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Abstract

These notes discuss some concepts explained by Yasha Eliashberg
in his lectures on 18 and 25 May 2022 at the ITS at ETH Zürich [4].

1 Nondegenerate pairs

Let Σ be a nonempty closed connected oriented 2n-manifold.

Definition 1.1. A pair (β, τ) ∈ Ω1(Σ)×Ω2(Σ) is called nondegenerate iff
it satisfies the condition

βx ∧ τ n−1
x = 0 =⇒ τ nx ̸= 0 (1.1)

for every x ∈ Σ.

Lemma 1.2. Let β ∈ Ω1(Σ) and τ ∈ Ω2(Σ). Then the following are equiva-
lent.

(i) The pair (β, τ) is nondegenerate.

(ii) For every volume form ρ ∈ Ω2n(Σ) there exists a function f ∈ Ω0(Σ) and
a 1-form γ ∈ Ω1(Σ) such that

ρ = fτ n + nβ ∧ τ n−1 ∧ γ. (1.2)

(iii) There exists a pair (f, γ) ∈ Ω0(Σ)× Ω1(Σ) such that the formula (1.2)
defines a volume form ρ on Σ.
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Proof. First assume (i) and fix a volume form ρ ∈ Ω2n(Σ). Then Σ is the
union of the open sets

U :=
{
x ∈ Σ

∣∣ (τx)n ̸= 0
}
, V :=

{
x ∈ Σ

∣∣ βx ∧ (τx)
n−1 ̸= 0

}
.

Also there exists a unique function fU ∈ Ω0(U) such that fUτ
n = ρ on U ,

and there exists a 1-form γV ∈ Ω1(V ) such that nβ ∧ τ n−1 ∧ γV = ρ on V .
Since U ∪ V = Σ, there exist smooth functions θU , θV : Σ → [0, 1] such that

supp(θU) ⊂ U, supp(θV ) ⊂ V, θU + θV = 1.

Hence f := θUfU and γ := θV γV extend to all of Σ and satisfy (1.2). Thus we
have proved that (i) implies (ii). That (ii) implies (iii) is obvious and that (iii)
implies (i) follows directly from the definitions. This proves Lemma 1.2.

Remark 1.3 (Stable almost complex structures). Fix a nondegenerate
pair (β, τ) ∈ Ω1(Σ)× Ω2(Σ). Let ρ ∈ Ω2n(Σ) be a positive volume form and
choose f, γ as in part (ii) of Lemma 1.2. Then, for each x ∈ Σ, the 2-form

ωx := τx − βx ∧ ds+ γx ∧ dt+ f(x)ds ∧ dt

on TxΣ× R2 satisfies ωn+1
x = (n+ 1)ρx ∧ ds ∧ dt and hence is nondegenerate.

Moreover, the set of all pairs (f, γ) for which (1.2) is a positive volume form
is evidently a convex subset of Ω0(Σ)× Ω1(Σ). Thus each nondegenerate
pair on Σ gives rise to a unique homotopy class of nondegenerate 2-forms on
the vector bundle TΣ× R2 and hence to a unique homotopy class of stable
almost complex structures.

Definition 1.4 (Characteristic foliation). Let (β, τ) ∈ Ω1(Σ)× Ω2(Σ) be
a nondegenerate pair. The characteristic foliation of (β, τ) is the collection
of linear subspaces ℓx ⊂ TxΣ, one for each x ∈ Σ, defined by

ℓx :=
{
v ∈ ker(βx)

∣∣ τx(v, w) = 0 for all w ∈ ker(βx)
}
. (1.3)

For each x ∈ Σ the subspace ℓx has dimension zero if and only if βx = 0 and
has dimension one otherwise.

The next lemma shows that the leaves of the characteristic foliation of
a nondegenerate pair (β, τ) on an oriented 2n-manifold Σ are the integral
curves of a vector field X (introduced by Giroux [5]).

2



Lemma 1.5. Let (β, τ) ∈ Ω1(Σ)× Ω2(Σ) be a nondegenerate pair and choose
a triple ρ, f, γ as in part (ii) of Lemma 1.2. Define the function λ ∈ Ω0(Σ)
and the vector fields X, Y ∈ Vect(Σ) by

ι(X)ρ = nβ ∧ τ n−1, ι(Y )ρ = nτ n−1 ∧ γ, λρ = τ n. (1.4)

Then
β(X) = γ(Y ) = 0, γ(X) + β(Y ) = 0, (1.5)

ι(X)τ = λβ, ι(Y )τ = λγ, fλ = γ(X) + 1. (1.6)

Moreover, for all x ∈ Σ we have X(x) ∈ ℓx and

X(x) = 0 ⇐⇒ βx = 0, Y (x) = 0 ⇐⇒ γx = 0, (1.7)

Proof. Since β∧ρ = 0 we have β(X)ρ = β∧ι(X)ρ = 0, where the last equality
follows from the definition of X in (1.4). Thus β(X) = 0. Likewise, it follows
from the definition of Y in (1.4) that γ(Y )ρ = γ∧ι(Y )ρ = 0, and so γ(Y ) = 0.
Similarly, β(Y )ρ = β ∧ ι(Y )ρ = nβ ∧ τ n−1 ∧ γ = (ι(X)ρ) ∧ γ = −γ(X)ρ and
so β(Y ) + γ(X) = 0. This proves (1.5).

