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Abstract

In this dissertation we develop new variational methods with the aim to build minimal

submanifolds Σk in a closed ambient Riemannian manifold (Mm, g), by means of min-max

procedures. We will focus almost exclusively on the cases k = 2 and k = m− 2, namely

minimal surfaces and minimal submanifolds of codimension 2.

After a general introduction, in the second chapter we present a recent min-max theory

devised by the supervisor of this thesis, T. Rivière: starting from immersions which are

critical for a suitable relaxation of the area, involving a power of the second fundamental

form, this method builds, as the viscosity parameter tends to zero, a limit object satisfying a

certain weak notion of minimality. The method applies to any min-max problem for the area

functional in the space of immersions Σ→M, where Σ is a given closed surface. We revisit

this theory and show how to adapt it to the free boundary case, relative to any submanifold

N n ⊂M; the outcome is essentially an immersed manifold which is critical with respect to

the constraint that the boundary is contained in N .

In the following chapter we study axiomatically this new weak notion of minimal

immersion, whose instances are called parametrized stationary varifolds. These special

varifolds are induced by a parametrization and a Borel multiplicity; they enjoy a localization

property for the stationarity, with respect to the domain. In spite of the lack of general

regularity results for stationary varifolds, this last property can be exploited to show that the

multiplicity is constant and the parametrization is smooth, without any assumption on the

codimension.

The attention then moves to the study of the multiplicity when the parametrized varifold

arises as a limit of critical or almost critical immersions for the relaxed functionals; in this

case we show that the multiplicity is always equal to one. This result allows to obtain

upper bounds on the Morse index of the limit minimal immersion, namely a bound on the

instability of this map in the space of immersions. This fact would allow, by itself, to

simplify the regularity theory, but its proof relies strongly on the theory contained in the

previous chapters.

In the last chapter, which is completely independent of the rest of the thesis, we present

another theory meant to produce minimal submanifolds in codimension 2. It is inspired by

the recent use of the Allen–Cahn functional for maps u :M→ R, viewed as a relaxation of

the (m− 1)-area of the level sets of u: Rather than using the most immediate generalization
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given by the Ginzburg–Landau energy for maps u :M→ C, which makes the asymptotic

analysis difficult and not completely satisfactory, we study instead the Yang–Mills–Higgs

functional for couples (u,∇), where u :M→ L is a section of a given Hermitian line bundle

L→M and ∇ is a connection on it. This energy enjoys a natural gauge invariance for the

symmetry group U(1). The study of this functional brings to a simpler analysis of the energy

concentration set and, differently from what happens with Ginzburg–Landau, it allows to

obtain the integrality and concentration of the limit varifold.

The results contained in the third and fourth chapters have been obtained in collaboration

with T. Rivière, while the ones from the last chapter come from a collaboration with D.

Stern.



Sunto

Questa tesi di dottorato si occupa dello sviluppo di nuovi metodi variazionali volti a costruire

sottovarietà minime Σk in un ambiente Riemanniano chiuso (Mm, g), tramite procedure di

min-max. Ci dedicheremo quasi esclusivamente ai casi k = 2 e k = m− 2, ovvero superfici

minime e sottovarietà minime di codimensione 2.

Dopo un’introduzione generale agli argomenti trattati, nel secondo capitolo presentiamo

una recente teoria di min-max dovuta al relatore di questa tesi, T. Rivière: partendo da

immersioni critiche per un opportuno rilassamento dell’area, contenente una potenza della

seconda forma fondamentale, questo metodo costruisce, al tendere a zero del parametro di

viscosità, un oggetto limite soddisfacente una certa nozione debole di minimalità. Il metodo

si applica a un qualsiasi problema di min-max per l’area nello spazio delle immersioni

Σ→M, dove Σ è una superficie chiusa fissata. Rivisitiamo questa teoria e mostriamo

come adattarla al caso free boundary, relativamente a una qualsiasi sottovarietà N n ⊂M;

l’oggetto che ne deriva è essenzialmente una superficie immersa critica per l’area rispetto al

vincolo di avere il bordo contenuto in N .

Nel capitolo successivo studiamo in modo assiomatico questa nuova nozione debole

di immersione minima, le cui istanze vengono chiamate varifold parametrici stazionari.

Questi speciali varifold sono indotti da una parametrizzazione e da una molteplicità

Boreliana; godono di una proprietà di localizzazione per la stazionarietà, rispetto al

dominio. Nonostante la scarsità di risultati di regolarità generali per varifold stazionari,

quest’ultima proprietà può essere sfruttata per dimostrare che la molteplicità è costante e che

la parametrizzazione è liscia, senza alcuna ipotesi sulla codimensione.

L’attenzione viene poi rivolta allo studio della molteplicità quando il varifold parametrico

è un limite di immersioni critiche o quasi critiche per i funzionali rilassati; in questo caso

mostriamo che la molteplicità è sempre uguale a uno. Questo risultato permette di ottenere

stime dall’alto sull’indice di Morse dell’immersione minima limite, ovvero una misura della

sua instabilità nello spazio delle immersioni. Ciò di per sé renderebbe più semplice la teoria

di regolarità, ma la dimostrazione di questo fatto dipende fortemente dalla teoria contenuta

nei capitoli precedenti.

Nell’ultimo capitolo, completamente indipendente dal resto della tesi, presentiamo

un’altra teoria volta a produrre sottovarietà minime in codimensione 2. Questa è ispirata

al recente utilizzo del funzionale di Allen–Cahn per mappe u :M→ R, pensato come
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rilassamento dell’area (m− 1)-dimensionale degli insiemi di livello di u. Anziché utilizzare la

generalizzazione più immediata data dall’energia di Ginzburg–Landau per mappe u :M→ C,

che rende l’analisi asintotica difficile e non interamente soddisfacente, studiamo invece

il funzionale di Yang–Mills–Higgs per coppie (u,∇), dove u :M→ L è una sezione di

un fissato fibrato in rette complesse L→M, con una data struttura Hermitiana, e ∇ è

una connessione sul fibrato. Questo energia gode di una naturale invarianza di gauge

rispetto al gruppo di simmetria U(1). Lo studio di questo funzionale porta a un’analisi

dell’insieme di concentrazione dell’energia più semplice e, a differenza di quanto accade con

Ginzburg–Landau, permette di ottenere l’integralità e la concentrazione del varifold limite.

I risultati contenuti nel terzo e quarto capitolo sono stati ottenuti in collaborazione con

T. Rivière, mentre quelli dell’ultimo capitolo nascono da una collaborazione con D. Stern.
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1 General introduction

1.1 The landscape

The main theme of this thesis is the variational construction of minimal submanifolds Σk in

an assigned closed Riemannian manifold (Mm, g). While there is already a vast literature

for hypersurfaces (k = m− 1) and geodesics (k = 1), with several satisfactory results, very

little is known for the following two very general problems:

- develop a variational theory which allows to construct or exhibit minimal submanifolds,

especially of saddle-point type, for general k and m; here “minimal submanifold” should

not be necessarily intended in the strongest sense of smooth embedded submanifold, or not

even immersed: we allow for appropriate weak notions of minimal objects for which one

expects some kind of regularity;

- develop a regularity theory for the objects produced in this variational way.

We will provide some partial answers in the cases k = 2 and k = n− 2. Before stating them,

we will briefly review some previous results in order to place this dissertation in perspective.

Some history of minimal submanifolds

In a Riemannian manifold (Mm, g), not necessarily closed, an embedded or immersed

submanifold Σk ⊂Mm is called minimal if the trace of its second fundamental form vanishes

at every point. For hypersurfaces (k = n− 1) this means that, at every point, the principal

curvatures sum up to zero.

Another characterization for M = Rm is the following: expressing Σ locally as the graph

of a smooth map f : U → Rm−k with U ⊆ Rk open (up to ambient rotations), f is critical

for the area functional, namely

d

dt

∫
U

√
1 + |∇(f + tg)|2

∣∣∣
t=0

= 0

whenever {g 6= 0} ⊂⊂ U . Note that the left-hand side is just the area of the graph of f + tg.

A special feature of the case of hypersurfaces (k = m− 1) is that criticality can be upgraded

to local minimality for graphs, namely∫
U

√
1 + |∇f |2 ≤

∫
U

√
1 + |∇h|2

9



10 Chapter 1. General introduction

whenever {h 6= f} ⊂⊂ U . This feature comes from the fact that a minimal graph is calibrated

by the (m− 1)-form tangent to the foliation of U × R made by vertical translations of the

graph, which turns out to be closed (here we use the identification Λm−1Rm = Λm−1Rm).

The study of minimal surfaces began already in the eighteenth century with the work of

Lagrange, who derived the Euler–Lagrange equations for minimal graphs. Lagrange also

posed the famous Plateau problem, asking to find a surface in R3 with assigned boundary

and least area; the problem is named after Plateau, who analyzed special cases empirically

using soap films.

Along with this and other influential existence questions, such as the Björling problem,

efforts were devoted to the classification of minimal surfaces in R3, at least with extra

assumptions such as embeddedness (proper or not), completeness or simple connectivity (or

finite topological type). Independently, around the same time in the 1860’s, Enneper and

Weierstrass were able to give an explicit representation for all minimal, simply connected

immersed surfaces: up to reparametrization, we can assume that the immersion φ : Ω→ R3

is conformal, with Ω ⊆ C; then φ is a primitive of the real part of the C3-valued 1-form

f
(1

2
(1− g2),

i

2
(1 + g2), g

)
dz,

for a suitable holomorphic function f and a suitable meromorphic function g, both defined

on Ω.1

The study of minimal surfaces became more popular after the complete solution to the

Plateau problem, found around 1930 by Douglas [33] and Radó [88]. Their methods exploit

the fact that, for a conformal immersion, harmonicity and minimality are equivalent, a fact

which is not useful for k > 2 due to the general lack of conformal reparametrizations. As we

shall see below, the solution for general k (even when m = k + 1) requires a totally different

technology which brought to the theory of currents, a part of the modern geometric measure

theory.

Going back to the classification problem, Osserman [83] in 1963 showed that complete,

orientable, immersed minimal surfaces in R3 of finite total curvature are conformally

equivalent to a closed Riemann surface with finitely many punctures, with the Gauss map

extending across them holomorphically. It was believed for a long time that complete,

connected, properly embedded minimal surfaces of finite topological type must be either the

plane, the catenoid or the helicoid. It was only in 1982 that Costa [25] found another

example, with three ends. More examples were later found, including surfaces similar to the

helicoid with arbitrary genus but only one end [52].

In the last decades, increasing efforts were offered to the understanding of minimal

surfaces in closed manifolds. Two very influential questions for the model case of M = S3

1This representation misses only the case of a planar immersion. The fact that Ω ⊆ C with φ conformal
can be assumed by the uniformization theorem (which came actually later); note that the surface cannot be
compact. Conversely, the formula always provides minimal, (weakly) conformal branched immersions if fg2 is
holomorphic.
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were the Lawson conjecture and the Willmore conjecture, asking respectively whether the

Clifford torus 1√
2
(S1 × S1) ⊂ S3 is the unique embedded minimal torus, and whether it

minimizes the area among embedded minimal surfaces different from the equator, up

to rotations. They were both solved recently, respectively by Brendle [19] in 2013 and

Marques–Neves [74] in 2012, building also on previous work by other mathematicians.

Before going to the variational aspect of the story, which played an important role also in

the resolution of the Willmore conjecture, let us mention that another important topic is the

study of compactness of spaces of minimal submanifolds under certain “bounded complexity”

assumptions, where the complexity can be understood in terms of area, Morse index and

topology; the Morse index is a measure of the instability of the submanifold for the area,

namely it is the dimension of a maximal subspace of infinitesimal variations where the

second variation of the area becomes negative definite. The relation between these notions

of complexity, depending on the ambient, is also an interesting and important subject.

Compactness for stable (embedded or immersed) minimal hypersurfaces, namely those with

nonnegative second variation, is related to the validity of a pointwise upper bound for the

second fundamental form. Such inequality in its local version is essentially equivalent to the

Bernstein conjecture that a complete, connected minimal hypersurface in Rm is a hyperplane.

This conjecture is known to be true for immersed surfaces (m = 3), after the work by

Fischer-Colbrie–Schoen [38].

The study of minimal submanifolds is not only interesting per se, but has also application

in and outside mathematics: we mention its use in general relativity, namely in the proof of

the positive mass theorem by Schoen–Yau [97] and in Bray’s proof of the Penrose conjecture

[18]. Another application, due to Colding–Minicozzi [24], enters the proof of the Poincaré

conjecture, or more generally of Thurston’s geometrization conjecture: at every time of the

Ricci flow (with surgery), a minimal sphere is built whose area equals the infimum of all

immersed spheres realizing a nontrival class in the second homotopy group; the existence of

such sphere is used to show the “finite time extinction” of the second homotopy group. Both

applications are of variational nature.

Variational construction of minimal submanifolds

The work of Douglas and Radó for the two-dimensional case (k = 2, m = 3) of the Plateau

problem relies on considering immersed surfaces which are parametrized by the disk, in order

to be able to assume that the parametrization is conformal, with the area then agreeing with

the Dirichlet energy, thus shifting the problem to a more coercive functional. This technique

cannot hope to be generalized to higher dimension and the community realized that a

parametrization-free approach could be more convenient.

One is then led to seek a weak notion of submanifold compatible with the calculus of

variations, namely a notion which is weak enough to ensure compactness of the set of

competitors but rich enough to have meaningful definitions for area and boundary. A
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successful theory was proposed only in 1960 by Federer and Fleming, in [37]. Their theory

of currents merged the abstract homological framework of general de Rham currents

with the seminal analytic ideas of generalized hypersurface—thought as the boundary of

a finite-perimeter set—proposed by Caccioppoli and De Giorgi, and of rectifiable set,

introduced by Besicovitch and his school.

Currents of dimension k, in a similar spirit as distributions, are defined to be the

topological dual of compactly supported smooth k-forms, once the latter space is endowed

with a suitable structure of locally convex vector space. Oriented manifolds of dimension k,

embedded or immersed, having locally finite area can be thought as currents, acting on

k-forms just by integration. Given a current T , a good notion of boundary ∂T is given by

duality: we let 〈∂T, ω〉 := 〈T, dω〉, mimicking Stokes’ theorem.

The area of a current, called mass and defined again by duality, is not necessarily finite

but is certainly lower semicontinuous with respect to weak convergence, making currents a

suitable framework for minimization problems like Plateau’s.

Moreover, integral currents, namely currents T such that T and ∂T are rectifiable and

have integer multiplicity a.e., satisfy a suitable weak compactness property, which is the

celebrated compactness theorem by Federer–Fleming. This allows to “solve” the Plateau

problem by applying the direct method of calculus of variations, shifting then the bulk of the

work to the regularity theory, whose landmarks are mentioned later.

In a famous work, Sacks–Uhlenbeck [95] showed the existence of minimal (branched,

immersed) spheres in any simply connected closed manifold, with arbitrary codimension

(k = 2,m ≥ 2). Their method exploits again the equivalence of minimality and harmonicity

for conformal immersions. Rather than trying to find directly maps u : S2 →M critical for

the Dirichlet energy, for which the Palais–Smale property (described below) fails, they work

with the perturbed functional ∫
S2

(1 + |du|2)α, α > 1

and find critical points uα, which they show to converge to a harmonic map as α→ 1, up to

points where the energy concentrates—a phenomen called bubbling. This delicate step relies

on a “small-energy-regularity” theorem for the perturbed functionals, uniformly in α > 1.

With this method they also manage to find a minimizer for the area (or the Dirichlet energy)

in certain free homotopy classes of maps S2 →M generating π2(M), when M is simply

connected.

In order to find general critical points for the area, which are not necessarily minimizers

but, rather, of “saddle” type, the general starting idea is to study a min-max variational

problem. This principle, which goes back to the work [16] of Birkhoff on the existence of

closed geodesics for any Riemannian metric on the sphere, is best seen in the so-called

mountain pass situation: if we have a Banach space X and a nonlinear functional f : X → R
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of class C1 with the property that, say,

F (x0), F (x1) ≤ 0, F (x) ≥ 1 for all x with ‖x‖ = 1,

with x0 and x1 lying inside and outside the unit ball, respectively, then we expect heuristically

to have a saddle point xs somewhere, with value F (xs) ≥ 1. Indeed, this situation is

pictorially like having x0 inside a volcano and x1 outside of it, so that we expect a saddle

point on the border. The value λ = F (xs) can be characterized as

β = inf
γ

max
t∈[0,1]

F (γ(t)), γ ∈ C0([0, 1], X) with γ(0) = x0 and γ(1) = x1.

Moreover, we expect that, for a minimizing sequence of curves γj , any point γj(t) achieving

maxt∈[0,1] F (γ(t)) becomes arbitrarily close to a critical point of F , as j →∞. These facts

are true if F satisfies a technical condition, called Palais–Smale condition, namely

{xj} is precompact whenever F (xj)→ λ, dF (xj)→ 0.

This property is also needed for minimization problems. The standard way to show the

above facts is then to use a negative (pseudo-)gradient flow of F .

We refer to [9] for a broad introduction to this topic and a large collection of examples

implementing this idea.

The main issue is then how to implement a min-max construction in the setting of

minimal submanifolds.

The work by Sacks–Uhlenbeck [95] fell short of providing general min-max critical

spheres—this is due to the lack of a technical ingredient called the analysis of neck regions,

which would provide a complete understanding of the energy concentration issue. Instead, in

the work [24] motivated by the study of the Ricci flow, Colding–Minicozzi analyzed directly

the Dirichlet energy in the mountain pass situation described above, in order to find a

min-max minimal sphere realizing the so-called width of M .

Their method involves harmonic replacements, replacing directly pieces of each sphere

γ(t) with energy-minimizing ones (with the same boundary values) in order to have a sort of

discretized gradient flow. This is very similar in spirit to the work of Birkhoff on closed

geodesics on the sphere. In this framework they manage to analyze completely the bubbling

issue. But, as the work of Sacks–Uhlenbeck, this work exploits the fact that harmonic maps

from the sphere are automatically conformal, and hence minimal; the same is used in the

two-dimensional solution of the Plateau problem, where the domain is the disk. In the latter

situation one allows for certain order-preserving reparametrizations of the given boundary;

for the minimizing map, this then allows to have inner variations which also shift the

boundary of the disk, enabling one to deduce the conformality of the map.

The search for more minimal surfaces, possibly with a topology different from the sphere,

was in part motivated by the following influential conjecture by Yau [111].

Conjecture (Yau [111, Problem 88], 1982). Does any closed Riemannian 3-manifold

contain infinitely many (immersed or embedded, closed) minimal surfaces?
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A successful theory reaching the existence of at least one embedded minimal hypersurface,

in ambient dimension 2 < m < 8, was proposed by Almgren and his student Pitts [7, 87]:

within the theory of currents, using cycles mod 2 they produce an almost minimizing varifold

in the limit. The notion of varifold, for which the reader may consult [98, Chapters 4 and 8],

differs from the one of current in that, while also retaining good compactness properties, the

mass becomes continuous under weak convergence: this property is essential to guarantee

that the limit object attains the min-max value—on the other hand, lower semicontinuity of

the mass for currents is just good enough for minimization problems.

General k-varifolds are Radon measures on the Grassmannian bundle Grk(M) of

k-planes tangent to M. Having a measure on this bundle, rather than just on the base

manifold, is important in order to have a good notion of varifold pushforward under a

diffeomorphism F :M→M—involving the Jacobian of dF along k-planes—compatible

with the assignment Σ 7→ F (Σ) when the varifold is represented by an embedded submanifold

Σk. In turn, this notion of pushforward is essential in order to define stationary varifolds,

namely varifolds whose mass is invariant at first order, under the action of diffeomorphisms.

An important class of varifolds is formed by the integer rectifiable ones, namely those

varifolds which can be represented as a countable superposition, with positive integer

coefficients, of k-rectifiable sets. This is the kind of varifolds which is most commonly used

and studied, since it is more concrete than the general definition but still enjoys compactness

properties. The fundamental reference for general varifolds is Allard’s doctoral work [3],

where the compactness of integer stationary varifolds—or more generally of integer rectifiable

varifolds with locally bounded first variation—is proved, along with some regularity results,

rectifiability criteria for general varifolds, and other important estimates.

In their work, Almgren and Pitts study the space of integral cycles, i.e. integral currents

with no boundary, and a suitable modification of them, namely cycles with coefficients in Zp
for p ≥ 2, both equipped with the so-called flat topology.

The idea of replacement is again present in their work: it is used both to obtain a

meaningful object which should be the desired hypersurface and to investigate its regularity.

The object that they produce is an almost minimizing varifold : as will be mentioned also in

the next subsection, this technical notion is what allows to recover the full regularity.

The Almgren–Pitts theory is rather technical and uses discretized families in the

min-max, together with a discretized notion of continuity called fineness. Variants of

the Almgren–Pitts theory which circumvent the need of discretization were proposed

by Simon–Smith, for n = 3, and by De Lellis–Tasnady [32] in general dimension. The

Simon–Smith theory has the advantage of giving an effective control of the genus of the

resulting minimal surface. For an introduction to this theory, the reader can consult [23].

The use of the Almgren–Pitts framework led to the solution of several long-standing

problems, including the Willmore conjecture [74] and the Yau conjecture itself, which

was first established in the positive Ricci case [76], then for Baire-generic metrics by

Marques–Neves and collaborators [72, 57], and finally in full generality by Song [101].
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This theory was used also to construct free boundary minimal hypersurfaces: given an

ambient Mm and a submanifold Nm−1—usually M has no boundary, or N is precisely

∂M—they are hypersurfaces Σm−1 with boundary, embedded or immersed in M, which are

critical for the (m− 1)-area under the constraint ∂Σ ⊆ N . This is equivalent to the fact that

Σ is minimal and meets N orthogonally along ∂Σ.

The most studied case is (M,N ) = (B
3
, S2) with the Euclidean metric. In [62], using an

equivariant version of the Simon–Smith theory, Ketover constructed free boundary minimal

surfaces in the ball with arbitrarily big genus and three boundary components. In the same

spirit, a very recent work [20] constructs surfaces with connected boundary and arbitrary

genus.

In the work by Li–Zhou and collaborators [68, 45], the Almgren–Pitts theory for

hypersurfaces in arbitrary dimension is adapted to the free boundary case. We also mention

the theory by De Lellis–Ramic [28] for a similar min-max theory in the free boundary case.

Several other techniques are used to construct free boundary minimal submanifolds,

including notably desingularization methods—which are used also in the closed case—and

the study of extremal eigenvalue problems; for a survey of recent results, we invite the reader

to consult [67].

Recently, in the closed case, another approach using the Allen–Cahn functional was

proposed by Guaraco [46]. This theory, which started with the works of Modica [79] for

minimizers and Hutchinson–Tonegawa [55] for general critical points, interprets a minimal

hypersurface as a limit interface of a phase transition, hence as a limit of level sets of

functions which are critical for rescalings of the Allen–Cahn functional, which should then be

seen as a relaxation of the area for the level sets. This approach seems to be at least as

powerful as Almgren–Pitts; the additional structure given by having a sequence of smooth

critical functions converging to the limit already allowed to obtain finer results: see, e.g.,

[22, 13]. We will return to this topic in the next section.

In codimension two, interesting attempts have been made by Cheng and Stern using

the Ginzburg–Landau energy for complex valued maps [21, 102]. This functional, which

appears formally identical to Allen–Cahn—the latter being just Ginzburg–Landau for scalar

maps—exhibits a totally different behavior in terms of energy concentration, due to the

dominance of the angular part of the map in the Dirichlet term. This component forces

the asymptotic analysis to take place on infinitely many scales, making the study very

challenging. A different attempt, based on rescalings of the Yang–Mills–Higgs energy for

sections and connections of a Hermitian line bundle, was proposed by the author and Stern

[86] and is part of the present thesis. In this last framework, the asymptotic analysis

becomes much simpler and quite similar to the Allen–Cahn setting, although a regularity

theory still lacks.

Yet another framework, which will be presented in the next chapters, was introduced by

Rivière [91]. It concerns minimal surfaces, but works in arbitrary codimension. As in the

classical works [33, 95], it uses parametrizations Φ : Σ2 → (Mm, g). On the other hand, the
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area is not immediately relaxed with the Dirichlet energy; rather, one uses the functional

E′σ(Φ) := area(Φ) + σ2

∫
Σ

(1 + |IIΦ|2)p volΦ

for σ > 0 and a fixed exponent p > 1, where the norm of the second fundamental form IIΦ

and the area element volΦ are with respect to the metric Φ∗g induced by Φ. By studying

critical points for E′σ, one hopes to get a limit minimal immersion regardless of the topology

of the closed surface Σ, while in [95] one can just reach a harmonic map—whose minimality

is not guaranteed unless Σ is a sphere. As for the free boundary case, minimality holds

automatically only if Σ is a disk—a fact already exploited to solve Plateau’s problem; in fact,

we mention that the same approach developed in [95] was used to build free boundary

minimal disks in [104]. Note that E′σ is invariant under diffeomorphisms of the domain,

whereas the Dirichlet energy is only conformally invariant.

The main outcomes of this theory is that certain critical maps for E′σ converge, in the

varifold sense, to a parametrized stationary varifold, as σ → 0 along a suitable sequence. A

precise statement will be given in the next section.

Regularity issues

The interior regularity for area minimizing currents in codimension one was a crowning

achievement of geometric measure theory, due to the combined contributions of De Giorgi,

Fleming, Almgren, Simons and Federer (see, e.g., [98, Chapter 7]); this theory completed the

solution to Plateau’s problem in codimension one, at least ignoring boundary regularity. The

latter was studied by Hardt–Simon [49].

In arbitrary codimension, an optimal interior regularity result has been achieved in a big

and deep work by Almgren [8], which was later revisited and simplified by De Lellis and

Spadaro [8, 29, 30, 31]. We refer to [27] for some very recent developments concerning the

regularity up to the boundary.

On the other hand, everywhere regularity for integer stationary varifolds does not hold

without additional assumptions, not even in low dimension: one can consider for instance the

union of two intersecting lines in the plane, or the union of three half-lines emanating from a

point, with an angle 2π
3 between any two of them.

So far, the regularity theory of integer stationary varifolds is still very incomplete

and well understood only in special situations. An example is the structure theorem by

Allard–Almgren in the one-dimensional case [5], which says that such varifolds are locally a

finite graph of geodesic curves with multiplicity, obeying a natural balancing condition at

each node.

A very important result is Allard’s regularity theorem [3, Section 8], which roughly says

that regularity holds near points where the density does not jump to a higher value compared

to neighboring points; it can be seen as a nontrivial modification of De Giorgi’s regularity

theory for sets which locally minimize the perimeter. A consequence is the almost everywhere
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regularity for varifolds with multiplicity one, and the regularity on a dense open subset of the

support in general. The latter is still the best known result without additional assumptions.

Pitts was able to obtain a satisfactory theory for varifolds arising via his min-max

framework in codimension one, reaching in particular the full regularity for ambient

dimension m < 8—together with subsequent work by Schoen and Simon—by introducing the

stronger concept of almost minimizing varifold [87, Chapter 3]. Loosely speaking, the

definition requires that one cannot locally deform the varifold in order to decrease the mass,

unless the mass reaches a higher value at some time during the deformation—actually the

definition is given in a discretized fashion and needs to replace the varifold with a current

which is close to it in the weak topology.

For the stable, codimension one case, another important result, which completed Pitt’s

work, is the Schoen–Simon regularity theorem [96] under the assumption that the singular

set has locally finite Hn−2-measure. This was recently reduced to an optimal assumption

in a monumental work by Wickramasekera [109]—used in the regularity theory for the

Allen–Cahn approach—which essentially shows that the only onstruction to a very small

(codimension 8 in the ambient) singular set is given by the presence of classical singularities.

These are a generalization of the trivial examples given above for the plane, namely they

consist of smooth hypersurfaces meeting along a common boundary.

As for the special class of parametrized stationary varifolds considered in [91, 84], we

defer a discussion of their regularity to the next sections of this introduction.

1.2 Results from this thesis

In the following subsections, except for the first one, we will briefly describe the main results

contained in this dissertation. Some hints about the techniques will be given in the next

section.

A viscous relaxation of the area functional

A new relaxation of the area was studied by Rivière [91]. As already mentioned, the

corresponding min-max framework can produce immersed minimal surfaces (k = 2) without

a priori restrictions on the genus, on the codimension m− 2 or on the number of parameters

in the min-max. Specifically, for a fixed σ > 0, choosing (e.g.) p = 2 one first finds an

immersion Φ : Σ→Mm which is critical for the perturbation

E′σ(Φ) = area(Φ) + σ2

∫
Σ

(1 + |IIΦ|2)2 volΦ

of the area functional, where Σ is a fixed closed oriented surface. This functional enjoys a

sort of Palais–Smale condition up to diffeomorphisms.

Considering any sequence σj ↓ 0, one gets a sequence Φj : Σj → M of conformal

immersions, where Σj denotes Σ endowed with the conformal structure induced by Φj .
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Assuming for simplicity that we are dealing with a constant conformal structure, the sequence

Φj is then bounded in W 1,2 and we can consider its weak limit Φ∞, up to subsequences.

At this stage of the theory, it is still not clear whether the strong W 1,2-convergence holds,

even away from a finite bubbling set. However, in [91] it is shown that, if the sequences σj

and Φj are carefully chosen so as to satisfy a certain entropy condition, then the immersions

Φj converge to a parametrized stationary varifold. More precisely, the following holds.

Theorem. Let (Φj) be a sequence of immersions, with Φj : Σ→M critical for E′σj and

σj → 0. Assume that
∫

Σ log(σ−1
j )σ2

j (1 + |IIΦj |2)2 volΦj → 0 and that the area of Φj is

bounded by a constant. Then, up to subsequences, the varifolds in M induced by Φj converge

to a parametrized stationary varifold.

This last notion is defined in a later subsection.

The main difficulty is the absence of a small-energy-regularity uniform in σ, as opposed

to [95]. This is already true for a similar functional on curves: see [78], where explicit

examples are shown.

As in that paper, the entropy condition log(σ−1
j )σ2

j

∫
Σ(1 + |IIΦj |2)2 volΦj → 0 provides

the extra information needed to obtain a satisfactory limit object. This condition can be

ensured by means of a very general device which applies to certain relaxed functionals, due

to Struwe.

The most important intermediate step in the proof of the theorem consists in establishing

a lower bound for
µj(Br(p))

r2 for suitable ambient balls Br(p) ⊂M, independently of σ, with µj

denoting the area measure of Φj on M. While the convergence σ2
j

∫
Σ(1 + |IIΦj |2)2 volΦj → 0

is enough to have a stationary limit, the stronger entropy condition is fully exploited in the

proof of this lower bound.

A modification for the free boundary version

In the next chapter we study instead a similar energy for surfaces with boundary; namely,

replacing σ with σ2 for conveniency, we work with the energies

Eσ(Φ) := area(Φ) + σ length(Φ|∂Σ) + σ4

∫
Σ
|IIΦ|4 volΦ,

where Σ is a fixed compact surface with (possibly nonempty) boundary and Φ : Σ→Mm

is a smooth immersion with the constraint Φ(∂Σ) ⊆ N , for a given closed submanifold

N n ⊂M. The parameter σ should be thought dimensionally as a length. The length term

is added in order to have the aforementioned lower bound for the area also in this case.

The treatment will be self-contained and, along the way, we will simplify many arguments

from the original paper [91]. The main result that we get is similar to the closed case.
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Theorem. Given a sequence Φj of immersions which are σ5
j -critical for Eσj , have bounded

area and satisfy the condition

σ4
j log σ−1

j

∫
Σ
|IIΦj |4 volΦj +σj log σ−1

j length(Φj |∂Σ)→ 0,

there exists a subsequence such that the induced varifolds converge to a parametrized free

boundary stationary varifold for the couple (M,N ). Moreover, the connected components Σi

of its domain have χ(Σi) ≥ χ(Σ) and g(Σi) ≤ g(Σ).

In this statement χ(·) is the Euler characteristic and g(·) is the genus. For an immersion Φ,

the assertion that Φ is τ -critical for Eσ means that |dEσ(Φ)[w]| ≤ τ‖w‖Φ for all infinitesimal

variations w, with respect to a suitable Finsler structure on the space of W 2,4 immersions

Φ : Σ→M satisfying Φ(∂Σ) ⊆ N .

The simplifications in the presentation given in the next chapter show more generally

that, for the energy

k-area(Φ) + σp
∫

Σ
|IIΦ|p volΦ

on immersions Φ : Σk →Mm, with Σk a closed k-manifold and p > k, the stationarity of

the limit varifold holds regardless of the domain dimension k. Again, one has to assume an

almost criticality for the maps Φj , as well as σp
∫

Σ |II
Φ|p volΦ → 0.

Parametrized stationary varifolds and their regularity

Parametrized stationary varifolds, introduced in [91, 84], are two-dimensional varifolds

admitting a parametrization in the following sense: given a Riemann surface Σ, they are

induced by a weakly conformal map Φ ∈W 1,2(Σ,M), together with a multiplicity function

N ∈ L∞(Σ,N \ {0}) on the domain.

They are required to satisfy a natural stationarity property: namely, we assume that, for

almost all domains ω ⊆ Σ, the varifold induced by the map Φ
∣∣
ω

with the multiplicity

function N
∣∣
ω

is stationary in the complement of the compact set Φ(∂ω).

In the free boundary case, we require that Φ maps ∂Σ to N and that the above holds for

a.e. domain ω ⊂⊂ Σ \ ∂Σ. We also require that, for a.e. ω ⊆ Σ, the induced varifold is free

boundary stationary outside Φ(∂ω): this means that we can test the stationarity against

vector fields tangent to N and supported outside Φ(∂ω). Note that ∂ω = ω \ ω is the

topological boundary of ω in Σ and does not include ω ∩ ∂Σ.

As already discussed, everywhere regularity for general integer stationary varifolds fails

without additional assumptions, even in low dimension. In the present situation, regularity

stems from a subtle interaction between stationarity and the topological information of

being parametrized. The possibility of localizing the stationarity in the domain rules out

automatically all classical singularities.

This localization property, for varifolds arising from the min-max framework, comes from

the fact that we can choose X(Φj)1ω as an infinitesimal variation for the (almost) critical
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map Φj , with X a vector field on M vanishing near Φj(∂ω) and tangent to N if ω intersects

∂Σ, in the free boundary case.

The following optimal regularity result from [84] will be presented in the third chapter.

Theorem. The triple (Σ,Φ, N) is a parametrized stationary varifold in M if and only if Φ

is a smooth, weakly conformal harmonic map and N is a.e. constant. In this case, Φ is a

minimal branched immersion.

In the statement we implicitly assume that Σ is connected and Φ is not (a.e.) constant.

As discussed in the second chapter, there is a local version of this theorem which implies the

regularity also in the free boundary case.

Theorem. The triple (Σ,Φ, N) is a parametrized free boundary stationary varifold, for

the couple (M,N ), if and only if Φ is a smooth, weakly conformal harmonic map with

∂νΦ ⊥ TN along ∂Σ and N is a.e. constant. In this case, Φ is a minimal branched

immersion outside ∂Σ.

A simple corollary is, for instance, the following.

Corollary. Given any collection F of compact subsets of the space of smooth immersions

(Σ, ∂Σ)→ (M,N ), assuming F to be stable for isotopies of this space, the min-max value

β := inf
A∈F

max
Φ∈A

area(Φ)

is the sum of the areas of finitely many free boundary minimal (branched) immersions

Φ(i) : Σ(i) →M, whose domains are connected and have χ(Σ(i)) ≥ χ(Σ) and g(Σ(i)) ≤ g(Σ).

Note that other min-max situations can be dealt with in the same way.

Multiplicity one

The result in [84], which is optimal for the class of parametrized stationary varifolds, left

nonetheless open the question whether one can have N > 1 on some connected component of

the domain. This question should be compared with the multiplicity one conjecture by

Marques and Neves. Roughly speaking, it asks whether a minimal hypersurface Σm−1

obtained from some min-max method should always have multiplicity one, at least for

generic metrics.

Marques and Neves were able to prove this conjecture in the Almgren–Pitts theory for

one-parameter sweepouts [75]. It was also recently established by Chodosh and Mantoulidis

for bumpy metrics in 3-manifolds [22], in the setting of the Allen–Cahn level set approach,

and by Zhou for hypersurfaces in any dimension m < 8, again for Baire-generic metrics, in

the Almgren–Pitts setting [114].

The importance of this conjecture in relation to the Morse index of Σ is twofold. First of

all, there is no satisfactory definition of Morse index for an embedded minimal hypersurface
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with multiplicity bigger than one: such an object could be thought as the limit of many

qualitatively different sequences of multiplicity one hypersurfaces. Also, if one can establish a

lower bound on the Morse index like

p ≤
∑

i ni
(

index(Σi) + nullity(Σi)
)
, Σ =

⊔
i niΣi,

p being the number of (essential) parameters in the min-max, then the multiplicity one

conjecture gives ni = 1 and, hence, there are infinitely many geometrically distinct minimal

hypersurfaces, provided there exists at least one for every value of p.

In the context of the viscosity approach, although Φ could still be a multiple cover of the

image, a crucial advantage of having a parametrization at our disposal is that we have a

good definition of Morse index and nullity, provided N ≡ 1.

In [85], which corresponds to the fourth chapter of this dissertation, the natural

counterpart of the multiplicity one conjecture in the viscosity approach is established; namely

we have the following result, in arbitrary codimension and without any genericity assumption.

Theorem. We have N ≡ 1.

Corollary. If there is no bubbling or degeneration of the conformal structure induced by

Φj, we have a strong W 1,2-convergence Φj → Φ∞ = Φ. In general we have a bubble-tree

convergence Φj → Φ.

The last corollary paves the way to obtain meaningful Morse index bounds. Using the

results from [77] and [93], one can reach the following conclusion in the closed case.

Corollary. Given a family F as above, the limit (possibly disconnected and branched)

minimal immersed surface Φ : S →M satisfies

(i) β = area(Φ),

(ii) genus(S) ≤ genus(Σ),

(iii) index(Φ) ≤ p, the number of min-max parameters.

Codimension two minimal submanifolds from Yang–Mills–Higgs

Starting from the work of De Giorgi, Modica–Mortola and Sternberg for minimizers, a “level

set” method to construct minimal hypersurfaces has been recently proposed, based on the

rescalings of the Allen–Cahn functional

Fε(v) :=

∫
M

(
ε|dv|2 +

1

4ε
(1− v2)2

)
,

whose minimizers model a phase transition concentrating on a minimal interface of

codimension one, as ε→ 0.

In their pioneering work, Hutchinson–Tonegawa [55] studied families of critical points vε

of Fε with bounded energy and showed, in particular, that their energy measures concentrate
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along a stationary, integer rectifiable (m− 1)-varifold, whose support is the limit of the level

sets v−1
ε (0).

These developments, together with the deep regularity work by Tonegawa–Wickramasekera

[108] on stable solutions and subsequent work by Guaraco [46] and Gaspar–Guaraco [41],

provided a PDE alternative to the Almgren–Pitts method. This new framework has already

been used successfully to attack some profound questions concerning the structure of

min-max minimal hypersurfaces.

It is natural to ask for similar theories in higher codimension, e.g. when k = m− 2,

based again on PDE methods. Attempts in this direction have been made by Cheng [21] and

Stern [102], via the study of the Ginzburg–Landau energies

Fε(v) :=
1

| log ε|

∫
M

(
|dv|2 +

1

4ε2
(1− |v|2)2

)
for complex-valued maps v : M → C. While the Ginzburg–Landau approach can be

employed successfully to produce nontrivial stationary rectifiable (m− 2)-varifolds, based

also on works by Lin–Rivière [71] and Bethuel–Brezis–Orlandi [15], it is not yet known

whether the varifolds produced in this way are integral, nor is it known whether the full

energies Fε(vε) of the min-max critical points converge to the mass of the limiting stationary

varifold in the case b1(M) 6= 0, with b1(·) denoting the first Betti number.

These difficulties point to the deeper fact that the Ginzburg–Landau functionals, though

related to the (m− 2)-area, do not provide a straightforward regularization of the latter.

Indeed, they should be viewed mostly as a relaxation of the Dirichlet energy for singular

maps to S1 (away from singularities).

In [86], whose content is presented in the last chapter of the dissertation, we consider

instead the Yang–Mills–Higgs energy

E(u,∇) :=

∫
M

(
|∇u|2 + |F∇|2 +W (u)

)
and its rescalings

Eε(u,∇) :=

∫
M

(
|∇u|2 + ε2|F∇|2 + ε−2W (u)

)
,

for couples (u,∇) consisting of a section u of a given Hermitian line bundle L→M, and a

metric connection ∇ on L. Here, the potential W : L→ R is given by

W (u) :=
1

4
(1− |u|2)2,

while F∇ ∈ Ω2(M, u(L)) ∼= Ω2(M,R) denotes the curvature of ∇. These functionals have a

natural U(1) gauge invariance.

Taubes [105, 106] studied critical points (with ε = 1) for the trivial bundle L = C× R2

on the plane: he gave a complete classification, showing in particular that all finite-energy

critical points (u,∇) solve the first order system∇∂1u± i∇∂2u = 0

∗ F∇ = ±1

2
(1− |u|2),
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known as the vortex equations. Such solutions minimize the energy among pairs (u,∇) with

fixed vortex number N := 1
2π

∫
R2 F∇ ∈ Z, and carry energy exactly 2π|N |.

In [86] we develop the asymptotic analysis as ε→ 0 for critical points of Eε associated to

an arbitrary line bundle L→M. The main result is the following, which describes the

limiting behavior of the energy measures and curvatures F∇ε , for critical points (uε,∇ε)
satisfying a uniform energy bound.

Theorem. Let L→M be a Hermitian line bundle over a closed, oriented Riemannian

manifold (Mm, g) of dimension m ≥ 2, and let (uε,∇ε) be a family of critical pairs for Eε

with bounded energy. Then, as ε→ 0, the energy measures

µε :=
1

2π
eε(uε,∇ε) volg

converge (subsequentially) to the weight measure µ of a stationary, integer rectifiable

(m− 2)-varifold V . Also, for all 0 ≤ δ < 1, spt(µ) = limε→0 {|uε| ≤ δ} in the Hausdorff

topology.

Theorem. The (m−2)-currents dual to the curvature forms 1
2πF∇ε converge (subsequentially)

to an integral (m− 2)-cycle Γ, with |Γ| ≤ µ.

Roughly speaking, the first result says that the energy of the critical points concentrates

near the zero sets u−1
ε (0) of uε as ε→ 0, which converge to a (possibly rather singular)

minimal submanifold of codimension two.

Note that unit sections of a Hermitian line bundle are indistinguishable up to change of

gauge: for a given unit section u of L, one can always choose a connection with respect to

which u appears constant. Thus, while most of the energy of solutions vε to the complex

Ginzburg–Landau equations falls on annular regions, relatively far from the zero set, where

vε resembles a harmonic S1-valued map, the energy eε(uε,∇ε) of a critical pair (uε,∇ε) for

Yang–Mills–Higgs instead concentrates near the zero set u−1
ε (0). The integrand |∇εuε|2 has

exponential decay outside this region, allowing for a more effective blow-up analysis.

The advantages of this theorem over analogous results for the complex Ginzburg–Landau

equations are the integrality of the limit varifold V—due ultimately to the aforementioned

quantization of the energy of entire planar solutions—and the concentration of the full energy

measure to V , independent of the topology of M. Also, the analysis of this functional aligns

much more closely with the work of Hutchinson–Tonegawa on the Allen–Cahn equations.

We also have the following general existence result, showing that nontrivial families

satisfying the hypotheses of our main theorem arise naturally, from min-max constructions,

on any line bundle (including, importantly, the trivial bundle) over any Riemannian manifold

M.

Theorem. For any Hermitian line bundle L→M, there exists a family of critical pairs

(uε,∇ε) with bounded energies Eε(uε,∇ε) and nonempty zero sets u−1
ε (0) 6= ∅. In particular,
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the energy of these pairs concentrates (subsequentially) on a nontrivial stationary integral

(m− 2)-varifold V as ε→ 0.

While in [86], for the case of a trivial bundle, we consider only one min-max construction,

we mention that many more may be carried out in principle, due to the rich topology of the

space

M := {(u,∇) : 0 6≡ u ∈ Γ(C×M), ∇ a Hermitian connection}/G,

where G is the gauge group of maps M→ S1.

As an application of our results, we obtain a PDE proof of this fact, first proved by

Almgren (in any codimension) using his geometric measure theory framework.

Corollary. Any Riemannian manifold of dimension m ≥ 2 contains a stationary integral

(m− 2)-varifold.

1.3 A glimpse of the techniques

Variational theory for the viscous relaxation of the area

As already mentioned earlier, the main difficulty is to prove a lower bound for the area of an

almost critical immersed surface Φ in suitable balls Br(p) in the ambient, with p in the

image of Φ. This is accomplished by studying how the ratio µ(Bs(p))
s2

behaves as s varies,

with µ denoting the area measure of Φ on M. While for s < σ the boundedness of the

quantity σ4
∫

Σ |II
Φ|4 volΦ is enough—in that, heuristically, magnifying by a factor s−1 we get

an L4-bound on the second fundamental form and we can apply directly the monotonicity

formula—for s > σ we have to use the almost criticality of Φ.

Namely, we use the same vector fields used to show the (approximate) monotonicity

of µ(Bs(p))
s2

for free boundary minimal surfaces, in order to understand the growth rate

of this ratio for our immersed surface. Oversimplifying, in the closed case the quantity
σ4

s

∫
Σ |II

Φ|4 volΦ appears among the error terms: since this has to be integrated between σ

and r, this produces an error σ4 log(σ−1)
∫

Σ |II
Φ|4 volΦ, which is infinitesimal by hypothesis.

In reality, the argument also requires a maximal bound

σ4

∫
Φ−1(Bs(p))

|IIΦ|4 volΦ ≤ δµ(Bs(p)) for all s > 0.

We add the additional term σ length(Φ|∂Σ) in Eσ in order to deal with the additional

challenge of having a nontrivial boundary Φ|∂Σ. Due to this, we cannot use the monotonicity

formula on a ball Bs(p) (with s < σ) whose preimage intersects ∂Σ. In principle, one can

impose a strong control of the boundary by adding a term involving the geodesic curvature

of Φ|∂Σ; however, this would still require to understand the topology of Φ−1(Bs(p)).
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Rather, using a covering argument, we show that the set of points with distance less than

σ from Φ(∂Σ) has an area (i.e., the measure µ) controlled by σ length(Φ|∂Σ); this quantity is

again infinitesimal as σ → 0, so that this set can be ignored in the asymptotic analysis.

The next steps consist in the study of the area measures induced by Φj on the domain Σ.

Assuming the maps to be conformal for a fixed conformal structure on Σ, one gets a

weak limit Φ∞ in W 1,2. By means of slicing arguments, we show that the limit measure

can only have finitely many atoms, with a lower bound for their mass, and is absolutely

continuous elsewhere. This is due to the fact that, for a domain ball B whose image of the

boundary Φ(∂B) has small diameter, either Φ|B is close to a nontrivial stationary varifold,

whose density is bounded below by virtue of the aforementioned lower bound, or its area

is (eventually) bounded by the square of the diameter of Φ(∂B). The limit map Φ∞ is

continuous away from the atoms.

The parametrized structure of the varifold is obtained with similar arguments; in order to

show that the multiplicity function N is integer valued, we use a blow-up argument together

with Allard’s strong constancy lemma.

Finally, the lower bound on the mass of the concentration points allows to carry out a

standard bubble tree analysis. The treatment of the situation where the induced conformal

structure degenerates, as j →∞, is similar to the study of the concentration points.

Regularity of parametrized stationary varifolds

In order to study parametrized stationary varifolds, we first observe that the parametrization

Φ is always continuous and the multiplicity function N admits an upper semicontinuous

representative, although the latter could a priori fail to be everywhere an integer. Assuming

for simplicity that N is integer valued, the strategy is then to prove the regularity locally, by

induction on the maximum value of N . The regularity follows whenever N is a.e. constant,

as was previously shown in [92].

It is crucial to study first the codimension zero case. If Φ takes values into C then a

topological proof, together with induction, shows that N is a.e. constant. The topological

ingredient is the fact that the domain cannot contain more than countably many disjoint

triods, with a triod consisting of a connected compact set together with three regular curves

emanating from it. Similarly we can show that, if Φ takes values into finitely many planes,

then its image is contained in one of them and the map is holomorphic.

Following arguments similar to the ones used for the existence theory, we then show that

one can form a parametrized blow-up, namely a parametrized varifold which is contained in

the standard varifold blow-up, at certain points in the domain where the Dirichlet energy

does not decay too fast. The blow-up is included in a polyhedral cone; hence, by the

previous analysis, its parametrization is a holomorphic map. The image of the complement

of these good points has Hausdorff dimension zero.

One would like to perform a blow-up at the boundary of the closed set where N attains
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the maximum and reach a contradiction. Apart from the fact that N is not really quantized,

a serious problem is that a priori the set of good points is just a Borel set. However, the map

parametrizing a blow-up has a controlled order of vanishing at the origin, in terms of the

density of the varifold. This observation, by means of compactness arguments, gives some

kind of openness for the set of good points, together with a control of the decay rate of the

Dirichlet energy, allowing to conclude.

Multiplicity one

In order to show that N = 1 for parametrized varifolds arising from the min-max framework,

the main idea is to define a sort of macroscopic multiplicity, on balls BQ
` (p) in a Euclidean

space RQ ⊃Mm, before passing to the limit.

This macroscopic multiplicity is roughly the closest integer to the average of a projected

multiplicity, issued by the map Π ◦ Φj

∣∣
B

, where B is a small domain ball and Π is (the

projection onto) a 2-plane close to the image of Φj

∣∣
∂B

.

Then we use a continuity argument to show that this number stays constant as we pass

from scale 1 to scale σj . At the latter scale we have a very clear understanding of the

behavior of Φj , and in particular we are able to say that here the macroscopic multiplicity

equals 1. Thus, the same holds at the original scale, and this is sufficient to get N = 1.

The comparison of two consecutive scales, as well as the fact that the projected

multiplicity is well defined, are obtained through several compactness arguments, exploiting

the fact that Φj resembles a parametrized stationary varifold for scales much smaller than 1

and much bigger than σj .

Asymptotic analysis for Yang–Mills–Higgs

A key ingredient is the improvement of the obvious (m− 4)-monotonicity for the energy Eε,

which follows just from the inner variation formula and is a priori forced by the Yang–Mills

term, to a sharp (m− 2)-monotonicity. Namely, we want to show that the energy on a ball

Br(p), normalized dividing by rm−2, is (approximately) increasing in r.

This situation is in fact similar to the one for Allen–Cahn, where one wants to upgrade

the trivial (m−2)-monotonicity, forced by the Dirichlet term and typical of Ginzburg–Landau

energies for vector valued maps, to a sharp (m− 1)-monotonicity.

We accomplish this by applying the Bochner identity for differential forms, deriving a

partial differential inequality for the discrepancy ε|F∇| − 1−|u|2
2ε . Under certain curvature

assumptions onM, we deduce immediately that ε|F∇| ≤ 1−|u|2
2ε . With a sort of bootstrap, we

can reach a pointwise upper bound for the discrepancy also in the general case. This estimate

gives a natural balancing in the inner variation formula, from which the (m− 2)-monotonicity

follows.

The rectifiability of the limiting (generalized) varifold then follows from a rectifiability

criterion by Ambrosio–Soner [10]. Integrality is proved by means of a blow-up, reducing to a
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sequence of critical pairs which are asymptotically invariant in all directions orthogonal to a

plane; this can be done by exploiting the monotonicity formula, as in the work [69] for

harmonic maps between manifolds. Here this step becomes slightly more complicated due to

gauge invariance.

In order to show the existence of critical couples satisfying the assumptions of the main

theorem, on any line bundle, we proceed as follows. For nontrivial bundles we show that the

minimizers (uε,∇ε) of Eε satisfy uniform energy bounds as ε→ 0. We also observe that, for

a critical couple (uε,∇ε), if uε vanishes somewhere then the energy satisfies a lower bound

independent of ε. For the trivial bundle, similarly to [102], we use instead a min-max over

maps from the closed disk to the set of couples (u,∇), with u ≡ eiθ and ∇ = d at the

boundary point eiθ. We use the fact that each energy Eε satisfies a Palais–Smale property

up to change of gauge, for couples in a certain functional space; this is most conveniently

proved using Coulomb gauges.

1.4 Open problems

We conclude the introduction with a list of interesting open questions immediately related to

the previous results.

Concerning the viscous relaxation of the area, for a min-max with p parameters, the

natural expected inequalities relating p with the Morse index and nullity of the resulting

immersion would be

index(Φ) ≤ p ≤ index(Φ) + nullity(Φ),

where p is the “essential” number of parameters in the min-max, from the point of view of

algebraic topology. A more tractable version of this question could be to show the same

bounds if

index(Φj) ≤ p ≤ index(Φj) + nullity(Φj),

for a sequence of critical maps as in the existence part of the viscosity framework. The upper

bound, however, seems to still require a more refined understanding of the convergence of Φj

to the limit.

One can also ask if the number of branch points of the minimal immersion can be

bounded in terms of the complexity of the min-max. It is not clear if there is a criterion to

avoid branch points completely in codimension one, i.e. in 3-manifolds.

Finally, the natural question arises whether anything similar can be done for bigger

domain dimension (k > 2). As we said, one still gets a stationary varifold in the limit.

However, retaining a parametrization for the limit object does not look possible, due to

the absence of a simple finite dimensional space of possible conformal structures (up to

diffeomorphisms). It would be interesting to study adaptations of this method to manifolds
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with additional structure, such as special holonomy, restricting the attention to particular

kinds of immersions. It is conceivable that a similar analysis may work in such situations.

As for the rescalings of the Yang–Mills–Higgs functional, a first problem left open in our

analysis is to understand whether the limit cycle Γ is area-minimizing in its homology class

and its weight agrees with the one of the limit varifold, for a sequence of minimizers (uε,∇ε).
More generally, it would be interesting to develop a Γ-convergence theory for these energies,

by mimicking e.g. [15].

Concerning the regularity theory, one may ask whether stability of (uε,∇ε) has any

implication on the regularity for the limiting varifold V . One could also replace stability

with an appropriate notion of almost minimality.

In three dimensions V is necessarily a geodesic network. It is thus natural to wonder

what kind of conical singularities can arise in R3 from a min-max.

Positive results on the above open questions would give an improvement over the

Almgren–Pitts theory, which is a purely geometric measure theory setting with no partial

differential equation immediately available.

It is natural to ask for analogous theories in higher codimension. The fact that our

approach, compared to Ginzburg–Landau, looks more appropriate is certainly connected to

the fact that the configuration space M introduced earlier resembles more closely the space

of (m− 2)-submanifolds: it is also interesting to remark that the homotopy groups πi(M)

are isomorphic to those of the space Zm−2(M;Z) of integral (m− 2)-cycles considered by

Almgren. Finding other situations, possibly in ambients with special holonomy, where entire

critical points solve a first order system like the vortex equations could be an initial hint that

a similar analysis may carry over.



2 A viscous relaxation of the area

for immersed surfaces,

closed or with boundary

2.1 Introduction

Outline of the main results

In this chapter we study the energy

Eσ(Φ) := area(Φ) + σ length(Φ|∂Σ) + σ4

∫
Σ
|IIΦ|4 volΦ,

where Σ is a fixed compact surface with (possibly nonempty) boundary, and Φ : Σ→Mm is

a smooth immersion with the constraint Φ(∂Σ) ⊆ N . The parameter σ should be thought

dimensionally as a length. This energy is a modification of the one introduced in [91], as

already mentioned in the first chapter.

We will fully exploit the invariance of Eσ under diffeomorphisms, namely the principle

that every diffeomorphism invariant quantity should depend only on the shape of the

immersed surface. In computing the first variation we will see that, using infinitesimal

variations of the form w = X(Φ), all second-order terms involving w are expressible just in

terms of the second fundamental form of Φ, as expected. A natural consequence of this is

that the first variation of the relaxing terms σ length(Φ|∂Σ) and σ4
∫

Σ |II
Φ|4 volΦ, for such

special ambient deformations, can be bounded in terms of these quantities themselves (and

the ambient vector field X).

Also, working on a Finsler manifold M of W 2,4 immersions, equipped with a norm on

TΦM involving the induced metric gΦ := Φ∗g, we observe that also ‖X(Φ)‖Φ is bounded in

terms of Eσ(Φ), X and σ. Since in the asymptotic analysis we will use only this particular

kind of variations, we do not need to construct critical points of Eσ: it suffices to have

‖dEσ(Φ)‖Φ very small in terms of σ. Since such almost critical maps are easy to construct

using pseudo-gradient flows and can be assumed, without loss of generality, to be smooth,

this makes the chapter self-contained—except for the regularity theory in Section 2.7 which

uses results from the following chapter.

29
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These observations, detailed in Sections 2.2 and 2.3, represent a major simplification over

the original work [91], which appeals to [14] for the Palais–Smale property of E′σ and the

regularity of critical points. The formulas obtained here are quite simple, independently of

the ambient: differently from [91]—where M is assumed to be the round sphere S3 in order

to simplify the presentation—we can deal immediately with general closed manifolds M and

N .

Then, as in the closed case, the main difficulty is to prove a lower bound for the area of

the immersed surface Φ in suitable balls Br(p) in the ambient; a brief discussion of the

technique was given in Section 1.3.

The rest of the chapter adapts the remaining arguments from [91] and [92] to the free

boundary case—again with some important simplifications. In Section 2.6 we study carefully

what happens when the conformal structure induced by Φ degenerates as σ → 0, which is

more delicate and less well known for surfaces with boundary.

The following is the main result of this part of the dissertation.

Theorem 2.1.1. Let (Mm, g) be a closed Riemannian manifold, N n ⊂ M a closed

embedded submanifold (with 1 ≤ n < m), and let Σ be a compact surface, possibly with

boundary. Given a sequence Φk of immersions which are σ5
k-critical for Eσk , have bounded

area and satisfy the condition

σ4
k log σ−1

k

∫
Σ
|IIΦk |4 volΦk +σk log σ−1

k length(Φk|∂Σ)→ 0,

there exists a subsequence such that the induced varifolds converge to a parametrized free

boundary stationary varifold for the couple (M,N ). Moreover, the connected components Σi

of its domain have χ(Σi) ≥ χ(Σ) and g(Σi) ≤ g(Σ). If Σ is closed, then the components Σi

are closed, as well.

In this statement χ(·) is the Euler characteristic and g(·) is the genus. The last part of

the statement follows from the analysis carried out in Section 2.6. We refer to Definition 2.5.9

for the precise description of this notion of parametrized varifold; the fact that one can

localize the stationarity with respect to the domain stems from the fact that one can

use variations w = X(Φ) also just on a domain ω ⊂ Σ, extending w to vanish on the

complement, provided X is supported far from Φ(∂ω).

Remark 2.1.2. This result applies also to a compact ambient manifold M with boundary

N , such as the flat unit ball B
3
; note that the (almost) criticality should be understood

formally, for infinitesimal variations w which are sections of Φ∗TM, with w(∂Σ) ⊆ TN .

Indeed, we can smoothly extend M to a closed Riemannian manifold.

Remark 2.1.3. It also applies to the case M = Rm, with N ⊂ Rm a closed embedded

submanifold: the lower bounds obtained in Section 2.4 (see also the proof of Proposition 2.5.1)

show that the varifolds induced by Φk form a tight sequence, and the result then follows with

the same proofs.
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As for the regularity of the limit, we have the following.

Theorem 2.1.4. For a parametrized free boundary stationary varifold (Σ̃,Φ, N), the map Φ

is smooth up to the boundary ∂Σ, where ∂νΦ ⊥ TN . Also, on the components of Σ̃ where Φ

is not (a.e.) constant, the multiplicity N is constant and Φ is a branched minimal immersion

outside ∂Σ.

Remark 2.1.5. We stress that the limit (branched) immersion Φ is free boundary minimal

in the sense that it meets the constraint N orthogonally along ∂Σ̃. However, there could be

points x in the interior int(Σ) = Σ \ ∂Σ with Φ(x) ∈ N—a possibility which cannot happen,

e.g., for (B
3
, S2) (on the components where Φ is not constant); unlike the main result of [68],

at such points the orthogonality is not guaranteed.

A simple corollary is, for instance, the following. Note that other min-max situations can

be dealt with in the same way.

Corollary 2.1.6. Given any collection F of compact subsets A of the space of smooth

immersions (Σ, ∂Σ)→ (M,N ), assuming F to be stable for isotopies of this space, the

min-max value

β := inf
A∈F

max
Φ∈A

area(Φ)

is the sum of the areas of finitely many free boundary minimal (branched) immersions

Φ(i) : Σ(i) →M, whose domains are connected and have χ(Σ(i)) ≥ χ(Σ) and g(Σ(i)) ≤ g(Σ).

If Σ is closed, then the domains Σ(i) are also closed.

Organization of the chapter

We conclude the introduction with a very brief description of the structure of the present

chapter.

• In Section 2.2 we show how to deduce Corollary 2.1.6 from Theorem 2.1.1, by introducing

a Finsler manifold of maps and checking that it satisfies the conditions guaranteeing that

Struwe’s monotonicity trick applies;

• in Section 2.3 we compute the first variation of Eσ for special variations X(Φ), and use

the resulting formula to show that the varifolds induced by the maps Φk converge, up to

subsequences, to a free boundary stationary varifold;

• Section 2.4 is devoted to the proof of the lower bound for the area mentioned earlier, in

various forms;

• in Section 2.5 we show several structure results for the (weak) limit of the area measures

that Φk induces on Σ and we obtain Theorem 2.1.1, under the assumption that Φk induces

a constant conformal structure on Σ and ignoring possible concentration points for the

area;
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• in Section 2.6 we remove the above assumption, studying carefully how to deal with all

possible situations of degeneration of the conformal structure and describing how to recover

the energy arising from concentration points, thus proving Theorem 2.1.1 in general;

• finally, Section 2.7 is devoted to the regularity part, namely the proof of Theorem 2.1.4.

2.2 Almost critical points for Eσ

Let (Mm, g) be a closed Riemannian manifold and N n ⊂M a closed embedded submanifold,

with 1 ≤ n < m. For simplicity, we will assume without loss of generality that M is

isometrically embedded in some Euclidean space RQ, although the proofs could be easily

modified so as to avoid the Nash embedding theorem.

Also, let Σ be a compact surface, possibly with boundary ∂Σ. We will study the

following relaxation of the area functional: given an immersion Φ : Σ→M, we let

Eσ(Φ) := area(Φ) + σ length(Φ|∂Σ) + σ4

∫
Σ
|IIΦ|4 volΦ

=

∫
Σ

volΦ +σ

∫
∂Σ

volΦ|∂Σ
+σ4

∫
Σ
|IIΦ|4 volΦ .

(2.2.1)

Here volΦ and volΦ|∂Σ
are the (two- and one-dimensional) volume forms of the induced

metric Φ∗g on Σ and ∂Σ, which we will often identify with the corresponding measures. In

the last term, IIΦ denotes the second fundamental form of Φ.

In order to construct almost critical maps for Eσ, with the constraint Φ(∂Σ) ⊆ N , we

introduce the topological space

M := {Φ ∈W 2,4(Σ,M) : Φ is an immersion and Φ(∂Σ) ⊆ N},

with the topology induced from W 2,4(Σ,M), in turn induced from W 2,4(Σ,RQ). Recall

that W 2,4(Σ,RQ) embeds into C1(Σ,RQ), so that the definition makes sense and M is

canonically a Banach manifold.

For each Φ ∈M, the tangent space TΦM identifies with the Banach space of W 2,4

sections s : Σ→ TM of the pullback bundle Φ∗TM, with s ∈ TN along ∂Σ.

Given Φ ∈M, we call gΦ := Φ∗g the metric that Φ induces on Σ. We endow TΦM with

the following norm: we let

‖s‖Φ := ‖s‖L∞ + ‖∇s‖L∞ + ‖∇2s‖L4 ,

where ∇ is the pullback connection on Φ∗TM and the norms are with respect to the

metrics g on TM and gΦ on T ∗Σ. It is straightforward to check that this choice satisfies the

requirements to be a Finsler structure on M (see [42, p. 54] for the definition).

Proposition 2.2.1. The Finsler manifold M is complete.
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Recall that the distance between two elements Φ1,Φ2 ∈M (in the same connected

component) is defined to be the infimum of
∫ 1

0 ‖γ̇(t)‖γ(t) dt, as γ : [0, 1]→M ranges among

all piecewise C1 curves from Φ1 to Φ2. It is a consequence of the Finsler structure axioms

that it induces the original topology on M.

Proof. Let (Φk)k≥0 be a Cauchy sequence. Up to subsequences, we can assume that∑
k dist(Φk,Φk+1) <∞. Hence, by definition we can find a piecewise C1 curve Φ : [0,∞)→

M of finite length, with Φ(k) = Φk for every k ∈ N. We will use the notation Φt in place

of Φ(t). It suffices to show that Φt converges in W 2,4 as t→∞. With a perturbation

argument, we can assume that Φt(x) is smooth in the couple (x, t).

Let wt := dΦt
dt . Since wt is bounded pointwise by the summable (in t) quantity ‖wt‖Φt ,

we know that Φt converges in C0 to a limit Φ∞.

Let gt := gΦt be the metric induced by the immersion Φt on Σ. For a fixed v ∈ TΣ we

have

d

dt
gt(v, v) =

d

dt
|dΦt[v]|2 = 2〈dΦt[v],∇vwt〉

and, since |∇vwt| ≤ ‖wt‖Φt |v|gt , we deduce that∣∣∣ d
dt
gt(v, v)

∣∣∣ ≤ 2gt(v, v)‖wt‖Φt .

Hence, for v 6= 0, the time derivative of log gt(v, v) is bounded in L1 on [0,∞). Thus there

exists a constant C > 0 such that

C−2g0(v, v) ≤ gt(v, v) ≤ C2g0(v, v)

for all t ≥ 0 and all v ∈ TΣ. As a consequence, for any x ∈ Σ and any v ∈ TxΣ

|∇∂t(dΦt[v])| ≤ |∇wt|gt |v|gt ≤ C‖wt‖Φt |v|g0 ,

with ∇∂t being the covariant derivative along the curve Φt(x). Together with the C0

convergence Φt → Φ∞, this implies that actually Φt → Φ∞ in C1. Finally, given smooth

vector fields X,Y on Σ,

∇∂t∇X(dΦt[Y ]) = ∇X∇Y wt + Rm(dΦt[X], wt)(dΦt[Y ])

where Rm(V,W )Z = ∇2
W,V Z −∇2

V,WZ is the Riemann tensor of M. Again, thanks to the

comparability between g0 and gt, the right-hand side is bounded in L4 by ‖wt‖Φt , up to a

multiplicative constant depending only on X,Y . This implies the convergence Φt → Φ∞ in

W 2,4.

The following variational result, essentially due to Struwe, is proved in [90]. Before

stating it, we give a notion of admissible family.
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Definition 2.2.2. Given a Banach manifold M, a nonempty family F of subsets of M is

said to be admissible if, for any continuous deformation F : [0, 1]×M→M with F0 = idM

and Ft a homeomorphism for all 0 ≤ t ≤ 1, we have F1(A) ∈ F for all A ∈ F (where

Ft := F (t, ·)).

Proposition 2.2.3. Assume (Eσ)σ≥0 is a family of C1 functionals on a complete Finsler

manifold M, with Eσ(x) differentiable in σ and σ 7→ Eσ(x), σ 7→ d
dσEσ(x) both increasing

in σ, for every x ∈M. Assume also that

‖dEσj (xj)− dEσ(xj)‖ → 0 (2.2.2)

whenever 1 ≥ σj ≥ σ > 0, σj → σ and lim supj→∞Eσ(xj) <∞.

Then, for any admissible family F , defining the min-max values

β(σ) := inf
A∈F

sup
x∈A

Eσ(x),

there exist sequences (σk) ⊆ (0, 1) and (xk) ⊆M, with σk → 0, such that

Eσk(xk)− β(σk)→ 0, ‖dEσk(xk)‖ < f(σk), σk log(1/σk)
d

dσ
Eσ(xk)

∣∣∣
σk
→ 0,

where f : (0,∞)→ (0,∞) is any function fixed in advance.

This statement is quite robust and can be adapted to other kinds of min-max problems,

where one replaces admissible families with other notions.

Remark 2.2.4. Actually, in [90] the functional Eσ is assumed to be Palais–Smale, and the

second conclusion becomes dEσk(xk) = 0. Without this hypothesis, we can still find almost

critical points xk for Eσk , in the sense that we can require ‖dEσk(xk)‖ to be as small as we

want, with the same proof.

Proposition 2.2.5. The functionals (Eσ)σ≥0 previously defined satisfy the assumptions of

Proposition 2.2.3.

Before proving this fact, we make an important observation.

Proposition 2.2.6. For X,Y vector fields on Σ we have (∇dΦ)(X,Y ) = IIΦ(Φ∗X,Φ∗Y ).

Proof. The left-hand side equals ∇X(Φ∗Y )− Φ∗∇XY ; since Φ is an isometry from (Σ, gΦ)

to the immersed surface Φ, the term Φ∗∇XY equals (locally) the Levi-Civita connection

∇Φ∗XΦ∗Y on this surface; the latter equals the orthogonal projection of ∇X(Φ∗Y ) onto the

tangent plane, since ∇ is the pullback of the Levi-Civita connection from M.

