Rn) ∥f∥Lp(Rn).

This implies the second inequality in (8.1).

We shall now present the proof of the first inequality in (8.1) in the particular
case where p ∈ (1,+∞).

For the limiting cases respectively p = 1 and p = +∞, we shall need a multiplier
theorem that takes into account the support of the Fourier transform and that we
shall prove in Chapter 7 only. Recall from Chapter 1 that for any j ∈ {1, . . . , n}

∂̂xj
f = −i ξj f̂ .

162



Multiplying the identity by iξj and summing out j gives10

χ
(
2−kξ

) n∑
j=1

i ξj
|ξ|2

∂̂xj
f = f̂ in S ′(Rn).

Denote

mj,k(ξ) := i 2k
χ(2−kξ)

|ξ|2
ξj

= i χ(2−kξ)
2−k ξj
|2−kξ|2

.

We have mj,k(ξ) = mj(2
−kξ) where

mj(η) := i
χ(η) ηj
|η|2

∈ C∞
c (Rn).

Hence, it is straightforward to prove that

∀ℓ ∈ Nn ∃Cℓ > 0 s.t. sup
j

|∂ℓmj,k(ξ)| ≤
Cℓ

|ξ||ℓ|
.

We can use the multiplyer Theorem 7.10 to deduce

2k ∥f∥Lp(Rn) ≤ Cp,n ∥∇f∥Lp(Rn).

This is the first inequality in (8.1) and this concludes the proof of Theorem 8.1 in
the case p ∈ (1,+∞). The general case is postponed to Chapter 7.

While the second inequality in (8.1) looks a bit like a “reverse Poincaré inequal-
ity”, the following theorem could be interpreted as some sort of “reverse Hölder
inequality”.

Theorem 8.2. There exists Cn > 0 such that for any 1 ≤ p ≤ q ≤ +∞, for any
k ∈ N and any f ∈ Lp(Rn) satisfying

supp f̂ ⊂ B2k(0),

then f ∈ Lq(Rn) and the following inequality holds

(8.2) ∥f∥Lq(Rn) ≤ Cn (2k)
n
p
−n

q ∥f∥Lp(Rn).

2

Proof of Theorem 8.2. Let fk(x) := 2kn f(2kx). We have then

f̂k(ξ) = f̂(2−kξ)

which gives supp f̂k ⊂ B1(0).

10We are using here the fact that f̂ is supported away from the origin.
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Let χ now be a function in C∞
c (Rn) such that{
χ ≡ 1 on B1(0)

χ ≡ 0 on Rn\B2(0).

Because of the choice of χ we have

f̂k(ξ) = χ(ξ) f̂k(ξ).

Using Proposition ??, we deduce

fk = (2π)−
n
2 χ̌ ∗ fk .

Since we only consider the case p < q and since p ≥ 1, we have

0 <
1

p
− 1

q
< 1 .

Hence there exists r ∈ (1,∞) such that

1− 1

r
=

1

p
− 1

q
.

Since χ̌ ∈ S(Rn), we have in particular χ̌ ∈ L1(Rn) and Young inequality gives then

∥fk∥Lq(Rn) ≤ (2π)−
n
2 ∥χ̌∥L1(Rn) ∥fk∥Lp(Rn).

Hölder inequality gives

∥χ̌∥L1(Rn) ≤ ∥χ̌∥1−β
L1(Rn) ∥χ̌∥

θ
L∞(Rn),

where θ = 1− 1
r
. Choose cn = max{∥χ̌∥L1 , ∥χ̌∥L∞} and we have proved

∥fk∥Lq(Rn) ≤ Cn ∥fk∥Lp(Rn).

(8.2) follows by substituting fk(x) = 2−nkf(2−kx). This concludes the proof of
Theorem 8.2. 2

8.2 Littlewood Paley projections

In the proof of Theorem 7.10 we introduced a partition of unity over the phase space
with each function φk = φ(2−kξ) being supported in the dyadic annuliB2k+1(0)\B2k−1(0).
We shall consider the same partition of unity of the phase space but truncated at 0.
Precisely, let ψ ∈ C∞

c (Rn) such that{
ψ(ξ) ≡ 1 in B1(0)

ψ(ξ) ≡ 0 in Rn\B2(0),

and denote φ(ξ) := ψ(ξ)− ψ(2ξ). We have clearly

suppφ ⊂ B2(0)\B 1
2
(0).
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For k > 0 we take φk(ξ) := φ(2−kξ) while for k = 0 we take φ0(ξ) = ψ(ξ). This
gives

N∑
k=0

φk(ξ) = ψ(2−Nξ).

This implies that ∑
k∈N

φk(ξ) = lim
N→+∞

N∑
k=0

φk(ξ) ≡ 1 in Rn.

Definition 8.3. Let f ∈ S(Rn) and k ∈ N. We define the k-th Littlewood-Paley
projection of f associated to the partition of unity (φk)k∈N to be fk := F−1(φkf̂).

Because of Bernstein theorem 8.1, we have in particular, by iterating (8.1):

∀p ∈ [1,∞] ∀k ∈ N ∀q ∈ N sup
|ℓ|=q

∥∂ℓfk∥Lp(Rn) ∼ 2kq ∥fk∥Lp(Rn).

We have for k > 0 (using Proposition ??)

(8.3) fk = 2kn φ̌ (2kx) ∗ f (2π)−
n
2 .

Hence we deduce that for any p ∈ [1,∞]

(8.4) sup
k∈N

∥fk∥Lp(Rn) ≤ Cn,φ ∥f∥Lp(Rn).

By the triangular inequality we also have trivially

(8.5) ∥f∥Lp(Rn) ≤
∑
k∈N

∥fk∥Lp(Rn).

The goal of the present chapter is to prove that for any p ∈ (1,+∞)

∥f∥Lp(Rn) ∼
∥∥∥(∑

k∈N

|fk|2
) 1

2
∥∥∥
Lp(Rn)

.

To that aim we have to present briefly the Lp-spaces for families.

8.3 The spaces Lp(Rn, ℓq)

We recall the classical notation for any sequence (ak)k∈N and any q ∈ [1,∞)

∥ak∥ℓq :=
(∑

k∈N

|ak|q
) 1

q

and

∥ak∥ℓ∞ := sup
k∈N

|ak| .
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It is a well-known fact that RN or CN equipped with lack of these norms is complete
and then define a Banach space.

We now define

Lp(Rn, ℓq) :=
{
(fk)k∈N s.t. fk ∈ Lp(Rn)

(∑
k∈N

|fk|q
) 1

q
(x) < +∞

for almost every x ∈ Rn and
∥∥∥(∑

k∈N

|fk|q
) 1

q
∥∥∥
Lp(Rn)

< +∞
}
.

We have the following proposition:

Proposition 8.4. For any p ∈ [1,∞] and q ∈ [1,∞] the space Lp(Rn, ℓq) defines a
Banach space. Moreover for p ∈ (1,∞) and q ∈ (1,∞)(

Lp(Rn, ℓq)
)′
= Lp′(Rn, ℓq

′
).

Proof of Proposition 8.4. We first prove that Lp(Rn, ℓq) is complete. Let (f j
k)k∈N

be a Cauchy sequence in Lp(Rn, ℓq). Then for each k ∈ N (f j
k)j∈N is a Cauchy

sequence in Lp(Rn). Since Lp(Rn) defines a Banach space, there exists (f∞
k )k∈N such

that
∀k ∈ N f j

k −→ f∞
k strongly in Lp(Rn).

This implies in particular that for any N ∈ N( N∑
k=0

|f j
k |

q
) 1

q −→
( N∑

k=0

|f∞
k |q
) 1

q
strongly in Lp(Rn).

Let FN(x) := (
∑N

k=0 |f∞
k |q)

1
q . Because of the previous strong convergence we have

∥FN∥Lp(Rn) ≤ lim sup
j→+∞

∥∥∥( N∑
k=0

|f j
k |

q
) 1

q
∥∥∥
Lp(Rn)

≤ lim sup
j→+∞

∥(f j
k)∥Lp(Rn,ℓq) < +∞.

(FN)N∈N is a monotone sequence of Lp functions whose Lp norm is uniformly bounded.
By using Beppo Levi monotone convergence theorem, we deduce that FN strongly

converges in Lp to a limit which is obvioulsly equal to (
∑

k=0 |f∞
k |q)

1
q . It implies

that (f∞
k )k∈N ∈ Lp(Rn, ℓq). It remains to prove

(f j
k)k∈N −→ (f∞

k )k∈N strongly in Lp(Rn, ℓq).

Let ε > 0 and let respectively j0 ∈ N and N0 ∈ N such that

i) sup
j,ℓ≥j0

∥∥∥(∑
k∈N

|f j
k − f ℓ

k|q
) 1

q
∥∥∥
Lp(Rn)

<
ε

3
.

ii)
∥∥∥( ∑

k>N0

|f∞
k |q
) 1

q
∥∥∥
Lp(Rn)

<
ε

3
.

iii)
∥∥∥( ∑

k>N0

|f j0
k |q
) 1

q
∥∥∥
Lp(Rn)

<
ε

3
.
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We then deduce that

sup
j≥j0

∥∥∥( ∑
k>N0

|f j
k |

q
) 1

q
∥∥∥
Lp(Rn)

<
2ε

3
.

Hence we have

lim sup
j→+∞

∥∥∥( ∑
k>N0

|f j
k − f∞

k |q
) 1

q
∥∥∥
Lp(Rn)

< ε.

Since for each k ∈ N f j
k → f∞

k strongly in Lp(Rn), we have

lim
j→+∞

∥∥∥( N0∑
k=0

|f j
k − f∞

k |q
) 1

q
∥∥∥
Lp(Rn)

= 0.

Hence for j large enough, we have

∥∥∥( +∞∑
k=0

|f j
k − f∞

k |q
) 1

q
∥∥∥ < ε

which implies the convergence of (f j
k)k∈N towards (f∞

k )k∈N in Lp(Rn, ℓq).
We prove now the second part of Proposition 8.4. Let p and q in (1,+∞]. Let T ∈

(Lp(Rn, ℓq))′. Let k0 ∈ N and denote Lp
k0
(Rn, ℓq) the subspace of (fk)k ∈ Lp(Rn, ℓq)

such that fk ≡ 0 for k ̸= k0 = 0. Lp
k0
(Rn, ℓq) is obviously isomorphic to Lp(Rn) and,

using Riesz representation theorem, we define the existence of gk0 ∈ Lp′(Rn) such
that

T|
L
p
k0

(Rn,ℓq)

(
(fk)

)
=

∫
Rn

fk0(x) gk0(x) dx.

Let

Lp
≤k0

(Rn, ℓq) :=
{
(fk)k∈N ∈ Lp(Rn, ℓq) such that fk ≡ 0 for k > k0

}
.

By linearity we have

T|
L
p
≤k0

(Rn,ℓq)

(
(fk)

)
=
∑
k≤k0

∫
Rn

fk(x) gk(x) dx.

Let
Πk0 : Lp(Rn, ℓq) −→ Lp

≤k0
(Rn, ℓq)

(fk)k∈N −→ (fk)k≤k0 .

It is not difficult to prove that for any (fk)k∈N

lim
k0→+∞

Πk0

(
(fk)k∈N

)
= (fk)k∈N in Lp(Rn, ℓq).

Hence, by continuity of T , we deduce that

∀(fk)k∈N ∈ Lp(Rn, ℓq) T
(
(fk)k∈N

)
=
∑
k∈N

∫
Rn

fk(x) gk(x) dx.
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It remains to prove that (gk)k∈N ∈ Lp′(Rn, ℓq
′
).

Let k0 ∈ N and denote fk0
k ∈ Lp

≤k0
(Rn, ℓq), the element defined by

∀k ≤ k0 fk0
k :=

gk
|gk|2−q′( k0∑

k=0

|gk|q′
)1− p′

q′
.

We have that ∀k ≤ k0

|fk0
k |(x) ≤ |gk|q

′−1

|gk|q′−p′
= |gk|

p′
p ∈ Lp(Rn).

Because of the continuity of T we have in one hand

∣∣T((fk0
k )
)∣∣ ≤ CT ∥(fk0

k )∥Lp(Rn,ℓq) = CT

[ ∫
Rn

( k0∑
k=0

|gk|q
′
) p′

q′
] 1

p

.

In the other hand, a direct computation gives

T
(
(fk0

k )
)
=

∫
Rn

( k0∑
k=0

|gk|q
′
(x′)
) p′

q′
dx.

Since p > 1, we have proved∫
Rn

( k0∑
k=0

|gk|q
′
(x)
) p′

q′
dx ≤ CT,p .

