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INTRODUCTION

In this research note we present a theory of control and observation
for linear neutral functional differential equations (NFDE) with
general delays in the state- and input/output-variables. We consider

the controlled NFDE

(1) -y <X(t) f MXt ~ Tut> = LXt + But
and the observed NFDE

(2) z(0) = tha_+u'z_, &) = BTa_+ s
which is obtained from (1) by transposition of matrices. For systems
of this form we discuss three types of problems, namely coméleteness
& small solutions (chapter III), controllability & observability
(chapter IV}, state feédbackl& dynamic observation (chapter V). This
will be done within the context of functional analytic semigroup
theory. Functional differential equations (FDE) have been studied in
this context sincé about 20 years. Our Qork is mainly influenced by
three recent developments in this area which have made the linear
theory much more elegant and efficient.

‘The first one is the introduction of socalled structural
operators for the state space description of retarded functional
differential equations (RFDE) in the product space R" x LP. The
basié ideas in this direction have been presented in a 1976 paper of
BERNIER and MANITIUS [11] and further developments can be found e.g.
in MANITIUS [93] and DELFOUR-MANITIUS [29]. In particular, these
'resqlts have been applied to problems of completeness and approximate

controllability (MANITIUS [93], [94], [95]1). The concept of structural



operators has been extended to retarded systems with input delays in
VINTER-KWONG [147] and DELFOUR [28]. This has lead to an evolution
equation for the state space description of RFDEs with input delays.

A second important development took place within the duality
theory of RFDEs. It is well known that the adjoint of a semigroup
associated with a delay equation is not of the same type as the
original one, however, an interpretation of the adjoint semigroup in
terms of the underlying system equation has not been known for a long
time. Such an interpretation has first been given by BURNS and
HERDMAN [17] for Volterra integro-differential equations. They have
shown that the adjoint semigroup is associated with the transposed
equation via an alternative state concept which is due to MILLER
[104]. Further results in this direction can be found e.g. in
DIEKMANN [32], [33]. This duality theory via the two notlons of the
state is closely related to the concept of the structural operators.
Actually, the structural operators describe the relation between the
two state concepts.

A third development is an extension of the semigroup approach
in the product space RY x LP to neutral systems. This has been
presented in two recent papers by BURNS, HERDMAN, and STECH (183,

[1e91. '

The theory of NFDEs in the product space framework is not very
far developed at this time..In particular, a satisfactory duality
theory is still missing and structural operators for the description
of neutral systems have not yet been introduced. The latter has been
stated as an open problem in DELFOUR [28, remark 2.5]. In chapter II
we £ill this gap. However, a straight forward extension of the results
on retarded systems is not possible. The two state concepts for RFDEs
have both been described in the same state space R™ x LP. In the case
of neutral systems we are forced to work in the two state spaces W]’p

n i
and R x Lp, where w! P is embedded into R" x L¥ as a dense
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Almost half of the material of the book is devoted to the
development of this state space approach (duality, structural
operators, evolution equations, spectral theory). These results
provide the framework for our treatment of the structural properties
of neutral systems (chapter III) as well as the control and observation

problems (chapter IV and V). The main results in chapter III, IV, and

-V are the following

- duality between completeness and nonexistence of nonzero

small solutions (theorem III.1.10),

- duality between F-completeness and nonexistence qﬁ

nontrivial small solutions (theorem III.2.3),
. a matrix type condition for F-completeness (corollary III.2.5),

- a characterization of spectral controllability and

observability (proposition IV.1.2 and theorem IV.1.11),

- duality between approximate controllability and strict

observability (theorem IV.2.6),

- a matrix type condition for observability of small solutions

(theorem IV.2.11),

= duality between approximate F-controllability and observability

(theorem IV.3.5),

- & matrix type condition for observability of nontrivial

small solutions (theorem IV.3.7),




- a concrete representation of the observer semigroup

(theorem V.2.1),

- the 'spectrum determined growth' property of the

observer semigroup (theorem V.2.7),

- finite pole shifting (theorem v.3.2).

In a preliminary chapter we discuss some basic facts concerning
Volterra-Stieltjes integral equations (section I.1) and systems of
functional and functional differential equations (section I.2).
Moreover we present a general framework for the study of infinite
dimensional linear systems with unbounded input/output~operators
{section I.3). The essential point in this section is that the
semigroup is not assumed to have any smoothing property. Such results
are needed for the treatment of retarded and neutral systems with

point delays in input and output.




CHAPTER I

PRELIMINARIES




T VOLTERRA-STIELTJES INTEGRAL EQUATIONS

In this section we deal with existence, unigueness, continuous
dependence, and representation of Lp-solutions to the Volterra-
Stieltjes integral equation

t
(1) x({t) = [da(s)x(t=-s) + £(t) , 0 £t <T,
0

nxn)

where f € Lp?[O,T]ﬂRn) and a € NBV([0Q,T);R , i.e. oaf(t) 1is of

bounded variation on [0,T), right continuous for 0 < t < T, and
a{0) = 0.

We cannot expect existence and uniqueness for the solutions of
(1) with . an arbitrary o. For example, if a = p E'NBV([O,T)ﬂRnxn)

is given by p(0) =0 and p(t) = I for 0 < t < T, then (1) is

Q. To exclude such a situation, we will always

equivalent to £(t)

assume that

(2) 1T € o)
where .Ao e R™M?  is given by
A, = lim al(t) .
t40

Note that the latter implies

(3) lim VAR [a -Ap] = 0 .
40 [0,t] °

Now let us collect some basic facts on the convolution of

measures and functions.
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1.1 REMARKS

(i) Let 1< p<wew, 1/p+ 1/g=1, and g € L2[0,T]. Then the

function

t
g * £(t) = [g(s)f(t-s)ds , 0
0

A
o+
IA
H

is continuous for every f£ € LP[0,T] (see e.g. HEWITT-ROSS [52,
theorem 20.161). Moreover the convolution operator £ -» g * £ from

tP{0,T] into C[0,T] is compact. This follows from the Arzela-

Ascoli theorem and the inequality

1/q
lg * £(t) )

t
g * £(s)]| < ||f||p(£|g(t-r) - g(s-1) |94z

T (define g(t) := 0 for t ¢ [0,TI]).

IA

for 0 £s £t

(1i) Let £ € IP[0,T], 1 < p < w, and g € L1[0,T]. Then

g * £ € LP[0,T] and

(4) e * £, < lally TI£]]

(see e.g. HEWITT-ROSS [52, corollary 20.14]). Moreover the operator
fsg*f on LPlo,T] is compact. In fact, for all € > 0 and

almost all t € [-¢,T] we have
t ~ ~
g * £(t+e) - g * £(t)| < [|g(s+e) - g(s)| |E(t-s)|ds = g * £(t)
-€

|g(t+e) = g(t)] for -e <t < T and E(t) = |£(t) |

where g(t) :

for 0 <t < (again g(t) := 0 and £(t) := 0 for t ¢ [0,T]).

- Applying (4) to the right hand side of the above inequality, we obtain

T 1/p T
( Jlg * £(t+e) - g * £(¢) [pdt> < ||f||p flatt+e) = g(t) |at .



A similar ineguality holds for € < 0. Hence compactness follows from

the analogon of the Arzela-Ascoli theorem for P spaces which is

due to M. Riesz (see e.g. DUNFORD SCHWARTZ [37, theorem IV.8.20]).
(iid) Every o € NBV{O0,T) represents a Borel measure on IR

with no mass outside the interval [0,T). This measure will be denoted

by da. For any da—integrabie function g : [0,T] - R _the expression

T
(5) da(g) = [g(t)da(t)
0

denotes the integral of g with respect to the measure da. If g
is continuous, then (5) can be understood as a Stieltjes integral.
{iv) By the Riesz representation theorem, NBV[O0,T) is

*
{(isometrically isomorphic to) the dual space XT of

Xp = {g e clo,Tl{g(T) =0} . :
(v) For o, B € NBV[0,T) let da * d83 be the convolution of

the Borel measures da and dB restricted to the interval [0,T).

This means that da * dB is given by the relation

T T-s

[da * ABT (g) [ [ g(t+s)ds (t)da(s)
0 ©

(6)
; T T-t
= é g(t+s)da(s)dp(t)

o

for every g € X, (HEWITT-ROSS [52, chapter 19]).

T
(vi) For a € NBV[0,T) and f € Lioc(IR), 1<psw, let

da * £ € P (R) be the convolution of the Borel measure da and the

loc
function £. In the case p > 1, this means that da * f is defined

by the relation
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(7) Jg(t)[da * £1(t)at = |
a 0

b~s

[ g(t+s)f(t)dt da(s)

a=s

for all a, b €R, as<b, and g € L%a,b}, 1/p+ 1/qg =1,
(HEWITT-ROSS [52, definition 20.5]).

Moreover the following inequality holds for every f € Lp[a,b]

(8) [[do * £|] < VAR o |]|£]]
P [0,T) P
(HEWITT~-ROSS [52, theorem 20.12]).
(vii) Let a € NBV[0,T) and £ € LP[0,T], 1 < p < w. Then
da * £ € LP[O,T] can also be defined by the explicit expression

t
[da * £]1(t) = [da(s)f(t-s)
0

for almost every t € [0,T] (HEWITT-ROSS [52, theorem 20.9]).
(viii) Let a, B € NBV[0,T). Then da * B = o * d8 € NBV[O,T)

and
(9) dida * B] = da * dB .

Here is a proof of this fact. Let y € NBV[0,T) be chosen such that
dy = da * dB. Then, for every g € Lq[O,T], 1 < g < =, the following

equation holds

T-s
[ g(t+s)p(t)dtda(s)
0

T T T
Jog(t)y(t)dt = f [g(t)drdy(t)
0 0t
T T=-s T
= [ [ [ g(t)drdg(t)dal(s) , by (6),
0 Q t+s
T
S
0



-
= Jfg(t)[da * Bl(t)dt , by (7)
0
Hence vy (t) = da * B(t) for almost all t € {0,T) which proves the
statement.
(ix) Note that the Borel measure da can also be interpreted

as the distributional derivative of ¢ € NBV[0,T). In this sense (9)
follows from the fact that - in order to differentiate a convolution
product of distributions - it sufficies to differentiate one of the

factors.

(x) Let a € NBV[O,T), B € w1'P[o,T], and f € tP[0,T] such

that £(0) 0 and B = f. Moreover let p € NBV[0,T) be defined

by 0(0) =0 and p(t) =1 for ¢+ > 0. Then
do *B = da* (p*B) = q*f = o * (da * £)

Hence da * B =g * £ ig absolutely continuous with derivative
da * £ € LP[0,T] and satisfies da * B(0) = 0.

(x1) In the vectorial case the above definitions have to be
understood componentwise. In particular, for « € NBV([O,T)ﬂRmxn) and
£ e LP([O,T}ﬂRn), 1 < p £ =, the function da * £ € Lp([O,T];EﬁS is
defined by the equation

T

IgT(t)[da * £f]1(t)dt = T
0

g (t)da(s)f(t-s)dt

O
0 —3

- 1

i=1 5§

i o1

TT
g igi(t)fj(t-s)dtdaij(s)

1

for all g € Lq(IO,T]ﬂRm), 1/p + 1/ = 1 (in the second term o and

f cannot be interchanged due to the matrix noctation).
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1.2 THEOREM

Let o € NBV([O0,T);R™™®) satisfy (2). Then
() for every £ € C([0,T]1;R™) with £(0) = 0 Zthere exists
a unique solution x € C([0,T1;R™) of (1) satisfying x(0) = 0 and

depending confinuously on £ with respect Lo the sup-norm,

({L) fon every £ € NBV([0,T);R™) zhere exists a unique
s0lution x € NBV([O,T);R™) of (1), 4.e.

x = do * x + £,

depending continuously on £ with respect to Zhe NBV-noam.

PROOF (i) Let X denote the Banach space of all x € c(ro,Tl;rR"Y

with x(0) = 0, endowed with the sup-norm. Then the function
t

[Ax](t) = da * x(t) = [da(s)x(t-s) , o<stsrT,
0

is in X for every x € X. Moreover the linear operator A : X » X

is bounded. We have to show that 1 ¢ o(a).

For this sake let € > 0 and v > 0 be chosen such that

-1
VAR [0 - A pl + e "  vaR [a - A p] < |(z-a )|
[0,€] © [0,T) °© ©

and define on X the equivalent norm

sup [x(t)]e” Yt , xex.
0<t<T

I

IEIN

Then we have the following estimation for every x € X and t € [0,T]
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|ax](t) - on(t)le_Yt

t t

A

t =Y
+ |fdla - Aoo](s)x(t—s)[e

Y -y
[fala - Aoo](S)x(t—s)Ie
0 £

< VAR [a - A p] sup Ix(s)[e_Yt

[0,€] t-g<s<t

+ VAR [a - Ap]l sup |x(s)|e” "
[e,t) 0<s<t-¢
< ( VAR [a - A p] + e '® VAR [a - A p]) Pix|l. .
[0,e] ° [0,m) ° T

Hence, by definition of € and vy, the affine map
-1
X = (I-a)) [Ax - A x + £1]

is a contraction on X with respect to |

.[[Y. The unique fixed
point of this map is precisely the solution of [I - Alx = £.
%*
(ii) The dual space X of X can be represented by ©NBV =

NBV([O,T)ﬂRn) via the pairing

T
fqT(T-£)dB(t) , g E€X, B €NBV ,
0

< g,B >
(compare remark 1.1 (iv)). Moreover, the following equation holds

T-t T
< Ag,B > ( [ da(s)g(T-t-s)) dg (&)

0

il
o—H

T-t

[ gT (T=-t-s)dal (s)dB (t)
0

]
o~

-3

= fgt(r-tra(aaT * B) (¢)
0

<g,da” *B>, gEX, B ENBV,



where the last but one equality follows from (9) and (6). We conclude

* *
that the adjoint operator A on X =~ NBV is given by
* T
AB = da * B, B € NBV.
Hence statement (ii) - applied to aT ~ follows from (i) and the fact

that o(A') = o(A).

Q.E.D.

1.3 DEFINITION Let o € NBV([O,T);R™™™) satisdy (2). Then the

unique solution E € NBV([O,T);R™*D) of
(10) € = da *E +p

(p(0) =0, p(t) = I for t > 0) is said to be zhe fundamental

so0lution of (1).

If o € NBV([0,T);R™™) satisfies (2) and E is the fundamental

solution of (1), then
(11) E = E *da+p .

In fact, the unique solution [ € NBV([O,T);Rpxn) of (11) satisfies

[a]
I

C*dp = T * d[E - da * E]

I

df - T *da]l *E = do*E = E

Note that, by (11), ET is the fundamental solution of the

transposed equation

x = dof * x + f
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Now we are in the position to prove the main result of this section.

1.4 THEOREM Let a € NBV([O,T);R™®) satisfy (2) and Let E be

the fundamental solution of (1). Then, fon every £ € Lp([O,T]ﬂRn),

there exists a unique solution x € Lp([O,T]ﬂRn) of (1), 4L.e.
x = da * x + £

This solution is given by

{12) x = dg * £

and depends continuously on £ with nespect to the LP-noam.

PROOE  Let x € LP([0,T];R™) be given by (12). Then, by (10),

dg * £ = d(da * E + p) * £

»
I

da * (dE * £) + dp * f = da * x + £ .

Conversely, let x be a solution of (1). Then, by (11),

X = dp *x = d(E~E * da) * x

dE * (x - da * x) = dE * £ .
This proves the existence, uniqueness, and (12). Continuous dependence
follows from (12) and (8).

‘Q.E.D.

Our final result follows directly from theorem 1.4 and remark 1.1 (x).
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1.5 COROLLARY  Let a € NBV([0,T);R™*P) satisfy (2), £ e tP(ro,71;R"Y),
and Let x € Lp([O,T]ﬂRn) be the unique s0lution of (1), Then £ €
w' P10, T1RY)  and £(0) =0 4if and only if x € W 'P([0,T];R®) and

x(0) = 0. Moreover, in zhis case X = f + da * x,.

REMARKS ON THE LITERATURE

In the theory of Volterra-Stieltjes integral equations the central
result is the existence and uniqueness of the resolvent kernel (in our
notation the fundamental solution). This has first been proved by
RINTON [54], BITZER [14], and later on with different methods by
SCHWABIK (1371, {138]. KAPPEL [67] has shown the existence and unique-

ness of the fundamental solution via Laplace transform methods.
Extensions to infinite dimensional Spaces can be found in HONIG [55],
[56].

Note that the existence of the fundamental solution is the only
assumption which is needed for the proof of theorem 1.4, and that
theorem 1.2 can be regarded as a corollary of formula (12) together
with remark 1.1. We gave an alternative proof of theorem 1.2 in order
to make this work self contained.

Moreover note thét all the references mentioned above do not
consider solutions of (1) in the function space Lp([O,T]ﬂRn). This
has only been done by BURNS, HERDMAN, and STECH [19]. However, the
existence and uniqueness result in (19, lemma 2.6] - when applied to
equation (1) - leads only to inhomogeneous terms f of a special form.

BURNS, HERDMAN, and STECH [19, section 4] have also shown by an
example that condition (2) is not hecessary in order to prove existence
and uniqueness for the Lp-solutions of (1). However, it is known

(SCHWABIK (1371, [138], HONIG [55]1, [561) that (2) is necessary and

sufficient for the existence and uniqueness of the fundamental

solution.
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I.2 SYSTEMS OF FUNCTIONAL AND FUNCTIONAL DIFFERENTIAL EQUATIONS

Tn this section we develop some basic results on systems of the

form
o
(13) wi{t) = Lwt + th + £(t)
x(t) = Tw, + Mx,  + g(t)
where w(t) E]Rn, x (&) €.B@, w. (t) = w(t+t) for =-a £ 71T 5 0,

t
Xt(T) = x(t+t) for -h Tt <0, and L, B, I') M are bounded linear

functionals on the appropriate spaces of continuous functions, given by

0
fan(De(x) . ¢ € c({-a,0l;R")

Lo =
—a |
0 0 |
Be = éda(r)@(T) , @ € C([-h,0];R") ,
0 ' n
r¢ = Jfay(te(t) , o € C([-a,0];R") ,
-3,
9 m
Mp = }fldumcp(r) , ¢ € C([-h,01R"

Correspondingly 10, 8, Y, u are normalized functions of bounded

variation on the interval [-a,0] or ([-h,0] with values in anxn,

nxm mxn mxm .
R r R y R , respectively.

A function a : [-T,0] *JRk of bounded variation on a negative

time interval will be called noamalized if a(0) = 0 and if a(tT) 1is
left continuous for -T < T < 0. The corresponding function space is l
denoted by NBV([—T,O];mk). Note that - for any o € NBV([-T,O]ﬂRk) -

the function a : [0,T] »:Rk, defined by ' |
a(t) = -a(-t) , 0st=sT,

= _normalized fupg ion of bhounded variation i he sense of section 1.




2.1 REMARKS

(1) In the following we extend any function a : [a,b] - B*
the - of bounded variation to the whole real axis by defining a(t) = a(a)
z b.

for t £ a and a(t) = a(b) for ¢
Any measurable fuﬁction x : [a,b] »:mk will be extended to the
whole real axis by defining =x(t) = 0 for t ¢ [a,b].
i (ii) At the first glance the right hand side of (13)
seems to be a well defined expression for t = 0 only if w(t) and
x(t) are continuous (for t 2 -a respectively t > -h). However,

the following egquation holds

ear |
ven by 0 ‘ . .
Lw, = fdn(o)w(t+t) = [dn(s)w(t-s) = dn * w(t)
-a 0
and the latter expression makes sense (as an LP-function on the
| interval [0,T]) for any w € Lp([—a,T];Rn). More precisely, in this
case the function ¢t - Lwt in Lp([O,T]ﬂRn) is defined by the
equation
T m orT T
[z ()Lw, dt = [ fz7 (t)dn(v)w(t+T)dt
0 -a 0
tor every =z € Lq([O,T]ﬂRn), 1/p + 1/g = 1 (compare remark 1.1 (vi)
\xn and (xi)).
4
_ 2.2 DEFINITION . A pair w € LP([-a,T1;R™), x € LP([-h,T1;R™) s said
:ive
- ‘ to be a solution of (13) if w(t) 4is absolutely continuous on [0,T]
is
_ with denivative in LP([0,T1;R™) and equation (13) is satisfied fox
: is
X almost every t € [0,T],
)~
: We will study the solutions of (13) in the product space

WP = R% x tP([-a,01 ™ x LP([-h,0] &Y



18 2
(1 < p < ») endowed with the norm

1 2
(0,0 ,0%) € MP

1/p
o] 1 2
ol = [1e®[F + [lo Ilg + |le Ilgl e
This is motivated by the following result.

5.3 THEOREM Let n, B, Y, & be given as above and suppose that

(14) . -1 ¢ o(lim u(T))
T40
Moreover Let T > 0. Then the §ollowing statements hold.
(i]  For every o € WP, £ € LP([0,TLiRY), and g € LP([0,T1RY
equation (13) admits a undique so0lution w € Lp([—a,T]ﬂRn), x €

P ([-h,TIR™ satisfying the initial condition

=Tl

S e e o

o , w(T)

w(0) @1(1) R -a<tT<O0,
(15)

mz(r) N -h st <0.

x(7)

Moneover the solution dpenatoa of (13) which maps Zhe Trdiple

(0.E,9) € M x LP([0,T1;R™ x tP(l0,T1iR"
into the pain
w,x) € wWirP(ro,71;®Y x 1P([0,T1:RY)

48 bounded and Linean.

{LL) The sofuZion operator 0f (13) which maps the Zrniple
(p,£,9) 4nto the final staie (w(T),wT,xT) € MP  is finean, bounded,
and compact in £.




(L4L) I§ T2a+h and if u(t) 4s absoclutely continuous

for T < 0, then this solution operatorn is compact in o.

1 2

(v]  Let g€ C([0,TL;RY), o € C([-a,01;R™), % € C([-h,0]1;RY,

o° = w1(0), and wz(O) = P¢1 + Mo2 + g(0). Then the unique solution

pain of (13), (15) 4is in C([-a,T];R™) x C(l[-h, TR and depends

(in this space) continuously on o, £, and g.

1 2

€ W 'P([-a,01m"), o2 €

WP (T-h, 01R™), 0° = 0" (0), and ¢2(0) = To' + Me? + g(0). Then the

(vl  Let g e w P(lo,71Y, o

unique so0lution pairn of (13), (15) 44 in W1’p([—a,T]ﬂRn) X
w1'P([-h,T];mF> and depends (in this space) continuously on @, £,

and g.

PROOF (ii) We integrate the first equation in (13). For this sake

we need the following identity (compare remark 2.1 (ii))

t 0 t 0 t+t
Jlw ds = [dn(7) fw(s+t)ds = [dn(t) [ w(s)ds
0 -a 0 -a T
t-a 0
= -n(=a) [ w(s)ds ~ [n(7)[w(t+r) - w(tT)]dT
-a -a
0 1 t
= [n(t)e (v)dT - [n(s-t)w(s)ds
-a -a
.0 1 t
=  [In(x) = n(z-t)le (v)dT - [n(s-t)w(s)ds .
-a 0

This expression separates the solution (t > 0) of (13) from the initial
t

function (t < 0). The term fosds can be transformed analogously.
0

Hence integration of the first equation in (13) leads to the following
equivalent system of Volterra-Stieltjes integral equations
W = n*w+p * x + f

(16) ~ ~ ~
X = dy*w+du*x +g
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where w(t) and x(t) are now understood as Lp-functions on [0,T].

The inhomogeneous terms £ € C([O,T];mp) and g € Lp([O,T]ﬂRm) are

given by
- o 0 N
£(t) = @ + fIn(t) - n(z-t)]e {ridT
-3
0 5 t
(17) +  [(B(T) - B(T-t)le“(T)dT + [E(s)ds ,
-h 0
- : -t : -t 5
g(t) = fay(me' (t+1) + [au(t)o” (t+1) + g(t)
-a -h

It follows from (8) that E and ; depend continuously on ¢ and

g. Moreover E depends compactly on £ (remark 1.1 (i)). Finally,
condition (14) guarantees that equation (16) satisfies the assumptions
of theorem 1.4. This proves (ii).

(i) follows from (ii) and the fact that the right hand side of the
first equation in (13) - as a function in Lp([b,T]ﬂRn) - depends
continuously on £ € Lp([O,T]ﬂRn), w € Lp([-a,T]ﬂRn), and x €
P ([-n,T1 R .

(iii) Let w{t) Dbe absolutely continuous for =T < 0. and let
g(t) = 0 and £(t) = 0. Moreover suppose that w1 € W1’p([—a,0];mp)

and ¢° = @' (0). Then (17) implies

-t

;(t) = Y(—t)¢1(0) - Y(—a)¢1(t—a) - IY(r)é1(t+r)dr
L -a
+  [du(t)o” (t+T)
-h
_ - 1 -t .i
= [y(-t) - y(-a)le (0) = [ly(x) = y(-a)lo (t+T)dT
-a )
-t. 9
+ Ju@e(t+tt)dr , 0 <t <T

=h




are

nd
Y

tions

of the

let

R7)

P A

Hence £ and g depend compactly on the pair @1

@2 € tP([-h,01;®R"). Consequently, the tripie (w(h) W %) € MP  also

€ w P ([-a,01;®Y,

depends compactly on this pair (¢1,¢2). Now it follows from (i) that

the composed map

MP WP ([-a,0]1;R™) x LP([-h,0] ") —s WP

® > (wa,xa) > (W(a+h),wa+h,xa+h)

is compact.
(iv) The continuity of w(t) for t = -a follows from (i)
and the fact that wo = w1(0). Now define
2%(1) = %(1) ., -h<t<0, o) =00 , 0Ost<T,

- 0%(0) , o<t<T,

g(t) = g(t) + rw, + Mo

T
2
t t

x(t) = x(t) -<1>2(t) , ~h<stsT.
-7 T T~
. \\\\
2 e , N x(t)
=" < o° (¢)
/ x(t)
1
-h 0o T t

Then it follows from the assumptions of (iv) that g(t) is continuous

and Q(O) = (0, Moreover

x(8) = 0%(0) = Tw, + Mx_ + g(t) - ¢°(0)
t

g(t) + du * x(t) , 0 <

% (t)

T

i

Hence, by theorem 1.2 (i), x(t) is continuous for t > 0, satisfies

~

x(0) = 0, and depends continuously on g, This implies that x(t) is

continuous for t = -h.
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The proof of (v) is strictly analogous to that of (iv). We obtain

that g € W1’p([O,T];Rn) and g(0) = 0 which allows the application

of corollary 1.5.

The above theorem allows us to define the solution semigroup of
the homogeneaus equation (13) (f£(t) = 0 and g(t) = 0). Some basic
properties of this semigroup are summarized in the next corollary

which is a direct consequence of theorem 2.3.

2.4 COROLLARY Let n 4atisfy (14) and et the operators S(t) on

MP  be defined by

1 X)) o € MP

S(e = (W) ,w_,x) ,

where the pair w € 1?2 ([-a,=);R™), x € 1P ([-h,=);R") 4is the unique

leoc leoc
s0lution of the homogeneous system (13), (15) (£(t) = 0, g(t) = 0).
Then the following 4tafements hold.
(£) S(t) 4is a strongly continuous semigroup of bounded Lineaxr

operatorns on WP,

(L) I§ wnlt) 44 absolutely continuous for T < 0, then S(t)
L8 a compact operator for t 2 a + h,

{L44) The nestrniction of S(t) 2o each of the Lnvariant
subspaces

2 ¢ ¢([-n,01;®Y,

o® = 0'(0), 92(0) = To' + Mo’} ,

{p € WPlo' € C([~-a,01:RY), o

2

{0 € #P|o' € W' 'P([-a,01R™), o € W 'P([-h,0] &Y,

o© = 0 (0), 9>(0) = Tp' + Mo}

L8 a Co-bemig&oup in the nespective topology.




>tain The solution of the inhomogeneous equation (13) with £(t) 4 0
tion and g(t) = 0 can be described by a variation-of-constants formula
in the Banach space MP. For the proof of this result we need the
fact that the dual space of MP can be idéntified with M? via the
pairing
of
ic B0 = (° 0 4 ?MT(rmﬂ (t)de + ?sz(T)wz(T)dl‘
-a -h
|
} for ¢ € WP andg ¢ e 9.
|
| p . n P m
on ‘ 2.5 THEOREM Let w € L ([-a,T1;R) and x € L¥([-h,T1R") be the
‘ undique solution o (13), (15) corresponding to @ = 0, g = 0, and
| f € Lp([O,T];mm). Then, for every +t € [o,T1,
i
t
‘ (w(t),wt,xt) = és(t—s)(f(s),0,0)ds e uP .
imndgue [
). ! EROOF  Let p € NBV([0,T);R"*®) be defined by p(0) = 0 and p(t) =1
for 0 < t < T. Moreover define W € NBV([0,T) RYY) and x €
1ean NBV([O,T);mmxn) to be the unique solution of the Volterra-Stieltjes
' integral equation
(t)
| W= ptn*w+p*x,
| X = dy * W +du * ¥

{theorem 1.2 (ii)). Then W(t).and X(t) form the left n columns
of the fundamental solution of (16) in the sense of definition 1.3.
| Now let w(t;o°,f), -a < £ < T, and x(t;9°,£), =h < t £ T, be
the unique solution of (13), (15) with w1 = 0, wz =0, and g = 0.