Proof of Proposition 2.2.5. We only need to check that (2.2.2) holds. We first show how to

obtain an upper bound for |dEσ′(Φ)[w]− dEσ(Φ)[w]|, when 1 ≥ σ′ ≥ σ > 0.
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If Φ ∈M is a smooth map and (Φt) is a smooth variation (with Φ0 = Φ), we compute

d

dt

∫
Σ

volΦt

∣∣∣
t=0

=

∫
Σ
〈dΦ,∇w〉 volΦ,

where w := d
dtΦt

∣∣∣
t=0

belongs to TΦM, and the scalar product (with respect to gΦ) in the

integral is bounded by 2‖∇w‖L∞ ≤ 2‖w‖Φ.

With a similar computation for the length of Φ|∂Σ, we get

d

dt
Eσ(Φ)

∣∣∣
t=0

=

∫
Σ

(1 + σ4|IIΦ|4)〈dΦ,∇w〉 volΦ +σ

∫
∂Σ
〈dΦ[τ ],∇τw〉 volΦ|∂Σ

+ σ4

∫
Σ

d

dt
|IIΦt |4

∣∣∣
t=0

volΦ,

(2.2.3)

where τ is the unit vector (with respect to gΦ) orienting ∂Σ.

Given a local orthonormal frame {e1, e2}, oriented as Σ, define nt := dΦt[e1] ∧ dΦt[e2].

We have |IIΦt | = |∇nt| and

∇∂t∇Xnt = ∇X∇∂tnt + Rm
(
dΦ[X],

dΦ

dt

)
nt,

where Rm(a, b)(c ∧ d) := (Rm(a, b)c) ∧ d+ c ∧ (Rm(a, b)d) for vectors in TM. At t = 0 the

above equals ∇Xω +R(dΦ[X], w)n, where n := n0 and

ω := ∇e1w ∧ dΦ[e2] + dΦ[e1] ∧∇e2w − 〈dΦ[ei],∇eiw〉n.

Using Proposition 2.2.6 we see that |∇Xω| ≤ C|X|(|∇2w|+ |∇w||IIΦ|).
Finally, the contribution of the metric gΦt for the time derivative of |∇nt|4 is just

−4|∇n|2〈dΦ⊗∇w,∇n⊗∇n〉. Combining this fact with the preceding computations, we

deduce that the time derivative of |IIΦt |4 at t = 0 is bounded by

|IIΦ|3|∇2w|+ |IIΦ|4|∇w|+ |IIΦ|3|w| (2.2.4)

up to a multiplicative constant depending on M.

Thus, using (2.2.3), (2.2.4), Hölder’s inequality and Young’s inequality, we see that

|dEσ′(Φ)[w]− dEσ(Φ)[w]| ≤ Cσ
′ − σ
σ

Eσ(Φ)‖w‖Φ + C(σ′ − σ)Eσ(Φ)3/4‖w‖Φ

for 0 < σ ≤ σ′ ≤ 2σ. Since Eσ and Eσ′ are C1 functionals, this bound holds for general

Φ ∈M and w ∈ TΦM. Starting from this estimate, it is immediate to check that (2.2.2) is

satisfied.

Thanks to Proposition 2.2.5, letting f(σ) := σ5 we can then find sequences of numbers

σk → 0 and maps Φk ∈M satisfying the conclusions of Proposition 2.2.3. In particular,

‖dEσk(Φk)‖Φk < σ5
k (2.2.5)



36 Chapter 2. A viscous relaxation of the area

and

σk log(1/σk) length(Φk|∂Σ) + σ4
k log(1/σk)

∫
Σ
|IIΦk |4 volΦk → 0. (2.2.6)

Since smooth functions are dense in M, we can assume that the maps Φk are smooth.

In the following sections we will study the limit behavior of the measures νk := volΦk and

the varifolds vk induced by Φk. Note that the weight measure |vk| equals (Φk)∗νk.

We conclude this section by discussing how Corollary 2.1.6 follows from Theorem 2.1.1.

Proof of Corollary 2.1.6. For any A ∈ F , by compactness of A we have

max
Φ∈A

Eσ(Φ)→ max
Φ∈A

area(Φ) as σ → 0.

Hence, the min-max value β(σ) for Eσ converges to β. Although F is not stable under

isotopies of M, Proposition 2.2.3 still applies since in its proof we can use a pseudo-gradient

flow preserving the subset of smooth immersions. Taking then smooth maps Φk as above, the

statement follows from Theorem 2.1.1, Theorem 2.1.4 and the fact that

lim
k→∞

area(Φk) = lim
k→∞

β(σk) = β.

2.3 First variation

In this section we will derive a particularly useful formula for the first variation of Eσ at

Φ ∈M, for infinitesimal variations w ∈ TΦM of the form X(Φ), with X a smooth vector

field on M.

Let Φ ∈M be a smooth map and w ∈ TΦM a smooth section of Φ∗TM, with w ∈ TN
on ∂Σ. In the sequel, {e1, e2} will be an oriented orthonormal basis at an arbitrary point

of Σ, with respect to the induced metric gΦ. The (1, 1)-tensor J : TΣ→ TΣ, given by

Je1 := e2 and Je2 := −e1, is parallel for this metric.

As in the proof of Proposition 2.2.5, we use the notation n := Φ∗e1 ∧ Φ∗e2 and we set

f := |IIΦ|2 = |∇n|2. We also define the sections Î and Ĵ of Φ∗TM⊗ T ∗Σ, as well as the

section ÎI of Φ∗TM⊗ T ∗Σ⊗ T ∗Σ, by

Î(v) := Φ∗v, Ĵ(v) := Φ∗(Jv), ÎI(v, v′) := IIΦ(Φ∗v,Φ∗v
′), for v, v′ ∈ TΣ.

Recall the following formula, which was computed in that proof:

dEσ(Φ)[w] =

∫
Σ

(1 + σ4f2)
〈
Î ,∇w

〉
+ σ

∫
∂Σ
〈Φ∗τ,∇τw〉

+ 4σ4

∫
Σ
f〈∇n,∇ω + Rm(dΦ, w)n〉 − 4σ4

∫
Σ
f
〈
Î ⊗∇w,∇n⊗∇n

〉
,

(2.3.1)

where we omit the volume forms and ω denotes the infinitesimal variation of n, namely

ω = ∇eiw ∧ Ĵ(ei)−
〈
∇w, Î

〉
n.
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When the variation w has the form w = X(Φ), using Proposition 2.2.6 we get

∇w = ∇X(Φ)[Φ∗·] = ∇X ◦ Î ,

∇2
ei,ejw = ∇2X(Φ)[Φ∗ei,Φ∗ej ] +∇X(Φ)[ÎI(ei, ej)].

(2.3.2)

For such special variations, (2.3.1) becomes

dEσ(Φ)[w] =

∫
Σ

(1 + σ4f2)
〈
Î ,∇X ◦ Î

〉
+ σ

∫
∂Σ
〈Φ∗τ,∇X[Φ∗τ ]〉

+ 4σ4

∫
Σ
f(〈∇n,∇ω〉+ 〈∇n,Rm(dΦ, X(Φ))n〉)

− 4σ4

∫
Σ
f
〈
Î ⊗ (∇X ◦ Î),∇n⊗∇n

〉
.

(2.3.3)

We now write the term 〈∇n,∇ω〉 in a way which will prove useful for our later work.

Since 〈∇ein, n〉 = 0, we compute

〈∇n,∇ω〉 =
〈
∇n,∇(∇eiw ∧ Ĵ(ei))

〉
−
〈
∇w, Î

〉
|∇n|2

and the first term equals
〈
∇ejn,∇2

ej ,ek
w ∧ Ĵ(ek) +∇ekw ∧ ÎI(ej , Jek)

〉
. Substituting the

above formulas for ∇w and ∇2w, we get

〈∇n,∇ω〉 = 〈∇ejn,∇2X[Φ∗ej ,Φ∗ek] ∧ Ĵ(ek) +∇X[ÎI(ej , ek)] ∧ Ĵ(ek)

+∇X[Φ∗ek] ∧ ÎI(ej , Jek)〉 −
〈
∇X, Î

〉
|∇n|2.

Thus,

f |〈∇n,∇ω〉| ≤ C(M)(‖∇X‖L∞f2 + ‖∇2X‖L∞f3/2). (2.3.4)

We are now ready to state an initial consequence of this bound.

Definition 2.3.1. A k-varifold v onM is a free boundary stationary varifold for the couple

(M,N ) if it holds that

d

dt
‖(Ft)∗v‖(M)

∣∣∣
t=0

= 0

whenever (Ft)−ε<t<ε is a family of diffeomorphisms of M with Ft(N ) = N , F0 = id and

Ft(x) smooth in the couple (t, x). We say that v is free boundary stationary outside a closed

set K ⊆M if the same holds for isotopies (Ft) such that Ft|U = id for some neighborhood

U ⊇ K.

Definition 2.3.2. We denote Xfb the linear space of smooth vector fields X on M which

are tangent to N , namely such that X(p) ∈ TpN for all p ∈ N .

Remark 2.3.3. With X := d
dtFt

∣∣∣
t=0

, we have X ∈ Xfb and

d

dt
‖(Ft)∗v‖(M)

∣∣∣
t=0

=

∫
(p,Π)∈Grk(M)

divΠX dv(p,Π),
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where Grk(M) is the Grassmannian bundle made of couples (p,Π) with p ∈ M and

Π ⊆ TpM a k-plane. Conversely, given X tangent to N , we can take Ft to be its flow.

Hence, v is a free boundary stationary varifold if and only if∫
(p,Π)∈Grk(M)

divΠX dv(p,Π) = 0 for all X ∈ Xfb.

Similarly, v is free boundary stationary outside K if and only if the same holds for all

X ∈ Xfb ∩ C∞c (M\K).

Given a sequence (Φk) as in Section 2.2, the following holds.

Theorem 2.3.4. The varifolds vk induced by Φk converge, up to subsequences, to a free

boundary stationary varifold v∞.

A priori it is not clear whether v∞ is integer rectifiable. This, together with a structure

theorem for v∞, will be proved later on.

Proof. Fix any (Ft)−ε<t<ε as above and consider the variation (Ft ◦ Φk) ⊆ M. The

corresponding infinitesimal variation wk ∈ TΦkM is just wk = X ◦ Φk. Hence, (2.3.3) and

(2.2.5) give ∫
Σ

(1 + σ4
kf

2
k )
〈
Îk,∇X ◦ Îk

〉
+ σk

∫
∂Σ
〈(Φk)∗τ,∇X[(Φk)∗τ ]〉

+ 4σ4
k

∫
Σ
fk(〈∇nk,∇ωk〉+ 〈∇nk,Rm(dΦk, X(Φk))nk〉)

− 4σ4
k

∫
Σ
fk
〈
Îk ⊗ (∇X ◦ Îk),∇nk ⊗∇nk

〉
= o(σ4

k‖wk‖Φk).

(2.3.5)

We now show that all terms where σk appears are infinitesimal as k → ∞. Note that∣∣〈Îk,∇X ◦ Îk〉∣∣ ≤ 2‖∇X‖L∞ , since the scalar product is with respect to the induced metric

gΦk . Hence, by (2.2.6),

σ4
k

∫
Σ
f2
k

〈
Îk,∇X ◦ Îk

〉
→ 0

and similarly the boundary term is also infinitesimal. Thanks to the boundedness of the

area of Φk, the pointwise bound (2.3.4) and Hölder’s inequality, we deduce that also the

remaining terms in the left-hand side of (2.3.5) are infinitesimal, except for the first one.

We now estimate ‖wk‖Φk . Note first that |wk| ≤ ‖X‖L∞ and |∇wk| ≤ ‖∇X‖L∞ . Also,

from (2.3.2) we get

|∇2wk| ≤ ‖∇2X‖L∞ + ‖∇X‖L∞ |IIΦk |.

We deduce that σk‖wk‖Φk → 0.

Finally,
〈
Îk,∇X ◦ Îk

〉
(x) = div(Φk)∗[TxΣ]X, so that∫

Σ

〈
Îk,∇X ◦ Îk

〉
=

∫
(p,Π)∈Gr2(M)

divΠX dvk(p,Π)

and, taking any subsequential limit v∞, the claim follows.
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2.4 A lower bound for the area

In order to obtain more information for the asymptotic behavior of the measures νk and the

varifolds vk introduced at the end of Section 2.2, we first obtain (various versions of) a

lower bound on the mass |vk|(Br(p))
r2 . The main idea will be to mimick the proof of the

monotonicity formula for stationary varifolds; since that proof uses vector fields in the

ambient M, we will be able to use formula (2.3.3), involving variations of the form X(Φ).

The statements contained in this section make it essential to require the decays

σ4
k log σ−1

k

∫
Σ f

2
k volΦk → 0, as well as σk log σ−1

k length(Φk|∂Σ)→ 0, guaranteed by Proposi-

tion 2.2.3.

Rather than dealing with the sequence (Φk), in this section all the statements concern a

general smooth map Φ ∈M, with a fixed value of σ. Of course, in order for the results to be

useful in the asymptotic analysis, the constants appearing in their statements will depend

neither on Φ nor on σ.

Definition 2.4.1. In the following statements, we say that a smooth map Φ ∈ M is

ε-critical for Eσ if ‖dEσ(Φ)‖Φ ≤ ε, meaning that |dEσ(Φ)[w]| ≤ ε‖w‖Φ for all w ∈ TΦM.

Proposition 2.4.2. Let Φ be σ5-critical for Eσ, x ∈ Σ, and denote p := Φ(x). Assume

U ⊆ Σ is an open neighborhood of x. Defining the measures µ := (Φ|U )∗(volΦ) and

λ := (Φ|∂Σ∩U )∗(σ volΦ|∂Σ
) + (Φ|U )∗(σ

4f2 volΦ) on M, assume also that

λ(Bs(p)) ≤ δµ(B5s(p)) for all radii s > 0,

for some 0 < δ < 1. Given r > s ≥ σ, if Br(p) ∩ Φ(∂U) = ∅ then we have

µ(Br(p))

r2
≥ (c− Cδ log(r/s))

µ(Bs(p))

s2
− Cσ2,

for some constants c, C > 0 depending on M and N .

Note that ∂U is the topological boundary of U in Σ and therefore does not include

∂Σ ∩ U . Recall that f = |IIΦ|2.

Before delving into the proof, we state without proof an immediate but useful fact.

Proposition 2.4.3. There exists a constant cF (M,N ) such that, for every p ∈M, there

are coordinates

ξ = (ξ1, . . . , ξm) : BcF (p)→ Rm

depending on the center p, satisfying

gij(0) = δij , ‖gij‖C2 ≤ C(M,N ),
1

2
dist(·, p) ≤ |ξ| ≤ 2 dist(·, p) (2.4.1)

for the Euclidean metric | · |. When p ∈ N we also ask that the coordinates are adapted to

N , in the sense that BcF (p) ∩N corresponds to {ξn+1 = · · · = ξm = 0}.
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Proof of Proposition 2.4.2. Without loss of generality, we can assume r, σs ≤ c
′ for a constant

c′ < cF to be chosen later. Once we get the desired estimate with these constraints, the

statement follows in general with possibly different values of c and C.

We will imitate the proof of the monotonicity formula, using now our equation (2.3.3).

Assume first Br(p) ∩N = ∅. In this case we can find coordinates ξ : Br(p)→ Rm as in

Proposition 2.4.3. Given a decreasing cut-off function χ ∈ C∞c ([0,∞)), with χ = 1 on

[0, 1/4] and χ = 0 on [1/2,∞), for 0 < τ < r we set χτ := χ(|ξ|/τ) and Xτ := χτξi
∂
∂ξi

.

Note that, by (2.4.1), we have |∇Xτ | ≤ C, |∇2Xτ | ≤ Cτ−1 and

divΠ(Xτ ) ≥ (2− Cτ)χτ + (1 + Cτ)χ′(|ξ|/τ)
|ξ|
τ

(2.4.2)

for any p ∈ Bτ (q) and any 2-plane Π ⊆ TpM (recall that χ′ ≤ 0).

We now want to apply (2.3.3) with the infinitesimal variation w := Xτ (Φ)1U , which is

admissible since Xτ vanishes near Φ(∂U). By (2.3.4) we have

σ4f〈∇n,∇ω〉 ≤ Cσ4(f2 + τ−1f3/2)1spt(w);

hence, the corresponding term in the first variation is bounded by

Cλ(Bτ (p)) + Cστ−1λ(Bτ (p))3/4µ(Bτ (p))1/4 ≤ C(δ + στ−1)µ(B5τ (p)).

Similarly, the curvature term in (2.3.3) is bounded by Cσµ(B5τ (p)), while the last term is

again bounded by Cδµ(B5τ (p)). Also, the boundary term vanishes since the support of w

does not intersect ∂Σ.

Finally, as in the proof of Theorem 2.3.4, we have

‖w‖Φ ≤ ‖Xτ‖L∞ + ‖∇Xτ‖L∞ +
(∫

spt(w)
(‖∇2Xτ‖L∞ + ‖∇Xτ‖L∞f1/2)4 volΦ

)1/4

≤ C + Cτ−1µ(Bτ (p))1/4 + σ−1λ(Bτ (p))1/4

≤ C + C(τ−4 + σ−4)µ(B5τ (p)),

so that from (2.2.5) we get |dEσ(Φ)[w]| ≤ Cσ5 + Cσµ(B5τ (p)) for τ ≥ σ.

Hence, defining h(τ) := τ−2
∫
U χτ (Φ) volΦ, (2.3.3) and a straightforward computation

give

h′(τ) ≥ −C(δ + στ−1)τ−3µ(B5τ (p))− Cτ−2µ(B5τ (p))− Cσ2 (2.4.3)

for τ ≥ σ. Call r the biggest radius in [s, r] such that

µ(Br(p))

r2 ≥ µ(Bs(p))

s2
.

For r
5 ≥ τ ≥ r ≥ σ, (2.4.3) becomes

h′(τ) ≥ −C(δτ−1 + στ−2 + 1)
µ(Bs(p))

s2
− Cσ2.
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Integrating this inequality between 8r and r
5 we get

µ(Br/5(p))

(r/5)2
≥ h(r/5) ≥ h(8r)− C(δ log(r/s) + σs−1 + r)

µ(Bs(p))

s2
− Cσ2r,

unless r < 40r, in which case the statement follows trivially. Since r and σ
s are both bounded

by c′, observing that h(8r) ≥ µ(Br(p))
64r2 ≥ µ(Bs(p))

64s2
we arrive at

µ(Br/5(p))

(r/5)2
≥
( 1

64
− Cδ log(r/s)− 2Cc′

)µ(Bs(p))

s2
− Cσ2r,

and the statement follows in this case, once we impose 2Cc′ < 1
64 .

If r′ := dist(p,N ) < r, we let q be a nearest point to p in N (hence, q = p when r′ = 0).

If r′ ≥ s, we know that the claim holds with r′ replacing r; so it follows also for r if either

s ≥ r/8 or r′ ≥ r/8, with possibly different constants. Assume in the sequel that r′, s < r/8.

For τ > 2r′ + s we have

λ(Bτ (q)) ≤ λ(B2τ (p)) ≤ δµ(B10τ (p)) ≤ δµ(B20τ (q)).

So, using now coordinates centered at q and adapted to N and defining h as before, we get

h′(τ) ≥ −C(δτ−1 + στ−2 + 1)
µ(B20τ (p))

τ2
− Cσ2

for τ ≥ 2r′ + s ≥ σ; note that now also the boundary term in (2.3.3) is taken into account,

giving again a contribution bounded by Cτ−3λ(Bτ (q)) ≤ Cδτ−3µ(B20τ (q)) in the previous

right-hand side. Similarly to the above, assume 2r′ + s ≤ r′ ≤ r/2 to be the smallest radius

in this interval such that µ(Bτ (q))
τ2 ≤ µ(Bs(p))

s2
for τ ∈ [r′, r/2]; if such radius does not exist,

then we have
µ(Br/2(q))

(r/2)2 ≥ µ(Bs(p))
s2

and we are done thanks to the inclusion Br(p) ⊇ Br/2(q).

Integrating from 8r′ to r/40 (again, we can assume r′ ≤ r
320), we conclude that either

µ(Br/40(q))

(r/40)2
≥
( 1

64
− Cδ log(r/s)− 2Cc′

)µ(Bs(p))

s2
− Cσ2,

in which case we are done since µ(Br(p)) ≥ µ(Br/40(q)), or

µ(Br/40(q))

(r/40)2
≥ µ(B2r′+s(q))

64(2r′ + s)2
− (Cδ log(r/s) + 2Cc′)

µ(Bs(p))

s2
− Cσ2.

In this second case, if r′ < s then we use the inequality
µ(B2r′+s(q))

(2r′+s)2 ≥ µ(Bs(p))
(3s)2 and we are

done. Otherwise, if r′ ≥ s we use the inequality
µ(B2r′+s(q))

(2r′+s)2 ≥ µ(Br′ (p))
(3r′)2 and we conclude

using the already obtained lower bound for this last ratio.

Remark 2.4.4. A similar choice of test vector fields gives the following monotonicity for

general free boundary stationary varifolds v: given p in M, one has

|v|(Br(p))
r2

≥ (1 + C(M,N )
√
r)−1 |v|(Bs(p))

s2
(2.4.4)



42 Chapter 2. A viscous relaxation of the area

for 0 < s < r < diam(M) if p ∈ N , and for 0 < s < r < dist(p,N ) otherwise. Indeed,

it suffices to establish (2.4.4) assuming r small, and also s ≥ r
2 , since for s < r

2 we

can then compare dyadic radii r, r2 , . . . , 2
−kr until 2−k−1r ≤ s. Pick coordinates as in

Proposition 2.4.3, with | dist(·, p)− |ξ|| ≤ C dist(·, p)2, and take now χ such that χ = 1 on

[0, 1− 2
√
r], χ = 0 on [1−

√
r,∞) and |χ′| ≤ Cr−1/2, so that χτ is supported in Br(p) for

τ ≤ r. Setting h(τ) := τ−2
∫
M χτ d|v|, the stationarity of v and (2.4.2) then give

h′(τ) ≥ −Cr−5/2|v|(Br(p)),

which, integrating from s to r, implies

|v|(Br(p))
r2

−
|v|(B(1−C

√
r)s(p))

s2
≥
∫ r

s
h′(τ) dτ ≥ −Cr−3/2|v|(Br(p))

and (2.4.4) follows easily. Hence, the density

θ(v, p) := lim
s→0

|v|(Br(p))
πr2

exists at any p ∈M. It also follows that

|v|(Br(p)) ≤ C(M,N )|v|(M)r2 (2.4.5)

for all r > 0: this is clear if p ∈ N , while for p 6∈ N and r ≥ dist(p,N ) we have

Br(p) ⊆ B2r(q) for some q ∈ N , so that |v|(Br(p)) ≤ C|v|(M)(2r)2, and (2.4.5) follows

also for r < dist(p,N ) thanks to (2.4.4) again. In the same way, using the inclusions

Bs(p) ⊇ Bs−d(q) and B2d(q) ⊇ Bd(p), with d := dist(p,N ) and q ∈ N a nearest point to p,

we deduce that |v|(Bs(p)) ≥ cs2θ(v, p) holds even for 3d < s < diam(M). Thus,

|v|(Br(p)) ≥ c(M,N )θ(v, p)r2 (2.4.6)

for all p ∈M and all 0 < r < diam(M).

Corollary 2.4.5. Let Φ be a σ5-critical point for Eσ, let δ > 0, and let U ⊆ Σ be an open

set which intersects ∂Σ but does not contain entirely any boundary component of Σ. Denote

Sδ the set of points p ∈M \ Φ(∂U) satisfying the maximal bound

λ(Bs(p)) ≤ δµ(B5s(p)) for all radii s > 0.

Let T be a Borel set of points having distance less than σ from Φ(∂Σ ∩ U), and such that

their distance from Φ(∂U) is at least 5σ. Then we have

µ(Sδ ∩ T ) ≤ Cσ length(Φ|∂Σ∩U )
µ(M)

dist(T,Φ(∂U))2
+ Cσ3 length(Φ|∂Σ∩U ),

for some C depending on M and N , provided δ log(1/σ) is small enough.
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Proof. Let L := length(Φ|∂Σ∩U ). We first note that the set of points T ′ in Φ(∂Σ ∩ U)

with distance less than σ from T can be covered with at most σ−1L balls Bσ(pj), with

dist(pj ,Φ(∂U)) ≥ 4σ. Indeed, note first that dist(T ′,Φ(∂U)) ≥ 4σ; we can discard the

components of ∂Σ ∩ U producing an arc of length less than 2σ, since this arc is disjoint from

T ′; we are left with finitely many components, corresponding to curves γi : Ii → N with

endpoints in Φ(∂U), where Ii = (0, |Ii|) is an open interval; assuming each of them to be

parametrized by arclength, we then subdivide [σ, |Ii| − σ] into at most σ−1|Ii| intervals Ii` of

size less than σ and we pick a point pi` in γi(Ii`) ∩ T ′, discarding the intervals for which this

intersection is empty. The resulting collection of balls {Bσ(pi`)} is the desired one.

Hence, T is covered by a collection of balls {B2σ(pj) | j ∈ J}, with |J | ≤ σ−1L and

dist(pj ,Φ(∂U)) ≥ 4σ.

Now let J ′ ⊆ J denote the set of indices j such that B2σ(pj) intersects Sδ and, for

j ∈ J ′, choose a point qj ∈ Sδ ∩B2σ(pj). Then we have

T ∩ Sδ ⊆
⋃
j∈J ′

B4σ(qj).

Note that dist(qj ,Φ(∂U)) ≥ dist(T,Φ(∂U))− 3σ, which is comparable with dist(T,Φ(∂U)),

so that Proposition 2.4.2 gives

µ(M)

dist(T,Φ(∂U))2
≥ (c− Cδ log(1/σ))

µ(B4σ(qj))

(4σ)2
− Cσ2

for constants c, C depending solely on M,N . Summing over j ∈ J ′, we obtain

µ(T ) ≤
∑
j∈J ′

µ(B4σ(qj)) ≤ σ−1L
C

1− Cδ log(1/σ)

(
σ2 µ(M)

dist(T,Φ(∂U))2
+ σ4

)
and the statement follows.

Corollary 2.4.6. Under the same assumptions as in Proposition 2.4.2, if Bσ(p) ∩N = ∅
then

µ(Br(p))

r2
≥ c− Cδ log(r/σ)− Cσ2,

provided δ and σ are small enough.

Proof. We first claim that

µ(Bσ(p)) > c′σ2 (2.4.7)

for some universal c′ > 0.

The second fundamental form of the immersed surface Φ in RQ is bounded by |IIΦ|+C(M),

so the monotonicity formula in the ball B̃t(p) := BRQ
t (p) (see, e.g., [98, eq. (17.4)], whose

proof carries over to the setting of immersed surfaces) and Hölder’s inequality give

µ(B̃t(p))

t2
−
µ(B̃t/2(p))

(t/2)2
≥ −Ct−1(σ−1λ(B̃t(p))

1/4µ(B̃t(p))
3/4 + µ(B̃t(p)))

≥ −Ct−1(σ−1δ1/4 + 1)µ(B̃20t(p))

(2.4.8)



44 Chapter 2. A viscous relaxation of the area

for t ≤ σ small enough. Let t ≤ σ
2 be the biggest radius such that µ(B̃t(p)) ≥ π

2 t
2
; note

that t exists since limt→0
µ(B̃t(p))
πt2

≥ 1. If t ≥ σ
80 then we are done, thanks to the inclusion

B2t(p) ⊇M∩ B̃t(p). Otherwise, (2.4.8) gives

µ(B̃t(p))

t2
−
µ(B̃t/2(p))

(t/2)2
≥ −Ct(σ−1δ1/4 + 1)

for t ≤ t ≤ σ
40 . Setting t := 2−k(σ/40) in the last inequality and summing on k = 0, . . . , k0−1,

where k0 is the biggest integer such that t ≥ t, we get

µ(B̃σ/40(p))

(σ/40)2
≥ µ(B̃t(p))

4t
2 − Cδ1/4 − Cσ

and claim (2.4.7) follows again, for δ and σ small enough.

The statement now follows by applying Proposition 2.4.2 with s := σ.

2.5 Asymptotic behavior of the area, in Σ and in M

We now investigate the asymptotic behavior of the maps Φk introduced in Section 2.2.

Recall that νk is the area measure of Φk on Σ, meaning that νk(U) is the area of the

immersion Φk|U for any open set U ⊆ Σ. Also, let µk := (Φk)∗νk be the corresponding

measure on M, and recall that vk is the 2-varifold induced by Φk, namely vk := (Φk)∗(Σ),

the varifold pushforward of the canonical multiplicity one 2-varifold on Σ.

Up to subsequences, we can assume that µk, νk and vk converge weakly to limits µ∞,

ν∞ and v∞, in the sense of Radon measures and varifolds.

In this section we show structure theorems for the limit measures ν∞, µ∞ and for the

limit varifold v∞, namely Theorem 2.5.2, Theorem 2.5.3 and Theorem 2.5.11. The regularity

of v∞ will be studied in Section 2.7.

We will assume for simplicity that the maps Φk induce the same conformal structure on

Σ; we will discuss the general case later, in Section 2.6.

Given a reference metric g0 (on Σ) compatible with this structure, volg0 will denote

either the corresponding volume form or the associated measure.

Note that νk = 1
2 |dΦk|2g0

volg0 . Hence, viewing M⊂ RQ, the maps Φk are bounded in

W 1,2(Σ,RQ) and, up to subsequences, we can extract a weak limit Φ∞. Note that we have

the strong convergence in L2 for the maps Φk → Φ∞ and the traces Φk|∂Σ → Φ∞|∂Σ; hence,

Φ∞ and its trace Φ∞|∂Σ take values into M and N , respectively.

Proposition 2.5.1. Given x ∈ Σ, fix a local conformal chart centered at x such that the

chart domain corresponds to U ′ := B2
1 if x 6∈ ∂Σ, or to U ′ := B2

1 ∩ {=(z) ≥ 0} if x ∈ ∂Σ.

Given 0 < r < 1, assume that Φk|∂B2
r∩U ′ converges to the trace Φ∞|∂B2

r∩U ′ in C0, and that

s := diam Φ∞(∂B2
r ∩ U ′) < cV , with cV the constant appearing in Lemma A.10.

Then either lim supk→∞ νk(B
2
r ∩ U ′) ≥ cQ, with a constant cQ > 0 depending only on

M and N , or spt(µ) is included in a 2s-neighborhood of Φ∞(∂B2
r ∩ U ′), for any weak limit

µ of (Φk|B2
r∩U ′)∗νk.
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Here the letter Q in cQ stands for quantization; it is not related to the dimension of the

Euclidean space RQ.

Proof. Assume lim supk→∞ νk(B2
r ∩ U ′) < cQ, for cQ to be specified below, and let µ be the

weak limit of (Φk|B2
r∩U ′)∗νk along a subsequence (not relabeled). The maps Φk|B2

r∩U ′ induce

varifolds ṽk.

If x ∈ ∂Σ, then we can repeat the proof of Theorem 2.3.4 with vector fields X supported

outside Γ := Φ∞(∂B2
r ∩ U ′), with the corresponding variation wk given by wk = X(Φk) on

B2
r ∩ U ′ and wk = 0 on the complement (in Σ). We deduce that the limit (up to further

subsequences) ṽ∞ is a free boundary stationary varifold outside Γ. If x 6∈ ∂Σ, then ṽ∞ is

actually stationary outside Γ, since any vector field supported outside Γ produces a variation

which does not change Φk outside B2
r .

Also, if x ∈ ∂Σ we let pk ∈ Φk(∂B
2
r ∩ {=(z) = 0}) ∈ N and call p any limit point; we

then have p ∈ Γ ∩N and Γ ⊆ Bs(p). If x 6∈ ∂Σ, we just take any p ∈ Γ and again we have

Γ ⊆ Bs(p).

Observing that (Φk|B2
r∩U ′)∗νk = |ṽk| converges both to µ and to |ṽ∞|, we deduce

µ = |ṽ∞|. Also, ṽ∞ has density bounded below by a certain constant c, on M\ Γ. To show

this, fix a compact set K ⊂M\ Γ; it suffices to prove that

lim sup
k→∞

|ṽk|(Bs(q)) ≥ cs2 (2.5.1)

for all s < dist(K,Γ) and all q ∈ K outside a set Fk, with |ṽk|(Fk) → 0. This can be

obtained with Proposition 2.4.2, Corollary 2.4.5, Corollary 2.4.6 and a covering argument: let

λk := (Φk|B2
r∩U ′)∗(σ

4
k|IIΦk |4 νk),

so that by hypothesis λk(M) =
δ2
k

log σ−1
k

for some sequence δk → 0. Let F ′k ⊆ K be the set of

points q such that

λk(Bs(q)) >
δk

log σ−1
k

|ṽk|(B5s(q)), for some s > 0.

Then, by Vitali’s covering lemma, we can find a subcollection {Bsi(qi)} of disjoint balls such

that F ′k ⊆
⋃
iB5si(qi). This gives |ṽk|(F ′k) ≤

log σ−1
k

δk
λk(M) = δk, which is infinitesimal.

On the other hand, let F ′′k be the σk-neighborhood of Φ(∂Σ ∩ U) intersected with K.

Then eventually Corollary 2.4.5 is satisfied, with B2
r ∩U ′, F ′′k , M\F ′k and δk

log σ−1
k

in place of

U , T , Sδ and δ, and we obtain

µk(F
′′
k \ F ′k) ≤ C(K)σk length(Φk|∂Σ),

which is infinitesimal. Hence, we can set Fk := F ′k ∪ F ′′k and, for q 6∈ Fk ∪ Γ, Corollary 2.4.6

eventually gives

|ṽk|(Bs(q))
s2

≥ c− C δk

log σ−1
k

log(s/σk)− Cσ2
k.
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The right-hand side converges to c > 0 as k →∞, giving (2.5.1).

Hence, if x ∈ ∂Σ, then ṽ∞ satisfies the assumption of Lemma A.10, and the statement

follows. Otherwise, we can conclude using Remark A.11.

Theorem 2.5.2. The limiting measure ν∞ has finitely many atoms (possibly none), with

weight at least cQ. On the complement Σ̃ of this finite set of atoms, ν∞ is absolutely

continuous with respect to volg0 and Φ∞ has a continuous representative. Moreover, for

every open subset ω ⊂⊂ Σ̃ with ν∞(∂ω) = 0, we have (Φk|ω)∗νk ⇀ (Φ∞|ω)∗ν∞.

Proof. Given an atom {x}, we fix a local conformal chart centered at x, identifying a

neighborhood U of x with the unit disk U ′ := B2
1 if x 6∈ ∂Σ, or with U ′ := B2

1 ∩ {=(z) ≥ 0}
if x ∈ ∂Σ.

For all 0 < r < 1 we can select r
2 < t < r such that

∫
∂B2

t ∩U ′
|dΦ∞|2 ≤ 2

r

∫
B2
r∩U ′
|dΦ∞|2

and such that the trace Φ∞|∂B2
t ∩U ′ has a W 1,2 representative, with weak derivative given by

the restriction of dΦ∞ and Φk|∂B2
t ∩U ′ → Φ∞|∂B2

t ∩U ′ in C0 along a subsequence, which we

do not relabel (see, e.g., Lemma A.3 and Lemma A.5).

Then, by Cauchy–Schwarz, s := diam(Φ∞(∂B2
t ∩ U ′)) ≤ C

( ∫
B2
r∩U ′
|dΦ∞|2

)1/2
and

hence Proposition 2.5.1 is satisfied, if r is small enough. Identifying νk|U with measures on

U ′, we deduce that either ν∞(B
2
t ∩ U ′) ≥ cQ or, for some p ∈M,

ν∞(B2
t ∩ U ′) ≤ lim inf

k→∞
νk(B

2
t ∩ U ′) = lim inf

k→∞
(Φk|B2

t ∩U ′)∗νk(M) ≤ lim inf
k→∞

µk(B3s(p))

≤ µ∞(B3s(p)) ≤ Cs2 ≤ C
∫
B2
r

|dΦ∞|2.

The penultimate inequality follows from (2.4.5). For r small enough this second possibility

cannot happen, since ν∞({0}) > 0. Hence we deduce ν∞({x}) ≥ cQ and thus there are

finitely many atoms.

Assume now that K is a compact set containing no atoms. Assume that K ⊂ U for a

chart domain U ; we identify K with a compact subset of the unit ball or half unit ball U ′ as

above.

We deal with the half-ball case, whose proof covers also the case U ′ = B2
1 . We denote

∂U ′ := {z ∈ U ′ : =(z) = 0}. Fix an intermediate set K ⊂ V ⊂⊂ U ′ open in U ′ (hence, V is

allowed to contain points in ∂U ′). Since ν∞ has no atoms on U , we can find a radius r > 0

such that B2
5r(y) ⊆ B2

1 , B2
5r(y) ∩ U ′ ⊆ V and ν∞(B2

5r(y) ∩ U ′) < cQ, for all y ∈ K.

Taking a maximal subset of centers {y′i} ⊆ K with pairwise distances at least r
2 , we can

cover K with a finite collection of balls {B2
r/2(y′i)} with

∑
i 1B2

5r(y
′
i)
≤ C. If B2

r (y
′
i) ⊆ U ′

then we set yi := y′i and ri := r; otherwise we choose yi to be a point in B2
r (y′i) ∩ ∂U ′, and

we set ri := 4r. Note that B2
r/2(y′i) ⊆ B2

ri/2
(yi) and B2

ri(yi) ⊆ B
2
5r(y

′
i), so the collection of

balls B2
ri/2

(yi) still covers K and has
∑

i 1B2
ri

(yi) ≤ C. Moreover, either B2
ri(yi) ⊆ V or

yi ∈ ∂U ′, with B2
ri(yi) ∩ U

′ ⊆ V . Also, ν∞(B2
ri(yi) ∩ U

′) < cQ.
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We can fix ti ∈ ( ri2 , ri) such that Φk|∂B2
ti

(yi)∩U ′ → Φ∞|∂B2
ti

(yi)∩U ′ in C0 along a

subsequence independent of i, and such that the diameter si of Φ∞(∂B2
ti(yi) ∩ U

′) satisfies

s2
i ≤ C

∫
B2
ri

(yi)∩U ′
|dΦ∞|2.

We now work along this subsequence, which we do not relabel. By Proposition 2.5.1, if r was

chosen small enough, any weak limit of the measures (Φk|B2
ti

(yi)∩U ′)∗νk is supported in

B3si(pi) for some pi ∈M. Hence,

lim
k→∞

(Φk|B2
ti

(yi)∩U ′)∗νk(M\B3si(pi)) = 0. (2.5.2)

Since νk = 1
2 |dΦk|2 L2 on U ′, setting hi := (dist(·, pi)− 3si)

+ we deduce that hi ◦ Φk → 0 in

W 1,2(B2
ti(yi) ∩ U

′). Hence, the essential image of Φ∞|B2
ti

(yi)∩U ′ is included in B3si(pi). We

deduce∫
K

dist(Φk,Φ∞) dνk ≤
∑
i

∫
B2
ti

(yi)∩U ′
dist(Φk,Φ∞) dνk

≤
∑
i

6siνk(B
2
ti(yi) ∩ U

′)

+ diam(M)
∑
i

(Φk|B2
ti

(yi)∩U ′)∗νk(M\B3si(pi))

≤ C(sup si)νk(V ) + C
∑
i

(Φk|B2
ti

(yi)∩U ′)∗νk(M\B3si(pi)).

In the limit k →∞, using (2.5.2), we get

lim sup
k→∞

∫
K

dist(Φk,Φ∞) dνk ≤ C(sup
i
si)ν∞(V ).

Since we could arrange that supi si is arbitrarily small, we arrive at

lim
k→∞

∫
K

dist(Φk,Φ∞) dνk = 0. (2.5.3)

Also, choosing η so small that any ball B2
η(y) is included in some B2

ti(yi), for all y ∈ K, the

essential oscillation of Φ∞|B2
η(y)∩U ′ is then bounded by supi si. Since the latter is arbitrarily

small, it follows that Φ∞ has a continuous representative on K, hence on Σ̃.

Finally, if L2(K) = 0 then, arguing as in the first part of the proof, we have

ν∞(K) ≤
∑
i

ν∞(B2
ti(yi) ∩ U

′) ≤ lim inf
k→∞

∑
i

νk(B
2
ti(yi) ∩ U

′) ≤ C
∑
i

s2
i

≤ C
∑
i

∫
B2
ri

(yi)∩U ′
|dΦ∞|2 ≤ C

∫
V
|dΦ∞|2.

Since V is an arbitrary neighborhood of K, we deduce ν∞(K) ≤ C
∫
K |dΦ∞|

2 = 0. The

absolute continuity of ν∞ with respect to volg0 on Σ̃ follows.
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Finally, given ω as in the statement and covering ω with finitely many charts, it follows

from (2.5.3) that limk→∞
∫
ω dist(Φk,Φ∞) dνk = 0. Hence, for any ψ ∈ C0(M),

lim
k→∞

∫
ω
ψ ◦ Φk dνk = lim

k→∞

∫
ω
ψ ◦ Φ∞ dνk =

∫
ω
ψ ◦ Φ∞ dν∞

the last equality coming from the continuity of ψ ◦ Φ∞ near ω and the assumption

ν∞(∂ω) = 0. The weak convergence (Φk|ω)∗νk ⇀ (Φ∞|ω)∗ν∞ follows.

Theorem 2.5.3. The absolutely continuous part of ν∞, which we denote m volg0, has

m = 0 a.e. on the set of points where dΦ∞ does not have rank 2. Moreover, m = NJ(dΦ∞)

for a bounded, integer valued function N ≥ 1.

In the statement J(dΦ∞) denotes the Jacobian of Φ∞ with respect to the volume form

volg0 . Hence, in a conformal chart, we are asserting that the absolutely continuous part of

ν∞ is N |∂1Φ∞ ∧ ∂2Φ∞| L2.

Proof. Working in a conformal chart for int(Σ), we fix a point x which is Lebesgue for dΦ∞,

and such that ν∞({x}) = 0. We have to show that ν∞(B2
r (x))

πr2 → N |∂1Φ∞ ∧ ∂2Φ∞|(x) for

some bounded integer N ≥ 1, as r → 0 along some sequence.

We can assume x = 0. For all r > 0 small enough, call vk,r the varifold induced by

Φk|B2
r
. We can select an arbitrarily small r such that the trace Φ∞|∂B2

r
has

Φ∞(ry) = Φ∞(0) + rdΦ∞(0)[y] + o(r) for |y| = 1

and such that the traces Φk|∂B2
r

converge subsequentially to Φ∞|∂B2
r

in C0 (see Lemma A.4

and Lemma A.5). By Proposition 2.5.1, any (subsequential) weak limit of |vk,r| is supported

in a ball BCr(p), with p := Φ∞(0) and C depending also on |dΦ∞(0)|.
Moreover, any (subsequential) limit v = limk→∞ vk,r is stationary in M\ Φ∞(∂B2

r ) and

satisfies |v|(Bs(q)) ≤ Cs2 for all q ∈M, since the varifolds vk induced by Φk (from the full

domain) have trivially |vk| ≥ |vk,r| and, by Theorem 2.3.4, they converge subsequentially to

a free boundary stationary varifold v∞, for which (2.4.5) gives the desired bound.

Hence, with a diagonal argument, we may find a subsequence of k’s (not relabeled) and a

sequence of radii rk → 0 such that the dilated varifolds v′k := (r−1
k (· − p))∗vk,rk in RQ form

a tight sequence, converging to a varifold v′∞ which has

|v′∞|(BQ
s (q)) ≤ Cs2 for all q ∈ RQ and all s > 0 (2.5.4)

with a constant C independent of x, has compact support and is stationary in RQ \ C, with

C = lim
k→∞

(r−1
k Φ∞(∂B2

rk
)− p) = {dΦ∞(0)[y] | y ∈ ∂B2

1}.

We can also assume that

r−2
k σ4

k

∫
B2
rk

f2
k dνk → 0, r−1

k σk → 0, (2.5.5)
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and that

|v′∞|(RQ) = lim
k→∞

|v′k|(RQ) = lim
k→∞

ν∞(B2
rk

)

r2
k

= lim
k→∞

νk(B
2
rk

)

r2
k

;

since the convex hull co(C) of C has area π|∂1Φ∞ ∧ ∂2Φ∞|(0), we are left to show that

|v′∞|(RQ) = NH2(co(C))

for some bounded integer N ≥ 1. By [98, Theorem 19.2], which holds for general varifolds,

|v′∞| is supported in the convex hull of C. If dΦ∞(0) has rank less than 2, then C is either a

segment or a point. Hence, we can cover it with O(s−1) balls of radius s; recalling (2.5.4),

we deduce |v′∞|(C) = 0 and hence v′∞ = 0. Thus the claim follows in this case.

If instead dΦ∞(0) has rank 2, we first observe that the area of the map Ψk :=

r−1
k (Φk|B2

rk
− p) is, up to an infinitesimal error, at least the area of co(C) in the plane Π

containing it: this follows immediately considering the composition Ψk of this map with the

projection onto Π, and noting that any compact subset K ⊂ co(C) \ C belongs eventually to

the image of Ψk, since Ψk has (eventually) nontrivial degree relative to the points in K.

Hence,

H2(co(C)) ≤ lim
k→∞

νk(B
2
rk

)

r2
k

= |v′∞|(RQ). (2.5.6)

Up to rotations, we can assume Π = R2 × {0}. Since C is a smooth curve, we have

|v′∞|(C) = 0. Also, v′∞ is stationary on RQ \ C and supported on Π. By the constancy

theorem [98, Theorem 41.1], it follows that v′∞ is rectifiable and equals a multiple N of

co(C). By (2.5.6) we have N ≥ 1, while from (2.5.4) it follows that N ≤ C. We are left to

show N ∈ N.

Note that v′k is the varifold induced by Ψk; hence, the varifold convergence v′k ⇀ v′∞

implies that ∫
B2
rk

|dΨj
k|

2 → 0 for j = 3, . . . , Q, (2.5.7)

where we write Ψk = (Ψ1
k, . . . ,Ψ

Q
k ).

Fix α > 0 such that C encloses a ball B2
2α in the plane Π. Consider a family (ρτ ) of

mollifiers in RQ, namely nonnegative smooth functions supported in BQ
τ with

∫
RQ ρτ = 1

and |dρτ | ≤ Cτ−Q−1. For any vector field X ∈ C∞c (B2
α,R2), viewing X as a vector field

on RQ, constant in the last Q − 2 variables, we define the vector fields Xk and Yk on

Mk := r−1
k (M− p) given pointwise by the projection of X and ρτk ∗X onto the tangent

space to Mk, respectively, with τk := r−1
k σk.

Since Mk converges to an m-plane graphically (in any neighborhood of 0), we have

|∇Mk
v Xk −∇RQ

v X| ≤ δk‖dX‖L∞ |v| (2.5.8)
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for some sequence δk → 0 and any v ∈ TMk. Also, we have

|(∇Mk)2Yk| ≤ C‖ρτk ∗X‖C2 ≤ Cτ−1
k ‖dX‖L∞ .

Note that Ψk, when extended to Σ with the same formula r−1
k (Φk − p), is τ5

k -critical for

Eτk for the manifold Mk and the corresponding Finsler manifold Mk: indeed, identifying

TΦkM and TΨkMk with subsets of W 2,4(Σ,RQ), for all w ∈ TΨkMk we have

|dEτk(Ψk)[w]| = r−2
k |dEσk(Φk)[rkw]| ≤ r−1

k σ5
k‖w‖Φk ≤ r

2
kτ

5
k‖w‖Φk

and it is immediate to check that ‖w‖Φk ≤ r
−3/2
k ‖w‖Ψk ≤ r

−2
k ‖w‖Ψk (assuming rk ≤ 1).

For the vector field Yk, recalling (2.3.4), the term f〈∇n,∇ω〉 in (2.3.3) is bounded by

C|IIΨk |4‖∇MkYk‖L∞ + C|IIΨk |3‖(∇Mk)2Yk‖L∞

≤ C(|IIΨk |4 + τ−1
k |II

Ψk |3)‖dX‖L∞ .

We now use the almost criticality of Ψk with the infinitesimal variation Yk(Ψk), or more

precisely Yk(Ψk)1B2
rk

for the extension r−1
k (Φk − p) ∈ Mk of Ψk. For k large enough,

Ψk(∂B
2
rk

) does not intersect B2
2α × RQ−2, where Yk is supported, and hence this is an

admissible variation. As in the proof of Theorem 2.3.4, since the immersions Ψk have

bounded area we obtain

‖Yk(Ψk)‖Ψk ≤ C‖dX‖L∞ + C‖(∇Mk)2Yk‖L∞ + ‖dX‖
(∫

B2
rk

|IIΨk |4 volΨk

)1/4

≤ Cτ−1
k ‖dX‖L∞

(
1 +

(∫
B2
rk

τ4
k |IIΨk |4 volΨk

)1/4)
for some C independent of X. Hence, (2.3.3) and the τ5

k -criticality of Ψk, together with

Young’s inequality, give∣∣∣ ∫
B2
rk

〈∂iΨk,∇Yk(Ψk)[∂iΨk]〉
∣∣∣ ≤ C‖dX‖L∞ ∫

B2
rk

(τ4
k |IIΨk |4 + τ3

k |IIΨk |3) volΨk

+ Cτ4
k‖dX‖L∞ .

Since τ4
k |II

Ψk |4 = σ4
k|II

Φ
k |4, Hölder’s inequality gives the upper bound

C
(
r−2
k σ4

k

∫
B2
rk

|IIΦk |4 volΦk +
(
r−2
k σ4

k

∫
B2
rk

|IIΦk |4 volΦk

)3/4
+ τ4

k

)
‖dX‖L∞

for the previous right-hand side. In view of (2.5.5), it follows that∣∣∣ ∫
B2
rk

〈∂iΨk,∇Yk(Ψk)[∂iΨk]〉
∣∣∣ ≤ δ′k‖dX‖L∞
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for some δ′k → 0 independent of X. Also, replacing Yk with Xk is not harmful, since the last

integral is the first variation of the area and thus∣∣∣ ∫
B2
rk

〈∂iΨk,∇Yk(Ψk)[∂iΨk]〉 −
∫
B2
rk

〈∂iΨk,∇Xk(Ψk)[∂iΨk]〉
∣∣∣

≤ 2

∫
B2
rk

|HΨk ||ρτk ∗X −X| volΨk

≤ Cτk‖dX‖L∞
∫
B2
rk

|IIΨk | volΨk

is infinitesimal with respect to ‖dX‖L∞ . Choose now X := ϕ(x1, x2)e1. Writing Ψk =

(Ψ1
k, . . . ,Ψ

m
k ), in view of (2.5.8) the previous integral (with Xk replacing Yk) is just∫

B2
rk

(∂1ϕ(Ψk)∂iΨ
1
k∂iΨ

1
k + ∂2ϕ(Ψk)∂iΨ

1
k∂iΨ

2
k),

up to another infinitesimal error. Let Jk := |∂1Ψ1
k∂2Ψ2

k − ∂2Ψ1
k∂1Ψ2

k| denote the Jacobian of

the composition of Ψ with the projection onto Π. Using (2.5.7), this integral equals∫
B2
rk

Jk∂1ϕ(Ψk) volΨk

plus an error which is infinitesimal with respect to ‖dϕ‖L∞ (see also Lemma A.6). Hence, by

the area formula, the projection v′′k of v′k onto Π has an integer multiplicity Nk satisfying∣∣∣ ∫
B2
α

Nk∂1ϕdL2
∣∣∣ ≤ δ′′k‖dX‖L∞ with δ′′k → 0

and, using the vector field ϕ(x1, x2)e2, the same holds replacing ∂1ϕ with ∂2ϕ. So, by

Allard’s strong constancy lemma [4, Theorem 1.(4)], it follows that Nk is close in L1 to a

constant Nk on the ball B2
α/2, with a distance O(δ′′k). As Nk is integer valued, it follows that

dist(Nk,N)→ 0. Finally, since v′′k converges to v′∞, we have

π(α/2)2N = lim
k→∞

∫
B2
α/2

Nk dL2 = lim
k→∞

π(α/2)2Nk

and we deduce N ∈ N.

Remark 2.5.4. Note that, in the previous proof, testing immediately the stationarity of Ψk

against Xk would have run into trouble, since we would have got a bound for
∫
B2
α
Nk∂iϕ

depending also on the Hessian of X, making it impossible to apply Allard’s strong constancy

lemma.

Definition 2.5.5. Given an open set ω ⊆ Σ̃, we define the subset Gω ⊆ ω \ ∂Σ of Lebesgue

points for dΦ∞ where this differential has rank 2. We equip the image Φ∞(Gω) with the

multiplicity

θω(p) :=
∑

x∈Gω∩Φ−1
∞ (p)

N(x).
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Note that, by the area formula (see, e.g., Lemma A.2), Φ∞(Gω) is 2-rectifiable and θω is well

defined as a function in L1(H2 Φ∞(Gω)). We can then view this set, with multiplicity θω,

as a rectifiable varifold in M, which we call vω.

Note that, by Theorem 2.5.2, Theorem 2.5.3 and the area formula, the weight |vω|
coincides with (Φ∞|ω)∗ν∞.

Proposition 2.5.6. Given an open subset ω ⊂⊂ Σ̃ with ν∞(∂ω) = 0, the immersions Φk|ω
converge to the varifold vω.

Proof. By splitting ω into finitely many pieces with ν∞-negligible boundary, we can reduce

to the case that ω is contained in a local chart; in the sequel, we identify ω with a subset of

C = R2.

Let vk,ω := (Φk)∗(ω) be the varifold induced by Φk|ω. Viewing vk,ω (for k ≤ ∞) as a

varifold in RQ, by the area formula and Theorem 2.5.3 it suffices to show that∫
ω
ϕ(Φk(x), dΦk(x)[TxΣ]) dνk(x)→

∫
ω
ϕ(Φ∞(x), dΦ∞(x)[TxΣ]) dν∞(x) (2.5.9)

for any ϕ ∈ C1
c (Gr2(RQ)). The last integrand is meant to be zero at points where

dΦ∞ does not have full rank. In order to simplify the notation, we indicate the plane

dΦk(x)[TxΣ] = dΦk(x)[R2] by Πk(x).

Let G′ω be the subset of Gω consisting of the points x where additionally
∫
B2
r (x) |dΦ∞ −

dΦ∞(x)|2 = o(r2). For any point x ∈ G′ω, pick a sequence of radii r satisfying

|Φ∞(x+ ry)− Φ∞(x)− dΦ∞(x)[ry]| = o(r) for |y| = 1.

Given any ε > 0, we claim that

lim sup
k→∞

∫
B2
r (x)
|ϕ(Φk,Πk)− ϕ(Φ∞(x),Π∞(x))| dνk ≤ εr2 (2.5.10)

for r small enough in this sequence. If this is not true, then using a diagonal argument as in

the proof of Theorem 2.5.3 we may find a subsequence of k’s (not relabeled) and radii

rk → 0 such that ∫
B2
rk

(x)
|ϕ(Φk,Πk)− ϕ(Φ∞(x),Π∞(x))| dνk ≥ εr2

k (2.5.11)

as well as

r−2
k |νk(B

2
rk

(x))− ν∞(B2
rk

(x))| → 0,

and such that the varifolds induced by Ψk := r−1
k (Φk|B2

rk
(x) − Φ∞(x)) converge tightly to a

rectifiable varifold v′ supported in a bounded subset of Π∞(x). In particular, the νk-measure
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of the set of points in B2
rk

(x) where |Ψk| > r
−1/2
k is o(r2

k). Since Φk = Φ∞(x) + rkΨk, we

deduce that∫
B2
rk

(x)
|ϕ(Φk,Πk)− ϕ(Φ∞(x),Πk)| dνk ≤ r

1/2
k ‖dϕ‖L∞νk(B

2
rk

(x)) + o(r2
k) = o(r2

k)

(2.5.12)

as k →∞. Also, testing the tight varifold convergence of Ψk to v′ against the function

|ϕ(Φ∞(x), ·)− ϕ(Φ∞(x),Π∞(x))|, we get∫
B2
rk

(x)
|ϕ(Φ∞(x),Πk)− ϕ(Φ∞(x),Π∞(x))| dνk = o(r2

k). (2.5.13)

Combining (2.5.12) with (2.5.13) we get a contradiction to (2.5.11). By the Besicovitch

covering lemma, we can then cover any fixed compact set K ⊆ G′ω with finitely many balls

{Bj} included in ω such that (2.5.10) holds, for Bj = B2
rj (xj) in place of B2

r (x), as well as∫
Bj

|ϕ(Φ∞,Π∞)− ϕ(Φ∞(xj),Π∞(xj))| dν∞ ≤ εr2
j ,

using the approximate continuity of dΦ∞ at points in K, and such that
∑

j 1Bj ≤ C.

Let Bj := Bj \
⋃
`<j B` and U :=

⋃
j Bj =

⋃
j Bj ⊆ ω. Since

∑
j r

2
j ≤ C, we deduce that

lim sup
k→∞

∣∣∣ ∫
U
ϕ(Φk,Πk) dνk −

∫
U
ϕ(Φ∞,Π∞) dν∞

∣∣∣
≤
∑
j

lim sup
k→∞

∣∣∣ ∫
Bj
ϕ(Φ∞(xj),Π∞(xj)) dνk −

∫
Bj
ϕ(Φ∞(xj),Π∞(xj)) dν∞

∣∣∣+ Cε.

The sum vanishes, since ν∞(∂Bj) = 0. Also, since ν∞(∂ω) = 0, we have

lim sup
k→∞

νk(ω \ U) ≤ ν∞(ω \ U) ≤ ν∞(ω \K)

and this quantity can be made arbitrarily small, proving (2.5.9).

Definition 2.5.7. We say that a property holds for a.e. ω ⊆ Σ if, for every nonnegative

ρ ∈ C∞(Σ), it holds for a.e. superlevel set {ρ > λ} with λ > 0. Similarly, we say that it

holds for a.e. ω ⊂⊂ int(Σ) if we have the same for every nonnegative ρ ∈ C∞c (int(Σ)).

Definition 2.5.8. A map Φ ∈W 1,2(Σ) is weakly conformal if, for a.e. x ∈ Σ, its differential

at x is zero or a linear conformal map TxΣ→ TΦ(x)M.

Definition 2.5.9. Let Σ be a compact Riemann surface, possibly with boundary, Φ ∈
W 1,2(Σ,M) weakly conformal with Φ(∂Σ) ⊆ N , and N ∈ L∞(Σ, {1, 2, . . . }). The triple

(Σ,Φ, N) is a parametrized free boundary stationary varifold if, for almost every ω ⊆ Σ, the

varifold Φ∗(Nω) is free boundary stationary (forM,N ) outside Φ∞(∂ω) (see Definition 2.3.1)

and if, for almost every ω ⊂⊂ int(Σ), Φ∗(Nω) is stationary outside Φ∞(∂ω).
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The pushforward Φ∗(Nω) in this definition has to be interpreted as the varifold vω in

Definition 2.5.5, using the subset of ω made of Lebesgue points, for Φ and dΦ, where dΦ has

rank 2.

Remark 2.5.10. In this definition, Nω is viewed as a 2-varifold in the surface Σ, equipped

with a metric compatible with the conformal structure; however, Φ∗(Nω) is independent

of the choice of the metric. Note that ∂ω is a compact one-dimensional submanifold

and the trace Φ|∂ω has a continuous representative for a.e. ω: this follows, e.g., from [35,

Theorems 4.21 and 5.7] applied to the regular level sets of f ; Φ(∂ω) implicitly refers to the

(compact) image by means of this continuous map. Note also that the definition does not

depend on the representatives of Φ and N .

Theorem 2.5.11. There exists a compact Riemann surface Σ′ and a quasiconformal

homeomorphism ϕ : Σ′ → Σ such that (Σ′,Φ∞ ◦ ϕ,N ◦ ϕ) is a free boundary parametrized

stationary varifold for (M,N ).

We refer the reader to [56, Chapter 4] for basic properties of quasiconformal homeomor-

phisms.

Proof. For a.e. ω ⊆ Σ, Φk|∂ω converges in C0 to Φ∞|∂ω (up to subsequences) and ∂ω∩A = ∅,
with A the finite set of atoms for ν∞.

With respect to the fixed metric g0 on Σ, we can find an arbitrarily small radius r > 0

such that for any x ∈ ω ∩ A we have Br(x) ⊂⊂ ω and Φk|∂Br(x) also converges in C0 to

Φ∞|∂Br(x) (up to subsequences). Let ω̃ := ω \
⋃
x∈ω∩ABr(x).

Repeating the proof of Theorem 2.3.4 with vector fields in Xfb supported outside

Φ∞(∂ω̃), we deduce that the varifold limit of Φk|ω̃ is free boundary stationary outside this

set; by Proposition 2.5.6, this limit is vω̃. Since the images Φ∞(∂Br(x)), for x ∈ ω ∩A, have

arbitrarily small diameter (see, e.g., Lemma A.3), we deduce that vω is free boundary

stationary outside (Φ∞(∂ω) and) a finite set F . However, since Φk also converges to the free

boundary stationary varifold v∞ ≥ vω, by (2.4.5) we get |vω|(Bs(p)) ≤ Cs2 for p ∈ F .

Hence, given X ∈ Xfb supported outside Φ∞(∂ω), we can multiply it by the product Πp∈Fϕp

of cut-off functions ϕp, with ϕp = 0 on Bs/2(p), ϕp = 1 outside Bs(p) and |dϕp| ≤ Cs−1. It

is then straightforward to check that the stationarity with respect to the cut-off vector field

gives the one for X, as s → 0. The proof that vω is stationary for a.e. ω ⊂⊂ int(Σ) is

analogous.

Finally, we show how to obtain a weakly conformal reparametrization. Note that, by

Theorem 2.5.3,

N |∂1Φ∞ ∧ ∂2Φ∞| ≥
1

2
|dΦ∞|2
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a.e. in a local conformal chart h : U → U ′ (with U ⊆ Σ), since the left-hand side is the

density of ν∞ (in U ′) and thus, for any open set V ⊂⊂ U ∩ Σ̃,∫
V

1

2
|dΦ∞|2 dL2 ≤ lim inf

k→∞
νk(V ) ≤ ν∞(V ) =

∫
V
N |∂1Φ∞ ∧ ∂2Φ∞| dL2,

from which the previous claim follows. Call C an upper bound for N and assume that the

image U ′ of the chart is either the ball or the half-ball. Arguing as in the first part of the

proof of Theorem 3.4.1, we can find a C
2−1

C
2
+1

-quasiconformal homeomorphism ψ : C→ C such

that Φ∞ ◦ h−1 ◦ ψ−1 is weakly conformal on ψ(U ′); using the Riemann mapping theorem

and Carathéodory’s theorem, by composing ψ with a conformal map, we can replace ψ with

a homeomorphism U ′ → U ′, with the additional property that it preserves U ′ ∩ {=(z) = 0}
(as a set) in the half-ball case. Recall that ψ−1 is quasiconformal, as well (see, e.g., [56,

Theorem 4.10 and Proposition 4.2]).

Set θ := h−1 ◦ ψ−1 : U ′ → U . Note that, given two overlapping charts U1, U2, the

corresponding homeomorphisms θ1 and θ2 differ by a conformal map, namely θ−1
1 ◦ θ2 is

conformal on θ−1
2 (U1 ∩ U2). This holds since a.e. the differential dΦ∞ either vanishes or has

rank 2 and, by construction, θi is weakly conformal at a.e. xi such that dΦ∞(θi(xi)) = 0; on

the other hand, the two maps d(Ψ∞ ◦θi)(xi) = dΨ∞(θi(xi))◦dθi(xi), with x1 := θ−1
1 ◦θ2(x2),

are both nontrivial linear conformal maps for a.e. x2 such that dΦ∞(θ2(x2)) 6= 0, so that

dθ1(x1)−1 ◦ dθ2(x2) is conformal at these points.

In this argument we used the facts that a quasiconformal homeomorphism carries negligible

sets to negligible sets [56, Lemma 4.12] and satisfies the chain rule [65, Lemma III.6.4].

Note that the Cauchy–Riemann equations satisfied by θ−1
1 ◦ θ2 give its smoothness away

from the boundary and, by the Schwarz reflection principle, this map is smooth up to

θ−1
2 (∂Σ ∩ U1 ∩ U2). Thus, the maps θ−1 define an atlas for a new smooth and conformal

structure on Σ; calling Σ′ a copy of Σ with this structure, we can just take ϕ to be the

identity Σ′ → Σ.

Finally, as explained in Proposition 2.7.2 (whose proof does not use that Φ is weakly

conformal), the stationarity property holds on Σ for all domains; the same then holds for

Σ′.

2.6 Degeneration of the conformal structure and bubbling

In this section we describe how to recover all the area in the limit as a sum of masses of

parametrized (free boundary) stationary varifolds, without the assumption that the maps Φk

induce a fixed conformal structure on Σ.

Namely, denoting vk the varifold induced by Φk as in Section 2.2, we show that the limit

varifold v∞ is the superposition of finitely many parametrized free boundary stationary

varifolds.

Before dealing with possible concentration points, we focus on how to remove the

assumption of the fixed conformal structure.
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First of all, recall that on the oriented surface Σ, which can be assumed to be connected,

there exists a metric gk which is conformal to the induced metric gΦk = Φ∗kg, has constant

Gaussian curvature either 1, 0, or −1, and makes the boundary ∂Σ geodesic. Precisely, the

curvature is 1 if Σ is (diffeomorphic to) a sphere or a disk, 0 if Σ is a torus or an annulus,

and −1 otherwise. This is in agreement with Gauss–Bonnet, which says that the sign of

this constant curvature agrees with the sign of the Euler characteristic of Σ, given by

χ(Σ) = 2− 2g − b, with g the genus and b the number of boundary components.

We also recall that (Σ, gk), up to a change of orientation, is conformal to a surface Σk

which is the standard sphere, hemisphere, a torus C/(Z + Zλk) (where we can assume

|λk| ≥ 1, |<(λk)| ≤ 1
2), an annulus S1 × [0, `k], when Σ is (diffeomorphic to) the sphere, the

disk, the torus, the annulus, respectively.1

Hence, when Σ is the sphere, up to precomposing Φk with a diffeomorphism we can

assume that Φk induces the standard conformal structure on Σ = S2; note that this leaves

the diffeomorphism invariant conditions (2.2.5) and (2.2.6) unchanged. The same holds for

the disk case.

Before discussing the other situations, let us state a useful modification of Proposition 2.5.1.

Proposition 2.6.1. Consider open domains Uk ⊆ Σ whose boundary ∂Uk is contained

in the union of two compact curves αk,1 and αk,2, and call dk,i the diameter of Φk(αk,i).

Assume that Uk does not contain any entire boundary component of Σ. Then

lim sup
k→∞

νk(Uk) ≤ δ
(

lim sup
k→∞

max{dk,1, dk,2}, C
)
,

unless the left-hand side is at least cQ, the same constant appearing in Proposition 2.5.1. In

the last inequality, C is a constant depending only on (Φk) and the function δ is given by

Lemma A.12.

In this statement, Uk may contain points in ∂Σ and ∂Uk = Uk \Uk denotes its topological

boundary in Σ.

Proof. Note that Φk(αk,i) is contained in a ball Bdk,i(pk,i). After extracting a subsequence

realizing lim supk→∞ νk(Uk), we can also assume that pk,i and dk,i converge to pi and di.

The proof is now analogous to the one of Proposition 2.5.1: the maps Φk|Uk induce

varifolds whose (subsequential) limit is free boundary stationary on the complement of

Bd1(p1)∪Bd2(p2), has mass at most Cr2 on balls of radius r, and has density bounded below

by a constant c < 1 (the same as in that proof). The claim follows from Lemma A.12.

Flat case

We now treat the torus case in detail, deferring the other cases to a later discussion.

1This is an easy consequence of the Riemannian uniformization theorem, applied to (Σ, gk) if ∂Σ = ∅, or
to the doubled surface obtained by gluing two copies of Σ along ∂Σ.
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If Σk = C/(Z + Zλk), setting `k := |λk| ≥ 1, we can also assume that `k → `∞ ∈ [1,∞]

up to a subsequence. If `∞ <∞, assuming λk → λ∞ and defining Σ∞ := C/(Z + Zλ∞), we

can find diffeomorphisms ϕk : Σ∞ → Σ such that the pullback of the conformal structure

[gΦk ] converges smoothly to the flat one.

Since the area of Φk is bounded, the sequence Φk ◦ ϕk is then bounded in W 1,2(Σ∞) and

we can extract a subsequence converging to a weak limit Φ∞. Defining the area measure νk

on Σ∞ as in the previous section, note that again their limit in the sense of Radon measures

(up to subsequences) is also equal to the limit of 1
2 |dΦk|2 volΣ∞ .

All the proofs in Section 2.5 carry over, just replacing Φk with Φk ◦ ϕk and (Σ, g0) with

(Σ∞, gΣ∞). Assume in the sequel `k → `∞ =∞.