The constant in the right-hand side of the inequality is independent of k0. Hence
(gk) ∈ Lp′(Rn, ℓq

′
) and this concludes the proof of Proposition 8.4. 2

8.4 The Lp-theorem for Littlewood-Paley decompositions

The goal of the present subsection is to give a proof of the following theorem which
is the main achievement of the course.

Theorem 8.5. Let (φk)k∈N be a dyadic partition of unity of the phase space and let
p ∈ (1,∞), there exists 1 < C such that for any f ∈ Lp(Rn):

(8.6) C−1 ∥f∥Lp(Rn) ≤ ∥(fk)k∈N∥Lp(Rn,ℓ2) ≤ C ∥f∥Lp ,

where (fk)k∈N is the Littlewood-Paley decomposition of f relative to the partition of
unity (φk)k∈N. 2

Proof of Theorem 8.5. For any f ∈ S(Rn), we denote ∀x ∈ Rn

S(f)(x) :=
(∑

k∈N

|fk|2(x)
) 1

2
.
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By Minkowski inequality, we deduce that S is a sub-additive map.
We first prove that S is strong (2, 2). Indeed, using Plancherel theorem, we have∫

Rn

|S(f)|2(x) dx =
∑
k∈N

∫
Rn

|fk|2(x) dx

=
∑
k∈N

∫
Rn

f̂k(ξ) f̂k(ξ) dξ

=
∑
k∈N

∫
Rn

φ2
k(ξ) |f̂ |2(ξ) dξ .

(8.7)

Since suppφk ⊂ B2k+1(0)\B2k−1 , each ξ ∈ Rn is contained in the support of at most
3 different φk. Hence we have the bound

(8.8) ∀ξ ∈ Rn
∑
k∈N

φ2
k(ξ) ≤ 3 ∥φ∥2L∞(Rn).

Combining (8.7) and (8.8), we obtain that S is indeed strong (2, 2).
We claim now that S is weak (1, 1). Let Kk(x) := φ̌k(x). In particular for k > 1,

we have Kk(x) = 2kn φ̌(2kx) and

fk = (2π)−
n
2 2kn φ̌(2kx) ∗ f.

In order to prove the claim, we shall be using the following lemma which is the
Hörmander condition for families:

Lemma 8.6. (Hörmander condition for families)

Under the notations above, we have the existence of B > 0 such that

(8.9) ∀y ∈ Rn

∫
|x|>2|y|

∥Kk(x− y)−Kk(x)∥ℓ2 dx ≤ B < +∞.

2

Proof of Lemma 8.6. Let y ̸= 0 and denote v := y
|y| . For any x ∈ Rn, one has

|Kk(x− y)−Kk(x)| ≤
∫ |y|

0

∣∣∣∂Kk

∂v

∣∣∣(x− tv) dt.

Using Minkowski integral inequality, one has∫
|x|>2|y|

∥Kk(x− y)−Kk(x)∥ℓ2 dx ≤
∫
|x|>2|y|

(∑
k∈N

∣∣∣∣ ∫ |y|

0

∣∣∣∂Kk

∂v

∣∣∣(x− tv) dt

∣∣∣∣2) 1
2

dx

≤
∫
|x|>2|y|

∫ |y|

0

∥∇Kk∥ℓ2(x− tv) dt dx.
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We interchange the order of integration and we proceed to the change of variable
z := x− tv. This gives

(8.10a)

∫
|x|>2|y|

∥Kk(x− y)−Kk(x)∥ℓ2 dx ≤ |y|
∫
|z|>|y|

∥∇Kk∥ℓ2(z) dz.

We have for each k ∈ N∗

|∇Kk|(z) = 2k(n+1)|∇φ̌|(2kz).

Since φ ∈ C∞
c (Rn), we have that φ̌ ∈ S(Rn) and hence, obviously, we have in

particular
|∇φ̌|(x) ≤ C min{1; |x|−n−2}.

This implies then

|∇Kk|(z) ≤ C min{2k(n+1); 2−k |z|−n−2}.

For each z we denote by kz the integer part of

log2 |z|−1
(
i.e. kz := [log2 |z|−1]

)
.

We write(∑
k∈N

|∇Kk|2(z)
) 1

2 ≤
(∑

k≤kz

|∇Kk|2(z)
) 1

2
+
( ∞∑

k=kz+1

|∇Kk|2(z)
) 1

2

≤ C
(∑

k≤kz

22k(n+1)
) 1

2
+ C |z|−n−2

( ∞∑
k=kz+1

2−2k
) 1

2

≤
√
2 C 2kz(n+1) +

C√
2
|z|−n−2 2−kz .

Using the fact that 2kz ∼ 1
|z| , we deduce

(∑
k∈N

|∇Kk|2(z)
) 1

2 ≤ C ′

|z|n+1
.

Inserting this last inequality in (8.10) gives then∫
|x|>2|y|

∥Kk(x− y)−Kk(x)∥ℓ2 dx ≤ C ′ |y|
∫
|z|>|y|

dz

|z|n+1

≤ B |y|
∫ +∞

|y|

dρ

ρ2

≤ B < +∞.

This concludes the proof of Lemma 8.6. 2
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Continuation of the proof of Theorem 8.5. Let α > 0, we proceed to a
Calderón-Zygmund decomposition of f for the threshold α. We write f = gα + bα
where gα and bα are respectively the good and bad parts of the decomposition. Using
the subadditivity of S, we have

(8.10b) µ
({
x;S(f)(x) > α

})
≤ µ

({
x;S(gα)(x) >

α

2

})
+µ
({
x;S(bα)(x) >

α

2

})
.

Using the fact that S is strong (2, 2), we deduce

α2

4
µ
({
x ∈ Rn;S(gα)(x) >

α

2

})
≤ C

∫
Rn

|gα|2(x) dx

≤ C 2n+1α

∫
Rn

|f |(x) dx.
(8.11)

We recall the notations from Chapter 4:
The bad part of Rn for the decomposition is a union of disjoint cubes with faces
parallel to the canonical hyperplanes: Ω =

⋃
ℓ∈NCℓ and C̃ℓ are the dilations of these

cubes by the factor 2
√
n leaving each center cℓ fixed. This dilation factor is chosen

in such a way that

∀x ∈ Rn\C̃ℓ ∀y ∈ Cℓ |x− cℓ| ≥ 2|y − cℓ|.

Denote as usual Ω̃ =
⋃

ℓ∈N C̃ℓ.

We estimate ∫
Rn\Ω̃

|S(bα)|(x) dx =

∫
Rn\Ω̃

∣∣∣∑
k∈N

|Kk ∗ bα|2(x)
∣∣∣ 12dx.

We write bα =
∑

ℓ∈N bℓ where bℓ = b1cℓ and we use Minkowski inequality to obtain

(8.12)

∫
Rn\Ω̃

|S(bα)|(x) dx ≤
∑
ℓ∈N

∫
Rn\Ω̃

∥Kk ∗ bℓ∥ℓ2(x) dx.

Using the fact that
∫
Cℓ
bℓ(y) dy = 0, we write

∥Kk ∗ bℓ∥ℓ2(x) =
∥∥∥∥∫

y∈Cℓ

Kk(x− y) bℓ(y) dy

∥∥∥∥
ℓ2

=

∥∥∥∥∫
y∈cℓ

[
Kk

(
x− cℓ − (y − cℓ)

)
−Kk(x− cℓ)

]
bℓ(y) dy

∥∥∥∥
ℓ2
.

(8.13)

Using again Minkowski integral inequality and continuing (8.12) and (8.13), we ob-
tain by the mean of Lemma 8.6∫
Rn\Ω̃

|S(bα)|(x) dx ≤
∑
ℓ∈N

∫
Rn\Ω̃

dx

∫
Cℓ

|bℓ(y)|
∥∥Kk

(
x− cℓ − (y − cℓ)−Kk(x− cℓ

)∥∥
ℓ2
dy

≤
∑
ℓ∈N

∫
Cℓ

|bℓ(y)| dy
∫
|x−cℓ|>2|y−cℓ|

∥∥Kk(x− cℓ − (y − cℓ)
)
−

Kk(x− cℓ)
∥∥
ℓ2
dx

≤ B
∑
ℓ∈N

∫
Cℓ

|bℓ(y)| dy ≤ B

∫
Rn

|bα(y)| dz ≤ 2B

∫
Rn

|f(y)| dy.

171



This implies that

sup
β>0

β µ
({
x ∈ Rn\Ω̃; S(bα)(x) > β

})
≤ 2B

∫
Rn

|f(y)| dy.

Applying this inequality to β := α
2
and recalling that |Ω̃| ≤ Cn α

−1
∫
Rn |f(x)| dx, we

deduce

αµ
({
x ∈ Rn; S(bα)(x) >

α

2

})
≤ C

∫
Rn

|f(x)| dx.

Combining this inequality with (8.10b) and (8.11) gives that S is weak (1, 1) and
the claim is proved. Using now Marcinkiewicz interpolation theorem 4.2, we deduce
that S is strong (p, p) for p ∈ (1, 2].

We claim now that S is strong (p, p) for p ∈ (2,+∞). We shall use a duality
argument. Thanks to Proposition 8.4, using Hahn Banach theorem, we have[ ∫

|S(f)|p (x) dx
] 1

p

= ∥(fk)∥Lp(Rn,ℓ2) = sup
∥(hk)∥Lp′ (Rn,ℓ2)

≤1

∑
k∈N

∫
fk(x)hk(x) dx

= sup
∥(hk)∥Lp′ (Rn,ℓ2)

≤1

∑
k∈N

∫
Rn

Kk ∗ f(x)hk(x) dx

= sup
∥(hk)∥Lp′ (Rn,ℓ2)

≤1

∫
Rn

f(x)
∑
k∈N

K#
k ∗ hk(x) dx.

Therefore, in order to prove that S is strong (p, p) for p > 2, it suffices to prove that
the operator S∗ defined by

S∗(hk)k∈N :=
∑
k∈N

K#
k ∗ hk

maps continuously Lp′(Rn, ℓ2) into Lp′(Rn). Precisely, we are proving the following
lemma:

Lemma 8.7. Under the above notations, for any p′ ∈ (1, 2], there exists C > 0 such
that ∀(hk) ∈ Lp′(Rn, ℓ2), we have

(8.14)
∥∥∥∑

k∈N

K#
k ∗ hk

∥∥∥
Lp′ (Rn)

≤ C ∥(hk)∥Lp′ (Rn,ℓ2)

Proof of Lemma 8.7. We use a natural extension of Marcinkiewicz interpolation
theorem 4.2 to the framework of mappings from Lp′(Rn, ℓ2) into Lp′(Rn) whose proof
is left to the reader in order to infer that the lemma is proved if it holds for p′ = 2
and if there exists C > 0 such that

(8.15) |S∗(hk)k∈N|L1,∞(Rn) ≤ C ∥(hk)∥L1(Rn,ℓ2).

We then first consider the case p′ = 2.
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To justify all steps in the computations below, we can of course restrict to ele-
ments (hk)k∈N ∈ L2(Rn, ℓ2) such that hk ∈ S(Rn) and hk ≡ 0 for k large enough. It
is not difficult to prove that this class is dense in L2(Rn, ℓ2).

We have by using Plancherel theorem:∫
Rn

|S∗(hk)|2 = (2π)−n

∫
Rn

(∑
k∈N

K̂#
k ĥk

)(∑
ℓ∈N

K̂#
ℓ ĥℓ

)
= (2π)−n

∫
Rn

∑
k,ℓ∈N

φ#
k (ξ) φ

#
ℓ (ξ) ĥk(ξ) ĥℓ(ξ) dξ.

Recall that suppφk(ξ) ⊂ B2k+1(0)\B2k−1(0), hence

φ#
k (ξ)φ

#
ℓ (ξ) ≡/ 0 =⇒ |k − ℓ| ≤ 3.

This implies that∫
Rn

|S∗(hk)|2(x) dx = (2π)−n

∫
Rn

∑
|k−ℓ|<4

φ#
k (ξ)φ

#
ℓ (ξ) ĥk(ξ) ĥℓ(ξ) dξ

≤ C (2π)−n

∫
Rn

7
∑
k∈N

|φ#
k (ξ)|

2 |ĥk| (ξ) dξ

≤ 7 (2π)−n ∥φ∥2L∞(Rn)

∑
k∈N

∫
Rn

|ĥk|2(ξ) dξ

≤ C ∥(hk)∥L2(Rn,ℓ2).

Hence we have proved (8.14) for p′ = 2.
We establish now (8.15). Let

H(x) :=
(∑

k∈N

|hk|2(x)
) 1

2
.