To prove (1.6), observe that every vector field Z ∈ Vect(Σ) satisfies

τ(X,Z)ρ = −(ι(X)ι(Z)τ) ∧ ρ = −(ι(Z)τ) ∧ ι(X)ρ

= −n(ι(Z)τ) ∧ β ∧ τ n−1 = β ∧ ι(Z)τ n = β(Z)τ n = β(Z)λρ.

This shows that ι(X)τ = λβ. Likewise,

τ(Y, Z)ρ = −(ι(Y )ι(Z)τ) ∧ ρ = −(ι(Z)τ) ∧ ι(Y )ρ

= −n(ι(Z)τ) ∧ γ ∧ τ n−1 = γ ∧ ι(Z)τ n = γ(Z)τ n = γ(Z)λρ,

for all Z ∈ Vect(Σ) and so ι(Y )τ = λγ. Commbining this with (1.5) and the
definition of X and λ in (1.4) we obtain

ρ = fτ n + nβ ∧ τ n−1 ∧ γ = fλρ+ (ι(X)ρ) ∧ γ =
(
fλ− γ(X)

)
ρ.

This proves (1.6).
It follows directly from (1.5) and (1.6) that X(x) ∈ ℓx for all x ∈ Σ.
To prove (1.7), fix an element x ∈ Σ. If βx = 0, then it follows di-

rectly from the definition of X in (1.4) that X(x) = 0. Conversely, suppose
that X(x) = 0. Then it follows from (1.4) that the (2n − 1)-form β ∧ τ n−1

vanishes at x. Hence the nondegeneracy condition (1.1) asserts that τx is a
nondegenerate 2-form on TxΣ and this implies βx = 0. Thus we have proved
that X(x) = 0 if and only if βx = 0. That Y (x) = 0 if and only if γx = 0 fol-
lows by verbatim the same argument. This proves (1.7) and Lemma 1.5.
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The following remark examines the homotopy classes of nondegenerate
pairs in dimension two.

Remark 1.6 (Euler characteristic). Let (Σ, σ) be a nonempty closed
connected symplectic 2-manifold. Then a pair (β, τ) ∈ Ω1(Σ)× Ω2(Σ) deter-
mines (and is determined by) a pair (X,λ) ∈ Vect(Σ)× Ω0(Σ) via

ι(X)σ = β, τ = λσ. (1.8)

Under this correspondence the pair (β, τ) is nondegenerate if and only if the
pair (X,λ) satisfies, for each x ∈ Σ, the condition

X(x) = 0 =⇒ λ(x) ̸= 0. (1.9)

If the zeros ofX are all isolated, the Euler characteristic of the pair (β, τ)
is the integer defined by

χ(β, τ) :=
∑

X(x)=0

sign
(
λ(x)

)
ι(x,X). (1.10)

Here the sum runs over all zeros of X and ι(x,X) ∈ Z denotes the index of x
as a zero of the vector field X (see [7, p 32]). The Euler characteristic of
the pair (β, τ) is an even integer because the sum

∑
x ι(x,X) = χ(Σ) is the

Euler characteristic of Σ by the Poincaré–Hopf Theorem (see [7, p 35]) and
the difference χ(β, τ)− χ(Σ) is even by definition.

Standard arguments as in [7] show that the Euler characteristic is a ho-
motopy invariant and so is well defined for every nondegenerate pair (β, τ),
regardless of whether or not the zeros of β are isolated. In fact, χ(β, τ) is
the pairing of the first Chern class of the nondegenerate 2-form on the vector
bundle TΣ× R2 in Remark 1.3 with the fundamental class of Σ.

Next we remark that the vector bundle TΣ× R2 admits a trivialization
and so is isomorphic to the trivial bundle Σ× R4. Under such a trivialization,
a nondegenerate 2-form on TΣ× R2 that is compatible with the orientation
is homotopic to a smooth map from Σ to the unit sphere in the 3-dimensional
vector space Λ2,+ of self-dual 2-forms on R4, and the degree of this map is half
the first Chern number. Moreover, the Hopf Degree Theorem (see [7, p 51])
asserts that the homotopy class of a smooth map from Σ to the 2-sphere is
uniquely determined by its degree. Hence two nondegenerate pairs on Σ are
homotopic if and only if they have the same Euler characteristic.
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2 Hypersurfaces in contact manifolds

Let (M, ξ) be a (2n + 1)-dimensional contact manifold with a cooriented
contact structure ξ. Thus ξ ⊂ TM is a field of hyperplanes and there exists
a nowhere vanishing 1-form α onM such that ξ = ker(α) and α ∧ (dα)n ̸= 0.
Any such 1-form α is called a contact form on (M, ξ). A contact form α
is called positive iff it takes positive values on positive normal vectors of ξ.
The orientation of M is determined by the volume form α ∧ (dα)n for every
positive contact form α. A vector field ν ∈ Vect(M) is called a contact
vector field iff its flow preserves the contact structure ξ, i.e. for each contact
form α there exists a smooth function h :M → R such that Lνα = hα.