Remark 2.6.2. Actually, in the proof of Theorem 2.5.3 we used the conformality of the

maps Φk; since the proof was local in int(Σ), we can precompose Φk with a conformal map

hk : B2
1 → (Σ, gk) which is a diffeomorphism with the image and converges smoothly to the

inverse of a conformal chart for Σ = Σ∞. The statement for the sequence (Φk) then follows

from its validity for the conformal maps Φk ◦ hk.

Note that, since |<(λk)| ≤ 1
2 , we can use instead S1 × `kS1 as a domain for Φk, with the

induced conformal structure becoming asymptotically the flat one. Given a big parameter L,

we can subdivide the circle `kS
1 into Nk arcs Ik,1, . . . , Ik,Nk with L ≤ |Ik,j | ≤ 2L. Note that

the boundedness of the area of Φk gives∫
S1×`kS1

|dΦk|2 ≤ C

for some constant C independent of k.

Hence, for each k, there is only a bounded amount of indices j such that 1
2

∫
S1×Ik,j |dΦk|2 ≥

cQ
8 , for the constant cQ from Proposition 2.6.1. Up to subsequences, we can then find a

nonempty collection of arcs Jk,1, . . . , Jk,h which are unions of the previous intervals, in such

a way that

L < lim
k→∞

|Jk,j | <∞, dist(Jk,j , Jk,j′)→∞ for j 6= j′

and 1
2

∫
S1×Ik,j |dΦk|2 <

cQ
8 whenever Ik,j is not included in one of the arcs Jk,1, . . . , Jk,h.

We now claim that

lim sup
k→∞

∫
S1×(`kS1\

⋃h
j=1 RJk,j)

|dΦk|2 → 0 as R→∞, (2.6.1)

provided L was chosen big enough. Here RJk,j ⊆ `kS1 is the arc dilated by a factor R, with

the same center.

Once this is proved, we can fix j ∈ {1, . . . , h} and, shifting Jk,j to be centered at 0, we

obtain a (local) weak limit Φ∞,j : S1 × R→M of the maps Φk, viewing these as maps

defined on bigger and bigger subsets of S1 × R. We can again repeat the analysis which was

done in the previous section.
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Note that in the limit we get a map with domain S1 × R. Since this cylinder is

conformally the same as the sphere minus two points, we can see the domain as the sphere:

note that replacing the cylinder with the sphere preserves stationarity, by the same argument

used in the proof of Theorem 2.5.11 to remove the set of atoms.

By (2.6.1), the sum of the masses of the limit varifolds for j = 1, . . . , h is equal to the

limit of the area of Φk, up to the contribution of concentration points in the h copies of

S1×R. We will discuss later how to recover the area which gets concentrated at these points.

In order to prove (2.6.1), fix k and j, and let Ik,s, . . . , Ik,s+t be the intervals lying

between two consecutive arcs Jk,j and Jk,j+1 (with indices modulo Nk and modulo h). We

claim that eventually we cannot have
∑t′

i=2

∫
S1×Ik,s+i

1
2 |dΦk|2 ≥

cQ
2 for any 1 < t′ < t. If t′

is the minimum such index, since the energy carried by each S1 × Ik,s+i is at most
cQ
8 we

deduce that the sum is less than 5
8c0.

Since |Ik,i| ≥ L, we can select a ∈ Ik,s+1 and b ∈ Ik,s+t′+1 such that
∫
S1×{a,b} |dΦk| ≤

CL−1/2; we can apply Proposition 2.6.1 with Uk := S1 × [a, b] and deduce that eventually∫
S1×[a,b]

1
2 |dΦk|2 is either at least 7

8cQ or at most 2δ(CL−1/2, C). Since the first possibility

cannot happen, we are in the second case. Hence, we get
cQ
2 ≤ 2δ(CL−1/2, C), which is a

contradiction for L big enough, since δ(CL−1/2, C)→ 0 as L→∞.

But then we can repeat the argument selecting a′ in the part of RJk,j \(R/2)Jk,j following

Jk,j and b′ in the part of RJk,j+1 \ (R/2)Jk,j+1 preceding Jk,j+1, with
∫
S1×{a′,b′} |dΦk| ≤

CR−1/2. We already know that the area carried by the region S1 × [a′, b′] is eventually less

than
cQ
2 , so we deduce that it is bounded by 2δ(CR−1/2, C), and (2.6.1) follows.

In the case of the annulus, namely Σk = S1 × [0, `k], up to subsequences either we are in

the easy case that `k has a limit in (0,∞), or `k →∞, or `k → 0. The second case can be

dealt with in the same way as before, by subdividing the interval [0, `k] and making sure

that Ik,1 ⊆ Jk,1 and Ik,Nk ⊆ Jk,h. In this case, Jk,j produces again infinite cylinders, or

equivalently spheres, in the limit for 1 < j < h. On the other hand, Jk,1 and Jk,h produce

(possibly constant) limit maps whose domain is S1 × [0,∞), which is conformally the disk

minus the origin. We can thus view their domain as the full disk.

In the last case `k → 0, we can replace S1 × [0, `k] with the conformally equivalent

surface [0, 1]× `−1
k S1. We then subdivide the circle and argue in the same way as before. In

the limit we get maps with domain [0, 1]× R, which is conformally a disk (minus two

boundary points which can be ignored).

Hyperbolic case

Finally, we explain how to deal with the hyperbolic case χ(Σ) < 0. In this case there is no

straightforward description of all the possible conformal classes of surfaces. In case Σ

has no boundary, by Bers’ theorem we can decompose (Σ, gk) into hyperbolic pairs of

pants, with lengths of their boundaries bounded above in terms of the topology of Σ:

see [54, Theorem IV.3.7] for a self-contained proof. We call {βi} the collection of closed
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geodesics, depending on k but with fixed cardinality, which bound the pairs of pants. Up to

subsequences, we can assume that the combinatorial configuration of the decomposition does

not depend on k, with a consistent labeling for the curves βi, and that the length of βi

converges to a finite number as k →∞.

Then we can apply [54, Proposition IV.5.1] to the connected components of the surface

(Σ, gk), cut open along those geodesics {βi}i∈I whose length converges to 0. We get a

possibly disconnected limit surface Σ∞, which equals a closed Riemann surface minus finitely

many points (two for each degenerating βi), and diffeomorphisms ψk : Σ∞ → Σ \
⋃
i∈I βi

such that the pullback metric ψ∗kgk converges locally to the metric of Σ∞. Then we repeat

the analysis with the maps Φk ◦ ψk and obtain a limit parametrized varifold, whose domain

Σ∞ can be replaced with a (possibly disconnected) closed surface. Apart from concentration

points, part of the area of Φk could be concentrating in collar neighborhoods of the geodesics

βi, for i ∈ I. These neighborhoods can be conformally identified with cylinders S1 × [0, Lk,i],

with Lk,i → ∞ as k → ∞, and one can recover the missing part of the area as in the

degenerating cylinder case; note that the pieces S1 × Jk,1 and S1 × Jk,h from that analysis

have to be discarded, since their contribution is already given by Σ∞, while all the other

pieces produce varifolds parametrized by spheres.

If ∂Σ 6= ∅, let us call γ1, . . . , γb the boundary components of Σ. We cannot directly

decompose Σ into pairs of pants whose boundary curves have bounded length, since the

length of some γi with respect to gk could fail to stay bounded as k →∞.

Instead, we first glue two copies of (Σ, gk) along the geodesic boundary ∂Σ =
⋃b
i=1 γi,

obtaining a hyperbolic surface Σ̃k. This surface comes equipped with a canonical involution

ik, which flips the two glued copies.

For a decomposition for Σ̃k as in the closed case, we can assume that all the simple

closed geodesics of length less than 2 sinh−1(1) appear in the collection {βi}: see [54,

Lemma IV.4.1] and the proof of Bers’ theorem.

The thin part Tk := {x ∈ Σ̃k : inj(x) ≤ λ} is invariant under ik, since ik is an isometry.

For λ small enough, it consists of finitely many disjoint annuli containing a (simple closed)

geodesic of length at most 2λ, which is then in {βi}: see the proof of [54, Proposition IV.4.2],

which also shows that the curves βj with length bigger than 2λ are disjoint from Tk. Hence,

choosing λ small enough, we can assume βj ∩ Tk = ∅ for the indices j 6∈ I corresponding to

non-degenerating curves.

The boundary of Tk has a constant geodesic curvature κ = κ(λ). Let Sk := Σ̃k \ int(Tk).

Taking a limit Σ̃∞ as in the previous discussion, the proof of [54, Proposition IV.5.1]

shows that we can assume ψ−1
k (Sk) to be a constant domain S∞, whose complement is the

union of finitely many cusps {Cj}j∈J . Namely, each Cj is isometric to the quotient of

{=(z) ≥ Λ} ⊂ H by the standard parabolic isometry z 7→ z + 1, for some Λ > 0 depending

on λ.

The maps ψ−1
k ◦ ik ◦ ψk converge locally smoothly to an isometry i∞ : Σ̃∞ → Σ̃∞, since

ik is an isometry for Σ̃k. The components of ∂Tk meeting ∂Σ ⊂ Σ̃k are necessarily invariant
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sets for ik, so that ∂Σ meets ∂Tk orthogonally on ∂Σ∩ ∂Tk. Also, we have a lower bound on

the injectivity radius on Sk; this implies that a shortest path α joining a point in Sk ∩ γi to

another curve γi′ has length bounded below by λ, since the geodesic ik ◦ α has the same

endpoints; similarly, a shortest path between two close points in Sk ∩ γi must be γi itself.

Also, the length of a geodesic γi intersecting Sk cannot be smaller than 2λ. These remarks

imply that on S∞ the one-dimensional submanifold ψ−1
k (∂Σ) converges graphically to a limit

Γ∞ ⊆ {x ∈ S∞ : i∞(x) = x}, which meets ∂S∞ = ∂T∞ orthogonally.

Thus, the domains ψ−1
k (Σ) converge graphically on S∞ to a domain S′∞ bounded by

Γ∞. If C is an ik-invariant component of Tk, either ik interchanges the two circles in

∂C or it preserves them (as sets). In the former case, the core geodesic of C appears in

both collections {γi} and {βj}, and equals ∂Σ ∩ C. In the latter case, there are just two

diametrically opposite fixed points of ik on each circle, so ∂Σ splits C into two isometric

pieces; we can thus assume that ψ−1
k (Σ ∩ C) equals two half-cusps in this case.

Hence, T ′∞ := ψ−1
k (Σ ∩ Tk) is a constant union of cusps and half-cusps. The union

S′∞ ∪ T ′∞ is the desired limit surface, which is a compact Riemann surface Σ∞ minus finitely

many points (in the interior or on the boundary). The area contribution which gets lost

because of degenerating geodesics can be recovered as in the case of degenerating tori or

annuli.

Note that Σ∞ has at least b(Σ)−|I| boundary components. Also, the Euler characteristic

of its double is

2(2− 2g(Σ∞)− b(Σ∞)) = 2χ(Σ∞) = χ(Σ̃j) + 2|I| = 2χ(Σ) + 2|I|

= 2(2− 2g(Σ)− b(Σ)) + 2|I|

and we deduce χ(Σ∞) ≥ χ(Σ), g(Σ∞) ≤ g(Σ).

Note, however, that the number of boundary components could increase in principle:

for instance, if Σ has genus one and one boundary component, (Σ, gk) could degenerate

conformally into an annulus.

Concentration points

We finally deal with concentration points for the area, or equivalently for the Dirichlet energy.

The problem is local; since there can be only finitely many concentration points, we can deal

with just a single one. Let U ′ denote the ball or the half-ball. Up to precomposing the maps

Φk with suitable diffeomorphisms U ′ → U ⊂ Σ, we can assume that the induced conformal

classes converge smoothly to the standard one, and that we have the tight convergence

ν ′k :=
1

2
|dΦk|2 L2 ⇀mL2 + αδ0

of measures on U ′. Looking at a sufficiently small neighborhood of the concentration point,

we can assume that
∫
U ′m <

cQ
2 , while from Theorem 2.5.2 we have the lower bound α ≥ cQ.
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Let B2
rk

(xk) be a ball of minimal radius such that
∫
B2
rk

(xk)∩U ′
1
2 |dΦk|2 ≥ α−

cQ
2 , so that the

integral is exactly α− cQ
2 and necessarily rk → 0, xk → 0. It suffices to show that

lim sup
k→∞

ν ′k((B
2
R−1(xk) \B2

Rrk
(xk)) ∩ U ′)→ 0 as R→∞. (2.6.2)

Once this is done, we deduce that the area (or Dirichlet energy) measures of Ψk := Φk(xk+rk·)
converge subsequentially to a measure ν (on the plane or a upper half-plane) of total mass α.

There could be further concentration points for this new sequence of maps, but their masses

are at most α− cQ
2 : this is obvious if there are at least two such points; if there is only one

point x of mass bigger than α− cQ
2 , then eventually∫

Brk/2(xk+rkx)∩U ′

1

2
|dΦk|2 =

∫
B2

1/2
(x)∩U ′k

1

2
|dΨk|2 > α−

cQ
2
,

where U ′k := r−1
k (U ′ − xk), contradicting the minimality of rk. Thus, this blow-up process

has to be iterated only a finite amount of times.

The proof of (2.6.2) is similar to the one of (2.6.1). Select radii R1/2rk < a < Rrk and

R−1 < b < R−1/2 such that∫
∂B2

a(xk)∩U ′
|dΦk|2 ≤

2C

a logR
,

∫
∂B2

b (xk)∩U ′
|dΦk|2 ≤

2C

b logR
,

where C is an upper bound for
∫
U ′ |dΦk|2; this can be done since the right-hand sides

integrate to C on the two intervals. Now the length of Φk|∂B2
a∩U ′ and Φk|∂B2

b∩U ′
is bounded

by C√
logR

, for a different constant C. Since the area of Φk between the two radii is bounded

by α +
∫
U ′m− (α− cQ

2 ) + o(1), whose limit is less than cQ, for R big enough we can apply

Proposition 2.6.1 and deduce that

lim sup
k→∞

ν ′k((B
2
b (xk) \B2

a(xk)) ∩ U ′) ≤ δ
( C√

logR
,C
)
.

Since B2
R−1(xk) \B2

Rrk
(xk) ⊆ B2

b (xk) \B2
a(xk), this proves (2.6.2).

The limit maps produced by concentration points have domains which are the plane or a

half-plane, hence conformally the sphere or the disk (minus one point).

Proof of Theorem 2.1.1. Thanks to the arguments from this section and the previous

one, we obtain disjoint domains Uk,1, . . . , Uk,N ⊆ Σ such that the varifold induced by

Φk|Uk,i converges to a parametrized free boundary stationary varifold, as k →∞, and∫
Σ\

⋃
i Uk,i

volΦk → 0.

Since we can merge the domains of these parametrized varifolds into a (possibly

disconnected) compact Riemann surface, the statement follows.

2.7 Regularity

From the previous section we know that the limit varifold v∞ is a parametrized free

boundary stationary varifold (Σ′,Φ, N ′), for some weakly conformal map Φ : Σ′ →M with
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Φ(∂Σ′) ⊆ N and N ′ ∈ L∞(Σ′, {1, 2, . . . }). This parametrized varifold gives rise, in local

charts for Σ′, to a local parametrized stationary varifold, as defined in Definition 3.2.9 (see

also Remark 3.2.3). The main result of the next chapter, namely Theorem 3.5.7, tells us that

N ′ is locally constant and Φ is a branched minimal immersion, on (the interior of) the

components of Σ′ where Φ is not (a.e.) constant.

Hence, in order to study the regularity of Φ, we can discard these trivial components and

replace N ′ with 1, without affecting the stationarity property enjoyed by the parametrized

varifold (recall Definition 2.5.9).

For simplicity, since we will not need to refer back to the original setting, we will write Σ

in place of Σ′ in the rest of this section. In order to prove Theorem 2.1.4, we wish to show

the following result. The fact that Φ|Σ\∂Σ is a branched minimal immersion then follows as

discussed in the last step of the proof of Theorem 3.5.7.

Theorem 2.7.1. The map Φ : Σ →M is C∞-smooth up to the boundary ∂Σ and has

∂νΦ ⊥ TN at ∂Σ.

We first show a simple strenghtening of Theorem 2.5.11. In the sequel, given ω ⊆ Σ open,

we let vω := Φ∗(ω).

Proposition 2.7.2. The map Φ is continuous and the stationarity (respectively, free

boundary stationarity) of vω in Definition 2.5.9 holds for any domain ω ⊂⊂ Σ \ ∂Σ

(respectively, ω ⊆ Σ).

Proof. The continuity of Φ can be obtained by the same arguments used in the proof of

Theorem 2.5.2.

As for the second statement, given ω ⊆ Σ and a vector field X ∈ Xfb supported outside

Φ(∂ω), we can find a nonnegative smooth function ρ ∈ C∞c (ω) such that ρ = 1 near the

compact set Φ−1(spt(X)) ∩ ω. The stationarity of vω against the vector field X then follows

from the same property for the varifolds v{ρ>λ}, for 0 < λ < 1, each of which agrees with vω

near spt(X). The proof in the case ω ⊂⊂ Σ \ ∂Σ is analogous.

Let us fix a metric on Σ, compatible with the conformal structure. As in [92], we first

show that

Φ is smooth near G′, (2.7.1)

with G′ ⊆ Σ \ ∂Σ defined to be the set of points x such that dΦ(x) has rank 2 and, in a

chart centered at x,
∫
B2
r
|dΦ− dΦ(0)|2 dL2 = o(r2).

Before proving this, let us set B′ := Σ \ G′, B := Φ−1(Φ(B′)) and G := Σ \ B.

Remark 2.7.3. Note that B and G ⊆ G′ are both Φ-saturated: this means that whenever

Φ(x) = Φ(y) and x ∈ B, the same holds for y, and similarly for G.
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Arguing as in the proof of Theorem 2.5.2, we have

|vΣ|(Φ(B′)) ≤ C
∫
B′
|dΦ|2 volΣ = 0.

Hence, as |vΣ| = Φ∗(
1
2 |dΦ|2 volΣ), we get dΦ = 0 a.e. on B.

Proof of (2.7.1). Given x ∈ G′, we can choose a conformal chart centered at x, mapping a

neighborhood U of x to B2
1 . ViewingM⊂ RQ, we can then select an arbitrarily small radius

r > 0 such that Φ(ry) = Φ(0) + dΦ(0)[ry] + o(r), for |y| = 1 (see, e.g., [84, Lemma A.4]).

Moreover,
∫
B2
r

1
2 |dΦ|

2 dL2 = πs2 + o(r2), with s := |∂1Φ|(0)r = |∂2Φ|(0)r. Hence,

assuming that the above error o(r) is less that δr, for a fixed δ small enough, we can apply

Allard’s regularity result [3, p. 466] (see also [98, Theorem 23.1]) on the ball BQ
(1−δ)s(Φ(0)),

where the varifold vB2
r

has generalized mean curvature bounded in L∞, small excess (for r

small), and total mass π(1− δ)2s2 +O(δ)s2.

We deduce that on some ball BQ
θ (Φ(0)) the varifold vB2

r
agrees with the graph S of a

smooth function f : R2 → RQ−2, with multiplicity one, up to rotating the coordinates.2

Selecting a new radius r′ much smaller than θ, such that Φ(r′y) = Φ(0)+dΦ(0)[r′y]+o(r′),

from the continuity of Φ we deduce that |vB2
r′
| is supported in S. Hence, viewing G ∩ U

as a subset of B2
1 and setting G̃ := G ∩B2

r′ , from |vB2
r′
| = (Φ|B2

r′
)∗(

1
2 |dΦ|2 L2) we deduce

Φ(y) ∈ S for all y ∈ G̃.

Thus, the map dist(Φ, S) is W 1,2 on B2
r′ and vanishes on G̃, and hence its differential

vanishes a.e. here. But dΦ = 0 a.e. on B; it follows that this function is constant, giving

Φ(B
2
r′) ⊆ S. Thus, Φ|

B
2
r′

factors as (id×f) ◦Ψ for a suitable map Ψ ∈ C0 ∩W 1,2(B
2
r′ ,R2).

By the chain rule, any point y ∈ G̃ is necessarily Lebesgue for dΨ, with dΨ(y) invertible.

For any y ∈ G̃ there exist arbitrarily small radii s such that vB2
s (y) is supported in S and

has density at least one at Φ(y). As vB2
r′

has multiplicity one on BQ
θ , this implies that Φ is

injective on G̃.

But then, recalling Remark 2.7.3, it follows that Φ(y) is disjoint from Φ(B
2
r′ \ {y}) for all

y ∈ G̃, and the same follows for Ψ. Given y ∈ G̃ close to 0 and choosing a homotopy in

B
2
r′ \ {y} between the circles ∂B2

r′(0) and ∂B2
s (y), with their canonical orientation, we

deduce that the maps Ψ|∂B2
r′
−Ψ(y) and Ψ|∂B2

s (y) −Ψ(y) determine the same element in

π1(R2 \ {0}).
But the first map is homotopic to Ψ|∂B2

r′
−Ψ(0), provided Ψ(y) is close enough to Ψ(0),

while the second is homotopic to dΦ(y)|S1 if s is selected in the same way as r. We deduce

that dΨ is either always orientation preserving or always orientation reversing on G̃, near 0.

Thus Φ, in local coordinates for S, solves the Cauchy–Riemann equations (up to conjugation)

near 0, establishing (2.7.1).

2The smoothness of f can be assumed by standard Schauder theory, since f satisfies an elliptic equation
on a small ball.
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Remark 2.7.4. We implicitly ask that the chosen representative of dΦ agrees with the

classical differential on the regular set of Φ. Hence, by what we just proved, G′ is open. It

follows that B′ and B are closed, so that G is open again.

Remark 2.7.5. Given x ∈ G and a neighborhood U ⊂⊂ int(Σ) such that Φ|U is a

diffeomorphism with the image, we can express any section w ∈ C∞c (U) of Φ∗TM as

w = X(Φ), where X is a (smooth) vector field on M vanishing near Φ(∂U). Hence, using

Proposition 2.7.2, we get ∫
U
〈∇w, dΦ〉 volΣ = 0,

so that Φ solves the harmonic map equation ∇∗dΦ = 0 on G.

In order to show Theorem 2.7.1, let y ∈ Σ and pick a conformal chart U → U ′ centered

at y, with image equal to B2
1 if y 6∈ ∂Σ and to B2

1 ∩ {=(z) ≥ 0} otherwise. By continuity of

Φ we can assume that Φ(U ′) is contained in a coordinate chart for M. We call {x1, . . . , xm}
the coordinates and we let Φi := xi ◦ Φ. We can also require that N corresponds to

{xn+1 = · · · = xm = 0} if y ∈ ∂Σ, with gij = 0 for i ≤ k and j > k on this set.

Then, writing ek := ∂
∂xk

, it suffices to show that∫
U ′
〈∇(fek), dΦ〉 dL2 = 0 (2.7.2)

for all k = 1, . . . ,m and all nonnegative f ∈ C∞c (U ′), with the additional constraint

f ∈ C∞c (U ′ \ ∂U ′) if k > n and y ∈ ∂Σ, where we write ∂U ′ := U ′ ∩ {=(z) = 0}.
Indeed, once this is done, if y 6∈ ∂Σ then Φ = (Φ1, . . . ,Φm) is a weak solution of the

system

− ∂i(gjk(Φ)∂iΦ
j) + Γjpk(Φ)gjq(Φ)∂iΦ

p∂iΦ
q,

where Γjpk is defined by the relation ∇epek = Γjpkej . The smoothness of Φ then follows from

Proposition A.7 and Remark A.9.

If instead y ∈ ∂Σ, we get a weak solution to the system
− ∂i(gjk(Φ)∂iΦ

j) + Γjpk(Φ)gjq(Φ)∂iΦ
p∂iΦ

q = 0,

∂νΦk = 0 on ∂U ′, for k ≤ n,

Φk = 0 on ∂U ′, for k > n,

in the sense specified in Remark A.8, and regularity follows again from Proposition A.7 and

Remark A.9.

By the coarea formula, (2.7.2) is equivalent to∫ ∞
0

(
−
∫
∂{f>λ}

〈ek(Φ), ∂νΦ〉+

∫
{f>λ}

〈∇(ek ◦ Φ), dΦ〉
)
dλ = 0.

In order to conclude, we will show that the quantity between brackets vanishes for a.e. λ.
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Proposition 2.7.6. For almost every value of λ > 0, for ω := {f > λ} ⊂⊂ U ′ it holds

−
∫
∂ω
〈ek(Φ), ∂νΦ〉+

∫
ω
〈∇(ek ◦ Φ), dΦ〉 = 0.

Proof. Fix λ such that ω has smooth boundary, transverse to ∂U ′ if y ∈ ∂Σ, and such that

the trace Φ|∂ω is W 1,2, with differential given by the restriction of dΦ and vanishing a.e. on

∂ω ∩ B. For all ε > 0, we call Bε the closed ε-neighborhood of B in U ′.

Take a smooth function ρ vanishing near Φ(∂ω ∩ Bε). Then Φ is a smooth immersion in

a neighborhood of S ∩ ∂ω, with S := spt(ρ ◦ Φ), since S ∩ ∂ω ⊆ G.

We can cover S ∩ ∂ω with finitely many disjoint closed arcs {γj} ⊆ G, with endpoints in

∂U ′ ∪ Bε = Bε, so that Φ is an immersion near each of them. Fix now a smooth unit vector

field ν̃ on ∂ω which points towards ω, with ν̃ ∈ T∂U ′ on the finite set ∂ω ∩ ∂U ′. We can

find functions fj : γj → [0, 1) such that the curves

γ̃j := {x+ fj(x)ν̃(x) | x ∈ γj}

are disjoint, included in G, have endpoints in U ′ \ S, and have images Γj := Φ(γ̃j) transverse

to each other (meaning also self-transverse). Note that all fj ’s can be chosen arbitrarily close

to 0 in the C∞ topology.

We now consider the domain

Ω := ω \
⋃
j

{x+ sfj(x)ν̃(x) | 0 ≤ s ≤ 1, x ∈ γj}.

Note also that we can assume the sets in the last union to be disjoint and

ρ = 0 near Φ({x+ sfj(x)ν̃(x) | 0 ≤ s ≤ 1}) (2.7.3)

whenever x ∈ Bε is an endpoint of one of the curves γj . This implies

∂Ω ∩ S ⊆
⋃
j

int(γ̃j), (2.7.4)

where int(γ̃j) denotes γ̃j minus the endpoints.

Fix a smooth function χ : [0,∞)→ [0, 1] with χ = 1 on [1,∞) and χ = 0 on [0, 1
2 ]. Let

Γ :=
⋃
j Γj and χη := χ(dist(·,Γ)

η ).

Let F denote the closure of
⋃
j Φ−1(Γj) \

⋃
j γ̃j , together with all the endpoints of

the curves γ̃j . By transversality and conformality of Φ, for each x ∈
⋃
j γ̃j \ F we have

dist(Φ(x− sν(x)),Γ) = s|∂νΦ(x)|+ o(s), where ν is the outward unit normal for Ω, and the

gradient of dist(Φ(·),Γ) at x− sν(x) is −|∂νΦ(x)|ν(x) + o(1), where o(1) is infinitesimal as

s→ 0 (s > 0). These estimates hold uniformly on compact subsets of
⋃
j γ̃j \ F .

Moreover, by transversality again, for any fixed small r > 0 the support of χη ◦ Φ

intersects the r-neighborhood Ur of
⋃
j γ̃j in the union of an O(η)-neighborhood of

⋃
j γ̃j ,
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plus a set of measure O(rη). In view of these remarks,

lim
η→0

∫
Ω∩Ur

ρ(Φ)〈ek(Φ)⊗ d(χη ◦ Φ), dΦ〉

= − lim
η→0

∑
j

∫
γ̃j

∫ 1

0
χ′
(s|∂νΦ(x)|

η

) |∂νΦ(x)|
η

〈(ρek)(Φ), ∂νΦ〉(x) ds dx+O(r)

= −
∫
γ̃j

〈(ρek)(Φ), ∂νΦ〉+O(r).

Also, note that Φ(B) ∩ Γ = ∅ by Remark 2.7.3; hence, for η small, χη = 1 near Φ(B) and we

deduce that spt((1− χη) ◦Φ) ⊆ G. Recalling also (2.7.4), we can integrate by parts as

follows:∫
Ω\Ur

ρ(Φ)〈ek(Φ)⊗ d(χη ◦ Φ), dΦ〉

=

∫
Ω\Ur

(1− χη)(Φ)〈ek(Φ)⊗ d(ρ ◦ Φ), dΦ〉+

∫
Ω\Ur

(ρ(1− χη))(Φ)〈∇(ek(Φ)), dΦ〉

+

∫
Ω∩∂Ur

(ρ(1− χη))(Φ)〈ek(Φ), ∂νΦ〉,

where we used the harmonicity of Φ on G. The convergence (1− χη)(Φ)→ 0 a.e. on Ω \ Ur
and on ∂Ur (for r small enough) implies that the right-hand side is infinitesimal as η → 0.

But, by the stationarity property of vΩ, setting Xη := ρχηek we have∫
Ω
〈∇(Xη ◦ Φ), dΦ〉 = 0,

since Xη vanishes near Φ(∂Ω) by the choice of χη and (2.7.3). Hence, from the previous

computations we deduce

−
∑
j

∫
γ̃j

ρ(Φ)〈ek(Φ), ∂νΦ〉+

∫
Ω
〈ek(Φ)⊗ d(ρ ◦ Φ), dΦ〉+

∫
Ω
ρ(Φ)〈∇ek(Φ)[dΦ], dΦ〉 = 0.

Letting fj → 0 we deduce our claim, provided we can replace ρ with 1. This is achieved as

follows: the compact set T := Φ(∂ω ∩ Bε) has

H1(T ) ≤
∫
∂ω∩Bε

|dΦ|.

Hence, can cover T with finitely many balls Bri(pi) intersecting T , such that

2
∑
i

ri ≤ H1(T ) + ε (2.7.5)

and ri < ε. Take now cut-off functions 0 ≤ ρi ≤ 1 which equal 0 on Bri(pi) and 1 on

M\B2ri(pi), with |dρi| ≤ Cr−1
i . Then the function ρ :=

∏
i ρi satisfies∫

ω
|dρ|(Φ)|dΦ|2 ≤ C

∑
i

r−1
i

∫
ω∩Φ−1(B2ri

(pi))
|dΦ|2 ≤ Cri,
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because (Φ)∗(
1
2 |dΦ|2) ≤ vΣ and vΣ(B2ri(pi)) ≤ Cr2

i (see (2.4.5)). Note that the right-hand

side of (2.7.5) becomes infinitesimal as ε→ 0, as
∫
∂ω∩B |dΦ| = 0.

Finally, writing Tε and ρε in place of T and ρ to emphasize the dependence on ε, we

have ρε(Φ)→ 1 pointwise on G: indeed, since Tε → Φ(∂ω ∩ B) in the Hausdorff topology, if

ρε(Φ(x)) does not converge to 1 then Φ(x) ∈ Φ(∂ω ∩ B) and thus, by Remark 2.7.3, x ∈ B.

Hence,

0 = −
∫
∂ω
ρε(Φ)〈ek(Φ), ∂νΦ〉+

∫
ω
〈ek(Φ) d(ρε ◦ Φ), dΦ〉+

∫
ω
ρε(Φ)〈∇ek(Φ)[dΦ], dΦ〉

→ −
∫
∂ω
〈ek(Φ), ∂νΦ〉+

∫
ω
〈∇ek(Φ)[dΦ], dΦ〉,

as desired.

Appendix

Lemma A.1. Let Ω ⊆ C be an open connected set. Let Ψ ∈W 1,1
loc (Ω,RQ) and assume that

any point in a nonempty measurable set E ⊆ Ω is a Lebesgue point for Ψ, as well as ∇Ψ = 0

a.e. on Ω \ E. Then the essential image of Ψ equals Ψ(E).

We recall that the essential image of Ψ is the (closed) set of values p ∈ RQ such that

L2(Ψ−1(BQ
s (p))) > 0 for all s > 0, or equivalently it is the support of the positive measure

Ψ∗(1ΩL2).

Proof. Fix x ∈ E, s > 0 and let p := Ψ(x). By Chebyshev’s inequality

L2(B2
r (x) \Ψ−1(BQ

s (p))) ≤ s−1

∫
B2
r (x)
|Ψ−Ψ(x)| dL2 = o(r2),

so p belongs to the essential image. We deduce that Ψ(E) is included in the essential

image. Conversely, assume that BQ
s (p) is disjoint from Ψ(E). We can find a function

ρ ∈ C∞(RQ,RQ) with ρ = id on RQ \BQ
s (p) and ρ = id +e1 on BQ

s/2(p). By the chain rule,

∇(ρ ◦Ψ) = (∇ρ ◦Ψ)∇Ψ = ∇Ψ

a.e. on Ω, since ∇Ψ = 0 a.e. on {∇ρ ◦Ψ 6= id}. Thus, ρ ◦Ψ−Ψ is constant a.e. But this

function vanishes on E, hence 0 belongs to its essential image (by the same argument used

above). Thus ρ ◦Ψ = Ψ a.e. and we infer that Ψ−1(BQ
s/2(p)) ⊆ {ρ ◦Ψ 6= Ψ} is negligible.

This shows that p does not belong to the essential image.

Lemma A.2. Let Ω ⊆ C be open. If Ψ ∈W 1,1
loc (Ω,RQ) and G denotes the set of Lebesgue

points for both Ψ and ∇Ψ, then there exist Lebesgue measurable sets E1, E2, . . . such that

G =
⋃
iEi and Ψ

∣∣
Ei

is Lipschitz.
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Proof. We set Fj :=
{
x ∈ G ∩ Ω1/j : −

∫
B2
r (x) |Ψ(y)−Ψ(x)| dy ≤ jr for 0 < r ≤ j−1

}
(where

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}), which is a Lebesgue measurable set. By [35, Theorem 6.1]

(and its proof), for all x ∈ G

−
∫
B2
r (x)
|Ψ(y)−Ψ(x)| dy ≤ r|∇Ψ(x)|+ −

∫
B2
r (x)
|Ψ(y)−Ψ(x)− 〈∇Ψ(x), y − x〉| dy

= r|∇Ψ(x)|+ o(r).

We infer that G =
⋃
j≥1 Fj . Assume now that x, x′ ∈ Fj are distinct and |x− x′| ≤ 1

2j . Let

r := |x− x′| and notice that B2
r (x) ⊆ B2

2r(x
′). We can estimate∣∣Ψ(x)−Ψ(x′)

∣∣ ≤ −∫
B2
r (x)
|Ψ(y)−Ψ(x)| dy + −

∫
B2
r (x)

∣∣Ψ(y)−Ψ(x′)
∣∣ dy

≤ −
∫
B2
r (x)
|Ψ(y)−Ψ(x)| dy + 4 −

∫
B2

2r(x
′)
|Ψ(y)−Ψ(x)| dy

≤ jr + 8jr = 9j
∣∣x− x′∣∣

(since 2r ≤ j−1). The result follows once we split each Fj into countably many subsets of

diameter at most 1
2j .

Lemma A.3. Assume Ψ ∈W 1,2(B2
(1+τ)r(0),RQ), with r, τ > 0. Then there is a measurable

subset E ⊆ (r, (1 + τ)r) of positive measure such that, for all r′ ∈ E, Ψ
∣∣
∂B2

r′ (0)
has an

absolutely continuous representative whose image satisfies

diam Ψ(∂B2
r′(0)) ≤

(
2π(1 + τ)

τ

∫
B2

(1+τ)r
(0)
|∇Ψ|2 dL2

)1/2

.

Proof. For a.e. r′ ∈ (r, (1 + τ)r) the function θ 7→ Ψ(r′ cos θ, r′ sin θ) has an absolutely

continuous representative, whose weak derivative is r′〈∇Ψ(r′ cos θ, r′ sin θ), (− sin θ, cos θ)〉
(see [35, Theorem 4.21]). Moreover,

−
∫ r+τr

r

∫
∂B2

t (0)
|∇Ψ|2 dH1 dt ≤ 1

τr

∫
B2

(1+τ)r
(0)
|∇Ψ|2 dL2.

Hence, for a set of radii r′ of positive measure, the inner integral is less or equal than the

right-hand side, giving(∫
∂B2

r′ (0)
|∇Ψ| dH1

)2

≤ 2πr′
∫
∂B2

r′ (0)
|∇Ψ|2 dH1 ≤ 2π(1 + τ)

τ

∫
B2

(1+τ)r
(0)
|∇Ψ|2 dL2.

Lemma A.4. Assume that 0 is a Lebesgue point for Ψ ∈W 1,2(B2
R(0),RQ) and ∇Ψ, as

well as Ψ(0) = ∇Ψ(0) = 0. Then, for any τ, ε > 0 and any 0 < r ≤ r, we can select

r′ ∈ (r, (1 + τ)r) such that Ψ
∣∣
∂B2

r′ (0)
has an absolutely continuous representative with

max
y∈S1

∣∣Ψ(r′y)
∣∣ ≤ εr,

for a suitable r = r(Ψ, τ, ε).
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Proof. We can assume ε < 1. By [35, Theorem 6.1] and its proof we have∫
B2
r (0)
|Ψ|2 dL2 = o(r4) (A.1)

(since 1∗ = 2) and, as a consequence,

−
∫ r+τr

r

∫
∂B2

t (0)
((2πt)−1|Ψ|2 + r|∇Ψ|) dH1 dt

≤ 1

2πτr2

∫
B2

(1+τ)r
(0)
|Ψ|2 dL2 +

1

τ

∫
B2

(1+τ)r
(0)
|∇Ψ| dL2 = o(r2).

Hence, if r is small enough, there exists some r′ ∈ (r, r + τr) such that

(2πr′)−1‖Ψ‖2L2(∂B2
r′ (0)) + r‖∇Ψ‖L1(∂B2

r′ (0)) ≤
ε2r2

4

and Ψ
∣∣
∂B2

r′ (0)
is absolutely continuous (a.e.), with derivative given by the chain rule. The

elementary inequality

‖Ψ‖L∞(∂B2
r′ (0)) ≤

∣∣∣∣ −∫
∂B2

r′ (0)
Ψ dH1

∣∣∣∣+ ∫
∂B2

r′ (0)
|∇Ψ| dH1 ≤

‖Ψ‖L2(∂B2
r′ (0))

√
2πr′

+ ‖∇Ψ‖L1(∂B2
r′ (0))

gives the desired result.

Lemma A.5. If Ψk ⇀ Ψ∞ in W 1,2(B2
R(0),RQ), then for a.e. r′ ∈ (0, R) there exists a sub-

sequence (ki) such that Ψ∞
∣∣
∂B2

r′ (0)
and Ψki

∣∣
∂B2

r′ (0)
have absolutely continuous representatives

and

Ψki

∣∣
∂B2

r′ (0)
→ Ψ∞

∣∣
∂B2

r′ (0)
in L∞.

Proof. We observe that Ψ∞
∣∣
∂B2

r′ (0)
coincides with the trace of Ψ∞ on ∂B2

r′(0) for a.e.

r′ ∈ (0, R): actually, this happens whenever H1-a.e. point on ∂B2
r′(0) is a Lebesgue point of

Ψ∞ (see [35, Theorem 5.7]); the same holds for Ψk. Now, by Fatou’s lemma,∫ R

0
lim inf
k→∞

∫
∂B2

r′ (0)
(|Ψk|2 + |∇Ψk|2) dH1 dr′

≤ lim inf
k→∞

∫ R

0

∫
∂B2

r′ (0)
(|Ψk|2 + |∇Ψk|2) dH1 dr′

= lim inf
k→∞

‖Ψk‖2W 1,2 <∞.

Hence, for a.e. r′ ∈ (0, R),

lim inf
k→∞

∫
∂B2

r′ (0)
(|Ψk|2 + |∇Ψk|2) dH1 <∞,

which means that there exists a subsequence (ki) such that

sup
i

∫
∂B2

r′ (0)
(|Ψki |

2 + |∇Ψki |
2) dH1 <∞.
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We can also assume that Ψ∞
∣∣
∂B2

r′ (0)
equals the trace, that it has a W 1,2 representative with

weak derivative given by the chain rule and that the analogous statements hold also for Ψki .

In particular, the sequence
(

Ψki

∣∣
∂B2

r′ (0)

)
is bounded in W 1,2(∂B2

r′(0),RQ): by the

compact embedding into C0(∂B2
r′(0),RQ) we deduce that (up to subsequences) Ψki

∣∣
∂B2

r′ (0)
→

f in L∞, for some f ∈ C0(∂B2
r′(0),RQ). By the weak continuity of the trace, we have

Ψki

∣∣
∂B2

r′ (0)
⇀ Ψ∞

∣∣
∂B2

r′ (0)
in L2(∂B2

r′(0),RQ), hence f = Ψ∞
∣∣
∂B2

r′ (0)
H1-a.e.

Lemma A.6. Let C ⊆ RQ×2 denote the set of matrices M with
∑Q

i=1MijMik = |M |2
2 δjk,

where |M | is the Hilbert–Schmidt norm of M (C can be identified with the set of linear

weakly conformal maps R2 → RQ). For any τ > 0 there exists C = C(τ,Q) such that

|M11M21 +M12M22|+ |M2
11 +M2

12−J(M)|+ |M2
21 +M2

22−J(M)| ≤ τ |M |2 +C

Q∑
i=3

2∑
j=1

M2
ij

for all M ∈ C, where J(M) := |M11M22 −M12M21|.

Proof. Assume by contradiction that, for a sequence (Mk) ⊆ C, we have

|Mk
11M

k
21 +Mk

12M
k
22|+ |(Mk

11)2 + (Mk
12)2 − J(Mk)|+ |(Mk

21)2 + (Mk
22)2 − J(Mk)|

> τ |Mk|2 + k

Q∑
i=3

2∑
j=1

(Mk
ij)

2.

By homogeneity we can assume |Mk| = 1 for all k. As a consequence,
∑Q

i=3

∑2
j=1(Mk

ij)
2 → 0.

So the sequence has a limit point M∞ ∈ RQ×2 satisfying

M∞ ∈ C, M∞ij = 0 for i = 3, . . . , Q and j = 1, 2, (A.2)

|M∞11M
∞
21 +M∞12M

∞
22 |+ |(M∞11 )2 + (M∞12 )2 − J(M∞)|+ |(M∞21 )2 + (M∞22 )2 − J(M∞)| ≥ τ.

But conditions (A.2) force

(
M∞11 M∞12

M∞21 M∞22

)
=

(
a ∓b
b ±a

)
for some a, b ∈ R, so the left-hand

side of the last inequality vanishes, yielding the desired contradiction.

Proposition A.7. A continuous, W 1,2 map u : B2
1 → Rm solving a linear system of the

form

− ∂i(gjk∂iuj) + bkpq∂iu
p∂iu

q = 0,

with g ≥ λ > 0 symmetric and continuous and b bounded, is W 1,r
loc for all r <∞.

The same holds for u defined on the half-ball U ′ := B2
1 ∩ {=(z) ≥ 0}, if in addition we

have

∂νu
k = 0 for k ≤ n, uk = 0 for k > n,

as well as gij = 0 for i ≤ n, j > n, on the boundary ∂U ′, for some 0 ≤ n ≤ m.
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Remark A.8. The condition ∂νu
k = 0 could be written more faithfully as gjk∂νΦ

j = 0

and is of course meant in a weak sense, coupled with the equation: namely, we require∫
U ′(gjk∂if∂iu

j + bkpqf∂iu
p∂iu

q) = 0 for all f ∈ C∞c (U ′) and k ≤ n, allowing f to be nonzero

on ∂U ′.

Proof. Assume u is a solution on the unit ball. Then, for any ball B2
2r(x) ⊆ B2

1 , we can

integrate the equation against η2(u− (u)B2
2r(x)), where η ∈ C∞c (B2

2r(x)) is a cut-off function

satisfying η = 1 on B2
r (x) and |dη| ≤ 2

r . Recall that the notation (u)S indicates the average

of u on a set S. This gives

λ

∫
η2|du|2 ≤ C

∫
η|du| |dη| |u− (u)B2

2r(x)|+ C

∫
η2|du|2 osc(u,B2

2r(x))

and, applying Young’s inequality, it follows that∫
B2
r (x)
|du|2 ≤ Cr−2

∫
B2

2r(x)
|u− (u)B2

2r(x)|2 ≤ Cr−2
(∫

B2
2r(x)
|du|

)2

whenever osc(u,B2
2r(x)) is small enough. The classical Gehring’s lemma (see, e.g., [43,

Theorem V.1.2]) then implies that du ∈ Lr(B) for some r > 2 and any fixed ball B ⊂⊂ B2
1

(with r depending on B). Then the nonlinear term bkpq∂iu
p∂iu

q is Lr/2(B) and standard

elliptic regularity theory gives du ∈ Lsloc(B), with 1
s = 2

r −
1
2 , so that s > r; iterating, we get

du ∈ Ltloc for any t <∞.

If we are in the half-ball case, then we can reduce to the previous case by reflection. We

extend g and u to g̃ and ũ on the ball B2
1 , by means of the formula

g(s,−t) := Ug(s, t)U,


ũ1

...

ũm

 (s,−t) := U


u1

...

um

 (s, t)

for (s,−t) in the lower half-ball, with U :=

(
In

−Im−n

)
. Note that, by our hypotheses on

g, g̃ is still continuous. Also, it is straightforward to check that ũ solves

− ∂i(g̃jk∂iũj) + b̃kpq∂iũ
p∂iũ

q = 0,

with b̃kpq extending bkpq according to the following rule: if k ≤ n then b̃kpq(s,−t) := bkpq(s, t)

if p and q belong to the same set in the partition {{1, . . . , n}, {n + 1, . . . ,m}}, and

b̃kpq(s,−t) := −bkpq(s, t) otherwise; if k > n then the opposite holds. Then from the case of

the full ball we deduce dũ ∈ Ltloc for any t <∞.

Remark A.9. If the coefficients are smooth functions of u, then u is smooth. To check

this, note that in the full ball case u is C0,α
loc for any α < 1. The same is then true for

the coefficients gjk(u). Since the nonlinearity bkpq∂iu
p∂iu

q belongs to Lrloc for all r <∞,

classical Schauder theory then gives du ∈ C0,α
loc for all α < 1 and bootstrapping we reach

u ∈ C∞.
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In the half-ball case, we can still argue in the same way that dũ ∈ C0,α
loc for all α < 1. So

g̃ is locally Lipschitz and we deduce ũ ∈W 2,r
loc for all r <∞. Differentiating the original

equation in the first variable preserves the boundary conditions and leads to an equation of

the form

∂i(gjk∂i(∂1u
j)) + fk = 0

with fk ∈ Lrloc for all r < ∞, and the same reflection trick (applied to w := ∂1u) gives

∂1u ∈ W 2,r
loc for all r < ∞. Iterating we get the same for all derivatives ∂k1u. Now

the equation allows to deduce inductively that u ∈ W k,r
loc for all k, since gjk(u)∆uj =

−∂i(gjk(u))∂iu
j + bkpq(u)∂iu

p∂iu
q; this expresses ∂22u in terms of ∂11u and lower order

derivatives and hence, for any multi-index α = (α1, α2) with α2 ≥ 2, we deduce that

∂αu = ∂α1
1 ∂α2

2 u ∈ Lrloc for all r <∞ from the same property enjoyed by ∂α1+2
1 ∂α2−2

2 u and

lower order derivatives of u.

The following statements deal with general varifolds. It is clear that we can assume the

smallness constant cV appearing in all of them to be always the same.

Lemma A.10. There exists cV (M,N ) > 0 with the following property. Given p ∈ N and

0 < s < cV , for any 2-varifold v on M which is free boundary stationary outside Bs(p) and

has density θ ≥ θ on spt(|v|) \Bs(p), either spt(|v|) ⊆ B2s(p) or |v|(M\Bs(p)) ≥ cV θ.

Proof. Pick γ > 0 small, to be fixed along the proof; we will choose cV ≤ γ, so that the

varifold is free boundary stationary outside Bγ(p) Possibly multiplying v by θ
−1

, we can

assume θ = 1. Note that if q ∈ spt(|v|) \B2γ(p) then by (2.4.6) we have

|v|(Bγ(q)) ≥ c(M,N )γ2θ(|v|, q) ≥ c(M,N )γ2. (A.3)

Otherwise, |v| is supported in B2γ(p). Assume we are in this second case and pick a

set of coordinates (x1, . . . , xm) : B5γ(p) → Rm centered at p, with N corresponding to

{xn+1 = · · · = xm = 0}. We can impose that ‖gij − δij‖C1 ≤ γ (in coordinates), for γ small,

independently of p ∈ N .

On this ball, we define the vector field X to be X(x) := χ(|x|)xi ∂
∂xi

, where χ : [0,∞)→
[0, 1] is smooth and such that χ′ ≥ 0 on [0, 3γ], χ = 1 on [5

3s, 3γ], χ = 0 on [0, 4
3s] ∪ [4γ,∞).

Assuming {|x| ≤ 4γ} ⊂⊂ B5γ(p), we can smoothly extend X to all of M, with X = 0

outside the ball. For γ small enough (independently of p and s < γ), the C1 closeness of gij

to δij guarantees

divΠX ≥ 0

for all (p,Π) ∈ Gr2(M) in the support of v, since we can assume spt(|v|) ⊆ {|x| < 3γ}:
indeed, here the contribution of χ′ is nonnegative, while the one of the position vector xi

∂
∂xi

is close to 2 (multiplied by χ(|x|)). Also, the inequality is strict if |x(p)| ≥ 5
3s. Moreover, X
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is tangent to N . We can also assume that Bs(p) ⊂⊂ {|x| ≤ 4
3s}; hence, we can test the

stationarity of v against X and reach the contradiction

0 =

∫
(p,Π)∈Gr2(M)

divΠX dv(p,Π) > 0

unless spt(|v|) is contained in {|x| ≤ 5
3s}. Since the latter can be assumed to be included in

B2s(p), the statement follows from (A.3).

Remark A.11. The same statement holds if v is stationary, without the assumption p 6∈ N .

The proof is analogous (but simpler, in that we do not need coordinates adapted to N ).

Lemma A.12. There exist cV > 0 and δ : (0,∞)2 → (0,∞), with lims→0 δ(s, t) = 0 for

every t, satisfying the following property. Given two points p1, p2 ∈M and a radius s > 0,

let B := Bs(p1) ∪Bs(p2); if a 2-varifold v on M is free boundary stationary outside B, has

density θ ≥ θ on spt(|v|) \B and satisfies the bound

|v|(Br(q)) ≤ c′r2 for all q ∈M, r > 0,

then either |v|(M) ≤ θδ(s, c′/θ) or |v|(M) ≥ cV θ. The constant cV and the function δ

depend only on M and N .

Proof. We can assume θ = 1. From (2.4.6) it follows that any nontrivial free boundary

stationary varifold v′ with density at least 1 on spt(|v|) has |v′|(M) ≥ λ(M,N ). Let δ(s, c′)

be the supremum of all possible masses |v|(M) which are smaller than cV , for v as in the

statement, with cV to be specified below. Take a sequence sk → 0 of positive numbers and a

sequence vk satisfying the assumptions with s = sk, as well as δ(sk, c
′)−2−k < |vk|(M) < cV .

Up to subsequences we get a limit varifold v∞ which is free boundary stationary on the

complement of two points p1 and p2. We still have |v∞|(Br(q)) ≤ c′r2 for all centers q and

all radii r. This upper bound implies easily that actually v∞ is free boundary stationary on

the full manifold: see the proof of Theorem 2.5.11 for the details. Also, by (2.4.6) it has a

lower bound c ≤ 1 for its density on spt(|v∞|). Hence, |v∞|(M) ≥ cλ unless v∞ = 0.

Since |v∞|(M) = limk→∞ |vk|(M) ≤ cV , choosing any cV < cλ forces v∞ = 0, so that

δ(sk, c
′)→ 0. This shows that δ(s, c′)→ 0 as s→ 0.





3 Regularity of parametrized

stationary varifolds

3.1 Introduction

In this chapter we study the regularity of parametrized stationary varifolds. We will deal only

with closed domains for simplicity. Actually this is not restrictive, since the main result will

be deduced from a local version, which is enough to obtain the full regularity also in the free

boundary case (as seen in Section 2.7).

Recall that such varifolds are, essentially, integer stationary varifolds admitting a

parametrization in the following sense: they are induced by a weakly conformal map

Φ ∈W 1,2(Σ,M), where Σ is a closed Riemann surface, together with a multiplicity function

N ∈ L∞(Σ,N \ {0}) on the domain. They are required to satisfy a natural stationarity

property which is local in the domain: namely, we assume that, for almost all domains

ω ⊆ Σ, the varifold induced by the map Φ
∣∣
ω

with the multiplicity function N
∣∣
ω

is stationary

in the complement of the compact set Φ(∂ω) (see Definition 3.2.2 and Remark 3.2.3 for the

precise definitions). In this chapter it is convenient to embed M⊂ RQ isometrically, and to

look also at the situation where M equals RQ itself.

The main result is the following, which appears in Corollary 3.5.8 and Remark 3.5.9.

Theorem. The triple (Σ,Φ, N) is a parametrized stationary varifold, in a compact manifold

M⊆ RQ or in RQ itself, if and only if Φ is a smooth conformal harmonic map and N is

a.e. constant. In this case, Φ is a minimal branched immersion.

In fact we also get a local version of the result, which holds for local parametrized

stationary varifolds : see Definition 3.2.9 and Theorem 3.5.7. Let us stress the fact that the

result holds in arbitrary codimension and does not assume any stability hypothesis on the

image varifold.

The possibility to localize the stationarity with respect to the domain is crucially used in

many places in order to get our main regularity result. The weak conformality of Φ also

happens to be important, since it ensures that the map Φ is holomorphic when the codomain

is the plane, a fact which we establish in Section 3.3: the peculiar properties of nonconstant

holomorphic functions, namely that they are branched covering maps and that they cannot

vanish to infinite order, turn out to be useful several times.

75
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Our main result relies on the previous treatment of the simpler situation where N is

constant (see [92], by the second author; see also Theorem 3.2.13 below). We point out that

the starting point of the strategy of [92], i.e. the observation that Lebesgue points z for Φ

and dΦ (with dΦ(z) 6= 0) belong to the regular set of Φ, does not apply when N is a priori

not constant. This difficulty is due to the fact that we cannot invoke Allard’s ε-regularity

result in this more general situation.

We will actually show that N is a.e. constant and Φ satisfies the harmonic map equation

−∆Φ = A(Φ)(∇Φ,∇Φ) in any local conformal chart. These two facts are essentially

equivalent to each other, in view of the preliminary work [92], which is presented also in

Section 2.7; in some situations it will be easier to establish the former, while in other

instances (where Lemma 3.5.1 is invoked) the latter is more convenient. The smoothness of

weak solutions to the harmonic map equation was first proved in full generality by Hélein

(see [51, Section 4.1]) and then obtained again by the second author in [89], as a consequence

of a general result for linear elliptic systems with an antisymmetric potential. In our

situation the smoothness of Φ is a classical fact, since for parametrized stationary varifolds

the map Φ is easily seen to be continuous (see Proposition 3.2.4).

We want to give a simple one-dimensional example illustrating why, in spite of the

difficulties surrounding integer stationary varifolds, one should expect to get much more

information from the notion of parametrized stationary varifold (and eventually the

regularity). The picture depicts a portion of an integer 1-rectifiable stationary varifold in S2

(e.g. the union of three geodesic segments joining the north and south poles, with an angle 2π
3

between any two of them), with multiplicity 2 a.e. This varifold has a nontrivial singular set.

This varifold can be parametrized by a map Φ : S1 → S2, as shown in the picture.

However, the parametrized varifold (S1,Φ, 1) fails to satisfy the local stationarity condition,

as witnessed by the highlighted part on the right. Of course, this example is just a heuristic

motivation for the hope to obtain the full regularity, as no effective structure theorem is

known for two-dimensional stationary varifolds.
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During the investigation of this problem, as a potential intermediate step towards the

regularity, we asked ourselves whether any conformal solution Φ ∈W 1,2(B2
1(0),RQ) to the

so-called conductivity equation −div(N∇Φ) = 0 (for some bounded measurable N with

values in positive integers) is necessarily harmonic. Actually, we can give a positive answer to

this question as a consequence of the main theorem.

Corollary. Assume Φ ∈W 1,2(B2
1(0),RQ) is weakly conformal, N ∈ L∞(B2

1(0),N \ {0})
and

−div(N∇Φ) = 0 in D′(B2
1(0),RQ).

Then ∆Φ = 0 and, if Φ is nonconstant, N is a.e. constant.

We refer to Theorem 3.6.2 in the body of the chapter. However, we are not aware of any

purely analytic proof of this fact and leave it as an open problem to find such a proof. We

are able to succeed in this task in the planar case Q = 2: see Theorem 3.6.1.

We end the introduction with a brief summary of the contents of the chapter.

• In Section 3.2 we establish some basic facts about parametrized stationary varifolds: we

show the continuity of the parametrization map Φ (see Proposition 3.2.4), we define an

upper semicontinuous representative Ñ of the multiplicity function N satisfying Ñ = N

a.e. with respect to the measure |∇Φ|2L2 (see Definition 3.2.7 and Proposition 3.2.8) and

we introduce a local notion of parametrized stationary varifold.

• In Section 3.3 we generalize the topological notion of triod (first introduced by Moore

in [81]) and we show that the plane cannot contain uncountably many such disjoint

generalized triods (see Lemma 3.3.2). We use this topological fact to show the regularity

of parametrized stationary varifolds contained in a polyhedral cone (see Theorem 3.3.7).

This special case of the problem turns out to be important in order to study a blow-up or

a limiting situation obtained in later compactness arguments.
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• In Section 3.4 we provide a general result (see Theorems 3.4.1 and 3.4.6) which allows to

blow-up a varifold at a given point or along a sequence of points, with mild assumptions

on the decay of the Dirichlet energy of Φ. We show that in the limit one still gets a

parametrized stationary varifold and that the parametrization map is the blow-up of Φ, up

to a quasiconformal homeomorphism.

• In Section 3.5, devoted to the regularity in the general case, we initially show a singularity

removability lemma (see Lemma 3.5.1). Then we introduce the set of admissible points

where the blow-up can be performed and we prove that the image of its complement

has zero Hausdorff dimension (see Lemma 3.5.3). By means of delicate compactness

arguments, using the results of Sections 3.3 and 3.4, we show that at any such point the

speed of decay of the Dirichlet energy is controlled in a uniform way (see Lemma 3.5.4 and

Corollary 3.5.6). We infer that admissible points are relatively open in a set where Ñ is

suitably pinched and we deduce the full regularity result by means of a final blow-up

argument (see Theorem 3.5.7).

• In Section 3.6 we apply our regularity result to positively answer the aforementioned

question on the conductivity equation. We also provide an independent, self-contained

proof in the planar case Q = 2.

3.2 First properties of parametrized stationary varifolds

Let Mm be either a closed embedded C∞-smooth submanifold of RQ or RQ itself, where

Q ≥ m ≥ 2 are arbitrary integers. Let Σ be a closed connected Riemann surface.

Recall that a map Φ ∈W 1,2(Σ,RQ) is weakly conformal if, for a.e. x ∈ Σ, dΦ(x) is

either zero or a linear conformal map, with respect to the conformal structure of Σ. For

any such map we call G ⊆ Σ the set of Lebesgue points for both Φ and dΦ and we let

Gf := {x ∈ G : dΦ(0) 6= 0} (hence dΦ(x) is injective and conformal for x ∈ Gf ).

Recall the following notion, which already appeared in the previous chapter.

Definition 3.2.1. We say that a certain property holds for almost every domain ω ⊆ Σ if,

for any nonnegative ρ ∈ C∞(Σ), the property holds for ω = {ρ > t}, for a.e. regular value

t > 0 (so in particular it holds for Σ, as is seen by choosing ρ ≡ 1). Similarly, given an open

set Ω ⊆ C, a property holds for almost every domain ω ⊂⊂ Ω if, for any nonnegative

ρ ∈ C∞c (Ω), the property holds for ω = {ρ > t}, for a.e. regular value t > 0.

In the definition below, we will implicitly restrict to the regular values t > 0 of ρ such

that Φ
∣∣
∂{ρ>t} has a continuous representative (which are a set of full measure, by Sard’s

theorem and [35, Theorem 4.21]) and, with a slight abuse of notation, Φ(∂ω) will denote the

image by this continuous representative.

We can give the following alternative definition of parametrized stationary varifold.
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Definition 3.2.2. A triple (Σ,Φ, N) with Φ ∈ W 1,2(Σ,RQ), N ∈ L∞(Σ,N \ {0}) and

Φ(Σ) ⊆M is called a parametrized stationary varifold (in M) if Φ is weakly conformal and

if, for almost every domain ω ⊆ Σ,∫
ω
N
(
〈d(F (Φ)); dΦ〉h − F (Φ) ·A(Φ)(dΦ, dΦ)h

)
d volh = 0 (3.2.1)

for all F ∈ C∞c (M\Φ(∂ω),RQ). Here h is an arbitrary Riemannian metric compatible

with the conformal structure of Σ (its choice does not matter, by conformal invariance),

A(X,Y ) = −∇RQ
X Y denotes (minus) the second fundamental form ofM in RQ (so that A = 0

if M = RQ) and A(Φ)(dΦ, dΦ)h is defined in local coordinates by
∑

i,j h
ijA(Φ)(∂iΦ, ∂jΦ).

We will usually just say that (Σ,Φ, N) is a parametrized stationary varifold.

Remark 3.2.3. The definition is clearly independent of the particular representatives of Φ,

dΦ, N . Calling G the set of Lebesgue points for both Φ and dΦ and applying Lemma A.2 to

a finite atlas of conformal charts, we see that Φ(G) is H2-rectifiable (and H2-measurable).

Moreover, again by Lemma A.2, the area formula applies and (3.2.1) amounts to say that for

almost every ω ⊆ Σ the 2-rectifiable varifold

vω := (Φ(G ∩ ω), θω), θω(p) :=
∑

x∈G∩ω∩Φ−1(p)

N(x)

is stationary in M\Φ(∂ω), as is easily seen by writing F = πTMF + πT⊥MF . In particular,

the generalized mean curvature of vω in RQ \ Φ(∂ω) is bounded (in L∞) by
√

2 maxM |A|.

Proposition 3.2.4. The map Φ has a continuous representative. This representative (still

called Φ) satisfies the stationarity property for every open subset ω ⊆ Σ, namely∫
ω
N
(
〈d(F ◦ Φ); dΦ〉h − F (Φ) ·A(Φ)(dΦ, dΦ)h

)
d volh = 0

for all F ∈ C∞c (M\ Φ(∂ω),RQ). Moreover, if ω is connected, Φ(ω) = spt (‖vω‖) unless Φ

is constant on ω.

The first part of the statement was already proved in Section 2.7. However, we prefer to

give another proof, since the estimates that we get here will be useful later on.

Proof. Let φ : U → Ω be a local conformal chart (with U ⊆ Σ and Ω ⊆ C) and let

Ψ := Φ ◦ φ−1, G̃ := φ(G ∩U) and G̃f := φ(Gf ∩U). For any x ∈ Ω and any r < 1
2 dist(x, ∂Ω)

we can apply Lemma A.3 (with τ = 1) and obtain a radius r′ ∈ (r, 2r) such that (3.2.1)

applies with ω = φ−1(B2
r′(x)) and such that

diam Ψ(∂B2
r′(x)) ≤

√
4π

(∫
B2

2r(x)
|∇Ψ|2 dL2

)1/2

, H1(∂B2
r′(x) \ G̃) = 0. (3.2.2)
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Let us assume that Ψ is not (a.e.) constant on B2
r′(x). If z ∈ B

2
r′(x) ∩ G̃f we have

Ψ(z) ∈ spt (‖vω‖), as

‖vω‖(BQ
s (Ψ(z))) =

1

2

∫
Ψ−1(BQs (Ψ(z)))∩B2

r′ (x)
(N ◦ φ−1)|∇Ψ|2 dL2 > 0

for all s > 0. Hence, since spt (‖vω‖) is closed in RQ, by Lemma A.1 the essential image of

Ψ
∣∣
B2
r′ (x)

is included in spt (‖vω‖). The converse inclusion trivially holds, as well, so we

conclude that the essential image of Ψ
∣∣
B2
r′ (x)

coincides with spt (‖vω‖); in particular, the

latter includes the compact set Γ := Ψ(∂B2
r′(x)) (by the second part of (3.2.2)).

Moreover, since in RQ \ Γ the varifold vω has generalized mean curvature bounded by
√

2‖A‖L∞ , from the monotonicity formula [98, Theorem 17.6] and [98, Remark 17.9(1)] we

deduce
1

2

∫
B2

2r(x)
(N ◦ φ−1)|∇Ψ|2 dL2 ≥ ‖vω‖(BQ

s (p)) ≥ e−(
√

2‖A‖L∞ )s · πs2

for all p ∈ spt (‖vω‖) \ Γ and all s ≤ dist(p,Γ). If M is compact, choosing s := dist(p,Γ) ≤
diamM and recalling (3.2.2), we conclude that

diam Ψ(G̃ ∩B2
r (x)) ≤ diam spt (‖vω‖) ≤ diam Γ + 2 max

p∈spt (‖vω‖)
dist(p,Γ)

≤ 2

(
√
π +

(
e(
√

2‖A‖L∞ ) diamM ‖N‖L∞
2π

)1/2
)(∫

B2
2r(x)
|∇Ψ|2 dL2

)1/2

.

(3.2.3)

If instead M = RQ, then we have

diam Ψ(G̃ ∩B2
r (x)) ≤ diam spt (‖vω‖) ≤ diam Γ + 2 sup

p∈spt (‖vω‖)
dist(p,Γ)

≤ 2

(
√
π +

(
‖N‖L∞

2π

)1/2
)(∫

B2
2r(x)
|∇Ψ|2 dL2

)1/2

.

(3.2.4)

This estimate for diam Ψ(G̃ ∩B2
r (x)) is trivially true also when Ψ is a.e. constant on B2

r′(x).

The last expressions are infinitesimal as r → 0, locally uniformly in x. We infer that Ψ
∣∣
G̃ is

locally uniformly continuous on Ω and thus has a continuous representative. This shows that

Φ has a continuous representative.

We record here another estimate for diam spt (‖vω‖) independent of diamM, which

will be useful later. All the points in spt (‖vω‖) have distance at most 2D + 2 from Γ,

where D := eH

π ‖vω‖(R
Q) and H is an upper bound for the generalized mean curvature

of vω in RQ \ Γ: if this were not the case, we would have Φ nonconstant on ω and thus

Γ ⊆ Φ(ω) = spt (‖vω‖). By connectedness of Φ(ω) we could find points pj ∈ spt (‖vω‖) such

that dist(pj ,Γ) = 2j, for 1 ≤ j ≤ bDc+ 1, and since the balls BQ
1 (pj) are disjoint we would

have

‖vω‖(RQ) ≥
∑
j

‖vω‖(BQ
1 (pj)) ≥ (bDc+ 1)e−Hπ > De−Hπ,
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which is a contradiction. We deduce that

diam spt (‖vω‖) ≤ diam Γ +
4eH

π
‖vω‖(RQ) + 4. (3.2.5)

We now show the statement about the stationarity property. If F ∈ C∞c (M\Φ(∂ω),RQ),

then we can find a nonnegative ρ ∈ C∞c (ω) such that ρ = 1 on the compact set

ω ∩Φ−1(spt (F )). For almost every t ∈ (0, 1) the stationarity property (3.2.1) holds in

{ρ > t}, so ∫
{ρ>t}

N
(
〈d(F ◦ Φ); dΦ〉h − F (Φ)A(Φ)(dΦ, dΦ)h

)
d volh = 0

and clearly the left-hand side does not change if we replace {ρ > t} with ω.

Finally, the last statement is obtained with the same argument used in the first part of

the proof.

From now on, we will always assume that the map Φ is continuous, for any parametrized

stationary varifold.

Proposition 3.2.5. We have H2(Φ(Σ \ Gf )) = 0.

Proof. As already observed in Remark 3.2.3, the area formula can be applied on subsets of G.

In particular, since dΦ = 0 on G \ Gf , we get H2(Φ(G \ Gf )) = 0. In order to show that

H2(Φ(Σ \ G)) = 0, we pick any local conformal chart φ : U(⊆ Σ)→ Ω(⊆ C) and, as in the

previous proof, we set Ψ := Φ ◦ φ−1 and G̃ := φ(G ∩ U).

Fix an arbitrary δ > 0 and an open set W ⊆ Ω containing Ω \ G̃. For any z ∈W we can

find a radius r < 1
2 dist(z, ∂W ) ∧ 1 such that C

(∫
B2

2r(z)
|∇Ψ|2 dL2

)1/2
< δ, where C is the

constant appearing in the right-hand side of (3.2.3) (or (3.2.4) if M = RQ), and∫
B2

2r(z)
|∇Ψ|2 dL2 ≤ 8

∫
B2
r (z)
|∇Ψ|2 dL2 + 4r2 :

indeed, if such r did not exist, for j big enough we would have (2−j)2 ≤
∫
B2

2−j
(z) |∇Ψ|2 dL2 ≤

1
8

∫
B2

2−j+1 (z) |∇Ψ|2 dL2, hence (2−j)2 ≤
∫
B2

2−j
(z) |∇Ψ|2 dL2 = O(2−3j) = o((2−j)2), which is

a contradiction. By Besicovitch covering theorem, we can extract countably many balls

B2
ri(xi) from this collection with 1W ≤

∑
i 1B2

ri
(xi) ≤ N1W , for some universal constant N.

