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Abstract. Given any admissible k-dimensional family of immersions of a given closed

oriented surface into an arbitrary closed Riemannian manifold, we prove that the

corresponding min-max width for the area is achieved by a smooth (possibly branched)

immersed minimal surface with multiplicity one and Morse index bounded by k.

1. Introduction

Recently, a new theory for the construction of branched immersed minimal surfaces

of arbitrary topology, in an assigned closed Riemannian manifold Mm, was proposed in

[13]. This method is based on a penalization of the area functional by means of the second

fundamental form A of the immersion.

Namely, for a fixed parameter σ > 0, one first finds an immersion Φ : Σ→Mm which is

critical for the perturbed area functional

Aσ(Φ) :=

∫
Σ
d volgΦ +σ2

∫
Σ

(1 + |A|2gΦ
)2 d volgΦ ,(1.1)

where Σ is a fixed closed oriented surface and gΦ is the metric induced by Φ, with

volume form volgΦ . This functional Aσ enjoys a sort of Palais–Smale condition up to

diffeomorphisms.

We should mention that the idea of considering perturbed functionals goes back to the

paper [17] by Sacks–Uhlenbeck, where a perturbation of the Dirichlet energy is used to

build minimal immersed spheres. However, in order to find minimal immersed surfaces

with higher genus, one should give up working with the Dirichlet energy and use a more

tensorial functional like (1.1): among closed orientable surfaces, only the sphere has a

unique conformal structure (up to diffeomorphisms) and, as a consequence, a harmonic map

(i.e. a critical point for the Dirichlet energy) Φ : Σ→Mm could fail to be conformal and

minimal if Σ has positive genus. In principle, one can overcome this issue by introducing the

conformal structure as an additional parameter in the variational problem: this program

was carried out by Zhou in [21].
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2 A. PIGATI AND T. RIVIÈRE

Considering any sequence σj ↓ 0, one gets a sequence Φj : Σj → M of conformal

immersions (with area bounded above and below), where Σj denotes Σ endowed with the

induced conformal structure. Assuming for simplicity that we are dealing with a constant

conformal structure (in general one gets a limiting Riemann surface in the Deligne–Mumford

compactification), the sequence Φj is then bounded in W 1,2 and we can consider its weak

limit Φ∞, up to subsequences. A priori it is not clear whether the strong W 1,2-convergence

holds, even away from a finite bubbling set. However, in [13] the second author shows that,

if the sequence σj is carefully chosen so as to satisfy a certain entropy condition, then the

surfaces Φj(Σj) converge to a parametrized stationary varifold (a notion introduced in

[13, 12] and recalled in Section 4 below) which we call (Σ∞,Θ∞, N∞) in the present paper.

The limiting multiplicity N∞ a priori could be bigger than one.

A consequence of the main regularity result contained in [12] is that the multiplicity N∞

is locally constant. This result, which is optimal for the class of parametrized stationary

varifolds, leaves nonetheless open the question whether one can have N∞ > 1 on some

connected component of Σ∞.

This question should be compared with the multiplicity one conjecture by Marques and

Neves. In [10], the following upper bound for the Morse index of a minimal hypersurface

with locally constant multiplicity is established: if

Σ =
∑̀
j=1

njΣj

is a minimal hypersurface with locally constant multiplicity, given by a min-max with k

parameters in the context of Almgren–Pitts theory, then

index(supp (Σ)) ≤ k, supp (Σ) :=
⊔̀
j=1

Σj .

In other words, this is a bound for the Morse index of the hypersurface obtained by

replacing all the multiplicities nj with 1. In order for this estimate to give more information

about Σ, or at least its unstable part, the authors make the following conjecture.

Conjecture 1.1 (Multiplicity one conjecture). For generic metrics on Mn+1, with

3 ≤ n+ 1 ≤ 7, two-sided unstable components of closed minimal hypersurfaces obtained by

min-max methods must have multiplicity one.

It is natural to demand for extra information for one-sided stable components with

unstable double cover, as well. Marques and Neves were able to prove this conjecture for

one-parameter sweepouts, leaving the general case open. For metrics with positive Ricci

curvature, related results were already obtained by Marques and Neves in [9] and later by

Zhou in [20].

Further results, such as the two-sidedness of Σ when the metric has positive Ricci

curvature, were obtained by Ketover, Marques and Neves in [7], using the catenoid estimate.
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We also mention that Ketover, Liokumovich and Song in [6, 19] started to settle the

generic, one-parameter case for the simpler and more effective Simon–Smith variant of

Almgren–Pitts theory, specially designed for 3-manifolds.

Very recently, in [1], Chodosh and Mantoulidis established the conjecture for bumpy

metrics in 3-manifolds, i.e. when n = 2, in the setting of Allen–Cahn level set approach.

Also, half a year after this paper was written, Zhou announced a proof for bumpy metrics

in all dimensions 3 ≤ n+ 1 ≤ 7, in the context of Almgren–Pitts theory (see [22]).

The importance of this conjecture in relation to the Morse index of Σ is twofold. First

of all, there is no satisfactory definition for the Morse index of an embedded minimal

hypersurface with multiplicity bigger than one: such Σ could be thought as the limiting

object of many qualitatively different sequences, e.g. the elements of the sequence could

realize different covering spaces of the limit, or more pathologically they could be minimal

and have many catenoidal necks (hence Σ would be the limit of a sequence of highly

unstable hypersurfaces).

Also, if one is able to establish a lower bound on the Morse index such as

k ≤ index(supp (Σ)) + nullity(supp (Σ)),

then the multiplicity one conjecture gives infinitely many geometrically distinct minimal

hypersurfaces, provided there exists at least one for every value of k. This was precisely

the strategy used in [1] to prove Yau’s conjecture for generic metrics: in [1] the authors

obtained the multiplicity one result and the equality index(Σ) = k (the nullity vanishing

automatically for bumpy metrics). This was later extended to higher ambient dimension

(but in codimension one) in [22].

In this work we establish the natural counterpart of this conjecture in our setting, namely

for minimal surfaces produced by the viscous relaxation method.

Theorem 1.2. We have N∞ ≡ 1.

We stress that this result holds in arbitrary codimension and without any genericity

assumption. This should be seen as a multiplicity one statement from the perspective of the

parametrization domain, in that localization in the domain (away from branch points) gives

a genuine embedded minimal surface, but a priori it does not exclude multiple covers of the

image surface Θ∞(Σ∞) globally. It seems to be optimal for a min-max approach involving

parametrizations, rather than e.g. approaches involving level sets of functions, and it is

sufficient to obtain an upper bound on the Morse index. This bound, detailed in [15], relies

on having a branched immersion at our disposal, for which a good definition of Morse index

is available.

We remark that, in view of earlier work in [14], Theorem 1.2 would imply by itself the

main result of [12], for parametrized stationary varifolds arising as a limit of stationary

points for the relaxed functionals. However, the proof of Theorem 1.2 relies substantially

on the regularity result obtained in [12], needed in several compactness arguments.
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The main idea is to define a sort of macroscopic multiplicity, on balls Bq
` (p) in an ambient

Euclidean space Rq ⊇ Mm, before passing to the limit (i.e. looking at the immersed

surfaces Φj rather than their limit). This macroscopic multiplicity is roughly the closest

integer to the average of a projected multiplicity, issued by the map Π ◦ Φj

∣∣
B2
r (z)

, where

B2
r (z) is a small domain ball and Π a 2-plane close to the image of Φj

∣∣
∂B2

r (z)
. Then we will

use a continuity argument to show that this number stays constant as we pass from scale 1

to scale
√
σj . At the latter scale we have a very clear understanding of the behaviour of Φj

and in particular we are able to say that here the macroscopic multiplicity equals 1. Thus

the same holds at the original scale and this is sufficient to get N∞ ≡ 1.

Most of the work is contained in Section 6. A more detailed discussion of the strategy,

together with an informal explanation of the technical statements contained in Section 6, is

deferred to the beginning of that section.

On the other hand, Section 5 contains two auxiliary facts about harmonic maps, the

second of which is rather technical in nature, while Section 7 is more standard and uses a

simple covering argument, together with some ideas similar to those in Section 6.

Corollary 1.3. If there is no bubbling or degeneration of the underlying conformal structure,

we have strong W 1,2-convergence Φk → Φ∞. In general we have a bubble tree convergence.

Theorem 1.2 and Corollary 1.3 pave the way to obtain meaningful Morse index bounds.

Indeed, although Theorem 1.2 does not rule out the possibility of having a surface covered

multiple times by Φ∞, a crucial advantage of having a parametrization at our disposal is

that we have a reasonable definition of Morse index and nullity: they are defined with

respect to the area functional and variations in C∞c (Σ∞ \ {z1, . . . , zs}), the points z1, . . . , zs

being the branch points of the immersion Φ∞.1

The natural expected inequalities would be

index(Φ∞) ≤ k ≤ index(Φ∞) + nullity(Φ∞).

An abstract framework to show upper bounds for the Morse index, dealing with general

penalized functionals on Banach manifolds, is developed in [11]. Combining Corollary 1.3

with the general result obtained in [11] and with [15], we reach the following conclusion (we

refer the reader to [11] for the notion of admissible family).

Corollary 1.4. Given an admissible family A ⊆ P(Imm(Σ,Mm)) of dimension k and

calling

WA := inf
A∈A

sup
Φ∈A

area(Φ)

1Although we are dealing with a weakly conformal map Φ∞, for which area and energy are the same, it

is important to remark that the Morse indices for area and energy, denoted indexA and indexE respectively,

should not be expected to agree. The relationship between the two is a subtle problem: in this direction, we

mention the inequality indexE(Ψ) ≤ indexA(Ψ) ≤ indexE(Ψ) + r established in [2], for a branched minimal

immersion Ψ, where r = r(g, b) depends on the genus and the number of branch points of Ψ.
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the width of A, there exists a (possibly branched) minimal immersion Φ of a closed surface

S into Mm such that

(i) genus(S) ≤ genus(Σ),

(ii) WA = area(Φ),

(iii) index(Φ) ≤ k.

However, proving the second inequality, namely k ≤ index(Φ) + nullity(Φ), seems to

require a finer understanding of the convergence Φk → Φ∞. We hope to be able to deal

with this question elsewhere.

Also, it would be interesting to adapt Gromov’s notion of volume spectrum (and higher

codimension generalizations), used to produce infinitely many minimal hypersurfaces in

many settings, to the present situation. To this aim, a natural topological question concerns

how much genus is needed to realize a nontrivial p-sweepout (in the sense of Gromov–Guth),

and how to realize the sweepout within the space of immersions or in an appropriate closure

of it.

2. Acknowledgements

The authors are very grateful to the anonymous referees, for their careful reading of the

manuscript and their considerable effort to help improve the presentation of the paper.

3. Notation

• We will assume, without loss of generality, that Mm is isometrically embedded in some

Euclidean space Rq. Given p ∈Mm and ` > 0, we set Mm
p,` := `−1(Mm − p).

• In what follows, Π will always denote a 2-plane through the origin, which we identify

with the corresponding orthogonal projection Π : Rq → Π. We call Π⊥ the orthogonal

(q − 2)-subspace, identified with the corresponding orthogonal projection. Given 2-planes

Π,Π′, we denote by dist(Π,Π′) an arbitrary distance on the Grassmannian Gr(2,Rq), e.g.

the one induced by Plücker’s embedding of Gr(2,Rq) into the projectivization of Λ2Rq.
The adjoint maps, which are just the inclusions Π ↪→ Rq and Π⊥ ↪→ Rq, are denoted

Π∗ and (Π⊥)∗, so that

idRq = Π∗Π + (Π⊥)∗Π⊥.

Also, Π0 is the canonical 2-plane, so that Π0 : Rq → R2 is the projection onto the first

two coordinates, while Π⊥0 : Rq → Rq−2 is the projection onto the remaining q − 2.

• We call B2
r (x) the ball of center x and radius r in the plane C = R2, while Bq

s(p)

will denote the ball of center p and radius s in Rq. Given p ∈ Π, we call BΠ
s (p) the

two-dimensional ball with center p and radius s in Π, i.e. BΠ
s (p) := Bq

s(p)∩Π. When the

center is not specified, it is always meant to be the origin.
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• Given a function Ψ ∈W 1,2(B2
r (x)) and 0 < s ≤ r, the notation Ψ

∣∣
∂B2

s (x)
always refers to

the trace of Ψ on the circle ∂B2
s (x).

• Given K ≥ 1, we define the following set of Beltrami coefficients:

EK :=

{
µ ∈ L∞(C,C) : ‖µ‖L∞ ≤

K − 1

K + 1

}
.

We let DK denote the set of K-quasiconformal homeomorphisms ϕ : C→ C such that

ϕ(0) = 0, min
x∈∂B2

1

|ϕ(x)| = 1.