A hypersurface in M is a nonempty closed connected 2n-dimensional
submanifold Σ ⊂M . A hypersurface Σ ⊂M is called coorientable iff it
admits a transverse vector field ν ∈ Ω0(Σ, TΣM), so ν(x) ∈ TxM \ TxΣ for
all x ∈ Σ. If Σ is coorientable, then the space of such transverse vector
fields has precisely two connected components, and a choice of one of these
connected components is called a coorientation of Σ. If a coorientation
of Σ has been chosen, we say that Σ is cooriented and call a transverse
vector field ν positive iff it belongs to the preferred connected component.
The orientation of a cooriented hypersurface Σ ⊂M is determined by the
volume form ι(ν)(α ∧ (dα)n)|Σ, where α ∈ Ω1(M) is a positive contact form
for ξ and ν is a positive transverse vector field along Σ.

Lemma 2.1. Let Σ ⊂M be a cooriented hypersurface, let α ∈ Ω1(M) be
a positive contact form for ξ, choose any positive transverse vector field ν
along Σ, and define β, γ ∈ Ω1(Σ) and f ∈ Ω0(Σ) by

β := α|Σ, f := α(ν)|Σ, γ := −ι(ν)dα|Σ. (2.1)

Then the volume form ρ := ι(ν)(α ∧ (dα)n)|Σ ∈ Ω2n(Σ) is given by

ρ := f(dβ)n + nβ ∧ (dβ)n−1 ∧ γ. (2.2)

Hence the pair (β, dβ) is nondegenerate (Definition 1.1).

Proof. We compute

ρ = ι(ν)
(
α ∧ (dα)n

)∣∣
Σ
= α(ν) (dα)n|Σ − n α ∧ (dα)n−1 ∧ ι(ν)dα

∣∣
Σ

= f(dβ)n + nβ ∧ (dβ)n−1 ∧ γ.

This proves (2.2). That the pair (β, dβ) is nondegenerate follows from (2.2)
and Lemma 1.2. This proves Lemma 2.1.
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Definition 2.2. Let Σ be a closed oriented 2n-manifold. A 1-form β ∈ Ω1(Σ)
is called a germ of a contact form iff the pair (β, dβ) is nondegenerate.

Remark 2.3. That the restriction of a contact form to a cooriented hyper-
surface is a germ of a contact form was shown in Lemma 2.1. Conversely,
let β ∈ Ω1(Σ) be the germ of a contact form on an oriented 2n-manifold Σ.
Then Lemma 1.2 asserts that there exists a pair (f, γ) ∈ Ω0(Σ)× Ω1(Σ) such
that the 2n-form ρ in (2.2) is a positive volume form on Σ. In this situation
define α ∈ Ω1(R× Σ) by

α := β + t(df − γ) + fdt, (2.3)

where t denotes the coordinate on R. Then α restricts to a contact form on a
neighborhood of {0} × Σ and its pullback under the inclusion ι : Σ → R× Σ,
defined by ι(x) := (0, x), is the 1-form ι∗α = β. Thus Σ embeds as a coori-
ented hypersurface into a contact manifold (M, ξ) such that β is the restric-
tion of a contact form for ξ to Σ. Note that, if γ = df , then α := β + fdt is
a contact form on all of R× Σ.

The characteristic foliation

Let Σ ⊂M be a cooriented hypersurface, let α ∈ Ω1(M) be a positive contact
form for ξ, and define β := α|Σ ∈ Ω1(Σ). Then Lemma 2.1 asserts that the
pair (β, dβ) is nondegenerate (Definition 1.1) and hence determines a char-
acteristic foliation (Definition 1.4). In this case the characteristic foliation
can be expressed in the form

ℓx := {v ∈ ξx ∩ TxΣ | dα(v, w) = 0 for all w ∈ ξx ∩ TxΣ} . (2.4)

For each x ∈ Σ the subspace ℓx is independent of the choice of α, has dimen-
sion zero if and only if TxΣ = ξx, and has dimension one otherwise.

Now let ν, γ, f, ρ be as in Lemma 2.1 and define X, Y, λ as in Lemma 1.5
by (1.4) with τ := dβ. Thus

ι(X)ρ = nβ ∧ (dβ)n−1, ι(Y )ρ = n(dβ)n−1 ∧ γ, λρ = (dβ)n. (2.5)

Then Lemma 1.5 asserts, in particular, that the leaves of the characteristic
foliation are the integral curves of X. The lemma also asserts that the zeros
of X are the zeros of β, the zeros of Y are the zeros of γ, and that

β(X) = γ(Y ) = 0, β(Y ) + γ(X) = 0, (2.6)

ι(X)dβ = λβ, ι(Y )dβ = λγ. fλ = γ(X) + 1. (2.7)

The next lemma gives a formula for the Reeb vector field of α along Σ.
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Lemma 2.4. Let Σ ⊂M be a cooriented hypersurface, let α ∈ Ω1(M) be a
positive contact form for ξ, let Rα ∈ Vect(M) be the Reeb vector field of α,
let ν, β, γ, f, ρ be as in Lemma 2.1, and define X, Y, λ by (2.5). Then

Rα(x) = Y (x) + λ(x)ν(x) for all x ∈ Σ. (2.8)

Proof. Define R := Y + λν ∈ Ω0(Σ, TΣM). Then, by (2.6) and (2.7),

α(R) = β(Y ) + λα(ν) = β(Y ) + λf = −γ(X) + λf = 1.

Moreover, for Z ∈ Vect(Σ) and s ∈ Ω0(Σ) it follows from (2.6), (2.7), and
the definition of γ in Lemma 2.1 that

dα(R,Z + sν) = dα(Y + λν, Z + sν)

= dβ(Y, Z) + λdα(ν, Z) + sdα(Y, ν)

= dβ(Y, Z)− λγ(Z) + sγ(Y ) = 0.