Then it follows from theorem 1.4 - applied to (16) and (17) = that

the equations
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o t o t~-s
wit;o ,£) = [Jaw(s)le  + [ £(t)dv]
0 0
t t-s
x(t;0°,£) =

fax(s)(e® + [ £(7)dr]
0 0

hold for almost every t € [0,T] (note that these equations are
trivially satisfied for t < 0). For £ = 0 this implies
o

w(t;wo,O) = W(t)wo and x(t;@o,O) = X({t)o which means that

S(t) (©°,0,0) = (W(t),wt,xt)wo , 0<t<T.,

On the other hand we obtain in the case wo = 0

t
w(t) = w(t;0,f) = [W(t=s)f(s)ds , ~-a<t<T,
0
t
x(t) = x(t;0,f) = [X(t-s)f(s)ds , ~-h £t<T
0

Hence the following equation holds for every U € MY and t 20

< Y, (wi(t) thlxt) >
oT‘t 0 1T t+T
= ¢ [W(t-s)f(s)ds + [y (v) [ W(t+r-s)f(s)dsdr
0 -3 0
0'2T t+T
+ U (t) [ X(t+Tr-s)£f(s)dsdr
=-h 0
t oT t 0 1T
= [~ W(t-s)f(s)ds + [ [ (T)W(t-s+T)f(s)drds
0 0 -a
t 0 2T
+ [ fu° (r)X(t-s+T)£(s)dtds
0 ~-h
t

= [ < y,S(t-s) (£(s),0,0) > ds
Q

t
= < ¢,fS(t-s) (£(s),0,0)ds > .
0 Q.E.D.



We close this section with some results on the infinitesimal

generator of S(t).

2.6 THEOREM The infinitesimal generator of S(t) 4is given by

2

dom A = {o € 4Plo' € w 'P([-a,01;®™), ¢ € W 'P([-h,01;RY,

2
¢° = ¢1(0), w2(0) = Pw1 + Mo~} ,

3 oq -
Ap = (Lo’ + BoZ,0' ,0%) € WP

PROOF Let A be the operator defined above. Moreover, for any
® € Mp, let w(t;p), t 2 -a, and x(t;e), t = -h, denote the
corresponding solution of the homogeneous system (13), (15).

First let ¢ € dom A . Then, by theorem 2.3 (v), w(.;p) €
W1'p([—a,T];Rp) and x{(.;p) € W1’p([—h,T]ﬂRm) for every T = 0.
This implies that w(t;®) is continuously differentiable for +t = 0

and w(0;9) = L@1 + Bmz. Hence the existence of the limit

lim t7[S(t)o - 9] = Ao
£40

in MP  follows from

9 1 . P 0
w(t+T; ~ 1 . . P
Il wi ° (x) _ o (t)| dt = sup  [|w(s+T;) - ¢1(T){ dt
—a 0<s<t =-a

and an analogous inequality for mz (compare BERNIER-MANITIUS [11,
appendix]).
Conversely, let ¢ € MP be in the domain of the infinitesimal

generator of S(t) and define

© = lim t ' [S(t)p - ¢] € MP
40



Then the following equation holds for almost every T € [-a,0]

o 1 1 t t+T \
o = ¢ (t) = 1lim t (Iw(s;m)ds - w(s;w)dsj
t40 0 ™
-1 t 0 \
= lim t ( [ w(s;o)ds - fw(s;@)ds}
t+0 t+T T
0 -1 1
= lim [t (w(t+o;w) - (c))dc
t¥0 T
0 4
= (o' (0)do
T
1 1.p n 1 _ © 1
Hence ¢ €W ([-a,01;R7), @ (0) =@, and o = & . Analogously,
we obtain for almost all T, 9 € [-h,0)
2 2 ~1f BET £+9
e (T) - °(®) = lim t ( [ x(s;p)ds - f x(s;@)ds>
£+ 0 T . o

R 2
= lim [t | x(t+o;0) - o° (o) |do
t¥0 o

T2
= [o%(o)do .
S

This shows that @2 € W1’p([—h,0]ﬂRm) and @2 = ®2. Now it is known
from general semigroup theory that S(t)o is in the domain of the
generator for every t 2 0. In particular, the function T = X(t+T;0)

is continuous on [-h,0]. Taking t < h and <t = -t, we obtain
2
© (0) = x(0;p) = To + Me“ .

Hence ¢ € dom A.



In the following we replace the state space Mp and the operator
A by their obvious complex extensions. Then the spectrum of A can

be characterized by the complex (n+m) x (n+m)-matrix function

AL - L(e™) - B(eM")
(18) A(A) = A Py ' AEC,
: - I'(e™"*) I -~ M(e™")
where ek‘ denotes the function T - eAT on the interval [-a,0]

respectively [-h,0]. For the proof of this result we need the
convolution of two functions g and £ on a negative time interval
[-T,0], given by

0

g * £(r) = [g(t-0)f(o)do , -T
T

IA
«

A
o

2.7 THEOREM Llet A €€, o, @ € M?, and Let A(A) be given by (18).

Then the gollowing statements hold.

(£) ® € dom(A) and (AI - A)o = ©® Lif and only if

0
¢1(t) - ekrwo + Iek(r °)¢1(q)dc ) a<t<o0,
T
(19.1)
0
mz(r) = exrwz(O) + fek(r—c)Qz(c)dc , -h <t =<0,
T
and
( ©° e° + Lt * o) + B(eM * 0?)
19.2) A(A) =
©° (0) re* * o'y + M * 0d)

]

(L4) A € o(A) = Po(A) 4if and only if det A(M) 0.

(Lid) 1§ A & o(A), then the nesolvent operator (AL - A)_1

of A on MP s compact,

PROOF (1) Tt follows from theorem 2.6 that ¢ € dom(A) and

(AT -~ Ao = ® if and only if ¢1 and @2 are absolutely continuous,



© = ¢ (0), and

0?(0) - T -Mo® = 0,

2° - Lo' - Bo® = °,

é1(t) = k@1(r) - @1(T) ; -a<T <0,
&2(1) = A@Z(T) - @2(1) , ~sh 10

The last two equatiorns arz2 equivalent té (19.1). If (19.1) 1is
satisfied, then the first two of these equations are equivalent to
(18.2).

(ii) In the case ©® = 0 statement (i) shows that AI - A is
injective (i.e. A € Po(A)) if and only if det A(A) # 0. Moreover,
if det A(A) *# 0, then it follows again from statement (i) that
AI - A is bijective (i.e. A § o(A)).

(iii) Compactness of the resolvent operator follows from

statement (i) and remark 1.1 (ii).



I.3 UNBOUNDED CONTROL AND OBSERVATION FOR INFINITE DIMENSIONAL

LINEAR SYSTEMS

In this section we treat the abstract evolution equation

(20) da/dat x(t) Ax(t) + Bu(t)

in two reflexive Banach spaces X and X where X is embedded into
X as a dense subspace. The desired state space of system (20) will
be X. However, the input operator B acts in the bigger space X.

Correspondingly, we want to study the observed system

(21) d/dt x(t) = Ax(t) , y{t) = Cx(t) ,

in the state space X while the output operator C 1is only defined
on the subspace X.

In particular, we prove perturbation results which arise in state
feedback for system (20) respectively in output injection for system
(21). Some of these results can also be proved for nonreflexive Banach
Spaces. However, it will be enough for our purposes to study the
reflexive case which sometimes simplifies the statements and proofs.

We need the following assumptions on the operator A and the

Banach spaces X and X.

(H1) Let X be a real reflexive Banach space and A the infinite
infinitesimal generator of a strongly continuous semigroup
S(t) : X » X. Moreover we assume that X is a real reflexive
Banach space and  : X » X an embedding (i.e. a bounded,

linear, one-to-one mapping) such that

ran L. = dom A .
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The second part of the above hypothesis means that the Banach space
X is nothing else than the domain of the generator A - endowed

with a certain norm. We will see that this norm is equivalent to the

graph norm of A.

3.1 REMARKS

(1) If necessary, all spaces and operators will in the
following be interpreted as their obvious complex extensions.

(ii) Let A € €. Then it follows from (H1) and the closed graph
theorem that the composed operator
T = (AL - A)L : X = X

A
is bounded. If moreover A $ o(A), then this operator is an isomorphisrk
(iii) It follows from (ii) that the usual norm |[.[[, on X is
equivalent to the graph norm
ally = llwlly + lawlly . oex,
of A. In fact, we have

[lmllA = [[LLIIL(X’X) + IIALI[L(X,X)] [[xllx

and for every XA € o(a)

A

Helly s 1oz = a0 ] g g [1AT = 2] ly

A

ez = 27 ] g ) max AL (o], -

(iv) Since the Banach spaces X and X are reflexive, the

. * * * . * *
mapping i : X' 5 X is an embedding of X into X as a dense

csrhanaca



: * *
(v) Let x* € X be given. Then there exists an x* € X
*
such that |[[|x*[| < K and . x* = z* if and only if the inequality
<z¥, x> < K [[ucl[x

*
holds for all =z € X (x* € X can be constructed via continuous

extension of the map itz -» < z*,2 >).
(vi) Let x € X be given. Then there exists an xz € X such

that [[x][x <K and tx = x if and only if the inequality
*
< x*,x > < K [|ux¥[]|
X
*
holds for all x* € X .

It follows from the commutativity of S(t) and A that the
restriction of S(t) to dom A is a strongly continuous family of
bounded linear operators with respect to the graph norm. The semigroup
property is obviously satisfied. Hence there exists a unigque Co—
semigroup

S{t) : X -» X

such that the following diagram commutes

S(t)
X —— X
| .
S(t)
X —— X

This means that

(22) LS ()

S(t)L



The infinitesimal generator of this semigroup has the following

properties.

3.2 LEMMA  let (H1) be satisfied and S(t) defined as above. Then

the following statements hold.

(L) The Ainfinitesimal generator G4 S(t) 4Ls glven by
(23) LAz = Az, dom A = {z € X[Aix € dom A = ran L} .
(L) Po(A) = Po(dA) , o(A) = o(np)

(£44) Let u € o(A) and define T, = (I - A)u X - X. Then

-1

ste) = TswrT, e20.
{({v] dom A* = ran L* .
(vl A" = @au’ e Lt

PROCF (i) Let the operator A be defined by (23). Moreover let

z, w € X be given. Then it follows from remark 3.1 (iii) that the

limit

w = lim £ [S(t)zx - x]
£40

exists in X if and only if

S{t)ALx - ALx
t

S(t)ﬂx - L
t

- wlly = lim []

- Aawl||l, = 0.
X £40 X

lim ||
t+¥0
But this is equivalent to AiLx € dom A = ran . and Atr = ww. By (23

this means that =« € dom A and Ax = w.

(ii) It follows from (i) that =z € ker (AI - A) 4if and only if

Ltz € ker (AI - A). Hence Pog(A) = Po(a).




Now let AL - A be onto and let =z € X. Then there exists some

w € X such that 1z = (AI - A)ww. This implies that Aww € dom A
and hence w € dom A. Moreover L(AI - A)w = (AI ~ A)ww = vx which
proves that o = (AI - A)w.

Conversely, let AI - A be onto and let x € X. Moreover let
L ¢ o(A). Then there exists an « € dom A such that (AT - A)z =7

this implies
X = Tu(lI - Ax =" (UI = A)L(AI - A)z = (AT - A) (uI - A)izx
We conclude that AI - A is onto if and only if AI - A is
onto and thus o(A) = o(a).
(iii) Let w € €. Then the following equation holds for every
x € X and t =2 0

S(t)Tux = (I - A)S(t)ex = (I - A)LS(t)z = TuS(t)x.

*
(iv), (v) Let =x* € X be given. Then the following equation

holds for every « € dom A

* *
<UL x*¥Ax > = < x*,LAe > = < x*,Auvz > < (AL) x*,2 > .

i . A % * * %k *
This implies that o x* € dom A and A . x* (AL) x*.
E
Conversely, let x* € dom A and u ¢ o(A). Then, for every

x € X, we have
w = T L € dom A ,

since Awa = Ww, - tx € dom A. This implies that (uI =~ A)wx =

and hence

=1

1L

X

X
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]

- * -
< ¥,z > < x*, (uI - A)wx > = < (ur - A )x*,Tu 1La: >

A

- * -
Gz = A0t ] T g el Ty

*
We conclude that z* € ran (remark 3.1 (v)).

Q.E.D.

It follows from remark 3.1 and'lemma 3.2 Ehat - 1f A satisfies
{H1) - then A* also satisfies (H1) with X replaced by X* and X
by X*. fhis situation may be illustrated by the following two
commuting diagrams where the diagram on the right hand side is both

the dual and the analogon of the diagram on the left.

s (t) e ST,
X —— X X & — X
T T g |
L L L " L
S(t) 8T (8)
X — X e, x*

Now we are going to study the solutions of the Cauchy problem
(20) where U is a real reflexive Banach space and B € L(Uu,X). For
This sake we need some integration in Banach spaces in the sense of
Bochner (see e.é. HILLE-PHILLIPS [53, section.3.7 and 3.8] and
DINCDLEANU [34]). We will make use of some basic properties of the
Bochner integral without giving each time an explicit reference,
However,in the applications - we have in mind - the input space U
is always finite dimensional which sometimes simplifies the inter-
pretations.

Let us first make precise what we mean by a solution of the

Cauchy problem (20) in the state space X.



3.3 DEFINITION Let u(.) € tP(lo0,T1;u) bhe given, Then a continuous

gunction x : [0,T] » X 4s sadid to be a so0lution of (20) L4 the
function x(t) = vx(t) € X 448 absolutely continuous on [0,T] and
saxtisfies (20). This means that

t
(24) vz (t) = 1x(0) + f[Aix(s) + Bu(s)]ds , 0
0

IA
o
A
L=

The following assumption on the operator B is needed in order

to obtain solutions of (20) in the desired state space X.

(H2) Let U be a real reflexive Banach space, B € L(U,X), and
1 £ p < ». Moreover suppose that, for every T > Q, there

exists some bT > 0 such that

T
[S(t)Bu(t)dt € ran .
0
and
-1 T
(25) [ fs(t)Bu(t)dt[[X <
0

by Ilally g

for every u € Lp([O,T];U) where

T 1/p
[ully,r = [é[{u(t)llg at]l .

3.4 THEOREM Let (H1) and (H2) be satisfied and Le z, € X be gdven.

_ Then

t
(26) z(t) = S(tlz, + .~ [S(t-s)Bu(s)ds , O
0

A
o+
1A
=]

48 the unique solution of (20) (4in the sense of definition 3.3)

with £(0) = zy.
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PROOF The uniqueness part follows from the fact that the difference
z(t) of two solutions of (20) - corresponding to the same input
u(.) and the same initial state Ty = satisfies

t

e (t) = [Aix(s)ds , 0
0

A
o
A
H

Since AL : X » X is a bounded operator (remark 3.1 (ii)), we obtain
that x(f) = wx(t) € X 1is continuously differentiable on {0,T] and
satisfies %(t) = Ax(t), %(0) = 0. Hence it féllows from classical
results in semigroup theory (see e.g. GOLDSTEIN [39], pAZY [127])
that x(t) = 0 and thus z(t) = 0 for 0 < t < T.

Now let x(t) be given by (26). Moreover let t, s € [0,T] and

define wu(t) := 0 for <t ¢ [0,T]. Then, by (25), we have
[z(t) = z(s) l [X

T
< IIS(t)xO - S(s)a |y + [ gs(t)B[u(t—t) - u(s-t) ldz| |,

/p

IA

T 1
l|3(t)x0 - Sz |y + by [g[[u(t-t) - u(s-r)llg dr]

and hence =z(t) 1is continuops. Moreover it is well known that - for

every continuocusly differentiable input u(t) = the function

IA

. t
x(t) = itx(t) = S(t)l.xo + [S(t-s)Bu(s)ds , 0 t T,
0

is continuously differentiable and satisfies (20) (see e.g. CURTAIN-
PRITCHARD [24], GOLDSTEIN [39], PAZY [127]). Hence (24) is satisfied
in this case. In general, (24) follows from the fact that both sides
of this equation depend continuously on u(,) € Lp([O,T];U).

Q.E.D.



Now we come to the assumption on the output operator € which
guarantees the existence of an output function of system (21) for

every initial state in X.

(H3) Let Y be a real reflexive Banach space, C € L(X,Y), and
1 < g £ o, Moreover suppose that, for every T > 0, there
exists some Cp > 0 such that the following inequality
holds for every = € X

(27) [[CS(.)x|lq,T S cp [|Lx||x .

This hypothesis is actually the dual of (H2) as it is shown in the

lemma below.

3.5 LEMMA  let (H1) be satisfied and Let U be a real reflexive
Banach space. Then B € L(U,X) satisfies (H2) 4if and only if the

inequality
* % *
(28) |[B'S (')X*llq,T < by |l x*I[X*

hotds for all x* € X° and T >0 (i/p + 1/q = 1].

ok
PROOF The following equation holds for all x* € X and all

u(.) € tP(1o,T1;U)

* %k
< B S (.)x*,u(.) >
td([o,71;u"),LP([0,T];U)

T k Xk
J < B S (t)x*u(t) >, dt
0 U ,U

T
< x*,[S(t)Bu(t)dt >
0 X X



38 I

*
Hence (H2) implies that - given x* € X - the inequality

* % X T
-1
< B S (.)x*,u(,) > = < v x¥*,L @ [s(t)Bu(t)dt >
0

19,1P ™, X

IA

by 1=l a1 g

holds for all u(.,) € Lp([O,T];U). We conclude that (28) is satisfied
(DINCULEANU [34, proposition 14.291).
Conversely, (28) implies that ~ given u(.) € Lp([O,T];U) - the
inequality
T

i *
< x*,fs(t)Bu(t)dt > , $ bp [{ux*]| et ]]
0 X ,X X

14

p,T

P
holds for all =x* € X . Hence it follows from remark 3.1 (vi) that
(H2) is satisfied.

Q.E.D.
The next lemma is the basic tool for our perturbation result.

3.6 LEMMA  Let (H1), (H2) be satisfied and F € L(X,U). Then, for
every w(.) € C([0,T];X), there exists a unique solution z(.) €

C([OIT].;X) 06

t

z(t) = w(t) + 7' [S(t-s)BFz(s)ds , O <t s<T,
0
depending continuously on w(.).
PROOF By theorem 3.4, the expression
_1t
[Lel(t) = o+ [S(t-s)BFx(s)ds , 0<t<T,
0

defines a bounded, linear operator on C([0,T};:X).



Now choose € > 0 and vy > 0 such that
1/p 1/p _-ve
(s + T e b llFllL(X,U) < 1

and introduce on C([0,T];X) the equivalent norm

e, = sup |la(t)]], e ¥F
Y 0<E<T X

Then, for every =«x(.) € C([0,T];X) and every t € [0,T], the
following inequality holds

t

-1 1/p
[ fs(s)BFx(s)dsHX
0

IA

t
by [IFI ([11= (o115 as)

A

1
by HFIL €72 sup [[a(s)|], .
O0<s<t '

This implies
[zl (e) [ |y e7YF

-1 € -yt
< |l fS(s)BFx(t-s)ds[lX e
0

t
+ 0 [8(s)BFx (t=s)as|[, V¢
€

t

A

e'/P by |IF|| sup [z (t=8) ||, &
O<s<e

+ "B p [[F|] swp o (tms) | [, eV (E78) gve
g€<s<t

IA

1 ) |
(72 + 22 ) b 11F1 oy Hatall, -

We conclude that L is a contraction with respect to |[.]|Y and hence

I - L is boundedly invertible.
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Now we are in the position to prove the desired perturbation
results. Theorem 3.7 is related to the state feedback problem

(hypothesis (H2)) and the dual result, theorem 3.9, to the odtput

injection problem (hypothesis (H3)).

3.7 THEOREM  Let (H1), (H2) be satisfied and LeX F € L(X,U). Then

the following statements hold,

(€] There exists a unique C -semigroup Sp(t) : X - X such

Zhait the equation .~

t
(29) sc(tlz = Stz + .7 S (t=5) BFS (s) zds
0

holtds gor every =z € X and every t 2 Q.
({L] Fonr every =z € X the function t - LSp(t)ae L4 continuoust
digfernentiable in X and satisfies
a/dt WSp(t)z = [AL + BFIS;(t)z , t20.

({ii) The infinditesimal generazor of Sp(t) 48 given by

dom Ap = f{z € X[Avz + BFxz € ran .} ,
LAFm = Awx + BFzx .

(30)

Thié means that Zhe following diagram commutes

AL + BF N

3 et
dom AF X




PROOF (i) For every x € X let x(t;xo), t =2 0, be the unique

solution of
..1 t
x(t;xo) = S(t)xO + L éS(t~S)BFx(S7xO)dS .

Then the operators SF(t) : X » X, defined by SF(t)xO = x(t;xo) for
t 20 and r, € X, are bounded and strongly continuous (lemma 3.6)
and satisfy (29).

Moreover the following equation holds for all z, € X and

t, s 20
-1 t+s
z(ttsiz ) = S(t)S(S)xO + 0 [ S(t+s-T)BFz (t;z_)dt
‘ 0 o)
L
= S(t)S(S)xO + S(t)fS(s—t)BFx(T;xo)dr
0
_1 't+s
+ L S S(t+s-r)BFm(r;xo)dt
s
-1 E
= S(t)xz(s;xz_ ) + [S(t-T)BFx (T+s;x_)dT
‘ o) 0 o)
Hence, by lemma 3.6, we have x(t+s;xo) = x(t;x(s;xo)) which proves

the ccmigroup property.
(ii) follows directly from (29) and theorem 3.4,
(1ii) Let AF be the infinitesimal generator of SF(t). Then

the following equation holds for every z € dom AF

Atz + BFx = 1im t-T[LSF(t)x - x] = LAFx
t40

Conversely, let z € X be given such that Awx + BFx € ran L

and choose u € X such that (w = Az + BFz. Then the function

t
z(t) = o + ISF(s)wds € X, t 20,
0
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is continuous and satisfies the equation

t t s
vz (t) = L1z + LfS(s)wds + LIL“T fS(r)BFSF(s-r)wdrds
0 0 0
t t t
= Lz + [S(s)iwds + [S(T)BF S (s-T)wdsdr
0 0 T
t t t-T
= tx + [S(s)[Awxr + BFzlds + [S(T)BF [ S:(s)wdsdr
0 0 0

t t-7T
= S(t)iwzr + [S(T)BFlx + | S¢(s)wdsldr
0 0

t
= S(t)x + [S(t-s)BFx(s)ds
0

Hence, by lemma 3.6, we have z(t) = SF(t)x and thus

lim | [£7[Sp(8)z - 2] = ]|, = O
£40

This means that « € dom AF and AFx = y.
Q.E.D.

In order to prove the dual result, or more precisely the relation
between both results (statement (iv) in theorem 3.9), we need the
following general semigroup theoretic fact. In the case X1 = X2 this
has been shown by BERNIER and MANITIUS [11, lemma 5.3]. We present a

simplified proof.

3.8 LEMMA  Let X,, X, be Banach-spaces and S, (t), 8,(t) C ~semin
groups on Xes X, Moreoven Let T € L(X1,X2). Then the foLlowding
dtatements are equdivalent.

({1 sy(e)T = TS,(t) , €20

(44] For everny =x € dom A; Wwe have Tx € dom A, and

A2Tx = TA1x.



PROOF First let (i) be satisfied and x € dom A1. Then

TS1(t)x.— X Sz(t)Tx - Tx
TA,Xx = lim = lim

t40 t t+0 t

wich proves (ii).
Conversely, let (ii) be satisfied and x € dom A1. Then the
function x2(t) = TS1(t)x is continuously differentiable for t > 0

and satisfies the equation

d/dt x2(t) = TA1S1(t)X = A2T82(t)x = A2X2(t) N
Hence xz(t) = Sz(t)xz(o) = Sz(t)Tx. Now (i) follows from the fact
that dom A1 is dense in X1.
Q.E.D.

3.9 THEOREM Lex (H1), (H3) be satisfied and Let XK € L(Y,X). Then

Lhe following statements hold.
(<) There exists a unique CoﬁAemignoup Sg(t) : X » X such
that Zhe equation

t

(31) Syt = S(t)ix + J8g (t=s)KCS (s) zds
0

K
hotds forn akf =z € X and every t = 0.
(£4) Let Ay be the infinitesimal generaton of Sp(t). Then

ran L < dom AK and

(32) ALz = Awx + KCx , z € X

Moreoven Ay 48 Zhe closunre of its restriction fo ran ..

(dddi) I§ V 4is finite dimensional, then dom Ay = ran .,
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({v)] Let B € L(U,X) satisfy (H2) and Let F € L(X,U) be
given such Zthat BF = RKC € L(X,X). Moreover Let SF(t) : X = X be

the semigroup which was introduced in theorem 3.7. Then

(33) SK(t)L = LSF(t)
#
PROOF (i) Recall that A satisfies (H1) (remark 3.1 and

%
lemma 3.2) and that C satisfies (H2) (lemma 3.5). Hence it

follows from theorem 3.7 that there exists a unique Co-semigroup

* * *
SK(t) : X = X satisfying the equaticn

* % * * t o« X K K
L Sp(B)x* = LS (t)x* + [S (t-s)C K Sk (s)x*ds
0

*
for every =x* € X and t 2z 0. It is easy to see that this equation

is equivalent to (31).

x
(i) By theorem 3.7 (iii), the infinitesimal generator AK of

*
SK(t) is given by

* * .k ok * % *
dom Ay = {x* € X [A L x* + CKx*¥ € ran . } ,
% k x ok x %
L AKx* = A L x* + C K x*

- * ~
We show that Ay is the adjoint operator of AK ¢t ran t » X which

is defined by

~

Agltz = Awx + KCx , x € X

* ok
For this sake let x*, w* € X be given. Then =x* € dom AK and
~ .
AKX* = w* if and only if the following equation holds for every

z € X (lemma 3.2 (v))

~ *x 3k * %
< w¥,Lx > = < x*,AKLx > = <AL x*+ CKx*,z > .



sk %k
This is equivalent to x* € dom AK and- AKx* = w¥*, We conclude that

*
the adjoint operator AK of AK is the closure of AK.

(iii) Let V be finite dimensional. Then the operator AK,

~

defined in the proof of (ii), is closed. In order to prove this, let

x € X and x, w € X be given such that

Then we have to show that x € ran (if this is shown, then it

follows from (ii) that AKX = w). First note that

=
It

*
{x* e x | < x*,KCz > is a bounded sequence}

-1
% %
K {y* e v ] < y*,Cz_ > is a bounded sequence}

1]

* *
is a closed subspace of X , since dim V < o, Moreover, for

*
every x* € dom A , the sequence
<*K > *~ ** >
X*, an = <X ,AKan > - <A X rlx

is bounded, and dom A* is dense in X* since X is reflexive.
This implies that M = X*. By the uniform boundedness theorem, we
obtain that Kan is a bounded sequence in X. Since ran K is

finite dimensional, this sequence has a convergent subsequence

_KCwn r k € IN. Hence the sequence
' k

ALz = A_Lx - KCx
n n

- Koy k

is also convergent. Since A is closed, this implies that

X € dom A = ran ..
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(iv) Let « € dom A Then it follows from (ii) and theorem

F
theorem 3.7 (iii) that itz € dom AK and
AKLx = Awx + KCx = Ayrx + Bfx = LAFx

Hence (iv) follows from lemma 3.8.

DYNAMIC OBSERVATION

The main feature of the of the output injection semigroup
SK(t) -~ defined in theorem 3.9 - is that it gives rise to the

design of a (full order) cbserver of system (21), given by

(34) d/dt z(t) = AKz(t) - Ry (t) z(0) = zg E X .

This Cauchy problem in the state épace X has to be understood
in the sense of -'mild solutions' which means that a solution
z(t) of (34) is given by

t
(35) z(t) = SK(t)zO-éSK(t-s)Ky(s)ds , t

1Y
o

If the  semigroup SK(t) is stable, then this equation is in fact
an observer for system (21) in the state space X. In order to
make this precise, we introduce the output operator

Cp t X = L3([0,T];¥)

of system (21) by defining

(36) [CTLx](t) = CS{t)x , 0

IA
o+
IA
H
8
m
>



It follows from hypothesis (H3) that this operator CT is well
defined on all of X and bounded on this domain.

Now suppose that the input y(t) of the observer equation (34)
is precisely the output -of system (21) which means that y(.) ='CTX
for some x € X. Then it is easy to see that the ‘error'

e(t) = z(t) - S(t)x of the observer (34) is in fact described by
the semigroup SK(t) (in the case x = Lz, x € X, this follows from
(35), (36), and (31), and in general from the continuous dependence
of the solutions on the initial states).

The following compactness results will turn out to be useful

for checking the stability of the perturbed semigroups.

3.10 LEMMA  Let (H1), (H2) be satisfied, Let F € L(X,U) be a
compact operator, and Lokt SF(t) be the semigroup which was
introduced in theorem 3.7. Then the operaton Sp(t) = S(t) € L(X)

48 compacit for every t 2 0.

* * * %
PROOF It is easy to see that the function ¢t - SF(t)F € L(u ,X)
is continuous with respect to the uniform operator topology. So is
the function +t - FSF(t) € L(X,U). Hence the operator which maps

x € X into the function
FSe (e € c¢([o,T;u) < LP(lo,T];U)

is compact (Arzela-Ascoli). Now the compactness of the operator
Sp(t) - S(t) follows from (H2) and equation (29).
Q.E.D.

3.11 LEMMA  Let (H1), (H3) be satisfied, Let K € L(Y,X) be a
compact operator, and Let Sg(t) be the semigroup which was
introduced in theokrem 3.9, Then the operaton SK(t) - 8{(t) € L(X)

48 compact fonr every t = 0,
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REMARKS ON THE LITERATURE

Infinite dimensional linear systems with unbounded input- and
output-operators (in particular partial differential equations with
boundary control) have been studied in a similar framework e.g. by
LIONS [88], LIONS~MAGENES [89], CURTAIN-PRITCHARD [25], POLLOCK-
PRITCHARD [128]1, ICHIKAwA [57], [581]. Unbounded perturbation results
can also be found in DUNFORD-SCHWARTZ [37], KATO [68], GOLDSTEIN
[39], PAZY [127]. However, in all these references (except ICHIKAWA
[57]1, [38]) either the inequality in hypothesis (H3) is assumed to
be satisfied pointwise or there are even stronger conditions on A
and C (see e.g. GOLDSTEIN [39], PAZY [127]). All these assumptions
require a smoothing property for the semigroup S(t) which is not
satisfied in the case of delay systems. Only ICHIKAWA [57], [58] has
analogous assumptions as (H2) and (H3), but the operators A and B
reépectively A and C in his papers are of a special form,and his
results are not as detailed and precise as it is needed for our

purposes.,



CHAPTER 1II

STATE SPACE THEORY
FOR NEUTRAL

FUNCTIONAL DIFFERENTIAL SYSTEMS
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In this chapter we develop a state space approach for linear
neutral functional differential equations (NFDE) of the form
(

a/dt \x(t) - Mxt> = th

The main point of view in our theory of NFDEs is the consideration
of two different state concepts which are actually dual to each
other.

