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1 Definitions and Axioms

The purpose of these notes is to prove that the Axiom of Choice, the Lemma
of Zorn, and the Well Ordering Principle are equivalent to each other. Here
are the relevant definitions.

Definition. A relation ≼ on a set P is called a partial order iff it satisfies
the following conditions.

(Reflexive) Every element p ∈ P satisfies p ≼ p.

(Anti-Symmetric) If p, q ∈ P satisfy p ≼ q and q ≼ p, then p = q.

(Transitive) If p, q, r ∈ P satisfy p ≼ q and q ≼ r, then p ≼ r.

A partial order ≼ on a set P is called a total order iff any two distinct
elements p, q ∈ P satisfy either p ≼ q or q ≼ p.

Definition. Let (P,≼) be a partially ordered set.

(i) An element m ∈ P is called maximal iff m ̸≼ p for all p ∈ P \ {m}.
(ii) A chain in P is a totally ordered subset C ⊂ P , i.e. any two distinct
elements p, q ∈ C satisfy either p ≼ q or q ≼ p.

(iii) Let C ⊂ P be a nonempty chain. An element a ∈ P is called an upper
bound of C iff every element p ∈ C satisfies p ≼ a. It is called a supre-
mum of C iff it is an upper bound of C and every upper bound b ∈ P of C
satisfies a ≼ b. The supremum, if it exists, is unique and denoted by supC.

Definition. A total order ≼ on a set X is called a well ordering iff for
every nonempty subset A ⊂ X there exists an element a0 ∈ A (called the
minimum of A and denoted by minA) such that a0 ≼ a for every a ∈ A.
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The Axiom of Choice. Let I and X be two nonempty sets and, for
each element i ∈ I, let Xi ⊂ X be a nonempty subset. Then there exists
a map g : I → X such that every i ∈ I satisfies g(i) ∈ Xi.

The Lemma of Zorn. Let (P,≼) be a partially ordered set such that every
nonempty chain C ⊂ P admits an upper bound. Let p ∈ P . Then there exists
a maximal element m ∈ P such that p ≼ m.

The Well Ordering Principle. Every set admits a well ordering.

Theorem 1. The Lemma of Zorn implies the Axiom of Choice.

Proof. Assume the Lemma of Zorn. Let I and X be nonempty sets and, for
each i ∈ I, let Xi ⊂ X be a nonempty subset. Define

P :=

{
(J, g)

∣∣∣∣ ∅ ≠ J ⊂ I, g : J → X,
g(i) ∈ Xi for all i ∈ J

}
.

This set is partially ordered by the relation

(J, g) ≼ (K,h)
def⇐⇒ J ⊂ K and h|J = g

for (J, g), (K,h) ∈ P. It is nonempty, because each pair (i0, x0) with i0 ∈ I
and x0 ∈ Xi0 determines a pair (J0, g0) ∈ P with J0 := {i0}, g0(i0) := x0.
Each nonempty chain C ⊂ P has a supremum (K,h) = supC given by

K :=
⋃

(J,g)∈C

J, h(i) := g(i) for (J, g) ∈ C and i ∈ J.

Hence, by the Lemma of Zorn, there exists a maximal element (J, g) ∈ P.
This element satisfies J = I. Otherwise, there exists an element i0 ∈ I \ J
and an element x0 ∈ Xi0 , and then the pair (J ′, g′) ∈ P with J ′ := J ∪ {i0}
and g′|J = g, g′(i0) = x0 satisfies (J, g) ≼ (J ′, g′) and (J, g) ̸= (J ′, g′), in
contradiction to maximality. This shows that there exists a map g : I → X
such that g(i) ∈ Xi for all i ∈ I. Thus we have proved Theorem 1.

Theorem 2. The Well Ordering Principle implies the Axiom of Choice.

Proof. Let I and X be nonempty sets and let I → 2X \ {∅} : i 7→ Xi be
a map which assigns to every i ∈ I a nonempty subset Xi ⊂ X. By the
Well Ordering Principle, choose a well ordering ≼ of X. This well ordering
determines a map 2X \ {∅} → X : Y 7→ minY , which assigns to every
nonempty subset Y ⊂ X its minimum minY ∈ Y with respect to the well
ordering ≼. The composition of these two maps gives rise to a map g : I → X
which sends i ∈ I to the element g(i) := minXi ∈ Xi as required by the
Axiom of Choice. This proves Theorem 2.
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2 Bourbaki–Witt

The proof that the Axiom of Choice implies the Lemma of Zorn relies on the
Bourbaki–Witt Fixed Point Theorem. It is taken from [1, Appendix A] and
follows the exposition by Imre Leader [3].