Thus ι(R)dα = 0 and so R is the the restriction of the Reeb vector field of α
to Σ. This proves Lemma 2.4.

Definition 2.5 (Orientations). Let Σ ⊂M be a cooriented hypersurface,
let α be a positive contact form for ξ, define β := α|Σ, and let ρ be a positive
volume form on Σ. Choose x ∈ Σ such that ℓx has dimension one.

(i) The orientation of ℓx is determined by the vector X(x) in (2.5). Thus
a nonzero vector v ∈ ℓx is positive if and only if the orientations of the
space TxΣ/ℓx induced by the (2n− 1)-forms ι(v)ρ and β ∧ (dβ)n−1 agree.

(ii) The (2n− 2)-form (dβ)n−1 descends to a volume form on the quotient
space (ξx ∩ TxΣ)/ℓx and hence determines an orientation of this space.

A local version of the following theorem, for submanifolds of any dimen-
sion, was proved by Arnol’d and Givental in [1, p 74, Theorem A]. The next
theorem is a global version of their result for the special case of hypersurfaces
with a slightly modified proof.

Theorem 2.6 (Arnol’d–Givental). Let ξ, ξ′ be cooriented contact struc-
tures on M inducing the same orientation and let Σ ⊂M be a cooriented
hypersurface such that ξ′x∩TxΣ = ξx∩TxΣ for all x ∈ Σ. Assume also that ξ
and ξ′ induce the same orientations on the vector spaces ℓx and (ξx ∩ TxΣ)/ℓx
whenever ℓx has dimension one. Then there exists an orientation preserv-
ing diffeomorphism ϕ :M →M and an open neighborhood U ⊂M of Σ such
that ϕ(x) = x for all x ∈ Σ and dϕ(x)ξx = ξ′ϕ(x) for all x ∈ U .
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The proof of Theorem 2.6 uses the following lemma.

Lemma 2.7 (Uniqueness of germs of contact forms). Let β, β′ ∈ Ω1(Σ)
be two germs of contact forms such that

ker(βx) = ker(β′
x) for all x ∈ Σ. (2.9)

Then there exists a nowhere vanishing function h ∈ Ω0(Σ) such that β′ = hβ.

Proof. By (2.9) there exists a nowhere vanishing real valued function h on
the open set U :=

{
x ∈ Σ

∣∣ βx ̸= 0
}
such that β′

x = h(x)βx for all x ∈ U . We
prove that h extends to a smooth function on all of Σ. To see this, choose
coordinates x1, . . . , x2n on Σ in a neighborhood of a point in Σ \ U , write

β =
∑
i

bidxi, β′ =
∑
i

b′idxi,

and suppose that bi(0) = b′i(0) = 0 for i = 1, . . . , 2n. Then dβ is a symplec-
tic form near the origin. Hence there exists a pair of indices i ̸= j such
that ∂bi/∂xj(0) ̸= 0. Assume without loss of generality that j = 1. Then the
coordinate system can be chosen such that bi(x1, . . . , x2n) = x1. Since b

′ = hb
this implies x1h(x1, . . . , x2n) = b′i(x1, . . . , x2n). Also b

′
i(x1, . . . , x2n) = 0 when-

ever x1 = 0, and so

h(x1, . . . , x2n) =
1

x1
b′i(x1, . . . , x2n)

=
1

x1

∫ x1

0

∂1b
′
i(s, x2, . . . , x2n) ds

=

∫ 1

0

∂1b
′
i(sx1, x2, . . . , x2n) ds.

The right hand side of this equation extends to a smooth function in a neigh-
borhood of the origin and agrees with h wherever h is defined. Hence h
extends to a smooth function on all of Σ, still denoted by h : Σ → R. At
every point x ∈ Σ at which β vanishes the 2-forms dβ and dβ′ = d(hβ)
are both symplectic, and this implies h(x) ̸= 0 for all x ∈ Σ. This proves
Lemma 2.7.

Remark 2.8. The main argument in the proof of Lemma 2.7 is the assertion
that, if f, g : Σ → R are smooth functions such that zero is a regular value
of f and f−1(0) ⊂ g−1(0), then the function h := g/f : Σ \ f−1(0) → R
extends uniquely to a smooth function on all of Σ.
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Proof of Theorem 2.6. Let α be a positive contact form for ξ. We prove in
four steps that there exists an orientation preserving diffeomorphism ϕ of M
such that ϕ|Σ = id and (ϕ−1)∗α is a contact form for ξ′ near Σ.