The 'classical' way of introducing the state of a functioﬁal
differential equation (FDE) with finite delay is to specify an
initial function of suitable length which describes the past history
of the solution (compare section I.2). An alternative state concept
can be obtained by regarding an additional forcing term as the
initial state of the system. This idea is due to MILLER [104]. It
has first been discovered by BURNS and HERDMAN [17] that these two

' notions of the state of a delay equation are dual to each other.
More precisely, the evolution of the second state concept (forcing
terms) is described by the adjoint semigroup of the one which is
associated with the transposed egquation in terms of the original
state concept (initial functions)..

For retarded functional differential equations (RFDE) both
state concepts can be treated in the product space '

MP R x tP([-n,01;R™)

(see e.g. BERNIER-MANITIUS [11], DELFOUR [28]). But for NFDEs it
will be convenient to study the two state concepts in different
state spaces. If the 'classical' state concept is treated in the
product space mP (BURNS-HERDMAN-STECH (18], [19]), then the dual

state concept will be taken in the dual space
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of the Sobolev space
whd = w9 ([on,00RR

(1 <p<w, 1/p+ 1/qg=1). If the original state concept is defined
in the state space W1'p (HENRY [48]), then the appropriate state
space for the dual state concept will turn out to be the product
space Mp. These duality relations will shed a new light on the
correspondence between the semigroup S(t) : MP > MP of Burns,
Herdman, and Stech and the semigroup S(t) : W1’p - W1’p of Henry,
exceeding the well known fact that S(t) is the restriction of
S(t) to the domain of its generator.

The relation between the two state concepts will be described
by socalled structural operators. These extend the concept of
structural operators for RFDEs which has been developed in BERNIER-

MANITIUS [11], MANITIUS [93], and DELFOUR-MANITIUS [29].



IT.1 THE SEMIGROUP APPROACH

Consider the linear NFDE

{oroy = ome V=
(1 d/4t \X(t) MXt/ = th
where x(t) €eRY for t = -h and X, o1 [-h,0] > R? is defined by
xt(t)4=~x(t+r) for -h £ 1 £ 0 (0 <h < ®. We assume that I and

M are bounded linear functionals on C = C([-h,O]ﬂRn) with values
in R". These can be represented by normalized functions

n, & : [-h,0] - R of bounded variation in the following way

0 0
Lo = [dn(t)e(z) Me = fdu(t)e(t) , p€C ,
- -h

(compare section I.2).
In order to obtain existence and uniqueness for the solutions

of (1), we will always assume that

(2) -1 ¢ o(lim u(T))
40

(compare condition (I.14) in section I.2). A solution of (1) is a

function x € LP

loc([-h,w)ﬂRn) with the property that the expression

wit) = x(t) - Mz, t

v
o

is absolutely continuous and satisfies w(t) = th for almost every
t 2 0. This means precisely that the pair w(t), t = 0, and x(t),
t 2 -h, is a solution (in the sense of definition I.2.2) of the

following system of the form (I.13)




IT 53

&(t) = th

w(t) + Mx

x(t) e

Note that such a solution x(t) of (1) may not become absolutely
continuous after some time -~ in contrast to the retarded case (the
absolutely continuous component w(t) = x(t) - Mxt of system I

should only be interpreted as an auxiliary variable).

THE SEMIGROUP IN THE STATE SPACE MP

It follows from (2) that £ satisfies the assumptions of

theorem I1.2.3. Hence % admits a unique solution for every initial

condition
(3) w(0) = ¢o° ’ x(t) = ¢1(r) , -h <t <0 ,
where ¢ = (¢°,¢1) e MP, The corresponding semigroup

s(e) : MP o> WP

associates with every initial state ¢ € MP  the state
S(tle = (w(t),x) € MP

of Z at time t 2 0. The infinitesimal generator of 8(t) is

given by

dom A = "{¢ EMpl(p1 € W1’p, ¢° = <p1(0) !MCD1}

1 -
1@1)

Ap = (Lo
&theorem I.2.6). This semigroup has been introduced recently by

BURNS, HERDMAN, and STECH {18], [19].

o= ==



1.1 REMARKS

(1) The above concept of a solution to the NFDE (1) goes back
to HALE and MEYER [43]. They have defined a continuous function
x(t), t 2 -h, to be a solution of (1) if x{t) - Mxt is continuously
differentiable for t 2 0 and satisfies (1). Moreover they have
shown that (1) admits a unique solution for every initial condition
(1) = o(t), ch ST <0, o € C (see also theorem I.2.3 (iv)) .

(ii) The semigroup Sc(t) : C » C of Hale and Meyer maps every

initial state ¢ € C into the corresponding solution segment

Sc(t)Q = X, of (1) at time t 2 0. Its infinitesimal generator is
given by

dom A, = {¢ € Clo € C, ¢(0) = Lo + Mo}

AC(P = 9

(HALE-MEYER [43, lemma 2]).

(iii) The semigroup Se(e) 2 C » C can be regarded as a
restriction of S(t) : MY 5> MP. For this sake we have to identify
every ¢ € C with the pair (p(0Q) - Mo,p) € MP. Then ¢ becomes

a dense subspace of MP  which is invariant under S{(t).

THE SEMIGROUP IN THE STATE SPACE W1’p

Sometimes it is not useful to allow solutions of (1) which are
not absolutely continuous - in particular, if the output depéends on
the derivative of the solution. In this case we rewrite equation (1)

in the following way

Q x(t) = Lz, + Mx

It has been proved by HENRY [48] that this equation admits a unique



-

o
L

T

solution =z« € WTég([—h,w)ﬁRn) for every initial condition

1

IA
!
A
[e]
~

(4) z(t) = o(z) , -h

where ¢ € W1’p (compare theorem I.2.3 (v)). Moreover HENRY [48]

has introduced the Co-semigroup

S(e) - w''P oL yleP
which associates with every initial state o € W1’p the
corresponding solution segment S(t)o = x, € W1'p of Q at time
t 2 0. We will see that this semigroup is nothing else than the
restriction of S(t) to the domain of its generator. For this sake

let us define the embedding . : W1’p > MP by

(5) L = (p(0) - Mp,p) € MP , ¢ € W1’p .

Then the range of . is precisely the domain of A. Hence the
operator A satisfies the hypothesis (H1) of section I.3 where
X=MP and X = W1'p.

Now let ¢ € W1'p be given and let w(t), x(t) be the unique
solution of = corresponding to the initial state e € MP. Then it

follows from theorem I.2.3 (v) that x € Wiég([—h,w)ﬂRn). Hence

z(t) = x(t) satisfies @ and (4). This can be written in the form
Sty = X, = [S(t)b@]j. Thus we have proved that

(6) LtS(t) = s(t)v t>20 ,

(compare equation (I.22)). We conclude that the correspondence

between the semigroups S(t) and S(t) is precisely the same as

it has been described in section I.3. In particular, it follows



from lemma I.3.2 (i) that the generator of S(t) is given by

dom A {9 € W1’p|m € W1’p, ©(0) = Lo + Mo}

[}

Ap = o

(see also HENRY [48]).
We will see that the analogon of the semigroup S(t) for the
transposed system plays an important role in the description of the

dual state concept for system I.

THE TRANSPOSED EQUATION

Transposition of matrices leads to the NFDE
(7) d/at (x(t) - MTxt) = nTx

where the bounded, linear functionals LT and MT from C into
r" are given by

0 0
i?o- _"I{d'h'.r(f)w(r) ;1Y o= fatme , wec.
-h- : -h

We consider the 'classical' state concept of the NFDE (7) in the
state spaces M2 and W1’q (1/p + 1/g = 1) in an analogous way as
it has been done for the NFDE (1). The semigroup ST(t) : M9 o M4
associates with every € M2 the state ST(t)w = (z(t),xtL € M4

of system

H
H
»

T z {t)

x(t)

]
N
¢
+
=
e

at time t 2 0, corresponding to the initial condition
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(8) 2(0) = ¢°, x(t) = ¢ () , “h <1 <0

The infinitesimal generator of ST(t) is given by

1

dom AT = {p € Mq|¢1 e w9, wo = ¢1(O) - MTw}

aTy = @tytuh

(theorem I.2.6). Correspondingly, we introduce the embedding
LT : W1’q - M% by defining

(9) Ty o= o) - My, e M, vew'q,

‘Again ST(t) : W1’q - W1’q is the unigue semigroup which

satisfies the equation

v
o

(10) IsT(e) = 8Ty T, t

T
Moreover S7(t) associates with every ( € W1'q the solution

segment ST(t)w =z, € W1’q of system

Q z(t) = LYz, + M'g

at time t 2> 0, corresponding to the initial condition

IA
o

IA
o

(11) z(t) = v(v) , =h

|
The infinitesimal generator of ST(t) is given by

dom AT Wwew 9y ewq, o) =Ty + )

Aty = ¢ .

[63]
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Summarizing this situation, we deal with the following four

semigroups.
s(t) : ME - MP sT(e) : Mm% - o2
S(t) : w''P o w'/P sT(¢) wt'd L, g

The semigroups on the left hand side correspond to the NFDE (1) and
the semigroups on the right hand side to the transposed NFDE (7). On
each side the semigroup below i1s the restriction of the upper
semigroup to the domain of its generator. A diagonal relation will

come in through the introduction of the dual state concept.

THE DUAL STATE CONCEPT

For any type of delay systems (FDEs, Volterra integral
equations, integro-differential equations with infinite delays,
difference equations) a dual state concept may be derived in the
following way. The solution of the respective eguation (t > O).can
be derived from the initial function (t £ 0) in two steps. First
replace the initial function by an additional forcing term in the
oquation, and secondly determine the solution of the equation which
corresponds to this inhomogeneous term. The dual state concept is
obtained by regarding the forcing term as the state of the system,
rather than the solution segment (Miller).

An analogous procedure can be applied to the system I. For
this sake let us divide the right hand side of each eguation in X
into two terms such that one of these depends only on the solution

of T (t > 0) and the other only on the initial state ¢ € MP
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Figure 2

Then we obtain the following equations

] 0
wit) = fdn(T)x(t+t) + £'(=t) , w(0) = £°
~ -t .-
X
g 2
x(t) = w(t) + [ap(t)x(t+T) + £°(-t) , t 2
-t

where the triple

£ = (£9,81,£%

is given by

(12.1) £2 = °
(12.2)  £l(-t) =
(12.3)  £2(-y) =
(£ (-t) = £2(<t) = 0

2
f are well defined

continuously on ¢ €

n

€ MP = rR® x tP([-n,01 ™) x LP([-h,0]:RY)

-t
-h
-t

-h

for

elements of LP([-h,01;R™), depending

MP.

fan(tv)e' (t+1) , 0

fau(tyol(e+T) , 0

A
t
IA
o

IA
o+
IA
=g

t > h). By remark I.2.1 (ii),

f

1

and

59
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At the first glance it seems natural to define the forcing term

~ ~

£ e MP to be the initial state of £ since the solution of &

depends only on £ € MP  rather than ® € M. However, it turns out

~

that MP is too large as a state space for £. In fact, different

0

v

forcing terms might lead to the same solution x(t) for =t
(recall that w(t) is an auxiliary variable). More precisely, we
will see that =x(t) =0 for t =2 0 if and only if

T o 0 T 1 T 2

0T (0)£° + f(w (ty £ (o) + oT ()£ (r))dr = 0

for every ( € W1’q (lemma 1.5). This suggests the introduction of

the (bounded, linear) map
n o« MP o wleP

which associates with every £ € MP  the bounded, linear functional

nf € W ‘P on W1’q, given by

< £ >
L!J/Tt W1 ,.q,W-‘],p

(13
0 0.

= T + T mar + et 2 nac
-h -h

for every (¢ € W1’q . Then the forcing term f € MP is in the kernel

of m if and only if the corresponding solution x(t) of 5
vanishes for t > 0. Motivated by this fact, we define the initial
state of 5 to be the bounded linear functional nf € W_1’p which
is represented by £ € MP - rather than the forcing term £ itself.
This choice seems to be the happy mean of a state space which carries
no unnecessary burden but still contains all the information which

is necessary in order to determine the solution of the system.
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The corresponding state at time t = 0 can be obtained by

~

applying a time shift to system 2. The solution pair w(t+s),

x(t+s), s 2 0, of % is determined by the forcing terms wt, xt €

Lp([—h,O]ﬂRn) of the shifted equation

. 0
w(t+s) =  [An(T)x(t+s+T) + wo(-s)
-s
(14)
0 t
x(t+s) = w(t+s) + [Au(r)x(t+s+1) + x (=8) , s 20 .
-s
These forcing terms are given by
t - ' 1
w (-s) = [ dn(t)x(t+s+T) + £ (-s-t) , 0 <s <h,
-s-t
(15)
t —S 2
X (-s) = [ du(z)x(t+s+1) + £°(-s-t) , 0 <s <h.

-s-t

4

Now the state of 3§ at time +t = 0 is the bounded linear functional

n(w(t),wt,xt) € w P

on W1'q. The evolution of this state is actually described by the

*
1 1

semigroup ST (&) : w VP 5 w'P, mhis is a consequence of

theorem 3,6 below.

1.2 COROLLARY Let £ € MP be given and Let w(t), x(t), t = 0, be

the connesponding solution of E. Moreover Let w- and x° be

E 3
defined by (15). Then mw(w(t),wt,xt) = ST (t)nf.

Let us now briefly discuss the question if a further restriction
of the state space W_1’p of £ (to some invariant subspace of the
*

semigroup st (t)) might be useful. The reason for stressing this

Point is the fact that - in the retarded case (u(t) = 0) - the third
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component f2 of f may be omitted and hence the product space Mp
is an appropriate state space for 3. Note that this product space

MP  can be embedded into W—1’p as a dense subspace via the map

T R s P
(remark I.3.1 (iv)). This embedding associates with every pair
f = (fo,f1) € MP  the bounded linear functional

voo» < T, F > , vewrd |

M3, MP

1.3 REMARK It follows from equation (10) that
{(16) ST (t)e = L° 8" (t) , t20 .
Moreover, by lemma I.3.2 (iv), we have

T* T*
dom A = ran L .

" This means that the semigroup ST (£) : MP o MF represents the

%
restriction of ST (t) W-1’p -> W-i’p to the domain of its

generator.

In view of these facts it might be desirable to reduce the
*

state space W“1’p of » to the range of LT which would lead
*

to the semigroup ST (t) on the state space MP, However, this

cannot be done directly since the bounded, linear functional

e arising from a forcing term £ € MP of £ which is
* .

given by (12) - will in general not be in the range of _LT .

nf € W
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Another possibility of a state space reduction for the system

~

%z may be given through the use of the isomorphism

* *

ar - ATy T . MR L oy lep

for some X ¢ G(Az) (remark I.3.1 (ii)). This would again lead to
the semigroup ST {t) and the state space mP (lemma I.3.2 (iii)).
However, the price for such a somewhat artificial construction would
be a more complicated relation between the two state concepts.
Moreover, the Banach space W—1’p would still be needed as an
intermediate step. Last, not least, we are just interested in the
meaﬁing of the different state spaces MP  and W1’p for the
properties of the NFDE (1). This will come out through the above
choice of W ''P ag a state space for z.

The desired restriction of the state space W_1’p for the dual
state concept of the NFDE (1) to MP can in fact be obtained in a
direct way if we also restrict the state space MP  for the original
state concept of the NFDE (1) to W1'p. This restriction is

represented by system Q.

THE DUAL STATE CONCEPT FOR SYSTEM @

As above, we divide the right hand side of £ into two terms
such that one of these depends only on the solution z(t), t > 0,
and the other only on the initial function ¢ € W1’p. This

procedure leads to the equation

. 0 0 .

z(t) = fdn(Dz(t+t) + [du(t)e(t+t) + £ (-t) , 320,
~ -t -t
Q

z(0) = 5%,

where the pair f = (f°,f') € MP is given by
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(7.1 2 = e ,
1 -t -t .
(17.2) Ff(-t) = fdn(m)o(t+t) + [du(z)o(t+1) , 0 <t <h.
~-h -h

1.4 REMARK System 5 admits a unique solution =z € WT’P([O,w);Rn)
depénding continuously on the foréing term f € MP. This can be seen
by introducing the new variable z(t) = é(t) for t =z 0 "and

defining =z(t) = z(t) = 0 for t < 0. Then 5 is equivalent to the

following system of the type (T.13)

z(t) , z(Q) = f '

z (£)

ct
v
(@]
-

z{(t) = L&  + Mzt + f1(—t) '

t

Hence the above claim follows from theorem I.2.3.

The next result shows that Q can in fact be regarded as a

restriction of 2 to the state space M.

1.5 LEMMA Let £ € UP and f € MP  be given. Moreoven Zet w(t),

~

x(t) be the unigqe so0lution of = and xz(t) <Lhe undque so0lution of

Q. Then the following statements are equivalent.

(i) x(t) = =z(t) Vt=z0.
*
(ii]l nf = T f .
(£44)
o . 9.4 o . 9.1
£7 0+ [fi(v)ydr = [I + u(-h)]f + [f (v)dr ,
-h -h
0 0
£2(0) + £2 + (£ (1)ar = [I + u(o)]fo + (fl(t)dt , ~h <o <0
o) he (e}

[Lv])

0
£ + f(e*ff1(r) + Aektfz(r)>dr
~h

0
= [I - M(ek')]fo + fektf1(r)dr vYXECT.
=h



PROOF First note that the equations

0 0.
< Y,nf > = wT(O)fo + I¢T(T)f1 (t)dr + fwT(r)fz(r)dr
-h -h
(18.1)
T, (.o . 91 O/ 2 o, %91
= VTen (e gr <r)dr> ¢ [T @£ + £+ f1 (T)dt)dc
-h ~-h (o]
and
T [{ T \T o 0 1
v, f > = \w<0) - M ¢> o+ Ju ()f (v)az
-h
T o T o O’T le) 0 T 1
= Y (0)f" + v (-h)u(-h)f~ + [ (o)u(o)dor” + k{w (t)f (t)dt
~h -
(18.2)

0
wT<—h)(f° + u(-h)7° + £f1(t)dr)
0. 0
+ fwT(c)(f° + (o) f° + ff1(t)dt)dc
-h o

hold for every (¢ € W1’q. This proves the equivalence of (ii) and
(iii) . Obviously (ii) implies (iv). Conversely, let (iv) be
satisfied and apply (18) to y(t) = eAT, ~h £ v £ 0. Then (iii)
follows from the uniqueness of the Laplace transform. Hence it
remains to prove that (i) is equivalent to (iii).

For this sake let us introduce the functions

x(£) = x(t) - 2, &) = w(t) + £2(mt) = £ - u-t)f°

for t 2 0. Then the following equation holds

o _ 2 9
7= w(t) + £7(-t) + [au(t)x(t+1) - F
-t

% (t) °©

x(t)

£(t) + du * x(t) , t

v
(o]
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Now (i) is satisfied if and only if x(t) is absolutely continuous

for t = 0, x(0) = 0, and
M . 0 0 . 1
x{t) = x(t) = fan(t)x(t+t) + [fdp(t)x(t+t) + f (-t)
-t -t
= w(t) - £l (=) + £ (~£) +dpu * x(t) , €20
Equivalently £(t) is absolutely continuous for + = 0, £(0) = 0,
and
£(E) = w(t) - £1(=£) + fl(-t) , t=20,
(corollary I.1.5). Since w(0) = fo, this means that
~ o 0 1 Q 1
£(t) = w(t) - £ -~ [E(m)dT + [f (m)dt , t =0
-t -t

Finally, it follows from the definition of £(t) that the latter

is equivalent to (iii).
Q.E.D.

o

Obviously, the solution xz(t) of Q wvanishes for t 2 0 if
and only if f = 0. Hence the product space MP  seems to be an
appropriate choice for a state space of 5. The forcing term
f € MP  will be regarded as the initial state of 5. The
corresponding state at time t 2 0 can again be derived from a time

shift. The forcing term xt € Lp([—h,OJ;Rn) of the shifted equation

. 0 0 .
(19) x(t+s) = fan(t)z (t+s+T) + [du(t)z(t+s+T) + xt(-s) , 820
-s -s

is given by

14
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-5 -S .
(20)  2F(-s) = [ an(v)e(tts+t) + J Au(T)z(trstT) + £ (~t-s)
~t-s ~t-s
(0 £ s £h). The state of Q at time t =2 0 is defined to be the

pair (x(t),xt) € MP. The evolution of this state is described by
%

the semigroup ST (t) MP 5 MP.

1.6 COROLLARY Let f € MP be géven and Let x(t) be the
t

cornesponding solution of Q. Moreoven Let =z

*
degfined by (20). Then (z(t),zt) = ST (t)F.

€ tP([-h,01;RY) be

*
PROOF Let f € MP satisfy nf LT Ff and let n(w(t),wt,xt) e MP

~

be the corresponding state of ¥ defined by (15). Then it follows

from lemma 1.5 that x(t) = z(t) and thus n(w(t),wt,xt) =

%
LT (x(t),xt) for every t 2 0. Hence, by corollary 1.2 and (16),

* * * * *

T (t)yng = 8T T gT

*
T (t) LT f = v 8 (t)fFf .

VI o(m(e),2t) = S

* .
AT of ST (t) 1is given in the following proposition which can

An explicit characterization of the infinitesimal generator
*

be proved straight forward. The precise verification is left to

the reader since this result will not be used later on.

*

1.7 PROPOSITION Let f, g € MP  be given. Then g € dom aT and
- ;

AT g =fFf 4f and only if the follLowing equations hold

0
[I + u(-h)]fo + [fl(myar ,
-h

- n(-h)g°

0

g (@ - n(o)g° [1 + u(c)]fo + £l (myar , -n
(o)

A
Q

IA
o
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THE DUAL STATE CONCEPT FOR THE TRANSPOSED EQUATION

Precisely the same ideas as above can be applied to the systems

z and QT.

For the system ZT the dual state concept will be treated in

the state space W‘1'q. More precisely, we obtain the eguation

. 0 o : o
z(t) = Jdn (T)x(t+T) + g (-t) . z(0) = g ,
...T -T
T
0 2
x(t) = z(t) + [fdu (v)x(t+t) + g (-t) , t =0,
-t

where the triple g = (go,g1,g2) e M3 is given by analogous

~

expressions as (12). The initial state of ET is the bounded,

linear functional nTg € W‘1’q which is given by

T
<1 >
AT PR R-

(21)
oT 0 T 0 ,T .
= g~ o(0) + gq (Do(t)dt + [g° (Do(t)dT
- ~h

for every o € W1’p. The corresponding state at time t 2 0 1is

given by nT(z(t),zt,xt) € W—T’q where zt, x° € Lq([-h,O];RF)

are the forcing terms of the shifted equation, i.e.

t g T 1
(22.1) z (o) = [ dn” (T)x(t+t-0) + g (o-t) , -h €00,
o-t
t g T 2 f
(22.2) x (o) = [ du (v)x(t+T-0) + g (o-t) , -h =<o0=0
o-t

*
The evolution of this state is described by the semigroup S {(t)
on W_1’q, i.e.

t

(23) Tizey,ztxhH = sy, t=20
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The dual state concept of system QT can be treated in the

(restricted) state space MY, We have the following equation

. 0 T 0 T . 1

x(t) = Jan® (T)x (t+T) +  fAuT (T)x (t+T) + g (-t) , t >0,
~m -t -t
Q

x(0) = ¢° .

The initial state of Q° is the pair g = (go,g1) € MY, The
corresponding state at time t 2 0 1is given by (x(t),xt) e M9

where ° € 19([~h,0]1;RY) is of the form

t S 9 T 1
(24) x (o) = [dn (Dx(t+t-0) + [ du (T)z(t+T-0) + g (O-t)
o-t o-t
(<h £ 0 £ 0). This expression can again be obtained by applying a

time shift to QT. The evolution of the pair (x(t),xt) e M3 is

*
described by the semigroup S (t), i.e.

(25) (x(t),z5) = s (g, t=20.

~ ~

As before, the system QT represents the restriction of ET to the
* =
product space M? via the embedding  : M2 5w Tha which

associates with every g € M?  the bounded linear functional

More precisely, we have the following relation as a consequence of

equation (6)

v
o

(26) s = sty L,

Also, the analogon of lemma 1.5 holds for the systems ﬁT and ﬁT.



The duality relation between the systems ¥ and QT can now
be described through the following four semigroups

T

S (t) ST ()

* *
T (x) S (t)

S
Tﬂe semigroups on the left hand side correspond to T and the
semigroups on the right haﬁd side to QT. On each side the upper
semigroué describes the respective equation within the original
state concept (initial functions) and the semigroup below within
the dual state concept (forcing terms). The diagonal relation is
actually given by functional analyEic duality theory.

In an analogous way the semigroups

S(t) sT (&)
* *
st (&) s¥ ()
T

correspond to the systems @ and I°.
In the pext section we will clarify the relation between the

*

semigroups S{t) and ST (t) respectively between S(t) and
&
ST (t). This can be done by introducing socalled structural

operators {(Manitius).

REMARKS ON THE LITERATURE

RFDEs have been studied extensively in the product space MP
since the 'classical' paper of BORISOVIC and TURBABIN [16]. The
basic theory in this framework has -been developed e.g. by DELFOUR-
MITTER [30], BANKS-BURNS [1], [2], VINTER [145], BERNIER-MANITIUS

[11], DELFOUR [26], [28]), MANITIUS [93]. In particular, the recent
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papers of VINTER [146], DELFOUR [27]), DELFOUR-MANITIUS [29] have
shown that RFDEs can be treated in the product space in full
generality. For the study of RFDEs in the state space C of
continuous functions we refer to the book of HALE [42].

The work on NFDEs has been done mainly in the state spaces C
(HALE-MEYER [431, HALE [42], HENRY [49], [50]) and W1'p (HENRY
[48], BANKS—~JACOBS-LANGENHOP [6], JAKUBCZYK [62], BARTOSIEWICZ [9],
[10], O'CONNOR [109]). Recently BURNS, HERDMAN, and STECH [18]1, [19]
have developed the basic ideas for the study of NFDEs in the product
space MP, 1TO [59] has used these:ideas: for the study of the linear
quadratic problem for NFDEs in the state space M2.

The dual state concept has first be?n introduced by MILLER
[104] for Volterra integro-differential equations with infinite
delays. The corresponding duality result for the same class of
systems has been shown by BURNS and HERDMAN [17]. DIEKMANN [32] has
applied these ideas to Volterra integral equations in the state
space C. For RFDEs results in this direction can be found in
MANITIUS [93], DELFOUR-MANITIUS [29], DELFOUR [28], SALAMON [135]
within the product space framework and - in a slightly different
. way - in DIEKMANN [33] in the state space C. In the earlier work on
RFDEs (HALE [42], HENRY [47]) and NFDEs (HALE-MEYER [43], HENRY [48],

[49], O'CONNOR [109]) these explicit duality results were hidden

behind the concept of the hereditary product (see below).
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I1.2 THE STRUCTURAL OPERATORS

We have seen that the solution segment of a delay equation at
the maximal-delay=-time h can be derived from the initial fuanction
in two steps (see p. 58). These two operations can be expressed by
the socalled !structural operators' F and G. Roughly speaking,
the operator F maps the initial function into the corresponding
forcing term of the equation, and the operator G maps this forcing
term into the corresponding solution segment at time h. Operators
of this type provide a very useful tool for the state space
description as well as the analysis of control and observation
properties of delay systems.

The operator F has first been introduced by BERNIER and
MANITIUS [11] for retarded systems in the product space MP. rater
on MANITIUS t93] has introduced the operator G for the same class
of systems in connection with thé study of the completeness problem.
Further results on the role of the structural operator F in the
theory of RFDEs can be found in DELFOUR-MANITIUS [29]. Recently,
DIEKMANN [33] has defined an analogon of the F-operator for retarded
systems in the state space C.

1,2
can

For neutral systems an F-operator in the state space W
be found in O'CONNOR  {109]. However, that operator cannot be
composed with an operator G in the sense indicated above. But the
power of the structural operator approach is just the relation of
the two operators F and G. Therefore we will define the operator
F in a different way.

For the description of system £ we will introduce the
structural operators F : MP - w P and G : w P o P as

follows. The operator F associates with every o € MP  the

bounded, linear functional
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(27) Fo = nf € W /P (£ € M given by (12))

which is represented by the corresponding forcing term £ € WP of

system ¥. The operator G : W—1’p - MP is defined by the relation

(28) Gnf = (w(h),x € MP, £ e MP

n

where the pair w(t), x(t), t =2 0, is the unique solution of =

corresponding to £ € =

2.1 LEMMA  There 44 a undique bounded, Linear operator G : WP L P
satisfying (28) for every £ € MP. This operaton is bijective.

™~

PROOF  Let us introduce the operator G : MP - MP which associates
with every forcing term £ € MP  the corresponding solution segment
af = (w(h),xh) e MP of system E. This operator is obviously
bounded and linear. Moreover it follows from lemma 1.5 that

ker & = ker m. Hence é induces an injective operator E from
Mp/ker n  into MP. Note that the map [f] -» wf from Mp/ker T
onto W—1’p is an isomorphism. We conclude that there exists a
unique bounded, linear, one-~to~one map G : W-1’P - MP satisfying
Gnf = é[f] = éf for every £ € MP,

It remains to prove that G is onto. For this sake let

@ € MP  be given and define

h o©
x(t) = w1(t-h) ,ow(t) = ¢° - J dn(T)¢1(s+r—h)] ds
t =-s

~

for 0 <t < h. Then x(t) and w(t) satisfy equation I where
£° = w(0), £' = 0, and
0

£2(-t) = x(t) - w(t) - Jau(t)x(t+t) , O
-t

IA
ﬁ-
IA
g

0.E.D.
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These two operators F and G have the following important

properties (compare BERNIER-MANITIUS [11], MANITIUS [93] for RFDEs).