Theorem 3 (Bourbaki–Witt). Let (P,≼) be a nonempty partially or-
dered set such that every nonempty chain C ⊂ P admits a supremum and
let f : P → P be a map such that

p ≼ f(p) for all p ∈ P.

Then there exists an element p ∈ P such that f(p) = p.

Proof. Fix any element p0 ∈ P and denote by

A ⊂ 2P

be the set of all subsets A ⊂ P that satisfy the following three conditions.

(I) p0 ∈ A.

(II) If p ∈ A, then f(p) ∈ A.

(III) If C ⊂ A is a nonempty chain, then supC ∈ A.

Then A is nonempty because P ∈ A. Now let

E :=
⋂
A∈A

A ⊂ P

be the intersection of all subsets A ∈ A. Then the set E also satisfies
the conditions (I), (II), and (III) and hence is itself an element of A. In
particular, E is nonempty. We prove in five steps that E is a chain.

Step 1. Every element p ∈ E satisfies p0 ≼ p.

The set
P0 := {p ∈ P | p0 ≼ p}

satisfies the conditions (I), (II), and (III), and hence is an element of A.
Thus E ⊂ P0 and this proves Step 1.

Step 2. Let F ⊂ E be the subset

F :=

{
q ∈ E

∣∣∣∣ every element p ∈ E \ {q}
with p ≼ q also satisfies f(p) ≼ q

}
.

Then p0 ∈ F .

By Step 1 there is no element p ∈ E \ {p0} with p ≼ p0. Hence p0 ∈ F .
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Step 3. Let p ∈ E and q ∈ F . Then p ≼ q or f(q) ≼ p.

Fix an element q ∈ F and consider the set

Eq :=
{
p ∈ E

∣∣ p ≼ q
}
∪ {p ∈ E | f(q) ≼ p} .

We prove that Eq ∈ A satisfies (I). Since q ∈ F ⊂ E we have p0 ≼ q by
Step 1. Since p0 ∈ E, this implies p0 ∈ Eq and so Eq satisfies condition (I).

We prove that Eq satisfies (II). Fix an element p ∈ Eq. Then f(p) ∈ E
because E satisfies (II). If p ≼ q and p ̸= q, then f(p) ≼ q, because q is an
element of F , and this implies f(p) ∈ Eq. If p = q, then f(q) ≼ f(p) and this
implies f(p) ∈ Eq. If p ̸≼ q, then we must have f(q) ≼ p, because p ∈ Eq,
and this implies again f(q) ≼ f(p) and therefore f(p) ∈ Eq. This shows
that Eq satisfies (II).

We prove that Eq satisfies (III). Thus let C ⊂ Eq be a nonempty chain
and s := supC. Then s ∈ E because E satisfies (III). If p ≼ q for all p ∈ C,
then s ≼ q und therefore s ∈ Eq. Otherwise there exists an element p ∈ C
with p ̸≼ q. Since p ∈ Eq, we must have f(q) ≼ p ≼ s and therefore s ∈ Eq.
This shows that Eq satisfies (III).

Thus Eq ∈ A and hence E ⊂ Eq. This proves Step 3.

Step 4. F = E.

By Step 2 we have p0 ∈ F and so F satisfies (I).
We prove that F satisfies (II). Fix an element q ∈ F . We must prove

that f(q) ∈ F . To see this, note first that f(q) ∈ E because E satisfies (II).
Now let p ∈ E \ {f(q)} with p ≼ f(q). Under these assumptions we must
show that f(p) ≼ f(q). Since f(q) ̸≼ p, we have p ≼ q by Step 3. If p ̸= q,
then it follows from the definition of F that f(p) ≼ q ≼ f(q). If p = q, then
we also have f(p) ≼ f(q). Thus we have shown that f(p) ≼ f(q) for every
element p ∈ E \ {f(q)} with p ≼ f(q). Hence f(q) ∈ F and this shows that F
satisfies (II).