If ϕ ∈ DK , we have ϕ ∈ W 1,2
loc (C) and ∂zϕ = µ∂zϕ for some µ ∈ EK , in the weak

sense; we refer the reader to [5, Chapter 4] for the basic theory of K-quasiconformal

homeomorphisms in the plane. Moreover, it is immediate to check that ϕ is a linear map

in DK if and only if ϕ(e1) = e′1 and ϕ(e2) = λe′2, for suitable orthonormal bases (e1, e2),

(e′1, e
′
2) inducing the canonical orientation and a suitable 1 ≤ λ ≤ K.

• We define

D(K) := sup
{
|ϕ(x)| ;x ∈ B2

1, ϕ ∈ DK
}
, s(K) := inf

{∣∣ϕ−1(y)
∣∣ ; |y| ≥ 1

2
, ϕ ∈ DK

}
,

so that ϕ(B
2
1) ⊆ B2

D(K) and ϕ(B
2
s(K)) ⊆ B

2
1/2 for all ϕ ∈ DK . The fact that D(K) <∞

and s(K) > 0 is guaranteed by Corollary A.4. We also set

η(K) :=
1

4
inf
{
|ϕ(x)| ;x ∈ ∂B2

s(K)2 , ϕ ∈ DK
}
> 0.

• We let DΠ
K denote the set of maps having the form Π∗ ◦ R ◦ ϕ, where ϕ ∈ DK and

R : R2 → Π is a linear isometry. Given 0 < δ < 1, we call RΠ
K,δ the set of maps in

W 1,2(B2
1 ,Rq) which are close to some ψ ∈ DΠ

K on the circles of radii 1, s(K), s(K)2,

namely we set

RΠ
K,δ :=

{
Ψ ∈W 1,2(B2

1 ,Rq) : min
ψ∈DΠ

K

max
r∈{1,s(K),s(K)2}

∥∥∥Ψ
∣∣
∂B2

r
(r·)− ψ(r·)

∥∥∥
L∞(∂B2

1)
≤ δ

}
.

• Given Ψ ∈ C1(Ω,Rq), a ball B2
r (z) ⊂⊂ Ω and a 2-plane Π, we define the projected

multiplicity function

N(Ψ, B2
r (z),Π) : Π→ N ∪ {∞} , N(Ψ, B2

r (z),Π)(p) := #((Π ◦Ψ)−1(p) ∩B2
r (z))

and, given p ∈ Π and t > 0, we also define the macroscopic multiplicity

n(Ψ, B2
r (z), BΠ

t (p)) :=
⌊
−
∫
BΠ
t (p)

N(Ψ, B2
r (z),Π) +

1

2

⌋
∈ N.(3.1)

The mean appearing in (3.1) is finite by the area formula and b·c denotes the integer

part. Note that, if the mean is close to an integer k, then the macroscopic multiplicity is

precisely k. Note also that for any p ∈ Rq we have

n(Ψ, B2
r (z), BΠ

t (Π(p))) = n

(
Ψ(z + r·)− p

t
,B2

1 , B
Π
1

)
.
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4. Background on parametrized stationary varifolds

Let Mm ⊂ Rq be a (smooth, closed) embedded submanifold. Assume we have a smooth

conformal immersion Φ : B2
1 →Mm, critical for the functional

Φ 7→
∫
B2

1

d volgΦ +σ2

∫
B2

1

(1 + |AgΦ |
2
gΦ

)2 d volgΦ(4.1)

with respect to smooth variations (Φt) such that Φt is an immersion agreeing with Φ outside

some compact set F ⊂ B2
1 (independent of t). Here gΦ := Φ∗gRq and AgΦ is the second

fundamental form of Φ. Assume that the following entropy condition

σ2 log(σ−1)

∫
B2

1

(1 + |A|2)2 d volgΦ ≤ ε
∫
B2

1

d volgΦ(4.2)

holds for some ε > 0. This condition plays a fundamental role in the viscosity approach

presented in [13], and can be enforced ultimately owing to Struwe’s monotonicity trick (see

[13, Section II] and the references therein). Note that

gΦ =
1

2
|∇Φ|2δ,

∫
B2

1

d volgΦ =
1

2

∫
B2

1

|∇Φ|2

by conformality of Φ.

Given any 0 < ` < 1 and p ∈Mm, recall that Mm
p,` = `−1(Mm − p). The rescaled map

Ψ : B2
1 →Mm

p,`, Ψ := `−1(Φ− p)

is critical for the functional∫
B2

1

d volgΨ +τ2

∫
B2

1

(`2 + |A|2)2 d volgΨ , τ := σ`−2(4.3)

and, being τ2 log(τ−1) ≤ `−4σ2 log(σ−1), it satisfies

τ2 log(τ−1)

∫
B2

1

(`2 + |A|2)2 d volgΨ ≤ ε
∫
B2

1

d volgΨ ,(4.4)

where now A denotes the second fundamental form of Ψ in Mm
p,` and its norm is meant

with respect to the induced metric gΨ.

In the sequel, we will establish many intermediate results on maps Ψ arising in this

way, by means of compactness arguments. The starting point in these arguments is that,

heuristically, if we have sequences Ψk, pk, `k → 0, τk → 0 and εk → 0, then by (4.3) and

(4.4) Ψk should have a subsequential limit Ψ∞ (in some weak sense) which is critical for

the area functional in the tangent space Tp∞Mm (where p∞ is a subsequential limit of the

sequence pk), i.e. Ψ∞ should be a minimal parametrization.

The kind of limiting object that we get is specified by the following definition.

Definition 4.1. A triple (Ω,Φ, N), with Ω ⊆ C open, Φ ∈W 1,2(Ω,Rq) weakly conformal

and N ∈ L∞(Ω,N \ {0}), is a local parametrized stationary varifold if for almost every
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ω ⊂⊂ Ω the rectifiable 2-varifold

vω := (Φ(G ∩ ω), θω), θω(p) :=
∑

x∈G∩ω∩Φ−1(p)

N(x)

is stationary in the open set Rq \ Φ(∂ω), where G denotes the set of Lebesgue points for

both Φ and dΦ. We also require the technical condition

‖vΩ‖ (Bq
s(p)) =

1

2

∫
Φ−1(Bqs (p))

N |∇Φ|2 dL2 = O(s2),

uniformly in p ∈ Rq.

We refer the reader to [12, Definition 2.1] for the notion of almost every domain, as well

as to [12, Definitions 2.2 and 2.9] for another possible definition (in the global and local

versions, respectively), whose equivalence with Definition 4.1 is detailed in [12, Remark 2.3].

The latter formulation will not be used here.

As already mentioned in the introduction, the main result of [12] is that Φ is harmonic

(namely, it coincides a.e. with a harmonic map) and N is (a.e.) constant on those connected

components of Ω where Φ is not itself (a.e.) constant.

Since these facts are crucially used in many intermediate steps towards the proof of

Theorem 1.2, we give a precise statement that summarizes all the information we need to

extract from the works [13] and [12].

Theorem 4.2 (limiting behaviour of almost flat critical immersions). Assume that

Ψk ∈ C2(B
2
R,Mm

pk,`k
) is a sequence of conformal immersions such that Ψk is critical for

the functional (4.3) on the interior B2
R (with τk, `k in place of τ, `) and

• Ψk|∂B2
R
→ γ∞ uniformly, for some γ∞ : ∂B2

R → Rq,

• 1

2

∫
B2
R

|∇Ψk|2 ≤ E,

• τ2
k log(τ−1

k )

∫
B2
R

|A|4 d volgΨk
→ 0,

• `k, τk → 0.

Then, up to subsequences, Ψk ⇀ Ψ∞ in W 1,2(B2
R,Rq), for some Ψ∞ which is continuous

(in the interior), has trace γ∞, and satisfies the convex hull property, namely

Ψ∞(ω) ⊆ co(Ψ∞(∂ω)) for all ω ⊂⊂ B2
R.

The image measures (Ψk)∗
(

1
2 |∇Ψk|2L2

)
in Rq form a tight sequence.

Given ω ⊂⊂ B2
R with Ψ∞(ω) ⊆ Rq \ γ∞(∂B2

R), there exists a quasiconformal home-

omorphism ϕ∞ of R2 and a locally constant multiplicity N∞ ∈ L∞(ω,Z+) such that

the 2-varifolds induced by Ψk

∣∣
ω

subsequentially converge on Rq \ Ψ∞(∂ω) to a (local)

parametrized stationary varifold

(ϕ∞(ω),Ψ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ ).
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in the varifold sense, namely in duality with C0
c ((Rq \ Φ∞(∂ω))×Gr(2,Rq)). Also, on ω

we have the convergence of Radon measures

1

2
|∇Ψk|2 L2 ∗⇀ N∞ |∂1Ψ∞ ∧ ∂2Ψ∞| L2.(4.5)

Setting Γ∞ := γ∞(∂B2
R), we have N∞ ≤ E

π dist(Ψ∞(ω),Γ∞)2 a.e. and the distortion constant

of ϕ∞ is bounded by
(

E
π dist(Ψ∞(ω),Γ∞)2

)2
.

Proof of Theorem 4.2. The proof is essentially already contained in [13] and [12], so we

just present the required adaptations.

Up to subsequences, we can assume that Ψk has a weak limit Ψ∞ in W 1,2(B2
R,Rq), with

trace γ∞, and that the varifolds vk induced by Ψk converge to a varifold v∞ in Rq.

The arguments used in [13, Section III] and in [12, Section 2] show that Ψ∞ has a

continuous representative (on the interior B2
R), satisfying the convex hull property. Also,

from [13, Section III] we have that

v∞ is stationary in U := Rq \ γ∞(∂B2
R)(4.6)

and is an integer rectifiable varifold. We claim that the measures ‖vk‖ = (Ψk)∗
(

1
2 |∇Ψk|2

)
on Rq form a tight sequence. If this were not true, up to subsequences we could find points

qk ∈ Rq with |qk| → ∞ and such that the argument of [13, Lemma III.3] applies (with qk in

place of q), on the region Rq \Ψk(∂B
2
R). Hence,

lim inf
k→∞

‖vk‖(Bq
1(qk)) > 0.

So the varifolds vk−qk converge subsequentially to a nontrivial varifold v′∞ in Rq, stationary

on U ′ := Rq: indeed, the proof of (4.6) can be repeated with Ψk − qk in place of Ψk (and

U ′ in place of U), using the fact that, for all s > 0, the image of Ψk|∂B2
R
− qk is eventually

disjoint from Bq
s . Its total mass ‖v′∞‖(Rq) must be bounded by lim infk→∞ ‖vk‖(Rq) ≤ E;

however, the monotonicity formula implies that ‖v′∞‖(Rq) =∞, a contradiction.

We also claim that the bubbling set is empty in our setting. Indeed, by tightness of

the measures ‖vk‖, a bubbling point would produce, in the limit, a nontrivial stationary

varifold in Rq. Again, its mass would be bounded by E, contradicting the monotonicity

formula.

Now [13, Lemma III.5] gives, up to further subsequences, the limit

νk :=
1

2
|∇Ψk|2

∗
⇀ ν∞, with ν∞ = mL2

in the sense of Radon measures (i.e. in duality with C0
c (B2

R)). The function m(z) ≥ 0

equals N∞(z)|∂1Φ∞ ∧ ∂2Φ∞|(z) a.e., for a positive integer N∞(z) which is bounded by the

density of v∞ at Ψ∞(z) whenever Ψ∞(z) ∈ U .

Let ω ⊂⊂ B2
R be such that Ψ∞(ω) ⊆ Rq \ Γ∞. Defining s := dist(Ψ∞(ω),Γ∞) > 0, note

that

Bq
s(q) ⊆ U for all q ∈ Ψ∞(ω).
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Hence, by the monotonicity formula, the density of v∞ at such points q is bounded by E
πs2

.

This gives the upper bound for N∞. As explained in detail in [12, Section 4], there exists a

quasiconformal homeomorphism ϕ∞ of the plane, with distortion constant bounded by the

square of the (essential) supremum of N∞|ω, such that Ψ∞ ◦ ϕ−1
∞ is weakly conformal on

ϕ∞(ω). Finally, it is the main outcome of [13] that the 2-varifolds induced by Φk|ω converge

to the (local) parametrized stationary varifold (ϕ∞(ω),Ψ∞ ◦ ϕ−1
∞ , N∞ ◦ ϕ−1

∞ ) (whose mass

measure is bounded above by ‖v∞‖), in the complement of Ψ∞(∂ω).2 �

Theorem 4.3 (regularity of parametrized stationary varifolds). In the situation of

Theorem 4.2, Ψ∞ ◦ ϕ−1
∞ : ϕ∞(ω) → Rq is harmonic. Also, if ω is connected and Ψ∞|ω

is not constant, N∞ equals a constant integer (a.e.) on ω and Ψ∞ ◦ ϕ−1
∞ is a minimal

branched immersion.

Proof of Theorem 4.3. This is a special case of the main theorem in [12], namely [12,

Theorem 5.7]. �

5. Two lemmas on harmonic maps

Lemma 5.1 (uniform convergence for Dirichlet problem with variable domain).