By inequality (3.2.3) (or (3.2.4)) we have diam Φ(B2
ri(xi)) < δ and

∑
i

π

4
(diam Φ(B2

ri(xi)))
2 ≤ πC

2

4

∑
i

∫
B2

2ri
(xi)
|∇Ψ|2 dL2

≤ 2πC
2∑

i

∫
B2
ri

(xi)
|∇Ψ|2 dL2 + C

2L2(B2
ri(xi))

≤ 2πC
2
N

∫
W
|∇Ψ|2 dL2 + C

2
NL2(W ).

Since δ was arbitrary, we get H2(Φ(Ω \ G̃)) ≤ 2πC
2
N
∫
W |∇Ψ|2 dL2 + C

2
NL2(W ). Since

L2(Ω \ G̃) = 0 and W was arbitrary as well, we arrive at H2(Φ(Ω \ G̃)) = 0.
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Proposition 3.2.6. For any p ∈M the compact set Φ−1(p) has finitely many connected

components. If x ∈ Gf then x is isolated in Φ−1(Φ(x)).

Proof. Assume without loss of generality that Φ is not constant; recall that in this chapter

we assume Σ to be connected. Since the varifold vΣ is stationary, the limit

M := lim
s→0

‖vΣ‖(BQ
s (p))

πs2

exists. We claim that the number of connected components of Φ−1(p) is not greater than M .

If this were not the case, we could split Φ−1(p) =
⊔J
j=1Kj , where the subsets Kj are disjoint

and compact and J > M is a finite integer (if the maximum value of J such that this can be

done were at most M , then one of the subsets would be disconnected, contradicting the

maximality). We could then find disjoint open neighborhoods ωj ⊇ Kj and we would have

M = lim
s→0

‖vΣ‖(BQ
s (p))

πs2
≥

J∑
j=1

lim
s→0

∥∥vωj∥∥(BQ
s (p))

πs2
≥ J

(by [98, Remark 17.9(1)]: notice that Φ must be nonconstant on any connected component of

ωj intersecting Kj , hence by Proposition 3.2.4 p ∈ spt
(∥∥vωj∥∥)). This is a contradiction.

Assume now x ∈ Gf and call Kx the connected component of Φ−1(Φ(x)) containing

x. It suffices to show that Kx = {x}, since we already know that Φ−1(Φ(x)) is a finite

union of compact connected sets. If φ is a local conformal chart centered at x and

Ψ := Φ ◦ φ−1, as in the proof of Proposition 3.2.8 below we can find a radius r′ > 0 such that

Φ(x) = Ψ(0) 6∈ Ψ(∂B2
r′(0)). Hence Kx ⊆ φ−1(B2

r′(0)) and, since r′ is arbitrarily small, we

deduce Kx = φ−1({0}) = {x}.

In the remainder of the section we assume that Φ is not constant. We now define a

more robust representative Ñ of the multiplicity function N , which is canonically defined

everywhere and is upper semicontinuous. We point out that (a priori) Ñ could take values in

[1,∞) instead of N \ {0}.

Definition 3.2.7. Given x ∈ Σ, we call Kx the connected component of Φ−1(Φ(x))

containing x and we let

Ñ(x) := inf
ω⊇Kx,

Φ(x)6∈Φ(∂ω)

lim
s→0

‖vω‖(BQ
s (Φ(x)))

πs2
.

The limit exists and is at least 1, by the stationarity of vω in M\ Φ(∂ω) (which contains

Φ(x)) and the fact that Φ(x) ∈ spt (‖vω‖) (by Proposition 3.2.4, since Φ is necessarily

nonconstant on the connected component of ω containing x). Notice that Ñ = Ñ(x) on Kx.

Moreover, the infimum is actually a minimum and is achieved whenever ω is disjoint from

the compact set Φ−1(Φ(x)) \Kx.

Proposition 3.2.8. The function Ñ is upper semicontinuous and Ñ ≥ 1. Moreover,

Ñ = N a.e. on Gf .
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Proof. We already observed that Ñ ≥ 1 everywhere. Let λ > 1 and x ∈ Σ such that

Ñ(x) < λ. Choose any open set ω ⊇ Kx with ω disjoint from Φ−1(Φ(x)) \Kx, so that

lims→0
‖vω‖(BQs (Φ(x)))

πs2
< λ. Whenever z ∈ ω is close enough to x we have Φ(z) 6∈ Φ(∂ω), so

Kz ⊆ ω and by definition

Ñ(z) ≤ lim
s→0

‖vω‖(BQ
s (Φ(z)))

πs2
.

But as z → x we have Φ(z)→ Φ(x). Hence, eventually lims→0
‖vω‖(BQs (Φ(z)))

πs2
< λ (see [98,

Corollary 17.8]) and so Ñ(z) < λ.

Assume now x ∈ Gf and
∫
B2
r (x) |N −N(x)| dL2 = o(r2),

∫
B2
r (x) |∇Φ−∇Φ(x)|2 dL2 =

o(r2). Fix any open set ω containing x. Let φ be a local conformal chart centered at x and

set Ψ := Φ ◦ φ−1, α :=
(
|∇Ψ(0)|√

2

)−1
. For any s > 0 small enough we have

‖vω‖(BQ
s (Φ(x))) ≥ 1

2

∫
B2
αs(0)∩Ψ−1(BQs (Ψ(0)))

(N ◦ φ−1)|∇Ψ|2 dL2

≥ 1

2
N(x)|∇Ψ(0)|2L2

(
B2
αs(0) ∩Ψ−1(BQ

s (Ψ(0)))
)

− 1

2

∫
B2
αs(0)

∣∣∣(N ◦ φ−1)|∇Ψ|2 −N(x)|∇Ψ(0)|2
∣∣∣ dL2.

By [35, Theorem 6.1], the function s−1(Ψ(αs ·)−Ψ(0)) converges to α〈∇Ψ(0), ·〉 (which is

a linear isometry) in measure on B2
1(0), hence the first term in the right-hand side is

πN(x)s2 + o(s2). Moreover, the function N ◦ φ−1(αs ·) converges to N(x) in measure and is

bounded by ‖N‖L∞ , while |∇Ψ|2(αs ·)→ |∇Ψ(0)|2 in L1(B2
1(0)). So the last term in the

right-hand side is o(s2). This shows that Ñ(x) ≥ N(x).

Fix now any 0 < ε < α−1. By Lemma A.4, applied to y 7→ Ψ(y)−Ψ(0)− 〈∇Ψ(0), y〉,
we can find a radius r′ such that∣∣Ψ(r′y)−Ψ(0)−

〈
∇Ψ(0), r′y

〉∣∣ ≤ εr′
for all y ∈ S1. Thus, choosing ω := φ−1(B2

r′(0)) and applying the monotonicity formula,

Ñ(x) ≤ e(
√

2‖A‖L∞ )(β−ε)r′
‖vω‖(BQ

(β−ε)r′(Φ(x)))

π(β − ε)2(r′)2
≤ (1 +O(r′))

∫
B2
r′ (0)(N ◦ φ

−1)|∇Ψ|2 dL2

2π(β − ε)2(r′)2
,

where β := |∇Ψ(0)|√
2

= α−1. Since r′ is arbitrarily small, we get Ñ(x) ≤ N(x)β2

(β−ε)2 . Letting

ε→ 0 we get the converse inequality Ñ(x) ≤ N(x).

It is useful to introduce the following local notion of parametrized stationary varifold.

Definition 3.2.9. Let Ω ⊆ C be open. A triple (Ω,Φ, N) with Φ ∈ W 1,2
loc (Ω,RQ),

N ∈ L∞(Ω,N \ {0}) and Φ(Ω) ⊆M is called a local parametrized stationary varifold (in M)

if Φ is weakly conformal and if, for almost every domain ω ⊂⊂ Ω,∫
ω
N
(
〈∇(F (Φ));∇Φ〉 − F (Φ) ·A(Φ)(∇Φ,∇Φ)

)
dL2 = 0
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for all F ∈ C∞c (M\Φ(∂ω),RQ), with A(Φ)(∇Φ,∇Φ) := A(Φ)(∂1Φ, ∂1Φ) +A(Φ)(∂2Φ, ∂2Φ).

We also require that

‖vΩ‖(BQ
s (p)) =

1

2

∫
Φ−1(BQs (p))

N |∇Φ|2 dL2 = O(s2), (3.2.6)

uniformly in p ∈ RQ.

Notice that, in the last definition, the map Φ is allowed to be constant. The technical

assumption (3.2.6) will be used only in the proof of Lemma 3.5.1, which in turn is used in

Sections 3.3 and 3.5.

Remark 3.2.10. If (Σ,Φ, N) is a parametrized stationary varifold and φ : U(⊆ Σ)→ Ω(⊆ C)

is a local conformal chart, then (Ω,Φ ◦ φ−1, N ◦ φ−1) is a local parametrized stationary

varifold: assumption (3.2.6) holds thanks to the monotonicity formula satisfied by vΣ.

Remark 3.2.11. Proposition 3.2.4 applies to the local case as well (with ω ⊂⊂ Ω in the

statement), with the same proof: hence, we will tacitly assume that Φ is continuous for all

local parametrized stationary varifolds. The same is true for Proposition 3.2.5.

The first part of Proposition 3.2.6 holds whenever Φ−1(p) is compact (with the same

proof with a neighborhood Φ−1(p) ⊆ ω ⊂⊂ Ω in place of Σ), while the second part holds in

general (since, in its proof, we can apply the first part to the domain φ−1(B2
r′(0))).

The domain of definition of the function Ñ , i.e. the set {Ñ <∞}, is an open subset of

Ω. The same argument of Proposition 3.2.6 shows that it consists of all points x such that

Kx is compact and disjoint from the closure of Φ−1(Φ(x)) \Kx. Proposition 3.2.8 always

holds in the local case, with the same proof.

Remark 3.2.12. A useful fact which will be used in Sections 3.3 and 3.5 is the following: if

(Ω,Φ, N) is a local parametrized stationary varifold and x ∈ Ω satisfies Ñ(x) <∞, then for

any 0 < ε < 1 we can find a neighborhood Kx ⊆ ω ⊂⊂ Ω with Φ(ω) ∩ Φ(∂ω) = ∅ and such

that ω ∩ Φ−1(Φ(y)) = Ky whenever y ∈ ω has Ñ(y) ≥ Ñ(x)− ε.
Indeed, let Kx ⊆ ω ⊂⊂ Ω with ω disjoint from Φ−1(Φ(x)) \Kx, so that Ñ(x) is the

density of vω at Φ(x). If y1, y2 ∈ ω have the same image and are close enough to Kx, then

Ky1 ,Ky2 ⊆ ω (since Φ(y1) = Φ(y2) 6∈ Φ(∂ω)) and the density of vω at Φ(y1) = Φ(y2) is less

than Ñ(x) + 1− ε (by upper semicontinuity of the density). Hence, if Ky1 6= Ky2 , calling

Kyi ⊆ ωi ⊆ ω two disjoint neighborhoods with Φ(yi) 6∈ Φ(∂ωi) we get

Ñ(y1) + 1 ≤ Ñ(y1) + Ñ(y2) ≤ lim
s→0

‖vω1‖(B
Q
s (Φ(y1)))

πs2
+ lim
s→0

‖vω2‖(B
Q
s (Φ(y2)))

πs2

≤ lim
s→0

‖vω‖(BQ
s (Φ(y1)))

πs2
< Ñ(x) + 1− ε.

The claim is established by shrinking ω and by replacing it with ω \ Φ−1(Φ(∂ω)).
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The following theorem is the main result of [92]. Its proof has already been given in

Section 2.7; note that the proof carries over to the local case, and to the situation M = RQ,

as well.

Theorem 3.2.13. Let (Σ,Φ, N) be a parametrized stationary varifold in M. If N is

a.e. constant (and hence can be changed to 1 without affecting the stationarity), then

Φ ∈ C∞(Σ,M) and −∆hΦ = A(Φ)(dΦ, dΦ)h. The same holds for local parametrized

stationary varifolds.

3.3 Regularity of parametrized stationary varifolds in a

polyhedral cone

This section addresses the regularity problem for local parametrized stationary varifolds in

RQ, under the additional constraint that they are contained in a finite union of 2-dimensional

planes through the origin. We will need a nontrivial result in planar topology, which we state

and prove below.

A topological lemma about triods

Definition 3.3.1. A generalized triod in S2 is a quadruple T = (K, γ1, γ2, γ3) such that:

• ∅ 6= K ⊆ S2 is compact and connected;

• γi ∈ C∞([0, 1], S2) are injective regular curves (i.e. γ̇(t) 6= 0 for all t ∈ [0, 1]);

• K, γ1([0, 1)), γ2([0, 1)), γ3([0, 1)) are pairwise disjoint;

• γi(1) ∈ K.

We will denote spt (T ) := K t γ1([0, 1)) t γ2([0, 1)) t γ3([0, 1)).

The proof of the following lemma is inspired by the proof of a simpler statement which

appears in [2, Lemma 2.15].

Lemma 3.3.2. Let (Tj)j∈J be a collection of generalized triods in S2 such that spt (Tj) ∩
spt
(
Tj′
)

= ∅ for any j 6= j′. Then J is at most countable.

Proof. We equip the set T of all generalized triods in S2 with the following metric: given

T = (K, γ1, γ2, γ3), T ′ = (K ′, γ′1, γ
′
2, γ
′
3) ∈ T we set

d(T, T ′) := dH(K,K ′) +
∑
i

max
t∈[0,1]

dS2(γi(t), γ
′
i(t)),

where dS2 denotes the spherical distance on S2 and dH is the corresponding Hausdorff

distance on the set of all nonempty compact subsets of S2.
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Since the metric space (T , d) is separable, it suffices to show that any triod Tj0 is

isolated in {Tj | j ∈ J} ⊆ T . Let Tj0 = (K, γ1, γ2, γ3).

Case 1: γ1([0, 1)), γ2([0, 1)), γ3([0, 1)) do not belong to the same connected component of

S2 \K. Assume for instance that γ1([0, 1)) and γ2([0, 1)) belong to different connected

components: then, letting

ε := min {dS2(γ1(0),K), dS2(γ2(0),K)} > 0,

any different triod Tj = (K ′, γ′1, γ
′
2, γ
′
3) satisfies d(Tj0 , Tj) ≥ ε. Indeed, if this were not the

case, γ′1(0) would lie in the same component of S2 \K as γ1(0) (since the spherical ball

BS2

ε (γ1(0)) is a connected subset of S2 \K) and similarly for γ′2(0). But this contradicts the

fact that spt (Tj) is a connected subset of S2 \K.

Case 2: γ1([0, 1)), γ2([0, 1)), γ3([0, 1)) belong to the same connected component U of

S2 \K. Since K is connected, there exists a diffeomorphism

υ : U → B2
1(0) ⊆ C

(indeed, S2 \ U is connected and we can apply [94, Theorems 13.11 and 14.8]). For t ∈ [0, 1)

let αi(t) := υ ◦ γi(t). Notice that limt→1 |αi(t)| = 1. Up to applying another diffeomorphism,

we can assume that |αi(0)| = 1
2 and |αi(t)| > 1

2 for t ∈ (0, 1) and i = 1, 2, 3 (e.g. by adapting

the argument in [63, Theorem II.5.2]).

Let si := min
{
t : |αi(t)| = 3

4

}
> 0. Moreover, for any τ ∈

(
3
4 , 1
)

let

ri(τ) := min {t : |αi(t)| = τ} > si.

By Jordan’s closed curve theorem for piecewise smooth curves, the points αi(0) and αi(ri(τ ))

are in the same order on the circles
{
|z| = 1

2

}
and {|z| = τ}. The curves αi([0, ri(τ)]) and

the circles
{
|z| = 1

2

}
, {|z| = τ} bound three disjoint domains R1(τ ), R2(τ ), R3(τ ); we adopt

the convention that Ri(τ) is the region whose closure is disjoint from αi([0, ri(τ)]). Let

δ := inf
τ∈( 3

4
,1)

min
i
dR2(αi(0), Ri(τ)) (3.3.1)

and notice that, since

dR2(αi(0), Ri(τ)) = dR2(αi(0), ∂Ri(τ)) = dR2(αi(0), ∂Ri(τ) \ ∂B2
τ (0)),

we have δ > 0.
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α1(0)

α2(0)

α3(0)

α1(s1)

α2(s2)

α3(s3)

R1(τ)

R2(τ)

R3(τ)

Assume now Tj = (K ′, γ′1, γ
′
2, γ
′
3) satisfies d(Tj0 , Tj) < ε. If ε is small enough, we have:

• spt (Tj) ⊆ U (this is obtained arguing as in the first case), so that we can define

α′i(t) := υ ◦ γ′i(t) for t ∈ [0, 1];

• υ(K ′) ⊆
{

3
4 < |z| < 1

}
;

• maxt∈[0,si] |α′i(t)− αi(t)| < δ′, for some δ′ ≤ δ to be chosen later;

• α′i([si, 1]) ⊆
{
|z| > 1

2

}
.

Let t′i := max
({
t : |α′i(t)| = 1

2

}
∪ {0}

)
< si. We claim that∣∣α′i(t′i)− αi(0)

∣∣ < δ. (3.3.2)

If t′i = 0 this is trivial, while otherwise |α′i(t′i)| = 1
2 and

dist(α′i(t
′
i), αi([0, si])) ≤

∣∣α′i(t′i)− αi(t′i)∣∣ < δ′,

which yields our claim once δ′ is chosen so small that{
z : |z| = 1

2
,dist(z, αi([0, si])) < δ′

}
⊆ B2

δ (αi(0))

(if such δ′ did not exist, we could find points |zk| = 1
2 with dist(zk, αi([0, si]))→ 0 and

|zk − αi(0)| ≥ δ; up to subsequences we could assume zk → z∞, for some z∞ ∈ αi([0, si])
with |z∞| = 1

2 , hence z∞ = αi(0), contradiction).
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Fix now any τ such that max {|z| : z ∈ υ(spt (Tj))} < τ < 1. The connected set

υ(K ′) t α′1(
(
t′1, 1

)
) t α′2(

(
t′2, 1

)
) t α′3(

(
t′3, 1

)
)

is contained in
{

1
2 < |z| < τ

}
and is disjoint from α1([0, 1)) t α2([0, 1)) t α3([0, 1)), so it is

contained in some region Ri0(τ) and, in particular, α′i0([t′i0 , 1]) ⊆ Ri0(τ). But, using (3.3.1)

and (3.3.2), we infer that α′i0(t′i0) 6∈ Ri0(τ). This contradiction shows that such Tj with

d(Tj0 , Tj) < ε cannot exist, completing the treatment of the second case.

Planar case

We now show the regularity in the special case where the parametrized varifold is contained

in a plane.

Theorem 3.3.3. Let (Ω,Φ, N) be a local parametrized stationary varifold in R2 = C defined

on a bounded connected open set Ω ⊂ C. Assume that Φ−1(p) is compact for all p ∈ C. Then

Φ is holomorphic or antiholomorphic.

Proof. We recall that, under these hypotheses, Φ−1(p) has always finitely many connected

components and the upper semicontinuous function Ñ ≥ 1 is everywhere finite (see

Remark 3.2.11). It suffices to show that ∆Φ = 0: once this is done, since Φ is necessarily

nonconstant we can pick any z0 ∈ Ω such that ∇Φ(z0) 6= 0 and, by weak conformality, there

is an r > 0 such that ∂zΦ
∣∣
B2
r (z0)

= 0 or ∂zΦ
∣∣
B2
r (z0)

= 0; the statement then follows by the

analyticity of ∂zΦ and ∂zΦ.

We further make the following assumptions, which will be dropped in Step 4 below:

(i) Φ extends continuously to Ω and Φ(∂Ω) ∩ Φ(Ω) = ∅;

(ii) Φ(Ω) ⊆ C is open and the varifold vΩ equals Ñ(x0)v(Φ(Ω)), for some x0 in Ω, v(Φ(Ω))

denoting the canonical varifold associated to Φ(Ω).

We show that in this situation the theorem holds, by strong induction on Ñ(x0). Notice that

Ñ(x0) is necessarily an integer, since vΩ has integer multiplicity.

Step 1. If Ñ(x0) = 1 then Ñ = 1 everywhere: indeed, for every z ∈ Ω and every

Kz ⊆ ω ⊂⊂ Ω we have

1 ≤ Ñ(z) ≤ lim
s→0

‖vω‖(B2
s (Φ(z)))

πs2
≤ lim

s→0

‖vΩ‖(B2
s (Φ(z)))

πs2
= 1.

By Proposition 3.2.8 we can replace N with Ñ without affecting the stationarity of (Ω,Φ, N),

hence by Theorem 3.2.13 we have ∆Φ = 0.

Assume now Ñ(x0) > 1. Fix any y ∈ Ω and choose a point yi in every connected

component Ki of Φ−1(Φ(y)). Choosing disjoint neighborhoods Ki ⊆ ωi ⊂⊂ Ω we have∑
i

Ñ(yi) = lim
s→0

∑
i

‖vωi‖(B2
s (Φ(y)))

πs2
= lim

s→0

‖vΩ‖(B2
s (Φ(y)))

πs2
= Ñ(x0),
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since Φ(y) 6∈ Φ(Ω \
⋃
i ωi). We deduce that the following dichotomy is true: for any y ∈ Ω,

either Ñ(y) = Ñ(x0) and Φ−1(Φ(y)) is connected, or Ñ(y) ≤ Ñ(x0)− 1 and Φ−1(Φ(y)) has

at least two components. We can assume that Ñ is not identically equal to Ñ(x0), since

otherwise we are done as in the base case of the induction.

Step 2. We claim that, by inductive hypothesis, Φ is holomorphic or antiholomorphic on

each connected component of the set

Ω0 :=
{
Ñ ≤ Ñ(x0)− 1

}
=
{
Ñ < Ñ(x0)

}
,

which is open by Proposition 3.2.8. For any y0 ∈ Ω0 we can take an open set Ky0 ⊆ ω ⊂⊂ Ω0

with ω disjoint from Φ−1(Φ(y0)) \Ky0 . Possibly replacing ω with the connected component

of ω \ Φ−1(Φ(∂ω)) containing y0, we observe that ω satisfies the same hypotheses as Ω, as

well as (i)–(ii): the only nontrivial task is to check (ii), which we do below.

By the constancy theorem [98, Theorem 41.1] applied to vω, which is stationary in

C \ Φ(∂ω), the varifold vω equals a nontrivial constant multiple of v(W ), where W is the

connected component of C \ Φ(∂ω) containing the connected set Φ(ω). Since Φ(ω) is

relatively closed in W , we deduce W = Φ(ω). Finally, by definition of Ñ(y0) we must have

vω = Ñ(y0)v(W ). Thus, the inductive hypothesis applies and we deduce ∆Φ = 0 on ω.

Since y0 was arbitrary, we get ∆Φ = 0 on Ω0 and our claim is established.

Step 3. Notice that Φ(Ω0) is nonempty and open, being Φ nonconstant on every

connected component of Ω0. We call D ⊂ Ω0 the relatively closed, discrete set of points

where ∇Φ vanishes. The map Φ
∣∣
Ω0

: Ω0 → Φ(Ω0) is proper, thanks to the fact that

Φ(Ω0) and Φ(Ω \ Ω0) are disjoint, so Φ(D) is a relatively closed, discrete subset of Φ(Ω0).

Hence, D′ := Φ−1(Φ(D)) is still relatively closed in Ω0 and Φ
∣∣
Ω0\D′ , being a proper local

diffeomorphism onto Φ(Ω0) \ Φ(D), is a covering map.

Let Ωmax :=
{
Ñ = Ñ(x0)

}
, which is closed in Ω. Due to Lemma 3.5.1, we can assume

that Φ(Ωmax) is uncountable. Observe that Φ(Ωmax) is relatively closed in the open set

Φ(Ω), being Φ a proper map, and Φ(Ω) = Φ(Ω0) tΦ(Ωmax) by the dichotomy of Step

1. Take two distinct points p, q ∈ Φ(Ω0) and choose any ball p, q 6∈ B ⊆ Φ(Ω) such that

Φ(Ωmax) ∩B is uncountable. We consider a foliation of curves on the connected set Φ(Ω) as

in the picture (which illustrates the position of p, q, B up to a diffeomorphism of Φ(Ω)).



90 Chapter 3. Regularity of parametrized stationary varifolds

p q

B

Φ(Ωmax)
Φ(Ωmax)

We can assume that uncountably many of these curves intersect Φ(Ωmax): if this

does not happen, it means that uncountably many points of Φ(Ωmax) lie on a single

horizontal segment in B, so it suffices to apply a diffeomorphism which rotates B slightly.

Uncountably many such curves do not intersect Φ(D) = Φ(D′), as well. For any such good

curve γ : [0, 1]→ Φ(Ω) (with γ(0) = p, γ(1) = q) we let

a := min {t : γ(t) ∈ Φ(Ωmax)}, 1− b := max {t : γ(t) ∈ Φ(Ωmax)}.

We clearly have 0 < a ≤ 1− b < 1. We can lift γ
∣∣
[a/3,2a/3]

to two curves γ1, γ2 in Ω0 \D′

and γ
∣∣
[1−2b/3,1−b/3]

to a curve γ3 in Ω0 \D′, thanks to the dichotomy observed in Step 1 and

the fact that Φ
∣∣
Ω0\D′ is a covering map.

Finally, the compact set K := Φ−1(γ([2a/3, 1 − 2b/3])) is connected: assume by

contradiction that it splits into two disjoint compact sets A t B. For each point z ∈
γ([2a/3, 1− 2b/3]) the fiber Φ−1(z) lies either in A or in B: this is clear if z ∈ Φ(Ωmax),

since then Φ−1(z) is connected; if z 6∈ Φ(Ωmax) we can travel γ back or forward until we hit

a point w ∈ Φ(Ωmax) and the corresponding lifted curves will necessarily accumulate against

Φ−1(w) (thanks to the properness of Φ), so they lie either all in A or all in B. We infer that

γ([2a/3, 1− 2b/3]) = Φ(A) t Φ(B), which contradicts the connectedness of [2a/3, 1− 2b/3].

Thus any such good curve produces a generalized triod (K, γ1, γ2, γ3) and these triods

are disjoint from each other. Since there are uncountably many such triods, this contradicts

Lemma 3.3.2. The inductive proof is complete.

Step 4. We now drop the extra assumptions (i)–(ii). This is done with the same argument

of Step 2: for any y0 ∈ Ω we can find a neighborhood ω ⊂⊂ Ω satisfying (i)–(ii), hence

∆Φ = 0 on ω. We deduce that ∆Φ = 0 on all of Ω.

Corollary 3.3.4. Under the same hypotheses, N is a.e. constant.

Proof. Since U := {∇Φ 6= 0} ⊆ Ω is connected, it suffices to show the claim locally in U .

Fix z0 ∈ U . We can find a connected open neighborhood ω ⊂⊂ U such that Φ is injective on

ω. Arguing as in the proof of Theorem 3.3.3, Φ(ω) is open and vω = θv(Φ(ω)) for some θ.

By definition of Ñ and Proposition 3.2.8, N = Ñ = θ a.e. on ω.
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Conical case

We now gradually move to the case where the varifold is contained in a finite union of planes.

Lemma 3.3.5. Let (Ω,Φ, N) be a local parametrized stationary varifold in RQ defined on a

bounded connected open set Ω ⊂ C. Assume that Φ−1(p) is compact for all p ∈ RQ and that

Φ takes values in the union of two 2-dimensional closed half-planes Ha, Hb with common

boundary. Then ∆Φ = 0.

Proof. The idea is to straighten the two half-planes into a single plane and then apply

Corollary 3.3.4. We can assume that Q = 3 and, by Theorem 3.3.3, that the two half-planes

are not contained in a single plane. Up to translations and rotations, Φ(Ω) ⊆ Ha ∪Hb, where

Ha := {λv1 + µv2 | λ ∈ R, µ ∈ [0,∞)}, Hb := {λv1 + µv3 | λ ∈ R, µ ∈ [0,∞)},

v1 := (1, 0, 0), v2 := (0, cos θ, sin θ), v3 := (0,− cos θ, sin θ),

for some 0 < θ < π
2 . Let

S : R3 → R2 = C, S(x, y, z) :=
(
x,

y

cos θ

)
and Ψ := S ◦ Φ. This map is still weakly conformal: indeed, if x is a Lebesgue point for

∇Φ and ∇Φ(x) = 0, then the same holds for Ψ; if instead ∇Φ(x) has full rank, then

dΦ(x) takes values in the linear span of v1, v2, or in the linear span of v1, v3 (since

lim infr→0 r
−1‖Φ(x+ ry)− Φ(x)− r〈∇Φ(x), y〉‖C0(S1) = 0, by Lemma A.4) and the claim

follows from the chain rule.

We now show that (Ψ, N) is still a local parametrized stationary varifold, i.e. that∫
ω
N〈∇(X ◦Ψ);∇Ψ〉 dL2 = 0

for any ω ⊂⊂ Ω and any vector field X ∈ C∞c (R2 \Ψ(∂ω),R2). Let

A :=

(
1 0

0 cos θ

)
, P :=

(
1 0 0

0 1 0

)
, Y := P tA−1(X ◦ S).

Notice that, although Y does not have compact support, it vanishes in a neighborhood of

Φ(∂ω). Since we know that Φ(ω) is compact, we have∫
ω
N〈∇(Y ◦ Φ);∇Φ〉 dL2 = 0.

But, viewing S also as a matrix, ∇Y = P tA−1(∇X ◦ S)S and P = AS, thus

〈∇(Y ◦ Φ);∇Φ〉 =
〈
P tA−1(∇X ◦ S ◦ Φ)∇(S ◦ Φ);∇Φ

〉
=
〈
P tA−1∇(X ◦Ψ);∇Φ

〉
=
〈
St∇(X ◦Ψ);∇Φ

〉
= 〈∇(X ◦Ψ);S∇Φ〉

= 〈∇(X ◦Ψ);∇Ψ〉.
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This shows the stationarity of (Ψ, N). By Corollary 3.3.4, N is a.e. constant. By

Theorem 3.2.13, this implies ∆Φ = 0.

Lemma 3.3.6. The same conclusion holds if Φ takes values in the union of finitely many

(distinct) closed half-planes
⋃k
i=1Hi ⊆ RQ with a common boundary C = ∂Hi.

Proof. It suffices to show that ∆Φ = 0 near any point x0 ∈ Ω. By Theorem 3.3.3 we

have ∆Φ = 0 on Φ−1(Hi \ C), for all i, so we can assume Φ(x0) ∈ C. By Remark 3.2.12,

shrinking Ω if necessary, we can further assume that Φ−1(Φ(y)) is connected whenever

Ñ(y) ≥ Ñ(x0)− 1
2 and that Φ extends continuously to Ω with Φ(Ω) ∩ Φ(∂Ω) = ∅.

By induction on b2Ñ(x0)c, b·c denoting the integer part, we can also assume that in this

situation we have ∆Φ = 0 on the open set
{
Ñ < Ñ(x0)− 1

2

}
(using e.g. b2Ñ(x0)c = 1 as

the base case, which is vacuously true).

We pick any 0 < r < dist(Φ(x0),Φ(∂Ω)) and let ω := Φ−1(BQ
r (Φ(x0))) ⊂⊂ Ω, as well as

ωi := ω ∩ Φ−1(Hi \ C). If ωi is nonempty for at most two values of i, then we are done by

Lemma 3.3.5, applied to the connected components of ω. Thus, we suppose e.g. that ωi 6= ∅
for i = 1, 2, 3. Applying the constancy theorem to the varifold vωi , which is a nontrivial

stationary varifold in BQ
r (Φ(x0)) ∩ (Hi \ C), and using the fact that Φ(ωi) is relatively

closed in this set, we infer that

Φ(ωi) = BQ
r (Φ(x0)) ∩ (Hi \ C).

for i = 1, 2, 3. Let C ′ := C∩Φ
({
x ∈ ω : Ñ(x) ≥ Ñ(x0)− 1

2

})
, which is closed in BQ

r (Φ(x0)),

being Φ
∣∣
ω

: ω → BQ
r (Φ(x0)) a proper map. If C ′ is countable, then we are done by applying

Lemma 3.5.1 to ω.

Otherwise, we can pick for each c ∈ C ′ a segment βi([0, 1]) ⊆ BQ
r (Φ(x0)) ∩ Hi

perpendicular to C with βi(1) = c (for i = 1, 2, 3). Apart from (at most) countably many

exceptions, these segments do not intersect the singular values of Φ
∣∣
ωi

. So, arguing as in the

proof of Theorem 3.3.3, the curves βi([0, 1/2]) can be lifted to smooth regular curves γi in ωi

and, setting K := Φ−1(c) ∪
⋃3
i=1 βi([1/2, 1]), (K, γ1, γ2, γ3) is a generalized triod. This gives

an uncountable family of disjoint generalized triods, contradicting Lemma 3.3.2.

Theorem 3.3.7. Let (Ω,Φ, N) be a local parametrized stationary varifold in RQ, with Ω

connected. Assume that Φ takes values in the union of finitely many (distinct) 2-dimensional

planes Σ1, . . . ,Σk passing through the origin. Then Φ takes values in a single plane Σi0 and,

once we identify it with C, it is holomorphic or antiholomorphic (but possibly constant).

Proof. Assume without loss of generality that Φ is nonconstant. It suffices to show that

∆Φ = 0: then, by weak conformality, Φ(Σ) cannot be contained in a finite union of lines, i.e.

for some i0 we have Φ−1
(

Σi0 \
⋃
i 6=i0 Σi

)
6= ∅; thus on this open set we have πΣ⊥i0

Φ = 0 and

we deduce that this holds on all of Ω by analyticity. The statement then follows by weak

conformality, as in the proof of Theorem 3.3.3.
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Fix now x0 ∈ Ω \ Φ−1(0) and let J := {j : Φ(x0) ∈ Σj}. We pick any radius r <

dist(x0, ∂Ω) such that Φ(B
2
r(x0)) intersects only the planes Σj with j ∈ J . Notice that⋃

j∈J Σj is a finite union of half-planes with common boundary {tΦ(x0) : t ∈ R}. We assume

that the weak gradient coincides with the classical one on the biggest open subset of Ω where

Φ is smooth and we call Gf the set of Lebesgue points for ∇Φ where ∇Φ 6= 0.

For x ∈ B2
r (x0)∩Gf we have lim infs→0 s

−1‖Φ(x+ sy)− Φ(x)− s〈∇Φ(x), y〉‖C0(S1) = 0,

by Lemma A.4. Hence, we can find an open neighborhood ω ⊂ B2
r (x0) of x such that

Φ(x) 6∈ Φ(∂ω). Possibly replacing ω with the connected component of ω \Φ−1(Φ(∂ω))

containing x, we can even assume Φ(ω)∩Φ(∂ω) = ∅. Hence we can apply Lemma 3.3.6 on ω,

obtaining ∆Φ = 0 near x. In particular, this shows that Gf \ Φ−1(0) is open and ∆Φ = 0 on

Gf \ Φ−1(0).

Using Fubini’s theorem and [35, Theorem 4.21], we can pick an r′ < r such that the

map Φ
∣∣
∂B2

r′ (x0)
is absolutely continuous (with weak derivative given by the chain rule)

and
∫
∂B2

r′ (x0)\Gf |∇Φ| dH1 = 0. For any relatively open subset U ⊆ ∂B2
r′(x0) containing

∂B2
r′(x0) \ Gf we have

H1(Φ(∂B2
r′(x0) ∩ U)) ≤

∫
U
|∇Φ| dH1,

by definition of H1. Since U is arbitrary, we deduce

H1(K) = 0, K := Φ(∂B2
r′(x0) \ Gf ).

Fix now any x ∈ B2
r′(x0) \ Φ−1(K). Assume ∂B2

s (x0) ∩ Φ−1(Φ(x)) 6= ∅ for all

|x− x0| < s < r′. Then we can find a sequence s` ↑ r′ and points y` ∈ ∂B2
sk

(x0) such that

Φ(y`) = Φ(x) and yk → y∞, for some y∞ ∈ ∂B2
r′(x0). Necessarily we have y∞ ∈ Gf , as

Φ(y∞) = Φ(x) 6∈ K, but this contradicts the fact that Φ is injective near y∞.

Thus there exists a radius s < r′ such that x ∈ B2
s (x0) and Φ(x) 6∈ Φ(∂B2

s (x0)). Again

we can let ω be the connected component of B2
s (x0) \ Φ−1(Φ(∂B2

s (x0))) containing x and we

can apply Lemma 3.3.6 on ω. This shows that ∆Φ = 0 on B2
r′(x0) \ Φ−1(K).

Finally, by Lemma 3.5.1 and H1(K) = 0, we have ∆Φ = 0 on B2
r′(x0). So ∆Φ = 0 on

Ω \ Φ−1(0) and we deduce that ∆Φ = 0 on all of Ω, again by Lemma 3.5.1.

3.4 Blow-up of a parametrized stationary varifold

Let (Ω,Φ, N) be a local parametrized stationary varifold. Let us fix a sequence of points

(xk) ⊆ Ω and a sequence of radii (rk) such that 0 < rk <
1
2 dist(xk, ∂Ω). We let

`2k :=

∫
B2
rk

(xk)
|∇Φ|2 dL2, Φk := `−1

k (Φ(xk + rk·)− Φ(xk)), Nk := N(xk + rk·),

νk :=
1

2
Nk|∇Φk|21B2

2(0)L2, µk := (Φk)∗νk.
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Notice that the functions Φk, Nk are defined on B2
2(0), so the definition of the measures νk

and µk, on B2
2(0) and RQ respectively, makes sense. Throughout the section we will assume

that there exist two constants C ′, C ′′ ≥ 1 such that

• 0 <
∫
B2

2rk
(xk) |∇Φ|2 dL2 ≤ C ′

∫
B2
rk

(xk) |∇Φ|2 dL2; (3.4.1)

• lim supk→∞ µk(B
Q
s (p)) ≤ C ′′πs2 for all s > 0 and all p ∈ RQ; (3.4.2)

• `k → 0. (3.4.3)

We will show the following result.

Theorem 3.4.1. Up to subsequences, there exist a map Φ∞ ∈W 1,2(B2
2(0),RQ), a function

N∞ ∈ L∞(B2
2(0),N \ {0}) and a quasiconformal homeomorphism ϕ∞ ∈W 1,2(B2

2(0),Ω∞)

(for some bounded open set Ω∞ ⊆ C), with ϕ∞(0) = 0, such that

Φk → Φ∞ in C0
loc(B

2
2(0),RQ), ∇Φk ⇀ ∇Φ∞ in L2(B2

2(0),RQ×2),

1

2
Nk|∇Φk|2L2 ⇀ N∞|∂1Φ∞ ∧ ∂2Φ∞|L2 as Radon measures.

Moreover, Φ∞◦ϕ−1
∞ is weakly conformal and (Ω∞,Φ∞◦ϕ−1

∞ , N∞◦ϕ−1
∞ ) is a local parametrized

stationary varifold in RQ.

We refer the reader to [56, Chapter 4] and [65] for the theory of quasiconformal

homeomorphisms in the plane. Before proving this theorem we shall establish a number of

intermediate results. Many arguments are similar to those used in the previous chapter.

First of all, since
∫
B2

2(0) |∇Φk|2 dL2 ≤ C ′ and νk(B
2
2(0)) ≤ 1

2C
′‖N‖L∞ , up to subse-

quences there exists Φ∞ ∈W 1,2(B2
2(0),RQ) such that Φk ⇀ Φ∞ in W 1,2(B2

2(0)) and there

exists a finite Radon measure ν∞ on B2
2(0) such that νk ⇀ ν∞ in B2

2(0). We can also

assume that, for all j ≥ 0,

µk,j := (Φk)∗

(
1B2

2−2−j
(0)νk

)
⇀ µ∞,j as k →∞

in RQ, for some finite measure µ∞,j . Since µ∞,j ≤ µ∞,j+1 and µ∞,j(RQ) ≤ 1
2C
′‖N‖L∞ , the

measure µ∞ := limj→∞ µ∞,j is defined and is again finite.

Lemma 3.4.2. The measure ν∞ is absolutely continuous with respect to L2, i.e. ν∞ = mL2

for some nonnegative m ∈ L1(B2
2(0)). Moreover, Φ∞ is continuous and Φk → Φ∞ in

C0
loc(B

2
2(0),RQ). Finally, for any open subset ω ⊂⊂ B2

2(0),

Φ∞(ω) ⊆ conv(Φ∞(∂ω)),

where conv(·) denotes the convex hull.
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Proof. We introduce the oscillation set

O :=

{
x ∈ spt (ν∞) : lim inf

r→0

∫
B2

2r(x) |∇Φ∞|2 dL2

ν∞(B2
r (x))

= 0

}
.

Step 1. We show that ν∞ is absolutely continuous with respect to L2 on the Borel

set B2
2(0) \ O. Let E ⊆ B2

2(0) \ O be a Borel set with L2(E) = 0. It suffices to show

that ν∞(K) = 0 for any compact subset K ⊆ E ∩ spt (ν∞) (since this implies that

ν∞(E ∩ spt (ν∞)) = 0 and thus ν∞(E) = 0, as required). We define the Borel sets

Fj :=

{
x ∈ K : inf

0<r≤r

∫
B2

2r(x) |∇Φ∞|2 dL2

ν∞(B2
r (x))

≥ 2−j
}
, r :=

1

2
dist(K, ∂B2

2(0))

and observe that K =
⋃
j Fj . Fix j and an open set E ⊆ V ⊆ B2

2(0). Letting rV :=
1
2 dist(K,R2\V ) ≤ r, we choose a maximal (finite) subset {xi} of Fj such that |xi − xi′ | ≥ rV
for i 6= i′. We have

Fj ⊆
⋃
i

B2
rV

(xi),
∑
i

1B2
2rV

(xi)
≤ N

for some universal constant N. We deduce that

ν∞(Fj) ≤
∑
i

ν∞(B2
rV

(xi)) ≤ 2j
∑
i

∫
B2

2rV
(xi)
|∇Φ∞|2 dL2 ≤ 2jN

∫
V
|∇Φ∞|2 dL2.

Letting V range along a sequence of open sets V` ⊇ E with L2(V`) → 0, we deduce

ν∞(Fj) = 0. Hence,

ν∞(K) ≤
∑
j

ν∞(Fj) = 0.

Step 2. We show that O = ∅. Fix any x ∈ B2
2(0) and any r < 1

2 dist(x, ∂B2
2(0)). Using

Lemma A.5 and Lemma A.3 we select a radius r′ ∈ (r, 2r) such that Φki

∣∣
∂B2

r′ (x)
→ Φ∞

∣∣
∂B2

r′ (x)

in L∞, for some subsequence (Φki), and

diam Φ∞(∂B2
r′(x)) ≤

√
4π

(∫
B2

2r(x)
|∇Φ∞|2 dL2

)1/2

(3.4.4)

(we are implicitly referring to the continuous representative of Φ∞
∣∣
∂B2

r′ (x)
). Since (Ω,Φ, N)

is a local parametrized stationary varifold in M, the varifolds vki issued by (Φki , Nki)

from the domain B2
r′(x) have generalized mean curvature bounded by O(`ki) (in L∞) in

RQ \ Φki(∂B
2
r′(x)). As a consequence of assumption (3.4.3), up to further subsequences they

converge to a varifold v∞ (in RQ) which is stationary in RQ \ Φ∞(∂B2
r′(0)).

Moreover, by Proposition 3.2.4, 0 = Φk(0) ∈ spt (‖vk‖) unless spt (‖vk‖) = ∅. Using

estimate (3.2.5) we infer that the sets spt (‖vk‖) are all included in a unique compact set. It

follows that v∞ has compact support, hence by [98, Theorem 19.2] (which applies to general

stationary varifolds) spt (v∞) ⊆ K := conv(Φ∞(∂B2
r′(x))). It follows that

sup
z∈B2

r′ (x)

dist(Φki(z),K)→ 0 : (3.4.5)
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if this were not the case, up to subsequences we could find zki ∈ B2
r′(x) such that

dist(Φki(zki),K) ≥ ε. Eventually Φki(xki) ∈ spt (‖vki‖) (by Proposition 3.2.4, since

eventually Φki must be nonconstant on B2
r′(x)), so we can assume that Φki(xki)→ p∞ and

‖v∞‖(B
Q
ε/2(p∞)) ≥ lim sup

i→∞
‖vki‖(B

Q
ε/2(Φki(xki))) ≥ π

ε2

4
,

thanks to the monotonicity formula and the fact that B
Q
ε/2(Φki(xki)) ∩ Φki(∂B

2
r′(x)) = ∅

eventually. This, however, contradicts the fact that B
Q
ε/2(p∞) ∩K = ∅. Using (3.4.5) and

(3.4.2) we deduce that

ν∞(B2
r′(x)) ≤ lim inf

i→∞
νki(B

2
r′(x)) ≤ lim inf

i→∞
µki(Φki(B

2
r′(x))) ≤ C ′′π(diamK)2.

From (3.4.4) and the fact that the convex hull preserves the diameter, we have (diamK)2 ≤
4π
∫
B2

2r(x) |∇Φ∞|2 dL2. Hence,

lim inf
r→0

∫
B2

2r(x) |∇Φ∞|2 dL2

ν∞(B2
r (x))

≥ 1

4π2C ′′
.

It follows that O = ∅.
Step 3. We show that Φ∞ has a continuous representative. Since Φki → Φ∞ in

L2(B2
2(0),RQ), from (3.4.5) we infer that Φ∞(z) ∈ K for a.e. z ∈ B2

r (x). In particular, this

must happen whenever z is a Lebesgue point. This, together with the estimate for diamK,

proves that Φ∞ is locally uniformly continuous on the set of its Lebesgue points, hence it has

a continuous representative.

Step 4. Assume now by contradiction that Φk does not converge locally uniformly to (the

continuous representative of) Φ∞. Then we can find a subsequence Φki and points xki , lying

in a compact subset of B2
2(0), such that

|Φki(xki)− Φ∞(xki)| ≥ ε.

We can further assume that xki → x∞ ∈ B2
2(0). Let r < 1

2 dist(x∞, ∂B
2
2(0)) be such that

4π
∫
B2

2r(x∞) |∇Φ∞|2 dL2 ≤ ε2

4 . Up to subsequences, we can repeat the argument of the two

previous steps and conclude that

dist(Φki(xki),K)→ 0, Φ∞(x∞) ∈ K,

where again K := conv(Φ∞(∂B2
r′(x∞))) for a suitable r′ ∈ (r, 2r). In particular we have

lim supi→∞ |Φki(xki)− Φ∞(x∞)| ≤ diamK ≤ ε
2 , which is the desired contradiction.

Step 5. Finally, let us turn to the last part of the statement. We can assume that ω is

connected. We already know that Φk → Φ∞ uniformly on ∂ω, so we can repeat the argument

of Step 2, with B2
r′(x) replaced by ω, and conclude that dist(Φk(z), conv(Φ∞(∂ω)))→ 0 for

all z ∈ ω, from which it follows that Φ∞(z) ∈ conv(Φ∞(∂ω)).
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Lemma 3.4.3. We have µ∞ = (Φ∞)∗ν∞ and, for any ω ⊂⊂ B2
2(0) with L2(∂ω) = 0,

(Φk)∗(1ωνk) ⇀ (Φ∞)∗(1ων∞)

as Radon measures in RQ.

Proof. We first show the second statement. Consider any nonnegative ρ ∈ C0
c (RQ). By

Lemma 3.4.2 we have ν∞(∂ω) = 0, so approximating 1ωρ(Φ∞) from above and below by

functions in C0
c (B2

2(0)) we get∫
B2

2(0)
ρ(Φ∞)1ω dνk →

∫
B2

2(0)
ρ(Φ∞)1ω dν∞.

Moreover, thanks to the local uniform convergence Φk → Φ∞ and νk(B2
2(0)) ≤ 1

2C
′‖N‖L∞ ,∣∣∣∣ ∫

B2
2(0)

ρ(Φk)1ω dνk −
∫
B2

2(0)
ρ(Φ∞)1ω dνk

∣∣∣∣ ≤ 1

2
C ′‖N‖L∞‖ρ(Φk)− ρ(Φ∞)‖L∞(ω) → 0

as k →∞ and the claim follows, since∫
RQ

ρ d(Φk)∗(1ωνk) =

∫
B2

2(0)
ρ(Φk)1ω dνk →

∫
B2

2(0)
ρ(Φ∞)1ω dν∞ =

∫
RQ

ρ d(Φ∞)∗(1ων∞).

Choosing ω = B2
2−2−j (0) we get∫

RQ
ρ dµ∞,j = lim

k→∞

∫
RQ

ρ dµk,j =

∫
B2

2−2−j
(0)
ρ(Φ∞) dν∞.

The first statement now follows by letting j →∞.

Lemma 3.4.4. Let G′ ⊆ B2
2(0) denote the set of points z where ∇Φ∞(z) has full rank and

both −
∫
B2
r (z) |m−m(z)| dL2 and −

∫
B2
r (z) |∇Φ∞ −∇Φ∞(z)|2 dL2 are infinitesimal as r → 0.

Then m = 0 and ∇Φ∞ = 0 a.e. on B2
2(0) \ G′.

This statement was essentially already proved in Theorem 2.5.3. We present here a

simpler argument.

Proof. Let G be the set of Lebesgue points for ∇Φ∞. It suffices to show that m = 0 a.e. on

G \ G′ and |∇Φ∞|2 ≤ 2m a.e. By Lemma A.2 and the area formula,

H2(Φ∞(G \ G′)) ≤
∫
G\G′
|∂1Φ∞ ∧ ∂2Φ∞| dL2 = 0.

We can thus cover Φ∞(G \ G′) with countably many balls BQ
si(pi) such that

∑
i s

2
i is

arbitrarily small. By assumption (3.4.2), µ∞(BQ
si(pi)) ≤ lim infk→∞ µk(B

Q
si(pi)) ≤ C ′′πs2

i .

Hence, by Lemma 3.4.3,∫
G\G′

mdL2 = ν∞(G \ G′) ≤ ν∞
(
Φ−1
∞
(⋃

iB
Q
si(pi)

))
= µ∞

(⋃
iB

Q
si(pi)

)
≤ C ′′π

∑
i

s2
i
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is arbitrarily small. We deduce that
∫
G\G′mdL2 = 0. Moreover, for any open sets

V ⊂⊂W ⊆ B2
2(0) we have∫

V
|∇Φ∞|2 dL2 ≤ lim inf

k→∞

∫
V
|∇Φk|2 dL2 ≤ 2 lim sup

k→∞
νk(V ) ≤ 2ν∞(V ) ≤ 2

∫
W
mdL2

and we infer that
∫
W |∇Φ∞|2 dL2 ≤ 2

∫
W mdL2. Since W is arbitrary, we deduce that

|∇Φ∞|2 ≤ 2m a.e. and the claim follows.

Lemma 3.4.5. There exists N∞ ∈ L∞(B2
2(0),N \ {0}) bounded above by C ′′, i.e. the

constant in (3.4.2), and

m = N∞|∂1Φ∞ ∧ ∂2Φ∞| a.e.

Moreover, Φ∞ satisfies |∇Φ∞|2 ≤ 2N∞|∂1Φ∞ ∧ ∂2Φ∞| a.e.

Proof. The proof is analogous (but simpler, since we have fewer error terms) to the one of

Theorem 2.5.3.

Proof of Theorem 3.4.1. We let gij := ∂iΦ∞ · ∂jΦ∞ and we define the Beltrami coefficient

µ :=
g11 − g22 + 2ig12

g11 + g22 + 2
√
g11g22 − g2

12

1B2
2(0)∩G′ on C.

In particular, µ = 0 on C \B2
2(0). Moreover, a.e. on the set G′ we have

|µ|2 ≤ (g11 − g22)2 + 4g2
12

(g11 + g22)2 + 4(g11g22 − g2
12)

=
(g11 + g22)2 − 4(g11g22 − g2

12)

(g11 + g22)2 + 4(g11g22 − g2
12)
≤ N2

∞ − 1

N2
∞ + 1

,

since (g11 + g22)2 = |∇Φ∞|4, which by Lemma 3.4.5 is bounded by 4N2
∞|∂1Φ∞ ∧ ∂2Φ∞|2 =

4N2
∞(g11g22 − g2

12). We know that ‖N∞‖L∞ ≤ C ′′, so by [56, Theorem 4.24] there exists a

(C ′′)2-quasiconformal homeomorphism ϕ∞ ∈W 1,2
loc (C,C), with ϕ∞(0) = 0, satisfying a.e.

∂zϕ∞ = µ∂zϕ∞. (3.4.6)

We recall that the inverse map is also a (C ′′)2-quasiconformal homeomorphism in W 1,2
loc (C,C)

(see [56, Theorem 4.10 and Proposition 4.2]) and that both ϕ∞ and ϕ−1
∞ map negligible sets

to negligible sets (see [56, Lemma 4.12]). Moreover, using the chain rule (which holds by [65,

Lemma III.6.4]), we get that ϕ∞ has invertible differential a.e. and

0 = ∂w(ϕ∞ ◦ ϕ−1
∞ (w)) = (∂zϕ∞) ◦ ϕ−1

∞ ∂w(ϕ−1
∞ ) + (∂zϕ∞) ◦ ϕ−1

∞ ∂w

(
ϕ−1
∞
)
.

Being also ∂zϕ∞ 6= 0 a.e. (by (3.4.6)), we deduce that

∂w

(
ϕ−1
∞
)

= ∂w(ϕ−1
∞ ) = −(µ ◦ ϕ−1

∞ )∂w(ϕ−1
∞ )

a.e. From now on, ϕ∞ will denote the homeomorphism restricted to B2
2(0). Let Ω∞ :=

ϕ∞(B2
2(0)). By the chain rule again, we have Φ∞ ◦ ϕ−1

∞ ∈W
1,1
loc (Ω∞) and

∂w(Φ∞ ◦ ϕ−1
∞ ) · ∂w(Φ∞ ◦ ϕ−1

∞ )

= ((∂zΦ∞ · ∂zΦ∞ − 2µ∂zΦ∞ · ∂zΦ∞ + µ2∂zΦ∞ · ∂zΦ∞) ◦ ϕ−1
∞ )(∂w(ϕ−1

∞ ))2
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vanishes a.e., since µ =
g11+g22−

√
(g11+g22)2−((g11−g22)2+4g2

12)

g11−g22+2ig12
on the subset of G′ where ∇Φ∞

is not conformal, while on the complement of this set µ = 0. Hence, Φ∞ ◦ ϕ−1
∞ is weakly

conformal. By the area formula (see Lemma A.2),∫
Ω∞

∣∣∇(Φ∞ ◦ ϕ−1
∞ )
∣∣2 dL2 = 2

∫
Ω∞

∣∣∂1(Φ∞ ◦ ϕ−1
∞ ) ∧ ∂2(Φ∞ ◦ ϕ−1

∞ )
∣∣ dL2

= 2

∫
Ω∞

|∂1Φ∞ ∧ ∂2Φ∞| ◦ ϕ−1
∞
∣∣∂1ϕ

−1
∞ ∧ ∂2ϕ

−1
∞
∣∣ dL2

= 2

∫
B2

2(0)
|∂1Φ∞ ∧ ∂2Φ∞| dL2 ≤

∫
B2

2(0)
|∇Φ∞|2 dL2,

which shows that Φ∞ ◦ ϕ−1
∞ ∈W 1,2(Ω∞,RQ). The same computation shows that

ν∞ = N∞|∂1Φ∞ ∧ ∂2Φ∞|L2 = (ϕ−1
∞ )∗

(
1

2
N∞ ◦ ϕ−1

∞
∣∣∇(Φ∞ ◦ ϕ−1

∞ )
∣∣2L2

)
. (3.4.7)

This, together with (Φ∞)∗ν∞ = µ∞ (by Lemma 3.4.3) and assumption (3.4.2), shows that

(Ω∞,Φ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ ) satisfies (3.2.6).

Finally, for any ω ⊂⊂ Ω∞ with smooth boundary, we show that the varifold v associated

to (ω,Φ∞ ◦ϕ−1
∞ , N∞ ◦ϕ−1

∞ ) is stationary in RQ \Φ∞ ◦ϕ−1
∞ (∂ω). Setting ω′ := ϕ−1

∞ (ω), from

the C0
loc convergence Φk → Φ∞ we infer that the varifolds vk := v(ω′,Φk,Nk) converge (a

priori only after extracting a subsequence) to a stationary varifold ṽ in RQ \ Φ∞(∂ω′). This

varifold is rectifiable (see [98, Theorem 42.4]). But, since L2(∂ω′) = 0, Lemma 3.4.3 gives

‖vk‖ = (Φk)∗(1ω′νk) ⇀ (Φ∞)∗(1ω′ν∞)

= (Φ∞ ◦ ϕ−1
∞ )∗

(
1

2
N∞ ◦ ϕ−1

∞
∣∣∇(Φ∞ ◦ ϕ−1

∞ )
∣∣21ωL2

)
= ‖v‖

as Radon measures in RQ. Since ‖vk‖⇀ ‖ṽ‖ in RQ \Φ∞(∂ω′) = RQ \Φ∞ ◦ ϕ−1
∞ (∂ω) and a

rectifiable varifold is uniquely determined by the associated mass measure, we deduce that on

this open set ṽ = v. Since ṽ is stationary, the theorem follows.

Theorem 3.4.1 admits an analogous statement in which B2
2(0) is replaced by C. Let

(xk) ⊆ Ω be a sequence of points, together with a sequence of radii (rk) such that

limk→∞
dist(xk,∂Ω)

rk
=∞. Assuming `2k :=

∫
B2
rk

(xk) |∇Φ|2 dL2 > 0 eventually, we let

Φk := `−1
k (Φ(xk + rk·)− Φ(xk)), Nk := N(xk + rk·)

and notice that, for any R > 0, the functions Φk, Nk are eventually defined on B2
R(0).

Assume moreover that

• lim supk→∞

∫
B2
Rrk

(xk)
|∇Φ|2 dL2∫

B2
rk

(xk)
|∇Φ|2 dL2

<∞ for all R > 0;

• lim supk→∞(Φk)∗

(
1
2Nk|∇Φk|21B2

R(0)L2
)

(BQ
s (p)) ≤ C ′′πs2 for all s > 0, all p ∈ RQ and

all R > 0;



100 Chapter 3. Regularity of parametrized stationary varifolds

• `k → 0.

Theorem 3.4.6. Up to subsequences, there exist Φ∞ ∈W 1,2
loc (C,RQ), N∞ ∈ L∞(C,N \ {0})

and a quasiconformal homeomorphism ϕ∞ ∈W 1,2
loc (C,C), with ϕ∞(0) = 0, such that

Φk → Φ∞ in C0
loc(C,RQ), ∇Φk ⇀ ∇Φ∞ in L2

loc(C,RQ×2),

1

2
Nk|∇Φk|2L2 ⇀ N∞|∂1Φ∞ ∧ ∂2Φ∞|L2 as Radon measures.

Moreover, Φ∞ ◦ϕ−1
∞ is weakly conformal and (C,Φ∞ ◦ϕ−1

∞ , N∞ ◦ϕ−1
∞ ) is a local parametrized

stationary varifold in RQ.

Proof. Let Φ∞ ∈W 1,2
loc (C,RQ) be a local weak limit. Repeating the proof of Theorem 3.4.1

with R = 2j in place of 2 (for all j ≥ 1) and using a diagonal argument, up to subsequences

we get Φk → Φ∞ in C0
loc(C,RQ) and, assuming without loss of generality that

ν∞,j := lim
k→∞

1

2
Nk|∇Φk|21B2

2j
(0)L2

exists, we also get that

ν∞,j = N∞|∂1Φ∞ ∧ ∂2Φ∞|1B2
2j

(0)L2

for some N∞ ∈ L∞(C,N \ {0}) with ‖N∞‖L∞ ≤ C ′′, as well as

|∇Φ∞|2 ≤ 2N∞|∂1Φ∞ ∧ ∂2Φ∞|

a.e. Assuming also that limk→∞(Φk)∗

(
1
2Nk|∇Φk|21B2

2j
(0)L2

)
exists for all j, we can set

ν∞ := lim
j→∞

ν∞,j , µ∞ := lim
j→∞

lim
k→∞

(Φk)∗

(
1

2
Nk|∇Φk|21B2

2j
(0)L2

)
and, with the same proof as Lemma 3.4.3, we have again µ∞ = (Φ∞)∗ν∞. The remainder of

the proof is completely analogous to the one of Theorem 3.4.1, using [56, Theorem 4.30] in

order to build the quasiconformal homeomorphism ϕ∞ : C→ C.

3.5 Regularity in the general case

This section is devoted to the proof of the main regularity result (see Theorem 3.5.7 and

Corollary 3.5.8 below). We first show a removable singularity criterion. Its proof consists of

a standard capacity argument in the target RQ and could be well known to the expert

community. We include it both for the reader’s convenience and because it is the only place

where the technical assumption (3.2.6) is used.

Lemma 3.5.1. Let (Ω,Φ, N) be a local parametrized stationary varifold in M (possibly

M = RQ). Assume that Φ satisfies

−∆Φ = A(Φ)(∇Φ,∇Φ)

in the distributional sense on Ω \ S, for some relatively closed S ⊆ Ω with H1(Φ(S)) = 0.

Then the equation is satisfied on the whole Ω and, as a consequence, Φ is C∞-smooth.
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Proof. Let v ∈ C∞c (Ω). For any ε > 0 we can cover the compact set K := Φ(S ∩ spt (v)) by

a finite union of balls
⋃
i∈I B

Q
ri (pi) with centers on this set and

∑
i ri < ε. Let ρi ∈ C∞(RQ)

be a function which equals 0 on BQ
ri(pi), 1 on RQ \BQ

2ri
(pi) and has ‖∇ρi‖L∞ ≤ 2r−1

i .

Since vε := v
∏
i(ρi ◦ Φ) vanishes near S ∩ spt (v), the function vε ∈ W 1,2 ∩ L∞(Ω)

is supported in a compact subset of Ω \ S. Thus, using the hypothesis and a standard

approximation argument,∫
Ω
〈∇Φ,∇vε〉 dL2 =

∫
Ω
A(Φ)(∇Φ,∇Φ)vε dL2. (3.5.1)

We claim that, as ε→ 0, the left-hand side converges to
∫

Ω\Φ−1(K) 〈∇Φ,∇v〉 dL2. Indeed,

let us write

∇vε =

(∏
i

ρi ◦ Φ

)
∇v + v

∑
i

(∏
j 6=i

ρj ◦ Φ

)
∇(ρi ◦ Φ).

The first term converges to 1Ω\Φ−1(K)∇v in L2(Ω,R2). On the other hand, by (3.2.6),∣∣∣ ∫
Ω

〈
∇Φ, v

∑
i

(∏
j 6=i

ρj ◦ Φ
)
∇(ρi ◦ Φ)

〉
dL2

∣∣∣
≤ 2‖v‖L∞

∑
i

r−1
i

∫
Φ−1(BQ2ri

(pi))
|∇Φ|2 dL2

≤ 4‖v‖L∞
∑
i

r−1
i ‖vΩ‖(BQ

2ri
(pi)) = 4‖v‖L∞

∑
i

O(ri)→ 0

as ε→ 0. This establishes the claim. Moreover, the right-hand side of (3.5.1) converges to∫
Ω\Φ−1(K)A(Φ)(∇Φ,∇Φ)v dL2. Finally, in order to establish (3.5.1) with v in place of vε,

we observe that ∇Φ = 0 a.e. on Φ−1(K): indeed, by the area formula (see Lemma A.2),∫
Φ−1(K)

|∇Φ|2 dL2 = 2

∫
K

( ∑
y∈Φ−1(p)∩G

1

)
dH2(p) = 0,

since H2(K) = 0. The smoothness of Φ follows from the continuity of Φ and [82,

Section 3.4].

Definition 3.5.2. Given a local parametrized stationary varifold (Ω,Φ, N), a point x ∈ Ω

is said to be admissible if Φ is nonconstant in any neighborhood of x and

lim inf
r→0

∫
B2

2r(x) |∇Φ|2 dL2∫
B2
r (x) |∇Φ|2 dL2

<∞.

We call A ⊆ Ω the Borel set of the admissible points.

We now show that the image of the set of non-admissible points is very small.

Lemma 3.5.3. The set Φ(Ω \ A) has Hausdorff dimension 0, i.e.

Hs(Φ(Ω \ A)) = 0

for any real s > 0.
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Proof. We can assume that Ω is bounded. Fix s > 0 and two arbitrary parameters δ, ε > 0

and choose a real number α > 4s−1. For any x ∈ Ω \ A we have∫
B2

2−k−1 (x)
|∇Φ|2 dL2 ≤ 2−α

∫
B2

2−k
(x)
|∇Φ|2 dL2

for all k ≥ k0 (for some threshold k0 ≥ 0 depending on x), so∫
B2

2−k
(x)
|∇Φ|2 dL2 ≤ (2−k)α

(
2k0α

∫
B2

2−k0
(x)
|∇Φ|2 dL2

)
= o((2−k)4/s).

Hence we can find, for all x ∈ Ω \ A, a radius rx <
1
2 dist(x, ∂Ω) such that∫

B2
2rx

(x)
|∇Φ|2 dL2 ≤ εr4/s

x , diam Φ(B2
rx(x)) < δ

(by continuity of Φ). Finally, Besicovitch covering theorem gives us a countable subcollection

of balls (B2
ri(xi)) such that Ω \ A ⊆

⋃
iB

2
ri(xi) and

∑
i 1B2

ri
(xi) is bounded everywhere by a

universal constant. Thus, by inequality (3.2.3) (or (3.2.4) if M = RQ),∑
i

(
diam Φ(B2

ri(xi))
)s ≤ C∑

i

(∫
B2

2ri
(xi)
|∇Φ|2 dL2

)s/2
≤ Cεs/2

∑
i

r2
i

≤ Cεs/2
∑
i

L2(B2
ri(xi)) ≤ Cε

s/2L2(Ω).

Since δ and ε were arbitrary, we deduce Hs(Φ(Ω \ A)) = 0.

Let (Ω,Φ, N) be a local parametrized stationary varifold. Assume moreover that Ω

is bounded, Φ extends continuously to Ω with Φ(Ω) ∩Φ(∂Ω) = ∅ and vΩ is stationary

in M \ Φ(∂Ω). Recall that in this situation the upper semicontinuous function Ñ is

finite (see Remark 3.2.11). We also assume that supΩ Ñ is finite. For any x ∈ Ω and any

r ≤ dist(x, ∂Ω) we define `(x, r) :=
(∫

B2
r (x) |∇Φ|2 dL2

)1/2
.

We now use a compactness argument, together with Theorem 3.4.1 and Theorem 3.3.7, in

order to prove that, under some technical assumptions, the Dirichlet energy does not decay

too fast (in a uniform, quantitative way). The main underlying idea is that this happens for

a holomorphic function at a zero whose order is controlled, but we have to take care of the

possible distortion caused by the quasiconformal homeomorphism appearing in the blow-up.

Lemma 3.5.4. For every C ′ > 0 there exists ε = ε(Ω,Φ, N,C ′) < 1
2 with the following

property: whenever

• x ∈ ω ⊂⊂ Ω and 0 < r < 1
2 dist(x, ∂ω),

• `(x, r) < εdist(Φ(x),Φ(∂ω)),

• 0 <
∫
B2

2r(x) |∇Φ|2 dL2 < C ′
∫
B2
r (x) |∇Φ|2 dL2,

• ‖vω‖(B
Q
s (Φ(x)))
πs2

∈ (Ñ(x)− ε, Ñ(x) + ε) for all 0 < s < ε−1`(x, r),
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there exists r′ ∈
(
εr, r2

)
such that

∫
B2

2r′ (x) |∇Φ|2 dL2 < C
∫
B2
r′ (x) |∇Φ|2 dL2, for some C

depending only on supΩ Ñ .

Proof. Assume by contradiction that the statement is false for all ε = 2−k. We can then find

a sequence of points xk ∈ ωk and radii rk <
1
2 dist(xk, ∂ωk) such that (3.4.1) and (3.4.3) are

satisfied, as well as Ñ(xk)→ N ∈ [1, supΩ Ñ ] (up to subsequences),

‖vωk‖(B
Q
s (Φ(xk)))

πs2
∈ (Ñ(xk)− 2−k, Ñ(xk) + 2−k) for 0 < s < 2k`(xk, rk), (3.5.2)∫

B2
2r′ (xk)

|∇Φ|2 dL2 ≥ C
∫
B2
r′ (xk)

|∇Φ|2 dL2 for 2−krk < r′ <
rk
2

(3.5.3)

(C will be chosen at the end of the proof). Moreover, using the notation introduced in

Section 3.4, the varifolds vk := (`−1
k (· − Φ(xk)))∗vωk have generalized mean curvature

bounded by O(`k) (in L∞) in

RQ \ `−1
k (Φ(∂ωk)− Φ(xk)) ⊇ BQ

2k
(0).

Hence, up to subsequences, the varifolds vk converge to a stationary varifold v∞ in RQ.