Step 1. There exists a positive contact form α′ for ξ′ such that α′|Σ = α|Σ.
Choose any positive contact form α′ for ξ′ and define β′ := α′|Σ, β := α|Σ.
Then ker(β′

x) = ker(βx) for all x ∈ Σ by assumption. Hence, by Lemma 2.7
there exists a nowhere vanishing function h ∈ Ω0(Σ) such that β′ = hβ. To
prove that h is positive, choose a positive transverse vector field ν along Σ and
define ρ := ι(ν)

(
α ∧ (dα)n−1

)
|Σ and ρ′ := ι(ν)

(
α′ ∧ (dα′)n−1

)
|Σ. By assump-

tion the volume forms α ∧ (dα)n and α′ ∧ (dα′)n induce the same orientation
on M and so ρ and ρ′ induce the same orientation on Σ. Define the vec-
tor fields X,X ′ on Σ by ι(X)ρ = nβ ∧ (dβ)n−1 and ι(X ′)ρ′ = nβ′ ∧ (dβ′)n−1.
Now let x ∈ Σ such that ℓx has dimension one. Then, by assumption, the vec-
tors X(x) and X ′(x) are related by a positive factor. Since X ′ = hn(ρ/ρ′)X,
it follows that hn > 0. Also the orientations on (ξx ∩ TxΣ)/ℓx induced by the
symplectic forms dβx and dβ′

x agree. Hence hn−1 > 0 and so h > 0.
Now extend h to a positive function on all of M to obtain a positive

contact form α′′ := h−1α′ for ξ′ that satisfies α′′|Σ = α|Σ. This proves Step 1.

Step 2. Let α′ be as in Step 1 and let ν be a positive transverse vector field
along Σ. Then there exists a positive transverse vector field ν ′ along Σ such
that α(ν) = α′(ν ′).

Define the open set U := {x ∈ Σ | βx ̸= 0} and note that f(x) := α(ν(x))
and f ′(x) := α′(ν(x)) are nonzero and have the same sign for each x ∈ Σ \ U .
Hence there exists a positive function s : Σ → R such that s = f/f ′ in a
neighborhood of the set Σ \ U . Thus there exists a vector field Y ∈ Vect(Σ),
supported in U , such that β(Y ) = f − sf ′. Then α′(sν + Y ) = f = α(ν) and
so the transverse vector field ν ′ := sν + Y satisfies the requirements of Step 2.

Step 3. Let α′ be as in Step 1 and let ν be as in Step 2. Then there exists
an orientation preserving diffeomorphism ψ :M →M such that ψ|Σ = id
and α(ν) = (ψ∗α′)(ν).

Choose ν ′ as in Step 2 and choose a diffeomorphism ψ :M →M that satisfies

ψ(x) = x, dψ(x)ν(x) = ν ′(x) for all x ∈ Σ. (2.10)

Then ψ is orientation preserving and it follows from Step 2 that, for all x ∈ Σ,

(ψ∗α′)x(ν(x)) = α′
ψ(x)(dψ(x)ν(x)) = α′

x(ν
′(x)) = αx(ν(x)).
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More precisely, define an isotopy ψs in a neighborhood of Σ by choosing a Rie-
mannian metric and taking ψs(expx(tν(x))) := expx(stν

′(x) + (1− s)tν(x))
for x ∈ Σ, t ∈ R sufficiently small, and 0 ≤ s ≤ 1. Now turn it into a global
isotopy with compact support by multiplying the generating vector fields
with a suitable cutoff function that is equal to one near Σ, and take ψ := ψ1

to obtain a diffeomorphism that satisfies (2.10). This proves Step 3.

Step 4. We prove Theorem 2.6.

This is a Moser isotopy argument. By Step 1, there exists a positive contact
form α′ for ξ′ such α′|Σ = α|Σ. Now choose ν as in Step 2 and choose ψ as in
Step 3. Then, for each s ∈ [0, 1], the 1-form αs := (1− s)α+ sψ∗α′ ∈ Ω1(M)
is a contact form near Σ. These contact forms satisfy

α0 = α, α1 = ψ∗α′, αs|Σ = α|Σ, αs(ν) = α(ν) (2.11)

for all s. Next choose a smooth family of vector fields Xs ∈ Vect(M) and
a smooth family of functions hs ∈ Ω0(M) for 0 ≤ s ≤ 1, both with compact
support, that in a neighborhood of Σ satisfy the equation

LXsαs + ∂sαs = hsαs. (2.12)

More precisely, chooseXs such that αs(Xs) = 0 and (ι(Xs)dαs + ∂sαs)|ξs = 0,
where ξs = ker(αs), and define hs := (∂sαs)(Rs), where Rs is the Reeb vector
field of αs (so that ι(Rs)dαs = 0 and αs(Rs) = 1). This determines Xs and hs
uniquely near Σ. Now multiply Xs by a suitable cutoff function to obtain
vector fields with compact support.

Define the isotopy ϕs :M →M by

∂sϕs = Xs ◦ ϕs, ϕ0 = id. (2.13)

Then by (2.11) the 1-form ∂sαs vanishes at every point x ∈ Σ for all s and
hence it follows from the definition ofXs and hs thatXs(x) = 0 and hs(x) = 0
for all x ∈ Σ and all s. This implies ϕs(x) = x for all x ∈ Σ and all s
and so, in particular, there exists a neighborhood U ⊂M of Σ such that for
each s ∈ [0, 1] the image ϕs(U) is contained in the domain where (2.12) holds.
Hence

∂sϕ
∗
sαs = ϕ∗

s (LXsαs + ∂sαs) = ϕ∗
s(hsαs) (2.14)

in U and this implies ϕ∗
sαs = exp

(∫ s
0
(hr ◦ ϕr) dr

)
α in U for 0 ≤ s ≤ 1.

Hence the restriction of ϕ∗
sαs to U is a contact form for ξ for every s.