2.2 THEQOREM Let the operators F and G be defined as above. Then

T k%
s(h) = GF $*(th) = GF
(29)
sk
m * * ok
$* (h)y = FG S (h) = F G
and fon every t 2 0
T* * T * *
FS(t) = 8 (©)F F S (t) = 8 (v)F
“(30) ' .
T* T * * %
S(t)G = GS~ (t) ST (t)G = G S (t)

PROOF  The equations on the left hand side of (29) follow directly

from the definition of the operators F and G. The equations on

the right hand side can be obtained by taking the adjoint operators.
Now let ¢ € MP  be given and let w(t), t 2 0, and x(t),

t > -h, be the corresponding solution pair of I, (3). Moreover let

~

m

P be given by (12). Then w(t) and x(t) satisfy I for

t 2 0. Hence F(w(t),xt) = n(w(t),wt,xt) for every t 2 0 where

w® and xt are defined by (15). By corollary 1.2, this implies

* *

T T

FS(t)w_ = n(w(t),wt,xt) = S8 (t)ynf = S (t)Fo .

On the other hand let f € MP be given and let w(t), x(t),

-~

£t 2 0 be the corresponding solution pair of I. Moreover let

(w(t),wt,xt) € MY be defined by (15). Then it follows from (14)

and corollary 1.2 that




t _t
GS™ (t)nf Gn(w(t) ,w ,x7) = (w(t+h),xt+h)

il

S(t)(w(h),xh) = S(t)Gnf

The equations on the left hand side of (29) and (30) may bhe

illustrated by the commuting diagram below

/////////’ETET‘\\\\\\\\\‘

F G
Mp R w—1 Ip > Mp
T*
S(t) ST (%) S (t)
Mp W_1 Ip i > Mp

So far the equations on the right hand side of (29) and (30)
are obtained by just dualizing the equations on the left hand side.
However, it is important not only to make use of these equations in
a purely formal way but to understand their meaning. More precisely,
we will see that these equations can be interpreted via the two
state concepts of system QT. For this sake we have to show that
F* : W1’q > M3 and G* : M9 S W1’q are the structural operators
of system QT. This means that they are associated with QT in the
same manner as the operators F : W1’p + M and G : M - W1’p
defined below - are associated with system Q.

The operator F :'w1’p € M associates with every ¢ € W1’p

the corresponding forcing term

(31) Fo = f € ™P (f given by (17))

~

of system Q. The operator G : MP - W1’p maps every f € MP

into the corresponding solution segment of @ at time h, i.e.
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(32) 6f = =z, € wlrP

where x(t), t = 0, is the unique solution of Q.

2.3 THEOREM Let the operatons F and G be defined as above.

Than
S(h) = GF sTtm) = ¢FF
(33)
* * * %
sT (h) = F¢ s¥m) = F 6
and for every £ 2 0
. * * *
FS(e) = sT (&)F F'sT(e) = sT(o)F
(34)
¥ * L S
S()e = 6sT (&) sty = 6 sTe) .

This theorem may be understood in two different ways. On one hand
it is the analogous result as theorem 2.2 with I réplaced by
the (restricted) system Q. On the other hand theorem 2.3 can be
obtained by applying theorem 2.2 to system ET instead of Z.
For the second interpretation of theorem 2.3 as a corollary of
* =

theorem 2.2 we have to show that ‘F : MY » W Tha and

* =-1,q d T

G W - M are the structural operators of system ZI~. For

this sake we need an explicit representation of the operator G.

This can be given via the fundamental solution of the NFDE (1).

THE FUNDAMENTAL SOLUTION

The fundamental solution :of a NFDE has been introduced by

TATT an” MEVRER (431 Pur+her results can be féund in HENRY [49],
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BANKS~KENT [7], and KAPPEL [67]. Recently, ITO [59] has applied

these ideas to NFDEs in the state space Mz.

2.4 DEFINITION Llet X : [0,0) »RY™ be the unique function

nxn

which £s 4n NBV([O0,T);R ) f{or every T > 0 and satisfies

the equation
(35) X = p+n*X+du* X

where p i [0,0) » R™P  is defined by p(0) = 0 and p(t) = I

gon  t > 0, Moreover Let us define

t t
(36) W(t) = I - [n(s-t)X(s)ds , Z(t) = I - [X(s)n(s-t)ds ,
0 0

gon t 20 and X(t) = W(t) = Z(t) 0 for t < O.
Then Zhe triple X(t), W(t), Z(t) 44 said to be the fundamental

s0lution 0§ the NFDE (1).

2.5 REMARKS

(1) If the triple X(t), W(t), Z(t) is the

fundamental solution of (1), then
X = p+X*n+X*dy
(section I.1). Hence the triple X' (t), Z°(t), WY (t) is the
fundamental solution of the transposed NFDE (7).
(1i) For every t » Q0 we have

W(t) = p(t) +n * X(£) , Z(t) = p(t) + X * n(t) .

By remark I.1.1 (x), this implies that W(t) and 2Z(t) are
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absolutely continuous and that the following equations hold for

almost every t > 0
W(t) = dn * X(t) ,  Z(t) = dx * n(t)
(1iii) By (ii) and (35) respectively (i), we have
W(E) = X(£) = du * X(t) , 2(t) = X(£) - X * dn(t)
for every t > 0. This implies

W-W?=*du = X =-du * X - X *du + dup * X * du

= Z - dup * Z

(iv) In general W(t) % 2(t). However, in the retarded
case (u(r) = 0) we have W(t) = 2(t) = X(t) for every t > 0.

(v) It is well known that the function t - VAR X is
exponentially bounded as t goes to infinity (see é?é?)HALE [42]

or KAPPEL [67]).

The notion fjundamental soluzion for the triple X(t), W(L),

Z(t) - as defined above - is justified by the following result,

2.6 PROPOSITION Let X(t), W(t), Z(t) be the fundamental

s0lution of the NFDE (1). Then Zhe §olLlowing statements hold.
(€] The unique s0fution pair wi(t), x(t), t = 0, of =,
cornnesponding to £ € MP, is given by

t t

(37.1)  w(t) W(t)£% + [W(t-s)Ef (-s)ds + [W(t-s)£2(-s)ds ,
0 0

Il

x(t)£° + ?X(t-s)f1(—s)ds + ?dx( 2
s)f“(s-t) .
0 0

(37.2) x(t)
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({4) The unique solution =(t), £t 20, of &, corresponding

to f € Mp, 44 given by

t
(38) z(t) = z2(t)f° + [X(t-s)f (-s)ds .
0 |

PROOF (i) Let us define fi(t) = £r(-t) for + > 0 and

=
o~
Y% - we obtain

i 1, 2. Then - integrating the first equation in
- the following equivalent system of Volterra-Stieltjes integral

equations

Hoe

w=n*x+fo+p*f1, X = w+ dy * x +

Hence x € Lgoc([o'”)7Rn) is the unique solution of

X = 1n*x+dy * x + £° 4+ o * f1 + f2 :

Since X(t) 1is the fundamental solution of this equation in the
sense of definition I.1.3, it follows from theorem I.7.4 that

1

x(t) = dax * [£° + p * E + Ezl(t)

X(E)E° + X * £1(¢) + dX * £2(t) , £ 2 0
By remark 2.5 (ii), this implies

w(t) n*ox(t) + £ 40 * £ (k)

n

n * x(t)£° + n* X * f1(t) + n * dxX * fz(t)

+ 2 4 o * £1 (1)

WE)EC + W * £1(8) + W * £2(t)

(ii) Let us define f1(t) = f1(-t) for t 2 0. Then -

™~
integrating £ - we obtain the following equivalent Volterra-
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Stieltjes integral equation

fo + p ¥

8
]

O+ p*dn ¥ x +du *p *x +p * f1
~ ~1

= n*x+dy *x + fo - ufo + p *

i

Again, it follows from theorem I.1.4 that

ax * [F° - uf® + o0 % £ 1(E)

Il

x(t)

X(£) 0 - ax * w(e)f° + X * £ (x)

2(£) 2 + X * £ (t)

Q.E.D.

The explicit representation of the operators G : W-1’P - MP  and

G : P » WT’p - given below - is a direct consequence of

proposition 2.6.

2.7 COROLLARY

(L) 1§ £ € MP, then Gnf ¢ MP s given by

0 OQ

[Gr£]® = W% + [W(h+o)f (0)do + [W(hto)£2(c)do.,
=-h -h
1 o 0 1 h+t 2
[Gnf] (v) = X(h+1)f + [X(h+tto)f (o)do + [ dX(s)f"(s-t-h) .
-h -0

(i) 1§ F € MP, then Gf € W 'P s given by

0

© 4 [X(h+t+o) F (o)do .
-h

(GFfl(z) = 2Z(h+1)f
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Dualizing this result as well as the expressions (27) and (31), we
* * * *
obtain that the adjoint operators F , G , F , and G are of the

following form.

2.8 LEMMA

1

(4) I¢ vew 9 then F*w e M3 iy given by

[Fp1° w(0) ,

(e} [e) -
ir 1t (o) idnT(r)w(T—o) + gduT(T)w(r—c)

.. *
(il 1§ g €M%, then G g € W'Y is given by

0
° 4+ [xT(ht+t+o)g! (0)do .

~h

[G7gl(T) = W (h+t)g

(iid) 1§ e MY, then F o =rn'gew 'Y where g e MY s

given by

(o)
idnT(r)¢1(r-c) )

P = ¢°, gl

(@)
g2 (o) éduT(T)¢1(r-0)

(iv] 1§ g € Mq, Lthen G*nTg e M2 s given by

0 0.
[6'n7g1° = 2T(m)g® + (2T (hto)g' (@)do + [2T(h+o)g2(o)do ,
-h -h
* 7 1 T o 0 T 1
[6 n"gl ' (t) = X (h+t)g  + [X (h+T+0)g (0)do
-h

h+t

+ ax’®
0

(s)g? (s=t-h)
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PROQF It is enough to prove (i) and (ii).
(i) Let ¢ € W1’q, ® € MP  be given, and let £ € P be

defined by (12). Then Fo = nf € W ''P, and hence

*
<F Y0 > = < y,nf > _
uq,MP wied, P
00 0 0.
= T006e° + f fuT(r-oran(me' (do + [ [uT(z-o)an(t) e’ (0)do
-h T -h T

0, o o . T
wT(0)e° + I/ fanT (t)w(t-0) + fduT(T)w(r—o)) o' (o)do .
-h*-h -h

(11) Let g € M3 and £ € M be given, and let ¢ € w 'd

be defined by

0

g(t) = WT(h+T)gO + fXT(h+T+c)g1(c)do ; -h £t 0.
-h
Then it follows from remark I.1.1 (x) that
. . h+T
U(t) = with+t)g® + [ axT(s)g'(s-t-h) , ~h <T <O .
0
By corollary 2.7, this implies
< Gg,nf > < g,Gnf >
T = y
g W»] ’q’W_»]’p . g,Gn Mq’Mp
T o T 0 T.
= SO wmE® + [¢° Whto) £ (o)do + [¢° W(h+to)£2 (o) do
-h -h
0 ,T 0 0 .,T

1

+ fg1 (1) X (h+1)dtE® + { gg (T)X(h+t+o)f1(o)dadr

h h-s 1T 5
+ [ [ g (-t)aX(s)f‘(s+t-h)dt
0 D

0 0.
= oT(0)£° + ng(r>f1(r>aT + 0T £d(nyar |
- -h
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Now recall that the solutions of o and 27 can be
represented through the fundamental solution XT(t), ZT(t), Wl(t)
of the transposed NFDE (7) (proposition 2.6). Hence the
expressions in lemma 2.8 (ii) and (iv) show that
* W1 rq

Gg = Ty € ’ g € Ma '

™~

where x(t), t = 0, is the unique solution of QT, and that

*
G ﬁ@ = (z(h) %) € md g€ M2,

where z(t), x(t), t =2 0, is the unique solution pair of ;T.

We conclude that the operators F* i W1'q - M? and

g : M9 o W]’q (respectiveiy F* : M% 5 W-1'q and

G W—1’q » M3) are in fact the structural operators associated

with system QT (respectively system ET).

The following result shows that the operatorxrs F and F are
more or less the same. More precisely, the operator F : W1’p > MP

is the restriction of F : MPF - W'-'1"p via the embeddings
*

v : WP o MP and I MP s WP, Analogously, G : MP - W1'p
*

e, ¥ to ran .T .

represents the restriction of G : W
2.9 LEMMA
Fu = .~ F Fuv = uF

Gt = G G = G

PROOF First let ¢ € W 'P and ¢ € W'Y, Then



84

< ¢, Frop > 1 -1
W rq’W lp

0 0
= ¢T‘°)<@(°> - M@) + [ foT(o)an(t)e(t-0)do
~h T
0 O.T
+ [ [T (o)du(Tt)e(z~o)do
-h T

(

= T o){ec0) - Mw) + T

0
U™ (o)dn(t)p(t-o)do
T

B o

0 . _ 0 .
+ {{wT(o)du(r)w(r—o)]g=g + [wT(G)du(r)@(r—o)do }
-h

T

00

= /w(O) - 150) T (0) S f¢T(T'0)dn(T)w(o)do
\ } -h T
00 T
+ [ ¢ (r=0) du(r)w(o)do
-h T
=-< ¢ Fo >

u3,MP

*
T

= < Y, Fo > _
. ;- W1 ’qu 1Ip
Secondly, let f € Mp, g € M2 be given, and define ¢ := Gf €
*
W1'P and Y =G g E.W1'q. Then it follows from corollary 2.7

and lemma 2.8 that

0

o(t) = z(htt)f° + [X(htT+o)f (0)do, -h<T <O,
. -h
- T o 0 o 1,
Y(og) = W (hto)lg + [X (h+t+o)g (T)dT , -h <0< 0.
~h

By remark 2.5 (ii), (iii), this implies

< g,uGf >
M3, MP

oT 0 1T
= g (@(0) - M@) + f¢' (Delvdr
-h
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0

T
= ¢ lzm - fauwzmen |
L _h J
o T 0" 0 —]
+ g° ILX(h+G) - fau(T)X( h+r+o)Jf (o)do
-h -h
0 1T 0 O 1T 1
+ fg' (v)z(h+T)f% T + fg' (T)X(h+T+0)f (0)dodt
-h -h ~-h
OT[ 9 o 0 oT 1
= g [W(h) - jW(h+r)du(r)]f + Jg~ w(h+o)f (o)do
~h ~h
0 1T [ : 0 ] o
+ Jg (v) X (h+T) - gX(h+T+G)du(o)Jd1f
0 0 1T 1
+ [ fg' (v)X(htt+o)dt F' (o)do
{ T \T .0 0 7 1
= \w<0) - M w) f o+ gw (o)f (o)do
T
= < v, f>
me, 1P
= < LTG*g,f >Mq P
*
= < g,GLT bl >Mq P .
Q.E.D.
2.10 REMARKS
(i) For retarded systems (u(t) = 0) the range of t&e

operator F : MP - W_1’p is already contained in ran LT

Correspondingly F¢ depends only on o = (@(0),¢) € MP  for

1

85

every ¢ € W ’'P. We conclude that there exists a unique operator

—-—

F: M 5 MP such that

(39) Fo. = F, IF o= F
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The operator F maps every ¢ € MP  into the pair (fo,f1) e P

which is given by (12.1) and (12.2). This is precisely the

F-operator which was introduced by BERNIER and MANITIUS [11].
The G-operator of MANITIUS [93] is given by

(40) g W6 = GuT e LuP)

These two operators make the following diagram commute

Mp RS Mp
F
L. L
Wl P ___f___* wl P

The existence of these operators is the reason why the dual state
concept for RFDEs can also be treated in the product space MP,

.. _ T* 1,p -1.p |

(ii) The operator F. = L~ F : W - W is the
structural operator which was introduced by O'CONNOR [109] for the
case p =2 (in [109] the dual space W-1’2 is identified with
). This operator induces a bilinearform between W1’q and
W1’p given by

<KL Y,p >> = < Y,Frp > < LTw,Fw >

wied, 1P m7,MP

T 00
- T
0 O.T
+ [ JUT(r-o)dn(t)e(c)do
-h T
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00

= (w(O) - 170 o (0) + [ Jo¥ (z~o)an (v) @ (o) do
/ -h T
00 ., .
+ f JuT (z-o)adu(r) ¢ (o)do
~h T

for ¢ € W'P and v € w' 'Y This socalled hereditary product has
been introduced by HALE and MEYER [43] in the state space C.
Further results in the state space W1’2 can be found in HENRY

[48] and O'CONNOR [109].

(iii) We extend the above bilinearform to the case that either
¢® or ¢ is in the product space. For ( € M  and ® € W1’p we

define

it
N
<
Ey
v

<< Y, >>

00
= % @0) + [ fU' (t-o)dn(T)e(o)do
ht

00 ,T .
+ [ ¥’ (t-o)du(v)e(o)do
-h <t
and for ¢ € W1'q, o € MP -
K Y, > = < y,Fo > _
W1Iq’W 1Ip
P o 00 :
= ¢ (0o + [ [U (z-o)dn(T)e (0)do
-h <t
0 0.T 1
L { Y™ (t-o)du(t)e (o)do .
- T

With these definitions we have

KLY, >> = KL LTw,w >>

for every ¢ € W P ang g € wird,
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Finally, let us summarize the results of this section. This
will be done by the two commuting diagrams bhelow. The first
diagram describes the relation between the various operators which

are associated with the NFDE (1)

Mp F - W""1 rp G MP
T*
S(t) N ST (v) s(y
Mp F > W—1 Ip G o Mp
*
3 L \ LT Y L
*
T
L L L
W1 P S F R MP G W1 P
T*
S(t) S (t) V
W1 D F- . Mp G R W1 R
The adjoint diagram corresponds to the transposed NFDE (7).
* o *
D’Iq F > w 1!q G > Mq
* .
ST(/ ) S () N sT(/ \
* *
M F , w4 G L M9
*
b F 4 L 4 F
wlhd _|_E_____, M G , wied
*
sT(/ sy STV
: * * '
I:; W1,q ¥ , ma G . W1’q
[
i
. 1
k
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II.3 CONTROL AND OBSERVATION

In this section we develop a state space theory for the
following control system which is governed by a linear NFDE

having general delays in the input variables
( ) _
(41) d/dt \x(t) Mxt Put = th + But

‘We will always assume that the control function u(t) € R" is
locally p—times'integrable. As before, u, denotes the input
segment ut(r) = W(t+t), -h £ v £ 0. Correspondingly, B and T
are bounded, linear functionals on C([-h,O];Rm) with values in
R". These can be represented by normalized nxm-matrix valued
functions B and vy on the interval [-h,0], i.e.

Q 0
BE = k{dB(T)E(T) . TE. = [ay(t)E(r) , E € c(l-h,01;R™) ,
- ~h

{(compare section I.2).

A solution of (41) is a function x € LP_ ([-h,=);R") with

the property that the expression

wit) = x(t) - Mx, - Tu
is absolutely continuous and satisfies w(t) = th + Bu, for
almost every t 2 0. This means that the pair w(t), x(t) is a

solution of the following system of the form (I.13)

th + But

w(t) + Mx, + Tug

w(t)

]

x(t)

(definition I.2.2). This system admits a unique solution for every
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are:

input u € LEOC([O,w)ﬁRm) and every initial condition

LT,

= ¢ (v)

n
S
x
n

(42.1) w{(0)

E(T) r ~-h.< v £ 0,

(42.2) u(T)

where o € MP and € € 1P = 1P ([-h,0];R™) (theorem I.2.3).
Let us first consider the simple case that there is no delay

and no derivative in the input which means

(43) BE = BJE(0) , re = 0

for £ € C([-h,0];®™ (B, € R

). In this case it follows from
theorem I.2.5 that the state (w(t),xt) e MP of £, (42) at time
t 20 is given by

t
(44) (w(t),x.) = st + [s(t-s) (B u(s),0)ds
0 o

(see also BURNS-HERDMAN-STECH (19, theorem 3,1]). Clearly, the
initial conditicon (42.2) on the input is - in this situation -
not necessary in order to derive a solution of I, (43). This is
still the case if T'E depends only on E(0). However, then the

evolution of (w(t),x € ¥ can no longer be described by an

' t)
|§ ' equation of the type (44) through an input operator with values in

MP, In general, the initial condition (42.2) is really necessary
in order to obtain a solution of . There is a proper dependance
of the solution on the past values of the input. This suggests the

choice of the product space

| WP « 1P

1
uﬁé as a state space for I and the inclusion of the input segment u

(4

L3
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in the state of the system. Again, the evolution of the triple
(w(t),xg,ut) ¢ ¥ x P. can not be described through an input
operator with values in Mp bid Lp. Such a description can be given,
if we extend the state space. This extension is available through
a restriction of the dual space (remark I.3.1 and lemma %1.3:2).:.
However, this procedure would involve computations with an
explicit representation of the adjoint operator. In order to avoid
these difficulties, we present an evolution equation approach for
system I only within the dual state concept.

The dual state concept for system I can be introduced in
precisely the same manner as it has been done in section 1.
Replacing the initial functions @1 and E by forcing terms, we

obtain the equation

L. 0 0
wit) = fdn(u)x(t+t) + [dB(r)ult+r) + £ (=t)
-t -t
~ 0 0 2
z x(t) = w(t) + fdu(z)x(t+t) + [dy(r)u(t+t) + £°(~t)
-t -t
w(o) = £°
where f = (fo,f1,f2) e P is given by
(45.1) £2 = o°,
1 o 1 o
(45.2) f (o) = Jdn(t)e (t-o) + fdp(t)E(t-0) , -h <5< 0,
~h -h
5 o 1 c
(45.3) £7°(c) = [du(x)e (t=o) + J[dy(T)E(x~0) , -h < o< 0 .
=h ~h

~

The initial state of £ 4is the bounded, linear functional nf €

-1

W ''P, The corresponding state at time t > 0 is given by
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n(w(t),wt,xt) € W—T'p where wt, xt € Lp([~h,0];mn) are the

~

forcing terms of the shifted equation I. These are of the

following form

t © ' © 1
w (o) = [ dn(t)x(ttr~o) + [ dp(t)u(t+r-g) + £ (o-t) ,
Ot o=t
(46)
£ e © 2
x (o) = [ du(t)x(t+t=0c) + [ dy(r)u(ttr-o) + £7(o-t)
ot . o-t

~

(-h £ o £0). We will see that this state of 2 can be described

by a variation-of-constants formula in the Banach space W_1’p.
Now we want to study the NFDE (41) in the state space

W1’p'x LP  within the original state concept (initial functions)

and in the state space MP  within the dual state concept (forcing

terms). This is only possible if - for every forced motion of

system I with zero initial state -~ the pair (w(t),xt) e MP  is

in the range of t. In order to ensure this we have to assume that

T = 0 which means that there are no derivatives in the inﬁﬁt.

THE RESTRICTED STATE SPACE (I" = 0)

In the case I' = 0 we may rewrite equation (41), respectively

system I in the following way

Q x(t) = Lz, + Mx, + Bu .

A solution 2zx(t), t = -h, of this system has to be absolutely
continuous with IP-derivative on every compact interval ([-h,T].
such a solution exists for every input u € LEOC([O,w);Rm) and

every initial condition

(47.1) x(T) o(T) , -h £tT<0,

E(t) -h £T<0,

(47.2) u(r)



where ¢ € W1'p and E € P (compare remark 1.4). This fact

suggests the choice of the product space
w P x LP

as a state space for system Q.

3.1 REMARK ' In the case I' = 0, system Q represents the
restriction of system % to the subspace ran v < Mp. In fact,
let w(t), x(t) be the unigue solution of £ corresponding to
the initial state (v@,E), © € W1’p, £ € Lp, and to the input

ue P ([o,w);mW). Then it follows from theorem I.2.3 (v) that

loc
x(t) 1is absolutely continuous for +t 2 -h with locally p-times
integrable derivative. Under this condition it is easy to check

x(t) satisfies Q.

Motivated by the same arguments as in the case of I, we
present an evolution equation approach for system Q only within
the dual state concept. This dual state concept is obtained via

the transformation of Q, (47) into the equation

. 0 0] R
z(8) = Jadn(x)z(t+t) + Jdu(t)e(t+T)
-t -t
4 0 1
Q +  fdp(T)u(t+T) + £ (~t) ,
-t
z(0) = 59 .

where f = (fo,f1) € MP is given by



o4 II

© ©(0) ,

—
N
[e0]
L
——
—
~h
i

o) (o] . [e)
fan(t)e(r-0) + Jau(t)e(t-o) + [dB(T)E(T-0)
-h ~h ~h

ﬁ‘
o
[e¢]
»
N
5
Q
2
i)

~

for ~h < o € 0. The same arguments as in remark 1.4 show that &
admits a unigue solution x(t), t 2z 0, for every f € Mp and

every input u € Lﬁoc([o,w);m@). The pair f € P  is regarded as
the initial state of 5. The cbrresponding state (x(t),ét) e mP

at time t 2 0 is given by

£ g ' g .
z (o) = [ dn(v)a(ttr—o) + - [ dult)z(t+t-0)
i | o~t o~-t
{ (49)
5! c 1
o + [ dp(r)ult+r—o) + Ff (o~t) , ~h <o =<0

|" a-t

As we all know in the meantime, this expression can be obtained by

| =
Y a time shift in Q.

The following result shows that - in the case T = 0 -~ system

~

*

~

Q represents the restriction of I +to the dense subspace ran i
of the state space W—j’p. The proof is omitted since it is

strictly analogous to that of lemma 1.5.

3.2 LEMMA Let T =0 and Let fFfeMP, £ e MP, and u €

L®  (10,=);®R™ be given. Moreover Let x(t), t 2 0, be the unique

loc
| solution of 5 and w(t), x(t) zthe unique solution pain of 5.
F Then x(t) = x(t) for every t =2 0 4Lif and only Lif mnf = LT*f.
| '
The desired evolution equations for the systems 5 and 5
can be obtained through the duality relation between ; and Q

~

. . o
I respectively between Q and I.
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THE TRANSPOSED EQUATION

Transposition of matrices leads to an observed NFDE where the

output is obtained via the bounded linear functionals BT and FT

on C with values in ]Rm. These are given by

1 0 0 ’
BTy = k{gﬁlBT(n)wm ;o Ty o= fayT (o, wec,
- -h

If I’ # 0, then the output depends on the derivative of the

solution. This means that we have to work in the state space W1rq

’

i.e. with the system

2 (£)

QT = L mt + M Ty
T T* °
y(t) = B x, + T Ty

This system admits a unique solution for every initial function
zg =W € W1’q. The output y(t) of o7 makes sense as an element

of 14

loc([o,m)ﬂRm) and depends continuously on the initial state

Y € W1'q (compare remark I.2.1 (ii)).

If we want to extend the transposed system to the product
space Mq, we have to ensure that the output does not depend on
the derivative of the solution, i.e. I = 0. In this case the

desired extension is represented by the system

z(t) = LTxt
2T x(€) = z(t) + MTxt )
y(t) = BTxt

This system admits a unique solution for every initial condition
(8) where ¢ € MY, The corresponding output y(t) makes sense as
an element of - L%oc([o,m)ﬂRm) and depends continuously on the

initial state ¢ € M9,
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36 1T
3.3 REMARK Let T =0 and ¢ € w' 'Y, Then the output of 3T

which corregponds to the initial state oy € M4 coincides with the

output of QT.

Note that the dual state concept for the systems QT and ET

would lead to an additional function-component .in the state of the
system which is due to the delays in the output variables. This

corresponds to the fact that the input has to be included in the

state of the systems Z and © (within the original state concept).

In order to avoid this further complication, we restrict our study

of the transposed equation to the original state concept.

3.4 REMARK The output of the systems QT and ET may be descgribed
via the linear map BT: dom AT +R" which we define by

8Ty = 8Ty + rTy , W E dom AT <« w1'9q .

Three special cases of the output operators BT and FT are of
particular importance for the properties of this map.

(i) TE T congists only of an integral term, i.e.

0
(50) rfy = [Bl(mu(ndr , vec,
-h

nxm

where B2(.) € Lp([-h,O];m. ), then BT can be extended to a

bounded, linear operator from W1’q into R".
(1ii) In the case T = 0 the operator BT : W1’q > R
satisfies the hypothesis (H3) of section I.3. This means that,

for every T > 0, there exists some bT > 0 such that the

following inequality holds for every U € W1'q



-
b=
w
~]

- T,T T
(51) [{B~S (.)l])[lq'T < bp [ qu|Mq .

This follows from the fact that the output of ZT depends

continuously on the initial state.

T

(iii) Let B ¢ >R be given by

' 0
(52) BTw = BE(W(o) - MT¢> + IB?(T)¢(T)dT ' e C,
~h

nxm

MM ana B () € TP([-h,03;R™) . Then the output

where Bo € IR
operator BT can be extendedcto a bounded, linear map on M

0
which maps ( € M4 into ngo + . IB?(T)¢1(T)dT € Egh
' ~h

DUALITY

The following duality theorem is the central result of chapter
¥I. In particular.the theory of the structural operators depends

essentially on this result. Moreover, the evolution equations for

Z and Q will come out as an immediate consequence.

3.5 THEOREM Let u(.) € LEoc([O’w)7EF5 be given.
1

(£)  Let £ € MP and v ew
TP g, the state o4 5 - defined by (46) - and Let =x(t) be

the unique s0lution of QT, (11) with output y(t). Then

'd Moreover Let n(w(t),wt,xt)

EW

£t €
< Y,n(w(t) ,w,x") > = < z omf >+ [y~ (t-s)u(s)ds , t20
0

(£é) Let fe M and ¢ € M. Moreoven fet (x(t),xt) e MP
be the state of Q - defined by (49) - and Let z(t), x(t) be the
undique solution of ET, (8) with output vy(t). Then

t .
W lz(E),2") > = < (2(t),x).f >+ [y (e-s)u(s)ds , ¢
0

v
o



H

PROOF (1) Let x(t) = 0 and u(t) = 0 for t < 0. Then

t
f/xT(t--s)LxS - [LTxt_S]Tx(s)>ds

o\

o}

-(53)

Anaglogous

2T () wit) = ar (£)E° =

0t n, 0t P
[ fz7 (t=s)an(T)x(s+T)ds *~ [ [x” (t-s+T)dAn(T)x(s)ds
-h 0 ' -h 0

& T
[ z” (t+r=-s)dn(T)x(s)ds
+T

)
g0
o+

T t-o)an (1) x (t+o)do .

