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The goal of the present work is two-fold. First we prove the existence of a Hilbert mani-

fold structure on the space of immersed oriented closed surfaces with three derivatives

in L2 in an arbitrary compact submanifold Mm of an Euclidian space R
Q. Second, using

this Hilbert manifold structure, we prove a lower semi-continuity property of the index

for sequences of conformal immersions, critical points to the viscous approximation of

the area satisfying a Struwe entropy estimate and a bubble tree strongly converging in

W1,2 to a limiting minimal surface as the viscous parameter is going to zero.

1 Introduction

Let Mm be a smooth m-dimensional submanifold of a Euclidian space R
Q and denote by

πMm the orthogonal projection onto Mm defined in a neighborhood of Mm.

Let � be an arbitrary closed oriented 2D manifold. We define the Sobolev space

of maps between � and Mm with three derivatives in L2 as follows:

W3,2(�, Mm) :=
{
u ∈ W3,2(�,RQ) ; u(x) ∈ Mm ∀ x ∈ �

}
,

where the Sobolev space of W3,2 functions on � is defined with respect to any arbitrary

reference metric (they are all equivalent due to the compactness of �).
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2 T. Rivière

Since 3 × 2 = 6 > 2 = dim(�) the space W3,2(�, Mm) inherits a natural Hilbert

manifold structure (see [11] lecture 2). Within this manifold we are considering the open

subset of W3,2-immersions

Imm3,2(�, Mm) :=
{ �� ∈ W3,2(�, Mm) ; d �� ∧ d �� �= 0 in�

}
.

Since there is no ambiguity on the regularity we are choosing we shall simply omit the

superscripts 3, 2 and denote Imm(�, Mm) for Imm3,2(�, Mm). For a given oriented closed

surface � we denote by b(�) the sum of the 1st three Betti Numbers of �

b(�) := b0(�) + b1(�) + b2(�).

There are obviously finitely many classes modulo diffeomorphisms of surfaces � such

that b(�) ≤ b. We will work from now on with one fixed representative in each of these

classes.

For any b ∈ N
∗ we denote by Immb(Mm) the Hilbert manifold obtained by taking

the disjoined union of the Hilbert manifold of W3,2-immersions of the finitely many

surfaces such that b(�) ≤ b.

Starting from Immb(Mm) we are constructing a Hilbert manifold of W3,2-

immersed surfaces in the following way. We are first marking each surface � by fixing

respectively 3, 1, or 0 distinct points on each component of � of genus respectively

0, 1, and > 1. We are then considering the quotients of Imm(�, Mm) by Diff ∗+(�), the

positive W3,2-diffeomorphisms of � preserving the points we have fixed and isotopic to

the identity. Then we denote by

Mb(Mm) :=
⊔

b(�)≤b

Imm(�,Mm)/Diff ∗+(�) and M(Mm) :=
⊔

b(�)<+∞
Imm(�,Mm)/Diff ∗+(�).

Our 1st main result is the following.

Theorem 1.1. For any b ∈ N∪{∞} there exists a Hilbert manifold Structure on Mb(Mm)

such that the canonical projection

� Immb(Mm) −→ Mb(Mm)

is a smooth map. �
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Lower Semi-continuity in the Viscosity Method 3

Since Diff ∗+(�) misses to be a Banach–Lie group but is only a topological group

(On the space of W3,2-diffeomorphisms the right multiplication is smooth but the left

multiplication is not differentiable, the inverse mapping is not C1, there is no canonical

chart in the neighborhood of the identity, the exponential map is continuous but not C1,

it is not locally surjective in a neighborhood of the identity, the Bracket operation in

the Tangent space to the identity is not continuous..., etc. See a description of all these

“pathological behavior” for instance in [4] or [8].) with a Hilbert manifold structure the

existence of a differentiable Hilbert structure on the quotient Imm(�, Mm)/Diff ∗+(�) is

not the result of classical consideration and deserves to be studied with care (Progresses

in this direction are given in [2] for W3,2-embeddings but we are not going to follow this

approach and the one we choose is more specific to surfaces but more precise too).

We shall in fact make the previous theorem more precise and to that aim we

introduce some notations. Let � be a closed oriented 2D manifold, and �� ∈ W3,2
imm(�, Mm)

and let g �� := �� ∗gMm . Denote by ∧1,0� the canonical bundle of 1-0 forms over the

Riemann surface issued from (�, g ��) and denote by P �� the L2 projection orthogonal

projection from (∧(1,0)�)⊗2
onto the space of holomorphic quadratic forms HolQ(�, g ��)

on (�, g ��) and by P⊥
�� := Id − P ��. Define the linear map

D∗
�� : T ��Imm(�, Mm) −→ W2,2

(
(∧(1,0)�)⊗2

)

�w −→ P⊥
��
(
∂ �w ⊗̇ ∂ ��

)
,

where in local complex coordinates for �� we denote

∂ �w ⊗̇ ∂ �� := ∂z �w · ∂z
�� dz ⊗ dz .

We are now going to prove the following theorem

Theorem 1.2. Let �� ∈ Imm(�, Mm), then there exists an open neighborhood O �� of

�� in Imm(�, Mm) invariant under the action of Diff ∗+(�) and two smooth maps on O ��,

equivariant under the action of Diff ∗+(�),

⎧⎪⎨
⎪⎩

�w �� : O �� −→ Ker(D∗
��) ⊂ T ��Imm(�, Mm)

� �� : O �� −→ Diff ∗+(�)
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4 T. Rivière

satisfying

∀ �� ∈ O �� �� ◦ � ��( ��) = πMm

( �� + �w ��( ��)
)

,

where πMm is the orthogonal projection onto Mm and T �� := ( �w ��, � ��) realizes a

diffeomorphism from O �� onto U �� × Diff ∗+(�), where U �� is a neighborhood of 0 in

Ker(D∗
��). Moreover, the map T �� satisfies the following equivariance property: ∀ �� ∈ O ��

and for all �0 ∈ Diff ∗+(�) one has

� ��( �� ◦ �0) = �−1
0 ◦ � ��( ��) and �w ��( �� ◦ �0) = �w ��( ��) .

The space M�(Mm) := Imm(�, Mm)/Diff ∗+(�) is Hausdorff and defines a Hilbert

manifold such that the projection map

Imm(�, Mm) −→ M�(Mm)

defines a Diff ∗+(�)-bundle for which (T ��) �� represents a local trivialization. �

Remark 1.1. The condition

D∗
�� �w := P⊥

��
(
∂ �w ⊗̇ ∂ ��

)
= 0

corresponds (Observe that ∂ �w ⊗̇ ∂ �� = 0 is the condition which, starting from a

conformal immersion ��, preserves the conformality of �� + t �w at the 1st order for

the same Riemman structure on �. Similarly, d∗
Aa = 0 is the 1st-order condition,

which, starting from a Coulomb gauge d∗
AA = 0, preserves the Coulomb condition for

A + ta for the same covariant co-differentiation d∗
A. Moreover, it is well known that

the conformality of an immersion �� can be interpreted as a Coulomb condition (see for

instance [12]) with respect to the action of the “gauge group” Diff ∗+(�).) to the Coulomb

slice condition

d∗
Aa = 0

in the gauge theory while studying the Hilbert bundle structure of the quotient of

Hs connections by the Gauge group for s > n/2 and away from reducible connections

(see [5]). �

Once this Hilbert bundle structure will be established we shall be considering

the following application to the viscosity method for the area functional introduced by

the author in [13].
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Lower Semi-continuity in the Viscosity Method 5

For any immersion �� ∈ Imm(�, Mm) we denote

F( ��) :=
∫

�

[
1 + |�I ��|2

]2
dvolg �� ,

where �I �� = π�n(∇Md ��) is the 2nd fundamental form of the immersion �� in Mm.