We fix α > 0 and we proceed to a Calderón-Zygmund decomposiiton forH. As usual,
we denote by Ω =

⋃
ℓ∈NCℓ the union of the bad cubes relative to this decomposition.

For each k ∈ N, we write hk = gk + bk, where

gk(x) =


hk(x) for x ∈ Rn\Ω

−
∫
Cℓ

hk(y) dy for x ∈ Cℓ (ℓ ∈ N).

Since H(x) ≤ α on Rn\Ω and −
∫
Cℓ
(H(y) dy ≤ 2nα for any ℓ, we deduce, using

Minkowski inequality, that

(8.16) ∥(gk)∥L∞(Rn,ℓ2) ≤ 2nα.

For any k ∈ N and ℓ ∈ N, we denote

bk,ℓ := bk 1Cℓ
,

173



where 1Cℓ
denotes the characteristic function of the bad cube Cℓ. Observe that we

have fixed

(8.17) ∀k, ℓ ∈ N −
∫
Cℓ

bk,ℓ(y) dy = 0.

Moreover, using Minkowski inequality, we have also for any ℓ ∈ N

−
∫
Cℓ

(∑
k∈N

|bk,ℓ|2(y)
) 1

2
dy ≤ −

∫
Cℓ

(∑
k∈N

|hk − −
∫
Cℓ

hk|2(y)
) 1

2
dy

≤ −
∫
Cℓ

∥hk∥ℓ2(y) dy +
∥∥∥∥ −
∫
Cℓ

hk

∥∥∥∥
ℓ2
.

Using Minkowski integral inequality, we then deduce

(8.18) ∀ℓ ∈ N −
∫
Cℓ

∥bk,ℓ∥ℓ2(y) dy ≤ 2 −
∫
Cℓ

∥hk∥ℓ2(y) dy.

Finally, recall that from the fundamental properties of the Calderón-Zygmund de-
composition one has

(8.19) µ(Ω) =
∑
ℓ∈N

µ(Cℓ) ≤

∫
Rn

∥hk∥ℓ2(y) dy

α
.

Using the strong (2, 2) property, we have

α2µ
({
x ∈ Rn; |S∗(gk)|(x) >

α

2

})
≤ C ∥(gk)∥2L2(Rn,ℓ2).

Combining this inequality with (8.16) gives then

αµ
({
x ∈ Rn; |S∗(gk)|(x) >

α

2

})
≤ C

∫
Rn

∥(gk)∥ℓ2(y) dy

≤ C

∫
Rn

∥(hk)∥ℓ2(y) dy ,
(8.20)

where we used again Minkowski integral inequality.
Denote as usual C̃ℓ the dilated cubes by the factor 2

√
n and Ω̃ =

⋃
ℓ∈N C̃ℓ with

respect to the center cl of Cl. We estimate now∫
Rn\Ω̃

|S∗(bk)|(x) dx ≤
∫
Rn\Ω̃

∑
ℓ∈N

(∑
k∈N

|K∗
k ∗ bk,ℓ|(x)

)
dx.

As usual we write

|K#
k ∗ bk,ℓ|(x) =

∣∣∣∣ ∫
Cℓ

K#
k

(
x− cℓ − (y − cℓ)

)
bk,ℓ(y) dy

∣∣∣∣
=

∣∣∣∣ ∫
Cℓ

[
K#

k

(
x− cℓ − (y − cℓ)

)
−K#

k (x− cℓ)
]
bk,ℓ(y) dy

∣∣∣∣ .
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We then bound using Cauchy-Schwarz inequality∑
k∈N

|K#
k ∗ bk,ℓ|(x) ≤

∫
cℓ

∑
k∈N

∣∣K#
k (x− cℓ − (y − cℓ)−K∗

k(x− cℓ)
∣∣ |bk,ℓ(x)| dy

≤
∫
cℓ

∥K#
k

(
x− cℓ − (y − cℓ)

)
−K#

k (x− cℓ)∥ℓ2 ∥bk,ℓ(y)∥ℓ2 dy.

This gives∫
Rn\Ω̃

|S∗(bk)|(x) dx ≤∑
ℓ∈N

∫
Cℓ

∥bk,ℓ∥ℓ2(y) dy
∫
|x−cℓ|>2|y−cℓ|

∥K#
k

(
x− cℓ − (y − cℓ)

)
−Kk(x− cℓ)∥ℓ2 dy.

Using Lemma 8.6 (i.e. Hörmander property for families), we then deduce∫
Rn\Ω̃

|S∗(bk)|(x) dx ≤ C
∑
ℓ∈N

∫
Cℓ

∥bk,ℓ∥ℓ2(y) dy

= C

∫
Rn

∥bk∥ℓ2(y) dy

≤ 2C

∫
Rn

∥hk∥ℓ2(y) dy.

(8.21)

Combining (8.19), (8.20) and (8.21) gives

αµ
({
x ∈ Rn; |S∗(hk)|(x) > α

})
≤ C

∫
Rn

∥hk∥ℓ2(y) dy,

which is the weak (1, 1) property for S∗ (8.15). We then deduce Lemma 8.7. 2

End of the proof of Theorem 8.5. We recall the identity[ ∫
Rn

|S(f)|p(x) dx
] 1

p

= sup
∥(hk)∥Lp′ (Rn,ℓ2)

≤1

∫
Rn

f(x) S∗(hk)(x) dx.

Since by Lemma 8.7 S∗ is continuously mapping Lp′(Rn, ℓ2) into Lp′(Rn) for any
p′ ∈ (1, 2], we deduce then ∀p ∈ [2,∞) ∃Cp > 0 such that[ ∫

Rn

|S(f)|p(x) dx
] 1

p

≤ Cp ∥f∥Lp(Rn).

Hence we have proved the second inequality in (8.6). It remains to prove the first
one in order to conclude the proof of the theorem.

We use the following duality argument

∥f∥Lp(Rn) = sup
∥g∥

Lp′ (Rn)
≤1

∫
Rn

f(x) g(x) dx

= sup
∥g∥

Lp′ (Rn)
≤1

∫
Rn

∑
k,ℓ∈N

fk(x) gℓ(x) dx.
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Since supp f̂k ∩ supp ĝℓ = ∅ for |k − ℓ| ≥ 4, we deduce

∥f∥Lp(Rn) = sup
∥g∥

Lp′ (Rn)
≤1

∫
Rn

∑
|k−ℓ|<4

fk(x) gℓ(x) dx

≤ sup
∥g∥

Lp′ (Rn)
≤1

7

∫
Rn

∥fk∥ℓ2(x) ∥gk∥ℓ2(x) dx

≤ sup
∥g∥

Lp′ (Rn)
≤1

7 ∥(fk)∥Lp(Rn,ℓ2)∥(gk)∥Lp′ (Rn,ℓ2)

≤ C ∥(fk)∥Lp(Rn,ℓ2),

where we used
∥(gk)∥Lp(Rn,ℓ2) ≤ C ∥g∥Lp′ (Rn).

This concludes the proof of the Theorem 8.5. 2

9 Some important Function Spaces and their Lit-

tlewood Paley characterizations

9.1 Besov and Triebel Lizorkin Spaces

Under Construction

9.2 The Hardy Space H1(Rn)

9.2.1 Historical origins of the Hardy spaces Hp

The Hardy spaces in one variable have their original setting in complex analysis.
They first appeared as spaces of holomorphic functions and were introduced with
the aim of characterizing boundary values of holomorphic functions on the unit
disk D := {|z| < 1}. Namely, let us look at the following problem: what are the
possible functions S1 → C arising as boundary values of some holomorphic function
F : D → C?

This question, as just stated, is too vague: due to the lack of compactness of D,
holomorphic functions defined on D could exhibit a wild behaviour as we approach
the boundary (for instance, we can prescribe arbitrary values of F on any discrete
subset of D). In order to obtain a meaningful notion of boundary value, it is natural
to impose integrability conditions on our functions F .

As a motivation of the forthcoming definitions, let us make a heuristic remark:
if the trace of F on ∂D = S1 is some complex function f ∈ Lp(S1), for some
1 ≤ p ≤ ∞, then F (which is holomorphic and thus harmonic) is given by the
Poisson integral of f . In polar coordinates we have the formula

F (reiθ) =

∫
S1

Pr(e
i(θ−η))f(eiη) dη.

176



The Poisson kernel is everywhere positive and satisfies
∫
S1 Pr(e

iη) dη = 1 for any r,
so (by Young’s inequality on the group S1)

∥F (r·)∥Lp(S1) ≤ ∥f∥Lp(S1)

and in particular all the norms in the left-hand side remain bounded as r ↑ 1.
In 1915 Hardy observed that, for any holomorphic function F : D → C, the map

r 7→ ∥F (r·)∥Lp is nondecreasing (for an arbitrary 0 < p ≤ ∞). These observations
lead us to define the space

Hp(D) :=
{
F : D → C holomorphic with lim

r↑1
∥F (r·)∥Lp(S1) < +∞

}
.

When p > 1, using the weak* compactness of Lp(S1), it is not difficult to show
that any F ∈ Hp(D) is given by the Poisson integral of a complex-valued function

f ∈ Lp(S1) satisfying f̂(k) = 0 for all k < 0. Conversely, given any such f , its
Poisson integral lies in Hp(D). Moreover, one can show that

F (r·) → f in Lp(S1) and lim
r↑1

F (reiθ) = f(eiθ) for a.e. θ,

so that f deserves to be regarded as the set of boundary values of F (we mention
that for a.e. θ one has even a nontangential convergence of F to f(eiθ)). This settles

the problem for 1 < p ≤ ∞. Let us also remark that the condition f̂(k) = 0 (for
all k < 0) amounts to saying that ℑ(f), up to constants, equals the Hilbert-Riesz
transform of −ℜ(f). When 1 < p < ∞ the Hilbert-Riesz transform maps Lp(S1)
into itself, so any function in Lp(S1) arises as the real part of the trace of some
element of Hp(D).

The case of 0 < p ≤ 1 is more difficult. F. Riesz, in a paper published in 1923,
introduced the notation Hp(D) for these spaces of holomorphic function (the letter
H stands of course for Hardy) and proved many interesting properties, such as the
following factorization theorem.

Theorem 9.1. Any F ∈ Hp(D) can be written as F = BG, for suitable holomorphic
functions B,G : D → C such that |B| ≤ 1, G ̸= 0 everywhere and G ∈ Hp(D) (B is
the so-called Blaschke product associated to the zeros of F ).

This theorem enabled him to prove the existence of a trace f ∈ Lp(S1) such that
we have again all the convergence results mentioned before for the case p > 1: the
trick is that, as G ̸= 0 everywhere, one can take a k-th root of G (for an arbitrary
k > 1

p
) and, observing that G1/k ∈ Hkp(D) and B ∈ H∞(D), we get back to the

previous case.
Again, when p = 1, it can be shown that the possible traces are precisely the

complex-valued functions f ∈ L1(S1) satisfying f̂(k) = 0 for all k < 0. As before,
the possible real values of traces of functions form the set

H1(S1) =
{
f ∈ L1(S1) : Rf ∈ L1(S1)

}
(here R denotes the Hilbert-Riesz transform). But R does not map L1(S1) into
itself any longer, so this set is a proper subspace of L1(S1).
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These results still hold in the upper half-plane R2
+ := {z = x+ iy : y > 0}, re-

placing S1 with R (see [?]), leading to the definition of H1(R).
Later, in 1960, Stein and Weiss introduced the systems of conjugate harmonic

functions in several variables, inspiring the correct definition of Hardy spaces in
higher dimension.

The first characterization avoiding conjugate functions was provided by Burkholder,
Gundy and Silverstein in 1971: they proved that a holomorphic function belongs to
Hp if and only if the nontangential maximal function of its real part lies in Lp. The
importance of this result lies in the fact that it allows to decide the membership of
a function f to Hp by looking just at f itself.

In 1972 Fefferman and Stein, in a single pioneering paper, provided new real
characterizations of the Hardy spaces, introducing different useful maximal functions
and showing that the Poisson kernel can be replaced essentially by any other kernel.
In this paper Fefferman and Stein also proved that singular integrals map Hardy
spaces to themselves (and in particular H1 to L1), as well as the duality (H1)∗ =
BMO.

The Littlewood Paley characterization of these spaces was first given by Peetre,
while the atomic decomposition was obtained by Coifman (in one dimension) and
Latter (in arbitrary dimension).

9.2.2 Equivalent definitions and basic properties of H1(Rn)

We now introduce the Hardy space H1(Rn), with a strong emphasis on the modern
real-variable point of view outlined in the last part of [?, FS16]

This important space can be characterized in many useful ways: indeed, H1(Rn)
is the space of all functions in L1(Rn) satisfying one of the equivalent definitions
provided by Theorem 9.2 ((8) being the closest to the historical one).