O

7

]
s LY
“

expressions hold for M, B, and T['. Moreover

I
o

xT(tss)w(s)ds

o —
o

=

t T « t.T
= [z (t-s)w(s)ds -~ [z~ (t-s)w(s)ds .
0 Q

This implies

< w,mCW(t),wt,xt) >

\

0 0.
= £9T<c)wt(o)do + éwT(d)Xt(c)dc + 0T (0)w (k)
00 00 .
= [ fU (r=o)dn(t)x(t+a)do + [ [V (t-0)dB(T)u(t+o)da
-h T -h T.
0 0., 0 0.,
+ [ U7 (z-o)du(T)x(t+c)do + [ [~ @-o)dy(t)u(t+o)do
-h <t -h T
0 1 0. 2 T o
+ [T (0)E' (o-t)do + [UT (0) £ (o-t)do + =z (t)f
-h -h
t

+

ImT(t—s)<LxS + Bug + f1(-s)>ds
0

t.
jmT(t-s)(x(s) - Mx_ - Tug —-fz(-s)>ds

S



0 0.
oD (e)£2 + [2T(ear) £ (T)dT + . Ja (thT) £2 (T)dT
-t ~t

-t.

Vmar + 0T () £2 (v) de
-h

-.tT
+ [T (t+T)E
-h

t t . e
+ [It%e,__1x(s)as + [ie,__ 1Tx(s)as - [z (t-s)x(s)ds
0 0 a

t t .
+ [[B mt_S]Tu(s)ds + f[PTxt_S]Tu(s)ds
0 0

t T
xt,nf > + [y~ (t=s)u(s)ds .
(0]

i
A

(ii) Let us define x(t) = 0, xz(t) = 0, and u(t) = Q for

t < 0. Moreover note that

iy t
W) -2t = (2 T (te)z(s)as
0

t T . t'T
‘= fz7(t-s)x(s)ds - [z  (t-s)xz(s)ds .
0 0

Hence we obtain (by the use of analogous equations as (53))

<y, (2 () ,25) >
0 ,T T
= Jo" (@t (ords + ¢° z(t)
~h
00 T 00 ,T .
= [ fu (z~o)dn(T)x(t+o)do + [ [ (t-0)du(t)z(t+o)do
-h T =h T
00 T 0 T 1
+ [ U (t-0)dB(t)u(t+g)do + [¢' (0)f (o-t)do
-h T -h
T o ¢ T T*
+z7(t)f o+ j(x(t—s) - M t—s) xz(s)ds
0

t
- g[LTxt_S]Tx(s)ds



e —————

=

700 T

-t T ’ t

= ZT(t)fO + jw] (t+T)f1(T)dT + fxT(tﬂs)é(s)ds
-h 0
™ t .
T, T
- gx (t~s)Ldes - éx (t—s)Mdes

t, .
- f/x'l(tms)BuS - [BTxt_S]Tu(s)>ds

T 1 t T
(t+Tt) £ (T)dT + [y~ (t=s)u(s)ds
0

i

-t
ZT(t)fo + j‘lﬂ
~n

t T [+ T
+ [x (t—s)\x(s) - L - Mz - Bus>ds
0

t
< (z(E),x)f >+ fyT(t—S)u(s)ds
Q

it

For NFDEs in the product space framework a duality result in
the form of the previous theorem has not yet been developed in the
literature, Related results for systems with undelayed input and
output variables may be found in the references cited at the end
of section 1. For RFDEs with input delays we refer to VINTER-KWONG
[147] and DELFOQUR [28].

As a consequence of theorem 3.5 we obtain the following
infinite dimensional variation-of-constants formulas for the
systems 5 and 5. For retarded systems such a result hes been
stated without proof in DELFOUR [28, theorem 3.2].

3.6 THEOREM Let u € L¥ ([0,0);R™ be given.

loc
(i) Let T be of the form (50) and £ € MP, Then the

~

connedponding state of = at time t 2 0 JLs gdven by

* t * *

T (tynf + fST (t-s5)BT u(s)ds .
0

.n(w(t),wt,xt) = 5



R

el

i
o,
o

0 and f € MP. Then the corresponding state

3
it

(44) Let

of © af time t

v

0 4s gdven by

_ ) ES *e=1 1 £ b
(z (£) ,z°) st (£)f + T IST (t-s) BT u(s)ds
0

"~ PROOF (i) Let ¢ € W1'q. Then the corresponding output of QT

is given by y(t) = BTST(t)w for t = 0 (remark 3.4). Hence

it follows from theorem 3.5 that

< g, m(w(t) ,wt,xt) >

W1'q,W—1 Ip
T FR. 3.
= < S$T()y,mf > 1. L <B S (t-s)y,u(s) > ds
w'qw P 0 R
T* t *® T*
= < 4,8 (w)uf + [sT (-s)BT u(s)ds >, . .
0 W lq'W lp

(11) Let ¢ € W'Y and T = 0. Then the output of =% =«

corresponding to the initial state LTw e Md - is given by

y(t) = BTST(t)w for t 2 0 (remark 3.3). Hence it follows from

from theorem 3.5 that

*

< w,LT (m(t),xt) > 4 -1 = < LT¢,(x(t),xt) >
W Iq'w Ip Mq,Mp

t
< sTe) Ty, r > + [ < BTST (t-s)y,u(s) > _ ds
M3, P 0 R

T* T*
= < Yy,.” S

t % L 3
() F + [ST (t-8)BT u(s) ds > .
0 W

-1
'q,W P

Statement (ii) follows also from (i) and lemma 3.2.

Q.E.D.

-
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~

The previous theorem shows that & and @ are related to

the'Cauchy problem

3 X

(54) a/at 2(t) = AT x(t) + BT u(t)

{in the Banach spaces W"1’P and Mp) in the following way.

~

SYSTEM 3 Let I' be given by (50). Then, by remark 3.4 (i),
* .

BT is a bounded, linear operator on B@ with values in W_1’p.
Theorem 3.6 (i) shows that in this case the state
2(t) = n(w(t),wo,x%) € W ''P of £ - defined by (46) - is a mild

solution of (54).

3.7 REMARK Let I’ = 0, Then it follows from remark 3.4 (ii) and

*
lemma I.3.5 that the input operator BT : ’RY ~ W_1’p satisfies

hypothesis (H2) of section I.3. This means that

T T* T* *
{8 (t=-s)B” u(s)ds € ran T
0
and
T*_1 + T* T*
(55) JIL gs (t-s)B u(s)ds[lMp < by [[u[{P'T

for every T > 0 and every u € P (10,71 .

~

" SYSTEM Q TLet I = 0 and let =(t) = (z(t),z") € MP be the

~

state of Q@ at time t 0. Then it follows from theorem 3.6 (ii)

2
A
&£

and theorem I.3.4 that (t) 1is a solution of (54) in the sense

N
of definition I.3.3. This means that «(t) is continuous in MP
%)
A ~ - .
and that x(t) = T x(t) is absolutely continuous in W TP ana

satisfies (54) for almost every t 2 0.
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So far we have described the systems % and & only within
the dual state concept and in the case that T is given by (50).
A description of ¥ and @ within the original state concept
and in the general case can be given through tﬁe structural
operators. These allow also a representation of the output of the

transposed systems QT and ZT.

THE STRUCTURAL QOPERATORS

The equations (45) and (48) suggest the introduction of the
following structural operators E : P - w—1’p and E : 1P - MP.
They do precisely the same job as the operators F and F, namely
they replace the initial function E € L  of the input by the
corresponding inhomogeneous term of'éystem 5 (the operator &)
respectively by the bounded,linear functional on W1’q which is

represented by the forcing term of system ﬁ {the operator E).

Given E € Lp, we define

EE = th € W—\] P r fo =0 ’
1 9 2 9
£ (o) = édB(r)E(t-o) , £7(@) = [fdy(t)E(t~0) ,
- -h
and
o 1 g
[EE]” = 0, [EE) (o) = [aB(T)E(t-0) ,
-h

for -h <0 x50,

Operators of this type have been introduced for retarded
systems by VINTER-KWONG [147]) and by DELFOUR {28]. In particular,
the following result has been proved in VINTER [147, theorem 5.1]
for retarded systems of the form é(t) = Lx, + Bu, where B is

given by (52).

—
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3.8 COROLLARY Let u € Lﬁoc([o,m);mm) and E € 1P be given.
(4) Let T be gdven by (50). If ¢ € MP  and the pair
w(t), x(t) 44 the unique solutfion of =, (42), then
T* t ok *

Fw(t),x,) + Ba, = S' (£)[Fe + EE] + (8T (t-5)8T u(s)ds
0

(i) Let T =0. 14 ¢ € W'P and =(t), t = -h, is the

unique solution of Q, (47), Zhen

* *-1 £ % *

T T ST (t-9)8T u(s)as .
0

Fz, + Eut = S~ (t)[Fp + EE] +

t

In order to give an explicit description of the solutions to
éystem ¥ respectively &, we have to introduce (finally) another
structural operator D : LP » w ' ’P  respectively 0 : L - mP,
This operator describes the action of the input segment u, on

the forcing term of the respective equation., Given E € Lp, we

define
DE = nf € W /P, £ = o0,
1 9 5 0
£f (o) = [dB(r)E(r-o-h) , (o) = [dy(1t)E(T~-0-h) ,
o o
and
o) o Q
[DE] = 0, [DE] (o) = [dB(T)E(T=0~h) ,
o

o

for -h <= ¢ £ 0 (compare the right hand side of the equations I
and Q).
The following result is an immediate consequence of the

definition of the structural operators.
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3.9 PROPOSITION LeZ

(4) Llet @ € MP  and tet

~h < t <h, be the corresponding solution of =,

(56)

(44)

solution of Q, (47), then

(57) = G[Fp + EE + Du, ]

Ty

The output of the systems QT

the operators

in the following wvay.

3.10 PROPOSITION

u € LP([0,n] ;Y

w(t),

(w(h),xh) = G[Fe + EE + Du

105

and E € ¥ be given.
0 £t <h, and x(t),

(42), zhen

h

Let ¢ € w P and Let =x(t), -h <t < h, be the unique

and ZT can be described via

(<) Let ¢ € W]’q. Then Zthe cornesponding output y(t),

0 <t=<h, of ol s given by

(58) y(£) =

* k k%
[EY +DGF Y)(-t) , 0

A
.
IA
o

(i4] Let ¢ € MT, Then Zhe cornesponding output y(t),

0 <tsh, of ol s given by

(59) yt) =

[E'w + 06 F ) (-b)

o
A
o+
A
o
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* * *
PROOF The following representation of the operators E , D , E ,
*
D can be proved straight forward from the definition of the

operators E, D, E. D. Given U € W1’q, we have

£ &) T (@) T .
[E wl(o) = [ (T)¥(T-0o) + [fady (T)d(t=-0) ,
~-h -h
. 0 0 .
D Wi = [apT(t)¢(t-o~h) + [AY' (T)¥(t-0-h) |,
(@) (e}

for -h £ o £ 0. This proves {(58). Given (Y € Mq, we have

o] 0
("] () = £§BT<T>¢’<r—o) , 070l = [aeT (v)¢(t-o-h)
- o)
for -h < o £ 0. This proves (59).
Q.E.D

g

We close this section with a result on the operators E, D, E

? which is analogous to lemma 2.9.

3.11 LEMMA Let T = 0. Then

PROOF If I = 0, Then the following equations hold for every

E € P ang every ¢ € w1’p

T 00 n
<Y,EE > = < L Y,EE > =" [ [y (t-0)dB(T)E(o)do ,
~h T
T 0 T g
< Y,DE> = < Y, DE> = [ [ (t-o-h)dB(t)E(o)do .
-h -h
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IT.4 SPECTRAL THEORY

Most of the results of this section are well known for RFDEs
(SHIMANOV [140], HALE [42], BANKS-BURNS [1], VINTER [145], DELFOUR-
MANITIUS [29]) and for NFDEs in the function spaces C (HALE-
MEYER [43], KAPPEL [67]) and W1’2 (HENRY [48]). However, the
proofs of these results which are available in the literature are
rather complicated. It is the purpose of this section to develop
a simple approach to the main facts in the speétral theory of NFDEs
via the structural operators. In particular, we simplify some of
the proofs in DELFOUR-MANITIUS [29] where an analogous theory was
developed for RFDEs in the state space M2.

Throughout this section all spaces and operators will be

replaced by their obvious complex extensions. Correspondingly, the

duality pairing between M? anda MP (1/p + 1/g = 1) is given by
o* o 0 1% 1
<y, > = U e + fU (Yo (v)dr
-h

* -
(o € Mp, UINS Mq) where z = zT denotes the conjugate transposed
of any complex vector (or matrix) =z. Analogously, we extend the

hereditary product << .,. >>, and define

0 0.4

<yt > = ¢ (£ + fuimelmar + el (nar
~h -h
(f € MP, ¢ € W1’q) as well as
T o* 0 1% 0 2% - -
<mg,p> = g @(0) + gg (tle(r)dt + [g° (T)e(t)dT
- ~h

(0 € WP, g e 49
Let us begin with a representation of the operators AI - A
and AI - A via the characteristic matrix of the NFDE (1) which

is given by
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=]

Al - M(ek')] - L(ek')

i A =
(60)
9 At 0t
= AL -~ fe"‘dn(t) ~ A fe" dul(r) , A E€CT .
-h ~h

The proof of this basic result is straight forward and has been
given by HENRY [48] in the state space W1’p and recently by ITO
[59, theorem 2.8] in the state space M2 {compare also theorem

- I.2.7 and lemina V.2.3).

© 4,1 LEMMA Let X € € be given.

i (<) Let o, @ € MP, Then ¢ € dom A and (AL = A)p = @ i
; and only if
i 0 _
| @1(1) = ekf@1(0) + jek(T o' (o) do , ~h <t <0,
T
©° = ¢1(0) i Mcp1 s
A(k)o1(0) = <<.ek',¢ >> .

(Li]l Let o, @ € W1’p, Then @ € dom A and (AL - A)p = @

i§ and only L4

0
ot) = o) + [T s(g)ac, ~nsTs0,
T
_ _ x.
AAMYp(0) = <KL e ,ud >> .

Our next step is a concrete formula for the resolvent

T ana (a1 - 47" analogous to MANITIUS [$1,

operators (AL - A)
proposition 2.1) and DELFOUR-MANITIUS [29, theorem 4.4]. For this

sake we introduce the linear transformations
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by defining

>

< et ,nf >

Il
)
b
jas
4
l—h

li

[E.x] () -
A Wj'q,W 1,p
(61)
0
[T0l(n) = [N (040 , -hst<o0,
T

for x € Cn, £ € MP, @ € MP, Then the theorem below is an

immediate consequence of lemma 4.1.

4.2 THEOREM

(L] The operatorns A and A have a puke paint spectrum
given by o(a) = o(A) = {A € C|det A(A) = 0},
(44]  Lex det A(A) # 0. Then the operatonrs

(AT ~ a)"!

LEXA(A)q1H F o+ ,T

A A

-1 -1
(AT ~ A) EAA(A) HAFL + T

Kt

are compact,

THE GENERALIZED EIGENSPACES

By theorem 4,2, we can apply the general spectral theory of
operators with a compact resolvent to our situation (see e.q.
HILLE-PHILLIPS [50, section 5.14]). The bridge between the general
functional analytic results and those on delay systems is given by

~ the structural operators. In particular, we have the following
* *
relations between the generalized eigenspaces of A, A, AT , AT
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-

For RFDEs in the product space MZ results of this type have been

proved in DELFOUR~MANITIUS [29] and MANITIUS [93].

4.3 LEMMA Llet X € o(a) and %k €W, Then

¥ K K ¥ K
ker (AI=A" ) , ker (AI-A) G ker (AI-A" )

F ker (AI~A)k

fl

¥ k ¥ k

T G ker (XI—AT )

xer (AI-AT ) , ker (AI-A)%

I

F ker (AI-A)¥

i

* k * * k
ker (AI-2)F = L ker (AI-A)F, ker (AI-AT ) T xer (Az-aT )

it

PROOF First let ¢ € dom A. Then it follows from theorem 2.2 and

* *
lemma I.3.8 that Fo¢ € dom AT and AT Fo = FAp. By induction, we

obtain for k € N

* k

T
) P

» T
(XI-A F(AT-2)%0 , o € dom AF .

This shows that

K ¥k
F ker (AI-A)K < ker (A1-aAT )

The inclusion

. T* k k
G ker {(AI-A" ) < ker (AI-A)

can be established analogously.

Now we make use of the fact that the resolvent operator

.,h(s"aI—»A)"1 is. compact. This implies that ker (kI—Af‘ is a finite

dimensiocnal, invariant subspace of the semigroup S(t). Hence the
operator S(h) = GF is bijective on this subspace. We conclude

that

«
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k k ok
ker (AI-A) = GI ker (AI-A) c G ker (AI-A" )

In the same manner we obtain, by the use of the equation

*

s¥ (n) = FG, that

T* k T* k k
ker (AT-A" ) = FG ker (AI-A~ ) < F ker (AI-37A) .

This proves-the first two assertions of the lemma. The second two

can be established analogously. The last two are trivial.

Q.E.D.

4.4 COROLLARY Let A € o(AY) and k € N. Then

k . k o k
ker (AI-A') , ker (AI-A")

F* ker (A1-aT) ¢ ker (AT-4T)

k k k

* *
F* ker (AIHAT) ker (AI—A*) : ker (AI-AT) G ker (AI-A )

k k x K * *
ker (AI-AT) = T ker (A1-4T), ker (AI-A") = ¥ ker (A1-a%)
For For any A € o(A) = o(A) let us now introduce the
generalized eigenspaceé
_ k k
XA = U ker (AI-A)" , XA = U ka(AI-A)
kel kEN

of A and A as well as the complementary subspaces

X = N ran ()»I—A)k ’ X = nwi(}»I-A)k .
keEN keN

T T
In an analogous manner, Xi, XA e M? and Xi, XA

c W1’q are

associated with the operators AT and AT. Some well known

k

k

k



properties of these subspaces are summarized below. They follow
from the general theory of operators with a compact resolvent

(see e.g. HILLE-PHTILLIPS [53, theorem 5.714.3] and TAYLOR 142,

theorem 5.8 Al).

4.5 REMARKS

(i) For every A € o(A) there exists a minimal kx € IN

{ such that

| X k
i XX = ker (AI-3) A ; XA = ran (AI=3) A '
1
il k k
;i‘ XAv = ker (AI-A) A ’ XA = ran (AI-A) A ,
E
II 1
K k T k
i I = ker az-aT) * , x* = ran (A1-aT) *
{ i
jW§ - k T k
i Xi =  ker (AI—AT) A ’ Xk = ran (AI-AT) A .

' Moreover the subspaces on the left are finite dimensional and
HIE those on the right are closed.

{(ii) It follows from lemma 4.3 that

l: k  q* K
13 dim ker (AI-3) dim ker (AI-A" )

—_ Tk
dim ker (AI-A")

- Tk
dim ker (AI-A")

WLTLD TP N R T L

i holds for all X € o(A) and k € IN. Hence

bl

dim X, = dim X, = din x% = dim X

e e Fr b T b
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(iid)
P A q T AT
MY o= X, e X, M o= Xy e X,
1 A 1 T AT
WP o= x e xV, w'd = X e X
A A
(iv) The projection operator -PA : MP o XK’ associated with
the above decomposition, is given by
P,o = - (sI-A)-1¢ ds ® € mP
A 2mi ’ !
5y
where FA is a circle around A, surrounding no other eigenvalue
of A. The projection operators ‘P}L : W1’p - Xl' Q§ : M3 > Xi, and
PE : W1’q - Xi can be represented analogously.

As a consequence of corollary 4.4 we obtain a characterization
of the complementary subspaces XK and XA via the generalized

elgenspaces of the transposed equation.

4.6 THEOREM Let X € o(A) be given.

(41  Let ¢ € MP. Then ¢ € X" 4iff Fo L £
(ii) Let £ € MP. Then onf € x* iff nf L e
(iii) Let o € W 'P. Then o € X* iff Fo L X3 ox

equivalently Lo € XA.

(Zv) Let f e MP. Then Gf € X* 4§ 754 X3
PROOF (1) It follows from corollary 4.4 that ¢ € XA =

. k
ran. (AI-A) . if and only if

kl k

© L ker (XI—A*) = F ker (R1-ATy * |

Since kA = kX’ this is equivalent to
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. Ky
Fo L ker (XI—AQ) - XX .

(11) Let £ € #°. Then Gnf € X if and only if Gnf
k
- ®
annihilates ker (AI-A ) A or equivalently

ks - K=
* - * n
wf 1 G ker (A1-a") ¥ = xer (Az-AT) * =

(corollary 4.4).

(11i) Let: @ € W''P, Then 1o € X* if and only if Lo

Ky

—_ *
annihilates ker (AI-A ) or equivalently

* - *k}\' - * k}\
® L v kexr (AI-A ) = ker (AI-A )

(corollary 4.4). This means that

k

@ € ran (AI-A) A Xk

The remainder of (iii) and (iv) can be proved in the same manner

as (i) and (ii).

The statements of theorem 4.6 can also be formulated in terms
of the hereditary product << .,. >> ({remark 2.10 (ii) and (iii)).
This has been done by SHIMANOV [140], HALE [42], BANKS-BURNS [1],
HALE-MEYER [43], HENRY [48]. In these papers the corresponding
result is the hard part of the theory. The properties of the
spectral projection can then be proved in a simple straight forward
way. This has been worked out for RFDEs in the state spaces C
(HALE [42]) and M2 (BANKS~-BURNS [1], DELFOUR-MANITIUS [29]) and
for NFDEs in the state spaces ¢ (HALE-MEYER [43]) and w2

(HENRY [48]). Precisely the same arguments apply to NFDEs in the
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product space framework. Therefore we content ourseves with
summarizing the main facts.
THE SPECTRAL PROJECTION

Let A € o(A) be given and let N = dim Xk = dim X% (remark

4.5 (ii)). Moreover let {mi"'“'wN} be a basis of Xy r

{¢1'°~-'¢N} a basis of X%, and introduce the matrix functions
o = [@1 «ee @ ] € W1’p([—h1017¢nXN) r
N
v = {xv] wN] e W' '9(l-n,0];¢™*N)

Then the complex NxN-matrix < ¥,FLd > = < LTW,FQ > 1is nonsingular.

Hence we can assume without loss of generality that

(62) <U,Fe > = < Tw,Fo > = I

As a direct consequence of this equation and theorem 4.6 we obtain
a representation of the spectral projections which correspond to

the systems = and Q, namely

A0 = L0 < W,Fo >, o € MP ,
(63)

Po o< Te,Fo>, oew P,

Analogously, the spectral projections associated with the

transposed systems are given by

* %k
pr = Jv<Fye > : e,
(64)
% %
P% = Y<F 0> , vewrd,
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. . . T
We are now going to study the projection of the systems %, Q, @7,

ET to their respective eigensubspaces. For this sake we introduce

the complex NxN-matrix AA by
(65) AD = <I>AA .

This matrix describes the dynamics of the spectral projection of
the homogeneous systems © and Q. More precisely, Ax has the
following well known properties (HALE [42], HALE-MEYER {43], HENRY

[481).

4.7 PROPOSITION Let (62) be satisfied and Let A, € € be

given by (65). Then
E
A’ v ¥
(L]l @(t) = o(0)e ™,

(2] Aty = wa

W
4
it
i<]
C
®
&
IA
“
In
o

1]
o

P
o

Y
‘O

({4L) S(B)o = ¢eAlt, st (e)w

(iv] o(a) = {A}.

The action of the input on the spectral projection of the systems

Z and Q is described by the complex Nxm-matrix

0, 0,
(66) By, = q£? (t)dB (T) + Alqéy (t)ydy(z) .

4.8 PROPOSITION Let u € L ([0,=);a™ be given.

loc
(4] Let £ e MP and Let m(w(t),wt,x") € w ' 'P be the

~

cornesponding state of =, defined by (46). Then xk(t) =

< W,n(w(t),wt,xt) > € satisfies the orndinary differential

equation

\ éx(t) = Akxx(é) + Byu(t]
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(i) Let r=aq, e M, and Let (x(t),z") € ¥ be the

connesponding state of 5, degined by (49), Then . Xk(t) =

< Tu, (zt),2% > e ¥ satisfies 2,

PROOF (i) First note’that
* 0 O ¢ - T T T
(67) B, = [Ap(v)¥(r) + Jdy (T)¥(t) = BY + DV = By

(remark 3.4). Hence it follows from theorem 3.5 that

t

x, () = < sTeme > + [ < BT (t-s)¥,u(s) > _ ds
0 c®
* %
At t o A (t-s)
= < Ve E > + [ < B"¥e su(s) > ds
0 C

= e <¥,nf >+ e Byu(s)ds .

0

*

(ii) follows from the fact that LT : MP o W—1’p maps the

state (x(t),xt) e M® of R into the corresponding state

nw(t) ,wo,x%) € w'P of 3 if I'=0 (see lemma 3.2).

Q.E.D.

Let us now discuss the spectral projections of the different

systems.

SYSTEM I Let w(t), x(t) be a solution pair of . Then it

follows from proposition 4.8 that the function

> € C

xA(t) = < W,F(W(F),xt) + Eu

satisfies ZA‘ We mention without proof that the map

(0,E) =+  (1L9,0) < ¥,Fp + EE > , (0,E) € M¥P x 1P ,
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is the spectral projection of the semigroup on P x ¥  which

corresponds to the free motions of I (u(t) = 0 for ¢t = 0).

SYSTEM Q Let T = 0 and let «(t) be a solution of . Then

i it follows from proposition 4.8 that
2. (t) = < Tw,Fz, + Eu > € C
A Ty t

satisfies EA‘ We mention without proof that the map

(@8 - (2,0 < v, Fo + EE >, (g,E) € W P x 1P ,

is the spectral projection of the semigroup on WT’p x LF  which

corresponds to the free motions of Q (u(t) =0 for + > Q).
SYSTEM QT et ¢ € W']’q be given. Then it follows from (64)

T N

and proposition 4.7 that PLST(t)y =¥, (8) € X3

where Xk(t) € C

is of the form

*

x, (8) = < sTe,fes" = < Ty,sT (mFe >t
A.t
= <y, rswyo " = < Ty, Foe A ¥
*
A.t

*x*
= e A < LTw,FQ >

Moreover the corresponding output is given by

v, (t) = BTpIgT

sty = BTWxA(t) = B;xk(t)

(see equation (67)).Hence the pair xA(t), YA(t) satisfies




LI

% * ® 5 ) ; _ L .
3y x, () = SR (B) yA(L) = Byx, (t)
SYSTEM ET Let T"' =0 and let (| € M. be given. Then it follows
again from (64) and proposition 4.7 that P%ST(t) = LTTXk(t) € X%
where
*
T * Ayt *
Xx(t) = < ST ()Y, Fo > = e < Y, Fo >

The reduced output is given by

yl(t) = BT[P%ST(t)¢]1 = BTWxA(t) = B;xx(t)

. *
Hence the pair Xk(t)’ YA(t) is again described by system Zy -

THE FREQUENCY DOMAIN

We close this section with some results on the Laplace

transform. We make use of the abbreviation
~ «
x(s) = [ e %% (¢) at
Q

for the Laplace transform of a function Xx(t) on the positive

real axis.

4.9 PROPOSITION Let u € LP  ([0,w);R™) he Laplace thans formable.

loc
(£} I§ £ € MP and w(t), x(t) satiafy =, then

(68) Q(s) = A(s)—1{ < es‘,nf > + [B(e5*) + sF(es')]G(S)]

(£4) 14 femMP and z(t) satisfies 5, then

(69) ;(s) = A(s)—1[ < es',f >+ B(es')a(s)]
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(i) T4 U ew 'S and y(t), t 2 0, is the corresponding

cutput o4 QT{ (11), zhen

1 s

;(s) = [BT(eS') + sPT(es‘)] AT ()" << T, % T

+ TS % gy + T 2y - &S0 (0))

(iv) T4 v eMET and y(£), £ 20, {s the corresponding

output of ET, (8), then

1

TS =y

- T
T« 3,65 >>T + 1

A . T —
(710 w(s) = BT (%) aT(s)
PROOF (i) It follows from proposition 2.6 and remark 2.5 (v)
that =x(t) and w(t) are Laplace transformable. Defining
x(t) = 0 and u{(t) := 0 for t < 0, we obtain

-st

h
s w(s) - £2 - [e7%%¢! (co)ae = [e75F(rx_ + Bu _lat ,

0

o— 8§

- - Lp—— < ~-st
w(s) x(s) - fe "T£7(-t)dt - fe “"[Mx, + Tu ldt .
0 0

This implies

s x(s) - < es‘,nf >

(-] (=]
- -st ~-st .
s ée [Mxt + Put]dt + ée r[th + But]dt
¢ < -st 9 T -st
= s fdu(7)fe "t x(t+T)dt + [dn(T) fe ST x(t+1)dt
-h 0 -h 0
o ® st 0 ® st
+ s fay(t) fe S u(t+r)dt + [fdp(t) fe STu(t+T)dt
-h a -h 0

i

[sM(es') - L(es‘>]§<s> - [sr<es') - B(es')]ﬁ(s) ;

Il
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(ii) follows from (i) and lemma 3.2.

(iii) Let «x(t), t = -~h, be the unique solution of QT, (11) .