Observe that

∀ b ∈ N ∃ Cb > 0 F( ��) < Cb �⇒ b (�) ≤ b. (1.1)

This is a direct consequence of Gauss–Bonnet theorem and Cauchy–Schwartz

inequality.

It is clear that F( ��) only depends on the equivalence class [ ��] of �� in M�(Mm).

Since F is a smooth functional on Imm(�, Mm) (see [13]) it descends to a smooth

functional on M�(Mm). We shall prove the following theorem.

Proposition 1.1. Let [ ��] be a critical point of F in M(Mm). Then the 2nd derivative of

F at [ ��] defines a Fredholm and elliptic operator. �

The viscosity method consists in studying the variations of the area Lagrangian

Area( ��) =
∫

�

dvolg ��

by considering relaxations of the form

Aσ ( ��) := Area( ��) + σ 2 F( ��) = Area( ��) + σ 2
∫

�

[
1 + |�I ��|2

]2
dvolg �� ,

where σ > 0. The work [13] has been devoted to the asymptotic analysis of sequences

of critical points of Aσk , with uniformly bounded Aσk energy and satisfying Struwe’s

entropy condition

σ 2
k F( ��k) = o

(
1

log σ−1
k

)
as σk goes to zero. (1.2)

It is proved in these two works that, modulo extraction of a subsequence, the immer-

sions ��k varifold converges toward a 2D integer rectifiable stationary varifold v∞ of

Mm that is parametrized. In [14] and [10] the regularity of the parametrized integer

rectifiable stationary varifold is established. Hence, we have the following theorem.
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6 T. Rivière

Theorem 1.3. [[13], [14], [10]] Let ��k be a sequence of immersions of a closed surface

�, critical points of Aσk and such that

lim sup
k→+∞

Aσk( ��k) < +∞ and σ 2
k

∫

�g
(1 + |�I ��k

|2)2 dvolg ��k
= o

(
1

log σ−1
k

)
.

Then there exists a subsequence ��k′ such that the corresponding associated varifold

(The associated varifold v associated to an immersion �� of �g is given by

∀ φ ∈ C0(G2TMm) v(φ) :=
∫

�g
φ( ��∗Tx�g) dvol �� ∗gMm

)

vk converges toward the varifold v∞ associated to a smooth, possibly branched,

conformal minimal immersion ��∞ of a constant Gauss curvature nodal surface (S∞, h)

equipped with a locally constant odd multiplicity N∞ ∈ C∞(S∞, 2N + 1) and such that

genus (S∞) ≤ g and lim
k→+∞

Area( ��k) = 1

2

∫

S∞
N∞ |d ��∞|2h dvolh.

�

The question of comparing the Morse index of the limiting surface for the area

with the Morse index of the sequence ��k for the relaxed functionals Aσk was left open

in these works. The 2nd main result of the present work is the following lower semi-

continuity of the index.

Theorem 1.5. Let ��k be a sequence of immersions of a closed surface �, critical points

of Aσk and such that

lim sup
k→+∞

Aσk( ��k) < +∞ and σ 2
k

∫

�g
(1 + |�I ��k

|2)2 dvolg ��k
= o

(
1

log σ−1
k

)
.

Then there exists a subsequence ��k′ such that the corresponding immersed surface

converges in varifolds toward a parametrized integer rectifiable stationary varifold

v∞ := (S∞, ��∞, N∞). If N∞ ≡ 1 then we have

Ind( ��∞) ≤ lim inf
k→∞

Ind σk′ ( ��k′), (1.3)
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Lower Semi-continuity in the Viscosity Method 7

where Ind( ��∞) is the maximal dimension of a subspace of T[ ��∞]M on which D2Area( ��∞)

is strictly negative and Ind σk( ��k) is the maximal dimension of a subspace of T[ ��k]M on

which D2Aσk( ��k) is strictly negative. �

Remark 1.2. After the present work has been completed, the author in collaboration

with Alessandro Pigati proved that the condition N∞ ≡ 1 always holds for the varifold

limit of sequences of critical points of Fσk
satisfying the entropy condition (2) (see [9]).

Hence, the lower semi-continuity of the index always holds. Combining this result with

the main theorem of [7] the authors in [9] establish that the Morse index of any minimal

surface realizing the minmax of a k-dimensional homological (or cohomological) family

obtained by the viscosity method is bounded by k. �

The paper is organized as follows. In the next section we are proving

Theorem 1.2 from which we deduce Theorem 1.1. In a short intermediate section we

establish Proposition 1.3. Then, in Section 4, we are proving the lower semi-continuity

of the index in the viscosity method (i.e., Theorem 1.5).

2 A Proof of Theorem 1.2.

Let �g be a closed connected oriented surface of genus g. Let Diff+(�g) be the

topological group of positive W3,2-diffeomorphisms of �, isotopic to the identity. This

can be seen as an open subspace of W3,2(�, �) that itself defines a Hilbert manifold (see

[11]). For g = 0 we are marking three distinct points, which we denote a1, a2, a3, for g = 1

we are marking one point that we denote a, and for g > 1 no point is marked. We denote

by Diff∗+(�g) the subgroup of Diff+(�g), which is fixing the marked points. In particular

for g > 1 we have Diff∗+(�g) = Diff+(�g). We have the following lemma.

Lemma 2.1. The action of Diff∗+(�g) on Imm(�g, Mm) is free. �

Proof of Lemma 2.1. We first claim that every element in Diff∗+(�g) possess at

least one fixed point. This is included in the definition for g = 0, 1. For g > 1 we have

that for any diffeomorphism � isotopic to the identity the Lefschetz number L(�) is

given by definition by

L(�) = Tr(�|H0(�g)) − Tr(�|H1(�g)) + Tr(�|H2(�g)) = 2 − 2g.
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8 T. Rivière

Hence, for g > 1 we have L(�) �= 0 and then � must have at least one fixed point. Due to

Lemma 1.3 in [3] we deduce that for any g ∈ N the action of Diff ∗+(�g) on Imm(�g, Mm)

is free. �
Proof of Theorem 1.2. Let �� ∈ Imm(�, Mm). A basis of neighborhoods of �� is given by

Vε
�� :=

{ �� = πMm

( �� + �v
)

; �v ∈ �3,2( ��∗TMm) and ‖�v‖W3,2 < ε
}

,

for ε > 0 small enough and where �3,2( ��∗TMm) denotes the W3,2-sections of the pullback

bundle ��∗TMm, which is the subvector space of �v ∈ W3,2(�,RQ) such that �v(x) ∈ T ��(x)�
g

for any x ∈ �g.

For any �v ∈ �3,2( ��∗TMm) we consider the tensor in �2,2((T∗�g)(0,1) ⊗ (T�g)(1,0))

given by

D
∗
���v g−1

�� where g−1
�� = e−2λ [∂z ⊗ ∂z + ∂z ⊗ ∂z],

where

D
∗
���v = P

⊥
��
(
∂ �v ⊗̇ ∂ ��

)
.