Since ϕ∗
1α1 = ϕ∗

1ψ
∗α′, it follows that the diffeomorphism ϕ := ψ ◦ ϕ1 sat-

isfies dϕ(x)ξx = ξ′ϕ(x) for all x ∈ U . This proves Step 4 and Theorem 2.6.
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Remark 2.9. Two contact forms for ξ that agree on a hypersurface need
not be locally diffeomorphic by a diffeomorphism that restricts to the identity
on the hypersurface. To see this, fix any nonempty closed connected coori-
ented hypersurface Σ ⊂M , let α ∈ Ω1(M) be any positive contact form for ξ,
let ν ∈ Ω0(Σ, TΣM) be a positive transverse vector field along Σ, and choose
an element x0 ∈ Σ such that dα restricts to a degenerate 2-form on Tx0Σ.
Then the Reeb vector field Rα is tangent to Σ at x0 (Lemma 2.4).

Now let h ∈ Ω0(M) be a positive smooth function such that h|Σ = 1 and
suppose that there exists a diffeomorphism ϕ :M →M satisfying

ϕ|Σ = id, ϕ∗α = hα near Σ. (2.15)

Since Rα(x0) ∈ Tx0Σ, we have

dϕ(x0)Rα(x0) = Rα(x0), dh(x0)Rα(x0) = 0

and hence

0 = (ϕ∗dα)x0(Rα(x0), ν(x0))

= d(hα)x0(Rα(x0), ν(x0))

= −dh(x0)ν(x0).

Thus, for any positive smooth function h :M → R that satisfies h|Σ = 1
and dh(x0)ν(x0) ̸= 0 there does not exist a diffeomorphism ϕ :M →M that
satisfies (2.15).

The linear counterpart to this observation is the following. If ĥ :M → R
is a smooth function that vanishes on Σ and X ∈ Vect(M) is a vector-

field that vanishes on Σ and satisfies LXα + ĥα = 0 near Σ, then the func-
tion f := α(X) :M → R satisfies f(x) = 0 and df(x)|ξx = 0 for all x ∈ Σ as

well as df(Rα) + ĥ = 0 near Σ. At every point x0 ∈ Σ where Rα is tangent

to Σ this implies dĥ(x0) = 0.

Remark 2.10. Let Σ ⊂M be a cooriented hypersurface in a (2n+ 1)-di-
mensional contact manifold (M, ξ) and let α ∈ Ω1(M) be a contact form
for ξ. Then the Reeb vector field Rα is transverse to Σ at every point x ∈ Σ
with TxΣ = ξx. Thus, in a neighborhood U ⊂ Σ of the set where β vanishes,
the transverse vector field ν in Lemma 2.1 can be chosen to agree with either
plus or minus the Reeb vector field, depending on the coorientation of Σ.
With this choice, we have γ = 0, f = ±1, and ρ = ±(dβ)n in U , and so the
vector field X in (2.5) satisfies LX(dβ) = ±β in U and hence is plus or minus
a Liouville vector field in U with respect to the symplectic form dβ.
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3 Convex hypersurfaces

Let (M, ξ) be as in Section 2. A cooriented hypersurface Σ ⊂M is called
convex iff there exists a contact vector field ν, defined in a neighborhood
of Σ,, such that ν|Σ is a positive transverse vector field. The set of such trans-
verse contact vector fields in a given neighborhood of a convex hypersurface Σ
is convex. The concept of a convex hypersurface was first introduced in [2].

Lemma 3.1 (Convexity). Let Σ ⊂ M be a nonempty cooriented closed
connected hypersurface. Choose a positive contact form α ∈ Ω1(M) for ξ
and define β := α|Σ ∈ Ω1(Σ). Then the following are equivalent.

(i) Σ is convex.

(ii) There exists a smooth function f : Σ → R such that

ρ := f(dβ)n + nβ ∧ (dβ)n−1 ∧ df (3.1)

is a positive volume form on Σ.

Proof. We prove that (i) implies (ii). Thus assume that Σ is convex, choose
a contact vector field ν in a neighborhood of Σ such that ν|Σ is a positive
transverse vector field, and define f := α(ν)|Σ . Since ν is a contact vec-
tor field, there exists a smooth function h : Σ → R such that Lνα|Σ = hβ.
Hence ι(ν)dα|Σ = hβ − df . By Lemma 2.1 this implies that the positive vol-
ume form ρ := ι(ν)(α ∧ (dα)n)|Σ on Σ is given by (3.1) and so Σ satisfies (ii).

Conversely, assume (ii) and choose an orientation preserving diffeomor-
phism ψ : R×Σ →M onto a neighborhood U of Σ inM such that ψ(0, x) = x
for all x ∈ Σ. Then the 1-forms α0 := β + f dt and α1 := ψ∗α are con-
tact forms on R× Σ that agree on {0} × Σ and satisfy the requirements of
Theorem 2.6. Hence there exists a positive smooth function h : R× Σ → R
and an orientation preserving diffeomorphism ϕ : R × Σ → R × Σ such
that ϕ(0, x) = (0, x) for all x ∈ Σ and ϕ∗α1 = hα0 near {0} × Σ. Now
write ht(x) := h(t, x) to obtain

(ψ ◦ ϕ)∗α = ht(β + fdt) ∈ Ω1((−ε, ε)× Σ).