Let γk ∈ C0(∂B2
1 ,R2) be a sequence of Jordan curves converging (in C0) to a Jordan curve

γ∞ and let fk ∈ C0(∂B2
1) be a sequence converging uniformly to a function f∞. Let Dk be

the domain bounded by γk, let uk ∈ C0(Dk) be the harmonic extension of fk ◦ γ−1
k , and

similarly define D∞ and u∞. Then uk → u∞ in C0
loc(D∞). Moreover, if yk → y∞ with

yk ∈ Dk and y∞ ∈ D∞, then uk(yk)→ u∞(y∞).

Note that such harmonic extensions exist and are unique, since by Carathéodory’s theorem

there exist homeomorphisms B
2
1 → Dk restricting to biholomorphisms B2

1 → Dk (and

similarly for D∞), allowing to reduce matters to the well-known existence and uniqueness

of the harmonic extension on the unit disk.

Proof of Lemma 5.1. Since the functions fk are equibounded, from the maximum principle

and interior estimates it follows that the functions uk are equibounded in C2(ω), for any

ω ⊂⊂ D∞, and hence by Ascoli–Arzelà theorem the convergence uk → u∞ in C0
loc(D∞)

follows from the second claim.

It suffices to show that the second claim holds for a subsequence: once this is done, it can

be obtained for the full sequence by a standard contradiction argument (given a sequence

yk → y∞, if uk(yk) does not converge to u∞(y∞), we can find a subsequence such that it

converges to a different value; then we reach a contradiction along a further subsequence

where the second claim holds).

Up to removing a finite set of indices, we can suppose that there is a point p such that

p ∈ Dk for all k ∈ N ∪ {∞}. By Carathéodory’s theorem, we can find homeomorphisms

2The convergence actually holds on all of Rq (or, more precisely, on Rq ×Gr(2,Rq)) if ν∞(∂ω) = 0.
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υk : B
2
1 → Dk restricting to biholomorphisms from B2

1 to Dk, so that υk
∣∣
∂B2

1
= γk ◦ βk, for

suitable homeomorphisms βk : ∂B2
1 → ∂B2

1 (for all k ∈ N), and υk(0) = p.

Since the maps υk and υ−1
k are equibounded and harmonic, we can assume that

υk → υ∞, ζk := υ−1
k → ζ∞(5.1)

in C∞loc(B
2
1) and C∞loc(D∞), respectively. Note that υ∞ is a holomorphic map taking values

into D∞, while ζ∞ is holomorphic and takes values into B2
1 (by the maximum principle,

since ζ∞(p) = 0 and |ζ∞| ≤ 1). So for any w ∈ D∞ the set {ζk(w) | k ∈ N}∪{ζ∞(w)} ⊂ B2
1

is compact and we infer

υ∞ ◦ ζ∞(w) = lim
k→∞

υk ◦ ζk(w) = w.(5.2)

Hence υ∞ is surjective and thus an open map. So υ∞(B2
1) = D∞ and, by [16, Theorem 10.43]

(applied with f := υ∞ − w, g := υk − w, for a fixed w ∈ D∞ and an arbitrary circle

∂B2
r ⊆ B2

1 avoiding υ−1
∞ (w), with k large enough), it is also injective. By Carathéodory’s

theorem, it extends continuously to a homeomorphism (still denoted υ∞) from B
2
1 to D∞

and we have υ∞
∣∣
∂B2

1
= γ∞ ◦ β∞ for a suitable homeomorphism β∞ : ∂B2

1 → ∂B2
1 .

Up to subsequences, applying Helly’s selection principle to suitable lifts βk : R → R,

we can assume that βk → β̃∞ everywhere, for some order-preserving β̃∞.3 On the other

hand, since supk
∫
B2

1
|υ′k|

2 = supk L2(Dk) is finite, we have weak convergence υk ⇀ υ∞ in

W 1,2(B2
1) and thus weak convergence γk ◦ βk ⇀ γ∞ ◦ β∞ in L2(∂B2

1). The everywhere

convergence γk ◦ βk → γ∞ ◦ β̃∞ implies γ∞ ◦ β∞ = γ∞ ◦ β̃∞ a.e. and thus β∞ = β̃∞ a.e.

In particular, β∞ is also order-preserving. Since β∞ is continuous and both maps are

order-preserving, we conclude that β∞ = β̃∞ everywhere. Using again the continuity of β∞,

as well as the everywhere convergence of the order-preserving maps βk → β∞, we also get

that βk → β∞ uniformly.

Being υk the harmonic extension of γk ◦βk (for k ∈ N∪{∞}), we conclude that υk → υ∞

in C0(B
2
1). Let Uk ∈ C0(B

2
1) be the harmonic extension of fk ◦ βk and note that Uk → U∞

in C0(B
2
1). By conformal invariance, uk := Uk ◦ υ−1

k is the harmonic extension of fk ◦ γ−1
k

on Dk (for k ∈ N ∪ {∞}).

Finally, we claim that in the situation of the second claim we have υ−1
k (yk)→ υ−1

∞ (y∞).

This easily follows from the injectivity of υ∞: if we had
∣∣υ−1
k (yk)− υ−1

∞ (y∞)
∣∣ ≥ ε along

some subsequence (for some ε > 0), we would have a subsequential limit point x∞ ∈ B
2
1 with∣∣x∞ − υ−1

∞ (y∞)
∣∣ ≥ ε and υ∞(x∞) = limk→∞ yk = y∞, which is a contradiction. Hence,

uk(yk) = Uk(υ
−1
k (yk))→ U∞(υ−1

∞ (y∞)) = u∞(y∞),(5.3)

as desired. �

3The map β̃∞ could also be order-reversing: this happens precisely if βk reverses the orientation along

the subsequence. For simplicity, we assume βk, β̃∞ to be order-preserving (the other case being analogous).
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Remark 5.2. In the situation of Lemma 5.1, if Dk ⊇ D for all k ∈ N∪{∞} then uk → u∞

uniformly on D. Indeed, if this were not true, then we could find points yk ∈ D ⊆ Dk such

that |uk(yk)− u∞(yk)| ≥ ε (along a subsequence) for some ε > 0. Assuming without loss of

generality yk → y∞, we would get

lim inf
k→∞

|uk(yk)− u∞(y∞)| ≥ ε

by continuity of u∞ on D. This would however contradict the last part of Lemma 5.1.

Lemma 5.3 (injectivity under a boundary constraint). Given K ≥ 1 and s, ε > 0,

there exists a constant 0 < δ0 < ε, depending only on q,K, s, ε, with the following property:

whenever

• Ψ ∈W 1,2 ∩ C0(B
2
1,Rq) has

∥∥∥Ψ
∣∣
∂B2

1
− ψ(s·)

∣∣
∂B2

1

∥∥∥
C0(∂B2

1)
≤ δ0 for some ψ ∈ DΠ

K ,

• Ψ ◦ ϕ−1 is harmonic and weakly conformal on ϕ(B2
1), where ϕ : R2 → R2 is a K-

quasiconformal homeomorphism,4

then Π ◦Ψ ◦ ϕ−1 is a diffeomorphism from ϕ(B
2
1/2) onto its image and

dist(Π,Π(x)) < ε, Π(x) := 2-plane spanned by ∇(Ψ ◦ ϕ−1)(x),(5.4)

for all x ∈ ϕ(B
2
1/2). In particular, Π ◦Ψ is injective on B

2
1/2.

Proof of Lemma 5.3. Assume by contradiction that, for a sequence δk ↓ 0, there exist maps

Ψk : B2
1 → Rq, planes Πk, homeomorphisms ϕk : R2 → R2 and coefficients µk such that the

claim fails with δ0 = δk. By Corollary A.4, up to subsequences we have Πk → Π∞ and

Ψk

∣∣
∂B2

1
→ Γ (uniformly), where Γ : ∂B2

1 → Rq is the restriction of a map in DΠ∞
K .

We can assume that ϕk ∈ DK (replacing ϕk with ϕk−ϕk(0)
min

∂B2
1
|ϕk−ϕk(0)|). By Corollary A.4,

we can assume that ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞ in C0
loc(R2), for some homeomorphism

ϕ∞ : R2 → R2.

By harmonicity, up to subsequences we get Θk := Ψk ◦ ϕ−1
k → Θ∞ in C2

loc(ϕ∞(B2
1)), for

some Θ∞ : ϕ∞(B2
1)→ Rq, so that Θ∞ is weakly conformal and harmonic.

On the other hand, by Lemma 5.1 applied to the sequence of harmonic maps Θk on the

Jordan domains ϕk(B2
1), Θ∞ is the harmonic extension of Γ◦ϕ−1

∞ and Ψk → Θ∞◦ϕ∞ =: Ψ∞

in C0(B
2
1): see Remark 5.2. By the maximum principle we have Π⊥∞ ◦Θ∞ = 0 and thus

Π∞ ◦Θ∞ is either holomorphic or antiholomorphic on ϕ∞(B2
1) (once Π∞ is identified with

C).

Now, given two Jordan domains U, V ⊂ C, if a holomorphic map h : U → C extends to

a continuous map h : U → C mapping ∂U onto ∂V homeomorphically, then h maps U

4The maps ψ and ϕ are not necessarily related to each other.
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diffeomorphically onto V .5 Being Π∞ ◦Θ∞
∣∣
∂ϕ∞(B2

1)
= Π∞ ◦ Γ ◦ ϕ−1

∞ a Jordan curve, we

deduce that Π∞ ◦Θ∞ is a diffeomorphism from ϕ∞(B2
1) onto its image.

Fix now a compact neighborhood F of ϕ∞(B
2
1/2) in ϕ∞(B2

1), with smooth boundary.

Since Θk → Θ∞ in C1
loc(ϕ∞(B2

1)), we obtain that eventually Πk ◦Θk is a diffeomorphism of

F onto its image, with

dist(Πk,Πk(x)) < ε, x ∈ F.

The fact that eventually ϕk(B
2
1/2) ⊆ F yields the desired contradiction. �

6. Technical iteration lemmas

6.1. Informal discussion of the results. Since the intermediate results contained in

this section have rather involved statements, with several different constants and thresholds

appearing along the way, we find it helpful to provide an informal explanation of the

meaning of these statements and constants, as well as a rough sketch of the underlying

ideas in the proofs.

This section contains four important intermediate results, namely Lemmas 6.2, 6.3, 6.5 and

6.6, which all invoke Theorem 4.2 (except for Lemma 6.6) by means of a compactness-and-

contradiction argument. All statements are about a conformal immersion Ψ : B
2
r(z)→Mm

p,`,

critical for the functional (4.3) (on the interior). For simplicity, in this discussion we assume

z = 0 and r = 1. The first three statements require the following:

(i) a control of the shape of the images of three circles, dictated by a distortion constant K;

namely we require that

Ψ ∈ RΠ
K,δ0

for some 2-plane Π and some small δ0; recall from Section 3 that this means (assuming

Π = R2 ⊆ Rq, up to rotations of Rq) that Ψ is C0-close to a K-quasiconformal

homeomorphism ϕ ∈ DK , ϕ : R2 → R2 ⊆ Rq on the three circles ∂B2
1 , ∂B2

s(K), ∂B
2
s(K)2

(it would be far too restrictive to ask for C0-closeness on all of B2
1);

(ii) an upper bound E on the Dirichlet energy 1
2

∫
B2

1
|∇Ψ|2;

(iii) an upper bound V on the area (divided by π) of the immersed surface Ψ(B2
1) ∩ Bq

1,

taking into account multiplicity; namely,∫
Ψ−1(Bq1)

d volgΨ =
1

2

∫
Ψ−1(Bq1)

|∇Ψ|2 ≤ V π,

5Indeed, h
∣∣
U

must be an open map, hence h(U) \ ∂V is closed and open in C \ ∂V and it follows that

h(U) = V . We can find biholomorphisms u : B2
1 → U and v : B2

1 → V extending to homeomorphisms of the

closures. The map g := v−1 ◦ h ◦ u satisfies g(B2
1) ⊆ B2

1 and maps ∂B2
1 to itself homeomorphically. Given

w ∈ B2
1 , for r < 1 close enough to 1 the loop g(reiθ)− w is homotopic to g(eiθ) in C \ {0}, so the classical

argument principle gives #g−1(w) = 1.
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where gΨ is the pullback of the Euclidean metric, which equals 1
2 |∇Ψ|2δ by conformality;

this upper bound will give a crucial improvement on the last conclusions of Theorem 4.2,

as discussed below.

Also, in the same spirit as Theorem 4.2, these lemmas assume τ, `� 1 and

τ2 log(τ−1)

∫
B2

1

|A|4 d volgΨ �
∫
B2

1

d volgΨ .

In Lemmas 6.3 and 6.5, the closeness in (i) is measured by a threshold δ0 (which will be

specified according to Lemma 5.3), while other closeness or smallness constraints will be

measured by thresholds ε0, ε
′
0, ε
′′
0 in Lemmas 6.2, 6.3, 6.5, respectively.

Observe that the hypotheses guarantee that Π ◦Ψ maps B2
s(K) to a subset of BΠ

1/2 and

∂B2
1 to a subset of Π \ BΠ

1 (approximately), hence Ψ(B2
s(K)) is far away from Ψ(∂B2

1).