P �� is the L2 projection orthogonal projection from (∧(0,1)�)⊗2
onto the space of

anti-holomorphic quadratic forms AHolQ(�, g ��) on (�, g ��) and by P
⊥
�� := Id − P ��, and

where is the contraction operator between covariant and contravariant tensors. In

particular we have in local complex coordinates

(b dz ⊗ dz) g−1
�� = e−2λ b dz ⊗ ∂z.

We denote

I :=
{
D

∗
���v g−1

�� ; �v ∈ �3,2( ��∗TMm)
}

. (2.4)

Recall the definition of the ∂ operator on ∧(1,0)�g given in local coordinates by

∂
(
a ∂z

) = ∂za dz ⊗ ∂z.

Denote Hol1(�g) the finite-dimensional subspace of �3,2(∧(1,0)�g) made of holomorphic

sections (Due to the Riemann–Hurwitz theorem, the holomorphic tangent bundle

T(1,0)�g, which is the inverse of the canonical bundle of the Riemann surface defined by

(�, g ��), has a degree given by

deg
(
T(1,0)�g

)
=
∫

�g
c1

(
T(1,0)�g

)
= 2 − 2g;
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Lower Semi-continuity in the Viscosity Method 9

therefore, Hol1(�g) �= 0 ⇒ g < 2.) of T(1,0)�g. We shall now prove the following lemma.

Lemma 2.2. Under the previous notations we have that

∀ �v ∈ W3,2(�,RQ) ∃ ! f ∈ (Hol1(�g))⊥ ∩ �3,2(∧(1,0)�g) s. t. ∂f = D
∗
���v g−1

�� . (2.5)

Moreover,

‖f ‖W3,2 ≤ C �� ‖�v‖W3,2 . (2.6)

�

Proof of Lemma 2.2. We have for any α = a ∂z ∈ �3,2((T�g)1,0) and β = b dz⊗ ∂z ∈
�2,2((T∗�g)(0,1) ⊗ (T�g)(1,0))

∫

�g

〈
∂
(
a ∂z

)
, b dz ⊗ ∂z

〉
g ��

dvolg �� = �
[

i

2

∫

�g
∂a b e2λ dz ∧ dz

]

= �
[

i

2

∫

�g
d[a b e2λ] ∧ dz

]
− �

[
i

2

∫

�g
a ∂z[b e2λ] dz ∧ dz

]

=
∫

�g

〈
α,
(
∂
(
β g ��

)
2 g−1

��
)

g−1
��
〉
g ��

dvolg �� ,

where

g−1
�� = e−2λ [∂z ⊗ ∂z + ∂z ⊗ ∂z] , (b dz ⊗ dz ⊗ dz) 2 g−1

�� = e−2λ b dz, and

(e−2λ b dz) g−1
�� = e−4λ b ∂z,

where and 2 are, respectively, again the simple and double contractions between

covariant and contravariant tensors. Hence, we have proved that the adjoint of ∂ on

�((T∗�g)(0,1) ⊗ (T�g)(1,0)) is given by

∂
∗

: β ∈ �((T∗�g)(0,1) ⊗ (T�g)(1,0)) −→ ∂
∗
β =

(
∂
(
β g ��

)
2 g−1

��
)

g−1
�� ∈ �(∧(1,0)�g).

We have Im ∂ = (Ker ∂
∗
)⊥. We have that

Ker ∂
∗ =

{
β ∈ �((T∗�g)(0,1) ⊗ (T�g)(1,0)) ; β g �� ∈ AHolQ(�g, g ��))

}
. (2.7)

Observe that

∀ γ ∈ �

((
(T∗�g)(0,1)

)⊗2)
∀β ∈ �((T∗�g)(0,1) ⊗ (T�g)(1,0))

〈
γ g−1

�� , β
〉
g ��

= 〈γ , β g ��
〉
g ��

.
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10 T. Rivière

This implies

γ g−1
�� ∈ Im ∂ ⇐⇒ γ ∈ (AHolQ(�g, g ��)

)⊥ . (2.8)

We deduce (2.5) from (2.8) and (2.6) follows by classical estimates for elliptic complexes

in Sobolev spaces. �
Continuation of the proof of Theorem 1.2. To f ∈ (Hol1(�g))⊥ ∩ �3,2(∧(1,0)�g) solving

(2.5) we assign

X := 2 �(f ) = 2 �((f1 + i f2) ∂z) = (f1 ∂x1
+ f2 ∂x2

) = X1 ∂x1
+ X2 ∂x2

.

Observe that, if we denote �X := d �� · X, we have

∂
( �X · ∂ �� g−1

��
)

= ∂
(
e2λ(X1 + i X2) dz g−1

��
)

= ∂f .

Observe also that, since �X is tangent to the immersion �X · ∂
(
∂ �� g−1

��
)

= 0. Indeed in

local conformal coordinates we have

∂
(
∂ �� g−1

��
)

= ∂z(e
−2λ ∂z

��) dz ⊗ ∂z,

and �h0 := ∂z(e
−2λ ∂z

��) dz⊗dz = e−2λ π⊥(∂2
z2

��) dz⊗dz is nothing but the trace-free part of

the 2nd fundamental form (We denote by π⊥ the orthogonal projection onto ( ��∗T�g)⊥ in

TRQ.) of the immersion viewed as an immersion into R
Q and by which is then orthogonal

to the immersion. Hence,

∂f = (∂ �X · ∂ ��) g−1
�� .

Using Im ∂ = (Ker ∂
∗
)⊥ and the characterization of Ker ∂

∗
given by (4), we have ∂ �X · ∂ �� =

P⊥
��(∂ �X · ∂ ��) and hence

∂f = D
∗
�� �X g−1

�� . (2.9)

We denote ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X 3,2(S2) :=
{
X ∈ �3,2(TS2) ; X(ai) = 0 i = 1, 2, 3

}
,

X 3,2(T2) :=
{
X ∈ �3,2(TT2) ; X(a) = 0

}
,

X 3,2(�g) = �3,2(�g) forg > 1.

The space of the holomorphic vector field on T(1,0)S2 is a 3D complex vector space given

in C, after the stereographic projection, by

h(z) = (α + β z + γ z2) ∂z where(α, β, γ ) ∈ C
3.
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Lower Semi-continuity in the Viscosity Method 11

Whereas the space of the holomorphic vector field on T(1,0)T2 is a one-dimensional

complex vector space given in C by

h(z) = α ∂z where α ∈ C,

while for g > 1 we have Hol1(�g) = {0}. Hence, for any g ∈ N and any

f ∈ (Hol1(�g))⊥ ∩ �3,2(∧(1,0)�g) ∃ ! hf ∈ Hol1(�g) s. t. �(f + hf ) ∈ X 3,2(�g); (2.10)

moreover, the map f → hf from (Hol1(�g))⊥ ∩ �3,2(∧(1,0)�g) into Hol1(�g) is linear and

smooth. Hence, we can summarize what we have proved so far in the following lemma.

Lemma 2.3. Let �� be a W3,2-immersion. Then the following holds:

∀ �v ∈ �3,2( ��∗TMm) ∃ ! X ∈ X 3,2(�g) s. t.