We prove that F satisfies (III). Let C ⊂ F be a nonempty chain and de-
fine s := supC. We must prove that s ∈ F . To see this, note first that s ∈ E
because E satisfies (III). Now let p ∈ E \ {s} with p ≼ s. Under these
assumptions we must show that f(p) ≼ s. Since s ̸= p, we have s ̸≼ p.
Thus there exists an element q ∈ C with q ̸≼ p, and hence also f(q) ̸≼ p.
Since q ∈ C ⊂ F , this implies p ≼ q by Step 3. Since p ̸= q and q ∈ F , this
implies f(p) ≼ q. Since q ∈ C and s = supC, this implies f(p) ≼ s. Thus we
have proved that s ∈ F and this shows that F satisfies (III).

Thus F ∈ A, hence E ⊂ F , and hence E = F . This proves Step 4.
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Step 5. E is a chain.

Let p, q ∈ E. Then q ∈ F by Step 4, and so p ≼ q or f(q) ≼ p by Step 3.
Thus p ≼ q or q ≼ p and this proves Step 5.

By Step 5, the set E has a supremum

s := supE ∈ P.

Since E satisfies condition (III) we have s ∈ E. Since E also satisfies (II),
this implies f(s) ∈ E and hence f(s) ≼ s. Since s ≼ f(s) by assumption, we
have f(s) = s and this proves Theorem 3.

We remark that the Lemma of Zorn implies the existence of a maximal
element m ∈ P under the assumptions of Theorem 3, and that any such
maximal element must be a fixed point of f . However, the above proof of
the Bourbaki–Witt Theorem does not use the Lemma of Zorn (nor does it
use the Axiom of Choice) and so the result can be used to show that the
Axiom of Choice implies the Lemma of Zorn.

Theorem 4. The Axiom of Choice implies the Lemma of Zorn.

Proof. Assume the Axiom of Choice. Under this assumption we prove the
Lemma of Zorn in two steps.

Step 1. Let (P,≼) be a nonempty partially ordered set such that every
nonempty chain C ⊂ P has a supremum. Then P has a maximal element.

Assume, by contradiction, that P does not have a maximal element. Then
the set

S(p) := {q ∈ P | p ≼ q, p ̸= q} ⊂ P

is nonempty for every element p ∈ P . Hence the Axiom of Choice asserts
that there exists a map f : P → P such that

f(p) ∈ S(p) for all p ∈ P.

This map f satisfies the condition

p ≼ f(p) for all p ∈ P.

However, f does not have a fixed point, in contradiction to Theorem 3. This
shows that our assumption, that P does not have a maximal element, must
have been wrong. So P has a maximal element and this proves Step 1.

5



Step 2. Let (P,≼) be a partially ordered set such that every nonempty
chain C ⊂ P admits an upper bound. Let p ∈ P . Then there exists a maximal
element m ∈ P with p ≼ m.

Let P ⊂ 2P be the set of all chains in P that contain the point p, i.e.

P :=
{
C ⊂ P

∣∣C is a chain and p ∈ C
}
.

Then P is a nonempty set, partially ordered by inclusion.
Now let C ⊂ P be a nonempty chain in P and define the set

S :=
⋃
C∈C

C.

This set contains the point p and we claim that it is a chain in P . To see
this, let p0, p1 ∈ S and choose chains C0, C1 ∈ C such that

p0 ∈ C0, p1 ∈ C1.

Since C is a chain we have C0 ⊂ C1 or C1 ⊂ C0. Hence

C := C0 ∪ C1 ∈ C

is a chain in P that contains both p0 and p1, and thus p0 ≼ p1 or p1 ≼ p0.
This shows that S is an element of P and therefore is the supremum of the
chain of chains C ⊂ P. Thus we have proved that every nonempty chain
in P has a supremum.

With this understood, Step 1 asserts that there exists a maximal chain

M ⊂ P

that contains the point p. Let m ∈ P be an upper bound of M . Then

p ≼ m.

Moreover, m is a maximal element of P , because otherwise there would exist
an element q ∈ P withm ≼ q andm ̸= q, so q /∈ M , and thenM ′ := M ∪ {q}
would be a larger chain containing p, in contradiction to the maximality ofM .
This proves Step 2 and Theorem 4.
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3 Well Ordering

Theorem 5. The Axiom of Choice implies the Well Ordering Principle.

Our proof follows the argument of Dag Normann [4] which in turn is
based on [2]. We begin with some basic abservations about well ordered sets.
A subset S ⊂ X of a well ordered set (X,≼) is called an initial segment iff
every element s ∈ S satisfies {x ∈ X |x ≼ s} ⊂ S.