Before stating the theorem, let us recall that the Schwartz space S(Rn) is a
Fréchet space, with the following increasing sequence of (semi)norms:

∥ψ∥k := sup
x∈Rn

(1 + |x|2)k/2
∑
|α|≤k

∣∣∣∣∂|α|ψ∂xα

∣∣∣∣ (x), k ≥ 0.

Theorem 9.2. Fix any φ ∈ S(Rn) with
∫
φ(x) dx ̸= 0. There exists an N ≥ 0

(independent of φ) such that the following are equivalent, for a function f ∈ L1(Rn):

1. the vertical maximal function Mv
φf(x) := supt>0 |φt ∗ f | (x) lies in L1(Rn);

2. the conical maximal function

Mc
φf(x) := sup

t>0,
y∈Bt(x)

|φt ∗ f | (y)

lies in L1(Rn);

3. the tangential maximal function

Mt
φf(x) := sup

t>0,
y∈Rn

|φt ∗ f | (y)
(
1 +

|y − x|
t

)−n−1
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lies in L1(Rn);

4. the grand maximal function

GMf(x) := sup {|ψt ∗ f | (x) | t > 0, ψ ∈ S(Rn), ∥ψ∥N ≤ 1}

lies in L1(Rn);

5. the similar grand maximal function

GM′f(x) := sup {|φt ∗ f | (x) | t > 0, ψ ∈ C∞
c (B1(0)), ∥∇ψ∥L∞ ≤ 1}

lies in L1(Rn);

6. there exists an atomic decomposition, namely there exist λk ≥ 0 and ∞-atoms
ak (see Definition 9.4) such that

f =
∞∑
k=0

λkak in L1(Rn),
∞∑
k=0

λk < +∞;

7. the vertical maximal function with the Poisson kernel, i.e. Mv
Pf , lies in

L1(Rn) (notice that P (x) = F−1(e−t|ξ|) = cn
(1+|x|2)(n+1)/2 /∈ S(Rn);

8. the tempered distributions Rjf := F−1
(
−i ξj|ξ| f̂(ξ)

)
belong to L1(Rn);

9. f belongs to the homogeneous Triebel-Lizorkin space Ḟ 0
1,2(Rn).

Each of the preceding statements defines also a norm on H1(Rn): (1) defines
the norm

∥∥Mv
φf
∥∥
L1 (and similarly for (2), (3), (4), (5), (7)), (6) induces the norm

inf
∑

k λk (the infimum ranging among all the possible decompositions), (8) provides
the norm ∥f∥L1+

∑n
j=1 ∥Rjf∥L1 and (9) defines ∥f∥Ḟ 0

1,2
(which is a norm on L1(Rn)∩

Ḟ 0
1,2(Rn)).
The proof of this theorem is scattered across the next sections. We will show the

following diagram of implications (with the corresponding bounds on the induced
norms):

(7) (8)

(4) (6)

(1) (2) (3)

(5)

for
a s
uit
ab
le
φ

for a suitable φ
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We left out (9) in the diagram, since its equivalence with the other definitions
is slightly involved and invokes the vector-valued space H1(ℓ2), which will be intro-
duced in Section 9.2.8.

Similarly, as we will see in Section 9.2.4, the proof of (1) ⇒ (2) is quite circuitous
and uses a particular refinement of the proofs of (2) ⇒ (3) ⇒ (4).

Let us rely on definition (1) as for now, i.e. let H1(Rn) denote the space of
functions f ∈ L1(Rn) satisfying (1) and let ∥f∥H1 :=

∥∥Mv
φf
∥∥
L1 . A first basic

question is whether C∞
c (Rn) is included in H1(Rn). Surprisingly, this property

(which holds for most of the common functional spaces) fails for H1(Rn), as the
next proposition shows.

Proposition 9.3. If f ∈ H1(Rn), then
∫
f(x) dx = 0.

Proof. Assume by contradiction that m :=
∣∣∫ f(x) dx∣∣ ̸= 0. Choose any x0 ̸= 0 such

that c := |φ| (x0) ̸= 0. Then we can find R > 0 such that∣∣∣∣∫
BR(0)

f(x) dx

∣∣∣∣ ≥ m

2
, ∥φ∥L∞

∫
Rn\BR(0)

|f | (x) dx ≤ cm

4
.

For any z ∈ Rn close to 0 and any large r > 0 we have

rn |φr ∗ f | (r(x0 + z)) ≥
∣∣∣∣∫

BR(0)

φ(x0 + z − r−1y)f(y) dy

∣∣∣∣− cm

4

≥ c

∣∣∣∣∫
BR(0)

f(y) dy

∣∣∣∣− ∫
BR(0)

∣∣φ(x0 + z − r−1y)− φ(x0)
∣∣ |f | (y) dy − cm

4

≥ cm

4
− ∥f∥L1 max

y∈BR(0)

∣∣φ(x0 + z − r−1y)− φ(x0)
∣∣− cm

8
≥ cm

8

provided that ∥f∥L1 maxy∈BR(0) |φ(x0 + z − r−1y)− φ(x0)| ≤ cm
8
, which holds if

|z| < ϵ and r > ϵ−1 for some small ϵ. We can assume that ϵ < |x0|
2
. For such

z, r it holds

Mv
φf(r(x0 + z)) ≥ cm

8
r−n ≳ |r(x0 + z)|−n .

But E := {r(x0 + z) | |z| < ϵ, r > ϵ−1} is an open cone minus a bounded set, so∫
Mv

φf(x) dx ≥
∫
E

Mv
φf(x) dx ≳

∫
E

|x|−n dx = +∞,

contradicting the fact that f ∈ H1(Rn).

As shown by the next proposition, the mean-zero property is the only requirement
which a function in C∞

c (Rn) needs to satisfy in order to be in H1(Rn).

Definition 9.4. For any 1 < p ≤ ∞, a p-atom is a function a ∈ Lp supported in
some ball B, with zero mean and

∥a∥Lp |B|1/p
′
≤ 1.
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We remark that (for 1 < p <∞) the last condition can be rewritten as

|B|
(

−
∫
B

|a|p
)1/p

≤ 1.

By Hölder’s inequality, any q-atom a is also a p-atom for every 1 < p ≤ q and
∥a∥L1 ≤ 1. We now show that the H1-norm is bounded, as well.

Remark 9.5. Mv
φf ≲ Mf pointwise, since letting h(x) := max|x′|≥|x| |φ| (x′) we

have (noticing that h is radial and that the superlevel sets {h > s} are either open
balls or empty, for all s > 0)

|φt ∗ f | (x) ≤
∫
t−nh(t−1y) |f | (x− y) dy

=

∫
h(y) |f | (x− ty) dy

=

∫ ∞

0

∫
{h>s}

|f | (x− ty) dy ds

≤Mf(x)

∫ ∞

0

|{h > s}|

=Mf(x)

∫
h(y) dy ≲Mf(x),

as
∫
h(y) dy is finite. The same proof with P in place of f shows that Mv

Pf ≤Mf .

Proposition 9.6. If a is a p-atom supported in B, then a ∈ H1(Rn) and

∥a∥H1(Rn) ≲ ∥a∥p |B|1/p
′
≤ 1.

The implied constant depends on n, p and φ.

Proof. Let B = Br(x0). For x ∈ B2r(x0) we use the last remark to estimate

Mv
φa(x) ≲Ma(x),

which gives (by Hölder’s inequality and Hardy-Littlewood maximal inequality)∫
B2r(x0)

Mv
φa(x) dx ≲

∫
B2r(x0)

Ma(x) dx ≤ |B2r(x0)|1/p
′
∥Ma∥Lp ≲ |B|1/p

′
∥a∥Lp .

For x /∈ B2r(x0) we use instead the mean-zero property:

φt ∗ a(x) =
∫

(φt(x− y)− φt(x− x0))a(y) dy.

By the mean value theorem, |φt(x− y)− φt(x− x0)| ≤ r |∇φt| (x − z) for some z
on the segment joining x0 to y. So |z − x0| ≤ r, thus

|∇φt| (x− z) = t−n−1 |∇φ|
(
x− z

t

)
≲ t−n−1

(
x− z

t

)−n−1

≲ |x− x0|−n−1

since φ ∈ S(Rn). Hence,∫
Rn\B2r(x0)

Mv
φa(x) dx ≲ r ∥a∥L1

∫
Rn\B2r(x0)

|x− x0|−n−1 dx ≲ |B|1/p
′
∥a∥Lp .
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Proposition 9.7. For any f ∈ H1(Rn) we have ∥f∥L1 ≲ ∥f∥H1.

Proof. We assume (without loss of generality) that
∫
φ(x) dx = 1. Recall that

limh→0 ∥f(·+ h)− f∥L1 = 0 for all functions f ∈ L1(Rn). Thus,

∥φt ∗ f − f∥L1 =

∫ ∣∣∣∣∫ φ(y) (f(x− ty)− f(x)) dy

∣∣∣∣ dx
≤
∫ ∫

|φ| (y) |f(x− ty)− f(x)| dx dy → 0

as t → 0, by the dominated convergence theorem: indeed, the inner integral is
bounded by 2 ∥f∥L1 |φ| (y) and tends to 0 for all y, by the aforementioned property
of functions in L1(Rn). So ∥f∥L1 = limt→0 ∥φt ∗ f∥L1 ≤

∥∥Mv
φf
∥∥
H1 .

Proposition 9.8. The space H1(Rn) is a Banach space.

Proof. If (fj) is a Cauchy sequence in H1(Rn), then we have

∥fj − fk∥L1 ≲ ∥fj − fk∥H1 → 0 as j, k → ∞

by Proposition 9.7, so (fj) is a Cauchy sequence in L1(Rn). Hence, fj → f for some
f ∈ L1(Rn). For any x ∈ Rn we have

|φt ∗ f | (x) = lim
j→∞

|φt ∗ fj| (x) ≤ lim inf
j→∞

Mv
φfj(x),

so Mv
φf(x) ≤ lim infj→∞ Mv

φfj(x) and, by Fatou’s lemma, we deduce

∥f∥H1 =
∥∥Mv

φf
∥∥
L1 ≤ lim inf

j→∞

∥∥Mv
φfj
∥∥
L1 < +∞.

So f ∈ H1(Rn). Moreover, since f − fj = limk→∞(fk − fj) in L1(Rn), the same
argument shows that

∥f − fj∥H1 ≤ lim inf
k→∞

∥fk − fj∥H1 .

But the right-hand side can be made small at will, by taking j large enough (since
(fj) is a Cauchy sequence in H1(Rn)). This proves that fj → f in H1(Rn).

Proposition 9.9. If (fj)j∈N is a bounded sequence in H1(Rn) then, up to extracting

a subsequence, there exists f ∈ H1(Rn) such that fj
∗
⇀ f in S ′(Rn).

This result is related to the fact thatH1(Rn) is a dual space. Notice that the same

statement is false in L1(Rn): for instance, it is easy to see that φt
∗
⇀ (

∫
φ(x) dx)δ

weak star. In general, a distributional limit of functions in L1(Rn) is a finite measure
which can possess a singular part.

Proof. We assume (without loss of generality) that
∫
φ(x) dx = 1. Recall that the

dual space of C0(Rn), the space of continuous functions which are infinitesimal at
infinity, is C0(Rn)∗ = M(Rn), the space of finite (signed) measures. L1(Rn) is
isometrically embedded into M(Rn): a function g ∈ L1(Rn) can be regarded as the
finite measure g dx.
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By Proposition 9.7, (fj) is bounded in L1(Rn) as well. Since C0(Rn) is separable,
by Banach-Alaoglu any closed ball in its dual is weakly* sequentially compact, so
there exists a subsequence, which we still denote (fj), and a measure µ ∈ M(Rn)
such that

fj dx
∗
⇀ µ in C0(Rn)∗.

We claim that µ is absolutely continuous with respect to the Lebesgue measure.
Indeed, for any x ∈ Rn and any t > 0 we have

φt ∗ fj(x) =
∫
φt(x− y) fj(y) dy →

∫
φt(x− y) dµ(y) =: φt ∗ µ(x).

Arguing as in the previous proof, we deduce

sup
t>0

|φt ∗ µ| (x) ≤ lim inf
j→∞

Mv
φfj =: g.

It is easy to check that φt(−·) ∗ ρ → ρ in C0(Rn), for any ρ ∈ C0(Rn). This

implies, using Fubini’s theorem, that φt ∗ µ dx
∗
⇀ µ. Let now E be a Borel set with

|E| = 0. We can find a decreasing sequence of open sets (Vk) such that E ⊆ ∩kVk
and |Vk| = 0. By weak* convergence we have

|µ| (E) = |µ| (Vk) ≤ lim inf
t→0

∫
Vk

|φt ∗ µ| (x) dx ≤
∫
Vk

g(x) dx.