∂
(
X − i X⊥) = D

∗
�� �X g−1

�� = D
∗
���v g−1

�� ,

where �X = d �� · X and such that

‖X‖W3,2 ≤ C �� ‖�v‖W3,2 .

�

End of the proof of Theorem 1.2. Let g0 be a smooth reference metric on �g and

denote by expg0 the smooth exponential map from T� into � associated to g0. Let ε > 0

be small and denote

X 3,2
ε (�g) :=

{
X ∈ X 3,2(�g) ; ‖X‖W3,2 < ε

}

and

Dε :=
{
� ∈ Diff∗+(�) ; ∃X ∈ X 3,2

ε (�g) s.t �(x) = expg0
x (X(x))

}
.

We define

� �� : Vε
�� × Dε −→ �2,2((T∗�)(0,1) ⊗ (T∗�)(0,1))

( ��, �) −→ D
∗
��
( �� ◦ �

)
g−1

�� .
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12 T. Rivière

The map is clearly C1 and Lemma 2.3 gives that

∂�� ��
∣∣
( ��,0) · X = D

∗
��
(
d �� · X

)
g−1

��

realizes an isomorphism between X 3,2 and I (defined in (1)). The implicit function

theorem gives then the existence of a C1 map � ��( ��) defined in a neighborhood of ��
such that

D
∗
��
( �� ◦ � ��( ��)

)
g−1

�� = 0,

and we denote �w ��( ��) := �� ◦ � ��( ��) − ��.

For any element �0 ∈ Diff∗+(�) close to the identity and �� close enough to �� one

has trivially

D
∗
��
( �� ◦ �0 ◦ �−1

0 ◦ � ��( ��)
)

g−1
�� = 0.

Because of the local uniqueness of � ��( ��) given by the implicit function theorem,

we deduce the equivariance property

� ��( �� ◦ �0) = �−1
0 ◦ � ��( ��) and �w ��( �� ◦ �0) := �� ◦ � ��( ��) − �� = �w ��( ��).

We then naturally extend, by equivariance, the map T �� := ( �w ��, � ��) on a neighborhood

O �� of �� invariant under the action of Diff∗+(�).

We are now proving the Hausdorff property for Mg(�g, Mm) := Imm(�g, Mm)/

Diff ∗+(�g). Following classical considerations (see the arguments in [15, proof of Lemma

2.9.9]) it suffices to prove that

� :=
{
( ��, �� ◦ �) ; �� ∈ Imm(�g, Mm) and � ∈ Diff ∗+(�g)

}

is closed in (Imm(�g, Mm))2. This follows from the 1st part of the proof of the theorem.

Let ( ��k, ��k := ��k ◦ �k) → ( ��∞, ��∞) in W3,2. For k large enough both ��k and ��k are

included in O ��∞ . Because of the continuity of the map �w ��∞ we have, respectively,

�w ��∞( ��k) → �w ��∞( ��∞) = 0 and �w ��∞( ��k) → �w ��∞( ��∞).

The equivariance of �w ��∞ gives �w ��∞( ��k) = �w ��∞( ��k), hence �w ��∞( ��∞) = 0. Thus, ��∞ ◦
� ��∞ = ��∞ and this shows that � is closed and then M(�g, Mm) defines a Hausdorff

Hilbert manifold and Theorem 1.2 is proved. �
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Lower Semi-continuity in the Viscosity Method 13

3 A Proof of Proposition 1.1

From [6] (see also an alternative approach in [1]) we know that under the assumptions

that �� is a critical point of F, it defines a smooth immersion in conformal coordinates.

We shall be working in the chart in the neighborhood of [ ��] in M(�g, Mm) given by �w ��
from Theorem 1.2. In other words we identify

T[ ��]M �
{

�w ∈ �3,2( ��∗TMm) ; P⊥
��
(
∂ �w ⊗̇ ∂ ��

)
= 0

}
. (3.11)

For such a �w we denote by q �w the holomorphic quadratic form given by

∂ �w ⊗̇ ∂ �� = q �w.

After contracting with the tensor g−1
�� , this equation becomes

∂
(

�w · ∂ �� g−1
��
)

= −π⊥( �w) · �h0 + q �w g−1
�� ,

where we recall that π⊥ is the orthogonal projection onto the normal space to ��∗T� in

T�R
Q and �h0 is the trace-free part of the 2nd fundamental form of the immersion in R

Q,

which is orthogonal to the tangent plane of the immersion and given in local coordinates

by

�h0
�� = ∂z

(
e−2λ∂z

��
)

dz ⊗ ∂z.

Observe that since �w is tangent to T ��Mm we have π⊥( �w) = π�n( �w) where π�n is the orthog-

onal projection onto the normal space to ��∗T� in T ��Mm. Using the characterization of

Im ∂ = (Ker ∂
∗
)⊥ given by (5) we deduce

∂
(

�w · ∂ �� g−1
��
)

= −P ��
(
π�n( �w) · �h0

��
)

,

where P �� is the orthogonal projection onto (HolQ(�g, g ��) g−1
�� )⊥. Denote �X �w the

projection of �w onto the tangent plane (i.e., �X �w = �w − π�n( �w)) and let X �w be the vector

field on � such that d �� · X �w = �X �w. Following the computations from the previous

subsection we deduce

∂
(
X �w − i X⊥

�w
)

= −P ��
(
π�n( �w) · �h0

��
)

. (3.12)
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14 T. Rivière

Denote

πT : �3,2( ��∗TMm) −→ �3,2((T�)(1,0))

�w −→ X �w − i X⊥
�w.

In view of the expression of the 2nd derivative D2F given by (20) we have that, modulo

compact operators (remembering that �� is smooth), we are reduced (The sum of a

Fredholm operator with a compact operator is Fredholm.) to study the Fredholm nature

of the operator generated by the following quadratic form:

Q ��( �w) = ∫
�

(1 + |�I ��|2g ��)
∣∣π�n

(
Dg ��d �w)∣∣ 2

g �� dvolg �� + 2
∫
�

∣∣∣∣
〈�I ��, Dg ��d �w

〉
g ��

∣∣∣∣ 2 dvolg ��

combined with (2). Hence, the symbols of the generated operator, in local conformal

coordinates, is given by

⎧⎪⎪⎨
⎪⎪⎩

2e−2λπ�n ◦
[
(1 + |�I ��|2g ��)|ξ |4 + 2e−4λ

∑
i,j,k,l

�Ikl ⊗ �Ikl ξi ξj ξk ξl

]
◦ π�n

(ξ1 + i ξ2) ◦ πT .

This is clearly the symbol defining an elliptic operator on �3,2( ��∗TMm) and D2F is

Fredholm on T[ ��]M. This concludes the proof of Proposition 1.3.

4 A Proof of Theorem 1.4, the Lower Semi-continuity of the Index

We shall assume that �g is connected. We shall present the computations for Mm = Sm.