Moreover, by (3.5.2), we have

‖v∞‖(BQ
s (0))

πs2
=
‖v∞‖(B

Q
s (0))

πs2
= N.

The varifold v∞ is rectifiable and conical, with density in [1, N ] on spt (v∞) (see e.g. the

proofs of [98, Corollary 42.6 and Theorem 19.3]). In particular, since µk ≤ ‖vk‖, (3.4.2)

follows, with C ′′ := N . So, up to subsequences, the conclusions of Theorem 3.4.1 hold. We

remark that Φ∞ satisfies∫
B2

1(0)
N∞|∂1Φ∞ ∧ ∂2Φ∞| dL2 = ν∞(B2

1(0)) = lim
k→∞

νk(B
2
1(0)) =

1

2

and in particular it is nonconstant. The varifold v∞ has also integer multiplicity by [3,

Theorem 6.4], thus it can be expressed as a cone (with vertex 0) over some stationary integer

1-rectifiable varifold w in SQ−1 with density in [1, N ] ‖w‖-a.e.

By the structure theorem in [5, Section 3], w is supported in a finite union of geodesic

curves. Hence, v∞ is supported in a finite union of planes through the origin. Letting

Ψ := Φ∞ ◦ ϕ−1
∞ , by (3.4.7) and Lemma 3.4.3 we have∥∥v(Ω∞,Ψ,N∞◦ϕ−1

∞ )

∥∥ = (Φ∞)∗ν∞ = µ∞ ≤ ‖v∞‖.

So, using Proposition 3.2.4, we deduce that Ψ(Ω∞) ⊆ spt (‖v∞‖). Hence, Theorem 3.3.7

applies: we obtain that Ψ takes values in a plane and is a holomorphic function (once

this plane is suitably identified with C). Furthermore, by Lemma 3.4.5, we can assume

‖N∞‖∞ ≤ C ′′ = N . Now, by Proposition 3.2.8 and Lemma 3.4.5,

1

2
Ñ(xk + rk·)|∇Φk|21B2

2(0)L2 = νk ⇀ N∞|∂1Φ∞ ∧ ∂2Φ∞|L2,
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so (3.5.3) gives∫
B2

2r(0)
|∂1Φ∞ ∧ ∂2Φ∞| dL2 ≥ C

(supΩ Ñ)2

∫
B2
r (0)
|∂1Φ∞ ∧ ∂2Φ∞| dL2 for r <

1

2
.

Let k ≥ 1 be the biggest integer such that |Ψ(w)| = O
(
|w|k

)
. We claim that

k ≤ N.

Indeed, since Ψ is nonconstant and holomorphic, we have Kw = {w} for all w ∈ Ω∞ and the

function Ñ for the local parametrized stationary varifold (Ω∞,Ψ, N∞ ◦ ϕ−1
∞ ) is everywhere

finite (see Remark 3.2.11). We call it N ′ in order not to confuse it with the same function for

(Ω,Φ, N). Since the density of the varifold v(Ω∞,Ψ,N∞◦ϕ−1
∞ ) is bounded everywhere by N

(being this true for v∞), the same argument used to prove Proposition 3.2.6 gives

k ≤
k∑
j=1

N ′(wj) ≤ N.

whenever w1, . . . , wk ∈ Ω∞ are distinct points with the same image. Such points exist

because Ψ is a k-to-1 map near 0. This establishes our claim and we deduce that

lim
r→0

∫
B2

2r(0) |∇Ψ|2 dL2∫
B2
r (0) |∇Ψ|2 dL2

= 22k ≤ 22N .

As was shown in the proof of Theorem 3.4.1, ϕ∞ is an N
2
-quasiconformal homeomorphism.

Since N ≤ supΩ Ñ , we claim that there exists a constant K ∈ N depending only on supΩ Ñ

such that, for r > 0 small enough, there exists s = s(r) > 0 with

B2
s (0) ⊆ ϕ∞(B2

r (0)) ⊆ ϕ∞(B2
2r(0)) ⊆ B2

2Ks(0). (3.5.4)

Let s := minz∈∂B2
r (0) |ϕ∞(z)|, s′ := maxz∈∂B2

2r(0) |ϕ∞(z)| and call z1 and z2 two points

where the minimum and the maximum are attained, respectively. If r is small enough we

have B
2
s′(0) ⊆ ϕ∞(B2

2(0)). Letting A := B2
s′(0) \B2

s(0) and denoting by M(·) the module of

a ring domain (see [65, Section I.6.1] for the definition), by [65, Theorem I.7.1] we have

log

(
s′

s

)
= M(A) ≤ N2

M(ϕ−1
∞ (A)). (3.5.5)

The ring domain ϕ−1
∞ (A) separates 0 and z1 from z2 and ∞ (in Ĉ), so Teichmüller’s module

theorem (see [65, Section II.1.3]), together with |z2| = 2|z1|, implies that M(ϕ−1
∞ (A))

is bounded by a constant depending only on supΩ Ñ . Since ϕ∞(B2
r (0)) ⊇ B2

s (0) and

ϕ∞(B2
2r(0)) ⊆ B2

s′(0), (3.5.4) follows from (3.5.5). Thus, by the area formula,

C

(supΩ Ñ)2
≤

∫
B2

2r(0) |∂1Φ∞ ∧ ∂2Φ∞| dL2∫
B2
r (0) |∂1Φ∞ ∧ ∂2Φ∞| dL2

≤

∫
B2

2Ks(r)
(0) |∇Ψ|2 dL2∫

B2
s(r)

(0) |∇Ψ|2 dL2
→ (22k)K ≤ 22KN

as r → 0. We deduce C ≤ (supΩ Ñ)222K supΩ Ñ and this is a contradiction once we choose C

so large that this inequality fails.
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We need another technical result, which is again obtained by means of a compactness

argument.

Lemma 3.5.5. For every δ ∈ (0, 1) there exists ε′ = ε′(Ω,Φ, N, δ) with the following

property: whenever

• x ∈ ω ⊂⊂ Ω and 0 < r < 1
2 dist(x, ∂ω),

• `(x, r) < ε′ dist(Φ(x),Φ(∂ω)),

• 0 <
∫
B2

2r(x) |∇Φ|2 dL2 < C
∫
B2
r (x) |∇Φ|2 dL2, with C given by Lemma 3.5.4,

• ‖vω‖(B
Q
s (Φ(x)))
πs2

∈ (Ñ(x)− ε′, Ñ(x) + ε′) for all 0 < s < (ε′)−1`(x, r),

we have
∫
B2
δr(0) |∇Φ|2 dL2 ≥ ε′

∫
B2
r (0) |∇Φ|2 dL2.

Proof. Arguing by contradiction as in the proof of Lemma 3.5.4, we would get a local

parametrized stationary varifold (Ω∞,Φ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ ) with∫
B2
δ (0)
|∇Φ∞|2 dL2 = 0.

But then Ψ := Φ∞ ◦ ϕ−1
∞ could be identified with a nonconstant holomorphic function,

on the connected domain Ω∞ = ϕ∞(B2
2(0)), with uncountably many zeroes. This is a

contradiction.

Corollary 3.5.6. If x lies in the admissible set A, then there exists an arbitrarily small

r > 0 such that
∫
B2

2r(x) |∇Φ|2 dL2 < C
∫
B2
r (0) |∇Φ|2 dL2. Moreover,

lim sup
r→0

∫
B2

2r(0) |∇Φ|2 dL2∫
B2
r (0) |∇Φ|2 dL2

<∞.

Proof. Since x ∈ A, we have lim infr→0

∫
B2

2r(0)
|∇Φ|2 dL2∫

B2
r (0)
|∇Φ|2 dL2

< C ′ for some finite C ′. Let

Kx ⊆ ω ⊂⊂ Ω with ω disjoint from Φ−1(Φ(x)) \Kx and choose a radius r such that∫
B2

2r(0)
|∇Φ|2 dL2 < C ′

∫
B2
r (0)
|∇Φ|2 dL2

and r so small that it satisfies the other hypotheses of Lemma 3.5.4 with both ε = ε(Ω,Φ, N,C ′)

and ε = ε(Ω,Φ, N,C) (the density assumptions for ‖vω‖ are eventually satisfied by definition

of Ñ). Then, by Lemma 3.5.4, we can find

ε(Ω,Φ, N,C ′)r < r1 <
r

2

such that
∫
B2

2r1
(0) |∇Φ|2 dL2 < C

∫
B2
r1

(0) |∇Φ|2 dL2. This new radius r1 satisfies the

hypotheses of Lemma 3.5.4 with ε = ε(Ω,Φ, N,C), so there exists

ε(Ω,Φ, N,C)r1 < r2 <
r1

2
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such that
∫
B2

2r2
(0) |∇Φ|2 dL2 < C

∫
B2
r2

(0) |∇Φ|2 dL2. Again, r2 satisfies the hypotheses of

Lemma 3.5.4 with ε = ε(Ω,Φ, N,C), so we can find ε(Ω,Φ, N,C)r2 < r3 <
r2
2 and so on.

Eventually rk satisfies the hypotheses of Lemma 3.5.5 with ε′ = ε′(Ω,Φ, N, ε(Ω,Φ, N,C)).

Thus, ∫
B2
rk+1

(0)
|∇Φ|2 dL2 ≥ ε′

∫
B2
rk

(0)
|∇Φ|2 dL2.

Any radius s > 0 small enough lies in some interval [rk+1, rk] and 2s ≤ rk−1. The result

follows.

We are finally ready to show the full regularity result for parametrized stationary

varifolds.

Theorem 3.5.7. Let (Ω,Φ, N) be a local parametrized stationary varifold in M. Then Φ

solves −∆Φ = A(Φ)(∇Φ,∇Φ) and, on each connected component where Φ is nonconstant, Φ

is a C∞-smooth branched immersion and N is a.e. constant.

For the definition of branched immersion, see e.g. [47, Definitions 1.2 and 1.6].

Proof. Assume that Ω′ ⊂⊂ Ω satisfies Φ(Ω′) ∩ Φ(∂Ω′) = ∅ and supΩ′ Ñ <∞. We show that

the partial differential equation holds in Ω′ (the full result will be obtained at the end of the

proof). More precisely, letting

γ :=
1

3
ε
(
Ω′,Φ

∣∣
Ω′
, N
∣∣
Ω′
, C
)
< 1

(where C is the constant given by Lemma 3.5.4, depending only on supΩ′ Ñ), we will show

that the equation holds on the open set Ωk := Ω′ ∩ {γ−1Ñ < k + 1}, by induction on k. The

base case k = 0 is trivial, since {Ñ < γ} = ∅. Assume that the equation holds for k − 1.

We call Ck the set of accumulation points of Ωk \ Ωk−1 in Ωk, i.e. its derived set in Ωk.

Notice that Ck ⊆ Ωk \ Ωk−1 is closed in Ωk. We also set Ak := Ck ∩ A and Bk := Ck \ Ak.
Notice that, by Lemma 3.5.1, the equation holds in the open set Ωk \ Ck, since here the

points with kγ ≤ Ñ(·) < (k + 1)γ form a discrete set.

Step 1. We first show that Ak is relatively open in Ck, so that Bk is closed in Ωk.

Let x0 ∈ Ak. First of all, by Remark 3.2.12, we can find Kx0 ⊆ ω ⊂⊂ Ω′ with ω disjoint

from Φ−1(Φ(x0)) \Kx0 , Φ(ω) ∩ Φ(∂ω) = ∅ and ω ∩ Φ−1(Φ(y)) = Ky whenever y ∈ ω has

kγ ≤ Ñ(y) < (k + 1)γ (thanks to the fact that γ < 1).

Let ε := ε
(
Ω′,Φ

∣∣
Ω′
, N
∣∣
Ω′
, C
)

and assume that xj → x0, with xj ∈ ω ∩ Ck. In particular,

by definition of Ñ , the density of vω at Φ(xj) coincides with Ñ(xj). Using Corollary 3.5.6,

we choose a radius 0 < r < 1
2 dist(x0, ∂ω) with∫

B2
2r(x0)

|∇Φ|2 dL2 < C

∫
B2
r (x0)

|∇Φ|2 dL2, `(x0, r) < εdist(Φ(x0),Φ(∂ω)),

‖vω‖(B
Q
ε−1`(x0,r)

(Φ(x0)))

π(ε−1`(x0, r))2
< Ñ(x0) + γ.
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Eventually all the assumptions of Lemma 3.5.4 are satisfied by xj ∈ ω (with Ω′ and C ′ := C),

provided `(x0, r) is small enough: eventually we have BQ
ε−1`(xj ,r)

(Φ(xj)) ∩ Φ(∂ω) = ∅, so by

the monotonicity formula we get, for 0 < s < ε−1`(xj , r),

Ñ(xj) ≤ e(
√

2‖A‖∞)s ‖vω‖(B
Q
s (Φ(xj)))

πs2
≤ e(

√
2‖A‖∞)ε−1`(xj ,r)

‖vω‖(BQ
ε−1`(xj ,r)

(Φ(xj)))

π(ε−1`(xj , r))2

≤ e(
√

2‖A‖∞)ε−1`(xj ,r)(Ñ(x0) + γ) ≤ (e(
√

2‖A‖∞)ε−1`(x0,r) + oj(1))
Ñ(x0) + γ

Ñ(x0) + 2γ
(Ñ(xj) + ε)

eventually and, since
Ñ(xj)

Ñ(xj)−ε
≥ Ñ(x0)−γ

Ñ(x0)−2γ
, it suffices to impose additionally that

e(
√

2‖A‖∞)ε−1`(x0,r) < min

{
Ñ(x0)− γ
Ñ(x0)− 2γ

,
Ñ(x0) + 2γ

Ñ(x0) + γ

}
.

By Lemma 3.5.4 applied to the parametrized varifold
(
Ω′,Φ

∣∣
Ω′
, N
∣∣
Ω′

)
and the point xj ∈ ω,

for j big enough there exists r′ < r
2 (depending on j) such that

∫
B2

2r′ (xj)
|∇Φ|2 dL2 <

C
∫
B2
r′ (xj)

|∇Φ|2 dL2. Since r′ satisfies again all the hypotheses of Lemma 3.5.4, we can

iterate and deduce that xj ∈ A. Hence, xj ∈ Ak eventually.

Step 2. We now claim that Ñ(x) is an integer for any admissible point x ∈ Ω′ ∩ A.

Indeed, as in the proof of Lemma 3.5.4, we can apply Theorem 3.4.1 with xk := x and a

suitable sequence of radii rk → 0: whenever Kx ⊆ ω̃ ⊂⊂ Ω′ has its closure disjoint from

Φ−1(Φ(x)) \Kx, the varifolds (`−1
k (· − Φ(xk)))∗vω̃ converge to a stationary cone v∞ having

density at most Ñ(x) at 0, so we have ‖v∞‖(BQ
s (p)) ≤ Ñ(x)πs2 (see the proof of [98,

Theorem 42.4]) and thus (3.4.2) holds with C ′′ := Ñ(x).

We obtain a local parametrized stationary varifold (Ω∞,Φ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ ) with

Ψ := Φ∞ ◦ ϕ−1
∞ nonconstant and holomorphic (again by Theorem 3.3.7, since the mass

measure of this parametrized varifold is bounded by the mass measure of v∞, which is an

integer rectifiable stationary cone).

Let ω′ ⊂⊂ B2
2(0) be a smooth neighborhood of 0 with 0 6∈ Φ∞(∂ω′) and Φ−1

∞ (0)∩ω′ = {0}.
Using the notation of Section 3.4, from the locally uniform convergence Φk → Φ∞ we infer

that eventually Φ(x) 6∈ Φ(x+ rk∂ω
′) and, for all 0 < s < dist(0,Φ∞(∂ω′)),

Ñ(x) ≤ lim
k→∞

‖vx+rkω′‖(B
Q
`ks

(Φ(x)))

π(`ks)2
= lim

k→∞

(Φk)∗(1ω′νk)(B
Q
s (0))

πs2

=
(Φ∞)∗(1ω′ν∞)(BQ

s (0))

πs2
,

by the definition of Ñ , the monotonicity formula and Lemma 3.4.3. We deduce that, with

the same notation as in the proof of Lemma 3.5.4, N ′(0) ≥ Ñ(x). We also have the converse

inequality N ′(0) ≤ Ñ(x), since the density of µ∞ is everywhere at most C ′′ = Ñ(x). This

argument also shows that Ψ−1(0) = 0 and
∑r

i=1N
′(zi) ≤ Ñ(x0) whenever zi ∈ Ω∞ are

distinct points in a fiber Ψ−1(p) (since zi contributes by N ′(zi) to the density of µ∞ at p).
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Finally, arguing as in the proof of Theorem 3.3.3, we conclude that N ′(0) is integer since

it equals the constant density of a suitable localization of (Ω∞,Ψ, N∞ ◦ ϕ−1
∞ ) (in an open

subset of Ψ(Ω∞)). This establishes our claim.

Step 3. We show by contradiction that there cannot be any x0 ∈ ∂Ak ∩Ak ∩Ωk. Indeed,

if this happens, then we can find x1 ∈ Ωk \ Ak with

|x1 − x0| <
1

2
min {dist(x0,Bk), dist(x0, ∂Ωk)},

thanks to the fact that the latter is positive, as Bk is closed in Ωk. We infer that

r := dist(x1, Ck) <
1

2
min {dist(x0,Bk),dist(x0, ∂Ωk)},

there exists y0 ∈ Ck with |y0 − x1| = r and necessarily we have

y0 ∈ Ak, B2
r (x1) ⊆ Ωk \ Ck.

Let H ⊂ C be the unique open half-plane with 0 ∈ ∂H and B2
r (x1) ⊆ y0 + H. By

definition of Ck, we can find a sequence yj → y0 with yj ∈ Ωk \ Ωk−1 and yj 6= y0.

We can assume that
yj−y0

|yj−y0| → y. Let rj := |yj − y0| and set `2j :=
∫
B2
rj

(y0) |∇Φ|2 dL2,

Φj := `−1
j (Φ(y0 + rj ·)− Φ(y0)), Nj := N(y0 + rj ·). Thanks to Corollary 3.5.6, we can apply

Theorem 3.4.6 and obtain, up to subsequences, a limiting local parametrized stationary

varifold (C,Φ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ ).

Ωk

Ak

Bk

Bk

B2
r (x1)

y0 +H

x0

x1
y0

With the same notation and the same argument used in Step 2, we get N ′(0) = Ñ(y0).

Actually, we also have N ′(ϕ∞(y)) ≥ kγ: letting ω′′ be a smooth neighborhood of y with

Φ∞(y) 6∈ Φ∞(∂ω′′) and Φ−1
∞ (Φ∞(y)) ∩ ω′′ = {y}, as soon as Φj(r

−1
j (yj − y0)) 6∈ Φj(∂ω

′′)

and r−1
j (yj − y0) ∈ ω′′ the varifold

v(ω′′,Φj ,Nj) = (`−1
j (· − Φ(y0)))∗v(y0+rjω′′,Φ,N)
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has density at least Ñ(yj) ≥ kγ at `−1
j (Φ(yj) − Φ(y0)) = Φj(r

−1
j (yj − y0)) → Φ∞(y),

has infinitesimal mean curvature in RQ \ Φj(∂ω
′′) and its mass measure converges to

(Φ∞)∗(1ω′′ν∞), by Lemma 3.4.3. Thus, by the monotonicity formula, N ′(ϕ∞(y)) (i.e. the

density of this last measure at Φ∞(y)) is at least kγ.

Since kγ + 1 > Ñ(y0), as observed in Step 2 we must have Φ−1
∞ (0) = {0} and

Φ−1
∞ (Φ∞(y)) = {y}. Recall that, as in Step 2, the map Ψ := Φ∞ ◦ ϕ−1

∞ takes values in a

plane and is an entire holomorphic function, up to suitable identification of this plane with C.

Since it has two values having only one preimage, by Picard’s great theorem it does not have

an essential singularity at ∞ and is thus a polynomial. Actually, Picard’s great theorem can

be easily avoided: by Corollary 3.5.6 the Dirichlet energy
∫
B2
R(0) |∇Φ∞|2 dL2 grows at most

polynomially in R and, by inspecting the proof of [56, Theorem 4.30] (as well as inequalities

(4.21) and (4.24) in [56]), we see that supz∈B2
R(0)

∣∣ϕ−1
∞
∣∣(z) also grows at most polynomially,

hence the same is true for
∫
B2
R(0) |∇Ψ|2 dL2 and thus (by the mean value property for

harmonic functions) for supz∈B2
R(0) |∇Ψ|(z), i.e. Ψ is a polynomial. Since Ψ−1(0) = {0}, it

must have the form

Ψ(z) = czk

for some k and finally the fact that Ψ−1(Φ∞(y)) is a singleton gives k = 1. We deduce that

Ψ′(0) 6= 0. Arguing as in the proof of Corollary 3.3.4, we get N∞ ◦ ϕ−1
∞ = N ′(0) ≥ kγ a.e.

near 0.

We finally show that Φj → Φ∞ in W 1,2
loc (H,RQ). In particular, for any small ball

B ⊂⊂ H close enough to 0, this will contradict the estimate

κγ

∫
B
|∂1Φ∞ ∧ ∂2Φ∞| dL2 ≤ ν∞(B) = lim

j→∞
νj(B)

=
1

2
lim
j→∞

∫
B
Nj |∇Φj |2 dL2 ≤ α lim

j→∞

∫
B
|∂1Φj ∧ ∂2Φj | dL2,

where α is the biggest integer smaller than κγ (the last inequality comes from the fact that

Nj ∈ N and Nj = Ñ(y0 + rj ·) a.e. on {∇Φj 6= 0}, together with the fact that eventually

y0 + rjB ⊆ B2
r (x1) ⊆ Ωk \ Ck).

Fix any U ⊂⊂ H . Since eventually −∆Φj = `jA(Φ(y0 + rj ·))(∇Φj ,∇Φj) on U and the

right-hand side converges to 0 in L1(U,RQ), we get

−∆Φ∞ = 0

on U and hence (since U was arbitrary) on H . Fix any nonnegative ρ ∈ C∞c (H) with ρ = 1

on U . Setting Ψj := Φj − Φ∞, we have −∆Ψj = `jA(Φ(y0 + rj ·))(∇Φj ,∇Φj) and thus∫
H
ρ|∇Ψj |2 dL2 +

∫
H

Ψj · 〈∇ρ,∇Ψj〉 dL2 =

∫
H
〈∇(ρΨj);∇Ψj〉 dL2

= `j

∫
H
ρΨj ·A(Φ(y0 + rj ·))(∇Φj ,∇Φj) dL2.

But both the right-hand side and the second term in the left-hand side converge to 0. Hence,∫
U
|∇Ψj |2 dL2 ≤

∫
H
ρ|∇Ψj |2 dL2 → 0.
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Step 4. From the previous step we have ∂Ak ∩ Ωk ⊆ Bk, hence Ak is open. Since γ < 1

and Ñ is integer-valued on Ak (by Step 2), Ñ takes exactly a single value here. We can then

apply Theorem 3.2.13 (as replacing N with Ñ does not affect the stationarity) and obtain

that the partial differential equation holds on Ak.
Step 5. From the two previous steps, it follows that −∆Φ = A(Φ)(∇Φ,∇Φ) on the open

set Ωk \ Bk. Using Lemma 3.5.3 and Lemma 3.5.1, we deduce that the partial differential

equation holds on the whole Ωk (and Φ is C∞-smooth on Ωk). This completes the induction.

Step 6. The extra assumptions made at the beginning of the proof can be dropped by

arguing as in the proof of Theorem 3.3.7 and using the upper semicontinuity of Ñ . For the

fact that Φ is a branched immersion on a connected component Ω′′ where it is nonconstant,

we refer the reader to the proofs of [50, Theorems 1 and 2] and [47, Lemmas 2.1 and 2.2].

Finally, let D ⊂ Ω′′ denote the discrete subset where ∇Φ = 0. Whenever a connected

ω ⊂⊂ Ω′′ \D is such that Φ(ω) ∩ Φ(∂ω) = ∅ and Φ
∣∣
ω

is an embedding, the constancy

theorem (see [98, Theorem 41.1]) implies that Ñ is constant on ω. Since Ω′′ \D is connected,

Proposition 3.2.8 gives that N is a.e. constant on Ω′′ \D, hence on Ω′′.

Corollary 3.5.8. If (Σ,Φ, N) is a parametrized stationary varifold, with Σ connected and

Φ nonconstant, then Φ solves −∆Φ = A(Φ)(∇Φ,∇Φ) in local conformal coordinates, Φ is a

C∞-smooth branched immersion and N is a.e. constant.

Remark 3.5.9. We notice that the converse statement holds as well: namely, if Φ : Σ→M
is a nonconstant weakly conformal, weakly harmonic map and N is a positive integer,

then (Σ,Φ, N) is a parametrized stationary varifold. Indeed, for almost every ω ⊆ Σ,

the continuous representative of Φ
∣∣
∂ω

coincides with the trace (by [35, Theorem 5.7] this

holds whenever H1-a.e. point of ∂ω is a Lebesgue point for Φ). Thus, for any smooth

F ∈ C∞c (RQ \ Φ(∂ω),RQ), F (Φ)
∣∣
ω

has zero trace on ∂ω and (3.2.1) follows. Notice that we

did not need Hélein’s regularity result to show this assertion: on the contrary, we can

immediately deduce the continuity of Φ (and hence the smoothness) from Proposition 3.2.4.

3.6 An application to the conductivity equation

In this section we illustrate an application of Theorem 3.5.7 to the regularity theory for the

conductivity equation

−div(N∇Φ) = 0 on B2
1(0).

This partial differential equation was already investigated by many authors: see e.g.

[11, 36, 66]. We show below that, assuming Φ ∈W 1,2(B2
1(0),RQ) weakly conformal and

N ∈ L∞(N \ {0}), Φ is necessarily harmonic and N is a.e. constant, unless Φ is itself

constant.

This statement initially originated as a possible intermediate step in order to achieve

Theorem 3.5.7, but as a matter of fact we are able to prove the former only as a consequence

of the latter. It would be interesting to find an independent, purely PDE-theoretic proof.
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We can do this in the case Q = 2, where the following slightly stronger result holds.

Theorem 3.6.1. Assume Φ ∈W 1,2(B2
1(0),R2) is weakly conformal, N ∈ L∞(B2

1(0)) is

bounded below by a positive constant and

− div(N∇Φ) = 0 in D′(B2
1(0),R2). (3.6.1)

Then Φ1 + iΦ2 is holomorphic or antiholomorphic and, if Φ is nonconstant, N is a.e.

constant.

Proof. First of all, Φ is continuous (see e.g. [44, Section 4.4]). We can assume that Φ

is nonconstant, so that the set Gf 6= ∅ of Lebesgue points z for ∇Φ with ∇Φ(z) 6= 0 is

nonempty. Notice that Φ1 and Φ2 are both nonconstant: otherwise e.g. ∇Φ1 would be a.e. 0

and in particular we would have ∇Φ1 = 0 on Gf , contradicting the weak conformality. From

(3.6.1) and standard Hodge theory, we can find real functions Ψk ∈W 1,2(B2
1(0)) with

N∇Φk = −∇⊥Ψk, ∇⊥ := (−∂2, ∂1),

for k = 1, 2. This equation can be equivalently rewritten as

N∂zΦk = i∂zΨk or N∂zΦk = −i∂zΨk. (3.6.2)

Let fk := Φk + iΨk. We have

∂zfk = (1−N)∂zΦk, ∂zfk = (1 +N)∂zΦk.

We define the Beltrami coefficient µk on C as

µk :=
(1−N)∂zΦk

(1 +N)∂zΦk
1B2

1(0)∩Gf .

Notice that, by weak conformality, ∂zΦk 6= 0 on Gf . Our hypotheses on N clearly imply

‖µk‖L∞ < 1

and fk satisfies the Beltrami equation

∂zfk = µk∂zfk

on B2
1(0). Let ϕk be the normal solution of

∂zϕk = µk∂zϕk

(see [56, Theorem 4.24]). As already pointed out in the proof of Theorem 3.4.1, ϕk, ϕ
−1
k ∈

W 1,2
loc (C,C) are homeomorphisms of C mapping negligible sets to negligible sets and

∂wϕ
−1
k = −(µk ◦ ϕ−1

k )∂wϕ
−1
k .
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By the chain rule (see [65, Lemma III.6.4]), hk := fk ◦ ϕ−1
k (defined on ϕk(B2

1(0))) satisfies

∂whk = (∂zfk ◦ ϕ−1
k )∂wϕ

−1
k + (∂zfk ◦ ϕ−1

k )∂wϕ
−1
k = 0

and is thus a nonconstant holomorphic function. Pick now any z0 ∈ B2
1(0) such that the

points ϕ1(z0) and w0 := ϕ2(z0) satisfy h′1(ϕ1(z0)) 6= 0 and h′2(w0) 6= 0: by holomorphicity of

h1 and h2, this holds true for all z0 outside a discrete, relatively closed subset D ⊂ B2
1(0).

By the Cauchy–Riemann equations, the harmonic map Φ2 ◦ ϕ−1
2 = <h2 has nonzero

differential at w0. By the inverse function theorem, there exists a local chart ψ centered at

w0, with some ball B2
δ (0) as its image, such that

Φ2 ◦ ϕ−1
2 ◦ ψ

−1(y)− Φ2(z0) = y2 on B2
δ (0). (3.6.3)

Since Φ is weakly conformal, we have (∂zΦ1)2 + (∂zΦ2)2 = 0 a.e., hence there exists a

measurable function ε ∈ L∞(B2
1(0), {−1, 1}) such that

∂zΦ1(z) = iε(z)∂zΦ2(z) a.e. on B2
1(0). (3.6.4)

Combining (3.6.2) and (3.6.4) we obtain

∇Ψ1 = εN∇Φ2

a.e. Using (3.6.3) and the chain rule again, we get

∂1(Ψ1 ◦ ϕ−1
2 ◦ ψ

−1) = 0, ∂2(Ψ1 ◦ ϕ−1
2 ◦ ψ

−1) = (εN) ◦ ϕ−1
2 ◦ ψ

−1

a.e. and, since ∂2
12(Ψ1 ◦ ϕ−1

2 ◦ ψ−1) = 0 distributionally, we deduce that

(εN) ◦ ϕ−1
2 ◦ ψ

−1(y) = ∂2(Ψ1 ◦ ϕ−1
2 ◦ ψ

−1)(y) = g(y2)

a.e. on B2
δ (0), for a suitable g ∈ L∞((−δ, δ)), as is immediately verified e.g. by mollification.

Let G be a Lipschitz primitive of g on (−δ, δ). We have

∇(Ψ1 ◦ ϕ−1
2 ◦ ψ

−1) = ∇(G(y2)) on B2
δ (0),

so up to subtracting a constant from G we obtain

Ψ1 ◦ ϕ−1
2 ◦ ψ

−1(y) = G(y2)

and finally, using (3.6.3),

Ψ1 = G ◦ (Φ2 − Φ2(z0)) on ϕ−1
2 ◦ ψ

−1(B2
δ (0)) 3 z0. (3.6.5)

Since f1 = Φ1 + iΨ1 is injective in a neighborhood of z0 (being h′1(ϕ1(z0)) 6= 0), from (3.6.5)

we deduce that Φ is injective on some neighborhood B2
η(z0).

We claim that, as a consequence, det(∇Φ) has a constant sign on B2
η(z0) ∩ Gf : indeed,

the induced map

Φ∗ : H1(∂B2
r (z))→ H1(C \ {Φ(z)})
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is clearly independent of z ∈ B2
η(z0) and 0 < r < dist(z, ∂B2

η(z0)), once the two groups

are canonically identified with Z. But, for any z ∈ B2
η(z0) ∩ Gf , applying Lemma A.4 to

Φ− Φ(z)− 〈∇Φ(z), · − z〉 we can find a small radius r such that Φ
∣∣
∂B2

r (z)
is homotopic to

Φ(z) + 〈∇Φ(z), · − z〉 (as a map ∂B2
r (z)→ C \ {Φ(z)}). Thus the above map Φ∗ coincides

with the multiplication by sgn det(∇Φ(z)) and our claim follows.

From this fact and the weak conformality assumption, on B2
η(z0) either (Φ1,Φ2) or

(Φ1,−Φ2) satisfy the Cauchy–Riemann equations. In particular, Φ is real analytic on the

connected set B2
1(0) \D. Since locally we have either ∂z(Φ1 + iΦ2) = 0 or ∂z(Φ1 + iΦ2) = 0,

by analyticity Φ1 + iΦ2 is globally holomorphic or antiholomorphic on B2
1(0) \D, hence also

on B2
1(0). Finally, (3.6.1) gives

∂1Φk∂1N + ∂2Φk∂2N = 0 in D′(B2
1(0))

for k = 1, 2 (as ∆Φk = 0). Since ∇Φ1 and ∇Φ2 are smooth and linearly independent

outside a closed discrete set, we infer ∇N = 0 here and thus, by connectedness, N is a.e.

constant.

We now prove the result for arbitrary Q.

Theorem 3.6.2. Assume Φ ∈W 1,2(B2
1(0),RQ) is weakly conformal, N ∈ L∞(B2

1(0),N\{0})
and

−div(N∇Φ) = 0 in D′(B2
1(0),RQ).

Then ∆Φ = 0 and, if Φ is nonconstant, N is a.e. constant.

Proof. As in the previous proof, we notice that Φ is continuous. We can assume that Φ is not

constant. The triple (B2
1(0),Φ, N) satisfies Definition 3.2.9 (with M = RQ), except possibly

for the technical condition (3.2.6): indeed, for any ω ⊂⊂ B2
1(0) and any F ∈ C∞c (RQ \

Φ(∂ω),RQ), F (Φ)1ω lies in W 1,2
0 (B2

1(0),RQ) and thus
∫
ωN〈∇(F (Φ));∇Φ〉 dL2 = 0.

Assume, without loss of generality, that Φ1 is not constant and let Ψ1, f1, ϕ1 and

h1 be the functions constructed as in the preceding proof. Let D ⊂ ϕ1(B2
1(0)) be the

discrete set of points where h′1 = 0, or equivalently (by the Cauchy–Riemann equations)

where ∇(Φ1 ◦ ϕ−1
1 ) = 0. From the chain rule and the fact that ϕ1 and ϕ−1

1 map negligible

sets to negligible sets (see [65, Lemma III.6.4] and [56, Lemma 4.12]) we deduce that, for

a.e. x ∈ B2
1(0), ∇ϕ1(x) is invertible, ∇(Φ1 ◦ ϕ−1

1 )(ϕ1(x)) 6= 0 and ∇Φ1(x) is given by the

composition of these differentials. Hence, ∇Φ 6= 0 a.e. and thus has full rank a.e. (by weak

conformality).

Let S ⊆ B2
1(0) denote the complement of the biggest open subset where ∆Φ = 0.

We remark that, given x ∈ B2
1(0), if there exists a neighborhood ω ⊂⊂ B2

1(0) with

Φ(x)∩Φ(∂ω) = ∅ then x 6∈ S: indeed, vω is stationary in RQ \Φ(∂ω), so by the monotonicity

formula vω satisfies (3.2.6) for p ∈ BQ
ρ (Φ(x)) and s < ρ, where ρ := 1

2 dist(Φ(x),Φ(∂ω)).

Thus, replacing ω with ω ∩ Φ−1(B2
ρ/2(Φ(x))), the triple (ω,Φ, N) is a local parametrized

stationary varifold and Theorem 3.5.7 gives ∆Φ = 0 near x. In particular, arguing as in
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the proof of Theorem 3.3.7, we infer that x 6∈ S for any Lebesgue point x for ∇Φ with

∇Φ(x) 6= 0. Being ∇Φ 6= 0 a.e., we get that L2(S) = 0 and that Φ is nonconstant on any

ball outside S.

Moreover, N is a.e. constant on every connected component U of B2
1(0) \ S, since on U

we have ∂1Φk∂1N + ∂2Φk∂2N = 0 for all k = 1, . . . , Q and the (classical) differential ∇Φ

has full rank except for a discrete set (being Φ a nonconstant harmonic function on U),

which does not disconnect U .

It suffices to show that S ⊆ ϕ−1
1 (D), since then any point of S is a removable singularity

and thus S = ∅. Assume by contradiction that there exists a point x0 ∈ S \ ϕ−1
1 (D). Let

ψ : V → (−1, 1)2 be a local chart centered at ϕ1(x0) and such that

Φ1 ◦ ϕ−1
1 ◦ ψ

−1(y) = Φ1(x0) + y2 on (−1, 1)2. (3.6.6)

Let Ξ := Φ ◦ ϕ−1
1 ◦ ψ−1. We claim that the negligible set S′ := ψ(V ∩ ϕ1(S)), relatively

closed in (−1, 1)2, has the following property: if y = (y1, y2) ∈ S′, then Ξ−1(Ξ(y)) contains

either (−1, y1]× {y2} or [y1, 1)× {y2}. If this were not true, we could find a ∈ (−1, y1) and

b ∈ (y1, 1) with Ξ(a, y2),Ξ(b, y2) 6= Ξ(y). Given any ε < 1− |y2|, by (3.6.6) we would have

Ξ(y) 6∈ Ξ(∂([a, b]× [y2 − ε, y2 + ε])). But, as remarked earlier, this would imply y 6∈ S′.
This horizontal segment, i.e. either (−1, y1]× {y2} or [y1, 1)× {y2}, has to be contained

in S′ (being Ξ locally injective at points outside S′, with at most countably many exceptions).

As a consequence we have L1({t : (t, y2) ∈ S′}) > 0 and thus, by Fubini’s theorem and

L2(S′) = 0, we infer

((−1, 1)× {t}) ∩ S′ = ∅ for a.e. t ∈ (−1, 1). (3.6.7)

Pick now any µ > 0 with ((−1, 1)× {µ}) ∩ S′ = ∅. Recall that (0, 0) ∈ S′ and let λ :=

max {t < µ : (0, t) ∈ S′} ≥ 0. From (3.6.7) it follows that the open set ((−1, 1)× (λ, µ)) \ S′

is connected. We infer that N is a.e. constant on ϕ−1
1 ◦ ψ−1((−1, 1)× (λ, µ)), hence ∆Φ = 0

on this open set. However, this contradicts the weak conformality assumption: let

ω := ϕ−1
1 ◦ ψ

−1

((
−1

2
,
1

2

)
×
(
λ,
λ+ µ

2

))
,

on which ∆Φ = 0, and take any homeomorphism υ : ω → B
2
1(0) biholomorphic on ω

(using Riemann’s mapping theorem and [40, Theorem I.3.1]). We have Φ1 ◦ υ−1 > λ on

B2
1(0), as well as Φ1 ◦ υ−1 = λ and Φ ◦ υ−1 constant on some open arc A in ∂B2

1(0). Since

∆(Φ ◦ υ−1) = 0 on B2
1(0), by standard regularity theory Φ ◦ υ−1 is smooth in a neighborhood

of A in B
2
1(0). But, by Hopf’s maximum principle, the radial derivative of Φ1 ◦ υ−1 is

nonzero on A. So, by weak conformality of Φ ◦ υ−1, the tangential derivative of Φ ◦ υ−1 does

not vanish on A. This contradicts the fact that Φ ◦ υ−1 is constant on A.



4 Multiplicity one for parametrized

stationary varifolds arising

variationally

4.1 Introduction

Recall the main result of the second chapter, namely that a certain sequence of maps

Φk which are (almost) critical for Eσk converge, in the varifold sense, to a parametrized

stationary varifold (Σ′,Φ, N).

A consequence of the theory contained in the previous chapter is that the multiplicity N

is locally constant. This result, which is optimal for the class of parametrized stationary

varifolds, leaves nonetheless open the question whether one can have N > 1 on some

connected component of Σ′.

This question is similar to the multiplicity one conjecture by Marques and Neves. In [75],

the following upper bound for the Morse index of a minimal hypersurface with locally

constant multiplicity is established: if

Σ =
∑̀
j=1

njΣj

is a minimal hypersurface with locally constant multiplicity, given by a min-max with k

parameters in the context of Almgren–Pitts theory, then

index(spt (Σ)) ≤ k, spt (Σ) :=
⊔̀
j=1

Σj .

In other words, this is a bound for the Morse index of the hypersurface obtained by

replacing all the multiplicities nj with 1. In order for this estimate to give more information

about Σ, or at least its unstable part, the authors make the following conjecture.

Conjecture 4.1.1 (Multiplicity one conjecture). For generic metrics on Mm, with

3 ≤ m ≤ 7, two-sided unstable components of closed minimal hypersurfaces obtained by

min-max methods must have multiplicity one.

115



116 Chapter 4. Multiplicity one

The importance of this conjecture has already been explained in Section 1.2, where we

mentioned several results in the literature for other variational frameworks. In this chapter

we establish the natural counterpart of this conjecture in our setting, namely for minimal

surfaces produced by the viscous relaxation method.

Theorem 4.1.2. We have N ≡ 1.

Although we present only the closed case in this chapter, since the proof is local it

applies also to the free boundary case.

We stress that this result holds in arbitrary codimension and without any genericity

assumption. This should be seen as a multiplicity one statement from the perspective of the

parametrization domain, in that localization in the domain (away from branch points) gives

a genuine embedded minimal surface, but a priori it does not exclude multiple covers of

the image surface globally. It seems to be optimal for a min-max approach involving

parametrizations, rather than, for example, approaches involving level sets of functions, and

it is sufficient to obtain an upper bound on the Morse index. This bound, detailed in [93],

relies on having a branched immersion at our disposal, for which a good definition of Morse

index is available.

We remark that, in view of earlier work from [92], namely the regularity theory when N

is constant, Theorem 4.1.2 would imply by itself the regularity result of the previous chapter,

at least for parametrized stationary varifolds arising from the min-max framework. However,

the proof of Theorem 4.1.2 relies substantially on the regularity result itself, needed in

several compactness arguments.

Most of the work is contained in Section 4.5. A detailed discussion of the strategy,

together with an informal explanation of the technical statements contained in Section 4.5, is

deferred to the beginning of that section.

Corollary 4.1.3. If there is no bubbling or degeneration of the underlying conformal

structure, we have strong W 1,2-convergence Φk → Φ∞ = Φ. In general we have a bubble tree

convergence.

Theorem 4.1.2 and Corollary 4.1.3 allow to obtain meaningful Morse index bounds.

Indeed, although Theorem 4.1.2 does not rule out the possibility of having a surface covered

multiple times by Φ, a crucial advantage of having a parametrization at our disposal is that

we have a reasonable definition of Morse index and nullity: they are defined with respect to

the area functional and variations in C∞c (Σ′ \ {z1, . . . , zs}), the points z1, . . . , zs being the

branch points of the immersion Φ.1

1Although we are dealing with a weakly conformal map Φ, for which area and energy are the same, it is
important to remark that the Morse indices for area and energy, denoted indexA and indexE respectively,
should not be expected to agree. The relationship between the two is a subtle problem: in this direction, we
mention the inequality indexE(Ψ) ≤ indexA(Ψ) ≤ indexE(Ψ) + r established in [34], for a branched minimal
conformal immersion Ψ, where r = r(g, b) depends on the genus g and the number b of branch points of Ψ.
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For suitable min-maxes with k parameters, the natural expected inequalities would be

index(Φ) ≤ k ≤ index(Φ) + nullity(Φ).

An abstract framework to show upper bounds for the Morse index, dealing with general

relaxed functionals on Banach manifolds, is developed in [77]. Combining Corollary 4.1.3

with the general result obtained in [77] and with [93], we reach the following conclusion (we

refer the reader to [77] for the notion of admissible family).

Corollary 4.1.4. Given an admissible family F of compact subsets of the set of immersions

Σ→M, of dimension k, and calling

β := inf
A∈F

max
Φ∈A

area(Φ)

the width of F , there exists a (possibly disconnected, branched) minimal immersion Φ of a

closed surface S into M such that

(i) genus(S) ≤ genus(Σ),

(ii) β = area(Φ),

(iii) index(Φ) ≤ k.

4.2 Notation

• We will assume, without loss of generality, that M is isometrically embedded in some

Euclidean space RQ. Given p ∈M and ` > 0, we set Mp,` := `−1(M− p).

• In what follows, Π will always denote a 2-plane through the origin, which we identify

with the corresponding orthogonal projection Π : RQ → Π. We call Π⊥ the orthogonal

(Q− 2)-subspace, identified with the corresponding orthogonal projection. Given 2-planes

Π,Π′, we denote by dist(Π,Π′) an arbitrary distance on the Grassmannian Gr2(RQ), e.g.

the one induced by Plücker’s embedding of Gr2(RQ) into the projectivization of Λ2RQ.

The adjoint maps, which are just the inclusions Π ↪→ RQ and Π⊥ ↪→ RQ, are denoted Π∗

and (Π⊥)∗, so that

idRQ = Π∗Π + (Π⊥)∗Π⊥.

Also, Π0 is the canonical 2-plane, so that Π0 : RQ → R2 is the projection onto the first

two coordinates, while Π⊥0 : RQ → RQ−2 is the projection onto the remaining Q− 2.

• We call B2
r (x) the open ball of center x and radius r in the plane C = R2, while BQ

s (p)

will denote the open ball of center p and radius s in RQ. Given p ∈ Π, we call BΠ
s (p) the

two-dimensional ball with center p and radius s in Π, i.e. BΠ
s (p) := BQ

s (p) ∩ Π. When the

center is not specified, it is always meant to be the origin.
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• Given a function Ψ ∈W 1,2(B2
r (x)) and 0 < s ≤ r, the notation Ψ

∣∣
∂B2

s (x)
always refers to

the trace of Ψ on the circle ∂B2
s (x).

• Given K ≥ 1, we define the following set of Beltrami coefficients:

EK :=

{
µ ∈ L∞(C,C) : ‖µ‖L∞ ≤

K − 1

K + 1

}
.

We let DK denote the set of K-quasiconformal homeomorphisms ϕ : C→ C such that

ϕ(0) = 0, min
x∈∂B2

1

|ϕ(x)| = 1.

If ϕ ∈ DK , we have ϕ ∈ W 1,2
loc (C) and ∂zϕ = µ∂zϕ for some µ ∈ EK , in the weak

sense; we refer the reader to [56, Chapter 4] for the basic theory of K-quasiconformal

homeomorphisms in the plane. Moreover, it is immediate to check that a linear map ϕ is

in DK if and only if ϕ(e1) = e′1 and ϕ(e2) = λe′2, for suitable orthonormal bases (e1, e2),

(e′1, e
′
2) inducing the canonical orientation and a suitable 1 ≤ λ ≤ K.

• We define

D(K) := sup
{
|ϕ(x)|;x ∈ B2

1, ϕ ∈ DK
}
, s(K) := inf

{∣∣ϕ−1(y)
∣∣; |y| ≥ 1

2
, ϕ ∈ DK

}
,

so that ϕ(B
2
1) ⊆ B2

D(K) and ϕ(B
2
s(K)) ⊆ B

2
1/2 for all ϕ ∈ DK . The fact that D(K) <∞

and s(K) > 0 is guaranteed by Corollary A.4. We also set

η(K) :=
1

4
inf
{
|ϕ(x)|;x ∈ ∂B2

s(K)2 , ϕ ∈ DK
}
> 0.

• We let DΠ
K denote the set of maps having the form Π∗ ◦ R ◦ ϕ, where ϕ ∈ DK and

R : R2 → Π is a linear isometry. Given 0 < δ < 1, we call RΠ
K,δ the set of maps in

W 1,2(B2
1 ,RQ) which are close to some ψ ∈ DΠ

K on the circles of radii 1, s(K), s(K)2,

namely we set

RΠ
K,δ :=

{
Ψ ∈W 1,2(B2

1 ,RQ) : min
ψ∈DΠ

K

max
r∈{1,s(K),s(K)2}

∥∥∥Ψ
∣∣
∂B2

r
(r·)− ψ(r·)

∥∥∥
L∞(∂B2

1)
≤ δ

}
.

• Given Ψ ∈ C1(Ω,RQ), a ball B2
r (z) ⊂⊂ Ω and a 2-plane Π, we define the projected

multiplicity function

N(Ψ, B2
r (z),Π) : Π→ N ∪ {∞}, N(Ψ, B2

r (z),Π)(p) := #((Π ◦Ψ)−1(p) ∩B2
r (z))

and, given p ∈ Π and t > 0, we also define the macroscopic multiplicity

n(Ψ, B2
r (z), BΠ

t (p)) :=
⌊
−
∫
BΠ
t (p)

N(Ψ, B2
r (z),Π) +

1

2

⌋
∈ N. (4.2.1)

The mean appearing in (4.2.1) is finite by the area formula and b·c denotes the integer

part. Note that, if the mean is close to an integer k, then the macroscopic multiplicity is

precisely k. Note also that for any p ∈ RQ we have

n(Ψ, B2
r (z), BΠ

t (Π(p))) = n

(
Ψ(z + r·)− p

t
,B2

1 , B
Π
1

)
.
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4.3 Background on parametrized stationary varifolds

Let M⊂ RQ be a (smooth, closed) embedded submanifold. Assume we have a smooth

conformal immersion Φ : B2
1 →M, σ5-critical for the functional

Eσ(Φ) =

∫
B2

1

volΦ +σ4

∫
B2

1

|IIΦ|4gΦ
volΦ . (4.3.1)

Here gΦ := Φ∗gRQ and IIΦ is the second fundamental form of Φ. The σ5-criticality means

that, for any infinitesimal variation w supported in B2
1 , we have

|dEσ(Φ)[w]| ≤ σ5‖w‖Φ,

with the last norm defined as in Section 2.2. In the sequel, for simplicity, we will just say

that Φ is almost critical.

Assume that the following entropy condition

σ4 log(σ−1)

∫
B2

1

|IIΦ|4 volΦ ≤ ε
∫
B2

1

volΦ (4.3.2)

holds for some ε > 0. Note that

gΦ =
1

2
|∇Φ|2δ,

∫
B2

1

volΦ =
1

2

∫
B2

1

|∇Φ|2

by conformality of Φ.

Given any 0 < ` < 1 and p ∈M, recall that Mp,` = `−1(M− p). The rescaled map

Ψ : B2
1 →Mp,`, Ψ := `−1(Φ− p)

is almost critical for the functional∫
B2

1

volΨ +τ4

∫
B2

1

|IIΨ|4 volΨ, τ := σ/`, (4.3.3)

as we saw in the proof of Theorem 2.5.3; since τ4 log(τ−1) ≤ `−4σ4 log(σ−1), it satisfies

τ4 log(τ−1)

∫
B2

1

|IIΨ|4 volΨ ≤ ε
∫
B2

1

volΨ, (4.3.4)

where now IIΨ denotes the second fundamental form of Ψ in Mp,` and its norm is meant

with respect to the induced metric gΨ.

In the sequel, we will establish many intermediate results on maps Ψ arising in this

way, by means of compactness arguments. The starting point in these arguments is that,

heuristically, if we have sequences Ψk, pk, `k → 0, τk → 0 and εk → 0, then by (4.3.3) and

(4.3.4) Ψk should have a subsequential limit which is a parametrized stationary varifold in

the tangent space Tp∞M (where p∞ is a subsequential limit of the sequence pk).

Since the theory from the previous chapters is crucially used in many intermediate steps

towards the proof of Theorem 4.1.2, we give a precise statement that summarizes all the

information we need to extract from those.
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Theorem 4.3.1. Assume that Ψk ∈ C2(B
2
R,Mpk,`k) is a sequence of conformal immersions

such that Ψk is almost critical for the functional (4.3.3) on the interior B2
R (with τk, `k in

place of τ, `) and

• Ψk(∂B
2
R)→ Γ∞ in the Hausdorff topology, for some Γ∞ ⊆ RQ compact,

• 1

2

∫
B2
R

|∇Ψk|2 ≤ E,

• τ4
k log(τ−1

k )

∫
B2
R

∣∣IIΨk
∣∣4 volΨk → 0,

• `k, τk → 0.

Then, up to subsequences, Ψk ⇀ Ψ∞ in W 1,2(B2
R,RQ), for some Ψ∞ which is continuous

(in the interior) and satisfies the convex hull property, namely

Ψ∞(ω) ⊆ co(Ψ∞(∂ω)) for all ω ⊂⊂ B2
R.

The image measures (Ψk)∗
(

1
2 |∇Ψk|2L2

)
in RQ form a tight sequence.

Given ω ⊂⊂ B2
R with Ψ∞(ω) ⊆ RQ \ Γ∞, there exist a quasiconformal homeomorphism

ϕ∞ of R2 and a multiplicity N∞ ∈ L∞(ω,Z+) such that the 2-varifolds induced by Ψk

∣∣
ω

subsequentially converge on RQ \Ψ∞(∂ω) to a (local) parametrized stationary varifold

(ϕ∞(ω),Ψ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ )

in the varifold sense, namely in duality with C0
c ((RQ \ Φ∞(∂ω))×Gr2(RQ)). Also, on ω we

have the convergence of Radon measures

1

2
|∇Ψk|2L2 ⇀ N∞|∂1Ψ∞ ∧ ∂2Ψ∞|L2. (4.3.5)

We have N∞ ≤ E
π dist(Ψ∞(ω),Γ∞)2 a.e. and the distortion constant of ϕ∞ is bounded by(

E
π dist(Ψ∞(ω),Γ∞)2

)2
.

Proof. The proof is essentially already contained in the previous chapters, so we just present

the required adaptations.

Up to subsequences, we can assume that Ψk has a weak limit Ψ∞ in W 1,2(B2
R,RQ) and

that the varifolds vk induced by Ψk converge to a varifold v∞ in RQ.

The arguments used in Section 2.5 and in Section 3.2 show that Ψ∞ has a continuous

representative (on the interior B2
R), satisfying the convex hull property. Also, from

Theorem 2.3.4 and Proposition 2.5.6 we have that

v∞ is stationary in U := RQ \ Γ∞ (4.3.6)

and is an integer rectifiable varifold. We claim that the measures ‖vk‖ = (Ψk)∗
(

1
2 |∇Ψk|2

)
on RQ form a tight sequence. If this were not true, up to subsequences we could find points
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qk ∈ RQ with |qk| → ∞ and such that the argument of Proposition 2.4.2 applies (with qk in

place of q), on the region RQ \Ψk(∂B
2
R). Hence,

lim inf
k→∞

‖vk‖(BQ
1 (qk)) > 0.

So the varifolds vk− qk converge subsequentially to a nontrivial varifold v′∞ in RQ, stationary

on U ′ := RQ: indeed, the proof of (4.3.6) can be repeated with Ψk − qk in place of Ψk (and

U ′ in place of U), using the fact that, for all s > 0, the image of Ψk|∂B2
R
− qk is eventually

disjoint from BQ
s . Its total mass ‖v′∞‖(RQ) must be bounded by lim infk→∞ ‖vk‖(RQ) ≤ E;

however, the monotonicity formula implies that ‖v′∞‖(RQ) =∞, a contradiction.

We also claim that the concentration set is empty in our setting. Indeed, by the tightness

of the measures ‖vk‖, a concentration point would produce, in the limit, a nontrivial

stationary varifold in RQ. Again, its mass would be bounded by E, contradicting the

monotonicity formula.

Now Theorem 2.5.2 and Theorem 2.5.3 give, up to further subsequences, the limit

νk :=
1

2
|∇Ψk|2 ⇀ ν∞, with ν∞ = mL2

in the sense of Radon measures (i.e. in duality with C0
c (B2

R)). The function m(z) ≥ 0 equals

N∞(z)|∂1Φ∞ ∧ ∂2Φ∞|(z) a.e., for a positive integer N∞(z) which is bounded by the density

of v∞ at Ψ∞(z), whenever Ψ∞(z) ∈ U .

Let ω ⊂⊂ B2
R be such that Ψ∞(ω) ⊆ RQ \ Γ∞. Defining s := dist(Ψ∞(ω),Γ∞) > 0, note

that

BQ
s (q) ⊆ U for all q ∈ Ψ∞(ω).

Hence, by the monotonicity formula, the density of v∞ at such points q is bounded by E
πs2

.

This gives the upper bound for N∞. As explained in detail in Section 3.4, there exists a

quasiconformal homeomorphism ϕ∞ of the plane, with distortion constant bounded by the

square of the (essential) supremum of N∞|ω, such that Ψ∞ ◦ ϕ−1
∞ is weakly conformal on

ϕ∞(ω). Finally, it is the main outcome of the second chapter that the 2-varifolds induced by

Φk|ω converge to the (local) parametrized stationary varifold (ϕ∞(ω),Ψ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ )

(whose mass measure is bounded above by ‖v∞‖), in the complement of Ψ∞(∂ω).2

Theorem 4.3.2. In the situation of Theorem 4.3.1, Ψ∞ ◦ ϕ−1
∞ : ϕ∞(ω)→ RQ is harmonic.

Also, if ω is connected and Ψ∞|ω is not constant, N∞ equals a constant integer (a.e.) on ω

and Ψ∞ ◦ ϕ−1
∞ is a minimal branched immersion.

Proof. This is a special case of Theorem 3.5.7.

2The convergence actually holds on all of RQ (or, more precisely, on RQ ×Gr2(RQ)) if ν∞(∂ω) = 0.
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4.4 Two lemmas on harmonic maps

Lemma 4.4.1. Let γk ∈ C0(∂B2
1 ,R2) be a sequence of Jordan curves converging (in C0) to

a Jordan curve γ∞ and let fk ∈ C0(∂B2
1) be a sequence converging uniformly to a function

f∞. Let Dk be the domain bounded by γk, let uk ∈ C0(Dk) be the harmonic extension of

fk ◦ γ−1
k , and similarly define D∞ and u∞. Then uk → u∞ in C0

loc(D∞). Moreover, if

yk → y∞ with yk ∈ Dk and y∞ ∈ D∞, then uk(yk)→ u∞(y∞).

Note that such harmonic extensions exist and are unique, since by Carathéodory’s

theorem there exist homeomorphisms B
2
1 → Dk restricting to biholomorphisms B2

1 → Dk

(and similarly for D∞), allowing one to reduce matters to the well-known existence and

uniqueness of the harmonic extension on the unit disk.

Proof. Since the functions fk are equibounded, from the maximum principle and interior

estimates it follows that the functions uk are equibounded in C2(ω), for any ω ⊂⊂ D∞, and

hence by Ascoli–Arzelà theorem the convergence uk → u∞ in C0
loc(D∞) follows from the

second claim.

It suffices to show that the second claim holds for a subsequence: once this is done, it can

be obtained for the full sequence by a standard contradiction argument (given a sequence

yk → y∞, if uk(yk) does not converge to u∞(y∞), we can find a subsequence such that it

converges to a different value; then we reach a contradiction along a further subsequence

where the second claim holds).

Up to removing a finite set of indices, we can suppose that there is a point p such that

p ∈ Dk for all k ∈ N ∪ {∞}. By Carathéodory’s theorem, we can find homeomorphisms

υk : B
2
1 → Dk restricting to biholomorphisms from B2

1 to Dk, so that υk
∣∣
∂B2

1
= γk ◦ βk, for

suitable homeomorphisms βk : ∂B2
1 → ∂B2

1 (for all k ∈ N), and υk(0) = p.

Since the maps υk and υ−1
k are equibounded and harmonic, we can assume that

υk → υ∞, ζk := υ−1
k → ζ∞ (4.4.1)

in C∞loc(B
2
1) and C∞loc(D∞), respectively. Note that υ∞ is a holomorphic map taking values

into D∞, whereas ζ∞ is holomorphic and takes values into B2
1 (by the maximum principle,

since ζ∞(p) = 0 and |ζ∞| ≤ 1). So for any w ∈ D∞ the set {ζk(w) | k ∈ N}∪{ζ∞(w)} ⊂ B2
1

is compact and we infer

υ∞ ◦ ζ∞(w) = lim
k→∞

υk ◦ ζk(w) = w. (4.4.2)

Hence υ∞ is surjective and thus an open map. So υ∞(B2
1) = D∞ and, by [94, Theorem 10.43]

(applied with f := υ∞ − w, g := υk − w, for a fixed w ∈ D∞ and an arbitrary circle

∂B2
r ⊆ B2

1 avoiding υ−1
∞ (w), with k large enough), it is also injective. By Carathéodory’s

theorem, it extends continuously to a homeomorphism (still denoted υ∞) from B
2
1 to D∞

and we have υ∞
∣∣
∂B2

1
= γ∞ ◦ β∞ for a suitable homeomorphism β∞ : ∂B2

1 → ∂B2
1 .
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Up to subsequences, applying Helly’s selection principle to suitable lifts βk : R→ R,

we can assume that βk → β̃∞ everywhere, for some order-preserving β̃∞.3 On the other

hand, since supk
∫
B2

1
|υ′k|

2 = supk L2(Dk) is finite, we have weak convergence υk ⇀ υ∞ in

W 1,2(B2
1) and thus weak convergence γk ◦ βk ⇀ γ∞ ◦ β∞ in L2(∂B2

1). The everywhere

convergence γk ◦ βk → γ∞ ◦ β̃∞ implies γ∞ ◦ β∞ = γ∞ ◦ β̃∞ a.e. and thus β∞ = β̃∞ a.e.

In particular, β∞ is also order-preserving. Since β∞ is continuous and both maps are

order-preserving, we conclude that β∞ = β̃∞ everywhere. Using again the continuity of β∞,

as well as the everywhere convergence of the order-preserving maps βk → β∞, we also get

that βk → β∞ uniformly.

With υk being the harmonic extension of γk ◦ βk (for k ∈ N ∪ {∞}), we conclude that

υk → υ∞ in C0(B
2
1). Let Uk ∈ C0(B

2
1) be the harmonic extension of fk ◦ βk and note that

Uk → U∞ in C0(B
2
1). By conformal invariance, uk := Uk ◦ υ−1

k is the harmonic extension of

fk ◦ γ−1
k on Dk (for k ∈ N ∪ {∞}).

Finally, we claim that in the situation of the second claim we have υ−1
k (yk)→ υ−1

∞ (y∞).

This easily follows from the injectivity of υ∞: if we had
∣∣υ−1
k (yk)− υ−1

∞ (y∞)
∣∣ ≥ ε along

some subsequence (for some ε > 0), we would have a subsequential limit point x∞ ∈ B
2
1 with∣∣x∞ − υ−1

∞ (y∞)
∣∣ ≥ ε and υ∞(x∞) = limk→∞ yk = y∞, which is a contradiction. Hence,

uk(yk) = Uk(υ
−1
k (yk))→ U∞(υ−1

∞ (y∞)) = u∞(y∞), (4.4.3)

as desired.

Remark 4.4.2. In the situation of Lemma 4.4.1, if Dk ⊇ D for all k ∈ N ∪ {∞} then

uk → u∞ uniformly on D. Indeed, if this were not true, then we could find points

yk ∈ D ⊆ Dk such that |uk(yk) − u∞(yk)| ≥ ε (along a subsequence) for some ε > 0.

Assuming without loss of generality yk → y∞, we would get

lim inf
k→∞

|uk(yk)− u∞(y∞)| ≥ ε

by continuity of u∞ on D. This would however contradict the last part of Lemma 4.4.1.

Lemma 4.4.3. Given K ≥ 1 and s, ε > 0, there exists a constant 0 < δ0 < ε, depending

only on Q,K, s, ε, with the following property: whenever

• Ψ ∈W 1,2 ∩ C0(B
2
1,RQ) has

∥∥∥Ψ
∣∣
∂B2

1
− ψ(s·)

∣∣
∂B2

1

∥∥∥
C0(∂B2

1)
≤ δ0 for some ψ ∈ DΠ

K ,

• Ψ ◦ ϕ−1 is harmonic and weakly conformal on ϕ(B2
1), where ϕ : R2 → R2 is a K-

quasiconformal homeomorphism,4

then Π ◦Ψ ◦ ϕ−1 is a diffeomorphism from ϕ(B
2
1/2) onto its image and

dist(Π,Π(x)) < ε, Π(x) := 2-plane spanned by ∇(Ψ ◦ ϕ−1)(x), (4.4.4)

for all x ∈ ϕ(B
2
1/2). In particular, Π ◦Ψ is injective on B

2
1/2.

3The map β̃∞ could also be order-reversing: this happens precisely if βk reverses the orientation along the
subsequence. For simplicity, we assume βk, β̃∞ to be order-preserving (the other case being analogous).

4The maps ψ and ϕ are not necessarily related to each other.
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Proof. Assume by contradiction that, for a sequence δk ↓ 0, there exist maps Ψk : B2
1 → RQ,

planes Πk and homeomorphisms ϕk : R2 → R2 such that the claim fails with δ0 = δk. By

Corollary A.4, up to subsequences we have Πk → Π∞ and Ψk

∣∣
∂B2

1
→ Γ (uniformly), where

Γ : ∂B2
1 → RQ is a Jordan arc in Π∞.

We can assume that ϕk ∈ DK (replacing ϕk with ϕk−ϕk(0)
min

∂B2
1
|ϕk−ϕk(0)|). By Corollary A.4,

we can assume that ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞ in C0
loc(R2), for some homeomorphism

ϕ∞ : R2 → R2.

By harmonicity, up to subsequences we get Θk := Ψk ◦ ϕ−1
k → Θ∞ in C2

loc(ϕ∞(B2
1)), for

some Θ∞ : ϕ∞(B2
1)→ RQ, so that Θ∞ is weakly conformal and harmonic.

On the other hand, by Lemma 4.4.1 applied to the sequence of harmonic maps Θk on the

Jordan domains ϕk(B2
1), Θ∞ is the harmonic extension of Γ◦ϕ−1

∞ and Ψk → Θ∞ ◦ϕ∞ =: Ψ∞

in C0(B
2
1). By the maximum principle we have Π⊥∞ ◦Θ∞ = 0 and thus Π∞ ◦Θ∞ is either

holomorphic or antiholomorphic on ϕ∞(B2
1) (once Π∞ is identified with C).

Now, given two Jordan domains U, V ⊂ C, if a holomorphic map h : U → C extends to

a continuous map h : U → C mapping ∂U onto ∂V homeomorphically, then h maps U

diffeomorphically onto V .5 With Π∞ ◦Θ∞
∣∣
∂ϕ∞(B2

1)
= Π∞ ◦ Γ ◦ ϕ−1

∞ being a Jordan curve,

we deduce that Π∞ ◦Θ∞ is a diffeomorphism from ϕ∞(B2
1) onto its image.

Fix now a compact neighborhood F of ϕ∞(B
2
1/2) in ϕ∞(B2

1), with smooth boundary.

Since Θk → Θ∞ in C1
loc(ϕ∞(B2

1)), we obtain that eventually Πk ◦Θk is a diffeomorphism of

F onto its image, with

dist(Πk,Πk(x)) < ε, x ∈ F.

The fact that eventually ϕk(B
2
1/2) ⊆ F yields the desired contradiction.

4.5 Technical iteration lemmas

Informal discussion of the results

Since the intermediate results contained in this section have rather involved statements, with

several different constants and thresholds appearing along the way, we find it helpful to

provide an informal explanation of the meaning of these statements and constants, as well as

a rough sketch of the underlying ideas in the proofs.

This section contains four important intermediate results, namely Lemmas 4.5.2, 4.5.3,

4.5.5 and 4.5.6, which all invoke Theorems 4.3.1 and 4.3.2 (except for Lemma 4.5.6) by

means of a compactness-and-contradiction argument. All statements are about a conformal

immersion Ψ : B
2
r(z)→Mp,`, almost critical for the functional (4.3.3) (on the interior). For

5Indeed, h
∣∣
U

must be an open map, hence h(U) \ ∂V is closed and open in C \ ∂V and it follows that

h(U) = V . We can find biholomorphisms u : B2
1 → U and v : B2

1 → V extending to homeomorphisms of the
closures. The map g := v−1 ◦ h ◦ u satisfies g(B2

1) ⊆ B2
1 and maps ∂B2

1 to itself homeomorphically. Given
w ∈ B2

1 , for r < 1 close enough to 1 the loop g(reiθ)− w is homotopic to g(eiθ) in C \ {0}, so the classical
argument principle gives #g−1(w) = 1.
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simplicity, in this discussion we assume z = 0 and r = 1. The first three statements require

the following:

(i) a control of the shape of the images of three circles, selected by a distortion constant K;

namely we require that

Ψ ∈ RΠ
K,δ0

for some 2-plane Π and some small δ0; recall from Section 4.2 that this means (assuming

Π = R2 ⊆ RQ, up to rotations of RQ) that Ψ is C0-close to a K-quasiconformal

homeomorphism ϕ ∈ DK , ϕ : R2 → R2 ⊆ RQ on the three circles ∂B2
1 , ∂B2

s(K), ∂B
2
s(K)2

(it would be far too restrictive to ask for C0-closeness on all of B2
1);

(ii) an upper bound E on the Dirichlet energy 1
2

∫
B2

1
|∇Ψ|2;

(iii) an upper bound V on the area (divided by π) of the immersed surface Ψ(B2
1) ∩BQ

1 ,

taking into account multiplicity; namely,∫
Ψ−1(BQ1 )

volΨ =
1

2

∫
Ψ−1(BQ1 )

|∇Ψ|2 ≤ V π,

where gΨ is the pullback of the Euclidean metric, which equals 1
2 |∇Ψ|2δ by conformality;

this upper bound will give a crucial improvement on the last conclusions of Theorem 4.3.1,

as discussed below.

Also, in the same spirit as Theorem 4.3.1, these lemmas assume τ, `� 1 and

τ4 log(τ−1)

∫
B2

1

|IIΨ|4 volΨ �
∫
B2

1

volΨ .