But g ∈ L1(Rn) (by Fatou’s lemma, since lim infj→∞
∥∥Mv

φfj
∥∥
L1 < +∞), so taking

the limit as k → ∞ we deduce

|µ| (E) ≤ lim
k→∞

∫
Vk

g(x) dx = 0.

Hence the claim is proved, i.e. µ = f dx for some f ∈ L1(Rn). We deduce that

f ∈ H1(Rn) as in the previous proof. The convergence fj
∗
⇀ f in S ′(Rn) follows

from the fact that S(Rn) injects continously into C0(Rn).

9.2.3 H1 → H1 boundedness of Calderón-Zygmund operators

In this section we will take for granted Theorem 9.2 (with an abuse of notation, we
will denote by ∥·∥H1 any of the equivalent norms introduced above) and we will show
why H1(Rn) is the good replacement of L1(Rn) from the point of view of harmonic
analysis.

Namely, its norm has the same behaviour as the L1-norm: for any λ > 0,

∥fλ∥H1 = ∥f∥H1

(to be precise, this identity becomes ∥f∥H1 ∥fλ∥H1 ≲ ∥f∥H1 if we use the norm given
by (9), with an implied constant independent of f and λ). Furthermore, Calderón-
Zygmund operators map H1(Rn) into itself: this property holds also for Lp(Rn) with
1 < p <∞, but it dramatically fails for L1(Rn).

Let us mention that, as another confirmation of the appropriateness of Hardy
spaces, if one carries over the theory into the general case of Hp(Rn) spaces then, for
1 < p <∞, they collapse to Lp(Rn) (for which many important results in harmonic
analysis already hold).
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Theorem 9.10. Let K : Rn \ {0} → R be a Calderón-Zygmund kernel, i.e. a
measurable function satisfying (for some finite constants A,B > 0)

• |K| (x) ≤ A |x|−n for all x ∈ Rn \ {0}

•
∫
|x|>2|y| |K(x− y)−K(x)| dxn ≤ B for all y ∈ Rn

•
∫
r<|x|<R

K(x) dxn = 0 for any 0 < r < R < +∞.

Let Kϵ := K1Rn\Bϵ(0). Then, for any f ∈ H1(Rn), Kϵ ∗ f ∈ L1(Rn) and the limit

K ∗ f := lim
ϵ→0

Kϵ ∗ f

exists in L1(Rn). We have the estimate

∥K ∗ f∥L1 ≤ C(n,A,B) ∥f∥H1 .

Proof. Recall that Kϵ ∈ L2 still satisfies the above conditions (with B possibly

replaced by C(n)B) and that
∥∥∥K̂ϵ

∥∥∥
L∞

≤ C(n,A,B). Fix any f ∈ H1(Rn): by

the characterization involving the atomic decomposition, we can find λk ≥ 0 and
∞-atoms ak with f =

∑
k λkak and

∑
k λk ≲ ∥f∥H1 .

It suffices to prove the thesis for ∞-atoms: once this is done, for any ϵ > 0

∥Kϵ ∗ f∥L1 ≤
∑
k

λk ∥Kϵ ∗ ak∥L1 ≲
∑
k

λk ≲ ∥f∥H1 .

Moreover, (Kϵ ∗ f) is Cauchy in H1(Rn) as ϵ→ 0: indeed, for an arbitrary N ,

lim sup
ϵ,ϵ′→0

∥Kϵ ∗ f −Kϵ′ ∗ f∥L1

≤ lim sup
ϵ,ϵ′→0

∑
k≤N

λk ∥Kϵ ∗ ak −Kϵ′ ∗ ak∥L1 + lim sup
ϵ,ϵ′→0

∑
k>N

λk ∥Kϵ ∗ ak −Kϵ′ ∗ ak∥L1

≤ 0 + lim sup
ϵ,ϵ′→0

∑
k>N

λk (∥Kϵ ∗ ak∥L1 + ∥Kϵ′ ∗ ak∥L1) ≲
∑
k>N

λk,

which can be made arbitrarily small by letting N → +∞. Thus Kϵ ∗ f converges in
L1(Rn) and the limit satisfies the same estimate.

Let now a be an ∞-atom supported in BR(x0). Recall that

∥Kϵ ∗ a∥L2 ≤ C(n,A,B) ∥a∥L2 ≤ C(n,A,B)

and that limϵ→0Kϵ ∗ a exists in L2. Using Hölder’s inequality we infer that (Kϵ ∗
a)1B2R(x0)

satisfies ∥∥(Kϵ ∗ a)1B2R(x0)

∥∥
L1 ≤ C(n,A,B)

and converges in L1 as ϵ→ 0. Moreover, using the mean-zero property of a, for any
x ∈ Rn \B2R(x0) we can write

Kϵ ∗ a(x) =
∫
Rn

(Kϵ(x− y)−Kϵ(x− x0)) a(y) dy
n,
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so that∫
Rn\B2R(x0)

|Kϵ ∗ a| (x) dxn ≤
∫
Rn\B2R(x0)

∫
Rn

|Kϵ(x− y)−Kϵ(x− x0)| |a(y)| dyn dxn

=

∫
Rn

∫
Rn\B2R(x0)

|Kϵ(x− y)−Kϵ(x− x0)| |a(y)| dxn dyn

≤B ∥a∥L1 ≤ B.

Adding this to the preceding inequality we deduce that ∥Kϵ ∗ a∥L1 ≤ C(n,A,B).
Finally, (Kϵ ∗ a)1Rn\B2R(x0)

is Cauchy in L1 as well, since

(Kϵ ∗ a)1Rn\B2R(x0)
= (Kϵ′ ∗ a)1Rn\B2R(x0)

whenever ϵ, ϵ′ ≤ R.

The multiplier version of Calderón-Zygmund theorem holds as well, with the
following statement.

Theorem 9.11. Assume m ∈ C∞(Rn \ {0}) satisfies

sup
ξ∈Rn\{0}

|ξ||α|
∣∣∣∣∂|α|m∂ξα

(ξ)

∣∣∣∣ < +∞

for any α ∈ Nn. Then, for any f ∈ H1(Rn), the distribution mf̂ ∈ L∞(Rn) lies in
F(L1(Rn)) and ∥∥∥F−1(mf̂)

∥∥∥
L1

≲ ∥f∥H1 .

Proof. Take an atomic decomposition f =
∑
λkak as in the preceding proof and

fix a dyadic partition of unity (ψℓ)ℓ∈Z in Rn \ {0}. Recall that the kernels KN :=

F−1
(∑N

ℓ=−N ψℓm
)
∈ S(Rn) satisfy the Hörmander condition for some constant B

independent of N and have equibounded Fourier transforms. Thus we can argue as
in the previous proof (without the need of truncating the kernel KN , since it is a
Schwartz function) and we get

∥KN ∗ ak∥L1 ≲ 1.

But, by Plancherel’s theorem, KN ∗ ak → F−1(mâk) in L
2(Rn) as N → ∞, thus

F−1(mâk) ∈ L1(Rn) and
∥∥F−1(mâk)

∥∥
L1 ≲ 1

(by Fatou’s lemma, since a subsequence KNj
∗ak converges a.e. to F−1(mâk)). Thus

the limit
g :=

∑
k

λkF−1(mâk)

exists in L1(Rn) and satisfies ∥g∥L1 ≲ ∥f∥H1 , as well as ĝ =
∑

k λk(mâk) = mf̂ .

Actually, in the preceding theorems we can easily upgrade the H1 → L1 bound-
edness to H1 → H1.
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Corollary 9.12. Under the hypotheses of Theorem 9.11, for any f ∈ H1(Rn) we
have

F−1mf̂ ∈ H1(Rn),
∥∥∥F−1mf̂

∥∥∥
H1

≲ ∥f |H1 .

Proof. By the characterization of H1(Rn) using Riesz transforms, it suffices to show

that RjF−1(mf̂) ∈ L1(Rn) with an estimate on its L1-norm (for any 1 ≤ j ≤ n).
But

RjF−1(mf̂) = F−1

(
−i ξj

|ξ|
m(ξ)f̂(ξ)

)
and the multiplier still satisfies the hypotheses of Theorem 9.11.

Corollary 9.13. Under the hypotheses of Theorem 9.10, for any f ∈ H1(Rn) we
have Kϵ ∗ f ∈ H1(Rn) and the limit

K ∗ f := lim
ϵ→0

Kϵ ∗ f

exists in H1(Rn), with the estimate

∥K ∗ f∥H1 ≤ C(n,A,B) ∥f∥H1 .

Proof. From Corollary 9.12 we know that, for any 1 ≤ j ≤ n, Rjf ∈ H1(Rn) with
∥Rjf∥H1 ≲ ∥f∥H1 . Moreover,

Rj(Kϵ ∗ f) = F−1

(
−i ξj

|ξ|
K̂ϵ(ξ)f̂(ξ)

)
= Kϵ ∗ (Rjf),

so, by the conclusion of Theorem 9.10, (Rj(Kϵ ∗ f)) is Cauchy as ϵ → 0. As a
consequence, (Kϵ ∗ f) is Cauchy in H1(Rn).

9.2.4 Equivalence of some maximal functions

The goal of this section is to prove the equivalence among the norms defined by (1),
(2), (3) and (4).

Trivially, we have
Mv

φf ≲ GMf

pointwise (with the implied constant depending only on φ), so
∥∥Mv

φf ≲ GMf
∥∥
L1 ≲

∥GMf∥L1 and (4) ⇒ (1) hold as well.
We also remark the following pointwise inequalities:

Mv
φf ≤ Mc

φf ≤ 2n+1Mt
φf

pointwise (the second inequality follows from the fact that 2n+1
(
1 + |y−x|

t

)−n−1

≥ 1

whenever y ∈ Bt(x)).
Let us now turn to the first nontrivial inequality, namely the fact that

∥∥Mt
φf
∥∥
L1 ≲∥∥Mc

φf
∥∥
L1 , which will give (2) ⇒ (3).

Lemma 9.14. For any x ∈ Rn we have

Mt
φf(x) ≤

(
M
∣∣Mc

φf
∣∣n/(n+1)

)(n+1)/n

(x).
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Proof. The key observation is the fact that |φt ∗ f | (y) ≤ Mc
φf(z) whenever z ∈

Bt(y) (since z ∈ Bt(y) is equivalent to y ∈ Bt(z)). From this it follows that

|φt ∗ f |n/(n+1) (y) ≤ 1

|Bt(y)|

∫
Bt(y)

(Mc
φf)

n/(n+1)(z) dz

≤
∣∣Bt+|y−x|(x)

∣∣
|Bt(y)|

−
∫
Bt+|y−x|(x)

(Mc
φf)

n/(n+1)(z) dz,

which gives

|φt ∗ f(y)|n/(n+1)

(
1 +

|y − x|
t

)−n

≤M
∣∣Mc

φf
∣∣n/(n+1)

(x).

Raising both sides to the power n+1
n

we obtain the thesis.

Corollary 9.15. Using the L(n+1)/n-boundedness of the Hardy-Littlewood maximal
function, we deduce∥∥Mt

φf
∥∥
L1 ≤

∥∥∥M ∣∣Mc
φf
∣∣n/(n+1)

∥∥∥(n+1)/n

L(n+1)/n
≲
∥∥Mc

φf
∥∥
L1 .

Now we prove that the grand maximal function GMf is controlled pointwise by
Mt

φf , which will trivially give (3) ⇒ (4) and ∥GMf∥L1 ≲
∥∥Mt

φf
∥∥
L1 . The choice of

the seminorm ∥·∥N will be specified by the proof of the next lemma, which roughly
says that every ψ ∈ S(Rn) is a superposition of dilations of φ.

Lemma 9.16. Any ψ ∈ S(Rn) can be written as a series

ψ =
∞∑
k=0

η(k) ∗ φ2−k

converging in S(Rn), where the functions η(k) ∈ S(Rn) satisfy∫
(1 + |y|)2(n+1)

∣∣η(k)∣∣ (y) dy ≲ 2−k(n+2) ∥ψ∥N

for a suitable seminorm ∥·∥N depending only on n (while the implied constant de-
pends also on φ).