The general constraint generates lower-order terms whose abundance could mask the

true reason why the theorem is true whereas the same terms in the Mm = Sm case are

easier to present. The 1st part of the theorem is the main results of [13]. It remains to

prove the inequality (3) under the assumption of Theorem 1.5. The 1st derivative of the

area of an immersion (possibly branched) of a closed surface �g into R
Q is given by

(see [13])

DArea( ��) · �w =
∫

�g

〈
d �� ; d �w

〉
g ��

dvolg ��

and the 2nd derivative (A reader familiar to the rich literature in geometry on minimal

surface theory in three dimensions might not immediately recognize the most commonly

used expression of the 2nd derivative of the area by the mean of the Jacobi field. This

classical presentation of D2Area has the advantage to “reduce” this operator to an

operator on function by introducing the decomposition �w = w �n. This decomposition
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Lower Semi-continuity in the Viscosity Method 15

however is not “analytically” favorable since �n has a priori one degree of regularity less

than �w. This observation is at the base of the analysis of the Willmore functional as it

has been developed by the author in the recent years.)

D2Area( ��)·(�w, �w) =
∫

�

[〈
d �w ; d �w〉g ��

+
∣∣∣∣
〈
d �� ; d �w

〉
g ��

∣∣∣∣ 2 − 2−1
∣∣∣d ��⊗̇d �w + d �w⊗̇ d ��

∣∣∣ 2
]

dvolg �� ,

where we recall that in coordinates d �� ⊗̇ d �w :=∑i,j ∂xi
�� · ∂xj

�w dxi ⊗ dxj.

Since we are assuming N∞ ≡ 1 a.e. on S∞ and, following the proof of the main

theorem of [13], we can extract a subsequence that we keep denoting ��k such that we

have a bubble tree strong W1,2 convergence of ��k toward a minimal (possibly branched)

immersion ��∞ of a surface S∞, which is the union of nodal surfaces and spheres. More

precisely, if one denotes {Sj
∞}j∈J to be the connected components of S∞, for every j ∈ J

there exists Nj points {aj,l}l=1···Nj (containing in particular the possible branched points

of ��∞ and a converging sequence of constant scalar curvature metrics hj
k of volume one

and for any δ > 0 a sequence of conformal embeddings φ
j
k from (Sj

∞ \∪Nj

l=1Bδ(a
j,l), hj

k) into

(�g, g ��k
) such that

��j
k := ��k ◦ φ

j
k −→ ��∞ strongly inW1,2

loc (Sj
∞ \ ∪Nj

l=1Bδ(a
j,l)). (4.13)

For δ small enough and k′ large enough the subdomains �
j
k(δ) := φ

j
k(Sj

∞ \
∪Nj

l=1Bδ(a
j,l)) are disjoint and

lim
δ→0

lim
k→+∞

Area

⎛
⎝ ��k

⎛
⎝�g \

⋃
j∈J

�
j
k(δ)

⎞
⎠
⎞
⎠ = 0.

Let �w1 · · · �wN a family of N independent smooth vectors in W3,2( ��∗∞TMm) representing

N independent directions in T[ ��∞]M on the span of which D2Area is strictly negative. We

can assume without loss of generality that the �wi are C∞. One modifies each of these

vectors in the following way. For each i ∈ {1 · · · Q} for each j ∈ J and each l ∈ {1 · · · Nj} we

introduce (after identifying for each j and l the tangent planes to Mm around ��∞(aj,l)

with the one at exactly ��∞(aj,l))

�w δ
i (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�wi(x) for|aj,l − x| ≥ √
δ

�wi(x) χ δ(|x − aj,l|) for δ ≤ |aj,l − x| ≤ √
δ

0 for |aj,l − x| ≤ δ,
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16 T. Rivière

where we take χ δ(s) to be a slight smoothing of log(s/δ)/ log(1/
√

δ). A short computation

gives that

�w δ
i −→ �wi strongly in W1,2(S∞,RQ).

Therefore, in view of the explicit expression of D2Area( ��∞) · ( �w, �w), there exists δ

small enough such that �w δ
1 · · · �w δ

N realizes a family of N independent smooth vectors

in W3,2( ��∗∞TMm) on the span of which D2Area is strictly negative. We fix such a δ.

Let ρ > 0 small enough such that for any z ∈ Mm the map ��∞ is injective on each

components of ��−1∞ (BQ
ρ (p)) ⊂ Sj

∞. Let {χs(p)}s∈{1···N} be a finite smooth partition of unity

of Mm ⊂ R
Q such that the support of every χs is included in an m-ball of radius ρ. We

denote the connected components of ��−1∞ (Supp(χs)) in S∞ by �t
s for t = 1 · · · ns and ωt

s

are the corresponding characteristic functions. We have that χs(
��∞(x)) ωt

s(x) is smooth

for any s ∈ {1 · · · N} and any t ∈ {1 · · · ns} and moreover

d(χs(
��∞(x)) ωt

s(x)) = d(χs(
��∞(x))) ωt

s(x).

We can then write each �w δ
i in the form

�w δ
i (x) =

N∑
s=1

χs(
��∞(x))

ns∑
t=1

�v t
i,s(

��∞(x)) ωt
s,

where �v t
i,s are smooth functions (This is due to the fact that ��∞ is smooth embedding

on each open set �t
s). For any s =∈ {1 · · · N} since the components �t

s are disjoint to each

other for t ∈ {1 · · · ns} we can include them in strictly larger disjoint open sets �t
s ⊂ �̃t

s;

moreover, because of the strong W1,2-convergence of ��k toward ��∞ in Sj
∞ \ ∪Nj

l=1Bδ(a
j,l)

‖ ��k − ��∞‖
L∞(∂�̃t

s)
−→ 0. (2)

We denote ω̃t
s the characteristic functions of �̃t

s: ω̃t
s := 1�̃t

s
. We still have of course

�w δ
i (x) =

N∑
s=1

χs(
��∞(x))

ns∑
t=1

�v t
i,s(

��∞(x)) ω̃t
s.

Because of (2), we have that

dist
( ��k(∂�̃t

s), ��∞(∂�̃t
s

)
−→ 0.
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Lower Semi-continuity in the Viscosity Method 17

Since χs is zero in an open neighborhood of each ��∞(∂�̃t
s) and since ��k is smooth, we

have for every s and t and for k large enough

χs ◦ ��k ≡ 0 in an open neighborhoodUt
k,s of ∂�̃t

s. (4.15)

Hence, in particular we have for every s and t and k large enough

d(χs(
��k(x)) ω̃t

s(x)) = d(χs(
��k(x))) ω̃t

s(x).

It is then clear that

�w δ
i,k(x) :=

N∑
s=1

χs(
��k(x))

ns∑
t=1

�vt,s(
��k(x)) ω̃t

s −→ �w δ
i (x) strongly inW1,2

loc (Sj
∞ \ ∪Nj

l=1Bδ(a
j,l)).