In Lemmas 4.5.3 and 4.5.5, the closeness in (i) is measured by a threshold δ0 (which will be

specified according to Lemma 4.4.3), whereas other closeness or smallness constraints will be

measured by thresholds ε0, ε
′
0, ε
′′
0 in Lemmas 4.5.2, 4.5.3, 4.5.5, respectively.

Observe that the hypotheses guarantee that Π ◦Ψ maps ∂B2
s(K) to a subset of BΠ

1/2 and

∂B2
1 to a subset of Π \BΠ

1 (approximately); hence, Ψ(∂B2
s(K)) is far away from Ψ(∂B2

1).

Hence, when arguing by contradiction, we can apply the last part of Theorem 4.3.1 and

obtain in the limit a parametrized stationary varifold close to Ψ|ω (we will choose either

ω := B2
s(K) or the smaller domain ω := B2

s(K)2). The reason to impose the geometric control

on three circles, rather than two, is merely technical and is convenient for the proofs.

Lemma 4.5.2 says that the projected multiplicity N(Ψ, B2
s(K)2 ,Π) (introduced in

Section 4.2) issued by Ψ from the ball B2
s(K)2 has an average close to a positive integer k, on

the ball BΠ
η(K). It also asserts that this holds for 2-planes Π′ close enough to Π. As a

consequence, the corresponding macroscopic multiplicity will be precisely k.

Observe that the hypotheses guarantee that Π ◦Ψ maps B2
s(K)2 approximately to a

superset of BΠ
η(K) (see Section 4.2 for the definition of these geometrical constants). Hence,
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arguing by contradiction, we obtain in the limit a (parametrized) stationary varifold which is

close, in the varifold sense, to Ψ(B2
s(K)2). The constraints on Ψ force this limiting varifold to

lie on a 2-plane, so by the constancy theorem it has constant integer multiplicity on BΠ
η(K),

giving a contradiction. Note that the volume constraint V is not used here.

As already mentioned in the introduction, we would now like to find a decreasing

sequence of radii r0 := 1, . . . , rk ≈ τ , with rj comparable to rj+1, such that the maps Ψ(rj ·)
satisfy the same assumptions (with different scales `0 := `, . . . , `k in the target). The strategy

to get Theorem 4.1.2 is then to show that the corresponding macroscopic multiplicities nj do

not change from one scale to the next one: n0 = n1 = · · · = nk. At the smallest scale, we

will be able to say that the immersed surface `−1
k Ψ(B2

rk
) has small second fundamental form

in L4, implying a strong graphical control that allows one to conclude nk = 1 and, thus,

n0 = 1. In the situation where we will apply this strategy (namely, in Section 4.6), upon

careful selection of the center z, it will be easy to impose the “maximal” bounds

(`′)−2

∫
Ψ−1(BQ

`′ )
volΨ ≤ V π, τ4 log(τ−1)

∫
B2
r′

|IIΨ|4 volΨ �
∫
B2
r′

volΨ,

for all 0 < `′ < 1 and 0 < r′ < 1, by means of covering arguments. However, we cannot a

priori impose similar bounds on the Dirichlet energy and on the shape of the images of small

circles (items (ii) and (i)). Note that if (`′)−1Ψ(r′·) satisfies (i), then we can bound the

Dirichlet energy of this rescaled map on the ball B2
s(K), in terms of V , as Ψ maps B2

s(K)r′

into BQ
`′ (approximately). So (i) would give (ii) for free (on a smaller domain ball), with a

uniform bound (depending on K, V ) in place of E.

Lemma 4.5.3 is the main technical workhorse, and essentially says that we can circumvent

this difficulty: namely, the hypotheses (i)–(iii) are still satisfied for a smaller radius r′ ≤ r
2 in

the domain, with a smaller scale `′` ≤ `
2 in the codomain. Note that the reference point p

also changes; this will in principle destroy the maximal volume bound, but we can still

recover (iii) in the new situation, exploiting the fact that the multiplicity is quantized in the

limit (see the proof of Lemma 4.5.3 and Definition 4.5.4 for the details).

The idea of the proof of Lemma 4.5.3 is that, up to a quasiconformal homeomorphism ϕ,

Ψ is close (in the weak W 1,2-topology) to a conformal harmonic map with small oscillation

with respect to Π. Hence, by Lemma 4.4.3, it will be arbitrarily close to an affine injective

conformal map L on smaller and smaller balls B2
r′ . If ϕ were the identity, given a (finite)

collection of circles centered at 0 we would get the C0-closeness of Ψ(r′·)
r′ to L on all these

circles, for some r′ small, and we would be done.

The important observation now is that the distortion constant of ϕ can be bounded

solely in terms of V : indeed, as in the proof of Theorem 4.3.1, Ψ(B2
1) ∩BQ

1 is close to a

stationary varifold v (in BQ
1 ), whose density on BQ

1/2 is bounded in terms of V . Since

Ψ(B2
s(K)) ⊆ B

Q
1/2 (approximately), the upper bound on the distortion constant given by

Theorem 4.3.1 can be improved to a constant K ′(V ) depending only on V . Hence, we get (i)

also for a smaller radius r′ (with K ′(V ) replacing K) and, as already said, this gives also (ii)
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with a bound E′(V ) in place of E. Our sequence of radii is now obtained by iterated

application of Lemma 4.5.3 with parameters K ′(V ), E′(V ), V .

Given constants K ′′, E′′ and V , which will be chosen when applying these results in

Section 4.6, we then fix K0 := max{K ′(V ),K ′′} and E0 := max{E′(V ), E′′}, so that all the

statements apply for all radii r0, r1, . . . , rk.

Lemma 4.5.5 says that the macroscopic multiplicity does not change after applying

Lemma 4.5.3, namely when replacing the domain and codomain scales r, ` with r′, `′` (and

p,Π with p′,Π′). Its proof uses Lemma 4.4.3 to claim that Ψ is approximately a graph over

Π, and then applies the constancy theorem (in the limiting situation).

Finally, as it will be clear along the proof of Theorem 4.6.1, Lemma 4.5.6 concerns the

behavior of a conformal immersion Φ : B2
1 →M at a scale (comparable to) ` := σ in the

codomain, when Φ satisfies (4.3.2). Assume that Φ(B2
r ) has diameter approximately `2,

assume the smallness

σ4

∫
B2
r

|IIΦ|4 volΦ �
∫
B2
r

volΦ (4.5.1)

and the bound
∫
B2
r

volΦ ≤ C`2. When dilating the codomain by a factor `−1, (4.5.1) becomes∫
B2
r
|IIΨ|4 volΨ � 1, for Ψ := `−1(Φ−Φ(0)). As Ψ is conformal, we have ∆Ψ = 2HΨe

2λ

(where eλ is the conformal factor). Thus, we get that ∆Ψ is small in L4 provided we

can obtain an upper bound on λ; once this is done, by Sobolev’s embedding we obtain a

C1-control on Ψ, which implies that the macroscopic multiplicity is 1 at this scale.

In order to bound λ, we use a result by Hélein (belonging to a broad class of phenomena

of integrability by compensation, whose study dates back to the discovery of Wente’s

inequality), guaranteeing the existence of an orthonormal frame {e1(z), e2(z)} for the

tangent space of the immersed surface Ψ, with a bound on ‖∇ei‖L2 depending only on the

L2-norm of the second fundamental form. Then we show that

−∆λ = ∂1e1 · ∂2e2 − ∂2e1 · ∂1e2

and we compare λ with the solution µ to the same equation, with zero boundary conditions

on a ball. A pointwise bound for µ now follows from Wente’s inequality, from which one

easily deduces the desired upper bound for λ. Although not necessary, we will also show how

to obtain a pointwise lower bound on λ in this situation.

While reading Sections 4.5 and 4.6, it can be useful to refer to the following diagrams,

illustrating how the constants depend on each other:
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K V E

ε0 ε′0

δ0

V

K ′′ K ′(V ) E′(V ) E′′

K0 E0

ε′0 ε′′0

(an arrow A→ B means that B depends on A).

Rigorous statements and proofs

We now make the above discussion rigorous. In a first reading, it can be helpful to pretend

that all quasiconformal homeomorphisms appearing in the proofs coincide with the identity.

Definition 4.5.1. Given V > 0 with V = bV c+ 1
2 , we define the constants

K ′(V ) := (16V )2, E′(V ) := 2πK ′(V )D(K ′(V ))2.

In the sequel, it will be convenient to assume always that V ∈ N + 1
2 , so that V = bV c+ 1

2 .

Lemma 4.5.2. There exists 0 < ε0 < η(K), depending on E, V > 0, K ≥ 1 and M, such

that whenever Ψ ∈ C2(B
2
r(z),Mp,`) is a conformal immersion, almost critical for the

functional (4.3.3) on B2
r (z), and Π,Π′ are 2-planes satisfying

• Ψ(z + r·) ∈ RΠ
K,ε0,

• 1

2

∫
B2
r (z)
|∇Ψ|2 ≤ E,

•
∫

Ψ−1(BQ1 )
volΨ =

1

2

∫
Ψ−1(BQ1 )

|∇Ψ|2 ≤ V π,

• τ4 log(τ−1)

∫
B2
r (z)

∣∣IIΨ
∣∣4 volΨ ≤ ε0 for some 0 < τ ≤ ε0,

• dist(Π,Π′) ≤ ε0 and 0 < ` ≤ ε0,

then the projected multiplicity N(Ψ, B2
s(K)2r(z),Π) satisfies

dist
(
−
∫
BΠ
η(K)

N(Ψ, B2
s(K)2r(z),Π), Z+

)
<

1

8
, (4.5.2)

∣∣∣∣∣ −
∫
BΠ
η(K)

N(Ψ, B2
s(K)2r(z),Π)− −

∫
BΠ′
η(K)

N(Ψ, B2
s(K)2r(z),Π

′)

∣∣∣∣∣ < 1

8
, (4.5.3)

where Z+ is the set of positive integers.
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Proof. We can assume z = 0 and r = 1. Suppose by contradiction that there exist

sequences εk ↓ 0, τk, `k, points pk, maps Ψk and planes Πk,Π
′
k making the claim false for

ε0 = εk. Up to subsequences, we can assume that Πk,Π
′
k → Π∞, that Ψk has a weak

limit Ψ∞ in W 1,2(B2
1 ,RQ), with traces Ψ∞

∣∣
∂B2

s
(s·) = ψ(s·) for some ψ ∈ DΠ∞

K and all

s ∈
{

1, s(K), s(K)2
}

(thanks to Corollary A.4), and that the varifolds vk induced by Ψk

converge to a varifold v∞ in RQ.

We now invoke Theorem 4.3.1. Recalling the definition of DΠ∞
K and s(K) from Section 4.2,

the convex hull property satisfied by Ψ∞ gives

Ψ∞(B
2
s(K)) ⊆ co

(
Ψ∞(∂B2

s(K))
)

= co
(
ψ(∂B2

s(K))
)
⊆ BQ

1/2, (4.5.4)

so that, with Γ∞ = Ψ∞(∂B2
1) = ψ(∂B2

1) being disjoint from BQ
1 (as |ψ(x)| ≥ 1 for x ∈ ∂B2

1 ,

by definition of DK),

dist(Ψ∞(x),Γ∞) ≥ 1

4
for x ∈ B2

s(K). (4.5.5)

Theorem 4.3.1 gives the varifold convergence v′k ⇀ v′∞ and v′′k ⇀ v′′∞ as k →∞, as well as

the tightness of the sequences of mass measures ‖v′k‖ and ‖v′′k‖, where v′k and v′′k are the

varifolds issued by Ψk

∣∣
B2
s(K)

and Ψk

∣∣
B2
s(K)2

respectively, while v′∞ and v′′∞ are the ones

issued by (ϕ∞(B2
s(K)),Ψ∞ ◦ ϕ

−1
∞ , N∞ ◦ ϕ−1

∞ ) and (ϕ∞(B2
s(K)2),Ψ∞ ◦ ϕ−1

∞ , N∞ ◦ ϕ−1
∞ ).6

Although not needed in the present proof, let us remark the following improvement on

the last statement in Theorem 4.3.1, which will be used in the proof of Lemma 4.5.3: we have

N∞ ≤
V π

π
(

1
4

)2 = 16V

and the distortion constant of ϕ∞ is bounded by K ′(V ) = (16V )2. Indeed, since v∞ is

stationary in BQ
1 and ‖v∞‖(BQ

1 ) ≤ V π, by the monotonicity formula its density is bounded

by V π
π(1−|p|)2 at any p ∈ BQ

1 . In particular, (4.5.4) gives an upper bound 4V at points in

Ψ∞(B2
s(K)), which implies our claim.

The support of v′′∞ is contained in the plane Π∞, by the convex hull property enjoyed by

Ψ∞ and the fact that Ψ∞ maps ∂B2
s(K)2 to Π∞. Since Ψ∞(∂B2

s(K)2) does not intersect BΠ∞
η(K),

the varifold v′′∞ is stationary here and thus, by the constancy theorem [98, Theorem 41.1], it

has a constant density ν ∈ N. We must have ν > 0, since Ψ∞(B2
s(K)2) is a superset of BΠ∞

η(K)

by Lemma A.1 (applied to η(K)−1Ψ∞(s(K)2·)). The area formula and the tightness of ‖v′′k‖
then give

−
∫
B

Πk
η(K)

N(Ψk, B
2
s(K)2 ,Πk) =

‖(Πk)∗v
′′
k‖(B

Πk
η(K))

πη(K)2
→
‖(Π∞)∗v

′′
∞‖(B

Π∞
η(K))

πη(K)2
= ν.

Similarly, −
∫
B

Π′
k

η(K)

N(Ψk, B
2
s(K)2 ,Π

′
k)→ ν as k →∞. Hence the claim is eventually true,

yielding the desired contradiction.

6The fact that one can choose the same multiplicity N∞ and the same quasiconformal homeomorphism
ϕ∞ : R2 → R2 for both domains is evident from the proof of Theorem 4.3.1.
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Assume K ≥ K ′(V ). We now specify δ0 <
1
8 so that Lemma 4.4.3 applies, with ε := ε0

and s := s(K). Note that δ0 < ε0 < η(K) and that ε0 and δ0 still depend on V , K and E.

Lemma 4.5.3. Given E > 0 and K ≥ 1 there exists a constant 0 < ε′0 < ε0 (depending on

E, V,K,M) with the following property: if a conformal immersion Ψ ∈ C2(B
2
r(z),Mp,`) is

almost critical for the functional (4.3.3) (on the interior) and satisfies

• Ψ(z + r·) ∈ RΠ
K,δ0,

• 1

2

∫
B2
r (z)
|∇Ψ|2 ≤ E,

• 1

π

∫
Ψ−1(BQ1 )

volΨ,
1

πη(K)2

∫
Ψ−1(BQ

η(K)
)

volΨ ≤ V ,

• τ4 log(τ−1)

∫
B2
r (z)

∣∣IIΨ
∣∣4 volΨ ≤ ε′0 for some 0 < τ ≤ ε′0,

• 0 < ` ≤ ε′0,

then there exist a new point p′ ∈Mp,`, new scales r′, `′ and a new 2-plane Π′ with

• ε′0r < r′ < s(K)r,

• ε′0 < `′ <
1

2
,

• dist(Π,Π′) < ε0,

• (`′)−1(Ψ(z + r′·)− p′) ∈ RΠ′

K′(V ),δ0
,

• 1

2

∫
B2
r′ (z)

∣∣∇Ψ′
∣∣2 < E′(V ), for Ψ′ := (`′)−1(Ψ− p′) (defined on B2

r′(z)),

• 1

π

∫
(Ψ′)−1(BQ1 )

volΨ′ ,
1

πη(K)2

∫
(Ψ′)−1(BQ

η(K)
)

volΨ′ <
⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.

Proof. We can assume z = 0 and r = 1. By contradiction, suppose that there is a sequence

εk ↓ 0 such that the claim fails (with ε′0 = εk) for all radii εk < r′ < s(K), for some Ψk and

Πk satisfying all the hypotheses.

Assuming also that Πk → Π∞ and pk → p∞, by Corollary A.4 we still have Ψ∞ ∈ RΠ∞
K,δ0

:

indeed, if ψk ∈ DΠk
K are such that

∥∥∥Ψk

∣∣
∂B2

s
(s·)− ψk(s·)

∥∥∥
L∞(∂B2

1)
≤ δ0 for s = 1, s(K), s(K)2,

then there exists ψ∞ ∈ DΠ∞
K such that ψk → ψ∞ (up to subsequences), uniformly on the

three circles; for any bounded measurable function χ : ∂B2
1 → RQ with ‖χ‖L1 ≤ 1, weak

convergence of the traces Ψk

∣∣
∂B2

s
⇀ Ψ∞

∣∣
∂B2

s
in L2 gives∫

∂B2
1

χ · (Ψ∞
∣∣
∂B2

s
(s·)− ψ∞(s·)) = lim

k→∞

∫
∂B2

1

χ · (Ψk

∣∣
∂B2

s
(s·)− ψk(s·)) ≤ δ0
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for s = 1, s(K), s(K)2; thus, with χ being arbitrary, the desired inequality holds also for

k =∞. Also, Ψk(∂B2
1) converges to a compact set Γ∞ included in the closed δ0-neighborhood

of ψ∞(∂B2
1) (up to subsequences).

As observed in the proof of Lemma 4.5.2, up to subsequences we get a limiting local

parametrized stationary varifold (Ω∞,Θ∞, N∞ ◦ ϕ−1
∞ ) in RQ, where Θ∞ = Ψ∞ ◦ ϕ−1

∞ and

Ω∞ = ϕ∞(B2
s(K)) for a suitable K ′(V )-quasiconformal homeomorphism ϕ∞ of the plane

(since dist(Ψ∞(B2
s(K)),Γ∞) ≥ 1

4). By Theorem 4.3.2, Θ∞ is harmonic. Also, it takes values

in the tangent space T at p∞ (translated to the origin).

We can assume that ϕ∞(0) = 0. By definition of δ0 and Lemma 4.4.3, applied to

Ψ∞(s(K)·) and ϕ∞(s(K)·), Θ∞ is a diffeomorphism from ϕ∞(B
2
s(K)/2) onto its image and

the differential ∇Θ∞(0) is a conformal linear map of full rank, spanning a plane Π′ with

dist(Π∞,Π
′) < ε0.

The varifolds vk induced by Ψk

∣∣
B2
s(K)2

converge to v∞, induced by (ϕ∞(B2
s(K)2),Θ∞, N∞◦

ϕ−1
∞ ). Using Lemma A.1, applied to η(K)−1Π∞ ◦Ψ∞(s(K)2·), and the fact that δ0 < η(K),

we deduce the existence of a point y ∈ B2
s(K)2 such that Π∞ ◦Ψ∞(y) = 0. By the convex

hull property enjoyed by Ψ∞, it follows that

|Ψ∞(y)| =
∣∣∣Π⊥∞ ◦Ψ∞(y)

∣∣∣ ≤ δ0,

as Ψ∞(∂B2
s(K)2) ⊆

{
p :
∣∣Π⊥∞(p)

∣∣ ≤ δ0

}
. Since ‖v∞‖(BQ

η(K)) ≤ V πη(K)2, the stationarity of

v∞ on BQ
η(K) implies that its density at Ψ∞(y) is at most

V πη(K)2

π(η(K)− δ0)2
≤
(

η(K)

η(K)− ε0

)2

V. (4.5.6)

With v∞ being stationary in the embedded surface Θ∞(ϕ∞(B2
s(K)2)), the constancy theorem

gives that its density θ is a constant integer here. This also follows from the fact that N∞ is

constant, by Theorem 4.3.2. Thus we have

‖v∞‖(B
Q
t (p′∞)) <

(⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2

)
πt2, p′∞ := Θ∞(0) ∈ T, (4.5.7)

for all t > 0 small enough. Fix now any r′ < s(K) such that we have the strong convergence

Ψk(r
′·) → Ψ∞(r′·) in C0(∂B2

1 ∪ ∂B2
s(K) ∪ ∂B

2
s(K)2) along a subsequence.7 Note that

λ−1ϕ∞(r′·) ∈ DK′(V ), where λ := min|x|=r′ |ϕ∞(x)|. Also, the fact that Ψ∞ = Θ∞ ◦ ϕ∞
and the smoothness of Θ∞ give

∣∣Ψ∞(r′x)−Ψ∞(0)−
〈
∇Θ∞(0), ϕ∞(r′x)

〉∣∣ < δ0|∇Θ∞(0)|
2
√

2D(K ′(V ))

∣∣ϕ∞(r′x)
∣∣ ≤ δ0`

′

2
(4.5.8)

7This can be obtained by applying e.g. Lemma A.5 to the weakly converging R3Q-valued maps

(Ψk,Ψk(s(K)·),Ψk(s(K)2·)) ⇀ (Ψ∞,Ψ∞(s(K)·),Ψ∞(s(K)2·)).
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if r′ is chosen small enough, where `′ := |∇Θ∞(0)|√
2

λ and x ∈ B2
1. This implies

(`′)−1(Ψ∞(r′·)− p′∞) ∈ RΠ′

K′(V ),δ0/2

by conformality of ∇Θ∞(0). Shrinking r′, we can also ensure that `′ < 1
2 , as well as∫

B2
r′

N∞|∂1Ψ∞ ∧ ∂2Ψ∞| ≤
K ′(V )

2

∫
B2
D(K′(V ))λ

|∇Θ∞|2

< K ′(V )(D(K ′(V ))λ)2π|∇Θ∞(0)|2.
(4.5.9)

Calling v′∞ the varifold induced by (ϕ∞(B2
r′), (`

′)−1(Θ∞− p′∞), N∞ ◦ϕ−1
∞ ), in view of (4.5.7)

we can even guarantee that

‖v′∞‖(B
Q
1 )

π
,
‖v′∞‖(B

Q
η(K))

πη(K)2
<
⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.

Calling p′k the closest point to p′∞ in Mpk,`k (eventually defined and converging to p′∞, since

Mpk,`k → T ), thanks to (4.5.8) and λ−1ϕ∞(r′·) ∈ DK′(V ), eventually we have

(`′)−1(Ψk(r
′·)− p′k) ∈ RΠ′

K′(V ),δ0
.

Moreover, (4.5.9) and (4.3.5) give

1

2

∫
B2
r′ (z)
|∇Ψk|2 →

∫
B2
r′ (z)

N∞|∂1Ψ∞ ∧ ∂2Ψ∞| < (`′)2E′(V ).

From the convergence of the varifolds v′k induced by (`′)−1(Ψk − p′k)
∣∣
B2
r′

to v′∞ we get

lim sup
k→∞

‖v′k‖(B
Q
1 )

π
, lim sup

k→∞

‖v′k‖(B
Q
η(K))

πη(K)2
<
⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.

So eventually (`′)−1(Ψk(r
′·) − p′k) satisfies all the conclusions. This yields the desired

contradiction.

Definition 4.5.4. Given constants K ′′ ≥ 1 and E′′ ≥ 1, we define K0 := max {K ′(V ),K ′′}
and E0 := max {E′(V ), E′′}. We also let s0 := s(K0) and η0 := η(K0).

We fix ε0 (and thus δ0) and ε′0 so that Lemmas 4.5.2 and 4.5.3 apply with K := K0,

E := E0. Since ε0 depends on V , we can assume that it is chosen so small that⌊( η0

η0 − ε0

)2

V
⌋

+
1

2
= bV c+

1

2
= V. (4.5.10)

This makes the last conclusion of Lemma 4.5.3 match one of the hypotheses, making it

possible to iterate that result. On the other hand, the constants V , K ′′, E′′ (upon which all

the aforementioned constants depend) will be fixed only in Section 4.6.
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Lemma 4.5.5. There exists a constant 0 < ε′′0 < ε′0 with the following property: if a

conformal immersion Ψ ∈ C2(B
2
r(z),Mp,`) satisfies the hypotheses of the previous lemma

(with ε′′0, E0,K0 in place of ε′0, E,K), then the new point p′, the new radius r′ and the new

scale `′ provided by Lemma 4.5.3 satisfy

n(Ψ, B2
s20r

(z), BΠ
η0

) = n(Ψ− p′, B2
s20r
′(z), B

Π
η0`′) = n(Ψ− p′, B2

s20r
′(z), B

Π′
η0`′). (4.5.11)

Proof. The second equality in (4.5.11) follows immediately from Lemma 4.5.2 (applied with

(`′)−1(Ψ− p′) on B2
r′), which gives

n(Ψ− p′, B2
s20r
′(z), B

Π
η0`′) = n(Ψ− p′, B2

s20r
′(z), B

Π′
η0`′)

since dist(Π′,Π) < ε0.

Assume again z = 0, r = 1 and, by contradiction, that the first equality in (4.5.11) fails, so

that we have again two sequences εk ↓ 0 and Ψk. We can assume that Πk → Π∞, p′k → p′∞,

`′k → `′∞ and r′k → r′∞, with p′∞ ∈M, ε′0 ≤ `′∞ ≤ 1
2 and ε′0 ≤ r′∞ ≤ s0. Moreover, as in the

proof of Lemma 4.5.3, up to further subsequences we get a limiting local parametrized

stationary varifold (Ω∞,Θ∞, N∞ ◦ ϕ−1
∞ ) in RQ, with Ω∞ = ϕ∞(B2

s0). From Theorem 4.3.2

we know that Θ∞ is harmonic and N∞ = ν is constant, so Lemma 4.4.3 gives that Π∞ ◦Θ∞

is a diffeomorphism from ϕ∞(B
2
s0/2) onto its image.

Calling vk the varifold issued by Ψk

∣∣
B2
s20

and v∞ the one issued by (ϕ∞(B2
s20

),Θ∞, ν), we

have the varifold convergence vk ⇀ v∞ as k →∞. The area formula gives

−
∫
B

Πk
η0

N(Ψk, B
2
s20
,Πk) =

‖(Πk)∗vk‖(BΠk
η0

)

πη2
0

→
‖(Π∞)∗v∞‖(BΠ∞

η0
)

πη2
0

= ν,

since (Π∞)∗v∞ equals an open superset of BΠ∞
η0

in Π∞ (by Lemma A.1), equipped with the

constant integer multiplicity ν. Hence, n(Ψk, B
2
s20
, BΠk

η0
) = ν eventually.

Similarly, calling v′k the varifold induced by Ψk

∣∣
B2
s20r
′
k

and v′∞ the varifold induced by

(ϕ∞(B2
s20r
′
∞

),Θ∞, ν), we have v′k ⇀ v′∞ as k →∞, as is readily seen by approximating with

domains which do not vary along the sequence. Since (`′∞)−1(Ψ∞(r′∞·)− p′∞) ∈ RΠ∞
K0,δ0

,

again (Π∞)∗v
′
∞ equals a superset of BΠ∞

η0`′∞
in Π∞, with constant density ν. This gives again

−
∫
B

Πk
η0`
′
k

(qk)
N(Ψk, B

2
s20r
′
k
,Πk) =

‖(Πk)∗v
′
k‖(B

Πk
η0`′k

(qk))

πη2
0(`′k)

2
→
‖(Π∞)∗v

′
∞‖(B

Π∞
η0`′∞

(q∞))

πη2
0(`′∞)2

= ν,

where qk := Πk(p
′
k) for k ∈ N ∪ {∞}. Hence, n(Ψk − p′k, B2

s20r
′
k
, BΠk

η0`′k
) = ν eventually. So

the first equality in (4.5.11) holds eventually, giving the desired contradiction.

Lemma 4.5.6. Assume that Ψ ∈ C∞(B
2
r(z),Mp,`) is a conformal immersion and Π is a

2-plane with Ψ(z + r·) ∈ RΠ
K0,δ0

and 1
2

∫
B2
r (z) |∇Ψ|2 ≤ E0. If

∫
B2
r (z)

∣∣IIΨ
∣∣4 volΨ and ` are

sufficiently small, then Π ◦Ψ is a diffeomorphism from B
2
s20r

(z) onto its image.
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Proof. We can suppose that z = 0 and r = 1. Assume by contradiction that the claim does

not hold, for a sequence of 2-planes Πk → Π∞ and immersions Ψk : B
2
1 →Mpk,`k with

`k → 0 and second fundamental forms IIk satisfying∫
B2

1

|IIk|4 volΨk → 0. (4.5.12)

Let λk ∈ C∞(B
2
1) be defined by |∂1Ψk| = |∂2Ψk| =: eλk and let IIp,` and ĨIk denote the

second fundamental forms of Mp,` ⊆ RQ and of the immersion Ψk in RQ respectively, so

that ĨIk = IIpk,`k + IIk. Note that

‖IIpk,`k‖L∞ ≤ C(M)`k → 0, (4.5.13)

so that ∫
B2

1

∣∣∣ĨIk∣∣∣4 volΨk → 0. (4.5.14)

With a slight abuse of notation, let us drop the dependence on k in the subsequent

computations. We define the orthonormal frame

ẽ1 := e−λ∂1Ψ, ẽ2 := e−λ∂2Ψ (4.5.15)

for the tangent space of the immersed surface Ψ. It is straightforward to check that the map

ẽ1 ∧ ẽ2 : B
2
1 → Λ2RQ has |∇(ẽ1 ∧ ẽ2)| = eλ

∣∣∣ĨI∣∣∣, so∫
B2

1

|∇(ẽ1 ∧ ẽ2)|2 dL2 =

∫
B2

1

e2λ
∣∣∣ĨI∣∣∣2 dL2 =

∫
B2

1

∣∣∣ĨI∣∣∣2 volΨ → 0 (4.5.16)

by Hölder’s inequality, since
∫
B2

1
volΨ ≤ E. We identify the Grassmannian Gr2(RQ) of

2-planes in RQ with a submanifold of the projectivization of Λ2RQ, by means of Plücker’s

embedding. For k large enough [51, Lemma 5.1.4] applies and provides a rotated frame

(e1, e2), given by

eC := e1 + ie2 = eiθẽC, ẽC := ẽ1 + iẽ2, (4.5.17)

for a suitable real function θ ∈W 1,2(B2
1) minimizing

∫
B2

1
|∇θ + ẽ1 · ∇ẽ2|2 (in particular, θ

and eC are smooth functions on B
2
1) and with ‖∇eC‖2L2 becoming arbitrarily small as k →∞.

We will assume in the sequel that ‖∇eC‖2L2 ≤ 1. Observe that, whenever α, β ∈ C1(B
2
1),

∂1α∂2β − ∂2α∂1β =
1

4
(∂1α+ ∂2β)2 +

1

4
(∂2α− ∂1β)2 − 1

4
(∂1α− ∂2β)2 − 1

4
(∂2α+ ∂1β)2

= |∂z(α+ iβ)|2 − |∂z(α+ iβ)|2.

Hence, since ẽ1 + iẽ2 = 2e−λ∂zΨ and ∂zΨ · ∂zΨ = ∂zΨ · ∂zΨ = 0 by conformality, we get

− (∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2)

= 4∂z(e
−λ∂zΨ) · ∂z(e−λ∂zΨ)− 4∂z(e

−λ∂zΨ) · ∂z(e−λ∂zΨ)

= 4e−2λ(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ− ∂zλ∂zΨ · ∂2
zzΨ− ∂zλ∂zΨ · ∂2

zzΨ)

+ 2e−2λ∂zλ∂z(∂zΨ · ∂zΨ) + 2e−2λ∂zλ∂z(∂zΨ · ∂zΨ)

= 4e−2λ(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ− ∂zλ∂zΨ · ∂2
zzΨ− ∂zλ∂zΨ · ∂2

zzΨ).
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On the other hand we have

2e2λ∂zλ = ∂z(e
2λ) = ∂z(2∂zΨ · ∂zΨ) = ∂z(∂zΨ · ∂zΨ) + 2∂zΨ · ∂2

zzΨ = 2∂zΨ · ∂2
zzΨ,

∆(e2λ) = 4∂2
zz(2∂zΨ · ∂zΨ) = 8∂z(∂zΨ · ∂2

zzΨ) + 4∂2
zz(∂zΨ · ∂zΨ)

= 8(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ) + 4∂2
zz(∂zΨ · ∂zΨ)

= 8(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ),

so we arrive at

∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2 = −∆(e2λ)

2e2λ
+ 8∂zλ∂zλ = −∆λ. (4.5.18)

Alternatively, since the projections of ∂j ẽ1 and ∂kẽ2 onto the tangent space of the immersion

Ψ are orthogonal (as the projection of ∂j ẽ1 is a multiple of ẽ2 and the projection of ∂kẽ2 is a

multiple of ẽ1), we have

∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2 = e2λ(ĨI(ẽ1, ẽ1) · ĨI(ẽ2, ẽ2)− ĨI(ẽ1, ẽ2) · ĨI(ẽ1, ẽ2)) = e2λK,

by Gauss’ formula, where K denotes the Gaussian curvature of the immersed surface. But,

by the well-known formula for the curvature of a conformal metric, we have K = −e−2λ∆λ,

which gives again (4.5.18). Moreover,

∂1e1 · ∂2e2 − ∂2e1 · ∂1e2 = |∂zeC|2 − |∂zeC|2 = |∂z ẽC|2 − |∂z ẽC|2

= ∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2,

since ∂z ẽC · ẽC = −ẽC · ∂z ẽC and similarly for the partial derivatives with respect to z. Thus,

calling µ ∈ C∞(B
2
1) the solution to−∆µ = ∂1e1 · ∂2e2 − ∂2e1 · ∂1e2 on B2

1

µ = 0 on ∂B2
1 ,

we obtain that λ− µ is harmonic and, by Wente’s inequality,

‖µ‖L∞ ≤ C(Q)
(
‖∇e1‖2L2 + ‖∇e2‖2L2

)
≤ C(Q). (4.5.19)

Since λ < e2λ, for all x ∈ B2
3/4 we get

(λ− µ)(x) = −
∫
B2

1/4
(x)

(λ− µ) ≤ −
∫
B2

1/4
(x)
e2λ + ‖µ‖L∞ ≤

E

L2(B2
1/4)

+ C(Q). (4.5.20)

Together with (4.5.19), this gives an upper bound for λ on B2
3/4, depending only on E,Q.

Although this is sufficient for the present purposes, one can also get a lower bound for λ on

B2
s0 . Indeed, calling M the right-hand side of (4.5.20), we obtain that M − (λ− µ) is a

nonnegative harmonic function on B2
3/4. Moreover, the length of the curve Ψ

∣∣
∂B2

s0

is∫
∂B2

s0

eλ ≥ 2πη0, (4.5.21)
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since the composition of Π ◦Ψ
∣∣
∂B2

s0

with the radial projection onto ∂BΠ
η0

(which does not

increase the length) is surjective (being a generator of the fundamental group of ∂BΠ
η0

).

Hence, there exists some x ∈ ∂B2
s0 such that λ(x) ≥ log

(
s−1

0 η0

)
. We deduce that

inf
B2
s0

(M − (λ− µ)) ≤M + C(Q)− log(s−1
0 η0) (4.5.22)

and so, by Harnack’s inequality, the supremum of M − (λ− µ) on B2
s0 is bounded by a

constant depending only on E, s0, η0, Q. This, together with (4.5.20) and (4.5.19), gives

‖λ‖L∞(B2
s0

) ≤ C(E, s0, η0, Q). (4.5.23)

The mean curvature of the immersion Ψ is H̃ = 1
2e2λ

(ĨI(∂1Ψ, ∂1Ψ) + ĨI(∂2Ψ, ∂2Ψ)) = − ∆Ψ
2e2λ

(note that ∆Ψ is already orthogonal to the tangent space of the immersion, since

∂zΨ ·∆Ψ = 4∂zΨ · ∂2
zzΨ = 2∂z(∂zΨ · ∂zΨ) = 0). So we get∫

B2
3/4

|∆Ψk|4 dL2 = 16

∫
B2

3/4

∣∣∣H̃k

∣∣∣4e6λk volΨk

≤ C(E,Q)

∫
B2

3/4

∣∣∣ĨIk∣∣∣4 volΨk → 0.

(4.5.24)

Since s0 ≤ 1
2 , this implies that (Ψk) is a bounded sequence in W 2,4(B2

s0) (by Lemma A.2

applied to Ψk(3
4 ·)), so by the compact embedding W 2,4(B2

s0) ↪→ C1(B
2
s0) we obtain a strong

limit Ψ∞ in C1(B
2
s0), up to subsequences. Thus Ψ∞ is weakly conformal and, by (4.5.24), it

is also harmonic. Lemma 4.4.3 applies (with Ψ∞(s0·) and idR2 in place of Ψ and ϕ) and

gives that Π∞ ◦Ψ∞ is a diffeomorphism from B
2
s0/2 ⊇ B

2
s20

onto its image; hence, the same is

eventually true for Πk ◦Ψk, giving the desired contradiction.

4.6 Multiplicity one in the limit

Theorem 4.6.1. Assume Φ ∈ C∞(B
2
r(z),M) is a conformal immersion, almost critical for

(4.3.1) on B2
r (z) and satisfying

• `−1(Φ(z + r·)− p) ∈ RΠ
K0,δ0 for some

√
σ/ε′′0 < ` < 1 and p ∈M,

• 1

2

∫
B2
r (z)
|∇Φ|2 ≤ E0`

2,

•
∫

Φ−1(BQ` (p))
volΦ ≤ V π`2 and

∫
Φ−1(BQη0`

(p))
volΦ ≤ V π(η0`)

2,

• σ4 log(σ−1)

∫
B2
s

∣∣IIΦ
∣∣4 volΦ ≤

ε′′0
E0

∫
B2
s

volΦ for all 0 < s ≤ r.

Then, if σ and ` are small enough (independently of each other), we have

n(Φ− p,B2
s20r

(z), BΠ
η0`) = 1.
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Proof. Let r0 := r, p0 := p, `0 := `, τ0 := σ`−2
0 and Π0 := Π. Note that

Ψ0 := `−1(Φ− p) = `−1
0 (Φ− p0)

is almost critical for (4.3.3), with τ := τ0 ≤ ε′′0. Thus Lemma 4.5.3 applies to Ψ0 (if ` is

small enough), giving a new radius ε′0r0 < r1 < s0r0, a new point p′ ∈Mp,`, a new scale

ε′0 < `′ < 1
2 and a new 2-plane Π′. Setting r1 := r′, p1 := p0 + `0p

′, `1 := `′`0, τ1 := σ/`1,

Π1 := Π′ and recalling (4.5.10), the map

Ψ1 := (`′)−1(Ψ0 − p′) = `−1
1 (Φ− p1)

still satisfies the hypotheses of Lemma 4.5.3, with the parameters r1, τ1, p1, `1,Π1, provided

that τ1 ≤ ε′0: indeed, note that (assuming τ1 ≤ ε′0 < 1)

τ4
1 log(τ−1

1 )

∫
B2
r1

(z)

∣∣IIΨ1
∣∣4 volΨ1 ≤ τ4

1 log(σ−1)

∫
B2
r1

(z)

∣∣IIΨ1
∣∣4 volΨ1

= `−2
1 σ4 log(σ−1)

∫
B2
r1

(z)

∣∣IIΦ
∣∣4 volΦ ≤

ε′′0`
−2
1

E0

∫
B2
r1

(z)
volΦ =

ε′′0
2E0

∫
B2
r1

(z)
|∇Ψ1|2 ≤ ε′′0.

Hence, we can iterate and define rj , τj , pj , `j ,Πj , for j = 0, 1, . . . , up to a maximum index

k ≥ 1 such that τj ≤ ε′′0 ≤ ε′0 for 1 ≤ j < k and τk > ε′′0: such k exists since τj = `−1
j σ ≥ 2jτ0.

With the same computation as above, this implies∫
B2
rk

(z)

∣∣IIΨk
∣∣4 volΨk ≤

ε′′0
τ4
k log(σ−1)

≤ 1

(ε′′0)3 log(σ−1)
. (4.6.1)

If σ and ` are small enough, Lemma 4.5.6 applies to the map Ψk := `−1
k (Ψ− pk), on the ball

B2
rk

(z): indeed, note that `k ≤ ` and
∫
B2
rk

(z) |II
Ψk |4 volΨk can be assumed arbitrarily small

(by taking σ and ` small enough), by virtue of (4.6.1). This, together with Lemma A.1, gives

n(Ψk, B
2
s20rk

(z), BΠk
η0

) = 1.

Also, Lemma 4.5.5 applies for all j = 0, . . . , k − 1, giving

n(Φ− p,B2
s20r

(z), BΠ
η0`) = n(Ψ0, B

2
s20r0

(z), BΠ0
η0

)

= n(Ψ1, B
2
s20r1

(z), BΠ1
η0

)

= · · ·

= n(Ψk, B
2
s20rk

(z), BΠk
η0

)

= 1.

As in Section 4.3, assume now that Φk : Σ→M is a sequence of almost critical points for∫
Σ

volΦk +σ4
k

∫
Σ
|IIΦk |4 volΦk (4.6.2)
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with controlled area, namely

λ ≤
∫

Σ
volΦk ≤ Λ,

and with

σk → 0, σ4
k log(σ−1

k )

∫
Σ
|IIΦk |4 volΦk → 0.

By the main result of the second chapter, up to subsequences the varifolds vk induced by

Φk converge to a parametrized stationary varifold.

As explained in Section 2.6, there could be bubbling points, and also the conformal

structures induced by Φk could degenerate (in the space of conformal structures up to

diffeomorphisms). In the remainder of the chapter, we will assume for simplicity that there is

no bubbling and no degeneration of the conformal structure. Note that the arguments will

apply also to the general case, working on appropriate domains different from Σ, as it was

done in Section 2.6.

Up to precomposing Φk with suitable diffeomorphisms of Σ, we can thus assume that

there exist metrics gk of constant curvature (1, 0 or −1, depending on the genus of Σ) such

that Φk : (Σ, gk)→M is conformal, and such that gk converges smoothly to a limiting

Riemannian metric g∞. The limiting varifold v∞ is a parametrized stationary varifold of the

form (Σ∞,Θ∞, N∞). By the regularity result of the previous chapter, which was already

exploited in Section 4.5, Θ∞ : Σ∞ →M is a smooth branched minimal immersion and N∞

is locally (a.e.) constant. Also, calling Φ∞ ∈ W 1,2(Σ,M) the weak limit of Φk (up to

subsequences), Θ∞ = Φ∞ ◦ ϕ−1
∞ for some quasiconformal homeomorphism ϕ∞ : Σ→ Σ∞,

with respect to g∞. Here Σ∞ is a Riemann surface homeomorphic (by means of ϕ∞) to Σ.

In particular, Φ∞ is continuous and N∞ is a.e. constant (Σ∞ being connected).

In local conformal coordinates for (Σ, g∞), as in (4.3.5) we have

volΦk ⇀ N∞|∂1Φ∞ ∧ ∂2Φ∞| L2 ≥ 1

2
|∇Φ∞|2 L2. (4.6.3)

Setting νk := volΦk and ν∞ := N∞|∂1Φ∞ ∧ ∂2Φ∞| L2 (in local conformal coordinates for

Σ), by (4.6.3) we have νk ⇀ ν∞. We can find a conformal disk U ⊂ (Σ, g∞), which we

identify with B2
1 ⊂ C and fix in the sequel, such that ν∞(B2

1/2) > 0.

Definition 4.6.2. We denote by ν the constant value of N∞. Also, we call T the set of

bad points z ∈ B2
1 which are not Lebesgue for ∇Φ∞, or such that ∇Φ∞(z) does not have

full rank, or such that

max
|x|=1

|〈∇Φ∞(z), x〉| > 2ν min
|x|=1

|〈∇Φ∞(z), x〉|. (4.6.4)

We have L2(T ) = 0, since ∇Θ∞ has full rank a.e. by conformality (hence the same holds for

Φ∞ by the chain rule8) and since (4.6.4) implies ν|∂1Φ∞ ∧ ∂2Φ∞|(z) < 1
2 |∇Φ∞|2(z) (as it

can be immediately verified using a singular value decomposition for ∇Φ∞(z)).

8See e.g. [56, Lemma 4.12] and [65, Lemma III.6.4].
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Definition 4.6.3. We now specify K ′′ := 2ν and we set E′′ := πν((K ′′)2 + 1). Finally, we

choose V > 0 such that V = bV c+ 1
2 and

‖v∞‖(B
Q
` (p)) < V π`2 (4.6.5)

for all ` > 0 and all p ∈M. Such V exists by the monotonicity formula satisfied by the

stationary varifold v∞. Note that now also the constants K0, E0, s0, η0, as well as ε0, δ0, ε′0

and ε′′0, are determined.

Theorem 4.6.4. We have N∞ = 1 a.e., or equivalently ν = 1.

Proof. Let Bk be the Borel set of points z ∈ B2
1/2 such that

σ4
k log(σ−1

k )

∫
B2
r (z)

∣∣IIΦk
∣∣4 volΦk ≥

ε′′0
E0

∫
B2
r (z)

volΦk

for some radius 0 < r < 1
2 . By Besicovitch’s covering lemma, we get a collection of points

zi ∈ Bk and radii 0 < ri <
1
2 such that

σ4
k log(σ−1

k )

∫
B2
ri

(zi)

∣∣IIΦk
∣∣4 volΦk ≥

ε′′0
E0

∫
B2
ri

(zi)
volΦk , 1Bk ≤

∑
i

1B2
ri

(zi) ≤ N,

for some universal constant N. Thus we get

νk(Bk) ≤
∑
i

volΦk(B2
ri(zi)) ≤

E0

ε′′0
σ4
k log(σ−1

k )
∑
i

∫
B2
ri

(zi)

∣∣IIΦk
∣∣4 volΦk

≤ E0N

ε′′0
σ4
k log(σ−1

k )

∫
Σ

∣∣IIΦk
∣∣4 volΦk → 0.

Up to subsequences, we can assume that B2
1/2 \ Bk converges in the Hausdorff topology

to some compact set S ⊆ B
2
1/2. We remark that ν∞(S) > 0: indeed, for any compact

neighborhood F of S in B2
1 , we have B2

1/2 \ Bk ⊆ F eventually and so

ν∞(F ) ≥ lim sup
k→∞

νk(F ) ≥ lim sup
k→∞

(νk(B
2
1/2)− νk(Bk)) = lim sup

k→∞
νk(B

2
1/2) ≥ ν∞(B2

1/2) > 0.

It follows from (4.6.3) that L2(S) > 0.

We now show that N∞ = 1 a.e. on S \ T , which has positive Lebesgue measure. This

will show that ν = 1, as desired. Fix any z ∈ S \ T and take a sequence zk ∈ B2
1/2 \ Bk with

zk → z. Locally we can find conformal reparametrizations Φ̃k of Φk(zk + ·), by means of

diffeomorphisms converging smoothly to the identity on a small neighborhood of 0.9 By weak

convergence Φ̃k ⇀ Φ∞(z + ·) in W 1,2, for a.e. radius r > 0 we have

Φ̃k(r·)→ Φ∞(z + r·) in C0(∂B2
1 ∪ ∂B2

s0 ∪ ∂B
2
s20

) (4.6.6)

9For instance, one can isometrically identify a neighborhood of zk in (Σ, gk) with a neighborhood of z in
(Σ, g∞), by means of the exponential map.
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up to further subsequences.10 Using Lemma A.4 and the fact that z 6∈ T , we can assume

that r satisfies

|Φ∞(z + rx)− Φ∞(z)− 〈∇Φ∞(z), rx〉| < δ0` for x ∈ ∂B2
1 ∪ ∂B2

s0 ∪ ∂B
2
s20
, (4.6.7)

1

2

∫
B2
r (z)
|∇Φ∞|2 < (πr2)|∇Φ∞(z)|2 ≤ `2π((K ′′)2 + 1), (4.6.8)

with ` := rmin|x|=1 |〈∇Φ∞(z), x〉|. Note that (4.6.7) will guarantee (below) that the first

assumption in Theorem 4.6.1 holds for Φ̃k. Setting p := Φ∞(z), note that (4.6.5) gives

‖vk‖(BQ
` (p)) < V π`2, ‖vk‖(BQ

η0`
(p)) < V π(η0`)

2

eventually, which trivially implies∫
Φ̃−1
k (BQ` (p))

vol
Φ̃k

< V π`2,

∫
Φ̃−1
k (BQη0`

(p))
vol

Φ̃k
< V π(η0`)

2. (4.6.9)

Also, (4.6.3) and (4.6.8) give

lim
k→∞

1

2

∫
B2
r

∣∣∣∇Φ̃k

∣∣∣2 = lim
k→∞

νk(B
2
r (z)) ≤ ν

2

∫
B2
r (z)
|∇Φ∞|2 < E′′`2.

Thanks to the fact that zk 6∈ Bk and the above inequalities, eventually Φ̃k satisfies the

hypotheses of Theorem 4.6.1 on the ball B2
r , provided that r (and thus `) is chosen small

enough.11 Setting Ψk := `−1(Φ̃k − p), we infer that

n(Ψk, B
2
s20r
, BΠ

η0
) = 1, (4.6.10)

where Π is the 2-plane spanned by ∇Φ∞(z).

Since r can be chosen arbitrarily small (possibly changing the subsequence guaranteeing

(4.6.6)), the argument used in the proof of Theorem 2.5.3 shows that N∞(z) = 1.

Alternatively, (4.6.10) gives ∣∣∣∣∣‖Π∗v′k‖(BΠ
η0

)

πη2
0

− 1

∣∣∣∣∣ < 1

8
,

where the varifold v′k is induced by Ψk

∣∣
B2
s20r

and converges to the varifold v′∞ induced by

(ϕ∞(B2
s20r

(z)), `−1(Θ∞ − p), ν). Assuming without loss of generality that ∇Θ∞(ϕ∞(z)) 6= 0,

Π ◦Θ∞ is a diffeomorphism from ϕ∞(B2
s20r

(z)) onto its image (for r small enough). Hence,

10This can be obtained by applying Lemma A.5 to the weakly converging R3Q-valued maps

(Φ̃k, Φ̃k(s0·), Φ̃k(s2
0·)) ⇀ (Φ∞(z + ·),Φ∞(z + s0·),Φ∞(z + s2

0·)).

11To be precise, in the definition of Bk one should use balls in a conformal chart for gk.
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at a.e. point of Π the varifold Π∗v∞ has density either 0 or ν. Since Π ◦ Φ∞(B2
s20r

(z)) is a

superset of BΠ
η0`

(Π(p)) (by Lemma A.1), it follows that

‖Π∗v′∞‖(BΠ
η0

)

πη2
0

= ν.

The convergence
‖Π∗v′k‖(BΠ

η0
)

πη2
0

→ ‖Π∗v′∞‖(BΠ
η0

)

πη2
0

thus gives |ν − 1| ≤ 1
8 , and again we conclude

that ν = 1.

Appendix

Lemma A.1. Assume that F ∈ C0(B
2
1,R2) satisfies

|F (x)− ϕ(x)| ≤ δ for all x ∈ ∂B2
1 (A.1)

for some 0 < δ < 1 and some homeomorphism ϕ : R2 → R2, with ϕ(0) = 0 and

min|x|=1 |ϕ(x)| ≥ 1. Then

F (B2
1) ⊇ B2

1−δ. (A.2)

Proof. It suffices to show that, for a fixed y ∈ B2
1−δ, the closed curve Γ′ := F

∣∣
∂B2

1
is not

contractible in R2 \ {y}: once this is done, if we had y 6∈ F (B2
1), i.e. y 6∈ F (B

2
1), then F

would provide a homotopy from Γ′ to the constant curve F (0) in R2 \ {y}, yielding a

contradiction.

Letting Γ := ϕ
∣∣
∂B2

1
and γ := Γ′ − Γ, we have |γ(x)| ≤ δ for all x ∈ ∂B2

1 . Hence, Γ is

homotopic to Γ′ in R2 \B2
1−δ ⊆ R2 \ {y} by means of the homotopy

Γ + tγ, 0 ≤ t ≤ 1.

So we are left to show that Γ is not contractible in R2 \ {y}, i.e. that Γ− y is not contractible

in R2 \ {0}. The curve Γ− y is homotopic to Γ in R2 \ {0}, by means of the homotopy

Γ− ty, 0 ≤ t ≤ 1,

which avoids the origin since |y| < 1. Finally, Γ is not contractible in R2 \ {0}, since ϕ (once

restricted to a homeomorphism of R2 \ {0}) induces an automorphism of π1(R2 \ {0})
sending the class of the generator id∂B2

1
to the class of Γ. Hence, Γ− y is not contractible in

R2 \ {0}, too, as desired.

Lemma A.2. For a function Ψ ∈ C∞(B1) and 0 < τ < 1 we have

‖Ψ‖W 2,4(B2
τ ) ≤ C(τ)(‖∆Ψ‖L4(B2

1) + ‖∇Ψ‖L2(B2
1) + ‖Ψ‖L2(B2

1)).
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Proof. Given two radii 0 < r < s ≤ 1, let us choose a cut-off function ρ ∈ C∞c (B2
s ) with

ρ = 1 on B2
r . Since ρΨ ∈ C∞c (R2), standard Calderón–Zygmund estimates give∥∥∇2Ψ

∥∥
Lp(B2

r )
≤
∥∥∇2(ρΨ)

∥∥
Lp(R2)

≤ C(p)‖∆(ρΨ)‖Lp(R2)

≤ C(p, r, s)(‖∆Ψ‖Lp(B2
s ) + ‖∇Ψ‖Lp(B2

s ) + ‖Ψ‖Lp(B2
s ))

(A.3)

for all 1 < p <∞. Setting t := 1+τ
2 and applying (A.3) with p := 2, r := t and s := 1 we get∥∥∇2Ψ

∥∥
L2(B2

t )
≤ C(τ)(‖∆Ψ‖L2(B2

1) + ‖∇Ψ‖L2(B2
1) + ‖Ψ‖L2(B2

1)),

hence ‖Ψ‖W 2,2(B2
t ) is bounded by the desired quantity. Using Sobolev’s embedding

W 2,2(B2
t ) ↪→W 1,4(B2

t ) and (A.3) with p := 4, r := τ and s := t, we obtain

‖Ψ‖W 2,4(B2
τ ) ≤ C(τ)(‖∆Ψ‖L4(B2

t ) + ‖Ψ‖W 2,2(B2
t ))

≤ C(τ)(‖∆Ψ‖L4(B2
1) + ‖∇Ψ‖L2(B2

1) + ‖Ψ‖L2(B2
1)).

Lemma A.3. Given a sequence ψk : C→ C of K-quasiconformal homeomorphisms with

the normalization conditions

ψk(0) = 0, ψk(1) = 1,

there exists a K-quasiconformal homeomorphism ψ∞ : C → C satisfying the same

normalization condition and such that, up to subsequences, ψk → ψ∞ and ψ−1
k → ψ−1

∞ in

C0
loc(C).

Proof. Let µk ∈ EK be defined by ∂zψk = µk∂zψk.
12 The existence and uniqueness of a

K-quasiconformal homeomorphism satisfying this equation and the normalization conditions

are shown in [56, Theorem 4.30].

Given M > 0, we consider the set EMK :=
{
µ ∈ EK : µ = 0 a.e. on C \B2

M

}
. If Fµ

denotes the normal solution to the equation ∂zF
µ = µ∂zF

µ (in the sense of [56, Theorem 4.24]),

then Fµ satisfies estimates (4.21) and (4.24) from [56]. Applying them with the points 0 and

1, we infer that also the map fµ := Fµ(1)−1Fµ satisfies estimates of the form

|fµ(z1)− fµ(z2)| ≤ C|z1 − z2|α + C|z1 − z2|, (A.4)

|z1 − z2| ≤ C|fµ(z1)− fµ(z2)|α + C|fµ(z1)− fµ(z2)|, (A.5)

with C and 0 < α < 1 depending only on K and M . Given a sequence of homeomorphisms

fk : C→ C satisfying these estimates, the Ascoli–Arzelà theorem applies to fk and f−1
k and

so we can extract a subsequence (not relabeled) such that

fk → f∞, f−1
k → f̃∞ in C0

loc(C).

12Actually, the coefficient µk is uniquely determined a.e., as ∂zψk 6= 0 a.e. (this follows from idC = ψ−1
k ◦ψk

and the chain rule [65, Lemma III.6.4], together with |∂zψk| ≤ |∂zψk|).
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From f−1
k ◦ fk = fk ◦ f−1

k = idC we get f̃∞ ◦ f∞ = f∞ ◦ f̃∞ = idC and thus f∞ : C→ C is a

homeomorphism, with f̃∞ = f−1
∞ . Also, since fk(z), f−1

k (z)→∞ uniformly as z →∞, we

deduce that the canonical extensions f̂k : Ĉ→ Ĉ converge uniformly to f̂∞ and that the

same holds for f̂−1
k .

We now closely examine the proof of [56, Theorem 4.30]: let µ̃k ∈ E1
K be given by

equation (4.25) in [56], with µk1C\B2
1

in place of µ, and

gk : Ĉ→ Ĉ, gk(z) := f̂ µ̃k(z−1)−1.

This map corresponds to the map fµ1 in the aforementioned proof (with µk in place of µ).

The lower bound (A.5), applied with f µ̃k and z1 := z−1, z2 := 0, shows that |gk(z)| is

bounded above by some M ′, for all k and all z ∈ B2
1. Hence, defining µk,2 as in equation

(4.27) in [56] (with µk in place of µ), we get µk,2 ∈ EM
′

K . Calling hk : Ĉ→ Ĉ the associated

quasiconformal homeomorphism, normalized so that hk(0) = 0 and hk(1) = 1, by the above

argument (with M := M ′) we obtain the uniform convergence

gk → g∞, g−1
k → g−1

∞ , hk → h∞, h−1
k → h−1

∞

up to subsequences, for suitable homeomorphisms g∞ and h∞ of the Riemann sphere Ĉ.

Setting ψ∞ := h∞ ◦ g∞
∣∣
C and observing that ψk = hk ◦ gk

∣∣
C, we get the desired convergence

ψk → ψ∞ and ψ−1
k → ψ−1

∞ in C0
loc(C).

Finally, we show that ψ∞ is a K-quasiconformal homeomorphism. Given an open

rectangle R ⊂⊂ C, [56, Lemma 4.12] gives

L2(ψk(R)) =

∫
R

(|∂zψk|2 − |∂zψk|2) ≥
∫
R

(1− k2)|∂zψk|2 ≥ (1− k2)k−2

∫
R
|∂zψk|2,

where k := K−1
K+1 . Since lim supk→∞ L2(ψk(R)) ≤ L2(ψ∞(R)), we deduce that ψk is

bounded in W 1,2(R); thus, ψ∞ is the limit of ψk in the weak W 1,2
loc (C)-topology. Given

ρ, ψ1, ψ2 ∈ C∞c (C), integration by parts shows that∫
C
ρ(∂1ψ

1∂2ψ
2 − ∂2ψ

1∂1ψ
2) = −

∫
C

(∂1ρψ
1∂2ψ

2 − ∂2ρψ
1∂1ψ

2). (A.6)

By writing ψk = ψ1
k + iψ2

k, a standard density argument shows that (A.6) still holds with

ψ1, ψ2 replaced by ψ1
k, ψ

2
k, for k ∈ N ∪ {∞}. Hence, observing that |∂zψk|2 − |∂zψk|2 =

(∂1ψ
1
k∂2ψ

2
k − ∂2ψ

1
k∂1ψ

2
k), we get∫

C
ρ(|∂zψk|2 − |∂zψk|2)→

∫
C
ρ(|∂zψ∞|2 − |∂zψ∞|2). (A.7)

Defining the positive measures νk := (|∂zψk|2 − |∂zψk|2)L2, up to further subsequences we

can assume that νk ⇀ ν∞ as Radon measures. For any rectangle R such that ν∞(∂R) = 0,

approximating 1R from above and below with smooth functions and applying (A.7) we get∫
R

(|∂zψk|2 − |∂zψk|2)→
∫
R

(|∂zψ∞|2 − |∂zψ∞|2).
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By monotonicity of both sides, this actually holds for every rectangle R. On the other hand,

by lower semicontinuity of the L2-norm,∫
R

(1− k2)|∂zψ∞|2 ≤ lim inf
k→∞

∫
R

(1− k2)|∂zψk|2 ≤ lim
k→∞

∫
R

(|∂zψk|2 − |∂zψk|2)

=

∫
R

(|∂zψ∞|2 − |∂zψ∞|2).

Since R is arbitrary, we get |∂zψ∞| ≤ k|∂zψ∞| a.e., as desired.

Corollary A.4. Given a sequence ϕk ∈ DK , there exists ϕ∞ ∈ DK such that, up to

subsequences, ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞ in C0
loc(C).

Proof. Let µk ∈ EK be defined by ∂zϕk = µk∂zϕk for all k and let ψk : C → C be the

unique K-quasiconformal homeomorphism satisfying the same differential equation, as well

as ψk(0) = 0, ψk(1) = 1 (see [56, Theorem 4.30]).

By Lemma A.3, up to subsequences there exists a K-quasiconformal homeomorphism ψ∞

such that ψk → ψ∞ and ψ−1
k → ψ−1

∞ in C0
loc(C).

By the chain rule (see [65, Lemma III.6.4]), the map ψk◦ϕ−1
k : C→ C is a biholomorphism

and fixes the origin, so it equals the multiplication by a nonzero complex number λk, i.e.

ψk = λkϕk. On the other hand,

|λk| = min
x∈∂B2

1

|ψk(x)| → min
x∈∂B2

1

|ψ∞(x)| ∈ (0,∞).

Hence, up to further subsequences we can suppose that λk → λ∞ ∈ C \ {0}. The statement

follows with ϕ∞ := λ−1
∞ ψ∞.

Remark A.5. In general, given ϕk ∈ DK (for k ∈ N∪{∞}) with ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞

locally uniformly, it is not true that the corresponding Beltrami coefficients satisfy µk ⇀ µ∞

in L∞(C). For instance, let µ0(z) := 1
2 if <(z) ∈

⋃
n∈Z

[
n, n+ 1

2

)
and µ0(z) := −1

2 otherwise.

Then the bi-Lipschitz homeomorphism ψ0 : C→ C given by

ψ0(x+ iy) :=

n+ 9
5(x− n) + 3

5 iy = n+ 6
5(z − n) + 3

5(z − n) n ≤ x ≤ n+ 1
2

n+ 4
5 + x−n

5 + 3
5 iy = n+ 4

5 + 2
5(z − n)− 1

5(z − n) n+ 1
2 ≤ x ≤ n+ 1

satisfies ∂zψ0 = µ0∂zψ0, with the normalization ψ0(0) = 0 and ψ0(1) = 1. So µk := µ0(2k·)
and ψk := 2−kψ0(2k·) satisfy ∂zψk = µk∂zψk with the same normalization. Moreover, they

converge uniformly to ψ∞(x+ iy) = x+ 3
5 iy = 4

5z + 1
5z, together with their inverses. The

homeomorphism ψ∞ satisfies ∂zψ∞ = µ∞∂zψ∞ with µ∞ := 1
4 , but µk ⇀ 0. Dividing each

ψk by min|z|=1 |ψk(z)|, we obtain a counterexample in the class D3.



5 Codimension two minimal

submanifolds from

Yang–Mills–Higgs

5.1 Introduction

As already mentioned in the first chapter, a “level set” approach for the variational

construction of minimal hypersurfaces was born from the work of Modica–Mortola [80],

Modica [79], and Sternberg [103]. Starting from a suggestion by De Giorgi [26], they

highlighted a deep connection between minimizers uε :M→ R of the Allen–Cahn functional

Fε(v) :=

∫
M

(
ε|dv|2 +

1

4ε
(1− v2)2

)
,

and two-sided minimal hypersurfaces in M, showing essentially that the functionals Fε

Γ-converge to (4
3 times) the perimeter functional on Caccioppoli sets. Several years later,

Hutchinson and Tonegawa [55] initiated the asymptotic study of critical points vε of Fε with

bounded energy, without the energy-minimality assumption. They showed, in particular,

that their energy measures concentrate along a stationary, integral (m− 1)-varifold, given by

the limit of the level sets v−1
ε (0).

These developments, together with the deep regularity work by Tonegawa and

Wickramasekera on stable solutions [108], opened the doors to a fruitful min-max approach

to the construction of minimal hypersurfaces, providing a PDE alternative to the rather

involved discretized min-max procedure implemented by Almgren and Pitts.

The initial motivation for the content of this chapter is to find, in a similar vein, a natural

way to construct minimal varieties of codimension two through PDE methods. Recently,

other attempts in this direction have been made by Cheng [21] and the second-named author

[102], based on the study of the Ginzburg–Landau functionals

Fε(v) :=
1

| log ε|

∫
M

(
|dv|2 +

1

4ε2
(1− |v|2)2

)
on complex-valued maps v :M→ C. As discussed in the first chapter, this approach

produces nontrivial stationary rectifiable (m− 2)-varifolds, but it is not yet known whether a

varifold produced in this way is always integral, nor whether the energy measures of min-max

critical points concentrate along its support in the case b1(M) 6= 0.

145
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In the present chapter, we consider instead the self-dual Yang–Mills–Higgs energy

E(u,∇) :=

∫
M

(
|∇u|2 + |F∇|2 +W (u)

)
(5.1.1)

and its rescalings (for ε ∈ (0, 1])

Eε(u,∇) :=

∫
M

(
|∇u|2 + ε2|F∇|2 + ε−2W (u)

)
, (5.1.2)

for couples (u,∇) consisting of a section u of a given Hermitian line bundle L→M, and a

metric connection ∇ on L. Here, the nonlinear potential W : L→ R is given by

W (u) :=
1

4
(1− |u|2)2, (5.1.3)

while F∇ ∈ Ω2(End(L)) denotes the curvature of ∇.

For the trivial bundle L = C × R2 on the plane M = R2, a detailed study of the

functional (5.1.1) and its critical points can be found in the doctoral work of Taubes

[105, 106]. In [106], all finite-energy critical points (u,∇) of (5.1.1) in the plane are shown to

solve the first order system1

∇∂1u± i∇∂2u = 0; ∗F∇ = ±1

2
(1− |u|2) (5.1.4)

known as the vortex equations—a two-dimensional counterpart of the instanton equations in

four-dimensional Yang–Mills theory. In particular, all such solutions (u,∇) minimize energy

among pairs (u,∇) with fixed vortex number

N :=
1

2π

∫
R2

∗F∇ ∈ Z,

and carry energy exactly E(u,∇) = 2π|N |. In [105], Taubes shows moreover that there exist

solutions of (5.1.4) with any prescribed zero set

u−1(0) = {z1, . . . , zN} ⊂ R2,

which are unique up to gauge equivalence, so that [105] and [106] together give a complete

classification of finite-energy critical points of (5.1.1) in the plane.

In [53], Hong, Jost, and Struwe initiate the study of the rescaled functionals (5.1.2) in

the limit ε→ 0 for line bundles L→ Σ over a closed Riemann surface Σ. The main result of

[53] shows that, for solutions (uε,∇ε) of the rescaled vortex equations (given by replacing
1
2(1− |u|2) with 1

2ε2
(1− |uε|2) in (5.1.4)), the curvature ∗ 1

2πF∇ε converges as ε→ 0 to a

finite sum of Dirac masses of total mass |deg(L)|, away from which ∇ε converges to a flat

connection ∇0, and uε to a unit section u0 with ∇0u0 = 0, up to change of gauge. While the

authors of [53] focus on the vortex equations over Riemann surfaces, they suggest that the

asymptotic analysis of the rescaled functionals Eε may also yield interesting results in

1Here and elsewhere, we implicitly identify F∇ with the two-form ω given by F∇(X,Y ) = −iω(X,Y ).
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higher dimension, pointing to similarities with the Allen–Cahn functionals for scalar-valued

functions.

In the present chapter, we develop the asymptotic analysis as ε→ 0 for critical points

of Eε associated to line bundles L→M over Riemannian manifolds Mm of arbitrary

dimension m ≥ 2. The bulk of the work is devoted to the proof of the following theorem,

which describes the limiting behavior as ε→ 0 of the energy measures

µε :=
1

2π
eε(uε,∇ε) volg

and curvatures F∇ε for critical points (uε,∇ε) satisfying a uniform energy bound.

Theorem 5.1.1. Let L→M be a Hermitian line bundle over a closed, oriented Riemannian

manifold Mm of dimension m ≥ 2, and let (uε,∇ε) be a family of critical points for Eε

satisfying a uniform energy bound

Eε(uε,∇ε) ≤ Λ <∞.

Then, as ε→ 0, the energy measures

µε :=
1

2π
eε(uε,∇ε) volg

converge subsequentially, in duality with C0(M), to the weight measure µ of a stationary,

integral (m− 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(µ) = lim
ε→0
{|uε| ≤ δ}

in the Hausdorff topology. The (m− 2)-currents dual to the curvature forms 1
2πF∇ε converge

subsequentially to an integral (m− 2)-cycle Γ, with |Γ| ≤ µ.

As will be clear from the proofs, orientability will be assumed only to show the statement

concerning the current Γ.

Remark 5.1.2. We warn the reader that, while the qualitative analysis of the Allen–Cahn

functionals does not depend on the precise choice of the double-well potential W , the

analysis of the abelian Yang–Mills–Higgs functionals (5.1.1)–(5.1.2) seems to depend quite

strongly on the choice W (u) = 1
4(1− |u|2)2. Indeed, already in two dimensions, replacing

W with a potential Wλ(u) := λ
4 (1− |u|2)2 for some λ 6= 1 yields a dramatically different

qualitative behavior, breaking the symmetry which leads to the first-order equations (5.1.4),

and introducing interactions between disjoint components of the zero set (see, e.g., [59,

Chapters I–III]). This should serve as one indication that the analysis of the abelian Higgs

model is somewhat more delicate than that of related semilinear scalar equations, in spite of

the strong parallels.