Hence, when arguing by contradiction, we can apply the last part of Theorem 4.2 and

obtain in the limit a parametrized stationary varifold close to Ψ|ω (we will choose either

ω := B2
s(K) or the smaller domain ω := B2

s(K)2). The reason to impose the geometric control

on three circles, rather than two, is merely technical and is convenient for the proofs.

Lemma 6.2 says that the projected multiplicity N(Ψ, B2
s(K)2 ,Π) (introduced in Section 3)

issued by Ψ from the ball B2
s(K)2 has an average close to a positive integer k, on the ball

BΠ
η(K). It also asserts that this holds for 2-planes Π′ close enough to Π. As a consequence,

the corresponding macroscopic multiplicity will be precisely k.

Observe that the hypotheses guarantee that Π ◦ Ψ maps B2
s(K)2 approximately to a

superset of BΠ
η(K) (see Section 3 for the definition of these geometrical constants). Hence,

arguing by contradiction, we obtain in the limit a (parametrized) stationary varifold which

is close, in the varifold sense, to Ψ(B2
s(K)2). The constraints on Ψ force this limiting varifold

to lie on a 2-plane, so by the constancy theorem it has constant integer multiplicity on

BΠ
η(K), giving a contradiction. Note that the volume constraint V is not used here.

As already mentioned in the introduction, we would now like to find a decreasing sequence

of radii r0 := 1, . . . , rk ≈
√
τ , with rj comparable to rj+1, such that the maps Ψ(rj ·) satisfy

the same assumptions (with different scales `0 := `, . . . , `k in the target). The strategy to

get Theorem 1.2 is then to show that the corresponding macroscopic multiplicities nj do

not change from one scale to the next one: n0 = n1 = · · · = nk. At the smallest scale, we

will be able to say that the immersed surface `−1
k Ψ(B2

rk
) has small second fundamental

form in L4, implying a strong graphical control that allows to conclude nk = 1 and thus

n0 = 1. In the situation where we will apply this strategy (namely, in Section 7), upon

careful selection of the center z, it will be easy to impose the “maximal” bounds

(`′)−2

∫
Ψ−1(Bq

`′ )
d volgΨ ≤ V π, τ2 log(τ−1)

∫
B2
r′

|A|4 d volgΨ �
∫
B2
r′

d volgΨ ,

for all 0 < `′ < 1 and 0 < r′ < 1, by means of covering arguments. However, we cannot a

priori impose similar bounds on the Dirichlet energy and on the shape of the images of

small circles (items (ii) and (i)). Note that if (`′)−1Ψ(r′·) satisfies (i), then we can bound
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the Dirichlet energy of this rescaled map on the ball B2
s(K), in terms of V , as Ψ maps

B2
s(K)r′ into Bq

`′ (approximately). So (i) would give (ii) for free (on a smaller domain ball),

with a uniform bound (depending on K, V ) in place of E.

Lemma 6.3 is the main technical workhorse, and essentially says that we can circumvent

this difficulty: namely, the hypotheses (i)–(iii) are still satisfied for a smaller radius r′ ≤ r
2

in the domain, with a smaller scale `′` ≤ `
2 in the codomain. Note that the reference point

p also changes; this will in principle destroy the maximal volume bound, but we can still

recover (iii) in the new situation, exploiting the fact that the multiplicity is quantized in

the limit (see the proof of Lemma 6.3 and Definition 6.4 for the details).

The idea of the proof of Lemma 6.3 is that, up to a quasiconformal homeomorphism ϕ,

Ψ is close (in the weak W 1,2-topology) to a conformal harmonic map with small oscillation

with respect to Π. Hence, by Lemma 5.3, it will be arbitrarily close to an affine injective

conformal map L on smaller and smaller balls B2
r′ . If ϕ were the identity, given a (finite)

collection of circles centered at 0 we would get C0-closeness of Ψ(r′·) to L on all these

circles, for some r′ small, and we would be done.

The important observation now is that the distortion constant of ϕ∞ can be bounded

solely in terms of V : indeed, as in the proof of Theorem 4.2, Ψ(B2
1) ∩ Bq

1 is close to a

stationary varifold v (in Bq
1), whose density on Bq

1/2 is bounded in terms of V . Since

Ψ(B2
s(K)) ⊆ B

q
1/2 (approximately), the upper bound on the distortion constant given by

Theorem 4.2 can be improved to a constant K ′(V ) depending only on V . Hence, we get (i)

also for a smaller radius r′ (with K ′(V ) replacing K) and, as already said, this gives also

(ii) with a bound E′(V ) in place of E. Our sequence of radii is now obtained by iterated

application of Lemma 6.3 with parameters K ′(V ), E′(V ), V .

Given constants K ′′, E′′ and V , which will be chosen when applying these results in

Section 7, we then fix K0 := max{K ′(V ),K ′′} and E0 := max{E′(V ), E′′}, so that all the

statements apply for all radii r0, r1, . . . , rk.

Lemma 6.5 says that the macroscopic multiplicity does not change after applying Lemma

6.3, namely when replacing the domain and codomain scales r, ` with r′, ``′ (and p,Π with

p′,Π′). Its proof uses Lemma 5.3 to claim that Ψ is approximately a graph over Π, and

then applies the constancy theorem (in the limiting situation).

Finally, as it will be clear along the proof of Theorem 7.1, Lemma 6.6 concerns the

behaviour of a conformal immersion Φ : B2
1 →Mm at a scale (comparable to) ` :=

√
σ in

the codomain, when Φ is critical for (4.1). Assume that Φ(B2
r ) has diameter approximately

`2, and assume the smallness

σ2

∫
B2
r

|A|4 d volgΦ �
∫
B2
r

d volgΦ(6.1)

and the bound
∫
B2
r
d volgΦ ≤ C`2. When dilating the codomain by a factor `−1, (6.1)

becomes
∫
B2
r
|AΨ|4 d volgΨ � 1, for Ψ := `−1(Φ − Φ(0)). As Ψ is conformal, we have

∆Ψ = 2HΨe
2λ (where eλ is the conformal factor). Thus, we get that ∆Ψ is small in L4
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provided we can obtain an upper bound on λ; once this is done, by Sobolev’s embedding we

obtain a C1-control on Ψ, which implies that the macroscopic multiplicity is 1 at this scale.

In order to bound λ, we use a result by Hélein (belonging to a broad class of phenomena

of integrability by compensation, whose study dates back to the discovery of Wente’s

inequality), guaranteeing the existence of an orthonormal frame {e1(z), e2(z)} for the

tangent space of the immersed surface Ψ, with a bound on ‖∇ei‖L2 depending only the

L2-norm of the second fundamental form. Then we show that

−∆λ = ∂1e1 · ∂2e2 − ∂2e1 · ∂1e2

and we compare λ with the solution µ to the same equation, with zero boundary conditions

on a ball. A pointwise bound for µ now follows from Wente’s inequality, from which one

easily deduces the desired upper bound for λ. Although not necessary, we will also show

how to obtain a pointwise lower bound on λ in this situation.

While reading Sections 6 and 7, it can be useful to refer to the following diagrams,

illustrating how the constants depend on each other:

K V E

ε0 ε′0

δ0

V

K ′′ K ′(V ) E′(V ) E′′

K0 E0

ε′0 ε′′0

(an arrow A→ B means that B depends on A).

6.2. Rigorous statements and proofs. We now make the above discussion rigorous.

In a first reading, it can be helpful to pretend that all quasiconformal homeomorphisms

appearing in the proofs coincide with the identity.

Definition 6.1. Given V > 0 with V = bV c+ 1
2 , we define the constants

K ′(V ) := (4V )2, E′(V ) := 2πK ′(V )D(K ′(V ))2.

In the sequel, it will be convenient to assume always that V ∈ N + 1
2 , so that V = bV c+ 1

2 .

Lemma 6.2 (almost integrality of averaged projected multiplicity). There exists

0 < ε0 < η(K), depending on E, V > 0, K ≥ 1 and Mm, such that whenever Ψ ∈
C2(B

2
r(z),Mm

p,`) is a conformal immersion, critical for the functional (4.3) on B2
r (z), and

Π,Π′ are 2-planes satisfying

• Ψ(z + r·) ∈ RΠ
K,ε0,

• 1

2

∫
B2
r (z)
|∇Ψ|2 ≤ E,
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•
∫

Ψ−1(Bq1)
d volgΨ =

1

2

∫
Ψ−1(Bq1)

|∇Ψ|2 ≤ V π,

• τ2 log(τ−1)

∫
B2
r (z)
|A|4 d volgΨ ≤ ε0 for some 0 < τ ≤ ε0,

• dist(Π,Π′) ≤ ε0 and 0 < ` ≤ ε0,

then the projected multiplicity N(Ψ, B2
s(K)2r(z),Π) satisfies

dist
(
−
∫
BΠ
η(K)

N(Ψ, B2
s(K)2r(z),Π), Z+

)
<

1

8
,(6.2)

∣∣∣∣∣ −
∫
BΠ
η(K)

N(Ψ, B2
s(K)2r(z),Π)− −

∫
BΠ′
η(K)

N(Ψ, B2
s(K)2r(z),Π

′)

∣∣∣∣∣ < 1

8
,(6.3)

where Z+ is the set of positive integers.

Proof of Lemma 6.2. We can assume z = 0 and r = 1. Suppose by contradiction that there

exist sequences εk ↓ 0, τk, `k, points pk, maps Ψk and planes Πk,Π
′
k making the claim

false for ε0 = εk. Up to subsequences, we can assume that Πk,Π
′
k → Π∞, that Ψk has a

weak limit Ψ∞ in W 1,2(B2
1 ,Rq), with traces Ψ∞

∣∣
∂B2

s
(s·) = ψ(s·) for some ψ ∈ DΠ∞

K and all

s ∈
{

1, s(K), s(K)2
}

(thanks to Corollary A.4), and that the varifolds vk induced by Ψk

converge to a varifold v∞ in Rq.

We now invoke Theorem 4.2. Recalling the definition of DΠ∞
K and s(K) from Section 3,

the convex hull property satisfied by Ψ∞ gives

Ψ∞(B
2
s(K)) ⊆ co

(
Ψ∞(∂B2

s(K))
)

= co
(
ψ(∂B2

s(K))
)
⊆ Bq

1/2,(6.4)

so that, being Γ∞ = Ψ∞(∂B2
1) = ψ(∂B2

1) disjoint from Bq
1 (as |ψ(x)| ≥ 1 for x ∈ ∂B2

1 , by

definition of DK),

dist(Ψ∞(x),Γ∞) ≥ 1

2
for x ∈ B2

s(K).(6.5)

Theorem 4.2 gives the varifold convergence v′k
∗
⇀ v′∞ and v′′k

∗
⇀ v′′∞ as k → ∞, as well

as the tightness of the sequences of mass measures ‖v′k‖ and ‖v′′k‖, where v′k and v′′k are

the varifolds issued by Ψk

∣∣
B2
s(K)

and Ψk

∣∣
B2
s(K)2

respectively, while v′∞ and v′′∞ are the ones

issued by (ϕ∞(B2
s(K)),Ψ∞ ◦ ϕ

−1
∞ , N∞ ◦ ϕ−1

∞ ) and (ϕ∞(B2
s(K)2),Ψ∞ ◦ ϕ−1

∞ , N∞ ◦ ϕ−1
∞ ).6

Although not needed in the present proof, let us remark the following improvement on

the last statement in Theorem 4.2, which will be used in the proof of Lemma 6.3: we have

N∞ ≤
V π

π
(

1
2

)2 = 4V

and the distortion constant of ϕ∞ is bounded by K ′(V ) = (4V )2. Indeed, since v∞ is

stationary in Bq
1 and ‖v∞‖(Bq

1) ≤ V π, by the monotonicity formula its density is bounded

6The fact that one can choose the same multiplicity N∞ and the same quasiconformal homeomorphism

ϕ∞ : R2 → R2 for both domains is evident from the proof of Theorem 4.2.
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by V π
π(1−|p|)2 at any p ∈ Bq

1. In particular, (6.4) gives an upper bound 4V at points in

Ψ∞(B2
s(K)), which implies our claim.

The support of v′′∞ is contained in the plane Π∞, by the convex hull property enjoyed by

Ψ∞ and the fact that Ψ∞ maps ∂B2
s(K)2 to Π∞. Since Ψ∞(∂B2

s(K)2) does not intersect BΠ∞
η(K),

the varifold v′′∞ is stationary here and thus, by the constancy theorem [18, Theorem 41.1],

it has a constant density ν ∈ N. We must have ν > 0, since Ψ∞(B2
s(K)2) is a superset of

BΠ∞
η(K) by Lemma A.1 (applied to η(K)−1Ψ∞(s(K)2·)). The area formula and the tightness

of ‖v′′k‖ then give

−
∫
B

Πk
η(K)

N(Ψk, B
2
s(K)2 ,Πk) =

‖(Πk)∗v
′′
k‖ (BΠk

η(K))

πη(K)2
→
‖(Π∞)∗v

′′
∞‖ (BΠ∞

η(K))

πη(K)2
= ν.