Then it follows from (ii) that

2(s) = AT s < Fp, e sT = 2T (s «< T,ee »>T |
Q ~
Moreover x(s) = sz(s) - ¢(0). This implies
~ -0 T ® st . 0 T < -st”
y(s) = fdR™ (T) fe z(t+T)dt + [dy (1) fe x (t+T)dt
-h 0 - 0 '

T s.,° 0 T 9 so
= B (e"")x(s) + [AB"(7)[e”"x(T-0)do
- T
T, s.,° p T 0 [l
+ I (e )x(s) +, fdy (1) [fe" x(Tt-0)do
- T
= [BT(es') + sI‘T(es')]x(s) + BT (3" * y)
T, s. x g s.
+ I'" (e b - e "Y(0)) .

(iv) If (¢ € ran LT, then statement (iv) is a consequence
of (iii) and remark 3.3. In general, (iv) follows from continuous
dependence and the fact that ran LT is dense in M4,

Q.E.D.
. . . L A 4 A
The following characterization of the subspaces XA’ X, XA' X
is of particular importance in connection with the above result

on the Laplace transform.

4.10 THEOREM Let A € g(A) bhe given,

(L) Let g€ ML Then n'g L X. 4if and only L§ the function
‘ g A

< nTg,es‘ > A(s)—1, s €:C, {8 holomorphic at s = A,
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{ (L4) Let g € M4, Then g L X, 44 and onty Lif the gunction

1

I < g,LeS' > A(s) ', s € €, 44 hoLomorphic at s = A,

(Lid) Let o € MP. Then ¢ € X* i and only 4§ the function

A(s)"1 < es',Fw >, 8 € €, 4is holomorphic at s = A.
1

—

function A(s)“1 < Lres',F@ >, s € €, 48 holomorphic at s = A,

(iv)  Let o € w P, Then o € X* i and onky if the

PROOF (1) First note that (A—AI)kPA = 0 for every k 2 k.
By the use of this fact, it is easy to see that the following

equation holds for every s € o(a)

kA~1
P, = P (s=A)
k=0

-1 -k-=1 k

(72) (sI~A)"~ P

(A=AT) A

(compare KATO [68, section III.6.5])., Now let nTg iR Xx = ran PA'
Then it follows from (72) that

(73) <nfg, (s1-A)7Te > = < nTg,(sI-A)_1(I-PX)@ >

for every s € o(A) and every ¢ € W1’q. This function is

holomorphic at s = A, since XA § o(A| 5) - Conversely, suppose
that the function on the left hand sidé of (73) is holomorphic
at s = A for every ¢ € W1'p. Then it follows from remark 4.5
(iv) that nTg LX,

Applying theorem 4.2 (ii), we obtain that < nTg,(sI—A)-1@ >
is holomorphic at s = A for every o € W1’p if and only if the

complex function

< ntg,eS > A(s) ! < &5, Fuo >

1,p

is holomorphic at s = A for every ¢ € W Since ran L is

dense in Mp, we may replace ¢ by any element of MP. We choose
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the pair (x,0) € mP where x is an arbitrary complex n-vector.
This proves (i).

(ii) follows from (i) and the fact that ¢ L Xy = l.)(}L if
and only if L*g 1 XA’

(iii) Let ¢ € MP, Then ¢ € XA if and only if TFo L X%
(theorem 4.6) or, equivalently, the complex function

% -
<e®Fe> sTs)V, sec,

is holomorphic at s = A (see (i)). This means that the function

=1 < es',Fw >, s €¢C ,

A(s)
is holomorphic at s = A which proves (iii).
(iv) follows from (iii) and the fact that @ € X}L if and
only if (o € x)L (theorem 4.6 (iii)).
Q.E.D.

The main idea in the proof of the previous theorem is due to
DELFOUR and MANITIUS [29, lemma 5.2] who proved the corresponding

result for retarded systems.
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CHAPTER III

COMPLETENESS

AND SMALL SOLUTIONS
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ITT. 1 COMPLETENESS OF EIGENFUNCTIONS AND NONEXISTENCE OF
NONZERO SMALL SOLUTIONS
. - LT T
Throughout this chapter we denote by £, @, 37, @, the
homogeneous systems of section ITI.71. These systems will be studied

in section 1 of this chapter within the original state concept.

For any homcgeneous delay eguation there are two fundamental

questions concerning the structural properties of the system.

1° Under which conditions is the whole state space spanned by

the generalized eigenfunctions of the system? (completeness)

2° Under which conditions do there exist nonzéro solutions which

vanish after a finite time? (small solutions)

It turns out that there is a duality between these two properties.
Roughly speaking, we will see that a NFDE is complete if and only
if the transposed equation’ has no nonzero small solution. This
duality relation has first been discovered by MANITIUS [93] for

retarded systems. Let us begin with the discussion of the

completeness property.

COMPLETENESS

The problem of completeness of eigenfunctions has been
studied by LEVINSON-McCALLA [85] for scaiar retarded systems. A
rather complete theory for RFDEs in the product space framework
has been presented by MANITIUS [93] and DELFOUR-MANITIUS [29].

For neutral systems an analogous theory has not yet been developed.
Such a development has been stated by ITO [59] as a difficult
open problem. However, it turns out that - within the framework of

our state space apprcach in chapter II - this theory becomes
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rather easy. Some results on completeness of NFDEs in the state
space W1’2 may be found in O'CONNOR [109], JAKUBCZYK [62], and
BARTOSIEWICZ [9].

The property of completeness is of some importance in the
optimal control theory (BANKS~MANITIUS [8]), for the finite
dimensional compensator design (SCHUMACHER [136]), and for the
controllability and observability properties of NFDEs (chapter
). '

For convenience we introduce the closed subspaces

i
It

cl(span{XA|A € o(a)}) c W

>
It

cl(span{Xx|A € o(A)}) c WP

. , , T q T 1,9
and analogously, with an obvious meaning, Xo M and X0 c W .
Note that these can be interpreted both as real and complex

subspaces.

1.1 DEFINITION System = (respectively Q) is said to be

complete Lif X5 = MP (respectively Xc = W1’p).

As an immediate consequence of this definition together with

theorem II.4.10 we obtain the following completeness criterion.

1.2 COROLLARY

(£) System T Ls not complete if and only Lif there exists
some nonzero g € MT  such that the complex function

1

S+ > as)7!, s €, is entine.

< grie
(L)  System Q 4is not complete if and only if there exists

some g € MY such that nTg *# 0 and the complex function

< nlg,eS > a(s)”1, s € @, {s entinre.
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Statement (i) in the above corollary is a generalization of the
corresponding result on RFDEs in DELFOUR-MANITIUS [29, corollary
5.4]. A rather complicated proof of statement (ii) can be found in
L1,

Let us now introduce the concept of small solutions (Henry).

O'CONNOR [1069, lemma

SMALL SCLUTIONS

1.3 DEFINITION A solution paln wit), x{(t) o4 T 4Ls sald to be

small if

. t
lim %% || (w(t) ,x.) || = 0
toceo t MP

dorn every o = Q. A so0fution x(t) of Q L& salid to be small, Lif
the corresponding solution pain x(t) = z(t), t =z -h, and w(t) =

x(t) - Mz t 20, 0f & L& smatll.

£
In other words, a small solution to a NFDE tends to zero more
rapidly than any exponen;;al. Note that the Laplace transform of
such a function is an entire function. The important fact is that
any small solution to any delay equation vanishes after a finite
time. This has first been proved in the 'classical' paper of HENRY
{46] for RFDEs in the state space (. For retarded systems, this
implies the analogous result in the product space MP  since every
solution will be in the state space ( after the time t = h.
Moreover it has been indicated by HENRY [49], [50] that a
corresponding statement holds for neutral systems. A very nice
proof fér NFDEs in the state space C( has been presented by
KAPPEL [67]. Precisely the same arguments apply to system I,

This leads to the following result.
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1.4 THEOREM Let ¢ € MF be given and Let w(t), x(t) be the

corresponding solution pain of system X, Then the following
statements are equivalent.
(4) The pain w(t), x(t) 48 a small solution of 3.

Ve e® Fo >, s €€, is entine.

(L4) The {unction A(s)”
({44} There exiazs a (mindimal) time Tm > ~h such that
x(t) =0 for every t 2 Tm'
1§ (iid) is satisfied, then

(1) T < (n-1h - «
where o 44 the exponential growth of det A(s), L.e.

1 log |det a(s)| = 0

a = 1lim sup |s|
|s| = o
1.5 REMARK The implication "(iii) = (i)" in the previous

theorem is trivial. Moreover, it follows from proposition IT.4.9
that (i) implies (ii). The hard part of the theorem is to prove
that (ii) implies (iii) and to get the estimate (1). This can be
done with exactly the same arguments which are given in KAPPEL

[67, theorem 3.1]. For the precise verification one needs the

formula
fe 5% (t-h)dt
0
- - 0 _
(2) = e"Sh A(s) 1[@0 + s fe srm1(r)dt

¢ t s(t-0) 1
- Jflan(z) + sdu(v)] fe o) (c)dc]
-h -h

which follows easily from (II.68).
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Let us now introduce the subspaces

x, = 0 x* <« MP, xg = N, X <« ml,
. AEc(A) A€o (AT)
A 1,p T AT 1
X5 = n e WP X = N X e w4
A€o (A) AEC(AT)
Then ¢ € X if and only if the function A(s)”1 < e Fop > ,

s € €, is entire (theorem II.4.10). An analogous characterization
can be given for XO. Hence it follows from theorem 1.4 that XO
and XO are precisely the subspaces of those initial states (of

£ and Q) which lead to small soclutions of the respective system.

1.6 COROLLARY  There exdsxs a (minimaf) time T_ < nh - a such

that
- T T
Xo = ker S(t) Xo = ker S (t)
_ T _ T
Xo = ker S(t) XO = ker S (t)

for every t 2T ..
This corollary is the starting point for the relations between the
spectral properties and the small solutions of neutral systems.
Por the derivation of these duality results we need the following
interrelations hetween the subspaces with index o and those with
index p by means of the structural operators. These relations

follow immediately from theorem II.4.6.

1.7 COROLLARY

. L P L T
{£) et © € M., Then o € X, i64 Fo L Xc.

(L4) Let £ € MP. Then Gnf € X i6f mf L xT
o o’
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T’P. Then o € XO L4646 Fo L Xg on

(dLL) Let @ € W
equivalently Lo € XO.

(4v) Let f € MP. Then Gf € X, iff f Lxo.

This resﬁlt allows us to dualize corollary 1.6. We obtain that
the closed span of the generalized eigenspaces is precisely the
closure of the range of the semigroup operator if t is large
enough. This has first been proved by HENRY [46] for retarded
systems in the state space C. The corresponding result in the
product space M2 can be found in MANITIUS [93]. For neutral

systems in the state space ( we refer to HENRY [49].

1.8 PROPOSITION For every + 2 T

(o}

cl(ran ST(t))

4
I

It

cl(ran S(t)) X

cl(ran ST(t)) .

>
I

cl(ran S(t)) X

PROOF Clearly, every generalized eigenspace is contained in the
range of its corresponding semigroup operator for every t > 0.
Conversely, let g € M?  such that g 1 Xc' Then it follows
from corollary 1.7 (iv) and éorollary i.6 that G*g € Xg = ker ST(t).
We conclude that G'S'(t)g = ST(£)G'g = 0 (theorem II.2.2) and
hence g € ker S*(t) = (ran S(t))'L (lemma II.2.1).
Secondly, let g € M2 such that nTg L Xc' Then it follows
from corollary 1.7 (ii) and corollary 1.6 that G*nTg € Xg =
ker ST(t). We conclude that G*S*(t)nTg = ST(t)G*nTg = 0 (theorem
II.2.3) and hence nTg € ker S*(t) = (ran S(t))‘L (lemma II.2.1).

Q.E.D.
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In order to prove the main result of this section, we need
one more preliminary result concerning the relation between the
small solutions of ET and those of QT.

1.9 LEMMA  Llet z(t), x(t) be a small sclution 04 2T and

define

v
i
o

T
z(t) := - [© x(s) ds , t
t

Then z(t) =0 fgor 2T, - h, and =z(t) = LTxt + MTxt, t = Q.

PROOQF It follows from corollary 1.6 that x(t) =0 for

t 2 To - h. This implies z(t) 0 for t = TO and hence

T 0 T
z(t) = =f° LTksds = - fdnT(T)fo % (s+t)ds
. t -h t
0. T
= - fdnT(r) [© x(s)ds = LTxt , t=0.
-h t+T
- ' . T _m T -
- Wer conclude that z(t) = x(t) = z(t) + M x, = Lz, + M Ty t = 0.
Q.E.D.

The main result of this section follows. It is a generalization of

a related result on retarded systems in the state space M2 which

has been proved by MANITIUS [93, theorem 5.1].

1.10 THEOREM The fofllowdng statements are equivalent.

(L) System T A& complete.

(ii) System @t A;A no nonzero small solution
(iid) ker F' = {0}.

(iv) System Q L& complete.

(v) System 3T has no nonzero small solution.

(vi] ker F* = {0}.
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(vid} There £5 no nonzero Y € MT such that = << w,ek’ >> = 0

for every X € C,

1.11 REMARKS

x
(1) Note that ker F = {0} if and only if the solutions

x(t) of QT have the property
z(t) =0 ¥t =0 = z(t) =0 YVt 2-h .

*®
(1i) Note that ker F = {0} 4if and only if the solutions

z(t), x(t) of ZT have the property
x(t) =0 VvEt=z2z0 = x(t) =0 Vtz>=-=h

PROOF OF THEOREM 1.10

"(1) & (ii)" System I is complete if and only if X, = MP
which means that g 1L Xc implies g = Q for every g € Mq. By

corollary 1.7 (iv), this is equivalent to
E 3
G g € Xg = g=20.

Now the equivalence of (i) and (ii) follows from the fact that
G* : M9 5 W1’q is bijective (lemma II.2.1).

"(ii) e (iii)" System 2T has no nonzero small solution if
and only if ker ST(TO) = Xg = {0} (corollary 1.6). It follows
from general semigroup theory that this is equivalent to
ker ST(h) = {0} and hence to ker F = ker G F = {0} (theorem
I1.2.2).

"(ii) & (v)" Lemma 1.9.
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"iv) & (v)" System @ is complete if and only if
Xc = Wj’p which means that nTg L Xo implies that nTg = 0
for every g € ML, By corollary 1.7 (ii), this is equivalent to

*
G nTg € Xg = ng = Q

Now the equivalence of (iv) and (v) follows from the fact that
G* : W—1’q - M3 is bijective (lemma II.2.171).

vy e (vi)" System ET has no nonzero small solutiocn if

<

and only if ker S (To) = X" = {0} (corollary 1.6). This is

* * % .
equivalent to ker F = ker G F = ker ST(h) = {0} (theorem
I11.2.3).

"(vi) e (vii)" Let (¢ € MY be given and note that

1

F*w = nTg e w 'Y for some g € H4 {(lemma II.2.8 (iid)).

Hence the equivalence of (vi) and (vii) follows from the fact

n .
that F ¢ = nTg = Q if and only if
%*
Q = < nTg,eA' > = < F w,ek' > = <L w,ek’ >>
for every A € C (lemma IL.1.5). 0.E.D.

COMPLETENESS IN THE STATE SPACE C

Every generalized eigenspace XA < W1'p can be regarded as a
subspace of (. In this sense, XA is a generalized eigeqspace of
the semigroup Sc(t) which is associated with the NFDE (II.1) in

the state space C (see remark II.1.1). Let us define

¢, = clc(span{xklk € oA} <« ¢

We say that system I is complete in C if ¢ = C.
o
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1.12 COROLLARY = System I 44 complefe 4Ln MP if and only Lf L&

{5 complete Ln C.

PROOF Let us regard W1’P and XO as subspaces of (. Then we

have in any case Xo < Cc' If £ 1is complete in Mp, then Q 1is
complete (theorem 1.10) and hence W1’p = XO c Co' Since W1’p is
dense in C, this implies Co = C.

Conversely, let CO = C. Then {(p(0) - Mo,9)|o € C} < X
and hence Xc = MP.

Q.E.D.

MATRIX TYPE CONDITIONS

Our next result is a computable completeness criterion for a
rather general class of neutral systems. In the case of a single

point delay, i.e. L and M are given by

(3.1) Lo Aom(Q) + A1¢(-h) ’ o € C ,

(3.2) Mo

it

A_1¢(—h) ' p€C,
(A Ay B_, € R™1), related results have been proved by
JAKUBCZYK [62, theorem 2], BARTOSIEWICZ [9, corollary 1],

and O'CONNOR-TARN [110, theorem 4.1].

1.13 THEOREM  Suppode that the equations

(4.1) n(z) A

(4.2) uiT)

1 + n(-h) , ~-h < tv £ e-h ,

A + u(-h) , -h < t £ ¢g~h ,

-1
hold for some € > Q. Then system I is complete if and only AL{
the following equation holds for some A € C

(5) rank [A1 + AA_ = n ,

11
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I

—

PROOF By theorem 171.10, system X .is complete if and only if QT

e i e

has no nonzero small solutions which means that the implication

(6) z(t) =0 ¥ £ 2 g=h = x(t) =0 v £t > -h

holds for every solution =x{t), t =z -h, of QT. Now let (4) be

satisfied and define x(t) := z{(t-h), £(t) := z(t-h) for

0 £t £ ¢. Then (&) is equivalent to

x(£) = £(t) , x(e) = 0
T T = x(t) = 0
0 = A1x(t) + A_1f(t) :
-This means that .
AT -I -I
rank = n + rank = 2n
A, A A_,

for some A € € (see appendix, theorem A6). This is equivalent

to (5).

In the retarded case (u(t) = 0), condition (6) reduces -to

(7) rank A n .
" This is precisely the completeness criterion which was derived by
BANKS-MANITIUS [8] (state space () and MANITIUS [93), DELFOUR-

MANITIUS [22] (state space Mz).

Finally, let us briefly discuss the gquestion under which

conditions the operators F and F are bijective.
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1.74 REMARK Recall that S(h) = GF and G is bijective. Hence

F is bijective if and only if S(t) : MP 5 MP  is a group.

Correspondingly F is bijective iff S(t) : W1’P - W1’p is a
group. Now recall that S(t) and S(t) are isomorphic (lemma
I.3.2 (iii)). Hence §S(t) is a group iff S(t) is a group. We

conclude that F is bijective if and only if F is.

BURNS, HERDMAN, and STECH [19, theorem 2.4] have derived a
matrix type condition for S(t) to be a group. Just for complete-
ness, we present an alternative proof of their criterion. A
related result on RFDEs can be found in DELFOUR-MANITIUS [29,

theorem 2.9].

1.15 PROPOSITION

(4) Suppose that

A = 1lim u(7)-u(-h) € R™MD .

(8) rank A_ -1
T+-h

i
=]

1

Then the operaton F : MP o w P 45 boundedly-inventible.
(44) 1§ wu(x) 44 absolutely continuous with Le-derivative
on some interval (~h,e~hl, € > 0, then condition (8) 4is necessany

and sufficient for bounded invertibility of F.

PROQF We prove the corresponding result for the operator

F : W1’p - Mp. For this sake let us define

t .
a(t) = wu(t-h) - fIn(s-h) - n(-h)lds , 0 <
0

A
o+
IA
=3

Moreover let ¢ € W1’p and f € MP. Then Fo = f if and only if

(o]

©(0) = £~ and
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1 t-h t~h .
F£l(t=h) = [ an(z)o(t+h-t) + [ du(t)e(tth-t)
~h . - ~h -
t~h .
| = [n(t=h)=-n(-h)Je(0) - [ [n{t)-n(-h)le(r+h-t)dT
i ; -h
i t-h .
i + [ du(t)e(t+h~t)
| -h

t

[n(t=h)-n (~h) 1£° + [da(s)e(s=t)
0

T

for 0 £ t £ h. Hence statement (i) follows from theorem I.71.4.

Now let x € R”, x + 0, such that xlA“1 = 0, and let wu(T)
be absolutely continuous with L3-derivative on some interval
(-h,e~hl, ¢ >‘b. Then the above equation transforms into

t

Fle-n) = [n(e=h)=n(-h) 1f° + A_ o(~t) + [a(s)o(s-t)ds
. 0

for 0 £ t < €. Hence fo1(r) is continuous on the interval

[-h,e-h] for every f € ran F with f° = 0 (remark I.1.1 (i)).

We conclude that F is not surjective.

QPEN PROBLEMS

The problem of finding a necessary and sufficient condition
for the bounded invertibility of F is equivalent to that of
finding a necessary and sufficient condition on a €
NBV ([0,T) ;R™™™) such that the conclusions of theorem I.1.4
remain valid. This is not yet solved.

Also the problem of characterizing the injectivity of F* -
whén (4) is not satisfied - is still open. If (4) is satisfied,
then condition (5) shows that system I is complete if and only

if ZT is complete. Hence, by theorem 1.10, system I is
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complete iff one and the same system (not the transposed!) has no

nonzero small solution. In other words

In general, this is an open problem.

One might also pose the question under which conditions the
state space can be decomposed into a direct sum of the generaiized
eigenfunctions (Xo) and the initial states of small solutions

(XO). This would mean
P _ 2
M XG (32] XO z

Such a decomposition can obviously be obtained in the (extreme)
case of a system with a finite spectrum. In general this problem
is apparently not solved in the open literature on delay systems,

even for retarded systems with a single point delay.
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III.2 F-COMPLETENESS OF EIGENFUNCTIONS AND NONEXISTENCE OF

NONTRIVIAL SMALL SOLUTIONS

I+ has been indicated by MANITIUS [93] (RFDE) that complete-
ness in the sense of section 1 might be a too restrictive property
for delay systems. In particular, if the maximal delay does not

appear on the right hand side of each equation (componentwise),

v

then the system cannot be complete. For example, consider the two-

dimensiocnal NFDE

o) {:1 (€) = x,(t=h) + x,(t-h)
xz(t) = 0
which may be written in the form
a/at (x(t) - A_1X(t—h)> = A_x(t) + A x(t-h)
where
S e (] RN ) PR S T

Obviously, condition (5) is not satisfied in this case. Also in
the transposed situation - when the maximal delay does not occur
in every state variable - completeness is impossible. Therefore it
might be useful to work with a weaker notion of completeness. For
retarded systems MANITIUS [91], [93] has introduced the concept
of F-completeness. This has something to do with the completeness
of eigenfunctions with respect to the dual state concept. We will
1.p

extend these ideas to NFDEs in the state spaces M and W

Let us first consider the system & which is described by
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%
the semigroup ST (t) on W*T,p; By lemma II.4.3, the generalized
eigenspaces of the generator AT are given by FXA c W“1’p.
These eigenspaces cannot span the whole state space W_1'p unless
ran F is dense in this space. A suitable candidate for the closed
span might be c¢l(ran F). An analogous situation is given in the

~

case of system Q. The generalized eigenspaces of the corresponding
*

semigroup ST (t) are given by FXA c MP (lemma ITI.4.3). The

closed span of these eigenspaces will be studied in the closure of

ran F.

2.1 DEFINITION

SysZem % 44 said to be F-complete L4 cl(FXd) = cl(ran F).

System Q is said to be F-complete 4§ cl(FXo) cl(ran F).

This concept of F-completeness is obviously weaker than complete~
ness in the sense of definition 1.1. It is related to the

"triviality" of small solutions which is defined as follows.

2.2 DEFINITION A small solution w(t), x(t) o4 system T is

sald Zo be trivial if x(t) = 0 gor every t = Q.
A small solution "z (t) 0f system Q 44 said to be frivial L4

z(t) = 0 {for every t 2 0.

In other words, a small solution of £ or Q is trivial in the
above sense iff the initial state in the dual state concept is

i

Fo # 0 - nontrivial
//1/small solution
Fo = 0

. Titrivial
Lo small solution

I ———

~h 0 t

Figure 3

Zero.
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The following theorem is the main result of this sectjon. For
retarded systems in the state space MZ it has been proved by

MANITIUS [93, theorem 5.6].

2.3 THEOREM The {ollowing staitemenis are 2quivalent.

T S o R s e

(4] System © L& F-complele.

(L4)  System ol has only trivial smakl solutions, L.e,

e S i

T_ *
XO = ker F .

(LdLL) Fen every U € w!d the followding implication holds

L S 5 *
(11) FGF Y = 0 = F¢y = 0
(Lv) System Q L5 F-complete.
(v) Sysitem ol has only thivial small solutions, L.e.

*
XT = ker F .
o

(vi) Fon everny ¢ € M3 the gollowing Aimplication holds

(12) F'a F'y = o -  F'y = o

(udL) 14 the complex junction << ¢,e®° >> A(s)-1, s €&, 4%

entine fon some ¢ € M3, hen << ¢,e°" >> =0 gon every s € C.

2.4 REMARKS

(1) Condition (11) is equivalent to the property

v
o

x(t) =0 ¥V t=>h = x(t) =0 Y t

for the solutions of QT.

(ii) Condition (12) is equivalent to the property

v
o

= x(t) =0 Y t

v
o

x(t) =0 v t
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for the solutions of ET.

PROOF OF THEOREM 2.3

(1) « (1i)" System I is F-complete if and only if
* *
¢ L XO = F =20

for every ¢ € W1’q. Moreover it follows from corollary 7.7 tﬁat

*
F oy Ll Xo if and only if € Xg.

"(ii) e (iii) " By corollary 1.6 and theorem II.2.2, we have
T T R
Xo = ker 8 (nh) = ker (F G) Fo.

Hence the equivalence of (ii) and (iii) follows easily by
induction (see also remark 2.4 (i)).

The equivalence of (iv), (v), and (vi) can be proved by
analogous arguments.

"(v) e (vii)" In the proof of theorem 1.10, we have seen
that F*w = 0 if and only if << ¢,e®" >> = 0 for every s € C
(W € M), On the other hand it follows from theorem II.4.10 (iii)
that ¢ € Xg if and only if the complex function

1

S >> A(s) r S € €, is entire (see

* -
< Fy,e® > A(s) L << U,e
also theorem 1.4). This proves the equivalence of (v) and (vii).

Q.E.D,

The following matrix type condition for systems with a single
point delay is a special case of theorem IV.3.7 in the next
chapter. It can be extended to systems with commensurable delays.
However, in a more general situation, the derivation of an

analogous result seems to be a hard problem.
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2,5 COROLLARY Letx L and M be given by (3). Then system 32

L8 Pecomplete 4§ and only A4

A-AI Ry HAA_
(13) max rank = n + max rank [A1+AA_1]
AEC Ay+AA_, O AET
In the retarded case (A‘1 = 0) condition (13) reduces to
[A =AT A11
(14) max rank © = n + rank A1
AEC A1 Q

This is precisely the criterion for F-completeness in the state

space M2 which has been derived by MANITIUS [93, corollary 6.4].

2.6 EXAMPLES

(1) Consider the two dimensional system

x.(t) = x.(t-h) + % (t-h)
(15) 1 1 2

x, (t) axq (£)

which is described by the matrices

_ oo _[1a _ fo1
(16) Bo 7 [a o} S [o o} + A T [o o]

In this case we have

A-AI RAgHAR_, ’g _g é g

rank = rank ,
AL +AR 0 T A 0 Q
1 -1 0 0 0 0

and hence condition (13) is satisfied if and only if a % -1.

In particular, the introductory example (9) (a = Q) is F-complete.
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(ii) The scalar n-th.order differential-difference equation

m .y = T () o
(17) z ‘M (¢) Loagzle) + ]

B.z (3) (£-h)
3=0 j J

Q

can be rewritten as a first order system of neutral type (xj(t) i=

z(j_1)(t) for j =1,...,n) where

0 1
(18.1) A = EREN ,
N 01
%q " Gheg
0 ® ® 00 O 0 ......_ O
Q ss e e 0 O s o000 0 O
‘BO T Bn—1 0 eae Bn

This system is not complete unless n = 1. However, some elementary

operations show that the rank of the matrix

AO-AI A_+AA

17284
AHAR_, O
Sy 1 D ¢« ¢ s ¢ o o« 0
;A' .1 0 e s s e s o
%9 %pep FpqTA Bo* Bpoa Bpq+AB
0O o ¢ o o o » 0 O o o ¢ o o o 0
0 « o o« o o o 0 E E
-BO. . Bn—z Bn—’]+ken QO o o o ¢ s o 0 J

coincides with the rank of
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u 0 1 O . o o © e . . O A
b"’i N ’ ? 1 O . ° . - . © O
v . B, ece B 8 +A8
o(J},‘“,\ O 0 n-2 “n-1 n
» =0
O * <« L3 L) © L] - Q O & a . ° L) L] L] O
n 0 ¢ s« & ¢ « o o ( E E
» B.ad 0« o s o Q 0 ¢ e o oo |
j=0 J

The maximal rank of this matrix (over X € @) is 'n, if all Bj
are zero, and n+1 otherwise. Hence (13) is satisfied in both
cases. We conclude that system (17), respectively (18), is always

F-complete.
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CHAPTER IV

CONTROLLABILITY

AND OBSERVABILITY
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In this chapter we deal with controllability and obsexrvability
properties of neutral systems in the state spaces MP  and W1’p.
This will be done within the functional analytic context developed
in chapter II. Our work in this area has been mainly influenced by
two recent papers of MANITIUS [94], [95] on approximate
controllability of linear retarded systems in the state space M2.
Other contributions to the approximate function space
controllability of RFDEs can be found in OLBROT {1147, [117][
KURCYUSZ-OLBROT [79], MANITIUS-TRIGGIANI ({281, [99], [100],
MANITIUS [90], [91], [92], PANDOLFI [124], KORYTOWSKI [75], POPOV
[129], zMoOD [151], CHOUDHURY [21], DELFOUR-MITTER [31], MINJUK
[105], MINJUK-STEPANJUK [106], SALAMON [134].

Observability properties of retarded systems heve heen
investigated e.g. by OLBROT [115], [116], [119], LEE [82], LEE-
OLBROT [83], KWONG [81], KOCIECKI [73], ROPEIKINA-MULARTHIK [74].