Lemma 6. Let (X,≼) be a nonempty well ordered set and let g : X → X be
a bijective map such that all x, y ∈ X satisfy

x ≼ y ⇐⇒ g(x) ≼ g(y).

Then g = id.

Proof. Suppose, by contradiction, that g ̸= id. Then the set

Y := {y ∈ X | g(y) ̸= y}

is nonempty and hence admits a minimum y0 ∈ Y . Thus y0 ≼ y for all y ∈ Y .
This implies g(y0) ≼ g(y) for all y ∈ Y . Moreover, since the map g is bijective,
it restricts to a bijection of Y . Thus we have y0 ≼ g(y0) and g(y0) ≼ y0, which
implies y0 = g(y0) in contradiction to the fact that y0 ∈ Y . Hence g is the
identity map as claimed. This proves Lemma 6.

Lemma 7. Let (X,≼) and (X ′,≼′) be nonempty well ordered sets. Then
one of the following assertions holds.

(i) There exists an injective map g : X → X ′ such that g(X) is an initial
segment of X ′ and all x, y ∈ X satisfy

x ≼ y ⇐⇒ g(x) ≼′ g(y). (1)

(ii) There exists an injective map h : X ′ → X such that h(X ′) is an initial
segment of X and all x′, y′ ∈ X ′ satisfy

x′ ≼′ y′ ⇐⇒ h(x′) ≼ h(y′). (2)

Proof. Define

P :=

(S, g)

∣∣∣∣∣
S is an initial segment of X,
g : S → X ′ is an injective map
that satisfies (1) for all x, y ∈ S,
and g(S) is an initial segment of X ′

 .
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The set P has the following properties.

(a) P is nonempty.

Let x0 be the minimum of (X,≼) and let x′
0 be the minimum of (X ′,≼′).

Define S := {x0} and define g : S → X ′ by g(x0) := x′
0. Then (S, g) ∈ P.

(b) If (S, g) ∈ P and T ⊂ S is an initial segment of S, then (T, g|T ) ∈ P.

This holds because an initial segment of an initial segment of X is an initial
segment of X, and likewise for X ′.

(c) If (S0, g0), (S1, g1) ∈ P, then g0(x) = g1(x) for all x ∈ S0 ∩ S1.

Assume, by contradiction, that this is wrong. Then the set

Y :=
{
y ∈ S0 ∩ S1

∣∣ g0(y) ̸= g1(y)
}

is nonempty and hence admits a minimum y0 ∈ Y . Define

S :=
{
x ∈ X

∣∣x ̸= y0, x ≼ y0
}
.

Then, since S0 and S1 are initial segments of X, so is the set S ⊂ S0 ∩ S1,
and it follows from the definition of y0 that g0(x) = g1(x) for all x ∈ S. Also,
it follows from (b) that (S, g0|S) ∈ P. Thus S ′ := g0(S) is an initial segment
of X ′. Moreover, S∪{y0} ⊂ S0∩S1 is an initial segment of X, and hence the
sets g0(S ∪ {y0}) = S ′ ∪ {g0(y0)} and g1(S ∪ {y0}) = S ′ ∪ {g1(y0)} are initial
segments of X ′. Thus g0(y0) = g1(y0), a contradiction. This proves (c).

(d) If (S0, g0), (S1, g1) ∈ P, then S1 ⊂ S0 or S0 ⊂ S1.

Assume S1 ̸⊂ S0 and choose an element x1 ∈ S1 \ S0. If x ∈ S0, then we
have x1 ̸≼ x, hence x ≼ x1, and hence x ∈ S1. This proves (d).

Define the sets

Smax :=
⋃

(S,g)∈P

S ⊂ X, S ′
max :=

⋃
(S,g)∈P

g(S) ⊂ X ′,

and define the map gmax : Smax → S ′
max by

gmax(y) := g(y) for (S, g) ∈ P and y ∈ S.

By (d) the set Smax is an initial segment of X and the set S ′
max is an initial

segment of X ′. By (c) and (d) the map gmax : Smax → S ′
max is well defined.