Similarly, −
∫
B

Π′
k

η(K)

N(Ψk, B
2
s(K)2 ,Π

′
k) → ν as k → ∞. Hence the claim is eventually true,

yielding the desired contradiction. �

We now specify δ0 so that Lemma 5.3 applies, with ε := ε0 and s := s(K). Note that

δ0 < ε0 < η(K) and that ε0 and δ0 still depend on V , K and E.

Lemma 6.3 (existence of a smaller good scale). Given E > 0 and K ≥ 1 there exists

a constant 0 < ε′0 < ε0 (depending on E, V,K,Mm) with the following property: if a

conformal immersion Ψ ∈ C2(B
2
r(z),Mm

p,`) is critical for the functional (4.3) (on the

interior) and satisfies

• Ψ(z + r·) ∈ RΠ
K,δ0,

• 1

2

∫
B2
r (z)
|∇Ψ|2 ≤ E,

• 1

π

∫
Ψ−1(Bq1)

d volgΨ ,
1

πη(K)2

∫
Ψ−1(Bq

η(K)
)
d volgΨ ≤ V ,

• τ2 log(τ−1)

∫
B2
r (z)
|A|4 d volgΨ ≤ ε

′
0 for some 0 < τ ≤ ε′0,

• 0 < ` ≤ ε′0,

then there exist a new point p′ ∈Mm
p,`, new scales r′, `′ and a new 2-plane Π′ with

• ε′0r < r′ < s(K)r,

• ε′0 < `′ <
1

2
,

• dist(Π,Π′) < ε0,

• (`′)−1(Ψ(z + r′·)− p′) ∈ RΠ′

K′(V ),δ0
,

• 1

2

∫
B2
r′ (z)

∣∣∇Ψ′
∣∣2 < E′(V ), for Ψ′ := (`′)−1(Ψ− p′) (defined on B2

r′(z)),

• 1

π

∫
(Ψ′)−1(Bq1)

d volgΨ′ ,
1

πη(K)2

∫
(Ψ′)−1(Bq

η(K)
)
d volgΨ′ <

⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.
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Proof of Lemma 6.3. We can assume z = 0 and r = 1. By contradiction, suppose that there

is a sequence εk ↓ 0 such that the claim fails (with ε′0 = εk) for all radii εk < r′ < s(K), for

some Ψk and Πk satisfying all the hypotheses. As observed in the proof of Lemma 6.2, up to

subsequences we get a limiting local parametrized stationary varifold (Ω∞,Θ∞, N∞ ◦ ϕ−1
∞ )

in Rq, where Θ∞ = Ψ∞ ◦ ϕ−1
∞ and Ω∞ = ϕ∞(B2

s(K)) for a suitable K ′(V )-quasiconformal

homeomorphism ϕ∞ of the plane. By Theorem 4.3, Θ∞ is harmonic. Also, it takes values

in the tangent space T at p∞ (translated to the origin).

Moreover, assuming also that Πk → Π∞ and pk → p∞, by Corollary A.4 we still have

Ψ∞ ∈ RΠ∞
K,δ0

: indeed, if ψk ∈ DΠk
K are such that

∥∥∥Ψk

∣∣
∂B2

s
(s·)− ψk(s·)

∥∥∥
L∞(∂B2

1)
≤ δ0 for

s = 1, s(K), s(K)2, then there exists ψ∞ ∈ DΠ∞
K such that ψk → ψ∞ (up to subsequences),

uniformly on the three circles; for any bounded measurable function χ : ∂B2
1 → Rq with

‖χ‖L1 ≤ 1, weak convergence of the traces Ψk

∣∣
∂B2

s
⇀ Ψ∞

∣∣
∂B2

s
in L2 gives∫

∂B2
1

χ · (Ψ∞
∣∣
∂B2

s
(s·)− ψ∞(s·)) = lim

k→∞

∫
∂B2

1

χ · (Ψk

∣∣
∂B2

s
(s·)− ψk(s·)) ≤ δ0

for s = 1, s(K), s(K)2; thus, being χ arbitrary, the desired inequality holds also for k =∞.

We can assume that ϕ∞(0) = 0. By definition of δ0 and Lemma 5.3, applied to

Ψ∞(s(K)·) and ϕ∞(s(K)·), Θ∞ is a diffeomorphism from ϕ∞(B
2
s(K)/2) onto its image and

the differential ∇Θ∞(0) is a conformal linear map of full rank, spanning a plane Π′ with

dist(Π∞,Π
′) < ε0.

Since s(K)2 ≤ s(K)
2 , the varifolds vk induced by Ψk

∣∣
B2
s(K)2

converge to v∞, induced

by (ϕ∞(B2
s(K)2),Θ∞, N∞ ◦ ϕ−1

∞ ). Using Lemma A.1, applied to η(K)−1Π∞ ◦Ψ∞(s(K)2·),
and the fact that δ0 < η(K), we deduce the existence of a point y ∈ B2

s(K)2 such that

Π∞ ◦Ψ∞(y) = 0. By the convex hull property enjoyed by Ψ∞, it follows that

|Ψ∞(y)| =
∣∣∣Π⊥∞ ◦Ψ∞(y)

∣∣∣ ≤ δ0,

as Ψ∞(∂B2
s(K)2) ⊆

{
p :
∣∣Π⊥∞(p)

∣∣ ≤ δ0

}
. Since ‖v∞‖ (Bq

η(K)) ≤ V πη(K)2, the stationarity

of v∞ on Bq
η(K) implies that its density at Ψ∞(y) is at most

V πη(K)2

π(η(K)− δ0)2
≤
(

η(K)

η(K)− ε0

)2

V.(6.6)

Being v∞ stationary in the embedded surface Θ∞(ϕ∞(B2
s(K)2)), the constancy theorem

gives that its density θ is a constant integer here. Thus we have

‖v∞‖ (B
q
t (p
′
∞)) <

(⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2

)
πt2, p′∞ := Θ∞(0) ∈ T,(6.7)

for all t > 0 small enough. Fix now any r′ < s(K) such that we have the strong convergence

Ψk(r
′·) → Ψ∞(r′·) in C0(∂B2

1 ∪ ∂B2
s(K) ∪ ∂B

2
s(K)2) along a subsequence.7 Note that

7This can be obtained by applying e.g. [12, Lemma A.5] to the weakly converging R3q-valued maps

(Ψk,Ψk(s(K)·),Ψk(s(K)2·)) ⇀ (Ψ∞,Ψ∞(s(K)·),Ψ∞(s(K)2·)).
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λ−1ϕ∞(r′·) ∈ DK′(V ), where λ := min|x|=r′ |ϕ∞(x)|. Also, the fact that Ψ∞ = Θ∞ ◦ ϕ∞
and the smoothness of Θ∞ give∣∣Ψ∞(r′x)−Ψ∞(0)−

〈
∇Θ∞(0), ϕ∞(r′x)

〉∣∣ < δ0 |∇Θ∞(0)|√
2D(K ′(V ))

∣∣ϕ∞(r′x)
∣∣ ≤ δ0`

′(6.8)

if r′ is chosen small enough, where `′ := |∇Θ∞(0)|√
2

λ and x ∈ B2
1. This implies

(`′)−1(Ψk(r
′·)− p′∞) ∈ RΠ′

K′(V ),δ0

by conformality of ∇Θ∞(0). Shrinking r′, we can also ensure that `′ < 1
2 , as well as∫

B2
r′

N∞|∂1Ψ∞ ∧ ∂2Ψ∞| ≤
K ′(V )

2

∫
B2
D(K′(V ))λ

|∇Θ∞|2

< K ′(V )(D(K ′(V ))λ)2π |∇Θ∞(0)|2 .
(6.9)

Calling v′∞ the varifold induced by (ϕ∞(B2
r′), (`

′)−1(Θ∞− p′∞), N∞ ◦ϕ−1
∞ ), in view of (6.7)

we can even guarantee that

‖v′∞‖ (B
q
1)

π
,
‖v′∞‖ (B

q
η(K))

πη(K)2
<
⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.

Calling p′k the closest point to p′∞ in Mm
pk,`k

(eventually defined and converging to p′∞,

since Mm
pk,`k

→ T ), thanks to (6.8) and λ−1ϕ∞(r′·) ∈ DK′(V ), eventually we have

(`′)−1(Ψk(r
′·)− p′k) ∈ RΠ′

K′(V ),δ0
.

Moreover, (6.9) and (4.5) give

1

2

∫
B2
r′ (z)
|∇Ψk|2 →

∫
B2
r′ (z)

N∞ |∂1Ψ∞ ∧ ∂2Ψ∞| < (`′)2E′(V ).

From the convergence of the varifolds v′k induced by (`′)−1(Ψk − p′k)
∣∣
B2
r′

to v′∞ we get

lim sup
k→∞

‖v′k‖ (Bq
1)

π
, lim sup

k→∞

‖v′k‖ (Bq
η(K))

πη(K)2
<
⌊( η(K)

η(K)− ε0

)2

V
⌋

+
1

2
.

So eventually (`′)−1(Ψk(r
′·) − p′k) satisfies all the conclusions. This yields the desired

contradiction. �

Definition 6.4. Given constants K ′′ ≥ 1 and E′′ > 0, we define K0 := max {K ′(V ),K ′′}
and E0 := max {E′(V ), E′′}. We also let s0 := s(K0) and η0 := η(K0).

We fix ε0 (and thus δ0) and ε′0 so that Lemmas 6.2 and 6.3 apply with K := K0, E := E0.

Since ε0 depends on V , we can assume that it is chosen so small that⌊( η0

η0 − ε0

)2

V
⌋

+
1

2
= bV c+

1

2
= V.(6.10)

This makes the last conclusion of Lemma 6.3 match one of the hypotheses, making it

possible to iterate that result. On the other hand, the constants V , K ′′, E′′ (upon which

all the aforementioned constants depend) will be fixed only in Section 7.
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Lemma 6.5 (n(·) does not change from one scale to the next one). There exists

a constant 0 < ε′′0 ≤
(ε′0)2

2 < ε′0 with the following property: if a conformal immersion

Ψ ∈ C2(B
2
r(z),Mm

p,`) satisfies the hypotheses of the previous lemma (with ε′′0, E0,K0 in

place of ε′0, E,K), then the new point p′, the new radius r′ and the new scale `′ provided by

Lemma 6.3 satisfy

n(Ψ, B2
s20r

(z), BΠ
η0

) = n(Ψ− p′, B2
s20r
′(z), B

Π
η0`′) = n(Ψ− p′, B2

s20r
′(z), B

Π′
η0`′).(6.11)

Proof of Lemma 6.5. The second equality in (6.11) follows immediately from Lemma 6.2

(applied with (`′)−1(Ψ− p′) on B2
r′), which gives

n(Ψ− p′, B2
s20r
′ , B

Π
η0`′) = n(Ψ− p′, B2

s20r
′ , B

Π′
η0`′)

since dist(Π′,Π) < ε0.

Assume again z = 0, r = 1 and, by contradiction, that the first equality in (6.11) fails, so

that we have again two sequences εk ↓ 0 and Ψk. We can assume that Πk → Π∞, p′k → p′∞,

`′k → `′∞ and r′k → r′∞, with p′∞ ∈Mm, ε′0 ≤ `′∞ ≤ 1
2 and ε′0 ≤ r′∞ ≤ s0. Moreover, as in

the proof of Lemma 6.3, up to further subsequences we get a limiting local parametrized

stationary varifold (Ω∞,Θ∞, N∞ ◦ ϕ−1
∞ ) in Rq, with Ω∞ = ϕ∞(B2

s0). From Theorem 4.3

we know that Θ∞ is harmonic and N∞ = ν is constant, so Lemma 5.3 gives that Π∞ ◦Θ∞

is a diffeomorphism from ϕ∞(B
2
s0/2) onto its image.

Calling vk the varifold issued by Ψk

∣∣
B2
s20

and v∞ the one issued by (ϕ∞(B2
s20

),Θ∞, ν), we

have the varifold convergence vk
∗
⇀ v∞ as k →∞. The area formula gives

−
∫
B

Πk
η0

N(Ψk, B
2
s20
,Πk) =

‖(Πk)∗vk‖ (BΠk
η0

)

πη2
0

→
‖(Π∞)∗v∞‖ (BΠ∞

η0
)

πη2
0

= ν,

since (Π∞)∗v∞ equals an open superset of BΠ∞
η0

in Π∞ (by Lemma A.1), equipped with

the constant integer multiplicity ν. Hence, n(Ψk, B
2
s20
, BΠk

η0
) = ν eventually.