(4)

Using the compositions with the maps (φj,k)−1 we extend the �w δ
i,k, which we still denote

�w δ
i,k to the whole of �g by taking �w δ

i,k = 0 on �g \ ⋃j∈J �
j
k′(δ). We see �w δ

i,k as vectors

in R
Q and we denote by π

j
k′ the map from Sj

∞ \ ∪Nj

l=1Bδ(a
j,l) into the space of projection

matrices that to x ∈ Sj
∞ \ ∪Nj

l=1Bδ(a
j,l) assigns the orthogonal projection from T ��j

k′ (x)
R

Q

into T ��j
k′ (x)

Mm. In other words, let Pz be the C1 map from Mm into the space of Q × Q

matrices that assigns the orthogonal projection onto TzMm, we have π
j
k′(x) := P ��j

k′ (x)
and

we have

π
j
k′ −→ P ��∞ strongly in W1,2

loc (Sj
∞ \ ∪Nj

l=1Bδ(a
j,l)). (5)

On Sj
∞ \ ∪Nj

l=1Bδ(a
j,l) we denote �u δ

i,k′(x) := π
j
k(x)( �w δ

i,k). Because of (5) we have

�u δ
i,k −→ �w δ

i strongly in W1,2(Sj
∞). (6)

Consider now the symmetric matrix

D2Area( ��k)(�u δ
i,k, �u δ

i′,k) =
card(J)∑

j=1

∫

Sj∞

⎡
⎣〈d�u δ

i,k ; d�u δ
i′,k
〉
g ��j

k

+
〈
d ��j

k ; d�u δ
i,k

〉
g ��j

k

〈
d ��j

k ; d�u δ
i′,k

〉
g ��j

k

⎤
⎦ dvolg ��j

k

− 2−1
card(J)∑

j=1

∫

Sj∞

〈
d ��j

k⊗̇ d�u δ
i,k + d�u δ

i,k⊗̇ d ��j
k, d ��j

k⊗̇ d�u δ
i′,k + d�u δ

i′,k⊗̇ d ��j
k

〉
dvolg ��j

k

.
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18 T. Rivière

Let f and g be two smooth functions supported on Mm \ ∪Nj

l=1�∞(Bδ(a
j,l)) then one has

∫

Sj∞
< d(f ( ��k)), d(g( ��k)) >g ��k

dvolg ��k
=
∫

Sj∞
< d(f ( ��k)), d(g( ��k)) >

hj
k

dvol
hj

k
,

and since hj
k converges in any norms toward hj

∞, because of the strong W1,2 convergence

of ��k on Sj
∞ \ ∪Nj

l=1Bδ(a
j,l) one has

∫

Sj∞
< d(f ( ��k)), d(g( ��k)) >g ��k

dvolg ��k
−→

∫

Sj∞
< d(f ( ��∞)), d(g( ��∞)) >g ��∞

dvolg ��∞
. (7)

In a conformal chart for hj
k we denote eλ

j
k′ := |∂x1

��j
k′ | = |∂x2

��j
k′ |. Because of the strong

W1,2 convergence (1) we have

eλ
j
k′ −→ eλ

j∞ = |∂x1
��∞| = |∂x2

��∞| a. e. in Sj
∞.

Since eλ
j∞ > 0 almost everywhere on Sj

∞ we have e−λ
j
k′ −→ e−λ

j∞ almost everywhere and

then for i = 1, 2

∂xi
��j

k/eλ
j
k −→ ∂xi

��j
∞/eλ

j∞ almost everywhere.

Let f ,g, φ, and ψ be four arbitrary smooth functions on Mm. Assume that both f and g

are supported on Mm \ ∪Nj

l=1
��∞(Bδ(a

j,l)). One has in local conformal coordinates

< d(f ( ��j
k)) ⊗ d(φ( ��j

k)), d(g( ��j
k)) ⊗ d(ψ( ��j

k)) >g ��j
k

dvolg ��j
k

=
∑

μ,ν=1,2

e−2λ
j
k∂xμ

f ( ��j
k) ∂xν

φ( ��j
k) ∂xμ

g( ��j
k) ∂xν

ψ( ��j
k) dx1 ∧ dx2.

Because of the above

e−2λ
j
k∂xμ

f ( ��j
k) ∂xν

φ( ��j
k) ∂xμ

g( ��j
k) ∂xν

ψ( ��j
k)−→e−2λ

j∞∂xμ
f ( ��j

∞) ∂xν
φ( ��j

∞) ∂xμ
g( ��j

∞) ∂xν
ψ( ��j

∞)

almost everywhere and we have moreover

|e−2λ
j
k∂xμ

f ( ��j
k) ∂xν

φ( ��j
k) ∂xμ

g( ��j
k) ∂xν

ψ( ��j
k)| ≤ C |∇ ��j

k|2 → |∇ ��j
∞|2 strongly in L1.
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Lower Semi-continuity in the Viscosity Method 19

Hence, the generalized dominated convergence theorem implies

∫

Sj∞
< d(f ( ��j

k)) ⊗ d(φ( ��j
k)), d(g( ��j

k)) ⊗ d(ψ( ��j
k)) >g ��j

k

dvolg ��j
k

−→
∫

Sj∞
< d(f ( ��j

∞)) ⊗ d(φ( ��j
∞)), d(g( ��j

∞)) ⊗ d(ψ( ��j
∞)) >g ��j∞

dvolg ��j∞
.

Similarly we also have

∫

Sj∞

〈
d(f ( ��j

k)), d(g( ��j
k))
〉
g ��k

〈
d(φ( ��j

k)), d(ψ( ��j
k))
〉
g ��k

dvolg ��j
k

−→
∫

Sj∞

〈
d(f ( ��j

∞)), d(g( ��j
∞))
〉
g ��∞

〈
d(φ( ��j

∞)), d(ψ( ��j
∞))
〉
g ��∞

dvolg ��j∞
.

We have

�ui,k :=
N∑

s=1

χs(
��k(x))

ns∑
t=1

P ��k

(
�v t

i,s(
��k(x))

)
ωt

s.

Because of (3) we have obviously from (20) that for any choice of s, t, s′, t′

D2F( ��)
(
χs(

��k(x))P ��k

(
�v t

i,s(
��k(x))

)
ω̃t

s, χs′( ��k(x))P ��k

(
�v t′

i,s′( ��k(x))
)

ω̃t′
s′
)

≤
∫

�̃t
s∩�̃t′

s′
(1 + |�I ��|2g ��)2 dvolg �� .

Combining all the above gives

D2Area( ��k)(�u δ
i,k, �u δ

i′,k) −→ D2Area( ��∞)( �w δ
i , �w δ

i′ ). (4.20)

Hence, for k large enough (D2A( ��k)(�u δ
i,k, �u δ

i′,k))i,i′=1···N defines a strictly negative

quadratic form.

Using now Lemma A.1 below we deduce that for any i, i′ ∈ {1 · · · N}

σ 2
k

∣∣∣D2F( ��k)(�u δ
i,k, �u δ

i′,k)

∣∣∣ ≤ Cσ 2
k

[
F( ��k) + Area( ��k)1/4 F( ��k)3/4

]
= o(1). (4.21)

Combining (8) and (9) we obtain that for k large enough (D2Aσk( ��k)(�u δ
i,k, �u δ

i′,k))i,i′=1···N
defines a strictly negative quadratic form. This implies inequality (1.3) and Theorem 1.4

is proved. �
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20 T. Rivière

Lemma A.1. Let Mm be a closed submanifold of the euclidian space R
Q. For any W2,4-

immersion �� of an oriented closed surface � we denote

F( ��) :=
∫

�

(
1 + |�I ��|2g ��

)2
dvolg �� ,

where �I �� is the 2nd fundamental form of the immersion into Mm. The Lagrangian F is

C2 and there exists a constant C depending only on Mm such that for any perturbation

�w of the form �v ◦ �� one has

|DF( ��)(�v( ��))| ≤ C
∫

�

(
1 + |�I ��|2g ��

) [
(1 + |�I ��|2g ��) |∂ �v|( ��) + |�I ��|g �� |∂2�v|( ��)

]
dvolg �� , (A.1)

and

|D2F( ��)(�v( ��), �v( ��))| ≤ C
∫

�

(
1 + |�I ��|2g ��

) [
(1 + |�I ��|2g ��) |∂ �v|2( ��) + |∂2�v|2( ��)

]
dvolg �� .