Since ∂/∂t is a contact vector field for the contact structure determined by
the contact form ht(β + fdt) on R× Σ, it follows that the vector field ν on U
defined by (ψ ◦ ϕ)∗ν = ∂/∂t is a contact vector field near Σ with respect to
the contact structure ξ determined by α. Since ψ ◦ ϕ : R× Σ → U is an
orientation preserving diffeomorphism, ν restricts to a positive transverse
vector field along Σ. Hence Σ is convex and this proves Lemma 3.1.
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The next lemma gives a sufficient condition for convexity in terms of the
existence of a Lyapunov function for the vector field X that generates the
characteristic foliation.

Lemma 3.2. Let Σ ⊂M be a nonempty cooriented closed connected hyper-
surface, choose a positive contact form α ∈ Ω1(M) for ξ and a positive volume
form ρ ∈ Ω2n(Σ), and define β ∈ Ω1(Σ), λ ∈ Ω0(Σ), and X ∈ Vect(Σ) by

β := α|Σ, ι(X)ρ := nβ ∧ (dβ)n−1, λρ := (dβ)n.

Suppose that there exists a Lyapunov function h : Σ → R that satisfies

βx ̸= 0 =⇒ dh(x)X(x) < 0, (3.2)

βx = 0 =⇒ h(x)λ(x) > 0 (3.3)

for every x ∈ Σ. Then Σ is convex.

Proof. By (3.3) there exists an open neighborhood U ⊂ Σ of the set of ze-
ros of X such that hλ > 0 on U . By (3.2) there exists an open neighbor-
hood V ⊂ Σ of the compact set h−1(0) such that hλ− dh(X) > 0 on V .
Again by (3.2) the function h2dh(X) is negative on the set Σ \ (U ∪ V ).
Hence there exists a constant c > 0 such that ch2dh(X) < hλ on Σ \ (U ∪ V ).
This implies

hλ− dh(X)− ch2dh(X) > 0 (3.4)

on all of Σ. Namely, on U the first term is positive and the other two terms
are nonnegative, on V the sum of the first two terms is positive and the third
term is nonnegative, and on Σ \ (U ∪ V ) the sum of the first and third terms
is positive and so is the middle term. Now define

f := ech
2/2h. (3.5)

Then df = ech
2/2(1 + ch2)dh and hence

f(dβ)n + nβ ∧ (dβ)n−1 ∧ df = fλρ+ (ι(X)ρ) ∧ df
=

(
fλ− df(X)

)
ρ

= ech
2/2

(
hλ− dh(X)− ch2dh(X)

)
ρ.

The right hand side is a positive volume form by (3.4) and hence it follows
from Lemma 3.1 that Σ is convex. This proves Lemma 3.2.
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Lemma 3.3 (Giroux [5]). Let Σ ⊂ M be a nonempty cooriented closed
connected convex hypersurface and choose a contact vector field ν in a neigh-
borhood of Σ such that ν|Σ is a positive transverse vector field. Then the
following holds.

(i) The set
S :=

{
x ∈ Σ

∣∣ ν(x) ∈ ξx
}

(3.6)

is a nonempty smooth (2n− 1)-dimensional submanifold of Σ.

(ii) Let S be as in (i). Then ξ is transverse to TS and the hyperplanes

ηx := ξx ∩ TxS, x ∈ S, (3.7)

define a cooriented contact structure on S.

(iii) Let (S, η) be as in (ii). Then there exists a decomposition Σ = Σ+ ∪ Σ−

into submanifolds with the common boundary

∂Σ+ = ∂Σ− = S = Σ+ ∩ Σ−

and there exist exact symplectic forms ω± = dλ± on Σ±, such that λ+ and λ−

agree along S and define a positive contact form on (S, η).

Proof. Choose a positive contact form α ∈ Ω1(M) on (M, ξ) and let

ρ := ι(ν)
(
α ∧ (dα)n

)∣∣
Σ

∈ Ω2n(Σ)

be the volume form in Lemma 2.1 associated to α and ν. Since ν is a contact
vector field, this volume form is given by equation (3.1) as in the proof of
Lemma 3.1. Thus we have

ρ = f(dβ)n + nβ ∧ (dβ)n−1 ∧ df, (3.8)

where β ∈ Ω1(Σ) and f ∈ Ω0(Σ) are given by

β := α|Σ , f := α(ν)|Σ . (3.9)

By (3.6) and (3.9) an element x of Σ belongs to the subset S if and only if

f(x) = αx(ν(x)) = 0

and so S = f−1(0).
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We prove that S is nonempty. Suppose, by contradiction, that this is
wrong. Then f does not vanish anywhere and

d
β

f
=
fdβ + β ∧ df

f 2
.

Hence it follows from (3.1) that(
d
β

f

)n

=
f(dβ)n + nβ ∧ (dβ)n−1 ∧ df

fn+1
=

ρ

fn+1
̸= 0.

Thus d(β/f) is an exact symplectic form on Σ, in contradiction to the as-
sumption that Σ is a nonempty closed submanifold ofM . This contradiction
shows that the set S is nonempty as claimed.

Next it follows from (3.1) that the 2n-form

τ := β ∧ (dβ)n−1 ∧ df ∈ Ω2n(Σ)

does not vanish near f−1(0). Hence df(x) is nonzero whenever f(x) = 0.
Thus zero is a regular value of f and so S = f−1(0) is a smooth (2n − 1)-
dimensional submanifold of Σ. This proves part (i).

Since τ does not vanish along S it follows also that β ∧ (dβ)n−1 restricts
to a volume form on S and so β|S is a contact form on S. By (3.9) this
contact form is precisely the restriction of α to S and so the associated
contact structure η := ker(β) on S is given by (3.7). This proves part (ii).