Similarly, calling v′k the varifold induced by Ψk

∣∣
B2
s20r
′
k

and v′∞ the varifold induced by

(ϕ∞(B2
s20r
′
∞

),Θ∞, ν), we have v′k
∗
⇀ v′∞ as k →∞, as is readily seen by approximating with

domains which do not vary along the sequence. Since (`′∞)−1(Ψ∞(r′∞·)− p′∞) ∈ RΠ∞
K0,δ0

,

again (Π∞)∗v
′
∞ equals a superset of BΠ∞

η0`′∞
in Π∞, with constant density ν. This gives

again

−
∫
B

Πk
η0`
′
k

(qk)
N(Ψk, B

2
s20r
′
k
,Πk) =

‖(Πk)∗v
′
k‖ (BΠk

η0`′k
(qk))

πη2
0(`′k)

2
→
‖(Π∞)∗v

′
∞‖ (BΠ∞

η0`′∞
(q∞))

πη2
0(`′∞)2

= ν,

where qk := Πk(p
′
k) for k ∈ N ∪ {∞}. Hence, n(Ψk − p′k, B2

s20r
′
k
, BΠk

η0`′k
) = ν eventually. So

the first equality in (6.11) holds eventually, giving the desired contradiction. �

Lemma 6.6 (n(·) = 1 when τ = 1). Assume that Ψ ∈ C∞(B
2
r(z),Mm

p,`) is a conformal

immersion and Π is a 2-plane with Ψ(z + r·) ∈ RΠ
K0,δ0

and 1
2

∫
B2
r (z) |∇Ψ|2 ≤ E. If
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B2

1
|A|4 d volgΨ and ` are sufficiently small, then Π ◦Ψ is a diffeomorphism from B

2
s20r

(z)

onto its image.

Proof of Lemma 6.6. We can suppose z = 0, r = 1. Assume by contradiction that the claim

does not hold, for a sequence of 2-planes Πk → Π∞ and immersions Ψk : B
2
1 →Mm

pk,`k

with `k → 0 and second fundamental forms Ak satisfying∫
B2

1

|Ak|4 d volgΨk
→ 0.(6.12)

Let λk ∈ C∞(B
2
1) be defined by |∂1Ψk| = |∂2Ψk| =: eλk and let Ap,` and Ãk denote the

second fundamental forms of Mm
p,` ⊆ Rq and of the immersion Ψk in Rq respectively, so

that Ãk = Apk,`k +Ak. Note that

‖Apk,`k‖L∞ ≤ C(Mm)`k → 0,(6.13)

so that ∫
B2

1

∣∣∣Ãk∣∣∣4 d volgΨk
→ 0.(6.14)

With a slight abuse of notation, let us drop the dependence on k in the subsequent

computations. We define the orthonormal frame

ẽ1 := e−λ∂1Ψ, ẽ2 := e−λ∂2Ψ(6.15)

for the tangent space of the immersed surface Ψ. It is straightforward to check that the

map ẽ1 ∧ ẽ2 : B
2
1 → Λ2Rq has |∇(ẽ1 ∧ ẽ2)| = eλ

∣∣∣Ã∣∣∣, so∫
B2

1

|∇(ẽ1 ∧ ẽ2)|2 dL2 =

∫
B2

1

e2λ
∣∣∣Ã∣∣∣2 dL2 =

∫
B2

1

∣∣∣Ã∣∣∣2 d volgΨ → 0(6.16)

by Hölder’s inequality, since
∫
B2

1
d volgΨ ≤ E. We identify the Grassmannian Gr(2,Rq) of

2-planes in Rq with a submanifold of the projectivization of Λ2Rq, by means of Plücker’s

embedding. For k large enough [3, Lemma 5.1.4] applies and provides a rotated frame

(e1, e2), given by

eC := e1 + ie2 = eiθẽC, ẽC := ẽ1 + iẽ2,(6.17)

for a suitable real function θ ∈ W 1,2(B2
1) minimizing

∫
B2

1
|∇θ + ẽ1 · ∇ẽ2|2 (in particular,

θ and eC are smooth functions on B
2
1) and with ‖∇eC‖2L2 becoming arbitrarily small

as k → ∞. We will assume in the sequel that ‖∇eC‖2L2 ≤ 1. Observe that, whenever

α, β ∈ C1(B
2
1),

∂1α∂2β − ∂2α∂1β =
1

4
(∂1α+ ∂2β)2 +

1

4
(∂2α− ∂1β)2 − 1

4
(∂1α− ∂2β)2 − 1

4
(∂2α+ ∂1β)2

= |∂z(α+ iβ)|2 − |∂z(α+ iβ)|2 .
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Hence, being ẽ1 + iẽ2 = 2e−λ∂zΨ and ∂zΨ · ∂zΨ = ∂zΨ · ∂zΨ = 0 by conformality, we get

− (∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2)

= 4∂z(e
−λ∂zΨ) · ∂z(e−λ∂zΨ)− 4∂z(e

−λ∂zΨ) · ∂z(e−λ∂zΨ)

= 4e−2λ(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ− ∂zλ∂zΨ · ∂2
zzΨ− ∂zλ∂zΨ · ∂2

zzΨ)

+ 2e−2λ∂zλ∂z(∂zΨ · ∂zΨ) + 2e−2λ∂zλ∂z(∂zΨ · ∂zΨ)

= 4e−2λ(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ− ∂zλ∂zΨ · ∂2
zzΨ− ∂zλ∂zΨ · ∂2

zzΨ).

On the other hand we have

2e2λ∂zλ = ∂z(e
2λ) = ∂z(2∂zΨ · ∂zΨ) = ∂z(∂zΨ · ∂zΨ) + 2∂zΨ · ∂2

zzΨ = 2∂zΨ · ∂2
zzΨ,

∆(e2λ) = 4∂2
zz(2∂zΨ · ∂zΨ) = 8∂z(∂zΨ · ∂2

zzΨ) + 4∂2
zz(∂zΨ · ∂zΨ)

= 8(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ) + 4∂2
zz(∂zΨ · ∂zΨ)

= 8(∂2
zzΨ · ∂2

zzΨ− ∂2
zzΨ · ∂2

zzΨ),

so we arrive at

∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2 = −∆(e2λ)

2e2λ
+ 8∂zλ∂zλ = −∆λ.(6.18)

Alternatively, since the projections of ∂j ẽ1 and ∂kẽ2 onto the tangent space of the immersion

Ψ are orthogonal (being the projection of ∂j ẽ1 a multiple of ẽ2 and the projection of ∂kẽ2 a

multiple of ẽ1), we have

∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2 = e2λ(Ã(ẽ1, ẽ1) · Ã(ẽ2, ẽ2)− Ã(ẽ1, ẽ2) · Ã(ẽ1, ẽ2)) = e2λK,

by Gauss’ formula, K denoting the Gaussian curvature of the immersed surface. But, by

the well-known formula for the curvature of a conformal metric, we have K = −e−2λ∆λ,

which gives again (6.18). Moreover,

∂1e1 · ∂2e2 − ∂2e1 · ∂1e2 = = 〈∇eC;∇eC〉 = =
〈
∇ẽC − iẽC ⊗∇θ;∇ẽC + iẽC ⊗∇θ

〉
= =

〈
∇ẽC;∇ẽC

〉
= ∂1ẽ1 · ∂2ẽ2 − ∂2ẽ1 · ∂1ẽ2,

since
〈
ẽC ⊗∇θ; ẽC ⊗∇θ

〉
is real and

〈
−iẽC ⊗∇θ;∇ẽC

〉
=
〈
∇ẽC; iẽC ⊗∇θ

〉
. Thus, calling

µ ∈ C∞(B
2
1) the solution to−∆µ = ∂1e1 · ∂2e2 − ∂2e1 · ∂1e2 on B2

1

µ = 0 on ∂B2
1 ,

we obtain that λ− µ is harmonic and, by Wente’s inequality,

‖µ‖L∞ ≤ C(q)
(
‖∇e1‖2L2 + ‖∇e2‖2L2

)
≤ C(q).(6.19)

Since λ < e2λ, for all x ∈ B2
3/4 we get

(λ− µ)(x) = −
∫
B2

1/4
(x)

(λ− µ) ≤ −
∫
B2

1/4
(x)
e2λ + ‖µ‖L∞ ≤

E

L2(B2
1/4)

+ C(q).(6.20)
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Together with (6.19), this gives an upper bound for λ on B2
3/4, depending only on E, q.

Although this is sufficient for the present purposes, one can also get a lower bound for λ

on B2
s0 . Indeed, calling M the right-hand side of (6.20), we obtain that M − (λ− µ) is a

nonnegative harmonic function on B2
3/4. Moreover, the length of the curve Ψ

∣∣
∂B2

s0

is∫
∂B2

s0

eλ ≥ 2πη0,(6.21)

since the composition of Π ◦Ψ
∣∣
∂B2

s0

with the radial projection onto ∂BΠ
η0

(which does not

increase the length) is surjective (being a generator of the fundamental group of ∂BΠ
η0

).

Hence, there exists some x ∈ ∂B2
s0 such that λ(x) ≥ log

(
s−1

0 η0

)
. We deduce that

inf
B2
s0

(M − (λ− µ)) ≤M + C(q)− log(s−1
0 η0)(6.22)

and so, by Harnack’s inequality, the supremum of M − (λ− µ) on B2
s0 is bounded by a

constant depending only on E, s0, η0, q. This, together with (6.20) and (6.19), gives

‖λ‖L∞(B2
s0

) ≤ C(E, s0, η0, q).(6.23)

The mean curvature of the immersion Ψ is H̃ = 1
2e2λ

(Ã(∂1Ψ, ∂1Ψ) + Ã(∂2Ψ, ∂2Ψ)) = − ∆Ψ
2e2λ

(note that ∆Ψ is already orthogonal to the tangent space of the immersion, since ∂zΨ ·∆Ψ =

4∂zΨ · ∂2
zzΨ = 2∂z(∂zΨ · ∂zΨ) = 0). So we get∫

B2
3/4

|∆Ψk|4 dL2 = 16

∫
B2

3/4

∣∣∣H̃k

∣∣∣4 e6λk d volgΨk

≤ C(E, q)

∫
B2

3/4

∣∣∣Ãk∣∣∣4 d volgΨk
→ 0.

(6.24)

Since s0 ≤ 1
2 , this implies that (Ψk) is a bounded sequence in W 2,4(B2

s0) (by Lemma A.2

applied to Ψk(3
4 ·)), so by the compact embedding W 2,4(B2

s0) ↪→ C1(B
2
s0) we obtain a strong

limit Ψ∞ in C1(B
2
s0), up to subsequences. Thus Ψ∞ is weakly conformal and, by (6.24), it

is also harmonic. Lemma 5.3 applies (with Ψ∞(s0·) and idR2 in place of Ψ and ϕ) and

gives that Π∞ ◦Ψ∞ is a diffeomorphism from B
2
s0/2 ⊇ B

2
s20

onto its image, hence the same

is eventually true for Πk ◦Ψk, giving the desired contradiction. �

7. Multiplicity one in the limit

Theorem 7.1 (n(·) = 1 for small σ2 log (σ−1)
∫∫∫
|A|4). Assume Φ ∈ C∞(B

2
r(z),Mm)

is a conformal immersion, critical for (4.1) on B2
r (z) and satisfying

• `−1(Φ(z + r·)− p) ∈ RΠ
K0,δ0 for some

√
σ/ε′′0 < ` < 1 and p ∈Mm,

• 1

2

∫
B2
r (z)
|∇Φ|2 ≤ E0`

2,

•
∫

Φ−1(Bq` (p))
d volgΦ ≤ V π`

2 and

∫
Φ−1(Bqη0`

(p))
d volgΦ ≤ V π(η0`)

2,
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• σ2 log(σ−1)

∫
B2
s

|A|4 d volgΦ ≤
ε′′0
E0

∫
B2
s

d volgΦ for all 0 < s ≤ r.

Then, if σ and ` are small enough (independently of each other), we have

n(Φ− p,B2
s20r

(z), BΠ
η0`) = 1.

Proof of Theorem 7.1. Let r0 := r, p0 := p, `0 := `, τ0 := σ`−2
0 and Π0 := Π. Note that

Ψ0 := `−1(Φ− p) = `−1
0 (Φ− p0)

is critical for (4.3), with τ := τ0 ≤ ε′′0. Thus Lemma 6.3 applies to Ψ0 (if ` is small enough),

giving a new radius ε′0r0 < r1 < s0r0, a new point p′ ∈Mm
p,`, a new scale ε′0 < `′ < 1

2 and

a new 2-plane Π′. Setting r1 := r′, p1 := p0 + `0p
′, `1 := `′`0, τ1 := σ`−2

1 , Π1 := Π′ and

recalling (6.10), the map

Ψ1 := (`′)−1(Ψ0 − p′) = `−1
1 (Φ− p1)

still satisfies the hypotheses of Lemma 6.3, with the parameters r1, τ1, p1, `1,Π1, provided

that τ1 ≤ ε′0: indeed, note that (assuming τ1 ≤ ε′0 < 1)

τ2
1 log(τ−1

1 )

∫
B2
r1

(z)
|AΨ1 |

4 d volgΨ1
≤ τ2

1 log(σ−1)

∫
B2
r1

(z)
|AΨ1 |

4 d volgΨ1

= `−2
1 σ2 log(σ−1)

∫
B2
r1

(z)
|AΦ|4 d volgΦ ≤

ε′′0`
−2
1

E0

∫
B2
r1

(z)
d volgΦ =

ε′′0
2E0

∫
B2
r1

(z)
|∇Ψ1|2 ≤ ε′′0.