Most of the earlier work in this area has been done on
spectral controllability and observability (KRASOVSKII-RURZHANSKII
[77], KRASOVSKII-OSIPOV [78], 0OSIPOV [123], PANDOLFI [125], BHAT-
KOIVO [13]) and on Euklidean controllability (KIRILLOVA-CURARCOVA
[69], GABASOV-KIRILLOVA [38], 2zMOOD ([151], [152], MANITIUS-OLBROT
[96]). For systems with control delays only, we refer to CHYUNG
[22], SEBAKHY-BAYOUMI [139], OLBROT [112], BANKS-JACOBS-LATINA [6],
MANITIUS-OLBROT [97], KWON-PEARSON [80], KLAMKA [70], [71], LEWIS
[87].

We will not go into the algebraic concepts of controllability
and observability which have been developed within the theory of
systems over rings., The interested reader is referred to KAMEN
[65], [66], SONTAG [141], MORSE [108], ZAKIAN-WILLIAMS [1501},
OLBROT-ZAK [121], [122], LEE-OLBROT [83], [84], JAKUBCZYK-OLBROT

[64], HAUTUS-SONTAG [44], HAZEWINKEL [45].
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Controllability properties of NFDEs have been mainly analysed

in the state space W]’p and for systems of the form
d/dt(x(t) - A_jx(t~h)> = on(t) +.A1x(t~h) + Bou(t) .

There has been a series of papers on exact controllability for this
class of systems, namely BANKS-JACORBRS-LANGENHOP {31, [41, [51,
JACOBS-LANGENHOP [60], [61], RODAS-LANGENHOP [130], JAKUBCZYK [62],
and also BARTOSIEWICZ [10, proposition 16], O'CONNOR-TARN [110,
corollary 5.8]. Recently, BARTOSIEWICZ [10] and O'CONNOR {1097 have
studied - inpependently and with different methods - the approximate
controllability of general neutral systems in the state space W1'p.
Again in the case of NFDEs with a single point delay, they have
derived a computable rank criterion in terms of the system matrices.
BARTOSIEWICZ [10] allows also delays in the control variable.

We find it interesting to reexamine these properties of neutral
systems within the approach of chapter II. In particular, we obtain
duality results for systems with general delays in input, state, and
output. These have been stated as open problems in O'CONNOR [109]
and ITO [59]. Moreover, we extend the controllability criterion of
BARTOSIEWICZ [10] and O'CONNOR [109] to a rather general class of
neutral systems (section 2). Also, we introduce the weaker concept
of F-controllability for neutral systems with general delays in
state and input (section 3). A duality result for this controllability
concept is obtained and - in the case of a single point delay - a
rank condition. A preliminary section is devoted to the well known
basic concepts of spectral controllability and observability.

Throughout this chapter, we denote by =, Q, ZT, QT the control
systems of section II.3 and by Zye E; (A € o(a)) the projected

systems which are described in section IT.4.



180 v

iv.1 SPECTRAL CONTROLLABILITY AND OBSERVABRILITY

The concepts of spectral éontrollability and observability of
a retarded system have first been introduced -~ without using
explicitly these notions - for the sake of stabilization in a
series of Russian papers in the mid sixties (see e.g. KRASOVSKII-
OSIPOV [78], KRASOVSKII [76], OSIPOV [123], KRASOVSKII-KURZHANSKITI
[77]). Later on PANDOLFI [125], [126] and BHAT-KOIVO [13] have
derived independently a criterion for spectral controllability and
observability of retarded systems with undelayed input and output.
This has been extended to retarded systems with output-delays
(SALAMON [132]) and to neutral systems with input delays
(BARTOSIEWICZ [10, theorem 4]). In [10], the input is not included
in the spectral projection operator. This leads to a finite
dimensional projected system with input delays. Based on the
results of section II.4, we give a slightly different (but

equivalent) definition of spectral controllability.

1.1 DEFINITION

(<€) System £ (and Q 4n the case T = 0] s sadid Zo be
spectrally controllable if I, 4 controllable forn all A € o(A).

T

(£L) System QT (and = in the case T = 0) is sadd Zo be

spectrally observable Lif 2; 44 obsenvable for all A € o(A).

The following rank criterion shows that our definition of spectral

controllability coincides with that of BARTOSIEWICZ {10] (I = 0).

1.2 PROPOSITION Let A € o(R) be given. Then 3, 48 controllabl

(2; 45 obsenvable)] Lf and only Lf

i
o]

(1) rank [ A B(eM)+ar(e™) ]
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PROOF  Let A&, € Y ana B,

IT.4. Then it follows from the Hautus condition that Ek is not

m

€ CNX be defined as in section

controllable if and only if rank [AI—AA Bx] < N. This means that

4

*
x [AI—AA} = Q , x B, = 0 ., X £ 0
for some x € CN. Equivalently, Uy = ¥x € Wj’q satisfies
0 0.
- T * *
(2) (AI-A%)Y =0 , Jo (m)a@p(t) + [y (v)dy(x) =0, ¥ + 0 ,
~h -h

(see equation (II.66)). Now it follows from lemma II.4.1 that
U € ker (AI-AT) if and only if ¢(t) = "¢ (Q) for -h < T < Q

and A*(k)w(O) = 0. Hence (2) is equivalent to
s oam =0, w*(O)[B(e’“'er(e"')] =0, QO %0.

This means that (1) is not satisfied.

Q.E.D.

At the first glance, (1) seems to be a rather unhandy criterion
for spectral controllability since it has to be satisfied for
every A € o(A). This is in general an infinite set and impossible
to compute completely. However, -in many cases condition (1) can be
checked directly without computation of any eigenvalue, just by
looking long enough at the matrix. Moreover, for retarded systems

of the form
(3) x(t) = A_x(t) + A;x(t-h) + B_u(t)

there has been done some research effort in order to transform
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condition (1) into a one which is easier to handle (MANITIUS-

TRIGGIANT [98]). These ideas have been generalized to neutral

systems in O'CONNOR [109] and O'CONNOR-TARN [110].

In the rest of this sectién we will focus on the important
question how spectral controllability (observability) is related
to the function space. controllability (observability) properties

of neutral systems.

THE REACHABLE AND THE UNOBSERVABLE SUBSPACE

The reachable subspaces associated with the systems I and

Q@ are given by

R, = {(w(t),x ,u) € MP x LP|w(.), x(.) is a solution of
%, (II.42) corresponding to some input u(.) €
tP(10,£1;R™ and the initial state ¢ = 0, E = 0} ,
o 1,p e) . .
Rt = {(mt,ut) € W x L¥|x(.) is a solution of @, (II.47)

corresponding to some input u(.) € LP([O,t];Rp) and

the initial state ¢ = 0, E = 0}

for t 2z Q. Analogously, we introduce the unobservable subspaces

of the systems QT and ET as follows

Nz = {¢ € Mq|the output y(.) of ET, (II.8) vanishes on
the interval [0,t]1} ,
T _ 1,9 T .
Ng = {bew |the output y(.) of @7, (II.11) vanishes

on the interval [0,tl1} .

Moreover, we define
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R = U Rt NT = n Nz
>0 £>0
R o= u R NT o= n Ng )
t>0

t>0

If necessary, these subspaces will be interpreted as their obvious
complex extensions.
Let us now summarize some basic properties of the reachable

and the unobservable subspaces which will be needed frequeﬁtly.

1.3 REMARKS

(1) The subspace

it -1
Re = I[FE]IR, = {Fo+EE|(¢,E) € R} < W P
is precisely the space of all final states n(w(t),wt,xt) € W_1’p
of I which are reachable from zero via some control function
u(.) € LP(ro, ;Y.

(ii) The subspace

Re = [FEIR, = {Fo+EE[(0,E) € R} 1P

~

is precisely the space of all final states (x(t),mt) e M® of Q@
which are reachable from zero via some control function u(.) €
P (L0, t];R™).

(iii) et I =0 and let o € W1’p, EeLP bpe given. Then
it follows from remark II.3.1 that (¢,E) € Rt iff (vep,E) € Rt'

(iv) Let I'=0 and let ¢ € W'Y be given. Then it
follows from remark II.3.3 that U € N} iff .y € ..

(v) Let Ry = ¢ be the reachable subspace of Z,- Moreover
let v e w 9([-h;01;¢™Y) be as in section II.4. Then it follows

from (i) and proposition II.4.8 that Ry = {< ¥,Fo+EE >|(9,E) € R}.

.
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N

#
(vi) Let N, € C be the unobservable subspace of system

A
Then it follows from the spectral projection result on system

%
Zk.
% :
@' that N, = {x € cMwx € NT3,

The last two statements in the above remark describe already

a basic relation between the spectral and function space concepts
of controllability and observability. For the derivation of some
consequences of these facts, it is convenient to make use of the
duality relations between the reachable and the unobservable sub-

spaces. These preliminary results are crucial for the whole theory

of chapter IV.

DUALITY

The duality relations between the reachabhle and the

unobservable subspaces are described by means of the structural

operators.

1.4 LEMMA

(L) Let Y € ! g g € M3, 4 € 1.9 be given. Then

’

* *
(F Y,E ¥) 4L Rt‘ Ll Y € Nt (t = 0)
* T * X
(g.d) LR, & GgE& Nip» d=-DGyg (t 2 h)
(4L} Let W € Mq, g € Mq, a €19 be given. Then
* * T
(FO,E Q) LR & b EN (t 2 0]

*
(nTg,d) LR, « 6 nTg € NT d = —D*G ng (t 2 h)
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PROOF It sufficies to prove (i) since the proof of (ii) is
strictly analogous

First note that (F*w,E*w) 1 Rt iff ¢ L [F E] R, = it
(remark 1.3 (i)). Moreover let y(.) be the output of QT which
corresponds to the initial state ¢ € W1’q. Then it follows from

theorem II.3.5 that ¢ L R, if and only if

t

€ T
fy~ (t=s)u(s)ds = 0
0

for every u{(.) € Lp([O,t];Rm). This means that ¢ € Nz.

Secondly note that, by proposition II.3.9 (i), we have

R, = {(GIFo+EE],0)](0,E) € R _} + {(GDT,0) [T € LP}

for every t 2 h. Hence (g,d) L R, if and only if
g L GIFE]R_

and

* %k % X%
for every [ € LP. This is equivalent to (F G g,E G g) 1 Rt—h’
* % *
DGg+d= 20, and hence to G g € Ng—h' d = —D*G*g.

Q.E.D.

1.5 REMARK The duality relations of lemma 1.4 remain valid, if

T T
er Rer Npo NQ
T

infinite-time-subspaces R, R, NT, N&.

the finite-time-subspaces R are replaced by the
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SPECTRAL AND FUNCTION SPACE PROPERTIES

We are now going to lay the ground for the relation between
spectral controllability (observability) and function space

controllability (observability).

1.6 LEMMA Let A € o(A) be given. Then the following statements

are equivalent,

(4] - EA Ls econtrollable,
(4L4) z; is obsenvable.
(£44) x% n 8T = (0}:
T _ AT
{Lv] NY = X&
(vl (p,0) € cl(R) f{or every o € X, .

{vd) ka c ¢l([F E] R).

In the case 1 = 0 the following statements are equivalent

o (L), (id), (iid), (4v), (v], and (vi].

(Vi) x% n N = {0}.
=T
{viid) NT C'XA

(4x) (9p,0) € cl(R) {4or every ¢ € Xy o

(x] FXA e cl([F E] R).

PROOF Clearly, (i) is equivalent to (ii). Moreover it follows

* .
from remark 1.3 (vi) that N, = {0} if and only if ®x € N
implies x = 0 for every x € GN. This means that X% n NT = {0}.

Hence (ii) and (iii) are equivalent.

"(iii) =» (iv)" First note that NT  is invariant under the
semigroup ST(t) and that the resolvent operator (sI—AT)-1 is
given by

- ' .
(s1-AT) "'y = [e7StsT(typar , yew''q,
0

if Re s 1is sufficiently large. By analyticity, this implies that
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N is invariant under (sI-—AT)_1 for every s § O(AT). Hence the
formula in remark II.4.5 (iv) shows that Nt is also invariant

under the projection operator P%.

T

Now let ¢ € NT. Then P§¢ € X3 n N* and hence, by (iii),

T AT
¢ € ker PX X" . This proves (iv).

"(iv) = (V)" Let (g,d) L R. Then, by lemma 1.4, we have

=T
*
G g € N ek . By theorem II.4.6, this implies that g L X, -

Hence the pair (g,d) 1is orthogonal to (¢,0) for every o €'Xk.
"(v) = (vi)" This implication is trivial.
P(vi) = (iii)"™ Let ¢ € X% n NT. Then, by lemma 1.4,

* * *
(F Y,E¥) LR and hence F ¢ L XA' By theorem II.4.6, this
T
implies that ¢ € X* and thus ¢ = 0.

Thus we have proved the equivalence of the statements (i),

(ii), (iii), (iv), (v), and (vi).

“(iii) e (vii}" . Let T =0 and ¢ € W 'Y, Then it follows

from corollary II.4.4 and remark 1.3 (iv) that ¢ € X% n NT if

T T
an.

"(vii) = (viii) = (ix) = (x) = (vii)" This can be proved

and only if LTw € X

with precisely the same arguments as the implications

"(iii) = (iv) = (v) = (vi) = (iii)" above.

The equivalence of the statements (i) and (ix) in the previous
lemma has been proved by BARTOSIEWICZ [10, theorem 5].

Now recall that the following equations hold for every t 2 TO

cl(ran sS(t)) cl(span {XA}) , ker ST(t)

"
>
™

cl(ran S(t))

il
2
>

cl (span {XA}) ' ker ST(t)

(corollary III.1.6 and proposition III.1.8).
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Combining these facts with lemma 1.6, we obtain a very useful
characterization of spectral controllability and observability,

namely the following result.

1.7 THEOREM Fox eveny t 2 T_ the foLlowing statements are

equivalent,

(L) T A4 spectrally controllable.

(i4) QT is spectrally observable.

(iid) (S(t)w,0) € cl(R) {or every ¢ € Mp.

(Lv) NT < ker ST(t). .

In the case I' = 0 the following statements are equivalent
to (&), (&4), (Lid), and (4iv]).

(v] @ 44 spectrally controllable.

(vil =T 44 spectratly observable.

(vii] (S(£)9,0) € cl(R) for every o € W 'P.

(VLLL)NT < ker ST(t)‘

Note that theorem 1.7 also makes sense for the real subspaces
R, R, NT, NT whereas for the formulation of lemma 1.6 we need

the complex extensions of these spaces.

APPROXIMATE NULL-CONTROLLABILITY AND FINAL OBSERVABILITY

At the end of this section we show that spectral
controllability (observability) is equivalent to approximate null-
controilability (final observability). These notions are defined

as follows.

1.8 DEFINITION

(£) System = A& said to be approximately null-

controllable in time t > h Aif§ for every o € Mp, £ e 1P and
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every € > 0 there exdsts an input function u € LP([0,t];R™)
such that Zhe conresponding solution wi(t), x(t) of =, (II.42),
satisfies ||(W(t)’xt)l[Mp~< e and Hut||Lp < €.

(4i)  System Q 4is said to be approximately null-

1'p, E € Lp, and

controllable in time £ > h Af for every ¢ € W
every € > 0 there exists an input function u € LP([0,t];:R™
such that Zhe conresponding solution x(t) of Q, (IL.47),

satisfies letllw1’p < e and ||ut|f < €.

p
L
({LLi]) System QY is said to be ginally observable in time

t > h if the solutions x(.) of QF satisfy

y(s) =0, 0<s=<t = x(s)=0, s==t-h.

(4v) System 2T s said to be ginally obsenvable in Zime

t > h 4if the sofutions x(.) of 5° satisfy

y(s) =0, O

A
0]
IA
P

= x{s) =0, s 2 t=h,

1.9 REMARKS

(1) System ¥ is approximately null-controllable in time
t > h iff (S(t-h)G[Fe+EE],0) € cl(R.) for every ¢ € M® and
every E € LP (proposition II.3.9 (i)).

(ii) System Q is approximately null-controllable in time
£ >h iff (S(t-h)G[F@+EE],0) € cl(R,) for every ¢ € W' '® ana
every E € P (proposition II.3.9 (ii)).

(iii) System ot is finally observable in time t > h if
and only if NE < ker ST(t).

(iv) System gt is finally observable in time t > h if

and only if NT < ker ST(t).

t
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For the proof of the desired equivalence it remains to show that

the unobservable subspaces Nz, Ni do not decrease and that the

closure of the reachable subspaces R,, R, does not increase
- [=
after some time. The rest of the iob is done by theorem 1.7.

1

1.10 LEMMA Thenrne exists a (mdnimal] Lime T1 < (n+1Yh such that

. T .
cL(R) = cl(Ry,,) wo= N
1(R) = cl(R,..) N o= NT

fon every t > T,-

k
PROOF Recall that the operator G : M2 > W1'q is bijective

(lemma II.2.71). Hence it follows from lemma 1.4 that NT = Ni if

cl(Rt+h).

Now let T1 > 0 such that the exponential growth of the

entire functions

and only if cl(R)

0
®

ot
>
D)

adj A(s) [B(es') + sP(eS')] , se€c,

~

is less than or equal to T1-h. Note that we can choose

T1 < (n+1)h.

Moreover let ¢ € Ng for some t > T1 and define y(T),
T 2 0, to be the corresponding output of QT. Then y(t) = 0 for
0 £t <t and it follows from proposition II.4.9 that the]Laplace
transform ;(s) of y(T), T = 0, satisfies the following equation

S. >>T

det A(s) ;(s) = [BT(es')+sFT(es’)] adj AT (s) << T,.e
+ det A(s) (BT(eS'*w) + srT (e *y - es‘w(O))>

=: g(s)
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Now suppose that ¢ NT, Then g(s) is a nonzero entire
function of exponential growth less than or equal to TT' Hence

the indicator function

1

hg(&) = lim sup r ' log |g(re

r - o
of g satisfies lhg(a)l < T, for 0 <9 <2n (MARKUSHEVICH
[102, theorem 9.18]). In particular hg(O) z -T, and thus

s(T1+e)
lim sup |g(s)]| e = e
S = 4o
for every € > 0. On the other hand, we obtain in the case

T1+€ < t that

~ s(T1+e)
lim [det A(s) y(s)| e
S+
-s (t=T, =€) .
= lim [[det A(s) | e ! ] [|y(s)| eSt]
S0
= 0
since y(t) = 0 for T < t. This is a contradiction.
The remaining identities NT = Ni and cl(R) = cl(Rt+h)

follow from remark 1.3 (iii) and (iv) (I = 0).

Q.E.D.

The main idea in the proof of lemma 1.10 is due to OLBROT [119,
lemma 1] who proved the corresponding result for retarded systems
in the state space ¢ (M =0, I = 0). Moreover note that the

identity R = Rt, t > nh, is known for neutral systems of the form

(4) .:v(t) = Ax(t) + A,z(t-h) + A_,I:;:(t—h) + Bou(t)

e
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(BANKS~JACOBS~LANGENHOP {5, corollary 5.11).

e —:

1.11 THEOREM  let t 2 T and £t > T,. Then the golLowing
statements are equivalent.

(L) T Ais spectrally controllable.

(L4L) I 44 approximately null-controllable in iime t+h,

(iii) QY is spectrally observable.

(Lv]) ot s finally observable in Lime t,

In the case T = Q the following statements aire equivalent
to (&), (L&), (44L), and {dv].

{v] Q 44 spectrally controllable.

(vil @ 44 approximately null-conirollable 4n Zime t+h,

(véiil =% 44 spectrally observable,

(véid]l =T 44 ginally observable Ln Time t.

PROOF By theorem 1.7 and lemma 1.10, statement (i) implies that

(S(t)p,0) € cl(R) = cl(R ) for every o € MP, By remark 1.9

t+h
this implies (ii). Conversely, approximate null-controllability
of © in time +t+h implies that (S(t+h)y,0) € cl(R) for every
@ € MP (remark 1.9) and hence spectral controllability (theorem
1.7). .

Clearly, (i) is equivalent to (iii), and (iii) is equivalent
to NT =uN£ < ker ST(t) (theorem 1,7 and lemma 1.10). By
definition, this means that system QT is finally observable.

The remainder of the theorem follows analogously.

Q.E.D.

It is an open problem whether spectral controllability of a
retarded system implies exact null-controllability. This has only
been proved in JACOBS-LANGENHOP [60] for two-dimensional systems

of the form (3). We mention that the equivalence of spectral
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controllability and exact null-controllability has also been

claimed by MARCHENKO [101] for retarded systems with finitely many

discrete delays. However, the arguments in [101] seem incomplete.
For neutral systems, such a relation is definitely false, as

the following example shows.

1.12 EXAMPLE Consider the NFDE (4) where

_Jo1 _[oo0 _[1o0 _[o
By = [o o] A [o o] ro By = [o 1] ro By = [1] .

Then the matrix

Ah

A - AeAD -1 0
0 A= e 1

[A(A) BO]

is of rank 2 for every XA € €. Hence system (4) is spectrally
controllable in this case (proposition 1.2).

However, since rank A_1 = 2, the semigroup S(t) is
bijective for every t 2 0 (proposition III.1.15). This means
that exact null-controllability (ran S(t) < R) is equivalent to
exact controllability in the state space W1'p (R = W1’p). But
the matrix pair (A—1'Bo) is not controllable and hence exact

controllability fails (JACOBS-LANGENHOP [61, corollary 2.1]).
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Iv.2 APPROXIMATE CONTROLLABILITY AND STRICT OBSERVABILITY

Approximate controllability properties of neutral systems in

W1’2 have been investigated by O'CONNOR {108],

the state space
O'CONNOR~TARN [110] (no input delays), and BARTOSIEWICZ {10]1. Imn
this section we describe an alternative apprcacih to these problems.

Moreover we present the following results which are apparently new.

1° A duality relation between approximate controllability and
strict observability for NFDEs with delays in input and

output.

2° The equivalence 0f strict observability with a) spectral
observability and b) observability of small solutions (the

dual property of complettability).

3° The independence of approximate controllability and strict

observability from the choice of the state space (I' = Q).

4° A controllability criterion in terms of the system matrices
for a rather general class of neutral systems, extending the

results of BARTOSIEWICZ [10] and O'CONNOR-TARN [11Q].

"In order to derive satisfactory results, we have to take into
account that the maximal delays in the state- and input/output-

variables may be of different length, Therefore we assume that

{5.1) n(t)
(5.2) B(T)

n(=hy) , ()

B(-h,) ,  Y(T)

u(-hx) P T £ ~h_ ,

Y(-hu) ’ T < -h ’

for some hx’ hu € [0,h]}. We can also assume without loss of

generality that either hx = h or hu = h.
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CONTROLLABILITY

If (5) is satisfied, then a solution w(t), x(t) of & is

already uniquely determined by an initial condition of the form

(6.1) w (0) o° ,  x(7) ©' (1), ~h_ T <O,

(6.2) u(t)

E(T) , —hu <t <0,

(together with the input u(t), t = 0). For system Q it

sufficies to consider the initial condition

(7.1) z(T)

e(t) , -—hx T <0,

(7.2) u(t)

E(T) ’ ‘hu <t <0

These facts suggest the study of approximate controllability

properties of % and Q in the reduced state spaces

Mo x 1f = R x LP([-h,,01®") x P([-h , 01 " ,

w;'P X LE = W1'p([—hx,0]ﬂRn) X Lp([—hu,O]ﬂRm) .

2.1 DEFINITION

(4]} System % 44 said 2o be approximately controllable if
for atl o € MP, E € LP, and € > 0 there exists a time t > 0
and an input u € LP([0,t];R™) such that the cornesponding forced

motion w(t), x(t) of =T with initial condition zenro satisfies

" < .

o_ P, 01,1 P ; P
o =w(t) [¥+ [|o (1)-x(t+T) |Pat+ JIE(T)=u(t+T) |Far.
-h -h

(44)  System Q@ is said to be approximately controllable if

for akl ¢ € W1’p, E€LP, and € > 0 there exists a time € > 0
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and an Ainput u € P (10,t];RY  such that the corresponding forced

4 motion 2(t) of Q with indtial condition zeno saitisfles

3

3 0 . . 0 o 11/P

g []@(O)—x(t)[p+ flo(t) =z (t+1) 1Pav+ [1E(T)-u(t+1) | dr] < €
b by By

~:‘:e

ﬁ For simplicity of notation it is convenient to introduce the

: .

restriction operators

X

T PR T iR e R o T B

P, r. : P - 1P
u

in an obvious way. Then the above definition can be reformulated

fﬁ as follows.
i
il 2.2 REMARK Approximate controllability of £ is equivalent to

i (8) cl({(r o, B)|(0,E) € R}) = Mi X LE

i and approximate controllability of Q to

(9) cl({(r_0,x.8 |(0,E) €RD = w ‘P x 1P .

L . OBSERVABILITY

il
fﬂ' Let us now turn to the guestion how to define (strict)
.V! observability for the systems QT and ET.
Since hx is the maximal length of the delays in the state

variable, it seems natural to consider the solutions x(t) of QT

on the time interval [-hx,w). Moreover the output y({t) of QT
at time t depends on the values of x(.) on the interval

[t-hu,t]. Hence y(t) <can be defined for + 2 hu—hx.
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This situation is illustrated .in figure 4 for the case hu < hx.

The above considerations suggest the following definition of

strict observability.

2.3 DEFINITION

System

the solutions

(10)

Syatem

x(t)

=0

{8 said to be atrictly observable if

of Qf sdatdis fy

u--h.X = x(t) = Q Ytz-h_ .

L4 sadld Zo be strictly observable 4if the solutions

w(t), x(t) of =T

G

= Q

u'-h.x = x(t) =0 Ytz-h, o,

The usual definition of (initial) observability for infinite

| output vanishes for

dimensional systems is that the initial state must be zero if the

(see e.g. CURTAIN~-PRITCHARD [24],

DOLECKI-RUSSELL [36], DOLECKI [35], TRIGGIANI [143]). For the

system QT

1

in the state space W 'Y this is equivalent to
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v
o

(12) y(t) =0 Y t = x(t) =0 vVt =z -h.

Note that (12) coincides with (10), if hu = hX = h, However, in
the case hx < hu = h, observability in the sense of (12} would
require the strong condition m 2 n (this follows from theorem

2.11 below). And if hu < hx = h, then such a notion of

obgervability would imply the property

T
has no nonzero

for the solutions cof QT. But this means that
small solution., Therefore we restrict ourselves to the study of
strict observability in the sense of definition 2.3 which takes
care of the length of the delays in state and output. Moreover,

we will see that this notion is dual to approximate controllability
in the sense of definition 2.1. For this sake we need a

characterization of strict observability in terms of the structural

operators G, D, G, ¥ and the embeddings

E 3 * - -
r M2 5 M2 oW d o, g r*:LE-»Lq

More precisely, we make use of the (closed) range spaces of these

operators.

2.4 REMARKS .

(1) Let o € MP  and g € M2, Note that r.e = 0 if and
only if wo = 0 and w1(r) = 0 for —hx < T £ 0. Hence
g € ran r; = (ker rx)l iff g1(T) =0 for -h =T £ -h,.

(ii) Let E € LF and & € 1. Note that r E =0 if and
only if E(t) = 0 for ~h_ < 1T £ 0. Hence 4 € ran r: = (ker r )

iff d(t) = 0 for -h < 1T £ -h
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(iid) Let ¢ € W1’p and g € M9. Note that r.o = 0 if

A

and only if o¢(t) = 0 for —hx T £ 0. We conclude that
%
nTg € ran r, = (ker rx)i iff the following equation holds for

every ¢ € W1’p

[T 9 (We(n)dt + [* g° (De(t)dr = 0 .
-h -h .
2.5 LEMMA
(£) System QT 44 strnictly obsenvable if and only if the

ollLowing Amplication hokds for every g € M4
]

* L = * * T _
(13) g € ran r,» DGg € ran r,+ Gg €N = g=20,

(L] Syatem 5T is strictl obsenvable if and only if zthe
y

foLlowing implication holds for every g € M2

% * X % *
(14) nTg €ranr , 06 nTg €ranr , G nTg eN' o nTg = 0 .
PROOF (i) Consider the system
. 0 0 o . ]
(15.1) z2(t) = fan~ (v) 2 (t+1) + fau” (v) 2 (t+T) + g (-t) , t =0,
-t -t
(15.2) z(0) = ¢°
T T
| (15.3) w(t) = B a3, + T By o t2h .,

b
where g4 € ran ¥, which means that g1(—t) 0 for t 2 hx (see

remark 2.4 (i)). Then every solution z(t) of (15) satisfies QT

for t > hx' Conversely, if x(t), t 2 -hx, is any solution of Qt

|
[
|
1

*
then z(t) = x(t-h ), t 2 0, satisfies (15) for some ¢ € ran r.




170 IV

i Hence QT is strictly observable if and only if the solutions

i of (15) have the following property

(16) w(t) = 0 vV t 2 h = z2{t) = 0 vV t 20

Now recall that G*g =z, € WP where z(t) is the unique
solution of (15.1), (15.2) corresponding to g € ran r: (compare
section TI.2, page 83). Consequently, the output w(t), given by
(15.3), vanishes for t >h if and only if G*g € NT. On the

interval [hu,h] this output is described by

0 ' 0. .
w(t) = fap (T)zh(t+r—h) + [ady (T)zh(t+r-h)
-t -t

[}

* %
[D G gl(-t) , h,£ts<h,

- (compare the proof of proposition II.3.10, page 106). Hence

*
w{t) = 0 for hu £t <h if and only if D*G*g € ran r, (see
remark 2.4 (ii)). This shows that (16) is equivalent to (13).
(ii) Now consider the system
i 0 1 Q
(17.1) z(t) = fdn (T)x(t+T) + g (-t) , z(0) =g ,
-t
0 2
(17.2) x(t) = z(t) + Jau (T)x(t+T) + g (-t) , t 20,
-t
(17.3) y(t) = B'x t 2h
. t (4 - u 4

g ‘s T . * _ C
where g € M satisfies. m'g € ran r -~ (see remark 2.4 (iii)).
Then we may redefine g1 and 92 to be zero on the interval
[-h,-ﬁx]. This does not change nTg € W_1'q and hence also the

solution x(t) of (17.1), (17.2) remains the same.
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The remainder of the proof is precisely the same as above.
We obtain that ZT is strictly observable if and only if the

solutions of (17) have the property

v
o

(18) y(t) =0 vV t 2 hu = x(t) = 0 Y t

and that (18) is equivalent to (14).