(A.2)

�

Proof of Lemma A.1. We give the proof of inequalities (1) and (2) in the case of

immersions into R
Q. The terms coming from the fact we restrict to immersions into

Mm ⊂ R
Q are of lower order and do not contribute in clarifying the argument and the

successive estimates.

In local coordinates we denote the 2nd fundamental form

�I �� = π�n
(
d2 ��

)
= π�n

(
∂2

xixj
��
)

dxi ⊗ dxj

we have

|�I ��|2g �� :=
∣∣∣π�n

(
d2 ��

)∣∣∣ 2
g �� =

∑
i,j,k,l

gikgjlπ�n∂2
xixj

�� · π�n∂2
xkxl

��. (A.3)

Denote πT the projection onto the tangent plane of the immersion. We have in local

coordinates

πT( �X) =
2∑

i,j=1

gij ∂xi
�� · �X ∂xj

��. (A.4)

Hence,

π�n
dπ�n
dt

∣∣∣∣ t=0( �X) = −
2∑

i,j=1

gij ∂xi
�� · �X π�n

(
∂xj

�w
)

. (A.5)
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Lower Semi-continuity in the Viscosity Method 21

We have clearly

dgij

dt
= ∂xi

�� · ∂xj
�w + ∂xi

�w · ∂xj
��.

Hence,

dgij

dt
= − gikgjl

[
∂xk

�� · ∂xl
�w + ∂xk

�w · ∂xl
��
]

:= −2 (d ��⊗̇Sd �w)ij. (A.6)

We have then

d|�I ��|2g ��
dt

∣∣∣∣∣ t=0 = 2
〈
π�n
(
d2 ��

)
, π�n

(
Dg ��d �w)

〉
g ��

− 4
(
g ⊗ (d ��⊗̇Sd �w) �I ��⊗̇�I ��

)
, (A.7)

where is the contraction operator between 4-contravariant and 4-covariant tensors

and

Dg ��d �w :=
[
∂2

xixj
�w −

2∑
rs=1

grs∂xr
�� · ∂2

xixj
�� ∂xs

�w
]

dxi ⊗ dxj. (A.8)

This gives in particular that

d

dt

∫

�

(1 + |�I ��|2g ��)2 dvolg ��

∣∣∣∣ t=0 = DF( ��)( �w)

= 4
∫

�

(1 + |�I ��|2g ��)

[〈�I ��, Dg ��d �w
〉
g ��

− 2
(
g ⊗ (d ��⊗̇Sd �w)

) (�I ��⊗̇�I ��
)]

dvolg ��

+
∫

�

(1 + |�I ��|2g ��)2
〈
d ��; d �w

〉
g ��

dvolg �� .

(A.9)

For �w := �v
( ��
)

we have

∂2
xixj

�w −
2∑

rs=1

grs∂xr
�� · ∂2

xixj
�� ∂xs

�w =
Q∑

α,β=1

∂2
zαzβ

�v( ��) ∂xi
��α ∂xj

��β

+
Q∑

α=1

∂zα
�v( ��)

[
∂2

xixj
��α −

2∑
rs=1

grs∂xr
�� · ∂2

xixj
�� ∂xs

��α

]
.

We have

πT

(
∂2

xixj
��
)

=
2∑

rs=1

grs ∂2
xixj

�� · ∂xr
�� ∂xs

��. (A.10)

Hence,

∂2
xixj

�� −
2∑

rs=1

grs∂xr
�� · ∂2

xixj
�� ∂xs

�� = π�n(∂2
xixj

��) = �Iij.
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22 T. Rivière

This implies that

Dg ��d �w =
Q∑

α,β=1

∂2
zαzβ

�v( ��) d ��α ⊗ d ��β +
Q∑

α=1

∂zα
�v( ��) �Iα

ij . (A.11)

We deduce

|DF( ��)(�v( ��))| ≤ C
∫

�

(
1 + |�I ��|2g ��

) [
(1 + |�I ��|2g ��) |∂ �v|( ��) + |�I ��|g �� |∂2�v|( ��)

]
dvolg �� . (A.12)

We now compute the 2nd derivative

d

dt
DF( ��t)( �w)

∣∣∣∣ t=0

= 4
∫

�

(1 + |�I ��|2g ��)

[〈�I ��, Dg ��d �w
〉
g ��

− 2
(
g ⊗ (d ��⊗̇Sd �w)

) (�I ��⊗̇�I ��
)] 〈

d ��; d �w
〉
g ��

dvolg ��

+
∫

�

|1 + |�I ��|2g �� |2
∣∣∣∣
〈
d ��; d �w

〉
g ��

∣∣∣∣ 2 + 8

∣∣∣∣
〈�I ��, Dg ��d �w

〉
g ��

− 2
(
g ⊗ (d ��⊗̇Sd �w)

) (�I ��⊗̇�I ��
)∣∣∣∣2 dvolg ��

+ 4
∫

�

(1 + |�I ��|2g ��)
d

dt

[〈�I ��t
, Dg ��t d �w

〉
g ��t

− 2
(
g ��t

⊗ (d ��t⊗̇Sd �w)
) (�I ��t

⊗̇�I ��t

)]
dvolg ��

+
∫

�

(1 + |�I ��|2g ��)2 〈d �w; d �w〉g ��
dvolg �� − 2

∫

�

(1 + |�I ��|2g ��)2
(
d ��⊗̇Sd �w

) (
d �� ⊗ d �w

)
dvolg �� .

(A.13)

We have on one hand

π�n
d

dt
�I ��t

= π�n
(
Dg ��d �w) , (A.14)

on the other hand

d

dt

(
2∑

r=1

grs
��t

∂xr
��t · ∂2

xixj
��t

)
=

2∑
r=1

grs ∂xr
�� · ∂2

xixj
�w + grs ∂xr

�w · ∂2
xixj

�� + dgrs

dt
∂xr

�� · ∂2
xixj

��

=
2∑

r=1

grs ∂xr
�� · ∂2

xixj
�w + grs ∂xr

�w · π�n(∂2
xixj

��) + dgrs

dt
∂xr

�� · ∂2
xixj

��

+
2∑

r,k,l=1

grs gkl ∂xr
�w · ∂xk

�� ∂xl
�� · ∂2

xixj
��;

(A.15)
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Lower Semi-continuity in the Viscosity Method 23

we have

2∑
r=1

dgrs

dt
∂xr

�� · ∂2
xixj

�� = −
2∑

r,k,l=1

grk gsl ∂xr
�� · ∂2

xixj
��
[
∂xk

�w · ∂xl
�� + ∂xl

�w · ∂xk
��
]

= −
2∑

r,k,l=1

glk gsr ∂xl
�� · ∂2

xixj
�� ∂xk

�w · ∂xr
�� + glk gsr ∂xl

�� · ∂2
xixj

�� ∂xr
�w · ∂xk

��.