Hence, we can iterate and define rj , τj , pj , `j ,Πj , for j = 0, 1, . . . , up to a maximum

index k ≥ 1 such that τj ≤ ε′′0 ≤ ε′0 for 1 ≤ j < k and τk > ε′′0: such k exists since

τj = `−2
j σ ≥ 4jτ0. With the same computation as above, this implies∫

B2
rk

(z)
|A|4 d volgΨk

≤ ε′′0
τ2
k log(σ−1)

≤ 1

ε′′0 log(σ−1)
.(7.1)

If σ and ` are small enough, Lemma 6.6 applies to the map Ψk := `−1
k (Ψ− pk), on the ball

B2
rk

(z): indeed, note that `k ≤ ` and
∫
B2
rk

(z) |A|
4 d volgΨk

can be assumed arbitrarily small

(by taking σ and ` small enough), by virtue of (7.1). This, together with Lemma A.1, gives

n(Ψk, B
2
s20rk

(z), BΠk
η0

) = 1.

Also, Lemma 6.5 applies for all j = 0, . . . , k − 1, giving

n(Φ− p,B2
s20r

(z), BΠ
η0`) = n(Ψ0, B

2
s20r0

(z), BΠ0
η0

)

= n(Ψ1, B
2
s20r1

(z), BΠ1
η0

)

= · · ·

= n(Ψk, B
2
s20rk

(z), BΠk
η0

)

= 1. �
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As in Section 4, assume now that Φk : Σ→Mm is a sequence of critical points for∫
Σ
d volgΦk

+σ2
k

∫
Σ

(1 + |A|2)2 d volgΦk
(7.2)

with controlled area, namely

λ ≤
∫

Σ
d volgΦk

≤ Λ,

and with

σk → 0, σ2
k log(σ−1

k )

∫
Σ

(1 + |A|2)2 d volgΦk
→ 0.

By the main result of [13], up to subsequences the varifolds vk induced by Φk converge

to a parametrized stationary varifold (see e.g. [12, Definition 2.2] and [12, Remark 2.3] for

two equivalent definitions of this notion).

As explained in [13], there could be bubbling points, and also the conformal structures

induced by Φk could degenerate (in the space of conformal structures up to diffeomorphisms).

The latter cannot happen if Σ is a sphere, while it can yield a cylinder C/Z (or, equivalently,

C \ {0} = Ĉ \ {0,∞}) in the limit when Σ is a torus. While both of these statements are

easy consequences of the uniformization theorem for Riemann surfaces, if the genus is at

least two then the general picture of degenerating conformal structures is more complicated;

we refer the reader to [4, Section IV.5] for its description.8

In the remainder of the paper, we will assume for simplicity that there is no bubbling

and no degeneration of the conformal structure. Note that the arguments will apply also to

the general case, working on appropriate domains different from Σ.9

Up to precomposing Φk with suitable diffeomorphisms of Σ, we can thus assume that

there exist metrics gk of constant curvature (1, 0 or −1, depending on the genus of Σ)

such that Φk : (Σ, gk) → Mm is conformal, and such that gk converges smoothly to a

limiting Riemannian metric g∞. The limiting varifold v∞ is a parametrized stationary

varifold, of the form (Σ∞,Θ∞, N∞), where Θ∞ : Σ∞ →Mm is a smooth branched minimal

immersion. Also, calling Φ∞ ∈W 1,2(Σ,Mm) the weak limit of Φk (up to subsequences),

Θ∞ = Φ∞ ◦ ϕ−1
∞ for some quasiconformal homeomorphism ϕ∞ : Σ→ Σ∞, with respect to

g∞. Here Σ∞ is a Riemann surface homeomorphic (by means of ϕ∞) to Σ: see the proof of

[13, Lemma III.13]. In particular, Φ∞ is continuous.

8Given a sequence of closed hyperbolic surfaces, we can assume that they have been decomposed into

marked pairs of pants, with a constant combinatorial configuration (see e.g. [4, Section IV.3]). We can then

cut them open along the marked geodesics whose length converges to zero and apply [4, Proposition IV.5.1]

to the resulting surfaces with boundary.
9Namely, if the conformal structure does not degenerate, on the complement of suitable small disks

centered at the bubbling points, or (as in a standard bubble tree analysis) on such small disks (suitably

rescaled to bigger and bigger disks converging to C), again working far from children bubbles; if the

conformal structure degenerates, one also has to discard small tubular neighborhoods of collapsing geodesics

(see also the previous footnote).
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In local conformal coordinates for (Σ, g∞), as in (4.5) we have

volgΦk

∗
⇀ N∞ |∂1Φ∞ ∧ ∂2Φ∞| L2 ≥ 1

2
|∇Φ∞|2 L2.(7.3)

By the regularity result of [12], which was already exploited in Section 6, N∞ is locally a.e.

constant and thus a.e. constant (being Σ∞ connected).

Setting νk := volgΦk
and ν∞ := N∞|∂1Φ∞ ∧ ∂2Φ∞| L2 (in local conformal coordinates

for Σ), by (7.3) we have νk
∗
⇀ ν∞. We can find a conformal disk U ⊂ (Σ, g∞), which we

identify with B2
1 ⊂ C and fix in the sequel, such that ν∞(B2

1/2) > 0.

Definition 7.2. We denote by ν the constant value of N∞. Also, we call T the set of bad

points z ∈ B2
1 which are not Lebesgue for ∇Φ∞, or such that ∇Φ∞(z) does not have full

rank, or such that

max
|x|=1

|〈∇Φ∞(z), x〉| > 2ν min
|x|=1

|〈∇Φ∞(z), x〉| .(7.4)

We have L2(T ) = 0, since ∇Θ∞ has full rank a.e. by conformality (hence the same holds

for Φ∞ by the chain rule10) and since (7.4) implies ν|∂1Φ∞ ∧ ∂2Φ∞|(z) < 1
2 |∇Φ∞|2(z) (as

it can be immediately verified using a singular value decomposition for ∇Φ∞(z)).

Definition 7.3. We now specify K ′′ := 2ν and we set E′′ := πν((K ′′)2 + 1). Finally, we

choose V > 0 such that V = bV c+ 1
2 and

‖v∞‖ (B
q
`(p)) < V π`2(7.5)

for all ` > 0 and all p ∈Mm. Such V exists by the monotonicity formula satisfied by the

stationary varifold v∞. Note that now also the constants K0, E0, s0, η0, as well as ε0, δ0,

ε′0 and ε′′0, are determined.

Theorem 7.4 (multiplicity one). We have N∞ = 1 a.e., or equivalently ν = 1.

Proof of Theorem 7.4. Let Bk be the Borel set of points z ∈ B2
1/2 such that

σ2
k log(σ−1

k )

∫
B2
r (z)
|A|4 d volgΦk

≥ ε′′0
E0

∫
B2
r (z)

d volgΦk

for some radius 0 < r < 1
2 . By Besicovitch’s covering lemma, we get a collection of points

zi ∈ Bk and radii 0 < ri <
1
2 such that

σ2
k log(σ−1

k )

∫
B2
ri

(zi)
|A|4 d volgΦk

≥ ε′′0
E0

∫
B2
ri

(zi)
d volgΦk

, 1Bk ≤
∑
i

1B2
ri

(zi) ≤ N,

for some universal constant N. Thus we get

νk(Bk) ≤
∑
i

volgΦk
(B2

ri(zi)) ≤
E0

ε′′0
σ2
k log(σ−1

k )
∑
i

∫
B2
ri

(zi)
|A|4 d volgΦk

≤ E0N

ε′′0
σ2
k log(σ−1

k )

∫
Σ
|A|4 d volgΦk

→ 0.

10See e.g. [5, Lemma 4.12] and [8, Lemma III.6.4].
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Up to subsequences, we can assume that B2
1/2 \ Bk converges in the Hausdorff topology

to some compact set S ⊆ B
2
1/2. We remark that ν∞(S) > 0: indeed, for any compact

neighborhood F of S in B2
1 , we have B2

1/2 \ Bk ⊆ F eventually and so

ν∞(F ) ≥ lim sup
k→∞

νk(F ) ≥ lim sup
k→∞

(νk(B
2
1/2)− νk(Bk)) = lim sup

k→∞
νk(B

2
1/2) ≥ ν∞(B2

1/2) > 0.

It follows from (7.3) that L2(S) > 0.

We now show that N∞ = 1 a.e. on S \ T , which has positive Lebesgue measure. This

will show that ν = 1, as desired. Fix any z ∈ S \ T and take a sequence zk ∈ B2
1/2 \ Bk

with zk → z. Locally we can find conformal reparametrizations Φ̃k of Φk(zk + ·), by means

of diffeomorphisms converging smoothly to the identity on a small neighborhood of 0.11 By

weak convergence Φ̃k ⇀ Φ∞(z + ·) in W 1,2, for a.e. radius r > 0 we have

Φ̃k(r·)→ Φ∞(z + r·) in C0(∂B2
1 ∪ ∂B2

s0 ∪ ∂B
2
s20

)(7.6)

up to further subsequences.12 Using [12, Lemma A.4] and the fact that z 6∈ T , we can

assume that r satisfies

|Φ∞(z + rx)− Φ∞(z)− 〈∇Φ∞(z), rx〉| < δ0` for x ∈ ∂B2
1 ∪ ∂B2

s0 ∪ ∂B
2
s20
,(7.7)

1

2

∫
B2
r (z)
|∇Φ∞|2 < (πr2) |∇Φ∞(z)|2 ≤ `2π((K ′′)2 + 1),(7.8)

with ` := rmin|x|=1 |〈∇Φ∞(z), x〉|. Note that (7.7) will guarantee (below) that the first

assumption in Theorem 7.1 holds for Φ̃k. Setting p := Φ∞(z), note that (7.5) gives

‖vk‖ (Bq
` (p)) < V π`2, ‖vk‖ (Bq

η0`
(p)) < V π(η0`)

2

eventually, which trivially implies∫
Φ̃−1
k (Bq` (p))

d volg
Φ̃k
< V π`2,

∫
Φ̃−1
k (Bqη0`

(p))
d volg

Φ̃k
< V π(η0`)

2.(7.9)

Also, (7.3) and (7.8) give

lim
k→∞

1

2

∫
B2
r (z)

∣∣∣∇Φ̃k

∣∣∣2 = lim
k→∞

νk(B
2
r (z)) ≤ ν

2

∫
B2
r (z)
|∇Φ∞|2 < E′′`2.

Thanks to the fact that zk 6∈ Bk and the above inequalities, eventually Φ̃k satisfies the

hypotheses of Theorem 7.1 on the ball B2
r , provided that r (and thus `) is chosen small

enough. Setting Ψk := `−1(Φ̃k − p), we infer that

n(Ψk, B
2
s20r
, BΠ

η0
) = 1,(7.10)

where Π is the 2-plane spanned by ∇Φ∞(z).

11For instance, one can isometrically identify a neighborhood of zk in (Σ, gk) with a neighborhood of z in

(Σ, g∞), by means of the exponential map.
12This can be obtained by applying [12, Lemma A.5] to the weakly converging R3q-valued maps

(Φ̃k, Φ̃k(s0·), Φ̃k(s2
0·)) ⇀ (Φ∞(z + ·),Φ∞(z + s0·),Φ∞(z + s2

0·)).
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Since r can be chosen arbitrarily small (possibly changing the subsequence guaranteeing

(7.6)), the argument used in the proof of [13, Lemma III.10] shows that N∞(z) = 1.

Alternatively, (7.10) gives ∣∣∣∣∣‖Π∗v′k‖ (BΠ
η0

)

πη2
0

− 1

∣∣∣∣∣ < 1

8
,

where the varifold v′k is induced by Ψk

∣∣
B2
s20r

and converges to the varifold v′∞ induced by

(ϕ∞(B2
s20r

(z)), `−1(Θ∞− p), ν). Assuming without loss of generality that ∇Θ∞(ϕ∞(z)) 6= 0,

Π ◦Θ∞ is a diffeomorphism from ϕ∞(B2
s20r

(z)) onto its image (for r small enough). Hence,

at a.e. point of Π the varifold Π∗v∞ has density either 0 or ν. Since Π ◦ Φ∞(B2
s20r

(z)) is a

superset of BΠ
η0`

(Π(p)) (by Lemma A.1), it follows that

‖Π∗v′∞‖ (BΠ
η0

)

πη2
0

= ν.

The convergence
‖Π∗v′k‖(BΠ

η0
)

πη2
0

→ ‖Π∗v′∞‖(BΠ
η0

)

πη2
0

thus gives |ν − 1| ≤ 1
8 , and again we conclude

that ν = 1. �

Appendix.