Moreover, it is bijective and satisfies (1). Thus (Smax, gmax) ∈ P.
If Smax = X, then the map gmax : X → X ′ satisfies (i). If Smax ̸= X,

then S ′
max = X ′, because otherwise gmax extends to an element of P with a

larger domain Smax ∪ {min(X \ Smax)}, a contradiction. Hence, in this case
the map g−1

max : X
′ → Smax ⊂ X satisfies (ii). This proves Lemma 7.
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With these preparations in place we are ready to begin with the proof of
Theorem 5. Let X be a nonempty set. By the Axiom of Choice there exists
a map f : 2X \ {X} → X that satisfies

f(Y ) ∈ X \ Y for all Y ⊊ X. (3)

Let such a map f be given. We will prove that X admits a well ordering ≼
(unique by Lemma 8 below) such that

x = f
({

y ∈ X \ {x}
∣∣ y ≼ x

})
for all x ∈ X. (4)

The minimum of this well ordering is the element x0 := f(∅).
Definition. An f-string in X is a nonempty subset A ⊂ X equipped with
a well ordering ≼A such that

a = f
({

a′ ∈ A \ {a}
∣∣ a′ ≼A a

})
for all a ∈ A. (5)

Lemma 8. Let (A,≼A) and (B,≼B) be f -strings in X. Then A is an initial
segment of B or B is an initial segment of A. Also, if a, a′ ∈ A ∩B, then

a ≼A a′ ⇐⇒ a ≼B a′. (6)

Proof. By Lemma 7 there exists an isomorphism from (A,≼A) onto an initial
segment of B, or there exists an isomorphism from (B,≼B) onto an initial
segment of A. Assume the former and let g : A → B be an injective map
such that g(A) is an initial segment of B and, for all a, a′ ∈ A,

a ≼A a′ ⇐⇒ g(a) ≼B g(a′). (7)

We claim that g(a) = a for all a ∈ A. Assume, by contradiction, that this
is not the case. Then the set A1 := {a ∈ A | g(a) ̸= a} is nonempty and
hence contains a minimal element a1. This element satisfies b1 := g(a1) ̸= a1
and g(a) = a for all a ∈ A \ {a1} such that a ≼A a1. Hence, by (7), we have

{a ∈ A \ {a1} | a ≼A a1} =
{
g(a)

∣∣ a ∈ A \ {a1}, g(a) ≼B g(a1)
}

=
{
b ∈ B \ {b1}

∣∣ b ≼B b1
}
.

Here the second equality uses the fact that g(A) is an initial segment of B.
Since (A,≼A) and (B,≼B) are f -strings, it then follows from (5) that

a1 = f ({a ∈ A \ {a1} | a ≼A a1}) = f ({b ∈ B \ {b1} | b ≼B b1}) = b1.

This is a contradiction and shows that g(a) = a for all a ∈ A. Thus A is an
initial segment of B and (6) holds. This proves Lemma 8.
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Proof of Theorem 5. Choose a map f : 2X \ {X} → X that satisfies (3) and
let Sf be the set of all f -strings in X. Then Sf is nonempty because the
set A = {x0} with its unique order is an f -string. Define a set S ⊂ X by

S :=
⋃

(A,≼A)∈Sf

A (8)

and define a relation ≼ on S by

x ≼ y
def⇐⇒ there exists an f -string (A,≼A) ∈ Sf

such that x, y ∈ A and x ≼A y
(9)

for x, y ∈ S. For any two elements x, y ∈ S it follows from Lemma 8 that
there exists an f -string (A,≼A) such that x, y ∈ A and that, for any two
f -strings (A,≼A) and (B,≼B) with x, y ∈ A ∩B, we have x ≼A y if and
only if x ≼B y. Hence the relation in (9) on the set S in (8) is well defined
and (S,≼) is a totally ordered set.

We prove that ≼ is a well ordering of S. Let Y be a nonempty subset of S,
choose an f -string (A,≼A) such that Y ∩ A ̸= ∅, and let y0 ∈ Y ∩ A be the
minimum of Y ∩A with respect to the well ordering ≼A on A. If y ∈ Y \A,
then there exists an f -string (B,≼B) such that y ∈ B, hence B ̸⊂ A, hence
by Lemma 8 the set A is an initial segment of B, and hence y0 ≼B y. This
shows that y0 is the minimum of Y with respect to the partial order ≼ on S.
Thus we have proved that ≼ is a well ordering of S and hence (S,≼) ∈ Sf .

We prove that S = X. Suppose not. Then the set S ′ := S ∪ {f(S)} with
the order relation ≼′ defined by

x ≼′ y
def⇐⇒ y = f(S) or x, y ∈ S and x ≼ y

for x, y ∈ S ′ is an f -string, in contradiction to (8). Thus S = X and so the
relation ≼ in (9) defines a well ordering of X. This proves Theorem 5.
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