(A.16)

Combining (A.15) and (A.16) we obtain

d

dt

(
2∑

r=1

grs
��t

∂xr
��t · ∂2

xixj
��t

)
=

2∑
r=1

grs ∂xr
�� · (Dg ��d �w)ij +

2∑
r=1

grs ∂xr
�w · �Iij. (A.17)

Thus,

d

dt

(
Dg ��t d �w) = −

2∑
i,j=1

[
2∑

r=1

grs ∂xr
�� · (Dg ��d �w)ij ∂xs

�w + grs ∂xr
�w · �Iij ∂xs

�w
]

dxi⊗dxj. (A.18)

Combining (A.6), (A.14), and (A.18) we obtain

d
dt

[〈�I ��t
, Dg ��t d �w

〉
g ��t

− 2
(
g ��t

⊗ (d ��t⊗̇Sd �w)
) (�I ��t

⊗̇�I ��t

)]

= ∣∣π�n
(
Dgd �w)∣∣ 2

g �� −
〈
�I ;

2∑
i,j=1

gij∂xi
�� · Dgd �w ∂xj

�w
〉

g ��

+ 4
[
(d �� ⊗S d �w) ⊗ (d �� ⊗S d �w)

]
(�I⊗̇�I)

−4
(
g ⊗ (d �� ⊗S d �w)

) (�I ⊗ π�n(Dgd �w) + π�n(Dgd �w) ⊗ �I
)

− 2
(
g ⊗ (d �w ⊗S d �w)

)
(�I⊗̇�I).

(A.19)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz012/5308138 by ETH

 Zürich user on 28 O
ctober 2019



24 T. Rivière

Combining (A.13) and (A.19) gives

D2F( ��)( �w, �w) =

4
∫

�

(1 + |�I ��|2g ��)

[〈�I ��, Dg ��d �w
〉
g ��

− 2
(
g �� ⊗ (d ��⊗̇Sd �w)

) (�I ��⊗̇�I ��
)] 〈

d ��; d �w
〉
g ��

dvolg ��

+
∫

�

|1 + |�I ��|2g �� |2
∣∣∣∣
〈
d ��; d �w

〉
g ��

∣∣∣∣ 2 +8

∣∣∣∣
〈�I ��, Dg ��d �w

〉
g ��

−2
(
g ⊗ (d ��⊗̇Sd �w)

) (�I ��⊗̇�I ��
)∣∣∣∣ 2 dvolg ��

+ 4
∫

�

(1 + |�I ��|2g ��)

⎡
⎢⎣
∣∣π�n

(
Dg ��d �w)∣∣ 2

g �� −
〈
�I �� ;

2∑
i,j=1

gij∂xi
�� · Dg

g ��d �w ∂xj
�w
〉

g ��

⎤
⎥⎦ dvolg ��

+ 16
∫

�

(1 + |�I ��|2g ��)
[
(d �� ⊗S d �w) ⊗ (d �� ⊗S d �w)

]
(�I ��⊗̇�I ��) dvolg ��

− 16
∫

�

(1 + |�I ��|2g ��)
(
g �� ⊗ (d �� ⊗S d �w)

) (�I �� ⊗ π�n(Dg ��d �w) + π�n(Dg ��d �w) ⊗ �I ��
)

dvolg ��

− 8
∫

�

(1 + |�I ��|2g ��)
(
g �� ⊗ (d �w ⊗S d �w)

)
(�I ��⊗̇�I ��) dvolg ��

+
∫

�

(1 + |�I ��|2g ��)2 〈d �w; d �w〉g ��
dvolg �� − 2

∫

�

(1 + |�I ��|2g ��)2
(
d ��⊗̇Sd �w

) (
d �� ⊗ d �w

)
dvolg �� .

(A.20)

For �w := �v( ��), using (11), we deduce

|D2F( ��)(�v( ��), �v( ��))| ≤ C
∫

�

(
1 + |�I ��|2g ��

) [
(1 + |�I ��|2g ��) |∂ �v|2( ��) + |∂2�v|2( ��)

]
dvolg �� .

(A.21)

This concludes the proof of Lemma .1. �

References

[1] Bernard, Y. and T. Rivière. “Uniform regularity results for critical and subcritical surface

energies.” Calc. Var. Partial Differential Equations 58 (2019), no. 1, 58:10.

[2] Binz, E. and H. R. Fischer. “The Manifold of Embeddings of a Closed Manifold.” In

Differential Geometric Methods in Mathematical Physics (Proceedings of the International

Conference, Claustal University of Technology, Clausthal-Zellerfeld, 1978), 310–29. Lecture

Notes in Physics 139.Berlin-New York: Springer, 1981.

[3] Cervera, V., F. Mascaró, and P. W. Michor. “The action of the diffeomorphism group on the

space of immersions.” Diff. Geom. Appl. 1 (1991): 391–401.

[4] Ebin, D. G. and J. Marsden “Groups of diffeomorphisms and the motion of an incompressible

fluid.” Ann. of Math. (2) 92 (1970): 102–63.

[5] Freed, D. S. and K. K. Uhlenbeck. Instantons Four-Manifolds, 2nd ed. Mathematical Sciences

Research Institute Publications 1. New York: Springer, 1991.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz012/5308138 by ETH

 Zürich user on 28 O
ctober 2019



Lower Semi-continuity in the Viscosity Method 25

[6] Kuwert, E., T. Lamm, and Y. Li. “Two dimensional curvature functionals with superquadratic

growth.” J. Eur. Math. Soc. (JEMS) 17, no. 12 (2015): 3081–111.

[7] Michelat, A. “On the Morse index of critical points in the viscosity method.” arXiv preprint

arXiv:1806.09578

[8] Milnor, J. “Remarks on Infinite-dimensional Lie Groups.” In Relativity, Groups and Topol-

ogy, II (Les Houches, 1983), 1007–57. Amsterdam: North-Holland, 1984.

[9] Pigati, A. and T. Rivière. “A proof of the multiplicity one conjecture for minmax minimal

surfaces in arbitrary codimensions.” arxiv preprint arxiv: 1807.04205.

[10] Pigati, A. and T. Rivière. “The regularity of parametrized integer 2-rectifiable stationary

varifolds.” arXiv preprint arXiv:1708.02211.

[11] Rivière, T. “Minmax Methods in the Calculus of Variations of Curves and Surfaces.” Mini-

course Columbia University, 2016. https://people.math.ethz.ch/~riviere/minimax.

[12] Rivière, T. “Weak Immersions of Surfaces with L2-bounded Second Fundamental Form.” In

Geometric Analysis, 303–84. IAS/Park City Mathematics Series 22. Providence, RI: American

Mathematical Society, 2016.

[13] Rivière, T. “A viscosity method in the min-max theory of minimal surfaces.” Publ. Math. Inst.

Hautes Études Sci. 126 (2017): 177–246.

[14] Rivière, T. “The regularity of conformal target harmonic maps.” Calc. Var. Partial Differ. Equ.

56, no. 4, Art. 117 (2017): 15.

[15] Varadarajan, V. S. Lie Groups, Lie Algebras, and Their Representations. ( Reprint of the 1974

edition). Graduate Texts in Mathematics 102. New York: Springer, 1984.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnz012/5308138 by ETH

 Zürich user on 28 O
ctober 2019

https://people.math.ethz.ch/~riviere/minimax

	Lower Semi-continuity of the Index in the Viscosity Method for Minimal Surfaces
	1 Introduction
	2 A Proof of Theorem 1.2.
	3 A Proof of Proposition 1.1
	4 A Proof of Theorem 1.4, the Lower Semi-continuity of the Index