Proof. Let (ρk)k∈N be a (inhomogeneous) dyadic partition of unity in Rn, which can
be obtained by taking ρ0 ∈ C∞

c (B2), ρ0 ≡ 1 in a neighbourhood of B1 and letting
ρk := ρ0(2

−k·) − ρ0(2
−(k−1)·) for k > 0 (so that, for k > 0, ρk is supported in the

open annulus B2k+1 \B2k−1).
Since

∫
φ(x) dx ̸= 0, we have φ̂(0) ̸= 0. By continuity we can find k0 ≥ 0 such

that φ̂(ξ) ̸= 0 for all ξ ∈ B21−k0 . For k ≥ k0 let η(k) ∈ S(Rn) be defined by

η̂(k) :=
ρk−k0ψ̂

φ̂(2−k·)
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(notice that the right-hand side makes sense on B2k−k0+1 and vanishes near the
boundary of this ball, so it can be smoothly extended by 0 on the complement). Let
η(k) := 0 for k < k0. The series

∞∑
k=0

η̂(k)φ̂(2−k) =
∞∑

k=k0

ρk−k0ψ̂

converges to ψ̂ in S(Rn), so (by the continuity of F−1) we also have

∞∑
k=0

η(k) ∗ φ2−k = ψ

in S(Rn). We can find a seminorm ∥·∥N ′′ such that
∫
(1+|y|)2(n+1) |η| (y) dy ≲ ∥η̂∥N ′′ ,

so that for k ≥ k0 ∫
(1 + |y|)2(n+1)

∣∣η(k)∣∣ (y) dy ≲

∥∥∥∥∥ ρk−k0ψ̂

φ̂(2−k·)

∥∥∥∥∥
N ′′

.

Using the Leibniz rule it is easy to see that, for a suitable bigger seminorm ∥·∥N ′

independent of φ, ∥∥∥∥∥ ρk−k0ψ̂

φ̂(2−k·)

∥∥∥∥∥
N ′′

≲ 2−k(n+2)
∥∥∥ψ̂∥∥∥

N ′

(the implied constant, however, will depend on φ and k0, i.e. on φ). We can finally

find ∥·∥N such that
∥∥∥ψ̂∥∥∥

N ′
≲ ∥ψ∥N .

Corollary 9.17. For any x ∈ Rn we have GMf(x) ≲ Mt
φf(x).

Proof. Fix ψ ∈ S(Rn) such that ∥ψ∥N ≤ 1. Since ψt =
∑∞

k=0 φ2−kt ∗ (η(k))t,

|ψt ∗ f | (x) ≤
∞∑
k=0

∣∣φ2−kt ∗ (η(k))t ∗ f
∣∣ (x)

≤
∞∑
k=0

∫
|φ2−kt ∗ f | (x− y) t−n

∣∣η(k)∣∣ (t−1y) dy

≤Mt
φf(x)

∞∑
k=0

∫ (
1 +

|y|
2−kt

)n+1

t−n
∣∣η(k)∣∣ (t−1y) dy.

But the last integral is bounded by

2k(n+1)

∫ (
1 +

|y|
t

)n+1

t−n
∣∣η(k)∣∣ (t−1y) dy = 2k(n+1)

∫
(1 + |y|)n+1

∣∣η(k)∣∣ (y) dy ≲ 2−k

for all k ≥ 0. So we obtain |ψt ∗ f | (x) ≲ Mt
φf(x) and the thesis follows by taking

the supremum over t > 0 and over ψ ∈ S(Rn), ∥ψ∥N ≤ 1.
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In order to prove the implication (1) ⇒ (2), we need some technical preliminaries.
Fix 0 < ϵ < 1 and define the following modified maximal functions:

M̃c
φf(x) := sup

0<t<ϵ−1,y∈Bt(x)

|φt ∗ f | (y)
(

t

t+ ϵ+ ϵ |y|

)n+1

,

M̃t
φf(x) := sup

0<t<ϵ−1,y∈Rn

|φt ∗ f | (y)
(
1 +

|y − x|
t

)−n−1(
t

t+ ϵ+ ϵ |y|

)n+1

,

G̃Mf(x) := sup
{
|ψt ∗ f | (x)

(
t

t+ ϵ+ ϵ |x|

)n+1 ∣∣∣ 0 < t < ϵ−1, ψ ∈ S(Rn), ∥ψ∥N ≤ 1
}
.

Clearly M̃c
φf converges to Mc

φf pointwise from below, as ϵ → 0, and most
importantly it always lies in L1(Rn): from t+ ϵ |y| ≥ ϵt+ ϵ |y| ≥ ϵ |x| we infer

|φt ∗ f | (y)
(

t

t+ ϵ+ ϵ |y|

)n+1

≤∥φt∥L∞ ∥f∥L1

tn+1

(ϵ+ ϵ |x|)n+1

≲t−n ∥f∥L1 t
n+1ϵ−n−1(1 + |x|)−n−1

≤ϵ−n−2(1 + |x|)−n−1 ∈ L1(Rn).

Lemma 9.18. We still have∥∥∥G̃Mf
∥∥∥
L1

≲
∥∥∥M̃t

φf
∥∥∥
L1

≲
∥∥∥M̃c

φf
∥∥∥
L1
,

the implied constants being independent of ϵ and f .

Proof. The second inequality is proved exactly as we did for the original maximal
functions: again we have, whenever 0 < t < ϵ−1 and z ∈ Bt(y),

|φt ∗ f | (y)
(

t

t+ ϵ+ ϵ |y|

)n+1

≤ M̃c
φf(z)

and, raising this inequality to the power n
n+1

, averaging as z varies in Bt(y) and then

raising to the power n+1
n
, we get again

M̃t
φf(x) ≤

(
M
∣∣∣M̃c

φf
∣∣∣n/(n+1)

)(n+1)/n

(x)

for any x ∈ Rn, from which the second inequality follows (using the L(n+1)/n-
boundedness of the Hardy-Littlewood maximal function).

Let us turn to the first inequality. Using the decomposition ψt =
∑∞

k=0 φ2−kt ∗(
η(k)
)
t
we obtain again (for any x ∈ Rn and any 0 < t < ϵ−1)

|ψt ∗ f | (x) ≤
∞∑
k=0

∫
|φ2−kt ∗ f | (x− y) t−n

∣∣η(k)∣∣ (t−1y) dy,

but now we estimate (using 0 < 2−kt < ϵ−1)

|φ2−kt ∗ f | (x− y) ≤ M̃t
φf(x)

(
1 +

|y|
2−kt

)n+1(
2−kt+ ϵ+ ϵ |x− y|

t

)n+1

.
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Inserting this into the preceding inequality and multiplying both sides by
(

t
t+ϵ+ϵ|x|

)n+1

we arrive at

|ψt ∗ f | (x)
(

t

t+ ϵ+ ϵ |x|

)n+1

≤ M̃t
φf(x)

∞∑
k=0

Ik,

where Ik denotes the following integral:

Ik :=

∫ (
1 +

|y|
2−kt

)n+1(
2−kt+ ϵ+ ϵ |x− y|

t+ ϵ+ ϵ |x|

)n+1

t−n
∣∣η(k)∣∣ (t−1y) dy.

The second factor in the definition of Ik is bounded by(
t+ ϵ+ ϵ |x|+ ϵ |y|

t+ ϵ+ ϵ |x|

)n+1

=

(
1 +

ϵ |y|
t+ ϵ+ ϵ |x|

)n+1

≤
(
1 +

|y|
t

)n+1

,

where we used the assumption ϵ < 1, while the first factor is again bounded by

2k(n+1)
(
1 + |y|

t

)n+1

. Thus,

Ik ≤2k(n+1)

∫ (
1 +

|y|
t

)2(n+1)

t−n
∣∣η(k)∣∣ (t−1y) dy

=2k(n+1)

∫
(1 + |y|)2(n+1)

∣∣η(k)∣∣ (y) dy ≲ 2−k,

in view of the statement of Lemma 9.16. So we get

|ψt ∗ f | (x)
(

t

t+ ϵ+ ϵ |x|

)n+1

≲ M̃t
φf(x)

and taking the supremum over 0 < t < ϵ−1 we obtain the pointwise bound G̃Mf(x) ≲
M̃t

φf(x), from which we infer the first inequality of the thesis.

Theorem 9.19. For any 0 < ϵ < 1 we have
∥∥∥M̃c

φf
∥∥∥
L1

≲
∥∥Mv

φf
∥∥
L1 (the implied

constant is independent of ϵ).

Proof. We claim that it suffices to bound the integral
∫
E
M̃c

φf(x) dx on the ‘bad’
set

E :=
{
G̃Mf ≤ λM̃c

φf
}
,

for some large enough λ. Indeed,∫
Rn\E

M̃c
φf(x) dx ≤ λ−1

∫
Rn\E

G̃Mf(x) dx ≤ Cλ−1

∫
M̃c

φf(x) dx,

since by the preceding lemma
∥∥∥G̃Mf

∥∥∥
L1

≤ C
∥∥∥M̃c

φf
∥∥∥
L1

(for some C depending only

on n and φ). Choosing λ := 2C we get∫
Rn\E

M̃c
φf(x) dx ≤ 1

2

∫
M̃c

φf(x) dx.
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We can now subtract the finite quantity 1
2

∫
Rn\E M̃c

φf(x) dx from both sides (this

step is the reason why we needed to introduce these modified maximal functions:
the same integral with Mc

φf could a priori be infinite) and obtain

1

2

∫
Rn\E

M̃c
φf(x) dx ≤ 1

2

∫
E

M̃c
φf(x) dx,

so that∫
M̃c

φf(x) dx =

∫
Rn\E

M̃c
φf(x) dx+

∫
E

M̃c
φf(x) dx ≤ 2

∫
E

M̃c
φf(x) dx.

Fix now x ∈ E and let (y, t) such that 0 < t < ϵ−1, y ∈ Bt(x) and

|φt ∗ f | (y)
(

t

t+ ϵ+ ϵ |y|

)n+1

≥ 1

2
M̃c

φf(x).

We aim at showing that the same inequality holds, with 1
4
in place of 1

2
, for all y′ in

a small ball Bηt(y) (0 < η < 1 will be specified later). Once this is achieved, we will
have

1

4
M̃c

φf(x) ≤

(
−
∫
Bηt

(Mv
φf)

1/2(y′) dy′

)2

≤

((
t+ ηt

ηt

)n

−
∫
Bt+ηt(x)

(Mv
φf)

1/2(y′) dy′

)2

≤
(
1 + η

η

)2n (
M(Mv

φf)
1/2
)2

(x),

from which the thesis follows as usual (integrating over E and using the L2-boundedness
of the Hardy-Littlewood maximal function).

Let g(y′) := φt ∗ f(y′)
(

t
t+ϵ+ϵ|y|

)n+1

. The function g is locally Lipschitz and is

smooth on Rn \ {0}, so for y′ ∈ Bηt(y)

|g(y′)− g(y)| ≤ ηt sup
z∈Bηt(y)\{0}

|∇g| (z).

We compute

∇g(z) = t−1(∇φ)t ∗ f(z)
(

t

t+ ϵ+ ϵ |y|

)n+1

− φt ∗ f(z)
(n+ 1)tn+1

(t+ ϵ+ ϵ |y|)n+2
· ϵ z
|z|
.

But, writing z = x+ th (with |h| < 1 + η < 2),

φt∗f(z) =
∫
t−nφ

(
x+ th− u

t

)
f(u) du =

∫
t−nφ

(
x− u

t
+ h

)
f(u) du = (φ(·+h))t∗f(x)

and similarly (∇φ)∗f(z) = (∇φ(·+h))t ∗f(x). Assuming without loss of generality
ϵ < 1

4
, we also have

t+ ϵ+ ϵ |z| ≥ t+ ϵ+ ϵ(|x| − (1 + η)t) ≥ 1

2
(t+ ϵ+ ϵ |x|)
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(as t− ϵ(1 + η)t ≥ t
2
). Putting everything together,

|∇g| (z) ≲t−1

(
|∇φ ∗ f | (x) + |φ ∗ f | (z) ϵt

t+ ϵ+ ϵ |z|

)(
t

t+ ϵ+ ϵ |z|

)n+1

≲t−1
(
|(∇φ(·+ h))t ∗ f | (x) + |(φ(·+ h))t ∗ f(x)|

)( t

t+ ϵ+ ϵ |x|

)n+1

≲t−1G̃Mf(x),

thanks to the fact that the quantities sup|h|<2 ∥φ(·+ h)∥N and sup|h|<2

∥∥∥ ∂φ
∂xi

(·+ h)
∥∥∥
N

are finite (for i = 1, . . . , n). Hence,

|g(y′)− g(y)| ≤ ηt · C ′t−1G̃Mf(x) ≤ ηC ′λM̃c
φf(x)

(for some C ′ depending only on n and φ), as x ∈ E. Choosing η := min
(
1
2
, 1
4C′λ

)
we arrive at

g(y′) ≥ g(y)− |g(y)− g(y′)| ≥ 1

2
M̃c

φf(x)−
1

4
M̃c

φf(x) =
1

4
M̃c

φf(x),

which is what we wanted to obtain.