To prove part (iii), define

Σ± := {x ∈ Σ | ± f(x) ≥ 0} (3.10)

and define ω± ∈ Ω2(Σ±) by

ω± := dλ±, λ± :=
δβ

δ ± f

∣∣∣∣
Σ±

∈ Ω1(Σ±). (3.11)

Here δ > 0 will be chosen sufficiently small. Since zero is a regular value
of f = ι(X)α|Σ, it follows that Σ+ = f−1([0,∞)) and Σ− = f−1((−∞, 0]) are
submanifolds of Σ with the common boundary S = Σ+ ∩ Σ−. Next observe
that ω± = δd(δ ± f)−1β = δ(δ ± f)−2

(
(δ ± f)dβ ± β ∧ df

)
and hence

(ω±)n =
δn

(δ ± f)n+1

(
δ(dβ)n ±

(
f(dβ)n + nβ ∧ (dβ)n−1 ∧ df

))
.

By (3.1) the right hand side does not vanish on Σ± whenever δ > 0 is chosen
sufficiently small. Hence ω± = dλ± is an exact symplectic form on Σ±.
Moreover λ+ and λ− both agree with α on S and this proves Lemma 3.3.
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A deep theorem by Honda–Huang [6] asserts that every nonempty closed
connected cooriented hypersurface Σ of a contact manifold (M, ξ) admits a
C0-small deformation to a convex hypersurface. In the intrinsic language, a
corollary of this result is the assertion in Theorem 3.6 below about homotopy
classes of nondegenerate pairs (Definition 1.1). Thus we will now assume
that Σ is a nonempty closed connected oriented 2n-manifold.

Remark 3.4 (h-Principle). An h-principle argument shows that every ho-
motopy class of nondegenerate pairs on Σ contains a pair of the form (β, dβ),
where β is a germ of a contact form. A parametrized version of the h-
principle asserts that two germs of contact forms β0 and β1 on Σ can be joined
by a smooth path of germs of contact forms if and only if the pairs (β0, dβ0)
and (β1, dβ1) can be joined by a smooth path of nondegenerate pairs (see [3]).

The following definition is motivated by Lemma 3.1.

Definition 3.5. A 1-form β ∈ Ω1(Σ) is called a convex germ of a contact
form iff there exists a smooth function f ∈ Ω0(Σ) such that the 2n-form

ρ := f(dβ)n + nβ ∧ (dβ)n−1 ∧ df (3.12)

is a volume form on Σ.

Theorem 3.6 (Honda–Huang [6]). Every homotopy class of nondegen-
erate pairs on Σ contains a pair of the form (β, dβ), where β ∈ Ω1(Σ) is a
convex germ of a contact form.

Proof. See Honda–Huang [6] and Eliashberg–Pancholi [4].

Example 3.7. Let β be a closed 1-form on the 2-torus Σ = T2 without zeros.
Then β is a germ of a contact form. Since fdβ + β ∧ df = −d(fβ) is exact
for every smooth function f : T2 → R, β is not convex.

Example 3.8. Let (Σ, σ) be a closed symplectic 2-manifold and choose a σ-
compatible complex structure J , so ⟨·, ·⟩ := σ(·, J ·) is a Riemannian metric.

Then the Laplace–Beltrami operator is given by ∆f := −d∗df = −d(df◦J)
σ

for f ∈ Ω0(Σ). Now let h : Σ → R be a Morse function such that

h(x)∆h(x) < 0 for all x ∈ Crit(h). (3.13)

Define β := dh ◦J. Then the vector field X and the function λ in Lemma 3.2
are given by X = −∇h and λ = −∆h. Thus h is a Lyapunov function
for X and the condition (3.13) asserts that hλ > 0 on the zeros of β. Hence
Lemma 3.2 asserts that β = dh ◦ J is a convex germ of a contact form.
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Example 3.9. It was shown by Giroux [5] that in dimension two a convex
germ of a contact form can be obtained by a C∞-small perturbation of any
germ of a contact form. As an example consider the 2-torus Σ := T2 = R2/Z2

with the coordinates (x, y) and for ε ≥ 0 let βε ∈ Ω1(T2) be the 1-form

βε := dx+ ε sin(2πx)dy.

Define the function f : T2 → R by

f(x, y) := cos(2πx).

Then
fdβε + βε ∧ df = 2πε dx ∧ dy,

so βε is a convex germ of a contact form (without zeros) for every ε > 0,
while β0 is a nonconvex germ of a contact form as noted in Example 3.7.
Define the volume form on Σ = T2 by σ := dx ∧ dy. and define the vector
field Xε by ι(Xε)σ := βε. Then

Xε = ε sin(2πx)∂/∂x− ∂/∂y

and so df(Xε) = −2πε sin2(2πx) ≤ 0. The zero set of f splits the torus into
two annuli and for ε > 0 the characteristic foliation has precisely two periodic
orbits along which f attains its extremal values.

Remark 3.10. In dimension two the corollary of the Honda–Huang Theo-
rem stated in Theorem 3.6 is much weaker than Giroux’ theorem mentioned
in Example 3.9. To prove it one can use the construction of Example 3.8
to find, for each integer k, a convex germ β of a contact form that satis-
fies χ(β, dβ) = 2k (see Remark 1.6).
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