Lemma A.1 (big image under a boundary constraint). Assume that F ∈ C0(B
2
1,R2)

satisfies

|F (x)− ϕ(x)| ≤ δ for all x ∈ ∂B2
1(A.1)

for some 0 < δ < 1 and some homeomorphism ϕ : R2 → R2, with ϕ(0) = 0 and

min|x|=1 |ϕ(x)| ≥ 1. Then

F (B2
1) ⊇ B2

1−δ.(A.2)

Proof of Lemma A.1. It suffices to show that, for a fixed y ∈ B2
1−δ, the closed curve

Γ′ := F
∣∣
∂B2

1
is not contractible in R2 \ {y}: once this is done, if we had y 6∈ F (B2

1), i.e.

y 6∈ F (B
2
1), then F would provide a homotopy from Γ′ to the constant curve F (0) in

R2 \ {y}, yielding a contradiction.

Letting Γ := ϕ
∣∣
∂B2

1
and γ := Γ′ − Γ, we have |γ(x)| ≤ δ for all x ∈ ∂B2

1 . Hence, Γ is

homotopic to Γ′ in R2 \B2
1−δ ⊆ R2 \ {y} by means of the homotopy

Γ + tγ, 0 ≤ t ≤ 1.

So we are left to show that Γ is not contractible in R2 \{y}, i.e. that Γ−y is not contractible

in R2 \ {0}. The curve Γ− y is homotopic to Γ in R2 \ {0}, by means of the homotopy

Γ− ty, 0 ≤ t ≤ 1,

which avoids the origin since |y| < 1. Finally, Γ is not contractible in R2 \ {0}, since ϕ

(once restricted to a homeomorphism of R2 \ {0}) induces an automorphism of π1(R2 \ {0})
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sending the class of the generator id∂B2
1

to the class of Γ. Hence, Γ− y is not contractible

in R2 \ {0}, too, as desired. �

Lemma A.2 (elliptic W 2,4-estimate). For a function Ψ ∈ C∞(B1) and a 0 < τ < 1

we have

‖Ψ‖W 2,4(B2
τ ) ≤ C(τ)(‖∆Ψ‖L4(B2

1) + ‖∇Ψ‖L2(B2
1) + ‖Ψ‖L2(B2

1)).

Proof of Lemma A.2. Given two radii 0 < r < s ≤ 1, let us choose a cut-off function

ρ ∈ C∞c (B2
s ) with ρ = 1 on B2

r . Since ρΨ ∈ C∞c (R2), standard Calderón–Zygmund

estimates give∥∥∇2Ψ
∥∥
Lp(B2

r )
≤
∥∥∇2(ρΨ)

∥∥
Lp(R2)

≤ C(p) ‖∆(ρΨ)‖Lp(R2)

≤ C(p, r, s)(‖∆Ψ‖Lp(B2
s ) + ‖∇Ψ‖Lp(B2

s ) + ‖Ψ‖Lp(B2
s ))

(A.3)

for all 1 < p <∞. Setting t := 1+τ
2 and applying (A.3) with p := 2, r := t and s := 1 we

get ∥∥∇2Ψ
∥∥
L2(B2

t )
≤ C(τ)(‖∆Ψ‖L2(B2

1) + ‖∇Ψ‖L2(B2
1) + ‖Ψ‖L2(B2

1)),

hence ‖Ψ‖W 2,2(B2
t ) is bounded by the desired quantity. Using Sobolev’s embedding

W 2,2(B2
t ) ↪→W 1,4(B2

t ) and (A.3) with p := 4, r := τ and s := t, we obtain

‖Ψ‖W 2,4(B2
τ ) ≤ C(τ)(‖∆Ψ‖L4(B2

t ) + ‖Ψ‖W 2,2(B2
t ))

≤ C(τ)(‖∆Ψ‖L4(B2
1) + ‖∇Ψ‖L2(B2

1) + ‖Ψ‖L2(B2
1)). �

Lemma A.3 (compactness of normal solutions to Beltrami equation). Given a

sequence ψk : C → C of K-quasiconformal homeomorphisms with the normalization

conditions

ψk(0) = 0, ψk(1) = 1,

there exists a K-quasiconformal homeomorphism ψ∞ : C → C satisfying the same nor-

malization condition and such that, up to subsequences, ψk → ψ∞ and ψ−1
k → ψ−1

∞ in

C0
loc(C).

Proof of Lemma A.3. Let µk ∈ EK be defined by ∂zψk = µk∂zψk.13 Existence and unique-

ness of a K-quasiconformal homeomorphism satisfying this equation and the normalization

conditions is shown in [5, Theorem 4.30].

Given M > 0, we consider the set EMK :=
{
µ ∈ EK : µ = 0 a.e. on C \B2

M

}
. If Fµ de-

notes the normal solution to the equation ∂zF
µ = µ∂zF

µ (in the sense of [5, Theorem 4.24]),

then Fµ satisfies estimates (4.21) and (4.24) in [5]. Applying them with the points 0 and 1,

we infer that also the map fµ := Fµ(1)−1Fµ satisfies estimates of the form

|fµ(z1)− fµ(z2)| ≤ C |z1 − z2|α + C |z1 − z2| ,(A.4)

13Actually, the coefficient µk is uniquely determined a.e., as ∂zψk 6= 0 a.e. (this follows from idC = ψ−1
k ◦ψk

and the chain rule [8, Lemma III.6.4], together with |∂zψk| ≤ |∂zψk|).
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|z1 − z2| ≤ C |fµ(z1)− fµ(z2)|α + C |fµ(z1)− fµ(z2)| ,(A.5)

with C and 0 < α < 1 depending only on K and M . Given a sequence of homeomorphisms

fk : C→ C satisfying these estimates, Ascoli–Arzelà theorem applies to fk and f−1
k and so

we can extract a subsequence (not relabeled) such that

fk → f∞, f−1
k → f̃∞ in C0

loc(C).

From f−1
k ◦ fk = fk ◦ f−1

k = idC we get f̃∞ ◦ f∞ = f∞ ◦ f̃∞ = idC and thus f∞ : C→ C is

a homeomorphism, with f̃∞ = f−1
∞ . Also, since fk(z), f

−1
k (z)→∞ uniformly as z →∞,

we deduce that the canonical extensions f̂k : Ĉ→ Ĉ converge uniformly to f̂∞ and that the

same holds for f̂−1
k .

We now closely examine the proof of [5, Theorem 4.30]: let µ̃k ∈ E1
K be given by equation

(4.25) in [5], with µk1C\B2
1

in place of µ, and

gk : Ĉ→ Ĉ, gk(z) := f̂ µ̃k(z−1)−1.

This map corresponds to the map fµ1 in the aforementioned proof (with µk in place of µ).

The lower bound (A.5), applied with f µ̃k and z1 := f µ̃k(z−1), z2 := 0, shows that |gk(z)| is

bounded above by some M ′, for all k and all z ∈ B2
1. Hence, defining µk,2 as in equation

(4.27) in [5] (with µk in place of µ), we get µk,2 ∈ EM
′

K . Calling hk : Ĉ→ Ĉ the associated

quasiconformal homeomorphism, normalized so that hk(0) = 0 and hk(1) = 1, by the above

argument (with M := M ′) we obtain the uniform convergence

gk → g∞, g−1
k → g−1

∞ , hk → h∞, h−1
k → h−1

∞

up to subsequences, for suitable homeomorphisms g∞ and h∞ of the Riemann sphere Ĉ.

Setting ψ∞ := h∞ ◦ g∞
∣∣
C and observing that ψk = hk ◦ gk

∣∣
C, we get the desired convergence

ψk → ψ∞ and ψ−1
k → ψ−1

∞ in C0
loc(C).

Finally, we show that ψ∞ is a K-quasiconformal homeomorphism. Given an open

rectangle R ⊂⊂ C, [5, Lemma 4.12] gives

L2(ψk(R)) =

∫
R

(|∂zψk|2 − |∂zψk|2) ≥
∫
R

(1− k2) |∂zψk|2 ≥ (1− k2)k−2

∫
R
|∂zψk|2 ,

where k := K−1
K+1 . Since L2(ψk(R))→ L2(ψ∞(R)), we deduce that ψk is bounded in W 1,2(R),

thus ψ∞ is the limit of ψk in the weak W 1,2
loc (C)-topology. Given ρ, ψ1, ψ2 ∈ C∞c (C),

integration by parts shows that∫
C
ρ(∂1ψ

1∂2ψ
2 − ∂2ψ

1∂1ψ
2) = −

∫
C

(∂1ρψ
1∂2ψ

2 − ∂2ρψ
1∂1ψ

2).(A.6)

Writing ψk = ϕ1
k + iψ2

k, a standard density argument shows that (A.6) still holds with

ψ1, ψ2 replaced by ψ1
k, ψ

2
k, for k ∈ N ∪ {∞}. Hence, observing that |∂zψk|2 − |∂zψk|2 =

(∂1ψ
1
k∂2ψ

2
k − ∂2ψ

1
k∂1ψ

2
k), we get∫

C
ρ(|∂zψk|2 − |∂zψk|2)→

∫
C
ρ(|∂zψ∞|2 − |∂zψ∞|2).(A.7)
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Defining the positive measures νk := (|∂zψk|2 − |∂zψk|2)L2, up to further subsequences we

can assume that νk
∗
⇀ ν∞ as Radon measures. For any rectangle R such that ν∞(∂R) = 0,

approximating 1R from above and below with smooth functions and applying (A.7) we get∫
R

(|∂zψk|2 − |∂zψk|2)→
∫
R

(|∂zψ∞|2 − |∂zψ∞|2).

By monotonicity of both sides, this actually holds for every rectangle R. On the other

hand, by lower semicontinuity of the L2-norm,∫
R

(1− k2) |∂zψ∞|2 ≤ lim inf
k→∞

∫
R

(1− k2) |∂zψk|2 ≤ lim
k→∞

∫
R

(|∂zψk|2 − |∂zψk|2)

=

∫
R

(|∂zψ∞|2 − |∂zψ∞|2).

Since R is arbitrary, we get |∂zψ∞| ≤ k |∂zψ∞| a.e., as desired. �

Corollary A.4 (compactness of DK). Given a sequence ϕk ∈ DK , there exists ϕ∞ ∈ DK
such that, up to subsequences, ϕk → ϕ∞ and ϕ−1

k → ϕ−1
∞ in C0

loc(C).

Proof of Corollary A.4. Let µk ∈ EK be defined by ∂zϕk = µk∂zϕk for all k and let

ψk : C→ C be the unique K-quasiconformal homeomorphism satisfying the same differential

equation, as well as ψk(0) = 0, ψk(1) = 1 (see [5, Theorem 4.30]).

By Lemma A.3, up to subsequences there exists a K-quasiconformal homeomorphism

ψ∞ such that ψk → ψ∞ and ψ−1
k → ψ−1

∞ in C0
loc(C).

By the chain rule (see [8, Lemma III.6.4]), the map ψk ◦ϕ−1
k : C→ C is a biholomorphism

and fixes the origin, so it equals the multiplication by a nonzero complex number λk, i.e.

ψk = λkϕk. On the other hand,

|λk| = min
x∈∂B2

1

|ψk(x)| → min
x∈∂B2

1

|ψ∞(x)| ∈ (0,∞).

Hence, up to further subsequences we can suppose that λk → λ∞ ∈ C \ {0}. The statement

follows with ϕ∞ := λ−1
∞ ψ∞. �

Remark A.5. In general, given ϕk ∈ DK (for k ∈ N∪{∞}) with ϕk → ϕ∞ and ϕ−1
k → ϕ−1

∞
locally uniformly, it is not true that the corresponding Beltrami coefficients satisfy µk

∗
⇀ µ∞

in L∞(C). For instance, let µ0(z) := 1
2 if <(z) ∈

⋃
n∈Z

[
n, n+ 1

2

)
and µ0(z) := −1

2 otherwise.

Then the bi-Lipschitz homeomorphism ψ0 : C→ C given by

ψ0(x+ iy) :=

n+ 9
5(x− n) + 3

5 iy = n+ 6
5(z − n) + 3

5(z − n) n ≤ x ≤ n+ 1
2

n+ 4
5 + x−n

5 + 3
5 iy = n+ 4

5 + 2
5(z − n)− 1

5(z − n) n+ 1
2 ≤ x ≤ n+ 1

satisfies ∂zψ0 = µ0∂zψ0, with the normalization ψ0(0) = 0 and ψ0(1) = 1. So µk := µ0(2k·)
and ψk := 2−kψ0(2k·) satisfy ∂zψk = µk∂zψk with the same normalization. Moreover, they

converge uniformly to ψ∞(x+ iy) = x+ 3
5 iy = 4

5z + 1
5z, together with their inverses. The

homeomorphism ψ∞ satisfies ∂zψ∞ = µ∞∂zψ∞ with µ∞ := 1
4 , but µk

∗
⇀ 0. Dividing each

ψk by min|z|=1 |ψk(z)|, we obtain a counterexample in the class D3.
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