Of course, the results of Theorem 5.1.1 would be of limited interest if nontrivial critical

points (uε,∇ε) could be found only in a few special settings. After completing the proof of
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Theorem 5.1.1, we therefore establish the following general existence result, showing that

nontrivial families satisfying the hypotheses of Theorem 5.1.1 arise naturally on any line

bundle.

Theorem 5.1.3. For any Hermitian line bundle L→M over an arbitrary closed base

manifold Mm, there exists a family (uε,∇ε) satisfying the hypotheses of Theorem 5.1.1, with

nonempty zero sets u−1
ε (0) 6= ∅. In particular, the energy µε of these families concentrates

(subsequentially) on a nontrivial stationary integral (m− 2)-varifold V as ε→ 0.

Remark 5.1.4. We remark that a very special class of minimizers for Eε are given by

solutions (uε,∇ε) of the first-order vortex equations in Kähler manifolds (M2m, ωK) of

higher dimension; these generalize the system (5.1.4) from the two-dimensional setting by

replacing ∗F∇ in (5.1.4) by the inner product 〈F∇, ωK〉 with the Kähler form ωK , and

requiring additionally that F 0,2
∇ = 0. As in the two-dimensional setting, solutions of this

first-order system minimize the energy Eε in appropriate line bundles on Kähler manifolds,

and it was shown by Bradlow2 [17] that the moduli space of solutions corresponds to

the space of complex subvarieties in M (of complex codimension one) via the zero locus

(uε,∇ε) 7→ u−1
ε (0).

In particular, the zero loci u−1
ε (0) in this case are already area-minimizing subvarieties,

before passing to the limit ε→ 0. Note that the analysis of the vortex equations plays

a key role in the study of Seiberg–Witten invariants of Kähler surfaces [110], and a

similar analysis figures crucially into Taubes’s work relating the Seiberg–Witten and

Gromov–Witten invariants of symplectic four-manifolds [107]. For a concise introduction to

the higher-dimensional vortex equations and connections to Seiberg–Witten theory, we refer

the interested reader to the survey [39] by Garćıa-Prada.

As an application of Theorem 5.1.3, we obtain a new proof of the existence of stationary

integral (m− 2)-varifolds in an arbitrary Riemannian manifold—a result first proved by

Almgren in 1965 [7] using his powerful, but rather involved geometric measure theory

framework.

Organization of the chapter

In Section 5.2 we fix notation and record some basic properties satisfied by critical pairs

(u,∇) for the energies Eε.

In Section 5.3, we record some useful Bochner identities for the gauge-invariant

quantities |u|2, |F∇|2, and |∇u|2, and use them to establish an initial rough estimate on

ξε := ε|F∇| − (1−|u|2)
2ε , whose role should be compared to that of the discrepancy function in

the Allen–Cahn setting. Under suitable assumptions on the curvature of M, the fact that

ξε ≤ 0 follows quickly from the aforementioned Bochner identities and the maximum

2The precise form of the energies considered by Bradlow in [17] differs slightly from the functionals Eε
considered here, but the analysis is essentially the same.
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principle. Without the curvature assumptions, some nontrivial additional work is required to

obtain the pointwise upper bound ξε ≤ C(M, Eε(u,∇)). This estimate is the key ingredient

to obtain the sharp (m− 2)-monotonicity of the energy, and relies on the specific choice of

coupling constants appearing in the self-dual Yang–Mills–Higgs functionals.

In Section 5.4 we derive the stationarity equation for inner variations, from which an

obvious (m− 4)-monotonicity property of the energy follows rather immediately. Using our

rough initial bounds on ξε from Section 5.3, we deduce an intermediate (m− 3)-monotonicity;

we use this to reach the pointwise bound ξε ≤ C(M, Eε(u,∇)), from which we finally infer

the sharp (m− 2)-monotonicity.

In Section 5.5 we show that, similar to the Allen–Cahn setting, the energy density eε(u,∇)

decays exponentially away from the set u−1(0)—more precisely, away from {|u|2 ≥ 1− βD}
for some βD independent of ε.

Section 5.6, which constitutes the main part of the chapter, contains an initial description

of the limiting varifold, showing that it is stationary, (m− 2)-rectifiable, and has a lower

density bound on the support. Then we establish its integrality with a blow-up analysis,

employing the estimates from the preceding sections to reduce the problem to a statement

for entire planar solutions, already contained in the work of Jaffe and Taubes [59]. We then

use this analysis to show that the level sets u−1
ε (0) converge to the support of V in the

Hausdorff topology, and conclude the section with a discussion of the asymptotics for the

curvature forms 1
2πF∇ε .

In Section 5.7, we show that Eε satisfies a variant of the Palais–Smale property on

suitable function spaces, allowing us to produce critical points via classical min-max

methods. We provide a variational construction to get nontrivial critical points satisfying the

assumptions of our main theorem, with energy bounded from above and below, both for

nontrivial and trivial line bundles.

Finally, the appendix addresses the issue of showing regularity of critical points, as

obtained from Section 5.7, when they are read in a local or global Coulomb gauge.

5.2 The Yang–Mills–Higgs equations on U(1) bundles

Let M be a closed, oriented Riemannian manifold, and let L→Mm be a complex line

bundle over M, endowed with a Hermitian structure 〈·, ·〉. Denote by W : L → R the

nonlinear potential

W (u) :=
1

4
(1− |u|2)2.

For a Hermitian connection ∇ on L, a section u ∈ Γ(L) and a parameter ε > 0, denote by

Eε(u,∇) the scaled Yang–Mills–Higgs energy

Eε(u,∇) :=

∫
M

(
|∇u|2 + ε2|F∇|2 + ε−2W (u)

)
, (5.2.1)
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where F∇ is the curvature of ∇. Throughout, we will identify the curvature F∇ with a closed

real two-form ω via

F∇(X,Y )u = [∇X ,∇Y ]u−∇[X,Y ]u = −iω(X,Y )u. (5.2.2)

In computing inner products for two-forms, we follow the convention

|ω|2 =
∑

1≤j<k≤m
ω(ej , ek)

2 =
1

2

m∑
j,k=1

ω(ej , ek)
2 (5.2.3)

with respect to a local orthonormal basis {ej}mj=1 for TM.

Note that Eε enjoys the U(1) gauge invariance

Eε(u,∇) = Eε(e
iθu,∇− idθ),

for any (smooth) θ :M→ R. More generally, we have

Eε(u,∇) = Eε(ϕu,∇− iϕ∗(dθ)),

for any ϕ :M→ S1, identifying S1 with the unit circle in C.

It is easy to check that the smooth pair (u,∇) gives a critical point for the energy Eε,

with respect to smooth variations, if and only if it satisfies the system

∇∗∇u =
1

2ε2
(1− |u|2)u, (5.2.4)

ε2d∗ω = 〈∇u, iu〉. (5.2.5)

We denote ∆H = dd∗ + d∗d the usual positive definite Hodge Laplacian on differential forms

and note that, in our convention, the adjoint to d : Ω1(M)→ Ω2(M) is

(d∗ω)(ek) = −
m∑
j=1

(Dejω)(ej , ek).

Since the curvature form ω is closed, taking the exterior derivative of (5.2.5) gives

ε2(∆Hω)(ej , ek) = (d〈∇u, iu〉)(ej , ek)

= 〈i∇eju,∇eku〉 − 〈i∇eku,∇eju〉

+ 〈iu, F∇(ej , ek)u〉

= ψ(u)(ej , ek)− |u|2ω(ej , ek);

i.e.,

ε2∆Hω = −|u|2ω + ψ(u), (5.2.6)

where

ψ(u)(ej , ek) := 2〈i∇eju,∇eku〉.
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For future reference, we record the simple bound

|ψ(u)| ≤ |∇u|2. (5.2.7)

To confirm (5.2.7), fix x ∈ M and note that the linear map ∇u(x) : TxM→ Lx has a

kernel of dimension at least m− 2. Take an orthonormal basis {ej} of TxM such that

ej ∈ ker∇u(x) for j > 2. We compute at x that

|ψ(u)| = 2|〈i∇e1u,∇e2u〉| ≤ 2|∇e1u||∇e2u| ≤ |∇e1u|2 + |∇e2u|2,

which gives (5.2.7).

5.3 Bochner identities and preliminary estimates

From the equations (5.2.6) and (5.2.4), we apply the standard Bochner–Weitzenböck

formulas to obtain some identities which will play a central role in our analysis. For the

curvature two-form ω, it will be useful to record the Bochner identity

∆
1

2
|ω|2 = |Dω|2 + ε−2(|u|2|ω|2 − 〈ψ(u), ω〉) +R2(ω, ω), (5.3.1)

where D is the Levi–Civita connection and R2 denotes the Weitzenböck curvature operator

for two-forms on the base Riemannian manifold M. For any δ > 0 we have

(|ω|2 + δ2)1/2∆(|ω|2 + δ2)1/2 + |D|ω||2 ≥ ∆
1

2
(|ω|2 + δ2) = ∆

1

2
|ω|2.

Since |D|ω||2 ≤ |Dω|2, (5.3.1) implies

(|ω|2 + δ2)1/2∆(|ω|2 + δ2)1/2 ≥ ε−2(|u|2|ω|2 − 〈ψ(u), ω〉) +R2(ω, ω).

Dividing by (|ω|2 + δ2)1/2 and letting δ → 0, we obtain

∆|ω| ≥ ε−2(|u|2|ω| − |ψ(u)|)− |R−2 ||ω|, (5.3.2)

in the distributional sense (and classically on {|ω| > 0}). Note that, by (5.2.7), the relation

(5.3.2) also gives us the cruder subequation

∆|ω| ≥ ε−2|u|2|ω| − ε−2|∇u|2 − |R−2 ||ω|. (5.3.3)

For the modulus |u|2 of the Higgs field u, we record

∆
1

2
|u|2 = |∇u|2 − 1

2ε2
(1− |u|2)|u|2, (5.3.4)

and observe that a simple application of the maximum principle yields the pointwise bound

|u|2 ≤ 1 on M.
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For the energy density |∇u|2 of the Higgs field u, we see that

∆
1

2
|∇u|2 = |∇2u|2 − 〈∇(∇∗∇u),∇u〉+ 〈d∗ω, 〈iu,∇u〉〉

− 2〈ω, ψ(u)〉+R1(∇u,∇u)

= |∇2u|2 − 2〈ω, ψ(u)〉+
1

ε2
|〈iu,∇u〉|2

− 1

2ε2
(1− |u|2)|∇u|2 +

1

ε2
|〈u,∇u〉|2 +R1(∇u,∇u)

= |∇2u|2 +
1

2ε2
(3|u|2 − 1)|∇u|2 − 2〈ω, ψ(u)〉+R1(∇u,∇u),

where at p ∈M we let R1(∇u,∇u) = Ric(ei, ej)〈∇eiu,∇eju〉 and ∇2
ei,eju = ∇ei(∇eju), for

any local orthonormal frame {ei}mi=1 with Dei(p) = 0.

Next, we introduce the function

ξε := ε|F∇| −
1

2ε
(1− |u|2), (5.3.5)

and combine (5.3.3) with (5.3.4) to see that

∆ξε ≥ ε−1|u|2|ω| − ε−1|∇u|2 − ε|R−2 ||ω|+ ε−1|∇u|2 − 1

2ε3
(1− |u|2)|u|2

≥ ε−2|u|2ξε − ε‖R−2 ‖L∞ |ω|.

If R2 > 0, we can actually replace the term −ε‖R−2 ‖L∞ |ω| with cε|ω|, for some positive

constant c = c(M); from a simple application of the maximum principle, in this case we get

ξε ≤ 0 everywhere on M, and consequently (cf. [59, Theorem III.8.1])

ε2|F∇|2 ≤
W (u)

ε2
pointwise, provided R2 > 0 on M. (5.3.6)

This balancing of the Yang–Mills and potential terms, which should be compared with

Modica’s gradient estimate in the asymptotic analysis of the Allen–Cahn equations (cf.

[55, Proposition 3.3]), will play a key role in our analysis, allowing us to upgrade the

obvious (m− 4)-monotonicity typical of Yang–Mills–Higgs problems to the much stronger

(m− 2)-monotonicity d
dr (r2−m ∫

Br
eε(u,∇)) ≥ 0.

Remark 5.3.1. We remark that the analog of the identity ∆ξε ≥ ε−2|u|2ξε−ε‖R−2 ‖L∞ |ω|—
and, consequently, the sharp (m− 2)-monotonicity result—fails for choices of coupling

constants other than those corresponding to the self-dual Yang–Mills–Higgs functionals

considered here.

Without the positive curvature assumption, we may still employ the subequation

∆ξε ≥
|u|2

ε2
ξε − C(M)ε|F∇|, (5.3.7)

to obtain strong estimates for the positive part ξ+
ε of ξε. To begin, denote by G(x, y) the

nonnegative Green’s function for the Laplacian on M, unique up to additive constant, so

that ∆xG(x, y) = 1
vol(M) − δy, and set

hε(x) :=

∫
M
G(x, y)ε|F∇|(y) dy ≥ 0, (5.3.8)
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so that

∆hε(x) =
1

vol(M)
‖εF∇‖L1 − ε|F∇|(x). (5.3.9)

Taking C ′ to be the constant appearing in (5.3.7), for the difference ξε − C ′hε we then have

∆(ξε − C ′hε) ≥
|u|2

ε2
(ξε − C ′hε) + C ′

|u|2

ε2
hε − C ′

‖εF∇‖L1

vol(M)

≥ |u|
2

ε2
(ξε − C ′hε)− C ′

‖εF∇‖L1

vol(M)
.

(5.3.10)

Observe that the L1 norm of ξε − C ′hε is bounded by the energy:

‖ξε − C ′hε‖L1 ≤ ‖ξε‖L1 + C(M)‖hε‖L1

≤ ‖ξε‖L1 + C(M)‖εF∇‖L1

≤ C(M)Eε(u,∇)1/2.

(5.3.11)

(Where the constant C(M) may of course change from line to line.)

Integrating (5.3.10) against the positive part ζ := (ξε−C ′hε)+ and bounding ‖εF∇‖L1 ≤
C(M)Eε(u,∇)1/2, we get∫

M
|dζ|2 ≤ −

∫
M

|u|2

ε2
ζ2 − C(M)Eε(u,∇)1/2

∫
M
ζ

≤ −C(M)Eε(u,∇)1/2

∫
M
ζ.

Applying (5.3.11), this gives ‖dζ‖L2 ≤ C(M)Eε(u,∇).

Thus, applying Moser iteration, namely integrating (5.3.10) against powers ζγ with

increasing exponents γ > 1, we deduce that

ξε − C ′hε ≤ ζ ≤ C(M)Eε(u,∇)1/2. (5.3.12)

As a simple application of (5.3.12), we note that by definition (5.3.8) of hε and the

standard estimate (see, e.g., [12, Section 4.2])

G(x, y) ≤ C(M)d(x, y)2−m

if m ≥ 3 (or G(x, y) ≤ −C(M) log(d(x, y)) + C(M) if m = 2), we have the L∞ estimate

‖hε‖L∞ ≤ C(M)‖εF∇‖Lm−1

(with 2 replacing m− 1 when m = 2). If m = 2, this inequality and (5.3.12) give a pointwise

bound

‖ξ+
ε ‖L∞ ≤ C(M)‖εF∇‖L2 + C(M)Eε(u,∇)1/2 ≤ C(M)Eε(u,∇)1/2.

In the sequel, we assume m ≥ 3 and aim for a similar pointwise bound. We have

‖hε‖L∞ ≤ C(M)‖εF∇‖Lm−1 ≤ Cε‖F∇‖
m−3
m−1

L∞ ‖F∇‖
2

m−1

L2 .
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Using this in (5.3.12), we compute at a maximum point for |F∇| to see that

‖εF∇‖L∞ −
1

2ε
(1− |u|2) = ξε ≤ C‖εF∇‖

m−3
m−1

L∞ Eε(u,∇)
1

m−1 + CEε(u,∇)1/2,

and, by an application of Young’s inequality, it follows that

(1− Cδ)‖εF∇‖L∞ ≤
1

2ε
+ Cδ

3−m
2 Eε(u,∇)1/2

for any δ ∈ (0, 1). Taking δ = ε2/m, we arrive at the crude preliminary estimate

‖εF∇‖L∞ ≤
1

1− Cε2/m

( 1

2ε
+ Cε3/mε−1Eε(u,∇)1/2

)
≤ 1

2ε
+
α(ε)

2ε
(1 + Eε(u,∇)1/2),

where α(ε)→ 0 as ε→ 0.

Now, consider the function

f := ε|ω| − 1 + α(ε)(1 + Eε(u,∇)1/2)

2ε
(1− |u|2).

By virtue of the preceding estimate for ‖F∇‖L∞ , we then see that

f ≤ 1 + α(ε)(1 + Eε(u,∇)1/2)

2ε
|u|2

pointwise. Appealing once again to (5.3.4) and (5.3.3), we see that

∆f ≥ |u|
2

ε2
f − Cε|F∇|,

so at a point where f achieves its maximum we have

|u|2

ε2
f ≤ Cε|F∇| ≤

C(1 + Eε(u,∇)1/2)

ε
.

On the other hand, we know that |u|2 ≥ ε
C(1+Eε(u,∇)1/2)

f everywhere, so the preceding

computations yield an estimate of the form

(max f)2

ε
≤ C(M, Eε(u,∇))

ε
,

provided max f ≥ 0, and we deduce that f ≤ C(M, Eε(u,∇)) everywhere. Putting all this

together, we arrive at the following lemma.

Lemma 5.3.2. Let (u,∇) solve (5.2.4) and (5.2.5) on a line bundle L→M, and suppose

Eε(u,∇) ≤ Λ. Then there exist a constant C(M,Λ) and a function α(M,Λ, ε), with

α(ε)→ 0 as ε→ 0, such that

ξε ≤ α(ε)
(1− |u|2)

ε
+ C. (5.3.13)

In the next section, we will improve the rough preliminary estimate of Lemma 5.3.2 to a

uniform pointwise bound of the form ξε ≤ C(M,Λ), but this will require some additional

effort.
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5.4 Inner variations and improved monotonicity

In this section, we derive the inner variation equation for solutions of (5.2.4)–(5.2.5), and

explore the scaling properties of the energy Eε(uε,∇ε) over balls of small radius. Under the

assumption that the curvature operator R2 appearing in (5.3.3) is positive-definite (so that

(5.3.6) holds), the analysis simplifies considerably, leading with little effort to the desired

monotonicity of the (m− 2)-energy density. Without this curvature assumption, more work

is required, first building on the cruder estimates of the preceding section to obtain a

uniform pointwise bound for ξε.

Fixing notation, with respect to a local orthonormal basis {ei} for TM, define the

(0, 2)-tensors ∇u∗∇u and ω∗ω by

(∇u∗∇u)(ei, ej) := 〈∇eiu,∇eju〉, (5.4.1)

ω∗ω(ei, ej) :=
m∑
k=1

ω(ei, ek)ω(ej , ek). (5.4.2)

Note that tr(∇u∗∇u) = |∇u|2 and tr(ω∗ω) = 2|ω|2. Denote by eε(u,∇) the energy integrand

eε(u,∇) := |∇u|2 + ε2|F∇|2 +
W (u)

ε2
.

The fact that dω = 0 reads

Dω(ei, ej) = Deiω(·, ej) +Dejω(ei, ·),

where D is the Levi–Civita connection of M. Using this identity, it is straightforward to

check that

deε(u,∇) = 2 div(∇u∗∇u) + 2〈∇u,∇∗∇u〉+ d
W (u)

ε2

+ 2ω(〈iu,∇u〉#, ·) + 2ε2 div(ω∗ω)− 2ε2ω((d∗ω)#, ·).

In particular, defining the stress-energy tensor Tε(u,∇) by

Tε(u,∇) := eε(u,∇)g − 2∇u∗∇u− 2ε2ω∗ω, (5.4.3)

for (u,∇) solving (5.2.4) and (5.2.5) it follows that

div(Tε(u,∇)) = 0, (5.4.4)

meaning that
∑

i(DeiTε)(ei, ·) = 0. Integrating (5.4.4) against a vector field X on some

domain Ω ⊆M, we arrive at the usual inner-variation equation∫
Ω
〈Tε(u,∇), DX〉 =

∫
∂Ω
Tε(u,∇)(X, ν), (5.4.5)
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where we identify Tε(u,∇) with a (1, 1)-tensor and denote by ν the outer unit normal to Ω.

Taking Ω = Br(p) to be a small geodesic ball of radius r about a point p ∈M, and taking

X = grad(1
2d

2
p), where dp is the distance function to p, (5.4.5) gives

r

∫
∂Br(p)

(eε(u,∇)− 2|∇νu|2 − 2ε2|ινω|2) =

∫
Br(p)

〈Tε(u,∇), DX〉

=

∫
Br(p)

〈Tε(u), g〉+

∫
Br(p)

〈Tε(u), DX − g〉

=

∫
Br(p)

(meε(u,∇)− 2|∇u|2 − 4ε2|F∇|2)

+

∫
Br(p)

〈Tε(u), DX − g〉.

Now, by the Hessian comparison theorem, we know that

|DX − g| ≤ C(M)d2
p;

applying this in the relations above, we see that

r

∫
∂Br(p)

eε(u,∇) ≥ 2r

∫
∂Br(p)

(|∇νu|2 + ε2|ινω|2)

+

∫
Br(p)

(
(m− 2)|∇u|2 + (m− 4)ε2|F∇|2 +m

W (u)

ε2

)
− C ′(M)r2

∫
Br(p)

eε(u,∇).

Setting

f(p, r) := eC
′r2

∫
Br(p)

eε(u,∇), (5.4.6)

it follows from the computations above (temporarily throwing out the additional nonnegative

boundary terms) that

∂f

∂r
≥ eC

′r2

r

∫
Br(p)

(
(m− 2)|∇u|2 + (m− 4)ε2|F∇|2 +m

W (u)

ε2

)
. (5.4.7)

At this point, one easily observes that the right-hand side of (5.4.7) is bounded below by
m−4
r f(p, r), to obtain the monotonicity of the (m− 4)-energy density

∂

∂r
(r4−mf(p, r)) ≥ 0.

For general Yang–Mills and Yang–Mills–Higgs problems, this codimension-four energy

growth is well known to be sharp (cf., e.g., [99, 112]). For solutions of (5.2.4) and (5.2.5)

on Hermitian line bundles, however, we show now that this can be improved to (near-)

monotonicity of the (m− 2)-density r2−mf(p, r) on small balls, which constitutes a key

technical ingredient in the proof of Theorem 5.1.1.
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To begin, we rearrange (5.4.7), to see that

∂f

∂r
≥ m− 2

r
f(r) +

2eC
′r2

r

∫
Br(p)

(W (u)

ε2
− ε2|F∇|2

)
=
m− 2

r
f(r)− 2eC

′r2

r

∫
Br(p)

ξε

(
ε|F∇|+

1

2ε
(1− |u|2)

)
,

recalling the notation ξε := ε|F∇| − 1
2ε(1 − |u|

2). Now, by Lemma 5.3.2, assuming

Eε(u,∇) ≤ Λ, we have the pointwise bound

ξε

(
ε|F∇|+

1

2ε
(1− |u|2)

)
≤ 2
(
C + α(ε)

1− |u|2

ε

)
eε(u,∇)1/2

≤ Ceε(u,∇)1/2 + Cα(ε)eε(u,∇).

Applying this in our preceding computation for ∂f
∂r , we deduce that

∂f

∂r
≥ m− 2

r
f(r)− eC

′r2

r

∫
Br(p)

Ceε(u,∇)1/2 − α(ε)
eC
′r2

r

∫
Br(p)

Ceε(u,∇)

≥ m− 2− Cα(ε)

r
f(r)− eC

′r2

r
Crm/2

(∫
Br(p)

eε(u,∇)
)1/2

≥ m− 2− C ′′α(ε)

r
f(r)− C ′′rm/2−1f(r)1/2

for some constant C ′′(M,Λ) and 0 < r < c(M). Taking ε sufficiently small, we arrive next

at the following coarse estimate for the (m− 3)-energy density, which we will then use to

establish an improved bound for ξε.

Lemma 5.4.1. For ε ≤ εM (M,Λ) sufficiently small, we have a uniform bound

sup
0<r<inj(M)

r3−m
∫
Br(p)

eε(u,∇) ≤ C(M,Λ). (5.4.8)

Proof. The statement is trivial if m = 2, 3, so assume m ≥ 4. In the preceding computation,

take ε ≤ εM (M,Λ) sufficiently small that C ′′α(ε) < 1
2 . Then the estimate gives

f ′(r) ≥ m− 2− 1/2

r
f(r)− C ′′rm/2−1f(r)1/2,

from which it follows that, for 0 < r < c(M),

d

dr
(r3−mf(r)) ≥ r3−mf ′(r) + (3−m)r2−mf(r)

≥ r2−m
((
m− 5

2

)
f(r)− Crm/2f(r)1/2 + (3−m)f(r)

)
≥ r2−m

(1

2
f(r)− Crm/2f(r)1/2

)
.

If r3−mf(r) has a maximum in (0, c(M)), it follows that f(r) ≤ Crm/2f(r)1/2 there, and

therefore r3−mf(r) ≤ Cr3 ≤ C. Obviously the desired estimate holds at r = 0 and r = c(M),

so (5.4.8) follows.
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With Lemma 5.4.1 in hand, we can now improve the bounds of Lemma 5.3.2 to a

uniform pointwise estimate, as follows.

Proposition 5.4.2. Let (u,∇) solve (5.2.4)–(5.2.5) on a line bundle L→M, with the

energy bound Eε(u,∇) ≤ Λ and ε ≤ εM . Then there is a constant C(M,Λ) such that

ξε := ε|F∇| −
1

2ε
(1− |u|2) ≤ C(M,Λ). (5.4.9)

Proof. We can assume m ≥ 3, as we already obtained the claim for m = 2 in Section 5.3.

Recall from that section the function

hε(x) :=

∫
M
G(x, y)ε|F∇|(y) dy,

where G is the nonnegative Green’s function on M. As discussed in Section 5.3, we can

deduce from (5.3.7) a pointwise estimate of the form

ξε ≤ C(M)hε + C(M)Eε(u,∇)1/2. (5.4.10)

Thus, to arrive at the desired bound (5.4.9), it will suffice to establish a pointwise bound of

the same form for hε.

To this end, recall again that G(x, y) ≤ C(M)d(x, y)2−m, so that by definition we have

hε(x) ≤ C
∫
M
d(x, y)2−mε|F∇|(y) dy

≤ C
∫
M
d(x, y)2−meε(u,∇)1/2(y) dy

≤ C
∫
M

(d(x, y)−m+1/2 + d(x, y)3−m+1/2eε(u,∇)) dy,

where the last line is a simple application of Young’s inequality. Since the integral∫
M d(x, y)−m+1/2 dy is finite, it follows that

hε(x) ≤ C(M) + C(M)Λ + C(M)

∫ inj(M)

0
r3−m+1/2

(∫
∂Br(x)

eε(u,∇)
)
dr

= C(M,Λ) + C(M)

∫ inj(M)

0

d

dr

(
r−m+7/2

∫
Br(x)

eε(u,∇)
)
dr

+ (m− 7/2)C(M)

∫ inj(M)

0
r3−m−1/2

(∫
Br(x)

eε(u,∇)
)
dr

≤ C(M,Λ) + C(M)

∫ inj(M)

0
r3−m−1/2

(∫
Br(x)

eε(u,∇)
)
dr.

On the other hand, by Lemma 5.4.1, we know that r3−m ∫
Br(x) eε(u,∇) ≤ C(M,Λ) for

every r, so we see finally that

hε(x) ≤ C(M,Λ) + C(M,Λ)

∫ inj(M)

0
r−1/2 dr ≤ C(M,Λ),

as desired.



5.4. Inner variations and improved monotonicity 159

Applying (5.4.9) in our original computation for f ′(r), we see now that

∂f

∂r
≥ m− 2

r
f(r)− 2eC

′r2

r

∫
Br(p)

ξε

(
ε|F∇|+

1

2ε
(1− |u|2)

)
≥ m− 2

r
f(r)− 2eC

′r2

r

∫
Br(p)

C(M,Λ)eε(u,∇)1/2

≥ m− 2

r
f(r)− C(M,Λ)r

m−2
2 f(r)1/2.

In fact, bringing in the extra boundary terms that we have been neglecting, and applying

Young’s inequality to the term r
m−2

2 f(r)1/2, we see that

∂f

∂r
≥ 2eC

′r2

∫
∂Br(p)

(|∇νu|2 + ε2|ινF∇|2)

+
m− 2

r
f(r)− Cr

m−2
2 f(r)1/2

≥ 2eC
′r2

∫
∂Br(p)

(|∇νu|2 + ε2|ινF∇|2)

+
m− 2

r
f(r)− Cf(r)− Crm−2.

With this differential inequality in place, a straightforward computation leads us finally to

one of our key technical theorems, the monotonicity formula for the (m− 2)-density.

Theorem 5.4.3. Let (u,∇) solve (5.2.4)–(5.2.5) on a Hermitian line bundle L→M,

with an energy bound Eε(u,∇) ≤ Λ. Then there exist positive constants εM (M,Λ) and

CM (M,Λ) such that the normalized energy density

Ẽε(x, r) := eCMrr2−m
∫
Br(x)

eε(u,∇) (5.4.11)

satisfies

Ẽ′ε(r) ≥ 2r2−m
∫
∂Br(x)

(|∇νu|2 + ε2|ινF∇|2)− CM , (5.4.12)

for 0 < r < inj(M) and ε ≤ εM .

As a simple corollary of the monotonicity result (together with a pointwise bound for |∇u|
derived in the following section), we deduce that (u,∇) must have positive (m− 2)-energy

density wherever |u| is bounded away from 1.

Corollary 5.4.4 (clearing-out). Let (u,∇) solve (5.2.4)–(5.2.5) on a line bundle L→M,

with Eε(u,∇) ≤ Λ and ε ≤ εM . Given 0 < δ < 1, if

r2−m
∫
Br(x)

eε(u,∇) ≤ η(M,Λ, δ)

with x ∈M and ε < r < inj(M), then we must have |u(x)| > 1− δ.



160 Chapter 5. Submanifolds from Yang–Mills–Higgs

Proof. For ε ≤ εM , Theorem 5.4.3 gives

ε2−m
∫
Bε(x)

eε(u,∇) ≤ C(M,Λ)η + C(M,Λ)r.

The gradient bound (5.5.3) in Proposition 5.5.1 of the following section gives |d|u|| ≤ Cε−1.

Hence, if |u(x)| ≤ 1−δ then |u(y)| < 1− δ
2 on Bεδ/(2C)(x), so that 1−|u(y)|2 ≥ 1−|u(y)| > δ

2 .

We deduce that

δ2

16
vol(Bεδ/(2C)(x)) ≤

∫
Bε(x)

W (u) ≤ ε2

∫
Bε(x)

eε(u,∇) ≤ Cεm(η + r).

Since vol(Bεδ/(2C)(x)) is bounded below by c(M,Λ, δ)εm, we can choose η̃(M,Λ, δ) ≤ inj(M)

so small that we get a contradiction if r, η ≤ η̃. On the other hand, if r > η̃ then

η̃2−m
∫
Bη̃(x)

eε(u,∇) ≤
( inj(M)

η̃

)m−2
η.

Hence, setting η :=
(

η̃
inj(M)

)m−2
η̃ ≤ η̃, we can reduce to the previous case (replacing r with

η̃), reaching again a contradiction.

5.5 Decay away from the zero set

Again, let (u,∇) solve (5.2.4)–(5.2.5) on a line bundle L→M, with the energy bound

Eε(u,∇) ≤ Λ. In the preceding section, we obtained the pointwise estimate

|F∇| ≤
1

2ε2
(1− |u|2) +

1

ε
C(M,Λ) (5.5.1)

when ε ≤ εM . As a first step toward establishing strong decay of the energy away from the

zero set of u, we show in the following proposition that the full energy density eε(u,∇) is

controlled by the potential W (u)
ε2

.

Proposition 5.5.1. For (u,∇) as above, we have the pointwise estimates

ε2|F∇|2 ≤ C(M,Λ)
W (u)

ε2
+ C(M,Λ)ε (5.5.2)

and

|∇u|2 ≤ C(M,Λ)
W (u)

ε2
+ C(M,Λ)ε2, (5.5.3)

provided ε ≤ εD, for some εD = εD(M,Λ).

Proof. To begin, let C1 = C1(M,Λ) be the constant from (5.5.1), and consider the function

f := ε|F∇| −
1 + 2C1ε

2ε
(1− |u|2) = ξε − C1 + C1|u|2.

Similar to the proof of Lemma 5.3.2, observe that C1|u|2 ≥ f pointwise, by (5.5.1), while the

computations from Section 5.3 give

∆f ≥ |u|
2

ε2
f − C ′(M)ε|F∇|.
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By (5.5.1) we have |F∇| ≤ 1
2ε2

+ C1
ε , so at a positive maximum for f it follows that

0 ≥ |u|
2

ε2
f − C ′ε|F∇| ≥

f2

C1ε2
− C(M,Λ)

ε
,

so that

(max f)2 ≤ Cε

(provided max f ≥ 0), and consequently f ≤ Cε1/2 everywhere. As a consequence, at any

point, we have either f < 0, in which case

ε2|F∇|2 ≤ (1 + 2C1ε)
2W (u)

ε2
,

or f ≥ 0, in which case

ε2|F∇|2 ≤ 2f2 + 2(1 + 2C1ε)
2W (u)

ε2

≤ Cε+ 2(1 + 2C1ε)
2W (u)

ε2
.

In either scenario, we obtain a bound of the desired form (5.5.2).

To bound |∇u|2, recall from Section 5.3 the identity

∆
1

2
|∇u|2 = |∇2u|2 +

1

2ε2
(3|u|2 − 1)|∇u|2 − 2〈ω, ψ(u)〉+R1(∇u,∇u). (5.5.4)

In view of the estimate (5.5.1) for |F∇| = |ω| and (5.2.7), we can estimate the term 2〈ω, ψ(u)〉
from above by

2|F∇||∇u|2 ≤
1

ε2
(1− |u|2)|∇u|2 +

C

ε
|∇u|2,

to obtain the existence of C2(M,Λ) such that

∆
1

2
|∇u|2 ≥ |∇2u|2 +

1

2ε2
(5|u|2 − 3)|∇u|2 − C2

ε
|∇u|2.

For ∆|∇u|, this then gives

∆|∇u| ≥ 1

2ε2
(5|u|2 − 3)|∇u| − C2

ε
|∇u|. (5.5.5)

Recalling once again the equation (5.3.4) for ∆1
2 |u|

2, we define

w := |∇u| − 1

ε
(1− |u|2),

and observe that

∆w ≥ 1

2ε2
(5|u|2 − 3)|∇u| − C2

ε
|∇u|

+
2

ε
|∇u|2 − 1

ε3
|u|2(1− |u|2)

=
|u|2

ε2
w + |∇u|

(2

ε
|∇u| − 3

2

(1− |u|2)

ε2
− C2

ε

)
=
|u|2

ε2
w +

|∇u|
ε

(
2w +

1

2ε
(1− |u|2)− C2

)
.
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We then have

∆w ≥ |u|
2

ε2
w +

1

ε

(
w +

1

ε
(1− |u|2)

)(
2w +

1

2ε
(1− |u|2)− C2

)
. (5.5.6)

If w has a positive maximum, it follows that

2w +
1

2ε
(1− |u|2) ≤ C2

at this maximum point; in particular, we deduce then that

|u|2 ≥ 1− 2C2ε

at this point, and see from (5.5.6) that here

0 ≥ 1− 2C2ε

ε2
w − 1

ε

(
w +

1

ε
(1− |u|2)

)
C2 ≥

1− 3C2ε

ε2
w − 2

C2
2

ε
.

If ε ≤ εD(M,Λ) is small enough, it follows that maxw ≤ Cε; as a consequence, we check

that

|∇u|2 ≤ CW (u)

ε2
+ Cε2,

completing the proof of (5.5.3).

As a simple consequence of the estimates in Proposition 5.5.1, we obtain the following

corollary.

Corollary 5.5.2. There exist constants 0 < βD(M,Λ) < 1 and C(M,Λ) such that, for

(u,∇) as above, we have

∆
1

2
(1− |u|2) ≥ 1

4ε2
(1− |u|2)− Cε2 (5.5.7)

on the set ZβD(u) := {|u|2 ≥ 1− βD}.

Proof. By the formula (5.3.4) for ∆1
2 |u|

2, we know that

∆
1

2
(1− |u|2) =

1

2ε2
|u|2(1− |u|2)− |∇u|2.

Combining this with the estimate (5.5.3) for |∇u|2, we then deduce the existence of a

constant Ĉ = Ĉ(M,Λ) such that

∆
1

2
(1− |u|2) ≥ |u|2 1

2ε2
(1− |u|2)− Ĉ (1− |u|2)2

2ε2
− Cε2.

By taking βD = βD(M,Λ) > 0 sufficiently small, we can arrange that

|u|2 − Ĉ(1− |u|2) ≥ 1− βD − ĈβD ≥
1

2

on {|u|2 ≥ 1− βD}, from which the claimed estimate follows.

Next, we employ the result of Corollary 5.5.2 to show that the quantity (1 − |u|2)

vanishes rapidly away from ZβD(u) (compare [59, Sections III.7–III.8]).
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Proposition 5.5.3. Let (u,∇) be as before, with ε ≤ εD, and define the set

ZβD := {x ∈M : |u(x)|2 ≤ 1− βD},

where βD(M,Λ) is the constant provided by Corollary 5.5.2. Defining r :M→ [0,∞) by

r(p) := dist(p, Zβ),

we have an estimate of the form

(1− |u|2)(p) ≤ Ce−aDr(p)/ε + Cε4 (5.5.8)

for some C = C(M,Λ) and aD = aD(M) > 0.

Proof. Fix a point p ∈M, and let r = r(p) = dist(p, Zβ) as above. We can clearly assume

r(p) < 1
2 inj(M). On the ball Br(p), for some constant a = aD > 0 to be chosen later,

consider the function

ϕ(x) := e(a/ε)(dp(x)2+ε2)1/2
,

where dp(x) := dist(p, x). A straightforward computation then gives

∆ϕ =
a

ε
ϕ

(
(a/ε)d2

p

d2
p + ε2

−
d2
p

(d2
p + ε2)3/2

)

+
a

2ε
ϕ

∆d2
p

(d2
p + ε2)1/2

≤ a2

ε2
ϕ+

a

2ε
ϕ

∆d2
p

(d2
p + ε2)1/2

≤ a2 + C1a

ε2
ϕ

for some C1 = C1(M). Now, fix some constant c2 > 0 to be chosen later, and let

f :=
1

2
(1− |u|2)− c2ϕ.

Combining the preceding computation with (5.5.7), we see that, on Br(p),

∆f ≥ 1

4ε2
(1− |u|2)− C(M,Λ)ε2 − a2 + C1a

ε2
c2ϕ

=
1

2ε2
f +

1− 2a2 − 2C1a

2ε2
c2ϕ− C(M,Λ)ε2.

Choosing a = aD(M) > 0 sufficiently small, we can arrange that 2a2 + 2C1a ≤ 1, so that

the above computation gives

∆f ≥ f

2ε2
− Cε2. (5.5.9)

On the boundary of the ball ∂Br(p), it follows from definition of r = r(p) that

|u|2 ≥ 1− βD, and therefore

f(x) ≤ βD
2
− c2ϕ ≤

βD
2
− c2e

ar/ε on ∂Br(p).
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Taking c2 := βDe
−ar/ε, it then follows that f < 0 on ∂Br(p), so we can apply the maximum

principle with (5.5.9) to deduce that

f ≤ Cε4 in Br(p).

Evaluating at p, this gives

Cε4 ≥ f(p) =
1

2
(1− |u|2)(p)− βDe−ar(p)/εea,

so that

(1− |u|2)(p) ≤ C(M,Λ)e−ar(p)/ε + C(M,Λ)ε4,

as desired.

Combining these estimates with those of Proposition 5.5.1, we arrive immediately at the

following decay estimate for the energy integrand eε(u,∇).

Corollary 5.5.4. Defining ZβD and r(p) = dist(p, ZβD) as in Proposition 5.5.3, there exist

aD(M) > 0 and CD(M,Λ) such that

eε(u,∇)(p) ≤ CD
e−aDr(p)/ε

ε2
+ CDε. (5.5.10)

5.6 The energy-concentration varifold

This section is devoted to the proof of the main result of the chapter, which we recall now.

Theorem 5.6.1. Let (uε,∇ε) be a family of solutions to (5.2.4)–(5.2.5) satisfying a uniform

energy bound Eε(uε,∇ε) ≤ Λ as ε→ 0. Then, as ε→ 0, the energy measures

µε :=
1

2π
eε(uε,∇ε) volg

converge subsequentially, in duality with C0(M), to the weight measure of a stationary,

integral (m− 2)-varifold V . Also, for all 0 ≤ δ < 1,

spt(|V |) = lim
ε→0
{|uε| ≤ δ}

in the Hausdorff topology. The (m− 2)-currents dual to the curvature forms 1
2πωε converge

subsequentially to an integral (m− 2)-cycle Γ, with |Γ| ≤ µ.

Convergence to a stationary rectifiable varifold

Let (uε,∇ε) be as in Theorem 5.6.1, and pass to a subsequence εj → 0 such that the

energy measures µεj converge weakly-* to a limiting measure µ, in duality with C0(M).
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Note that, for 0 < r < R < inj(M), Theorem 5.4.3 yields

eCRR2−mµ(BR(x)) + CR ≥ lim sup
ε→0

eCRR2−mµε(BR(x)) + CR

≥ lim inf
ε→0

eCrr2−mµε(Br(x)) + Cr

≥ eCrr2−mµ(Br(x)) + Cr

with C = CM , so approximating R with smaller radii we deduce

eCRR2−mµ(BR(x)) + CR ≥ eCrr2−mµ(Br(x)) + Cr, (5.6.1)

and in particular the (m− 2)-density

Θm−2(µ, x) := lim
r→0

(ωm−2r
m−2)−1µ(Br(x))

is defined. As a first step toward the proof of Theorem 5.6.1, we show that this density is

bounded from above and below on the support spt(µ).

Proposition 5.6.2. There exists a constant 0 < C = C(M,Λ) <∞ such that

C−1 ≤ r2−mµ(Br(x)) ≤ C for x ∈ spt(µ), 0 < r < inj(M), (5.6.2)

and thus C−1 ≤ Θm−2(µ, x) ≤ C for all x ∈ spt(µ).

Proof. The upper bound follows from (5.6.1), which gives (when R = inj(M))

r2−mµ(Br(x)) ≤ eCMrr2−mµ(Br(x)) + CMr

≤ C(M,Λ)µ(M) + C(M,Λ) inj(M)

≤ C(M,Λ).

To see the lower bound, let βD = βD(M,Λ) ∈ (0, 1) be the constant given by

Corollary 5.5.4, and again set

Zβ(uε) := {x ∈M : |uε(x)|2 ≤ 1− β}.

Let Σ be the set of all limits x = limε xε, with xε ∈ ZβD(uε); that is, take

Σ :=
⋂
η>0

⋃
0<ε<η

ZβD(uε).

We then claim that

spt(µ) ⊆ Σ (5.6.3)

and

µ(Br(x)) ≥ c(M,Λ)rm−2 for x ∈ Σ, 0 < r < inj(M). (5.6.4)

Once both (5.6.3) and (5.6.4) are established, the lower bound in (5.6.2) follows immediately.
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To establish (5.6.3), fix some p ∈M\Σ; by definition of Σ, there must exist δ = δ(p) > 0

such that

dist(p, ZβD(uε)) ≥ 2δ

for all ε sufficiently small. Applying Corollary 5.5.4 for all x ∈ Bδ(p), we deduce that

µ(Bδ(p)) ≤ lim inf
ε→0

1

2π

∫
Bδ(p)

eε(uε,∇ε)

≤ lim
ε→0

∫
Bδ(p)

(Cε−2e−aδ/ε + Cε)

= 0.

In particular, p ∈M \ spt(µ), confirming (5.6.3).

To see (5.6.4), let x ∈ Σ. Note that, by definition of Σ, there exist points xε ∈ ZβD(uε)

with xε → x as ε→ 0 (along a subsequence). We then see that

|uε(xε)|2 ≤ 1− βD

and Corollary 5.4.4 gives c(M,Λ) such that

µε(Br(xε)) ≥ c(M,Λ)rm−2

for ε < r < inj(M). Since for any δ > 0 we have Br(xε) ⊆ Br+δ(x) eventually, it follows

that µ(Br+δ(x)) ≥ crm−2, hence

µ(Br(x)) ≥ crm−2

for 0 < r < inj(M), which is (5.6.4).

With Proposition 5.6.2 in place, we will invoke a result by Ambrosio and Soner [10] to

conclude that the limiting measure µ = limε→0 µε coincides with the weight measure of a

stationary, rectifiable (m− 2)-varifold. Recall from Section 5.4 the stress-energy tensors

Tε = eε(uε,∇ε)g − 2∇εu∗ε∇εuε − 2ε2F ∗∇εF∇ε .

We record first the following lemma; in its statement, we canonically identify (and pair with

each other) tensors of rank (2, 0), (1, 1), and (0, 2), using the underlying metric g.

Lemma 5.6.3. As ε→ 0, the tensors Tε converge (subsequentially) as Sym(TM)-valued

measures, in duality with C0(M, Sym(TM)), to a limit T satisfying

〈T,DX〉 = 0 for all vector fields X ∈ C1(M, TM), (5.6.5)

1

2π
〈T, ϕg〉 ≥ (m− 2)〈µ, ϕ〉 for every 0 ≤ ϕ ∈ C0(M), (5.6.6)

and

−
∫
M
|X|2 dµ ≤ 1

2π
〈T,X ⊗X〉 ≤

∫
M
|X|2 dµ for all X ∈ C0(M, TM). (5.6.7)
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Proof. For each ε > 0, note that, by definition of Tε, for every continuous vector field

X ∈ C0(M, TM) we have∫
M
〈Tε, X ⊗X〉 =

∫
M
eε(uε,∇ε)|X|2 −

∫
M

2|(∇ε)Xuε|2 −
∫
M

2ε2|ιXF∇ε |2.

Evaluating (5.2.3) in an orthonormal basis such that X is a multiple of e1, we see that

|ιXF∇ε |2 ≤ |F∇ε |2|X|2, while |(∇ε)Xuε|2 ≤ |∇εuε|2|X|2. We deduce that

−
∫
M
|X|2eε(uε,∇ε) ≤

∫
M
〈Tε, X ⊗X〉 ≤

∫
M
eε(uε,∇ε)|X|2. (5.6.8)

As an immediate consequence, we see that the uniform energy bound Eε(uε,∇ε) ≤ Λ gives a

uniform bound on ‖Tε‖(C0)∗ as ε→ 0, so we can indeed extract a weak-* subsequential limit

T ∈ C0(M, Sym(TM))∗, for which (5.6.7) follows from (5.6.8).

The stationarity condition (5.6.5) for the limit T follows from (5.4.5). It remains

to establish the trace inequality (5.6.6). For this, we simply compute, for nonnegative

ϕ ∈ C0(M),∫
M
〈Tε, ϕg〉 =

∫
M
ϕ(neε(uε,∇ε)− 2|∇εuε|2 − 4ε2|F∇ε |2)

=

∫
M

(m− 2)ϕeε(uε,∇ε) + 2

∫
M
ϕ
(W (uε)

ε2
− ε2|F∇ε |2

)
≥ 2π(m− 2)〈µε, ϕ〉 − 4π

∫
M
ϕeε(uε,∇ε)1/2

(
ε|F∇ε | −

(1− |uε|2)

2ε

)+
.

Recalling from Proposition 5.4.2 that

ε|F∇ε | −
(1− |uε|2)

2ε
≤ C(M,Λ),

we then see that

〈T, ϕg〉 = lim
ε→0

∫
M
〈Tε, ϕg〉 ≥ 2π(m− 2)〈µ, ϕ〉 − C lim

ε→0

∫
M
ϕeε(uε,∇ε)1/2.

In particular, (5.6.6) will follow once we show that limε→0

∫
M eε(uε,∇ε)1/2 = 0.

But this is straightforward: from Proposition 5.6.2 we know that for 0 < δ < inj(M) we

have

µ(Bδ(x)) ≥ c(M,Λ)δm−2 for x ∈ Σ = spt(µ).

Since vol(B5δ(x)) ≤ C(M)δm, a simple Vitali covering argument then implies that the

δ-neighborhood Bδ(Σ) of Σ satisfies a volume bound

vol(Bδ(Σ)) ≤ C(M,Λ)δ2.

With this estimate in hand, we then see that∫
M
eε(uε,∇ε)1/2 =

∫
Bδ(Σ)

eε(uε,∇ε)1/2 +

∫
M\Bδ(Σ)

eε(uε,∇ε)1/2

≤ vol(Bδ(Σ))1/2Λ1/2 + C(M)µε(M\Bδ(Σ))1/2.
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Fixing δ and taking the limit as ε→ 0, we have µε(M\Bδ(Σ))→ 0. Since vol(Bδ(Σ)) ≤ Cδ2,

we find that

lim sup
ε→0

∫
M
eε(uε,∇ε)1/2 ≤ CδΛ1/2.

Finally, taking δ → 0, we conclude that
∫
M eε(uε,∇ε)1/2 → 0 as ε→ 0, completing the

proof.

Estimate (5.6.7) says that |T | is absolutely continuous with respect to µ, so by the

Radon–Nikodym theorem we can write the limiting Sym(TM)-valued measure T from

Lemma 5.6.3 as
1

2π
〈T, S〉 =

∫
M
〈P (x), S(x)〉 dµ(x) (5.6.9)

for some L∞ (with respect to µ) section P :M→ Sym(TM). Moreover, it follows from

(5.6.6) and (5.6.7) that −g ≤ P (x) ≤ g and tr(P (x)) ≥ m− 2 at µ-a.e. x ∈M, so that 1
2πT

defines in a natural way a generalized (m− 2)-varifold in the sense of Ambrosio and Soner,

namely a Radon measure on the bundle

Am,n−2(M) := {S ∈ Sym(TM) : −ng ≤ S ≤ g, tr(S) ≥ m− 2}. (5.6.10)

We refer the reader to [10, Section 3]. Note that in [10] the authors work in the Euclidean

space and require the trace to be equal to m− 2 in (5.6.10); however, the main result on

generalized varifolds, namely [10, Theorem 3.8], still holds in our setting.

Hence, in view of the stationarity condition (5.6.5) and the density bounds of

Proposition 5.6.2, we can apply [10, Theorem 3.8(c)] to conclude that 1
2πT can be identified

with a stationary, rectifiable (m− 2)-varifold with weight measure µ (so, in particular, spt(µ)

is (m− 2)-rectifiable), and that P (x) is given µ-a.e. by the orthogonal projection onto the

(m− 2)-subspace Tx spt(µ) ⊂ TxM. We collect this information in the following statement.

Proposition 5.6.4. For a family (uε,∇ε) satisfying the hypotheses of Theorem 5.6.1, after

passing to a subsequence, there exists a stationary, rectifiable (m− 2)-varifold V = v(Σm−2, θ)

such that

lim
ε→0

1

2π

∫
M
〈Tε(uε,∇ε), S〉 =

∫
Σ
θ(x)〈TxΣ, S(x)〉 dHm−2 (5.6.11)

for every continuous section S ∈ C0(M, Sym(TM)). The energy measure µ is given by

µ = θHm−2 Σ. Also, we can choose Σ := spt(µ) and θ(x) := Θm−2(µ, x).

Integrality of the limit varifold and convergence of level sets

We now show that the varifold V is integer rectifiable. Given x ∈ spt(µ) and s > 0, we

define Mx,s to be the ball of radius s−1 inj(M) in the Euclidean space (TxM, gx) and

define ιx,s :Mx,s →M by ιx,s(y) := expx(sy). We endow Mx,s with the smooth metric

gx,s := s−2ι∗x,sg, which converges locally smoothly to the Euclidean metric gx as s→ 0.
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By rectifiability, for µ-a.e. x the dilated varifolds Vx,s := (ι−1
x,s)∗(V Binj(M)(x)) in Mx,s

satisfy

Vx,s ⇀ v(TxΣ,Θm−2(x)) (5.6.12)

as s→ 0, in duality with Cc(TxM). Fix x ∈ spt(µ) such that (5.6.12) holds. The integrality

of V will follow once we prove that Θ = Θm−2(µ, x) is an integer.

We can identify (TxM, gx) with Rm by a linear isometry such that TxΣ = {0} × Rm−2.

We also call µx,s the mass measure of Vx,s; equivalently,

µx,s := s2−m(ι−1
x,s)∗(µ Binj(M)(x)).

With a diagonal selection, changing our sequence ε→ 0 accordingly, we can find scales

sε → 0 such that we have the convergence of Radon measures

lim
ε→0

µ̂ε = lim
s→0

µx,s = ΘHm−2 TxΣ,

where (ûε, ∇̂ε) is the pullback of (usεε,∇sεε) by means of ιx,sε , and µ̂ε is the associated

energy measure. Note that (ûε, ∇̂ε) is stationary for Eε in the line bundle ι∗x,sεL, with

respect to the base metric gx,sε . We introduce the notation

eTε (ûε, ∇̂ε) :=

m∑
i=3

(|(∇ε)∂i ûε|
2 + ε2|ι∂iF∇̂ε |

2).

Balls will be denoted by Br(y) or Bm
r (y), depending on whether they are with respect to

gx,sε or gRm , respectively. The volume |E| of a set E will be always understood with respect

to the Euclidean metric.

The next proposition, which exploits quantitatively the monotonicity formula, is similar

to an estimate in the proof of [69, Lemma 2.1].

Proposition 5.6.5. As ε→ 0 we have

lim
ε→0

∫
B2

2×B
m−2
2

eTε (ûε, ∇̂ε) = 0.

Proof. Let CM be the constant in Theorem 5.4.3. We first note that, given y ∈ {0} × Rm−2,

lim
ε→0

µ̂ε(Br(y)) = Θωm−2r
m−2;

indeed, for any η > 0, Bm
r−η(y) ⊆ Br(y) ⊆ Bm

r+η(y) eventually. Setting yε := ιx,sε(y) ∈M,

we deduce that

lim
ε→0

(eCMsεr(sεr)
2−mµsεε(Bsεr(yε)) + CMsεr)

= lim
ε→0

(eCMsεrr2−mµ̂ε(Br(y)) + CMsεr)

= Θωm−2.

(5.6.13)
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Pick 3 ≤ i ≤ m and fix R > 0. Choosing y := −2Rei, we can apply (5.4.12) between the

radii sεR and 3sεR to obtain that∫
B3sεR(pi)\BsεR(pi)

d2−m
pi (|∇νR,iusεε|

2 + s2
εε

2|ινR,iF∇sεε |
2)

≤ (eCM (3sεR)(3sεR)2−mµsεε(B3sεR(pi)) + CM (3sεR))

− (eCM (sεR)(sεR)2−mµsεε(BsεR(pi)) + CM (sεR)),

where pi := ιx,sε(−2Rei) and νR,i := grad dpi . Now (5.6.13) and the comparability of gx,sε

with gRm give

lim
ε→0

∫
B3R(−2Rei)\BR(−2Rei)

(|∇ν̃R,i ûε|
2 + ε2|ιν̃R,iF∇̂ε |

2) = 0,

where ν̃R,i is the gradient of the distance function d−2Rei , both with respect to the metric

gx,sε . Since eventually B3R(−2Rei) \ BR(−2Rei) includes B2
2 ×B

m−2
2 for R big enough, we

get

lim
ε→0

∫
B2

2×B
m−2
2

(|∇ν̃R,i ûε|
2 + ε2|ιν̃R,iF∇̂ε |

2) = 0. (5.6.14)

By monotonicity, as ε→ 0 we have

lim sup
ε→0

∫
B2

2×B
m−2
2

eε(ûε, ∇̂ε) ≤ lim sup
ε→0

s2−m
ε

∫
B5sε (x)

esεε(usεε,∇sεε)

≤ C(M,Λ).

(5.6.15)

The smooth convergence gx,sε → gRm gives ν̃R,i(y) → YR,i(y) := y+2Rei
|y+2Rei| uniformly on

B2
2 ×B

m−2
2 . Hence, the bound (5.6.15) and (5.6.14) give

lim
ε→0

∫
B2

2×B
m−2
2

(|∇YR,i ûε|
2 + ε2|ιYR,iF∇̂ε |

2) = 0. (5.6.16)

Now YR,i → ei = ∂i as R→∞, and the statement follows from (5.6.16) and the uniform

bound (5.6.15).

We now state the main technical result of the section, which will be shown later.

Fix a cut-off function χ ∈ C∞c (B2
2) with χ(z) = 1 for |z| ≤ 3

2 and 0 ≤ χ ≤ 1, and let

χ̂(z, t) := χ(z).

Proposition 5.6.6. There exists Fε ⊆ Bm−2
1 with |Fε| ≥ 1

4 |B
m−2
1 | such that

sup
t∈Fε

dist
(∫

R2×{t}
χ(z)eε(ûε, ∇̂ε)(z, t), 2πN

)
→ 0 as ε→ 0. (5.6.17)

Before giving the proof, let us see how this implies the integrality of V .
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Proof of Theorem 5.6.1. As ε→ 0, we have both (5.6.17) and

lim
ε→0

1

2π

∫
R2×Bm−2

1

χ̂eε(ûε, ∇̂ε) = lim
ε→0

∫
R2×Bm−2

1

χ̂ dµ̂ε = ωm−2Θ, (5.6.18)

∫
R2×Bm−2

2

|dχ̂| dµ̂ε ≤ Cµ̂ε((B2
2 \B2

1)×Bm−2
1 )→ 0, (5.6.19)

as µ̂ε ⇀ ΘHm−2 {0} × Rm−2.

In view of (5.6.15) and (5.6.19), for any vector field (Y 3, . . . , Y m) ∈ C∞c (Bm−2
2 ,Rm−2)

we can integrate (5.4.4) against χ̂(
∑m

i=3 Y
i∂i) and obtain, in the Euclidean metric,∣∣∣ ∫

R2×Bm−2
2

χ̂〈Tε(uε,∇ε), dY i ⊗ ∂i〉
∣∣∣ ≤ λε(‖Y ‖L∞ + ‖DY ‖L∞)

for some sequence λε → 0, thanks to the smooth convergence gx,sε → gRm .

Invoking Proposition 5.6.5 and noting that ‖Y ‖L∞ ≤ 2‖DY ‖L∞ , we can conclude that

the nonnegative function fε(t) := 1
2π

∫
R2×{t} χ̂eε(ûε, ∇̂ε) satisfies∣∣∣ ∫

Bm−2
2

fε div(Y )
∣∣∣ ≤ λε‖DY ‖L∞

for a possibly different sequence λε → 0. Applying the Hahn–Banach theorem to the

subspace {DY | Y ∈ C∞c (Bm−2
2 ,Rm−2)} ⊆ C0(Bm−2

2 ,Rm−2 ⊗ Rm−2) (C0 denoting the

closure of Cc), we can find real measures (νε)
i
j such that

∂jfε =

m∑
i=3

∂i(νε)
i
j for all j = 3, . . . , n

as distributions and |(νε)ij |(B
m−2
2 )→ 0. Allard’s strong constancy lemma [4, Theorem 1.(4)]

gives then ∥∥∥fε − 1

ωm−2

∫
Bm−2

1

fε

∥∥∥
L1(Bm−2

1 )
→ 0.

Since the sets Fε of Proposition 5.6.6 have positive measure, there clearly exists tε ∈ Fε
such that ∣∣∣fε(tε)− 1

ωm−2

∫
Bm−2

1

fε

∣∣∣ ≤ 1

|Fε|

∥∥∥fε − 1

ωm−2

∫
Bm−2

1

fε

∥∥∥
L1(Bm−2

1 )
→ 0.

Recalling (5.6.17), we deduce that

dist
( 1

ωm−2

∫
Bm−2

1

fε, 2πN
)
→ 0.

Hence, by (5.6.18), we get dist(Θ,N) = 0, which concludes the proof that V is integral.
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Proof of Proposition 5.6.6. Taking into account Proposition 5.6.5, the classical Hardy–

Littlewood weak-(1,1) maximal estimate (applied to the function t 7→
∫
B2

2×{t}
eTε (ûε, ∇̂ε))

gives

1

rm−2

∫
B2

2×B
m−2
r (t)

eTε (ûε, ∇̂ε) ≤ C(m)

∫
B2

2×B
m−2
2

eTε (ûε, ∇̂ε)→ 0 (5.6.20)

for all t ∈ Bm−2
1 \Eε1 and 0 < r < 1, where Eε1 is a Borel set with |Eε1| ≤ 1

4 |B
m−2
1 |. Similarly,

(5.6.15) and (5.6.19) give

1

rm−2
µ̂ε(B

2
2 ×Bm−2

r (t)) ≤ C(M,Λ), (5.6.21)

1

rm−2
µ̂ε((B

2
2 \B2

1)×Bm−2
r (t)) ≤ C(m)µ̂ε((B

2
2 \B2

1)×Bm−2
2 )→ 0 (5.6.22)

for t ∈ Bm−2
1 \ (Eε2 ∪ Eε3) and 0 < r < 1, with |Eε2|, |Eε3| ≤ 1

4 |B
m−2
1 |.

Pick any tε ∈ Bm−2
1 \ (Eε1 ∪ Eε2 ∪ Eε3) and, for 0 < r < 1, define

Vε(r) := {z ∈ B2
1 : dist((z, tε), ZβD/2(ûε)) < r}

(with the Euclidean distance), where ZβD/2(ûε) = {|ûε|2 ≤ 1− βD/2}. In other words, Vε is

the tε-slice of the neighborhood Bm
r (ZβD/2(ûε)).

We claim that, for 0 < r < 1
2 , Vε(r) satisfies a uniform area bound

|Vε(r)| ≤ C(M,Λ)r2, (5.6.23)

provided ε < r and ε is small enough. Indeed, Vε(r)× {tε} is covered by the balls Bm
r (y)

with y ∈ (B2
3/2 ×B

m−2
r (tε)) ∩ ZβD/2(ûε). Vitali’s covering lemma gives a disjoint collection

{Bm
r (yj) | j ∈ J} such that Vε(r)× {tε} ⊆

⋃
j B

m
5r(yj). By Corollary 5.4.4, we have a bound

on the cardinality |J |:

µ̂ε(B
2
2 ×Bm−2

2r (tε)) ≥
∑
j∈J

µ̂ε(B
m
r (yj)) ≥

∑
j∈J

µ̂ε(Br/2(yj)) ≥ c(M,Λ)rm−2|J |

(since 1
4gRm ≤ gx,sε ≤ 4gRm for ε sufficiently small). Using also (5.6.21), we get |J | ≤ C(M,Λ).

Hence, writing yj = (zj , tj), we obtain

|Vε(r)| ≤
∑
j∈J
|B2

5r(zj)| ≤ 25π|J |r2 ≤ C(M,Λ)r2,

confirming (5.6.23).

Given R > 0, let {zε1, . . . , zεN(R,ε)} be a maximal subset of Vε(Rε) with |zεk − zε` | ≥ 2ε.

Since
⋃
k(B

2
1 ∩B2

ε (zk)) ⊆ Vε((R+ 1)ε) and the balls B2
ε (zk) are disjoint, (5.6.23) gives a

uniform bound on N(R, ε) independent of ε (eventually), so up to subsequences we can

assume that N(R) = N(R, ε) is constant and that ε−1|zεk − zε` | has a limit rk` as ε→ 0, for

each k, l.
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We say that k ∼ ` if rk` <∞; this is evidently an equivalence relation (as rkm ≤ rk`+r`m),

so we can pick a set of representatives {k1, . . . , kP } of the distinct equivalence classes

[k1], . . . , [kP ] and conclude that

Vε(Rε) ⊆
P⋃
j=1

B2
Sε(z

ε
kj

)

eventually, for any fixed S ≥ S0(R) := max{
∑

`∈[kj ]
rkj` + 2 | j = 1, . . . , P}.

Fix such an S which is also bigger than the constants C in (5.6.21) and a−1
D , CD in

Corollary 5.5.4. For any fixed δ > 0, (5.6.20) and (5.6.21) show that, for ε sufficiently

small, Proposition 5.6.7 below applies to ûε(z
ε
kj

+ ε·, tε + ε·) (with β := βD). Writing

K = K(βD, δ, S) > S, note that the balls B2
Kε(zkj ) are eventually disjoint and included in

{χ = 1}. Hence, Proposition 5.6.7 and (5.6.22) give

dist
(∫

R2×{tε}
χ̂eε(ûε, ∇̂ε), 2πN

)
≤ Pδ +

∫
B2

2\
⋃P
j=1 B

2
Kε(z

ε
kj

)
eε(ûε, ∇̂ε)(·, tε)

≤ Pδ +

∫
B2

2\Vε(Rε)
eε(ûε, ∇̂ε)(·, tε)

≤ (P + 1)δ +

∫
B2

1\Vε(Rε)
eε(ûε, ∇̂ε)(·, tε)

(for ε sufficiently small). Choosing δ = δ(R) ≤ 1
(P+1)R , we arrive at the estimate

dist
(∫

R2×{tε}
χ̂eε(ûε, ∇̂ε), 2πN

)
≤ 1

R
+

∫
B2

1\Vε(Rε)
eε(ûε, ∇̂ε)(·, tε).

To conclude the proof, it suffices to show that

lim
R→0

lim sup
ε→0

∫
B2

1\Vε(Rε)
eε(ûε, ∇̂ε)(·, tε)→ 0. (5.6.24)

Once we have this, we infer that

lim inf
ε→0

dist
(∫

R2×{tε}
χ̂eε(ûε, ∇̂ε), 2πN

)
= 0

for the original sequence (tε). Noting that the choice of tε in Fε := Bm−2
1 \ Eε1 ∪ Eε2 ∪ Eε3

was arbitrary, we get

lim inf
ε→0

sup
t∈Fε

dist
(∫

R2×{t}
χ̂eε(ûε, ∇̂ε), 2πN

)
= 0.

Since the argument applies to an arbitrary subsequence εj → 0, the proposition then follows.

To show (5.6.24), note that for z ∈ B2
1 the distance of ιx,sε((z, t

ε)) to the set ZβD/2(usεε)

is (eventually) bounded below by sε
2 min{1, rε(z)}, where rε(z) is the (Euclidean) distance of
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(z, tε) to ZβD/2(ûε)). Since ZβD/2(usεε) ⊇ ZβD(usεε), for any R > 1 Corollary 5.5.4 gives∫
B2

1\Vε(Rε)
eε(ûε, ∇̂ε) ≤ Cε−2

∫
B2

1\Vε(Rε)
e−aDrε(z)/(2ε) + Cε−2e−aD/(2ε) + Csεε

= Cε−3

∫
B2

1\Vε(Rε)

∫ ∞
rε(z)

aD
2
e−aDr/(2ε) dr dz + Cε−2e−aD/(2ε) + Csεε

= Cε−3

∫ ∞
Rε

aD
2
e−aDr/(2ε)|Vε(r)| dr + Cε−2e−aD/(2ε) + Csεε

≤ Cε−3

∫ ∞
Rε

e−aDr/(2ε)r2 dr + Cε

= C

∫ ∞
R

e−aDt/2t2 dt+ Cε,

where we used Fubini’s theorem in the second equality. The statement follows.

The following key technical proposition, used in the proof of Proposition 5.6.6, relies

ultimately on the quantization phenomenon for the energy of entire solutions in the plane,

presented in [59, Chapter III]. For the reader’s convenience, we give a self-contained proof,

including the relevant arguments from [59].

Proposition 5.6.7. Given 0 < β, δ < 1
2 and S > 1, there exist K(β, δ, S) > S and

0 < κ(β, δ, S,m) < K−1 such that the following is true. Assume (u,∇) is smooth and solves

(5.2.4) and (5.2.5), with |u| ≤ 1 and ε = 1, on a line bundle L over a cylinder (Q, g), with

Q = B2
κ−1 ×Bm−2

κ−1 . If we have

Zβ/2(u) ∩ (B2
κ−1 × {0}) ⊆ B

2
S × {0}, (5.6.25)

the energy bounds

e1(u,∇) ≤ S, (5.6.26)

m∑
i=3

∫
B2
κ−1×B

m−2
r

(|∇∂iu|
2 + |ι∂iF∇|

2) ≤ κrm−2 for all 0 < r < κ−1, (5.6.27)

as well as the decay

e1(u,∇)(p) ≤ Se−S−1r + κ whenever Br(p) ⊂⊂ Q \ Zβ, (5.6.28)

and ‖g − gRm‖C2 ≤ κ, then ∣∣∣ ∫
B2
K×{0}

e1(u,∇)− 2π|p|
∣∣∣ < δ,

where p is the degree of u
|u|(S·, 0), as a map from the circle to itself.