9.2.5 Further remarks

We collect in this section the proofs of some easier parts of Theorem 9.2. By what
we proved in the previous section, given φ′ ∈ S(Rn)(Rn) with

∫
φ′(x) dx ̸= 0, we

have ∥∥Mv
φ′f
∥∥
L1 ≲ ∥GMf∥L1 ≲ ∥Mφf∥L1

and similarly
∥∥Mv

φf
∥∥
L1 ≲

∥∥Mv
φ′f
∥∥
L1 . So Mv

φf and Mv
φ′f have comparable L1-

norms. This shows that, in order to prove (5) ⇒ (1) and (7) ⇒ (1), we are free to
choose φ at will (provided it satisfies

∫
φ(x) dx ̸= 0).

Proof of (5) ⇒ (1). As just remarked, we can assume φ ∈ C∞
c (B1) and ∥∇φ∥L∞ ≤

1. The thesis follows from the trivial pointwise inequality Mv
φf ≤ GM′f .

Proof of (7) ⇒ (1). First of all, we claim that there exists a continuous function
ρ : [1,+∞) → R such that ρ is rapidly decreasing at infinity (i.e. supt t

k |ρ| (t) < +∞
for every k ≥ 0) and∫ ∞

1

ρ(t) dt = 1,

∫ +∞

1

tkρ(t) dt = 0 for k = 1, 2, . . .

(these integrals make sense by the rapid decrease assumption on ρ).
An explicit example is the following:

ρ(t) :=
e

πt
ℑ
(
exp

(
e3πi/4(t− 1)1/4

))
.
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The rapid decrease at infinity is clear since |ρ| (t) ≤ e
πt
exp

(
ℜ
(
e3πi/4(t− 1)1/4

))
=

e
πt
exp

(
− 1√

2
(t− 1)1/4

)
. Let

g : Ω := C \ {t ∈ R, t ≥ 1} → C, g(z) :=
e

π
exp

(
e3πi/4(t− 1)1/4

)
,

where (z − 1)1/4 means the unique holomorphic function h : Ω → C such that
h4(z) = z− 1 and limϵ→0+ h(t+ ϵi) = (t− 1)1/4 for every real t > 1. We remark that
z 7→ e3πi/4(t− 1)1/4 maps Ω into

{
reiθ | r > 0, θ ∈

(
3
4
π, 5

4
π
})

and so

|g| (z) ≤ e

π
exp

(
ℜ
(
e3πi/4(z − 1)1/4

))
≤ e

π
exp

(
− 1√

2
|z − 1|1/4

)
≲ |z|−k .

Let γ be the loop (in Ω) obtained by concatenating the parametrized paths

t+ ϵi (t ∈ [1, R]),
√
R2 + ϵ2eiα (α ∈ [α0, 2π − α0]),

R− t− ϵi (t ∈ [0, R− 1]), 1 + ϵe−iα (α ∈ [
π

2
,
3π

2
]),

for arbitrary ϵ, R > 0. By Cauchy’s theorem we have
∫
γ
zk−1g(z) dz = 0 for k =

1, 2, . . . and ∫
γ

z−1g(z) dz = 2πig(0) = 2ei exp
(
e3πi/4eπi/4

)
= 2i.

Taking the imaginary part of both identities, sending ϵ→ 0 and then R → ∞ (and
noticing that the contributions of the two circular arcs are infinitesimal), we get
precisely

2

∫ ∞

1

tkρ(t) dt = 0 for k = 1, 2, . . . , 2

∫ ∞

1

ρ(t) dt = 2,

which is the claim.
We now build a Schwartz function out of the Poisson kernel: let

φ(x) :=

∫ ∞

1

ρ(t)Pt(x) dt.

This integral converges (as |Pt| (x) = t−nP (t−1x) ≤ t−nP (0) ≤ P (0)) and defines a
function in L1(Rn), since∫

Rn

|φ| (x) dx ≤
∫ ∞

1

∫
Rn

|ρ| (t)Pt(x) dx dt =

∫ ∞

1

|ρ| (t) dt < +∞.

Moreover, using Fubini’s theorem, φ̂(ξ) =
∫∞
1
ρ(t)e−t|ξ| dt. It is easy to show induc-

tively that, for ξ ̸= 0 and any multiindex α ̸= 0,

∂|α|φ̂(ξ)

∂ξα
=

∫ ∞

1

ρ(t) · tQα(t, ξ, |ξ|−1)e−t|ξ| dt
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for a suitable polynomial Qα. In particular, φ̂ is smooth on Rn \ {0} and all its
derivatives are rapidly decreasing at infinity. Moreover, φ̂ is clearly continuous.
Given any α ̸= 0, we write

e−s =
∑
k<K

(−s)k

k!
+RK(s)

and notice that s−K |RK | (s) is bounded for s ∈ R \ {0} close to the origin, while it
is infinitesimal as |s| → ∞; thus |RK | (s) ≲ |s|K . This implies

∂|α|φ̂(ξ)

∂ξα
=

∫ ∞

1

ρ(t) · tQα(t, ξ, |ξ|−1)

(∑
k<K

(−t |ξ|)k

k!
+RK(t |ξ|)

)
dt.

Calling d and d′ the degrees of Qα with respect to its first and last argument,
respectively, we obtain that for every K > d′∫ ∞

1

∣∣ρ(t) · tQα(t, ξ, |ξ|−1)
∣∣ |RK | (t |ξ|) dt ≲

∫ ∞

1

t1+d+K |ξ| dt ≲ |ξ|

(whenever 0 < |ξ| ≤ 1), while∫ ∞

1

ρ(t) · tQα(t, ξ, |ξ|−1)
∑
k<K

(−t |ξ|)k

k!
dt = 0

by the special properties satisfied by η. This shows that all the derivatives of φ̂
extend continuously up to the origin, hence φ̂ ∈ S(Rn) and we deduce that φ ∈
S(Rn), as well. Finally,

∫
Rn φ(x) dx =

∫∞
1

∫
Rn ρ(t)Pt(x) dx =

∫∞
1
ρ(t) dt = 1 and

Mv
φf(x) ≤

∫ ∞

1

|ρ| (t)Mv
Pf(x) dt ≲ Mv

Pf(x)

for any f ∈ L1(Rn), showing that (7) ⇒ (1) for this particular φ.

Proof of (6) ⇒ (5). Let ψ ∈ C∞
c (B1(0)) with ∥∇ψ∥L∞ ≤ 1. Given an ∞-atom

supported in Br(x0), we have

|ψt ∗ a| (x) ≤ ∥ψt∥L1 ∥a∥L∞ = ∥ψ∥L1 ∥a∥L∞ ≲ ∥a∥L∞

for any x ∈ B2r(x0). Fix now x ∈ Rn \ B2r(x0) and notice that ψt ∗ a(x) = 0 if
t < |x− x0| − r (since in this case ψt(x − ·) and a are supported in the disjoint
balls Bt(x) and Br(x0)). Assume instead that t ≥ |x− x0| − r: in this case we get

t ≥ |x−x0|
2

, so

|ψt ∗ a| (x) ≤
∫

|ψt(x− y)− ψt(x− x0)| |a| (y) dy

≤r ∥∇ψt∥L∞ ∥a∥L1

≲rt−n−1 ≲
r

|x− x0|n+1
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(as ∇ψt(x) = t−n−1∇ψ(t−1x)). Thus,

∥GM′f∥L1 ≲
∫
B2r(x0)

∥a∥L∞ dx+

∫
Rn\B2r(x0)

r

|x− x0|n+1 dx

≲ ∥a|L∞ |Br(x0)|+ r

∫ ∞

2r

ρn−1 dρ

ρn+1
≲ 1.

Hence, if f =
∑

k λkak is an atomic decomposition,

∥GM′f∥L1 ≤

∥∥∥∥∥∑
k

λkGM′ak

∥∥∥∥∥
L1

≲
∑
k

λk.

Proof of (6) ⇒ (7). The proof of Proposition 9.6 can be repeated verbatim, with φ
replaced by P , to show that

∥Mv
Pa∥L1 ≲ 1

for any ∞-atom a. Hence, if f =
∑

k λkak is an atomic decomposition,

∥Mv
Pf∥L1 ≤

∥∥∥∥∥∑
k

λkMv
Pak

∥∥∥∥∥
L1

≲
∑
k

λk.

Proof of (6) ⇒ (8). It suffices to notice that the proof of Theorem 9.11 used only

the atomic decomposition of f . So, choosing m(ξ) := −i ξj|ξ| , we deduce

∥Rjf∥L1 ≲ inf
∑

λk

(the infimum ranging over all the possible atomic decompositions). Moreover, for
any decomposition

∥f∥L1 ≤
∑
k

λk ∥ak∥L1 ≤
∑
k

λk.

Thus, ∥f∥L1 +
∑n

j=1 ∥Rjf∥L1 ≲ inf
∑

k λk.

9.2.6 Characterization with the Riesz transforms

We now show the implication (8) ⇒ (7) among the equivalent definitions of H1(Rn).
The proof will implicitly show the corresponding inequality on the norms, namely

∥Mv
Pf∥L1 ≲ ∥f∥L1 + ∥R1f∥L1 + · · ·+ ∥Rnf∥L1 .

Assume that f and all its Riesz transforms are in L1(Rn). So far we have tacitly
allowed any function to be either real or complex valued, but now it is convenient to
assume f real valued (without loss of generality, as Rj maps real functions to real
distributions). The functions

uj(x, t) := Pt ∗ Rjf(x) for 1 ≤ j ≤ n, un+1(x, t) := Pt ∗ f(x)
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form a system of conjugate harmonic functions on Hn+1 := {(x, t) ∈ Rn+1 : t > 0},
i.e. they satisfy the following system of generalized Cauchy-Riemann equations :

n+1∑
j=1

∂uj
∂xj

= 0,
∂uj
∂xk

=
∂uk
∂xj

for any 1 ≤ j, k ≤ n+ 1,

where xn+1 is an alias for the auxiliary variable t. This can be checked using the
formulas

F(Pt ∗ f)(ξ) = (2π)−n/2e−t|ξ|f̂(ξ), F(Pt ∗ Rjf)(ξ) = −(2π)−n/2i
ξj
|ξ|
e−t|ξ|f̂(ξ).

Clearly it suffices to prove that

sup
t>0

|u| (·, t) ∈ L1(Rn),

where u := (u1, . . . , un+1). We could bound |u| (x, t) by the Hardy-Littlewood max-
imal function of (f,R1f, . . . ,Rnf) at x, but this would be useless (as the Hardy-
Littlewood maximal function satisfies only a weak (1,1) bound). Rather, we aim at
showing that |u|q (x, t) ≲Mg(x) for some q < 1 and some g ∈ L1/q(Rn) with

∥g∥1/q
L1/q ≲ ∥f∥L1 + ∥R1f∥L1 + · · ·+ ∥Rnf∥L1 ,

from which the thesis will follow since∥∥∥∥sup
t>0

|u| (·, t)
∥∥∥∥
L1

≲ ∥Mg∥1/q
L1/q ≲ ∥g∥1/q

L1/q .

Pick now n−1
n

< q < 1 (so that in particular q > 0). From Lemma 9.20 below,

we know that (|u|2 + ϵ2)q/2 is subharmonic (for any ϵ > 0). Thus it satisfies the
following version of the maximum principle: for any Ω ⋐ Hn+1 and any h ∈ C0(Ω)
harmonic in Ω, the implication

(|u|2 + ϵ2)q/2 ≤ h on ∂Ω ⇒ (|u|2 + ϵ2)q/2 ≤ h on Ω

holds. Sending ϵ → 0, it is easy to check that |u|q satisfies the same property.
Lemma 9.21 below tells us that this property applies also with the harmonic function
h(x, t) := Pt−δ ∗ |u|q (x, δ) on the unbounded domain {(x, t) : t > δ} ⊆ Hn+1, for any
δ > 0.

Notice that

sup
δ>0

∥|u|q (·, δ)∥1/q
L1/q = sup

δ>0
∥u(·, δ)∥L1 ≤ ∥f∥L1 + ∥R1f∥L1 + · · ·+ ∥Rnf∥L1 .

Since any closed ball in L1/q is weakly sequentially compact, we can find a sequence
δk → 0 and a function g ∈ L1/q(Rn) (whose L1/q-norm satisfies the same bound)
such that |u|q (·, δk)⇀ g. Since Pt−δk → Pt in L

(1/q)′ , we deduce that

|u|q (x, t) ≤ lim
k→∞

(Pt−δk ∗ |u|
q (·, δk))(x) = Pt ∗ g(x).