Proof. To begin with, fix a real number K(β, δ, S) > S so big that∫ ∞
K

(2πr)Se−S
−1(r−S) < δ. (5.6.29)
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Arguing by contradiction, assume there exists a sequence κj → 0 such that the statement

admits a counterexample (uj ,∇j) (for κ = κj) for a (necessarily trivial) line bundle Lj over

Qj = B2
κ−1
j

×Bm−2

κ−1
j

, with respect to a metric g = gj satisfying ‖g − gRm‖C2 ≤ κj . Fixing a

trivialization of Lj over Qj , we can write ∇j = d− iAj for some real one-form Aj .

By virtue of the uniform pointwise estimate (5.6.28) for e1(uj ,∇j) ≥ |d|uj ||2, we

see that the functions |uj | are locally equi-Lipschitz. In particular, we can apply the

Arzelà–Ascoli theorem to extract a subsequence |uj | converging in C0
loc to a continuous

function ρ∞ : Rm → R.

Since |∂k|uj || ≤ |(∇j)∂kuj | for all k, (5.6.27) implies that ρ∞ depends only on the

first two variables. Moreover, (5.6.25) gives ρ2
∞ ≥ 1− β

2 > 1− β outside B2
S × Rm−2. In

particular, setting

Rj := max
{
r ≤ κ−1

j : (B2
r \B2

S)×Bm−2
1 ⊆

{
|uj | >

1

2

}}
,

we have Rj →∞. Let wj :=
uj
|uj | on {|uj | > 1

2}.
The degree pj is uniformly bounded as, for r ≥ S and t ∈ Rm−2,

2πpj =

∫
∂B2

r×{t}
w∗j (dθ) =

∫
B2
r×{t}

dAj +

∫
∂B2

r×{t}
(w∗j (dθ)−Aj)

for j sufficiently large, so averaging over S < r < 2S and t ∈ Bm−2
1 we get

2π|pj | ≤ C(S)

∫
B2

2S×B
m−2
1

|dAj |+ C(S)

∫
(B2

2S\B
2
S)×Bm−2

1

|w∗j (dθ)−Aj |

≤ C(β, S)
(∫

B2
2S×B

m−2
1

e1(uj , Aj)
)1/2

,

as |uj ||w∗j (dθ)−Aj | ≤ |∇juj |. Thus, up to subsequences we can assume pj = p is constant.

We now claim that, up to change of gauge, (uj , Aj)→ (u∞, A∞) subsequentially in

C1
loc(R2 ×Bm−2

1 ). Let ũj = eiθjuj and Ãj = Aj + dθj be the section and the connection in

the Coulomb gauge on the domain (B
m
5S , gj), with Ãj(ν) = 0 on the boundary (as described

in the Appendix). Note that Bm
5S includes the cylinder Q′ := B2

4S ×B
m−2
1 , and observe that,

on Q′′ := (B2
4S \B2

S)×Bm−2
1 , ũj has the form

ũj(re
iθ, t) = |uj |eipθ+iψj

for a unique real function ψj with 0 ≤ ψj(2S, 0) < 2π.

Hence, uj = |uj |ei(pθ+ψj−θj) on Q′′ and we can extend ψj − θj uniquely to a function

σj : (B2
Rj
\B2

S)×Bm−2
1 → R so that uj = |uj |eipθ+iσj holds true on all the domain of σj .

Finally, we replace (uj , Aj) with (eiτjuj , Aj + dτj), where

τj(z, t) :=

θj − χ(|z|)ψj |z| < 4S

−σj |z| > 3S
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for a fixed smooth function χ : [0,∞)→ [0, 1] such that χ = 0 on [0, 2S] and χ = 1 on

[3S,∞). Observe that, in the cylinder Q′ = B2
4S ×B

m−2
1 , the new couple equals

(ũje
−χ(|z|)ψj , Ãj − d(χ(|z|)ψj)).

The function ψj obeys uniform local W 2,q bounds, on (the interior of) Q′′, for all 1 ≤ q <∞,

thanks to the Coulomb gauge specification (per Proposition A.1 in the Appendix). Hence,

the new couple (uj , Aj) has uniform local W 2,q bounds on Q′.

Moreover, in the exterior annular region Aj := (B2
Rj
\ B2

3S) × Bm−2
1 , we have that

uj(re
iθ, t) = |uj |epiθ and we can obtain local W 2,q bounds noting that

pdθ −Aj = |uj |−2〈∇juj , iuj〉.

Indeed, since the right-hand side is bounded by 2e1(uj ,∇j)1/2 ≤ 2S1/2 and pdθ is a fixed

smooth one-form, we immediately obtain uniform L∞ bounds for Aj locally in Aj . Next,

note that the identity (5.3.4) applies to give us an estimate

|∆|uj |2| ≤ Ce1(uj ,∇j) + C ≤ CS

in Aj , from which it follows that the modulus |uj | satisfies uniform W 2,q bounds for every

q ∈ (1,∞) locally in Aj . Multiplying (5.2.4) by e−piθ and taking the imaginary part gives

|uj |d∗(pdθ −Aj) = 2〈d|uj |, pdθ −Aj〉,

from which it follows that d∗Aj satisfies uniform L∞ bounds locally in Aj as well; together

with the obvious pointwise bound |dAj | ≤ e1(uj ,∇j)1/2 ≤ S1/2, this in particular yields

uniform bounds on the full derivative ‖DAj‖Lq for every q ∈ (1,∞) on fixed compact

subsets of Aj (this follows, e.g., from [58, Lemma 4.7] and a cut-off argument).

Finally, writing (5.2.5) as

∆HAj = dd∗Aj + |uj |2(pdθ −Aj),

the preceding chain of identities and estimates give a uniform Lq bound on the right-hand

side over any fixed compact subset of Aj , for any q ∈ (1,∞); in particular, this gives us the

desired uniform local W 2,q bounds for Aj (while we already have the desired W 2,q bounds

for uj = |uj |epiθ).
Thanks to the compact embedding W 2,q ↪→ C1 on bounded regular domains (for q > m),

we obtain a limit couple (u∞, A∞) on R2 ×Bm−2
1 , as claimed, which solves (5.2.4) and

(5.2.5) with respect to the flat metric. Also, |u∞| = ρ∞ and

(∇∞)∂ku∞ = 0, ι∂kdA∞ = 0 for k = 3, . . . ,m. (5.6.30)

The second part of (5.6.30) implies that we can find a function α ∈ C1(R2 ×Bm−2
1 ) with

α(z, 0) = 0 and ∂kα = (A∞)k, for all z ∈ R2 and all k ≥ 3. Set ũ∞ := e−iαu∞ and

Ã∞ := A∞ − dα, so that

(Ã∞)k = 0, ∂k(Ã∞)` = ∂k(A∞)` − ∂2
k`α = ∂`(A∞ − dα)k = 0
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for all k = 3, . . . ,m and ` = 1, . . . ,m (using again the second part of (5.6.30)). The first

part gives instead ∂kũ∞ = 0 for k = 3, . . . ,m. Hence, (ũ∞, Ã∞) depends only on the first

two variables and therefore corresponds to a planar solution of (5.2.4) and (5.2.5).

Also, from (5.6.28) we deduce that

e1(ũ∞, Ã∞)(z, t) = e1(u∞, A∞)(z, t) = lim
j→∞

e1(uj , Aj)(z, t) ≤ Se−S
−1(|z|−S) (5.6.31)

for |z| > S, as eventually B
m
|z|−S(z, t) ∩ Zβ(uj) = ∅.

Integrating (5.4.4) on R2 = R2 × {0} against the position vector field we get∫
R2

|dÃ∞|2 =

∫
R2

W (ũ∞).

Thanks to the decay of e1(ũ∞, Ã∞), we can repeat the proof of (5.3.6): starting from

∆ξ̃∞ ≥ |ũ∞|2ξ̃∞, with ξ̃∞ := |dÃ∞| −
1− |ũ∞|2

2
,

and applying the maximum principle, we deduce that the decaying function ξ̃∞ is nonpositive.

We then obtain |dÃ∞| ≤
√
W (ũ∞), so we must have |dÃ∞| =

√
W (ũ∞) everywhere (cf.

[59, Section III.10]).

Observe that, by (5.3.4) and the strong maximum principle, |ũ∞| < 1 (unless |ũ∞| = 1

everywhere, in which case |dÃ∞| =
√
W (ũ∞) = 0 and |∇̃∞ũ∞| = 0 by (5.3.4), thus

e1(ũ∞, Ã∞) = 0 and p = 0; so the statement of the proposition holds eventually, contradiction).

As a consequence, | ∗ dÃ∞| = W (ũ∞) > 0 and we get either 1−|ũ∞|2
2 = ∗dÃ∞ everywhere or

1−|ũ∞|2
2 = − ∗ dÃ∞ everywhere. Thus, integrating by parts and using (5.2.4), as well as the

decay of |pdθ − Ã∞|,∫
R2

e1(ũ∞, Ã∞) =

∫
R2

(|∇̃∞ũ∞|2 + 2W (ũ∞)) =

∫
R2

(〈∇̃∗∞∇̃∞ũ∞, ũ∞〉+ 2W (ũ∞))

=

∫
R2

1− |ũ∞|2

2
= ±

∫
R2

dÃ∞ = ± lim
r→∞

∫
∂B2

r

Ã∞ = ± lim
r→∞

∫
∂B2

r

pdθ = ±2πp.

Hence, the energy of the two-dimensional solution (ũ∞, Ã∞) is 2π|p|. Our choice of K,

namely (5.6.29), together with (5.6.31), then ensures that

dist
(∫

B2
K×{0}

e1(u∞, A∞), 2πN
)
< δ.

As a consequence, this must hold eventually also for (uj , Aj), giving the desired contradiction.

Remark 5.6.8. As a consequence, one also finds that∫
B2
K×{0}

e1(u,∇) < δ

if |u| > 0 everywhere on the cylinder Q. Indeed, if |u| > 0 everywhere, then the degree p in

the statement of Proposition 5.6.7 clearly must vanish.
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We are now able to address the statement on the convergence of level sets.

Proposition 5.6.9. For any 0 ≤ δ < 1 we have spt(µ) = limε→0{|uε| ≤ δ}, in the

Hausdorff topology.

Proof. If x = limε→0 xε, for points xε ∈ {|uε| ≤ δ} defined along a subsequence, then the

same argument used in the proof of Proposition 5.6.2 shows that x ∈ spt(µ). Hence, for all

η > 0, eventually {|uε| ≤ δ} is included in the η-neighborhood of spt(µ).

To conclude the proof, it suffices to show that the converse inclusion spt(µ) ⊆ Bη({uε = 0})
holds eventually. Arguing by contradiction, assume that there are points pε ∈ spt(µ) whose

distance from {uε = 0} is at least η, along some subsequence (not relabeled). Up to further

subsequences, let pε → p0 ∈ spt(µ).

Since µ is (m− 2)-rectifiable, there exists a point q ∈ spt(µ) with dist(p0, q) <
η
2 , and

such that µ blows up to Θm−2(µ, q)Hm−2 TqΣ at q. Observe that eventually we have

dist(q, {uε = 0}) ≥ η

2
. (5.6.32)

Now, repeating all the preceding blow-up analysis at q, in view of Remark 5.6.8 we can

improve (5.6.17) to the uniform convergence∫
R2×{t}

χ(z)eε(ûε, ∇̂ε)(z, t)→ 0

for t ∈ Fε, which implies that Θm−2(µ, q) = 0. However, since q ∈ spt(µ), this is impossible,

by Proposition 5.6.2.

Limiting behavior of the curvature

As before, we identify the curvature F∇ε with a closed two-form ωε by F∇ε(X,Y ) =

−iωε(X,Y ). Recall that the cohomology class [ 1
2πωε] represents the (rational) first Chern

class c1(L) ∈ H2(M;R) of the complex line bundle L→M.

Theorem 5.6.10. Let (uε,∇ε) be a family as in Theorem 5.6.1. The curvature forms 1
2πωε

can be identified with (m− 2)-currents that converge (weakly), as ε→ 0, to an integer

rectifiable cycle Γ which is Poincaré dual to c1(L), and whose mass measure |Γ| satisfies

|Γ| ≤ µ.

Proof. Recall from Section 5.2 that

d〈∇εuε, iuε〉 = ψ(uε)− |uε|2ωε,

where ψ(uε) = 〈2i∇uε,∇εuε〉 is a two-form satisfying |ψ(uε)| ≤ |∇εuε|2 pointwise. In

particular, denoting by J(uε,∇ε) the two-form

J(uε,∇ε) := ψ(uε) + (1− |uε|2)ωε,
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we can rewrite this identity as

J(uε,∇ε)− ωε = d〈∇εuε, iuε〉, (5.6.33)

and observe that

|J(uε,∇ε)| ≤ |∇εuε|2 + ε2|ωε|2 +
1

4ε2
(1− |uε|2)2 = eε(uε,∇ε). (5.6.34)

The dual (m− 2)-currents given by

〈Γε, ζ〉 :=
1

2π

∫
M
J(uε,∇ε) ∧ ζ,

for any (m− 2)-form ζ ∈ Ωm−2(M), are thus bounded in mass by 1
2πΛ. (Here we compute

the mass with the `2 norm on exterior algebras; for the limit current, by rectifiability this

will coincide with the usual mass, dual to the comass.) Up to subsequences, we can take a

weak limit Γ. The bound |Γε| ≤ µε implies that also |Γ| ≤ µ.

From (5.6.33) and integration by parts we get∫
M
ωε ∧ ζ =

∫
M
J(uε,∇ε) ∧ ζ −

∫
M
〈∇εuε, iuε〉 ∧ dζ.

Since (as discussed in the proof of Proposition 5.6.2)∫
M
|〈∇εuε, iuε〉| ≤

∫
M
eε(uε,∇ε)1/2 → 0

as ε→ 0, it follows that

〈Γ, ζ〉 =
1

2π
lim
ε→0

∫
M
J(uε,∇ε) ∧ ζ =

1

2π
lim
ε→0

∫
M
ωε ∧ ζ (5.6.35)

for every smooth (m− 2)-form ζ ∈ Ωm−2(M).

Since the two-forms ωε are closed, for any ξ ∈ Ωm−3(M) we have

〈∂Γ, ξ〉 = 〈Γ, dξ〉 =
1

2π
lim
ε→0

∫
M
ωε ∧ dξ =

1

2π
lim
ε→0

∫
M
d(ωε ∧ ξ) = 0,

so Γ is a cycle. Since µ is (m− 2)-rectifiable, Γ must be a rectifiable (m− 2)-current: this can

be seen by blow-up, applying [64, Proposition 7.3.5]. By (5.6.35), Γ is Poincaré dual to c1(L).

To complete the proof, it remains to show that Γ has integer multiplicity. By means of a

diagonal selection of a subsequence, as in the previous subsection, we can deduce integrality

at those points p ∈ spt(µ) where µ and Γ blow up respectively to Θm−2(µ, p)Hm−2 TpΣ

and a multiple of [TpΣ], using the following lemma. Note that its hypotheses are verified

thanks to Corollary 5.5.4 and the fact that ZβD(uε) necessarily converges to a subset of TpΣ

in the local Hausdorff topology, after rescaling (see the proof of Proposition 5.6.2).

Since µ is (m−2)-rectifiable, we deduce that the limiting current Γ has integer multiplicity

Hm−2-a.e. on its support, as claimed.
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Lemma 5.6.11. On the Euclidean ball Bm
4 , let (uε,∇ε) be a sequence of sections and

connections in a trivial line bundle L→ Bm
4 (not necessarily satisfying any equation) for

which Eε(uε,∇ε) ≤ Λ, eε(uε,∇ε) → 0 in C0
loc(B

m
4 \ P ) and ∗ωε → θ1[P ] in Dm−2(Bm

4 ),

where P = {0} × Rm−2. Then θ1 ∈ 2πZ.

Proof. To begin, fix a test function ϕ ∈ C1
c (B2

1 × B
m−2
1 ) of the form ϕ(x1, . . . , xm) =

ψ(x1, x2)η(x3, . . . , xm), with ψ(x1, x2) = 1 for |(x1, x2)| ≤ 1
2 . In the sequel, we shall omit

the domain of integration when it equals Rm. By assumption, we then have

θ1

∫
P
ηdx3 ∧ · · · ∧ dxm = lim

ε→0

∫
ϕωε ∧ dx3 ∧ · · · ∧ dxm.

Fixing trivializations of L over Bm
2 , we write ∇ε = d− iAε for some one-forms Aε, so that

ωε = dAε, and the right-hand term in the preceding limit becomes∫
ωε ∧ (ϕdx3 ∧ · · · ∧ dxm) =

∫
d(ϕAε ∧ dx3 ∧ · · · ∧ dxm)

+

∫
Aε ∧ dϕ ∧ dx3 ∧ · · · ∧ dxm

=

∫
η|uε|2Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxm

+

∫
η(1− |uε|2)Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxm.

On Bm
2 we can choose our trivializations so that d∗Aε = 0, and Aε(ν) = 0 on ∂Bm

2 (see

the Appendix). We then have the L2 control∫
Bm2

|Aε|2 ≤ C
∫
Bm2

|dAε|2 ≤ Cε−2Λ (5.6.36)

(see, e.g., [58, Theorem 4.8]), and consequently∣∣∣ ∫ η(1− |uε|2)Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxm
∣∣∣ ≤ C‖1− |uε|2‖C0(spt(ηdψ))‖Aε‖L1(Bm2 )

≤ CΛ1/2‖ε−1(1− |uε|2)‖C0(spt(ηdψ))

≤ CΛ1/2‖eε(uε,∇ε)‖1/2C0(spt(ηdψ))

→ 0

as ε → 0, where we have used the fact that dψ(x1, x2) = 0 for |(x1, x2)| ≤ 1
2 , and the

assumption that eε(uε,∇ε)→ 0 in C0
loc(B

m
2 \ P ).

Combining our computations thus far, we have arrived at the identity

θ1

∫
P
ηdx3 ∧ · · · ∧ dxm = lim

ε→0

∫
η|uε|2Aε ∧ dψ ∧ dx3 ∧ · · · ∧ dxm.

Noting next that

||uε|2Aε − 〈duε, iuε〉| = |〈∇εuε, iuε〉| ≤ eε(uε,∇ε)1/2,
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and using again the hypothesis that eε(uε,∇ε)→ 0 uniformly on spt(ηdψ), the preceding

identity yields

θ1

∫
P
ηdx3 ∧ · · · ∧ dxm = lim

ε→0

∫
η〈duε, iuε〉 ∧ dψ ∧ dx3 ∧ · · · ∧ dxm

= lim
ε→0

∫
η|uε|2(uε/|uε|)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxm

= lim
ε→0

∫
η(uε/|uε|)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxm.

Finally, since the one-form (uε/|uε|)∗(dθ) is closed on {uε 6= 0} and dη∧dx3∧· · ·∧dxm = 0,

integrating by parts on (R2 \B2
1/2)× Rm−2 we see that∫

η(uε/|uε|)∗(dθ) ∧ dψ ∧ dx3 ∧ · · · ∧ dxn =

∫
Rm−2

η(t)

∫
∂B2

1/2
×{t}

(uε/|uε|)∗(dθ) dt

= 2π deg(uε, P )

∫
P
η,

where deg(uε, P ) stands for the degree of (uε/|uε|)(1
2e
iθ, 0). The statement follows.

5.7 Examples from variational constructions

The goal of this section is to show that, for every closed manifold M and every line bundle

L→M endowed with a Hermitian metric, there exist critical couples (uε,∇ε) for the

Yang–Mills–Higgs functional Eε, for ε small enough, in such a way that

0 < lim inf
ε→0

Eε(uε,∇ε) ≤ lim sup
ε→0

Eε(uε,∇ε) <∞. (5.7.1)

This will be easier when the line bundle is nontrivial, as in this case we can just take

(uε,∇ε) to be a global minimizer for Eε. The upper and lower bounds in (5.7.1) have the

following immediate consequence—proved previously by Almgren [7] using GMT methods.

Corollary 5.7.1. Every closed Riemannian manifold (Mm, g) supports a nontrivial

stationary, integral (m− 2)-varifold.

Proof. We can always equip M with the trivial line bundle L := C×M. As shown in the

next subsection, there exists a sequence of critical couples (uε,∇ε) satisfying (5.7.1). The

statement now follows from Theorem 5.6.1.

Min-max families for the trivial line bundle

In this section we will show how min-max methods may be applied to the functionals Eε

to produce nontrivial critical points in the trivial bundle L = C ×M on an arbitrary

closed manifold M of dimension m ≥ 2. The min-max construction that we consider

here is based on two-parameter families parametrized by the unit disk, similar to the
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constructions employed in [21] and [102] for the Ginzburg–Landau functionals—with several

technical adjustments to account for the gauge-invariance and other features particular to

the Yang–Mills–Higgs energies.

One can show that the families we consider induce a nontrivial class in π2(M) for the

quotient

M := {(u,∇) | 0 6≡ u ∈ Γ(L), ∇ a Hermitian connection}/{gauge transformations},

and the analysis that follows can be reformulated in terms of min-max methods applied

directly to M, which can be given the structure of a Banach manifold.

Without loss of generality, we assume henceforth that M is connected. In some proofs

we will also implicitly assume that m = dim(M) ≥ 3, leaving the obvious changes for m = 2

to the reader.

Definition 5.7.2. Fix m = dim(M) < p <∞. In what follows, X̂ will denote the Banach

space of couples (u,A), where u ∈ Lp(M,C) and A ∈ Ω1(M,R), both of class W 1,2, with

the norm

‖(u,A)‖ := ‖u‖Lp + ‖du‖L2 + ‖A‖L2 + ‖DA‖L2 .

Denote by X := {(u,A) ∈ X̂ : d∗A = 0} the subspace consisting of those couples for which

the connection form A is co-closed.

Note that, for (u,A) ∈ X, the full covariant derivative
∫
M |DA|

2 is bounded by

C(M)
∫
M(|A|2 + |dA|2): see, e.g., [58, Theorem 4.8] for a proof.

Definition 5.7.3. Given a form A ∈ Ω1(M,R) in L2, we denote by h(A) the harmonic

part of its Hodge decomposition, or equivalently the orthogonal projection of A onto the

(finite-dimensional) space H1(M) of harmonic one-forms.

Remark 5.7.4. Selection of a Coulomb gauge gives a continuous retraction R : X̂ → X:

namely, given a couple (u,A) ∈ X̂, consider the unique solution θ ∈W 2,2(M,R) to the

equation

∆θ = d∗A,

with
∫
M θ = 0, and set

R((u,A)) := (eiθu,A+ dθ).

Note that the continuity of (u,A) 7→ d(eiθu) = eiθ(du+ iudθ), from X̂ to L2, follows from

the fact that Lp · L2∗ ⊆ L2, where 2∗ = 2m
m−2 .

Throughout this section, W (u) = f(|u|) will be a smooth radial function given by

W (u) = (1−|u|2)2

4 for |u| ≤ 3/2, and satisfying W (u),W ′(u)[u] > 0 for all |u| > 1. For

technical reasons, we also find it convenient to require that

W (u) = |u|p for |u| ≥ 2, (G)
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which evidently gives the additional estimates |u|f ′(|u|) + |u|2f ′′(|u|) ≤ C|u|p for |u| ≥ 2, for

some constant C. For future use, observe also that the potential W (u) then satisfies a simple

bound of the form

(1− |u|)2 ≤ CW (u). (5.7.2)

Proposition 5.7.5. The functional Eε is of class C1 on X̂. Moreover, a couple (u,A) is

critical in X̂ for Eε if and only if R((u,A)) is critical in X. Critical points are smooth up to

change of gauge.

Proof. Given a point (u,A) ∈ X̂ and a pair (v,B) ∈ X̂ with ‖(v,B)‖
X̂
≤ 1, direct

computation gives

Eε(u+ v,A+B) = Eε(u,A) + 2

∫
M
〈du− iuA, dv − ivA− iuB〉

+ 2ε2

∫
M
〈dA, dB〉+ ε−2

∫
M
W ′(u)[v] +O(‖(v,B)‖2

X̂
),

where we are using the fact that X̂ · X̂ ⊆ Lm · L2∗ ⊆ L2 to see that

‖vA‖2L2 + ‖uB‖2L2 + ‖vB‖2L2 + Eε(u,A)1/2‖vB‖L2 = O(‖(v,B)‖2
X̂

),

and we invoke our assumptions on the structure of W to see that∫
M

(W (u+ v)−W (u)) =

∫
M
W ′(u)[v] +O(‖(v,B)‖2

X̂
)

for fixed (u,A) ∈ X̂. It follows immediately that Eε is C1 on X̂, with differential

dEε(u,A)[v,B] =

∫
M

(2〈du− iuA, dv − ivA− iuB〉+ 2ε2〈dA, dB〉+ ε−2W ′(u)[v]).

To confirm the second statement, assume without loss of generality that v and B are

smooth, and observe that

R((u+ tv, A+ tB)) = (etiψũ+ teiθ+tiψv, Ã+ tB + tdψ),

where (ũ, Ã) := R((u,A)) = (eiθu,A+ dθ) and ψ solves ∆ψ = d∗B. This easily gives

R((u+ tv, A+ tB)) = R((u,A)) + t(eiθv + iψũ, B + dψ) + o(t) in X

and, using the gauge invariance Eε = Eε ◦ R, we deduce that

dEε(u,A)[v,B] = dEε(ũ, Ã)[eiθv + iψũ, B + dψ]. (5.7.3)

It follows that if (ũ, Ã) is critical for Eε in X then (u,A) is critical for Eε in X̂, as claimed.

The converse is similar.
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Finally, if (u,A) is critical for Eε (in either X̂ or X), then applying the above formula

for the differential with v = (|u| − 1)+u/|u| ∈W 1,2 and B = 0 we get

0 =

∫
M

2〈(d− iA)u, (d− iA)v〉+ ε−2

∫
M
W ′(u)[v]

≥ ε−2

∫
M
|u|−1(|u| − 1)+W ′(u)[u],

where we used the fact that 〈u ⊗ d((|u| − 1)+/|u|),∇u〉 equals |u|−1|d|u||2 ≥ 0 a.e. on

{|u| > 1} and vanishes elsewhere. Since W ′(u)[u] > 0 on {|u| > 1} by our assumption on W ,

we deduce that |u| ≤ 1. Together with Proposition A.1 and Remark A.3 in the Appendix,

this implies that (u,A) is smooth in an appropriate (Coulomb) gauge.

We next show that the functionals Eε satisfy a suitable variant of the Palais–Smale

condition on X, giving compactness of critical sequences for Eε after an appropriate change

of gauge. (Cf. [61] for similar results in the Seiberg–Witten setting.)

Proposition 5.7.6. The functional Eε satisfies the following form of the Palais–Smale

condition: every sequence (uj , Aj) in X with bounded energy and dEε(uj , Aj)→ 0 in X∗

admits a subsequence converging strongly in X to a critical couple (u∞, A∞), up to possibly

replacing (uj , Aj) with

vj · (uj , Aj) := (vjuj , Aj + v∗j (dθ))

for suitable smooth harmonic functions vj :M→ S1.

Proof. First, we show that the boundedness of Eε(uj , Aj) implies the boundedness of the

sequence in X, up to a change of gauge as in the statement. The assumption (G) on the

potential W gives ∫
M
|uj |p ≤ C +

∫
M
W (uj) ≤ C + Eε(uj , Aj) ≤ C, (5.7.4)

that is, uj is uniformly bounded in Lp.

Denote by Λ ⊆ H1(M) the lattice in the space of harmonic one-forms given by

Λ := {−v∗j (dθ) | vj :M→ S1 harmonic}

=
{
h ∈ H1(M) :

∫
γ
h ∈ 2πZ for every γ ∈ C1(S1,M)

}
,

and let λj ∈ Λ be a closest integral harmonic one-form to h(Aj) (with respect to the L2

norm, say, on H1(M)). Then λj = −v∗j (dθ) for a suitable harmonic map vj :M→ S1, and

‖λj − h(Aj)‖L2 ≤ C(M).

Replacing (uj , Aj) with the change of gauge (vjuj , Aj − λj) ∈ X, we can then assume that

h(Aj) is bounded.
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By standard Hodge theory we can write

Aj = h(Aj) + d∗ξj

for some closed ξj ∈W 2,2 satisfying ∆Hξj = dAj and ‖d∗ξj‖W 1,2 ≤ C(M)‖dAj‖L2 . Thus,

given the energy bound Eε(uj , Aj) ≤ C, we see that

‖Aj‖2W 1,2 ≤ C + 2‖d∗ξj‖2W 1,2 ≤ C + C‖dAj‖2L2 ≤ C,

whereby Aj is bounded in W 1,2 and, consequently, in L2∗ . As a consequence, we see next

that

‖duj‖2L2 ≤ 2

∫
M
|duj − iujAj |2 + 2

∫
M
|ujAj |2

≤ C + C‖uj‖2Lp‖Aj‖2L2∗

≤ C + C‖uj‖pLp ;

taking into account (5.7.4), we infer then that ‖duj‖L2 is also bounded as j →∞.

We have therefore shown that (uj , Aj) is uniformly bounded in X as j →∞, so passing

to subsequences we can assume that (uj , Aj) converges pointwise a.e. and weakly (in X) to a

limiting couple (u∞, A∞).

In particular, defining r by

1

r
:=

1

2
− 1

q
>

1

2
− 1

m
=

1

2∗
,

where m < q < p is an arbitrary fixed exponent, it follows from the compactness of the

embedding W 1,2 ↪→ Lr that

Aj → A∞ strongly in Lr.

Moreover, the boundedness of uj in Lp and the pointwise convergence to u∞ give

uj → u∞ strongly in Lq. (5.7.5)

By definition of r, this implies in particular that

lim
j,k→∞

ujAk = u∞A∞ strongly in L2.

Next, compute

dEε(uj , Aj)[uj − uk, Aj −Ak] =

∫
M

2〈(d− iAj)uj , (d− iAj)(uj − uk)− iuj(Aj −Ak)〉

+

∫
M

(2ε2〈dAj , d(Aj −Ak)〉+ ε−2W ′(uj)[uj − uk]),

and observe that, due to the L2 convergence ujAk → u∞A∞, the right-hand side equals∫
M

(2〈(d− iAj)uj , d(uj − uk)〉+ 2ε2〈dAj , d(Aj −Ak)〉+ ε−2W ′(uj)[uj − uk]) + o(1)
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as j, k →∞. For the difference

Dj,k := dEε(uj , Aj)[uj − uk, Aj −Ak]− dEε(uk, Ak)[uj − uk, Aj −Ak],

we then see that

Dj,k =

∫
M

(2|d(uj − uk)|2 + 2ε2|d(Aj −Ak)|2 + ε−2(W ′(uj)−W ′(uk))[uj − uk]) + o(1)

as j, k →∞.

Now, by our assumption (G) on the structure of W (u), it is not difficult to check (see,

e.g., [48, Corollary 1]) that the zeroth order term in our computation for Dj,k satisfies a

lower bound

(W ′(uj)−W ′(uk))[uj − uk] ≥ C−1|uj − uk|p − C|uj − uk|

for some constant C > 0. In particular, it follows now from the preceding computations and

the L1 convergence uj → u∞ that

Dj,k ≥
∫
M

(2|d(uj − uk)|2 + 2ε2|d(Aj −Ak)|2 + C−1ε−2|uj − uk|p) + o(1)

as j, k →∞. On the other hand, since dEε(uj , Aj)→ 0 and (uj − uk, Aj −Ak) is bounded

in X, we know also that

Dj,k → 0 as j, k →∞,

and it then follows that (uj , Aj) is Cauchy in X. In particular, (uj , Aj) converges strongly

to (u∞, A∞), which necessarily satisfies

dEε(u∞, A∞) = lim
j→∞

dEε(uj , Aj) = 0.

Having confirmed that the energies Eε satisfy a Palais–Smale condition, we now argue in

roughly the same spirit as [21, 102] to produce nontrivial critical points via min-max

methods. To begin, note that the space X splits as C⊕ Y , where C is identified with the set

of constant couples (α, 0) and

Y :=
{

(u,A) ∈ X :

∫
M
u = 0

}
.

Definition 5.7.7. Let Γ denote the set of continuous families of couples F : D → X

parametrized by the closed unit disk D, with

F (eiθ) = (eiθ, 0)

for all θ ∈ R. Equivalently, under the above identification C ⊂ X, we require F |∂D = id. We

denote by ωε(M) the “width” of Γ with respect to the energy Eε, namely

ωε(M) := inf
F∈Γ

max
y∈D

Eε(F (y)).
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Thanks to Proposition 5.7.6, we can apply classical min-max theory for C1 functionals on

Banach spaces (see e.g. [42, Theorem 3.2]) to conclude that ωε is achieved as the energy of a

smooth critical couple (uε, Aε). In the following proposition, we show that ωε(M) is positive,

so that the corresponding critical couples (uε, Aε) are nontrivial.

Proposition 5.7.8. We have ωε(M) > 0.

Proof. We argue by contradiction, though the proof could be made quantitative. Since

we are proving only the positivity ωε(M) > 0 at this stage—making no reference to the

dependence on ε—in what follows we take ε = 1 for convenience. Assume that we have a

family F ∈ Γ with maxy∈D E(F (y)) < δ, with δ very small. Writing F (y) = (u,A), this

implies that

‖A− h(A)‖W 1,2 ≤ C‖dA‖L2 < Cδ1/2, ‖DA‖L2 ≤ C(δ1/2 + ‖h(A)‖). (5.7.6)

When b1(M) 6= 0, some additional work is required to deduce that the harmonic part

h(A) of A must also be small for all couples (u,A) = F (y) in the family. In particular, we

will need to employ the following lemma, showing that h(A) lies close to the integral lattice

Λ ⊂ H1(M) when E(u,A) < δ.

Lemma 5.7.9. There exists C(M) <∞ such that if (u,A) ∈ X satisfies E(u,A) < δ, with

δ small enough, then

dist(h(A),Λ) ≤ Cδ1/2.

Proof. As in [102], it is convenient to define a box-type norm | · |b on the space H1(M) of

harmonic one-forms as follows. Fix a collection γ1, . . . , γb1(M) ∈ C∞(S1,M) of embedded

loops generating H1(M;Q) and, for h ∈ H1(M), set

|h|b := max
1≤i≤b1(M)

∣∣∣ ∫
γi

h
∣∣∣. (5.7.7)

Since H1(M) is finite-dimensional, this is of course equivalent to any other norm on H1(M).

Assuming for simplicity that M is orientable, we may fix a collection of diffeomorphisms

Φi : Bm−1
1 (0)×S1 → T (γi) onto tubular neighborhoods T (γi) of γi, such that Φi(0, θ) = γi(θ).

For every t ∈ Bm−1
1 , set γti (θ) := Φi(t, θ).

Suppose now that (u,A) ∈ X satisfies the energy bound

E(u,A) =

∫
M

(|du− iuA|2 + |dA|2 +W (u)) < δ. (5.7.8)

As a consequence of the curvature bound ‖dA‖L2 ≤ δ1/2 and the definition of X, it follows

that

‖A− h(A)‖2L2 ≤ Cδ

as well. As in the proof of Proposition 5.7.6, applying a gauge transformation φ · (u,A) by

an appropriate choice of harmonic map φ :M→ S1, we may assume moreover that

|h(A)|b = distb(h(A),Λ) ≤ π,
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which together with the energy bound (5.7.8) and the definition of X leads us to the estimate∫
M
|A|2 ≤ C(M). (5.7.9)

(Note that making a harmonic change of gauge preserves not only the energy E(u,A), but

also the distance distb(h(A),Λ), so it indeed suffices to establish the desired estimate in this

gauge.)

Combining these estimates with a simple Fubini argument, we see that there exists a

nonempty set S of t ∈ Bm−1
1 for which∫
γti

(|du− iuA|2 + |dA|2 +W (u)) < Cδ, (5.7.10)

∫
γti

|A− h(A)|2 < Cδ, (5.7.11)

and ∫
γti

|A|2 ≤ C. (5.7.12)

Recalling the pointwise bound (5.7.2) for W (u), observe next that

|d(1− |u|)2| = 2(1− |u|)|d|u|| ≤ CW (u) + |du− iuA|2,

so that, along a curve γti satisfying (5.7.10), it follows that

‖(1− |u|)2‖C0 ≤ C‖(1− |u|)2‖W 1,1 ≤ Cδ. (5.7.13)

Now, choose δ < δ1(M) sufficiently small that (5.7.13) gives

‖1− |u|‖C0 ≤ η <
1

2

on γti , so that φ := u/|u| defines there an S1-valued map φ : γti → S1, whose degree is given

by

2π deg(φ) =

∫
γti

|u|−2〈du, iu〉.

When (5.7.10)–(5.7.12) hold, we observe next that∫
γti

|u|2|A− |u|−2〈iu, du〉| =
∫
γti

|〈iu, iuA− du〉| ≤ Cδ1/2.

Since |u| ≥ 1
2 on γti , it follows that∣∣∣2π deg(φ)−

∫
γti

A
∣∣∣ ≤ ∫

γti

|A− |u|−2〈iu, du〉| ≤ Cδ1/2 (5.7.14)

as well. Combining this with (5.7.11), we then deduce that∣∣∣2π deg(φ)−
∫
γti

h(A)
∣∣∣ ≤ Cδ1/2. (5.7.15)
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On the other hand, we already made a gauge transformation so that∣∣∣ ∫
γi

h(A)
∣∣∣ =

∣∣∣ ∫
γti

h(A)
∣∣∣ ≤ π.

So, for δ chosen sufficiently small that Cδ1/2 < π, it follows that the degree deg(φ) = 0. In

particular, we can now conclude that

|h(A)|b = max
i

∣∣∣ ∫
γi

h(A)
∣∣∣ ≤ Cδ1/2,

giving the desired estimate.

Remark 5.7.10. If M is not orientable, we have the weaker conclusion dist(h(A), 1
2Λ) ≤

Cδ1/2 (still sufficient for the sequel): indeed, whenever γi reverses the orientation, we can

still parametrize a double cover of T (γi) in the same way, with γti homotopic to γi traveled

twice; in this case, the bound (5.7.15) implies that 2
∫
γi
h(A) =

∫
γti
h(A) has distance to 2πZ

bounded by Cδ1/2, from which the claim follows.

Returning to the proof of Proposition 5.7.8, suppose again that we have a family

D 3 y 7→ F (y) ∈ X in Γ with

max
y∈D

E(F (y)) < δ.

For δ < δ1(M) sufficiently small, it follows from the lemma that distb(h(A),Λ) < π for every

couple (u,A) = F (y) in the family. In particular, since the assignment (u,A) 7→ h(A) gives

a continuous map X → H1(M), and since h(A) = A = 0 for y ∈ ∂D, it follows that 0 is the

nearest point in the lattice Λ to h(A) for every y ∈ D, and the estimate therefore becomes

‖h(A)‖ ≤ Cδ1/2.

In particular, combining this with (5.7.6), we see now that

‖A‖W 1,2 ≤ Cδ1/2 (5.7.16)

for every couple (u,A) = F (y) in the family.

Now, for (u,A) = F (y), our structural assumption (G) on W (u) gives

‖u‖pLp ≤ C + E(u,A) ≤ C + δ,

which together with the smallness

‖A‖L2∗ ≤ C‖A‖W 1,2 ≤ Cδ1/2

of A in L2∗ (recalling that p > m) gives∫
M
|uA|2 ≤ Cδ.
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Combining this with the fact that
∫
M |du− iuA|

2 ≤ E(u,A) < δ by assumption, we then

deduce that ∫
M
|du|2 ≤ Cδ

as well.

Finally, by (5.7.2) and the Poincaré inequality, we have

1−
∣∣∣ 1

vol(M)

∫
M
u
∣∣∣ ≤ C ∫

M
|1− |u||+ C

∫
M

∣∣∣u− 1

vol(M)

∫
M
u
∣∣∣

≤ C
(∫
M
W (u)

)1/2
+ C

(∫
M
|du|2

)1/2

≤ Cδ1/2.

As a consequence, we find that
∫
M uy is nonzero for all (uy, Ay) = F (y) in the family. But

then the averaging map

D → C, y 7→
∫
M uy

|
∫
M uy|

(5.7.17)

gives a retraction D → ∂D, whose nonexistence is well known. This gives the desired

contradiction.

Having shown positivity ωε(M) > 0 of the min-max energies, we can now deduce the

lower bound in (5.7.1) from the following simple fact.

Proposition 5.7.11. There exist c(M) > 0 and ε0(M) > 0 such that the following

holds, for ε ≤ ε0. If (u,∇) is critical for the functional Eε, then either Eε(u,∇) ≥ c or

Eε(u,∇) = 0.

Remark 5.7.12. For future reference, we make the obvious observation that the trivial

case Eε(u,∇) = 0 can only occur when the bundle L is trivial.

Proof. By Proposition 5.7.5, critical points are smooth up to change of gauge. We claim

that, whenever Eε(u,∇) > 0, u has to vanish at some point x0 ∈ M. Once we have

this, assume e.g. Eε(u,∇) ≤ 1; Corollary 5.4.4 (with Λ = 1) gives a constant ε0 > 0

such that r2−mEε(u,∇, Br(x0)) has a lower bound independent of ε and r, for any radius

ε < r < inj(M), provided that ε ≤ ε0.

We show the contrapositive, namely we assume that u is nowhere vanishing and show

that the energy is zero. Note that L must be trivial and we can use the section u
|u| to

identify L isometrically with the trivial line bundle C×M, equipped with the canonical

Hermitian metric. Under this identification, u :M→ C takes values into positive real

numbers. Writing ∇ = d− iA and observing that 〈∇u, iu〉 = −|u|2A, (5.2.5) becomes

ε2d∗dA+ |u|2A = 0.
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Integrating against A we get
∫
M(ε2|dA|2 + u2|A|2) = 0, so A = 0 and ∇ is the trivial

connection. At a minimum point y0 for u, (5.3.4) gives

0 ≤ 1

2
∆|u|2 = |du|2 − 1

2ε2
(1− |u|2)|u|2 = − 1

2ε2
(1− u2)u2,

which forces u(y0) ≥ 1 and thus u = 1 everywhere, giving Eε(u,∇) = 0.

Finally, we turn to the uniform upper bound. In the next statement, L →M is a

Hermitian line bundle with a fixed Hermitian reference connection ∇0. We identify any other

Hermitian connection ∇ with the real one-form A such that ∇s = ∇0s− is⊗A for all

sections s.

Proposition 5.7.13. Given a smooth section u :M→ L, we can find a smooth couple

(u′, A′) such that

Eε(u
′, A′) ≤ Cε−2 vol

({
|u| ≤ 1

2

})
+ C(1 + ε2‖∇0u‖2L∞)

∫
{|u|≤ 1

2
}
|∇0u|2

+ Cε2

∫
M
|ω0|2

(5.7.18)

for a universal constant C.

Proof. On {u 6= 0} we let

w :=
u

|u|
, iw ⊗A := ∇0w.

Note that the compatibility of ∇0 with the Hermitian metric on L forces 〈∇0w,w〉 = 0, so

that A is a real one-form.

We fix a smooth function ρ : [0,∞]→ [0, 1] with

ρ(t) = 0 for t ≤ 1

4
, ρ(t) = 1 for t ≥ 1

2

and we set

(u′, A′) := ρ(|u|)(w,A),

where the right-hand side is meant to be zero on {u = 0}.
Writing F∇0 = −iω0, observe that (∇0 − iA)w = 0, hence

|dA+ ω0| = |FA| = 0 on {u 6= 0}.

In particular, eε(u
′, A′) = 0 on {|u| > 1

2}.
From the estimates |d|u|| ≤ |∇0u| and |A| = |∇0w| ≤ 2|u|−1|∇0u|, it follows that also

|∇0u
′| ≤ C|∇0u|,

|A′| ≤ C|∇0u|,

|dA′| ≤ |ρ′(|u|)d|u| ∧A|+ |ω0| ≤ C|∇0u||d|u||+ |ω0|,

and the statement follows immediately.
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Proof of (5.7.1). The method used in [102, Section 3] gives a continuous map H : D →
W 1,2 ∩ C0(M,C) such that H(y) ≡ y for y ∈ ∂D and

‖dH(y)‖L∞ ≤ Cε−1,∫
{|H(y)|≤ 3

4
}
|dH(y)|2 ≤ C,

vol
({
|H(y)| ≤ 3

4

})
≤ Cε2

(5.7.19)

for all y ∈ D—the full Dirichlet energy having a worse bound
∫
M |dH(y)|2 ≤ C log ε−1,

which is the natural one in the setting of Ginzburg–Landau. By approximation, we can

assume that H takes values in C∞(M,C), continuously in y, and still satisfies the same

uniform bounds (5.7.19) (possibly increasing C and replacing 3
4 with 1

2).

To each section H(y) of the trivial line bundle, Proposition 5.7.13 assigns in a continuous

way an element F (y) ∈ X. From the way F (y) is constructed, it is clear that F ∈ Γ. Finally,

combining (5.7.18) with (5.7.19) gives

ωε(M) ≤ max
y∈D

Eε(F (y)) ≤ C.

Minimizers for nontrivial line bundles

Suppose now that L is a nontrivial line bundle, equipped with a Hermitian metric. Fix a

smooth Hermitian connection ∇0 and identify any other Hermitian connection ∇ with the

real one-form A such that

∇ = ∇0 − iA.

We can define X̂ and X as in the previous subsection. With this notation, observe that the

curvature of ∇ is given by

F∇ = F∇0 − idA.

Hence, writing F∇0 = −iω0, we have

Eε(u,∇) =

∫
M
|∇0u− iu⊗A|2 + ε−2

∫
M
W (u) + ε2

∫
M
|ω0 + dA|2.

Definition 5.7.14. For a fixed m < p <∞, we define X̂ to be the Banach space of couples

(u,A), where u :M→ L is an Lp section and A ∈ Ω1(M,R), both of class W 1,2, with the

norm

‖(u,A)‖ := ‖u‖Lp + ‖∇0u‖L2 + ‖A‖L2 + ‖DA‖L2 .

We let X := {(u,A) ∈ X̂ : d∗A = 0}.
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The analogous statements to Remark 5.7.4 and Propositions 5.7.5 and 5.7.6 hold, with

identical proofs (replacing du and uA with ∇0u and u⊗A, respectively).

Arguing as in the proof of Proposition 5.7.6, it is easy to see that a minimizing sequence

for Eε in X converges weakly—up to change of gauge—to a global minimizer (uε, Aε). We

now show that the energy of these minimizers enjoys uniform upper and lower bounds as

ε→ 0.

Proof of (5.7.1). The lower bound in (5.7.1) follows directly from Proposition 5.7.11 and

Remark 5.7.12. In order to obtain the upper bound, pick a smooth section s :M→ L

transverse to the zero section (see, e.g., [63, Theorem IV.2.1]) and let N := {s = 0}, which is

a smooth embedded (m− 2)-submanifold of M. Proposition 5.7.13 applied to ε−1s gives a

couple (u′ε, A
′
ε) with

Eε(u
′
ε, A

′
ε) ≤ Cε−2 vol

({
|ε−1s| ≤ 1

2

})
+ Cε2

∫
M
|ω0|2.

By transversality of s, the set {|s| ≤ ε
2} is contained in a C(s)ε-neighborhood of N , whose

volume is bounded by C(s)ε2. We infer that

Eε(uε, Aε) ≤ Eε(u′ε, A′ε) ≤ Cε−2 vol
({
|s| ≤ ε

2

})
+ C ≤ C.

Remark 5.7.15. When M is oriented, N can be oriented in such a way that [N ] ∈
Hm−2(M,R) is Poincaré dual to the Euler class e(L) ∈ H2(M,R) of the line bundle, which

equals the first Chern class c1(L). The fact that the energy of our competitors concentrates

along N suggests that, given a sequence of global minimizers (uε, Aε), up to subsequences

the corresponding energy concentration varifold is induced by an integral mass-minimizing

current whose homology class is Poincaré dual to c1(L). Theorem 5.6.10 provides the natural

candidate Γ, which also satisfies |Γ| ≤ µ.

Appendix

In this short appendix, we describe the essential ingredients needed to establish local

regularity in the Coulomb gauge for finite-energy critical points (u,A) of the (ε = 1) abelian

Higgs energy E(u,A), collecting some estimates which will be of use elsewhere in the chapter.

Consider the manifold with boundary (Ω
m
, g) given by a smooth, contractible domain

Ωm ⊂⊂ Rm equipped with a C2 metric g, and let L ∼= C× Ω be the trivial line bundle over

Ω, with the standard Hermitian structure. With respect to the metric g, we then define the

Yang–Mills–Higgs energy

E(u,A) :=

∫
Ω
e(u,A) =

∫
Ω
|du− iu⊗A|2 + |dA|2 +W (u)

as in the preceding section. By (the first part of) Proposition 5.7.5, it is easy to see that a

pair (u,A) in W 1,2 with

|u| ≤ 1 (A.1)
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is a critical point for E (with respect to smooth perturbations supported in Ω) if and only if

the equations

d∗dA = 〈du− iu⊗A, iu〉, (A.2)

∆u = 2〈idu,A〉+ |A|2u− 1

2
(1− |u|2)u− i(d∗A)u (A.3)

are satisfied distributionally in Ω, where all geometric quantities and operators are defined

with respect to the metric g.

Now, given a pair (u,A) in W 1,2 satisfying (A.2)–(A.3) and

E(u,A) ≤ Λ <∞, (A.4)

we can select a local Coulomb gauge adapted to Ω as follows. Denote by θ ∈W 2,2(Ω,R) the

unique solution of the Neumann problem

∆θ = d∗A in Ω;
∂θ

∂ν
= −A(ν) on ∂Ω (A.5)

with zero mean
∫

Ω θ = 0. Then the gauge-transformed pair

(ũ, Ã) := (eiθu,A+ dθ)

lies in W 1,2 and continues to satisfy (A.2)–(A.3), with

E(ũ, Ã) = E(u,A) ≤ Λ,

but now with the additional constraints

d∗Ã = 0 on Ω; Ã(ν) = 0 on ∂Ω. (A.6)

For the remainder of the section, we will assume that the pair (u,A) is already in the

Coulomb gauge on Ω, so that A satisfies (A.6). Note that (A.2)–(A.3) then become

∆u = 2〈idu,A〉+ |A|2u− 1

2
(1− |u|2)u, (A.7)

∆HA = 〈du− iu⊗A, iu〉. (A.8)

We now establish the local regularity for critical points (u,A) in the Coulomb gauge, giving

in particular local estimates for (u,A) in W 2,q norms.

Proposition A.1. Let (u,A) solve (A.2)–(A.3) in the Coulomb gauge (A.6) on (Ω, g), with

|u| ≤ 1. If

E(u,A; Ω) ≤ Λ (A.9)

and

‖g‖C2 + ‖g−1‖C2 ≤ Λ, (A.10)

then for every compactly supported subdomain Ω′ ⊂⊂ Ω and q ∈ (1,∞) there exists

Cq(Λ,Ω,Ω
′) <∞ such that

‖u‖W 2,q(Ω′) + ‖A‖W 2,q(Ω′) ≤ Cq. (A.11)
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Proof. To begin, note that (A.8) and standard Bochner–Weitzenböck identities give the

(weak) subequation

∆
1

2
|A|2 = −〈∆HA,A〉+ |DA|2 + Ric(A,A)

≥ −|du− iu⊗A||A|+ |DA|2 − C(Λ)|A|2
(A.12)

for |A|2. On the other hand, as in Section 5.3, we also obtain from (A.3) the relation

∆
1

2
|u|2 = |du− iu⊗A|2 − 1

2
(1− |u|2)|u|2. (A.13)

Recalling that |u| ≤ 1 and using Young’s inequality, we can combine (A.12)–(A.13) to find

an estimate of the form

1

2
∆(|A|2 + |u|2) ≥ α(|DA|2 + |du|2)− C(α,Λ)|A|2 − C(Λ), (A.14)

for any 0 < α < 1.

By standard estimates for one-forms A satisfying (A.6) (see, e.g., [58, Theorem 4.8]), we

have the global L2 bound

‖A‖W 1,2(Ω) ≤ C(Λ,Ω)‖dA‖L2(Ω) ≤ C(Λ,Ω),

hence |u|, |A| are both bounded in W 1,2 in terms of Λ (and Ω).

Note that (A.8) gives a local W 2,2 bound on A, by standard elliptic regularity. This,

together with Sobolev embedding and (A.7), gives

‖u‖W 2,p(Ω0) + ‖A‖W 2,2(Ω0) + ‖|A|p‖W 1,2(Ω0) ≤ C(Λ,Ω,Ω0) (A.15)

for all Ω0 ⊂⊂ Ω and some 1 < p < 2, depending only on m. We need the following

observation, stated and proved separately for the sake of clarity.

Lemma A.2. Defining f ∈W 1,2(Ω) by

f := (1 + |A|2 + |u|2)1/2,

we have the subequation

∆fp ≥ −C(p,Λ)fp (A.16)

and, for all Ω0 ⊂⊂ Ω,

‖fp‖W 1,2(Ω0) ≤ C(Λ,Ω,Ω0).

Proof. Since u ∈ L∞ ∩W 1,2 ∩W 2,p
loc and A ∈W 2,2

loc , a standard approximation argument

shows that |u|2, |A|2 ∈W 2,1
loc , so that (A.14) holds pointwise a.e.

Likewise, we have f ∈W 2,1
loc and the chain rule applies, giving

∆f = f−1(|DA|2 + |du|2 − 〈A,D∗DA〉+ 〈u,∆u〉)− f−1|df |2
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pointwise. The first term equals f−1∆1
2f

2, so recalling (A.14) we obtain

∆f ≥ αf−1(|DA|2 + |du|2)− C(α,Λ)f − f−1|df |2.

Also, since f ∈W 1,2 ∩W 2,p
loc , we have the pointwise inequalities

∆fp = p(p− 1)fp−2|df |2 + pfp−1∆f

≥ pαfp−2(|DA|2 + |du|2)− C(α,Λ)fp + p(p− 2)fp−2|df |2

≥ p(α+ p− 2)fp−2|df |2 − C(α,Λ)fp.

Choosing α := 2− p, inequality (A.16) follows. The second claim is an easy consequence of

(A.15) and the fact that |u| ≤ 1.

Returning to the proof of Proposition A.1, we can now apply Moser iteration to (A.16),

obtaining in particular that

‖A‖L∞(Ω1) ≤ C(Λ,Ω,Ω1) (A.17)

for any Ω1 ⊂⊂ Ω.

Now, fixing some intermediate domain Ω′ ⊂⊂ Ω1 ⊂⊂ Ω between Ω′ and Ω, (A.7) together

with the L∞(Ω1) estimate for A give pointwise bounds of the form

|∆u| ≤ C(Λ,Ω,Ω1)(|du|+ 1) in Ω1. (A.18)

And since

|du| ≤ |du− iu⊗A|+ |A| ≤ e(u,A) + C

in Ω1, we obtain from the energy bound E(u,A) ≤ Λ and (A.18) the simple estimate

‖∆u‖L2(Ω1) ≤ C(Λ,Ω,Ω1),

and consequently

‖u‖W 2,2(Ω2) ≤ C

for any Ω′ ⊂⊂ Ω2 ⊂⊂ Ω1. Returning to the pointwise bound (A.18), we can now employ a

simple iteration argument—combining Lq regularity theory with the Sobolev embedding

W 2,r ↪→W 1, rn
m−r—over successive domains between Ω′ and Ω, to arrive at the desired W 2,q

estimates for u.

Returning finally to (A.8), it therefore follows from the preceding estimates that

‖A‖L∞(Ω′′) + ‖∆HA‖L∞(Ω′′) ≤ C(Λ,Ω,Ω′′)

for some intermediate domain Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. In particular, this gives us upper bounds for

‖∆A‖Lq(Ω′′) for every q ∈ (1,∞), and Lq regularity theory therefore gives us the desired

estimates for A in W 2,q(Ω′).
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Finally, we remark that higher regularity of u and A in the Coulomb gauge follows in a

standard way—e.g., via Schauder theory—from the W 2,q estimates obtained in the preceding

proposition.

Remark A.3. With local regularity established, note that it is easy to find a globally

smooth couple (ũ, ∇̃) gauge equivalent to any critical pair (u,∇) for Eε on L→M. Indeed,

for any critical pair (u,∇) with u ∈W 1,2 ∩ L∞ and ∇ = ∇0 − iA (where ∇0 is a smooth

reference connection and A ∈W 1,2), it follows from the local regularity results above that

the gauge-invariant objects |u|2 and dA = F∇ − F∇0 are smooth globally. Making a change

of gauge (u,∇)→ (ũ, ∇̃ = ∇0 − iÃ) such that

dÃ = dA and d∗Ã = 0,

it follows from the smoothness of dA that the new connection ∇̃ = ∇0 − iÃ is smooth. And

since ũ satisfies

∇̃∗∇̃ũ =
1

2ε2
(1− |u|2)ũ

where both ∇̃ and |u|2 are smooth, standard results for linear elliptic equations imply that

ũ ∈ Γ(L) is a smooth section as well.
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[88] T. Radó. On Plateau’s problem. Ann. of Math. (2) 31 (1930), no. 3, 457–469.

[89] T. Rivière. Conservation laws for conformally invariant variational problems. Invent.

Math. 168 (2007), no. 1, 1–22.

[90] T. Rivière. Lecture 3. A viscosity approach to minmax, lec. 3 in Minmax methods

in the calculus of variations of curves and surfaces. Notes available online at

https://people.math.ethz.ch/∼riviere/minimax, 2016.

[91] T. Rivière. A viscosity method in the min-max theory of minimal surfaces. Publ. Math.

Inst. Hautes Études Sci. 126 (2017), 177–246.

[92] T. Rivière. The regularity of conformal target harmonic maps. Calc. Var. Partial

Differential Equations 56 (2017), no. 4, art. 117.

[93] T. Rivière. Lower semi-continuity of the index in the viscosity method for minimal

surfaces. ArXiv preprint 1808.00426, 2018.

[94] W. Rudin. Real and complex analysis (third edition). McGraw–Hill Book Co., New

York, 1987.

[95] J. Sacks and K. Uhlenbeck. The existence of minimal immersions of 2-spheres. Ann. of

Math. (2) 113 (1981), no. 1, 1–24.

[96] R. Schoen and L. Simon. Regularity of stable minimal hypersurfaces. Comm. Pure

Appl. Math. 34 (1981), no. 6, 741–797.

[97] R. Schoen and S.-T. Yau. On the proof of the positive mass conjecture in general

relativity. Comm. Math. Phys. 65 (1979), no. 1, 45–76.

[98] L. Simon. Lectures on geometric measure theory, vol. 3 in Proceedings of the Centre for

Mathematical Analysis. Australian National University, Canberra, 1984.

[99] P. Smith and K. Uhlenbeck. Removability of a codimension four singular set for

solutions of a Yang–Mills–Higgs equation with small energy. ArXiv preprint 1811.03135,

2018.

[100] A. Song. Local min-max surfaces and strongly irreducible minimal Heegaard splittings.

ArXiv preprint 1706.01037, 2017.

[101] A. Song. Existence of infinitely many minimal hypersurfaces in closed manifolds.

ArXiv preprint 1806.08816, 2018.

[102] D. Stern. Existence and limiting behavior of min-max solutions of the Ginzburg–Landau

equations on compact manifolds. To appear on J. Differential Geom. ArXiv preprints

1612.00544, 2016, and 1704.00712, 2017.

https://people.math.ethz.ch/~riviere/minimax
https://arxiv.org/abs/1808.00426
https://arxiv.org/abs/1811.03135
https://arxiv.org/abs/1706.01037
https://arxiv.org/abs/1806.08816
https://arxiv.org/abs/1612.00544
https://arxiv.org/abs/1704.00712


206 Bibliography

[103] P. Sternberg. The effect of a singular perturbation on nonconvex variational problems.

Arch. Rational Mech. Anal. 101 (1988), no. 3, 209–260.

[104] M. Struwe. On a free boundary problem for minimal surfaces. Invent. Math. 75 (1984),

no. 3, 547–560.

[105] C. H. Taubes. Arbitrary N -vortex solutions to the first order Ginzburg–Landau

equations. Comm. Math. Phys. 72 (1980), no. 3, 277–292.

[106] C. H. Taubes. On the equivalence of the first and second order equations for gauge

theories. Comm. Math. Phys. 75 (1980), no. 3, 207–227.

[107] C. H. Taubes. Seiberg–Witten and Gromov invariants for symplectic 4-manifolds, vol. 2

in First International Press Lecture Series. International Press, Somerville, 2000.

[108] Y. Tonegawa and N. Wickramasekera. Stable phase interfaces in the van der

Waals–Cahn–Hilliard theory. J. Reine Angew. Math. 668 (2012), 191–210.

[109] N. Wickramasekera. A general regularity theory for stable codimension 1 integral

varifolds. Ann. of Math. (2) 179 (2014), no. 3, 843–1007.

[110] E. Witten. Monopoles and four-manifolds. Math. Res. Lett. 1 (1994), no. 6, 769–796.

[111] S.-T. Yau. Problem section, chapter in Seminar on Differential Geometry, vol. 102 in

Annals of Mathematics Studies. Princeton University Press, Princeton, N.J. and

University of Tokyo Press, Tokyo, 1982.

[112] X. Zhang. Compactness theorems for coupled Yang–Mills fields. J. Math. Anal. Appl.

298 (2004), no. 1, 261–278.

[113] X. Zhou. Min-max minimal hypersurface in (Mn+1, g) with Ric > 0 and 2 ≤ n ≤ 6. J.

Differential Geom. 100 (2015), no. 1, 129–160.

[114] X. Zhou. On the multiplicity one conjecture in min-max theory. ArXiv preprint

1901.01173, 2019.

https://arxiv.org/abs/1901.01173


Curriculum Vitae

Personal information
Date of birth July 29, 1992, Genoa (Italy)

Address ETH Zürich, HG FO 27.9. Rämistrasse 101, 8092 Zürich (Switzerland)
Email alessandro.pigati@math.ethz.ch

Research interests
Geometric analysis and (elliptic) PDEs, with particular emphasis on the
variational construction and regularity theory of minimal submanifolds;
geometric measure theory; sub-Riemannian geometry.

Education
2016 – present PhD

Zürich Graduate School in Mathematics, ETH Zürich
Advisor: Prof. Tristan Rivière (ETH Zürich)

2014 – 2016 Master Degree in Mathematics
University of Pisa (Italy), 110/110 cum laude
Dissertation topic: New regularity results for sub-Riemannian geodesics
Advisors: Prof. Luigi Ambrosio (SNS), Prof. Davide Vittone (University of
Padua)

2011 – 2014 Bachelor Degree in Mathematics
University of Pisa (Italy), 110/110 cum laude
Dissertation topic: The kissing number of spheres in Euclidean spaces
Advisor: Prof. Giovanni Alberti (University of Pisa)

2011 – 2016 Diploma
Scuola Normale Superiore (SNS)

Publications, preprints and surveys
{ The viscosity method for min-max free boundary minimal surfaces. arXiv preprint

2007.06004, 2020.
{ Codimension two min-max minimal submanifolds from PDEs (survey). Oberwolfach
Reports: Partial Differential Equations (workshop 1930), 2019.

{ with D. Stern: Minimal submanifolds from the abelian Higgs model. arXiv preprint
1905.13726, 2019.

{ Parametrized stationary varifolds and the multiplicity one conjecture (survey).
Oberwolfach Reports: Calculus of Variations (workshop 1831), 2018.

{ with T. Rivière: A proof of the multiplicity one conjecture for min-max minimal

mailto:alessandro.pigati@math.ethz.ch
http://www.zgsm.ch
https://www.math.ethz.ch
https://people.math.ethz.ch/~triviere
https://www.unipi.it/index.php/english
https://www.sns.it/en/ambrosio-luigi
https://www.math.unipd.it/en/people/davide.vittone
https://www.unipi.it/index.php/english
http://pagine.dm.unipi.it/alberti
http://wwweng.sns.it
https://arxiv.org/abs/2007.06004
https://arxiv.org/abs/1905.13726


surfaces in arbitrary codimension. Accepted in Duke Math J.
{ with T. Rivière: The regularity of parametrized integer stationary varifolds in two
dimensions. Accepted in Comm. Pure Appl. Math.

{ with F. Da Lio: Free boundary minimal surfaces: a nonlocal approach. Accepted in
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5).

{ with R. Monti and D. Vittone: On tangent cones to length minimizers in Carnot-
Carathéodory spaces. SIAM J. Control Optim. 56 (2018), no. 5, 3351–3369.

{ with R. Monti and D. Vittone: Existence of tangent lines to Carnot–Carathéodory
geodesics. Calc. Var. PDE 57 (2018), art. 75.

{ New regularity results for sub-Riemannian geodesics. Master thesis, available online
at the ETD repository of the University of Pisa, 2016.

Invited talks
June 2020 Geometric analysis and calibrated geometries (canceled), Zürich (Switzer-

land)
October 2019 Analysis seminar at Queen Mary University, London (United Kingdom)

July 2019 Partial Differential Equations, Oberwolfach (Germany)
June 2019 Workshop on Geometric Measure Theory, Alba di Canazei (Italy)

March 2019 Variational approaches to PDE’s, Rome (Italy)
December 2018 Workshop in Geometric Analysis, Paris (France)

July 2018 Calculus of Variations, Oberwolfach (Germany)
June 2018 Geometric Measure Theory in Verona, Verona (Italy)
April 2018 Analysis seminar at University of Padua, Padua (Italy)

November 2017 Analysis seminar at ETH Zürich, Zürich (Switzerland)

Other conferences attended
October 2019 PDEs and Geometric Measure Theory, Zürich (Switzerland)

June 2019 Geometric Analysis and General Relativity. A conference in honour of
Gerhard Huisken’s 60th birthday, Zürich (Switzerland)

May 2018 Geometric Analysis, Edinburgh (United Kingdom)
June 2017 Nonlinear analysis Conference, Zürich (Switzerland)
June 2017 23rd Rolf Nevanlinna Colloquium, Zürich (Switzerland)
June 2017 Advances in Geometric Analysis, Zürich (Switzerland)

January 2016 XXVI Convegno Nazionale di Calcolo delle Variazioni, Levico Terme (Italy)

Teaching
Spring 2019 Teaching assistant for Differential Geometry II

Fall 2018 Teaching assistant for Fourier Analysis in Function Space Theory
Spring 2018 Teaching assistant for Functional Analysis II

Fall 2017 Teaching assistant for Functional Analysis I

etd.adm.unipi.it


Spring 2017 Teaching assistant for Products and Nonlinearities in Function Space Theory
Fall 2016 Teaching assistant for Functional Analysis I

Other informal seminars
November 2019 Uhlenbeck compactness and applications to SU(2) instantons
November 2019 Inverse mean curvature flow: uniqueness of weak solutions and short time

existence
April 2018 Gunther’s proof of the isometric embedding theorem

Spring 2018 Lectures on minimal surfaces: existence of infinitely many minimal hy-
persurfaces in positive Ricci curvature, Gromov’s width, Weyl’s law for
minimal hypersurfaces

Spring 2017 Lectures on the real Hardy space
November 2015 Immersions of S2 with prescribed mean curvature
September 2015 The Cheeger–Gromoll soul theorem

July 2015 Oseledec’s multiplicative ergodic theorem
April 2015 Convex integration techniques and counterexamples to Korn’s inequality

February 2015 Malgrange–Ehrenpreis theorem and Paley–Wiener theorems
October 2014 The spectral theorem for bounded and unbounded self-adjoint operators

September 2014 A polynomial version of Van der Waerden’s theorem
May 2014 The central limit theorem and the monotonicity of entropy

Languages
Italian Native
English Fluent
French Intermediate

German Basic

Honors and awards
July 2011 Silver medal at the International Mathematical Olympiad, held in Amster-

dam, Netherlands
May 2011 Bronze medal at the Balkan Mathematical Olympiad, held in Iassy, Romania
May 2011 Gold medal at the Italian Mathematical Olympiad, held in Cesenatico, Italy
May 2010 Gold medal at the Italian Mathematical Olympiad, held in Cesenatico, Italy


	General introduction
	The landscape
	Results from this thesis
	A glimpse of the techniques
	Open problems

	A viscous relaxation of the area for immersed surfaces, closed or with boundary
	Introduction
	Almost critical points for the energy
	First variation
	A lower bound for the area
	Asymptotic behavior of the area, in the domain and in the ambient
	Degeneration of the conformal structure and bubbling
	Regularity

	Regularity of parametrized stationary varifolds
	Introduction
	First properties of parametrized stationary varifolds
	Regularity of parametrized stationary varifolds in a polyhedral cone
	Blow-up of a parametrized stationary varifold
	Regularity in the general case
	An application to the conductivity equation

	Multiplicity one for parametrized stationary varifolds arising variationally
	Introduction
	Notation
	Background on parametrized stationary varifolds
	Two lemmas on harmonic maps
	Technical iteration lemmas
	Multiplicity one in the limit

	Codimension two minimal submanifolds from Yang–Mills–Higgs
	Introduction
	The Yang–Mills–Higgs equations on U(1) bundles
	Bochner identities and preliminary estimates
	Inner variations and improved monotonicity
	Decay away from the zero set
	The energy-concentration varifold
	Examples from variational constructions

	Bibliography
	Personal information
	Research interests
	Education
	Publications, preprints and surveys
	Invited talks
	Other conferences attended
	Teaching
	Other informal seminars
	Languages
	Honors and awards