Finally, by Remark 9.5, we have Pt ∗ g ≤ Mg, which was our goal. It remains to
prove the two lemmas.
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Lemma 9.20. For any q ≥ n−1
n

the function (|u|2 + ϵ2)q/2 is subharmonic, i.e.

∆
(
(|u|2 + ϵ2)q/2

)
≥ 0.

Proof. We will use the shorthand notation ∂j :=
∂

∂xj
. We compute

∂j(|u|2 + ϵ2)q/2 = q(|u|2 + ϵ2)(q/2)−1u · ∂ju,∑
j

∂2jj(|u|
2+ϵ2)q/2 =

∑
j

q(q−2)(|u|2+ϵ2)(q/2)−2(u·∂ju)2+
∑
j

q(|u|2+ϵ2)(q/2)−1 |∂ju|2

(using ∆u = 0). The thesis follows immediately if q ≥ 2, so we can assume n−1
n

≤
q < 2, i.e. 0 < 2− q ≤ n+1

n
. It suffices to prove that

n+ 1

n

∑
j

(u · ∂ju)2 ≤ |u|2
∑
j

|∂ju|2 .

This inequality is a consequence of the generalized Cauchy-Riemann equations: in-
deed, the matrix A := (∂juk(x))jk is symmetric, so (by the spectral theorem) we can
find P ∈ O(n+ 1) and a diagonal matrix D such that A = P tDP . The coefficients
on the diagonal of D are the eigenvalues λ1, . . . , λn+1 of A. We remark that∑

j

λj = tr(D) = tr(A) = 0.

We pick j0 such that |λj0| = maxj |λj|. By Cauchy-Schwarz we have

(n+ 1) |λj0|
2 = n |λj0|+

∣∣∣∣∣∑
j ̸=j0

λj

∣∣∣∣∣
2

≤ n
∑
j

|λj|2 ,

so, letting v := P

(
u1(x)
...

)
, we can estimate

n+ 1

n

∑
j

|u · ∂ju|2 =
n+ 1

n

∑
j

∣∣∣∣∣A
(
u1(x)
...

)∣∣∣∣∣
2

=
n+ 1

n
|Dv|2 ≤ n+ 1

n
|λj0|

2 |v|2

≤
∑
j

|λj|2 |u|2 (x).

We finally observe that∑
j

|λj|2 = tr(DtD) = tr(PAtP tPAP t) = tr(AtA) =
∑
j

|∂ju|2 .

Lemma 9.21. For t > δ we have |u|q (x, t) ≤ (Pt−δ ∗ |u|q (·, δ))(x).
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Proof. Let us first prove that, for every η > 0, there exists an arbitrarily large radius
R > 0 such that |u| ≤ η on the set {(x, t) : t ≥ δ, |(x, t)| ≥ R}. From the mean-value
property of harmonic functions, for any (x, t)) in this set we have

|u| (x, t) ≤ 1∣∣Bt/2(x, t)
∣∣ ∫

Bt/2(x,t)

|u| (y, s) dy ds.

If |x| ≤ t then t ≥ R√
2
and we can estimate

|u| (x, t) ≤ 1∣∣Bt/2(x, t)
∣∣ ∫Rn×( t

2
, 3
2
t)
|u| (y, s) dy ds ≲ At−n ≲ AR−n

(where A := sups>0 ∥u(·, s)∥L1 < +∞), which becomes small at will taking R large
enough. Otherwise, if |x| > t, then |x| ≥ R√

2
and any point (y, s) ∈ Bt/2(x, t) satisfies

|y| > |x|
2
, so

|u| (x, t) ≲ t−n−1

∫ 3t/2

t/2

∫
|y|>|x|/2

|u| (y, s) dy ds ≲
∫ 3t/2

t/2

s−n−1

∫
|y|>R/

√
8

|u| (y, s) dy ds.

But the latter quantity can be uniformly estimated by∫ ∞

δ/2

s−n−1

∫
|y|>R/

√
8

|u| (y, s) dy ds,

which can be made arbitrarily small taking R large enough, thanks to the dominated
convergence theorem (since the inner integral is bounded by A and tends to 0 as
R → +∞).

Now h(x, t) := (Pt−δ ∗ |u|q (·, δ))(x) is harmonic on {(x, t) : t > δ} and extends
continuously to the boundary Rn × {δ}, where it coincides with |u|q. So we have
proved that

|u|q (x, t) ≤ (Pt−δ ∗ |u|q (·, δ))(x) + ηq

on the boundary of SR := {(x, t) : t > δ, |(x, t)| < R} for any R large enough. We
deduce that this inequality is also true on SR itself. Thus, letting R → +∞, we
infer that it holds on {(x, t) : t > δ}. The thesis follows as we let η → 0.

9.2.7 Existence of the atomic decomposition

In this section we show that any function f ∈ L1(Rn) with GMf ∈ L1(Rn) admits
an atomic decomposition

f =
∑
k=0

λkak

with λk ≥ 0, (ak) a collection of ∞-atoms and
∑

k λk ≲ ∥GMf∥L1 , thereby proving
the implication (4) ⇒ (6) and the bound on the corresponding norms.

[· · · work in progress · · · ]
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9.2.8 Littlewood-Paley characterization

In this section we are going to prove that H1(Rn) = Ḟ 0
1,2(Rn), in the sense specified

by Theorem 9.23, denoting by H1(Rn) the space of functions satisfying (any of) the
definitions (1)−(8), whose equivalence has been established in the previous sections.

We fix a function ψ ∈ C∞
c (B2 \ B1/2) such that

∑
j∈Z ψ(2

−jξ) = 1 for any
ξ ∈ Rn \{0}. Recall that such a ψ can be produced by taking any ϕ ∈ C∞

c (B2) such
that ϕ ≡ 1 in a neighbourhood of B1 and letting ψ := ϕ− ϕ(2·).

We let φ ∈ S(Rn) be any function such that
∫
Rn φdx

n ̸= 0 and suppφ ⊆ B2.
For instance we can take φ := F−1(ϕ) for any ϕ as above (using

∫
Rn φdx

n =

(2π)−n/2ϕ(0) ̸= 0).

Lemma 9.22. For any f ∈ S ′(Rn) and any r ∈ (0,∞) we have

sup
t>0

|φt ∗ Pjf | (x) ≤ C(n, r)M |Pjf |r (x)1/r.

Proof. Recall that, whenever v ∈ S ′(Rn) has its Fourier transform supported in B1,
we have the inequality

sup
z

|v(x− z)|
(1 + |z|)n/r

≲ (M |v|r)1/r(x).

More generally, if û is supported in Bs, letting v := u(s−1·) we obtain

sup
z

|u(x− z)|
(1 + s |z|)n/r

= sup
z

|v(sx− z)|
(1 + |z|)n/r

≲ (M |v|r)1/r(sx) = (M |u|r)1/r(x).

If 2
t
≤ 2j−1 (i.e. if t ≥ 22−j) we have φt ∗ Pjf ≡ 0, since the supports of φ̂t and

ψ(2−j·) are disjoint in this case. Assume now that t ≤ 22−j: in this case ψ(2−j·) is
supported in B8/t, so choosing any N > n

r
+ n and estimating |φ(z)| ≲ (1 + |z|)−N

we get

|φt ∗ Pjf | (x) ≲
∫
t−n |Pjf | (x− z)

(1 + t−1 |z|)N
dz ≤ sup

z

|Pjf | (x− z)

(1 + t−1 |z|)n/r

∫
t−n

(1 + t−1 |z|)N−n/r
dz.

The last integral is a finite constant independent of t, while

sup
z

|Pjf | (x− z)

(1 + t−1 |z|)n/r
≲ sup

z

|Pjf | (x− z)

(1 + 8
t
|z|)n/r

≲ (M |Pjf |r)1/r(x).

Before stating and proving the next theorem, we introduce the vector-valued
Hardy space H1(Rn, ℓ2): it is the subspace of

L1(Rn, ℓ2) :=

(fj)j∈Z ⊆ L1(Rn) :

∫ (∑
j

|fj|2
)1/2

< +∞
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made of elements (fj) satisfying one of the equivalent definitions (1) − (7) in vec-
torized form. For instance, (1) amounts to ask that

sup
t>0

∥φt ∗ (fj)∥ℓ2 = sup
t>0

∥(φt ∗ fj)∥ℓ2 ∈ L1(Rn).

Their equivalence comes from the fact that the proofs for the scalar case can be
repeated verbatim for the vectorial case (we exclude definition (8) since its equiv-
alence with the other definitions uses real numbers in an essential way, due to the
appeal to the spectral theorem).

Theorem 9.23. For any f ∈ H1(Rn) we have

∥(Pjf)j∈Z∥L1(ℓ2) ≲ ∥f∥H1 .

Conversely, if for some f ∈ S ′(Rn) we have ∥(Pjf)j∈Z∥L1(ℓ2) <∞, then there exists

a unique polynomial Q such that f −Q ∈ H1(Rn); moreover

∥f −Q∥H1(Rn) ≲ ∥(Pjf)j∈Z∥L1(ℓ2) .

Proof. The first statement follows immediately from the H1 → L1(ℓ2) version of
Theorem 9.10, applied with Kj := F−1(η(2−j·)), with assumptions (1) and (3) re-
placed by the validity of the L2 → L2(ℓ2) bound (which holds as a consequence of
Plancherel’s theorem). This variant of Theorem 9.10 is simply obtained by vector-
izing the same proof (and in this case there is no need of truncating the kernel).
Recall that this ℓ2-valued kernel satisfies the Hörmander condition∫

|x|>2|y|
∥(Kj(x− y)−Kj(x))∥ℓ2 dx

n ≲ 1.

We now turn to the converse. Pick η := ψ(2·) +ψ+ψ
( ·
2

)
and notice that η ≡ 1

near the support of ψ. Let

P̃j : S ′(Rn) → S ′(Rn), P̃j(g) := F−1(η(2−j·)Fg)

and remark that P̃jPj = Pj. Applying the H1(ℓ2) → L1 version of Theorem 9.10
with f := (Pjf)j∈Z and Kj := F−1(η(2−j·)), we can estimate∥∥∥∥∥

N∑
j=−N

Pjf

∥∥∥∥∥
L1

=

∥∥∥∥∥
N∑

j=−N

P̃jPjf

∥∥∥∥∥
L1

≲

∥∥∥∥∥
N∑

j=−N

Pjf

∥∥∥∥∥
H1(ℓ2)

.

We can similarly estimate the L1-norm of Rk

∑N
j=−N Pjf , using the ℓ2-valued kernel

Kj := F−1
(
−i ξk|ξ|η(2

−j·)
)
. Thus,

∥∥∥∥∥
N∑

j=−N

Pjf

∥∥∥∥∥
H1

≲

∥∥∥∥∥
N∑

j=−N

Pjf

∥∥∥∥∥
H1(ℓ2)

=

∥∥∥∥∥∥supt>0

(
N∑

j=−N

|φt ∗ Pjf |2
)1/2

∥∥∥∥∥∥
L1

.
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Using Lemma 9.22 with any 0 < r < 1, as well as the Hardy-Littlewood maximal
estimate for L1/r(ℓ2/r), the last quantity is bounded up to constants by∥∥∥∥∥∥

(
N∑

j=−N

(M |Pjf |r)2/r
)1/2

∥∥∥∥∥∥
L1

= ∥(M |Pjf |r)∥1/r
L1/r

(
ℓ
2/r
N

) ≲ ∥(|Pjf |r)∥1/r
L1/r

(
ℓ
2/r
N

)
= ∥(Pjf)∥L1(ℓ2) ,

where ℓpN denotes the truncated space of sequences a = (a−N , . . . , aN) with the

norm ∥a∥ℓpN :=
(∑N

j=−N |aj|p
)1/p

. The same argument shows that the partial sums∑N
j=−N Pjf form a Cauchy sequence in H1(Rn) and thus, by Proposition 9.8, con-

verge to some g ∈ H1(Rn).

But F
(∑N

j=−N Pjf
)
→ f̂ in D′(Rn \ {0}), so the tempered distribution f̂ − ĝ is

supported in {0}. This means that

Q := f − g = F−1
(
f̂ − ĝ

)
is a polynomial. So f−Q = g ∈ H1(Rn) and, letting N → ∞ in the above estimate,
we also have

∥f −Q∥H1 = ∥g∥H1 ≲ ∥(Pjf)∥L1(ℓ2) .

9.3 The Space of Bounded Mean Oscillation Functions
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