DUALITY

The next result shows that strict observability in the sense
of definition 2.3 is dual to approximate controllability in the

sense of definition-2.1.

2.6 THEOREM

(<) System T A& approximately controllable if and only L4
syatem Q° is sinictly observable.
(<4)  System Q s approximately controllable if and only if

system T is stnictly obsenvable.

PROOF It follows from remark 2.2 that system £ is approximately
controllable if and only if the following implication holds for

every g € M? and every d € »9
* *
g € ran x_ , d € ran T, v (g¢id) LR = g=0, d=20,

s * * ok
Moreover (g,d) L R if and only if G g € NT and d=-DGyg
(lemma 1.4). Hence the above implication is equivalent to (13),

i.e..to the strict observability of system QY.
This proves ({i). Statement (ii) can be established analogously.

Q.E.D.
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The proof of the previous theorem (respectively of lemma 2.5)
is less complicated if the delays in the input are of the same
length as the delays in the state (hu = hX = h) or if there are
no delays in the input variable (hu = 0, hx = h}. In the second
case this duality result has been proved in SALAMON [134, theorem

3.4] for retarded systems.

OBSERVABILITY OF SMALL SOLUTIONS

Recall that system QT is spectrally observable if and only
if "zero output” implies "small solution" (theorem 1.7). The
remaining property for strict observability is that "zero output”

and "small solution" imply "zero solution" which means

it
o
<C
+
v

y (£) h _-h
(19) U XL L g(t) =0 Vt2-h

_m(t) h—hx

X

il
o
<
r’.
v

This will be called observability of small solutions. The

corresponding property for the solutions ¢f system 2T is

y(t) =0 vt 2z h,~h,
(20) : = x(t) =0 V¥ t=2-h,
x(t) =0 v t 2 h-—hx
2.7 PROPOSITION
(L] - Sysztem QT is strndictly obsenvable Lf and only if L 44

spectrally obsenvable and satisfies (19),
({4) Syszem 2T s strnictly observable Lf and only Lif 4X L4

dpectrally observable and satisfies (20).

PROOF  First let eT  be strictly observable. Then (19) is
obviously satisfied. Mcoreover let ¢ € Nt and let =z(t), t =2 -h,
be the corresponding solution of QT. Then x(t+hx), t é -hx, is a
solution of QT and the corresponding output y(t+hx) vanishes

for t 2 h By (10), this implies x(t) = 0 for t 2 0.

u Py



[ &

v 173

We conclude that NT ker ST(h) < ker ST(TO) which implies
spectral observability of system QT (theorem 1.,7).
Conversely, let QT be spectrally observable and let (19) be

satisfied. Moreover, let «(t), t = -h, be a solution of QT such

that the corresponding output y(t) vanishes for t = hu-hx. Then
ST(h—h lx, = x e NT ker ST(nh) (theorem 1.7). Hence

x°70 h--hx
z(t) = 0 for every ¢t 2 nh-h . By induction, it follows from (19)

that 2(t) =0 for +t = —hx.
This proves (i). Statement (ii) can be proved analogously.

Q.E.D.

Clearly, the small solutions of QT (respectively ET) are
observable if there is no nonzero small solution on the time
interval [-hx,m). In this case strict observability is equivalent

to spectral observability

2.8 CORQLLARY

(4] 1§ system ot (nespectively 5T} has no nonzero smalt
soLution, then sinict observability is equivalent to spectral
observability.

(L] 1§ system = (redpectively Q) 4is complete in the
4tate space Mi (respectively W;'p), then approximate

controllability is equivalent to speciral controllability.

INDEPENDENCE OF APPROXIMATE CONTROLLABILITY AND STRICT OBSERVABILITY

FROM THE CHOICE OF THE STATE SPACE (I' = 0)

Using the above characterization of strict observability
(proposition 2.7), we can prove that - in the case I = 0 =~ this
notion does not depend on the choice of the state space M3 or

]
W ,q) for the transposed system. This means that strict
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observability of QT is equivalent to strict observability of ET.

We need the following preliminary fact.

2.9 LEMMA Lex T =0 and Let z(t), x(t) be a amall solution

o4 5T with corresponding output y(t), t = hu~h. Then

To
x(t) = - [7 x(s) ds , t 2 ~h ,
t
A6 a small solution of T and saxdisfies -
T TO
Bz, = = [ y(s)ds, tz2h~h
t £ u

PROOF It follows from lemma III.1.9 that xz(t) is a small

solution of QT. Moreover

0 T 0 T
BTxt = - ap” (1) [ x(s)ds = - It dBT(t)jO x(s+T)ds
-h t+T -h t
u
T T
= - [© B'x_ds = - [° v(s) as , t 2h ~-h .
s L u
t . o
Q.E.D.
2.10 COROLLARY Let I = 0, Then the small solutions o4 o are

observable if and only if system 2T has Lhe same propenrty.

Moreover zhe following statements are equivalent,
(£)  System = 4is approximately controllable.
(LL)  System Q s approximately contnoﬁtébze,
(ié4) System QF 44 strictly observable,

(Lv] System 2T s stnictly obsenvable,

PROOF It follows from lemma 2.9 that (19) implies (20Q).. The

converse implication is a consequence of the fact that system QT
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represents the restriction of system ZT to W1’p-solutions
(remark II.3.3). Hence we obtain from proposition 2.7 that QT is
strictly observable if and only if ET is. The remaining

assertions of the corollary follow from the duality result

(theorem 2.6).

Lack of space prevents from the discussion of the (more or less
obvious) consequences of corollary 2.10 for the approximate
controllability and strict observability in the state space of

continuous functions (compare corollary IIT.1.12).

A MATRIX TYPE CONDITION

Recall that proposition 1.2 gives a matrix type condition
which can be checked directly in many cases. Our next result is a

i computable criterion for observability of small solutions.

2.11 THEOREM

(L] Let h, >0, h, >0, and suppose that the folLlowing

equations hold forn some € > 0

21, = - - - -
(21.1)  n(v) Agtn(-h.) , n(v) A_q*u(-h)) , ~-h < T < e-h,,

(21.2) | v (T) B *B(-h,) , Y(7) Bh1+y(—hu) » ~h, < T< e=h, .

|
i Then the small solutions of 2T axe obsenvable if and only Aif

B

1

: (22) rank [A1+AA_ 1

+AB_1] = n

forn some A € C.




=0 e e

(LL) Lex h > 0, 4uppose thaz (21.1) holds for some € >

and Let B and T be given by

(23)  BE = B,E(0) , TIE=B_E(0) , E€ C([~h,01;R™) ,

Then Zhe small solutions. of o ane observable Lf and only if
(24)  rank [A1+AA_1 BO+AB_O} = n

gorn some A E C,

PROOF (i) The small solutions of QT are observahle if and

only if the following implication holds

I
(@]
<
rt
\
o
o

y(t) >
(25) X s 2(8) =0 Yt -~h .
x(t)

i
o
P
rt
v
@
1
(=2

Now let (27) be satisfied and define x(t) := x(t-hx),

“ﬁfﬁ*;”?F”fth;Q-ﬁ€°f‘ 0 <t <e. Then (25) is equivalent to

x(t) = £(£) , x(e) = 0 )

(26) 0 = AJx(t) + AT £(¢) = . x(t) =0
0 = BTx(t) + BT £(¢) J
1 -1
This means that
AT -I -I
rank A? AE1 = n + rank A?1 | = 2n
5T T T

for some A € @ (see appendix, theorem A6). This rank condition

is equivalent to (22).
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(ii) Under the assumptions of (ii), we cebtain that (25) is

equivalent to (26) with B, and B’~1 replaced by BO and B_o.

Q.E.D.

The above criterion has first been obtained by MANITIUS and
TRIGGIANT [98] as a necessary condition for approximate
controllability of a retarded system of the form (3) (a single
point delay, no input delays) in the state space M2. In this -

case (24) reduces fo
(27) rankv[A1 BO] = n .

MANITIUS [94] has generalized condition (27) to the case of
finitely many point delays. Moreover it has been shown in [94]
that (27) together with spectral controllability is also
sufficient for approximate controllability of a RFDE in the state
space M2.

For neutral systems an analogous result in the state space

1,2

W has been derived independently by BARTOSIEWICZ [10] and

I O'CONNOR-TARN [110]. They have shown that system (4) is

W1,2

approximately controllable in the state space if and only

| if it is spectrally controllable and
(28) rank PA1+AA_1 Bo] = n

fo: some A € €. Our results generalize their criterion to the
fairly general situation of theorem 2.11. More precisely, we
obtain the following characterization of approximate controllability

as a consequence of theorem 2.6, proposition 2.7, and theorem 2.711.
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2.12 COROLLARY

(4] Let h, > 0, h, > 0, and suppose that (21) holds for
some € > 0. Then system 3§ 4s approximately controllable L4 and
only if it is spectrally controllable and (22) holds for some

AEC .
(i) Lex h, >0, h =0, suppose that (21.1) hotds for some

e >0, and Let B and T be given by (23). Then system & Ab
approximately controllable Lif and onty i§ At is spectratly

contrhollable and (24) holfds for some A€ e,

The trivial example of an uncontrolled, complete system 2
shows that spectral controllability may fail while condition (22)

respectively (24) is satisfied. The reverse situation may also

occux.

2.13 EXAMPLES

(1) The scalar n-th order differential-difference eguation
(n) nel () 8 (5)
(29) z ™)y = ¥ a.zd () + § B.z - (t-h) + ulb)
3=0 3 j=0

can be rewritten as a system of the type (4) where the matrices
Ao' AI’ A-1' BO are given by (III.18) and

_ T
(30) B, = [0 e+ 011" .

It is easy to see that this system is spectrally controllable; but
B ] =1 and hence (24) fails unless n = 1.

1 Q
(ii) The two dimensional system

rank [A]+AA_

x1(t)

x. (t=h) + x.(t=h)
(31) 1 2

éz(t) - %, (€) + u(t)



is described by the matrices

_Joo _[10 _ o 1 _Jo
(32) A, = {—1 o} P B = [o o} P By = [o 0} ¢ By = [1]

The matrix

A - en)Vh - Ae_xh 0
1 A 1

is of rank 2 for every X € C, and condition (24) is obviously

[A(x) BO} -

satisfied. Hence system (31) is approximately controllable,

(iii) The slightly modified system

21(t) = x, (t-h) + éz(t—h) + u(t=h)
(33)

' ;z(t) - %, (t)

4 €

can be written in the form

d/dt (x(t) - A_1X(t-h)>

= on(t) + A1x(t-h) + B1u(t—h)

(34)

where Ao’ AT’ A_1 are as in (ii) and

(35) 5= fo] -

A short look at the matrix
| : . A - oM _ 3 "Ah _~AR
(36) [A(A) B(e ')] =

shows that (33) is still spectrally controllable; but this time

(22) fails.
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COMPLETTABILITY

T e e T

i Stnd

T

e e A PR

We have seen that strict observability of system QT
respectively ZT splits up into two (independegt) properties,
namely spectral observability and observability of small
solutions (proposition 2.7). By duality (theorem 2.6),
approximate controllability of 2 respectively Q 1is
equivalent to the same two properties. Moreover, spectral
observability is clearly dual to spectral controllability. But
what is the systems theoretic meaning of "observability of
small solutions" for the control systems £ and Q ?

A special answer can be given from chapter III. If £ 1is
_____ complete, then QT has no nonzero small solution (theoren
ITT.1.10) and hence (19) is’satisfied. In this case approximate
controllability is equivalent to spectral controllability
(corollary 2.8).
| A more satisfactory answer can be given if we assume that
fﬁi hu < hx = h. In this case we will show (under the assumptions of

g theorem 2.11) that the observability of the small solutions of

;W system QT is equivalent to the existence of a feedback
i (37) u(t) = Kx(t-h+hu)

ff' (K €1Rmxn) such that the closed loop system I, (37) is complete.
'lh This property is called complettability, It plays a central role
in the theory of MANITIUS [94], [95] and BARTQSIEWICZ [10]. This
JQL is the reason why BARTOSIEWICZ [10] was only able to treat the

?H! case hu < hx'

2.14 LEMMA Let h_ < h_ = h,

——————— u X

a@ {£) 1§ system T L& compleifable, then Zhe small solutions
! T
Q

?ﬁ' . 04 sysiem are observable,
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(L4) Let h > 0 and Let (21.1) be satisfied for some
€ > 0. Moreoven suppose that eithen h, =0 ox (21.2) hotds.

Then T 4s complettable 4if and only if the small solutions of

QT are observable.

"PROOF (i) Let K € RV ™ such that the system X, (37) is

complete. Moreover let x(t) be a solution of QT which

vanishes for t 2 0 and whose output y(t) = BTxt + PTxt

vanishes for +t 2 hu-h. Then, for t 2 0,

L] - T T. T
z(t) = L w, * Mg, + K y (t=h+h )

T T T

= 1T, T_T

£ + KB xt—h+h.+ MTét + KT ét—h+h
u - u

But this is precisely the transposed of the complete system I,

(37). Hence z(t) =0 for t = =-h.

(ii) First let hu > 0. Then the small solutions of QT

are observable if and only if (22) is satisfied (theorem 2.11).

It has been proved by MANITIUS [94, lemma 12] that (22) implies

the existence of a real mxn-matrix K (with entries 0 or 1)

such :that rank (A, + AD_, + KB, + AKB_,;) = n. By theorem

ITII.1.10, this means that the closed loop system %, (37) is

complete.

The case hu = 0 can be treated analogously.

Q.E.D.

It is an open question whether the assumtions in statement (ii)
of the previous lemma are really necessary for proving the
equivalence of complettability (closed loop property) and
Observability of small solutions (open loop property) for the

transposed system.
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AN OPERATOR TYPE CONDITION

In two special cases (hu = 0, hu = hX) we give a
characterization of observability of small solutions in terms of
the structural operators. For this sake we need some preliminary

facts.

2.15 REMARKS

| (1) Let W €W 'Y anad let =z(t), t = -h, be the
} corresponding solution of QT with output y(t). Then, by

proposition II.3.10Q,

v
o

FY=0, E¢ =20 o z(t) =0, y(t) =0 Vvt

IA
o

Moreover the following equation holds for hu-h <t

{equivalently -h < -t-h < -h )

u
0 Q 5 . "
y(t) = [ dp  (tlx(t+r) + [ dy " (T)x(t+t) = (D Yl (-t-h) .
-t~h -t=h

(1i) Let Y € M?  and let z{(t), x(t) be the corresponding

solution of 37 with output vy(t). Then, by proposition II.3.10,
_ *
FUu=0, Ev=0 e x(t) =0, y&) =0 Vtz0

Moreover the following equation holds for hu—h £t=<0

(equivalently -h < -t-h < -hu)

0 T %
y(t) = [ a7 (t)x(t+t) = [D Ol (~-t-h)
-t~h )

(iii) et B and T be given by (23) and B_o = 0. Then

the operator 7 : P - P maps E € LP into the pair




v

*
DE = (0,BE(-h-.)) € P ana D =T 9 : P> wP (lemma

IT.3.11). Moreover, in this case, E =0 and E = 0.

2.16 COROLLARY Let hu = hX = h, Then

(4} the small solutions of of  are observable L4
* *
(38) ker F N ker E = {0},
T

(£4]  the small solutions of Z° anre gbservable L

* *k !
(39) ker F Nnker E = {0} .

2.17 CORQLLARY Let hu =0 and h = h. Then
(£)  the small s0lutions of QT ane observable 44
* *
(40) ket F nker D = {0},

(i4) the smakl solutions of 2T are gbsenvable 44

(41) ker F' n ker D = {0} .

Note that (41) is precisely the controllability condition

which has been obtained by MANITIUS [94] for retarded systems.

183
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Iv.3 F~CONTROLLABILITY AND OBSERVABILITY

Analogous arguments as in the beginning of section III.2
indicate that approximate controllability in the sense of
definition 2.7 might be a too restrictive property for a large
class of systems. In particular, the scalar n-th order
differential-difference equation (29) is not approximately
controllable, but has very nice properties from a control point of
view, namely it is exactly null-controllable, feedﬁack
stabilizable, and spectrally controllable.

The dual observability concept of approximate controllability
(strict observability in the sense of definition 2.3) is conceﬁned
with the past wvalues of the solutions of QT and ZT. However, in
many cases it might be enough to have an information on the |
solution at times t 2 0. A corresponding observability notion has
been investigated for retarded systems e.g. by OLBROT [115], [1161,
[119], LEE [82], LEE-OLBROT ([83], KWONG [81].

In [91] and [95] MANITIUS has introduced the weaker concept
of approximate F-controllability for retarded systems with
undelayed input variables in the product space Mz. This notion
has something to do with the dual state concept (forcing terms).
The idea of F-controllability has also been applied to neutral
systems in the state space W1’2 by O'CONNOR [109]; however, in
[109] there are no further results in this direction.

In this section we develop the concept of F-controllability
for NFDEs with input delays in the state spaces MP  and W1’p.
For the new controllability concept it is no longer necessary to
care of different lengths of the maximal delays in state and input.
This job is done automatically by the operators F and E which

allows a more elegant presentation of the results than it was

possible in section 2.
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Recall that the reachable subspace of system I (dual state

concept) is given by
[F E] R = {Fo + EE|(0,E) € R} < w P

(remark 1.3). A suitable candidate for the closure of this
subspace may be the closure of ran F + ran E in W—1’p.

Correspondingly, the closure of the reachable subspace

[FElI R = {Fp + EE|(¢,E) € R} < MP

of system Q may be regarded in the closure of ran F + ran E in
MP. This suggests the following concept of approximate

F-controllability.

3.1 DEFINITION System I 44 sadd to be (approximately)

F-controllable i§
cl([F E]l R} = cl{(ran [F E])
System Q 44 said to be (approximately) F-controllable 4if

cl([F E] R) = <cl(ran [F E])

Let us first check that F-controllability in the above sense
is in fact a weaker property than approximate controllability in
the sense of definition 2.1. For this sake assume that (5) 1is
satisfied and let ¢ € M?, E € L be given. Then Fo € w  'P

depends only on the values o(t) for —hX £t <0 (i.e. on rxm)
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and EE € W“T’p depends only on the values E(t) for ‘hu £t <0
(i.e. on rug). Hence approximate controllability of ¥ implies
approximate F-controllability.

As it has been indicated above, we will also introduce a

weaker notion of observability which is only related tc the values

of the solution of the respective equation at times t = 0.

3.2 DEFINITION  System QF  is said Zo be obseavable if Zhe

/

solutlons «(t) 04 QT salisfy

[\
o
4
8
o
il
o
<C
ot
v
o

(42) y(t) =0 v t

System £ s said to be observable i§ the solution pairs

z(t), x(t) of ZT Aatiééyl

v
(o]
¥

(43) y(t) =0 v t x(t) =0 vV t=20.

It follows from a little time shift that this type of
observability is weaker than strict observability in the sense of
definition 2.3. In fact, let system QTV be strictly observable
and let z(t), t =2 -h, be a solution of QT with zero output for
t 2 0. Then xz(t+h), t 2 -h_, is a solution of Q' with zero
output for t > hu-hx. Hence x(t) = 0 for t = 0.

By remark 2.15, we can reformulate definition 3.2 in terms of

the structural operators.

3.3 REMARKS

m *
(1) System Q° is observable if and only if NT < ker F

or equivalently

* *
N = ker F N ker E .
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*
(ii) System 5T is observable if and only if NT ker F

or equivalently

* %
NT = ker F N ker E .

OBSERVABILITY OF NONTRIVIAL SMALL SOLUTIONS

Clearly, the existence of (nonzero) trivial small solutions
(definition III.2.2) with zero output for t = 0 does not afféct
observability in the sense of definition 3.2. What is needed for
this type of observability is that "zero output" and "small
solution" imply "trivial small solution”. Thig property will be
called observability of nontrnivial small solutions. For the

system QT this is equivalent to

i
o
<
ot
v
o

y(t) /
(44) = x(t)
x (t)

h

o

<

f1-

v

o

]

(o]
<
o+
v
o

and for the system & to

i
o
<C
v

y(t) ! t 0
(45) = x(t)
x(t) t h

i
(=]
<
o+
v
o

i
o
<
v

Making use of remark 2,15 and proposition II.3.10, we can
reformulate these implications in terms of the structural

operators,

3.4 REMARKS

(1) The nontrivial small solutions of QT are observable

if and only if

k %k *
(46) Xker F'GF n ker E'GF n ker [DGF + E'] < ker F .
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(ii) The nontrivial small solutions of ET are observable

if and only if

< x ok <%
(47) ker F*G*F* N ker E*G*F* n ker [D G F* + £ ] < ker F* .

Let us have a look at the special case of a system with
undelayed input variables. In this case & = 0 and the operator
D is of the special form described in remark 2.15 (iii) . Hence

condition (47) reduces to
* X * ok *
(48) ker FG N ker D G n ran F = {0} .

This is precisely the necessary condition for F—controllabiiity
which has been obtained by MANITIUS [95] for retarded systems. In
SATAMON [134] i£ has been proved that this condition, together
with spectral controllability, is also sufficient.

Our main results in the general case are summarized in the
theorem below. In particular, we prove that F-controllability is
dual to observability and that the latter is egquivalent to

spectral observability and observability of small solutions.

3.5 THEOREM The folfowing statements are equivalent,
(£) System T Ais F-controllable,

(£4] System T 44 spectrally controllable and

{(49) cl(ran FGF + ran FGE + ran [FGD + E]) = cl(ran [F E]) .
(iil) System QF s observable.
(v ) Sysztem QT s spectrally obsenvable and Zhe

nontrivial small sclutions of af  are observable.
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In fthe case T = 0 the following statements are equivalent

to (4), (44), (L44), and (Lv).
{v) System Q@ 4is F-controllable
(vi) System Q 44 spectrally controllable and
(50) cl(ran FGF + ran FGE + ran [FGD + E]) = <cl(ran [F E])

(vii) System =% 4is observable.

(viii) Sysztem 2T s spectrally observable and the

nontrnivial small solutions o4 =T ane observable.,

PROOF
(i) e (iii)" System X is F~controllable if and only if

the following implication holds for every ¢ € W1’q
* *
(FY,E ) L R = FYy=0, EUv=20.,

By lemma 1.4, this is equivalent to NT < ker F* N ker E* and
hence to observability of QT (remark 3.3 (i)).

"(iii) e (iv)" First let Q° be observable. Then we have
NT < ker F* = ker ST(h) < ker ST(TO) and hence QT is spectrally
observable (theorem 1.7). Observability of the nontrivial small
solutions is a trivial consequence of observability.

Conversely, let (iv) be satisfied and let =z(t), t = -h, be
a solution of QT with zero output for t 2 0. Then it follows
from theorem 1.7 that z € ker ST(TO) < ker ST(nh) and hence
z(t) = 0 for t 2= (n-1)h. Now we make use of the fact that the
nontrivial small solutions of QT are observable,and obtain by
induction that x(t) = 0 for t > 0. Hence QT is observable.

"(iv) & (ii)" This equivalence follows immediately from

remark 3.4 (i).

—
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The equivalence of (v), (vi), (vii), and (viii) can be proved
analogously. Hence it remains to show that (iv) is equivalent to
(viii) if T = 0. But the observability of QT follows from that
of ET since - in the case I' = 0 =~ system QT is the
restriction of ET to W1’p— solutions (remark II.3.3). Conversely,
it follows from lemma 2.9 that the observability of the small
solutions of QT implies the same property for system ZT.

Q.E.D.

Clearly, the nontrivial small solutions of QT
(respectively ET) are observable if there is no nontrivial small
solution. In this case observability is equivalent to spectral

observability.

3.6 COROLLARY

(£) 14 system QT {respectively ET) has no nontrivial

small so0lution, Zhen obsenvability is equivalent £o spectral
observabllity.
(LiL) 1§ system £ (respectively Q) L4 F-complete, Zhen

F-contrhollability Lis equivalent to spectral conirollability.

A MATRIX TYPE CONDITION

Oour next result is a computable criterion for observability
and F-controllability in the case of systems with a single point

delay. This means that L, M, B, and I’ are given by

(51.1) Lo = A0(0) + Ao(-h) , ®€C,
(51.2) Mp = A_1¢(—h) ' o€ C,

(51.3) BE = B,E(0) + B,E(-h) , E € C([-h,01;R") ,
(51.4) re€ = B_E(0) + B_,E(-h) , E € C([-h,01;®™) .
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3.7 THEOREM Let 1L, M, B, ' be given by (51). Then Lhe

nontrivial small solutions of ot ane observable Lf and only if

1 1

AR, O B,

max rank
AEC
(52) :

[A “AL AJHAA_, B +AB_ B1+AB_1]

*AB_, O

= n 4+ max rank [A1+}»A_1 B1+AB_1]
AEC

PROOF Let K €N be the maximal rank of the matrix

A,AL  BAq+AA_, B_+AB__ B,+AB_,
[A(x) B(k)] = ©

A +AA_ 0 B, +AB_ 0

1 1 1

and k €IN the maximal rank of (A, +AA_, B, +AB_,]. Then K is

T 1

always less than or equal to n + k.

NECESSITY

Suppose that K < n + k. Then we prove in three steps that

T

the nontrivial small solutions of @ are not observable.

Step 1 There exist polynomials

£ : £
pA) = §F pat, g = 7 gl
j=0 =0 J
in R"[A] such that p(A) % 0 and
(53) (pT(A) qT(A)> [A(A) B(A)] = 0 VAEGT

Proof Let M(A) and N(A) be unimodular matrices of

appropriate size such that
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g (A) 0+ + 0

u [ao) o] won = ag(B) 0+ 0
- ) : 0 - L L] O O . . 0

0+ « <0 0+ « 0]

is in Smith form. Then the last 2n - K rows (pjT(A) qu(k)>,
j = K+1,..,2n, of M(A) satisfy (53). Now suppose that the
polynomial vectors pj(h) vanish identically. Then the qj(A}
are linearly independent (for every A € C) and satisfy

LT
a’ () [A1+AA_

1 B1+AB_1] = 0

¥| This implies that the maximal rank of the matrix [A1+AA_1 B1+AB_1]

| is less than or egqual to n -~ (2n - K) = K - n < %k, a
contradiction. o
Step 2
T AT - - T
(54.1) AgPg t Adg 0. Py Blqdp ¢
. D = ar + aTq + A~ j = 0 £-1
5 oP3+1 19541 ~1%3 ) e ‘
ATp = 0, AT o) = 0,
(54.2) 10 -152
* T T
A1pj+1 + A_1pj = 0, j =20, :2-1
T T _ T T -
(55.1) BoPg + Bygp = 0 BooPp * BL4qp = 0
: T T T T _ . _
Bopj+1 + B_Opj + B1qj+1 + .B_1qj = 0, j=0,...,2-1
BTp = 0, BT p, = 0,
(55.2) 10 -152
* T T .
B1pﬁ+1 + B_1pj = 0, j=0,...,8-1

Proof These equations follow from (53) by comparision of the

coefficients. In particular, the following equation holds
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AT - AI}p(k) + [A

o
it
e

T
1

1

. 2
T T \,J _
(Aopj HESE S) )

]
Il 10

This proves (54.1). The equations (54.2) and (55) can be establish

established analogously. u]

Step 3 Let x(t), t =2 -h, be defined by

-

£+1 3 J
i (t-h) 7\ -

544 <q£+1-j 37 T Pgyq-y 37 )+ Th=se<0,

- L+1 j
- (t=h)
z(t) = j£1 Ppa1-g — 30— : 0<t<h,

0 , h<t<o

\

Then zx(t) is absolutely continuous for t = 0, not identically
zero on [0,h], and satisfies the equations

T

(56) z (€) z(t-h) ,

_ .7 T

= Aj@(t) + Ajz(t-h) + AL,
(57) y(£) = Blz(t) + Byx (t=h) + BT z(t) + Bf1é(t—h) = 0,
for t =0

Proof These equations can be proved straight forward by the use

of (54) and (55). We will only show that (56) holds for 0 < t < h.
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. b4 3
(t-h)
z(t) = )} pp_ . =i —
j=0 £-3 Il
L J
_ [.T T (t~-h)
- j£1 \PoPe+1-3 © B1%41-3) T31
£+1 3
_ T, T (eem3 e
= AgE(t) + Ay j£1 Des1-3 ~ 31 T Ao
L+1 3 L
T (t-2h) T
+ 2 Alp Ly T+ z AT p,_=
=1 15L4+1-75 j! 3520 158-3
= alz(t) + alz(t-h) + AL z(t-h) , O

Step 3 shows that the nontrivial small solutions

are not obserwvable.

SUFFICIENCY

Suppose that K =n + k and let x(t), t 2
of QT such that =z(t) = 0 for t =2 h and the
output y(t) vanishes for t = 0. Then we prove

that z(t) = 0 £foxr t = 0.

b
T
+ )Y AT,q, . —rt—
520 1%8~7 j!

Iv

(t=h)J

§ q, - (t—.h)j
320 £-7 BE
(t=-2h) 7
J!
<t <<h . o

of system QT

-h, be a solution
corresponding

in four steps

" Step 1 The complex functions
- h _ A 2h _
200 = feMzyar , A = [ e r(t-myat
0 0
satisfy the equation
~ A A _A.I A +A.A_ B +A,B_ B +A,B_
(o o) [ o 1 ¥AR_y BoFAB_, By 1]
A1+AA_1 4] B1+A.B_1 0
(58)
-I A B B
= (xT(O) xT(-h)) [ -1 oo 1] R
A, 0 B4 0
Proof For every A € €, we have



Iv 185

[T

[

T "
+ AA_1Jx(A)

h h
= e AtATx(t)dt + Ae_AtAT x{t)dt
1 -1
0 0
D el T - T
= Je <A1x(t) + A_1x(t)>dt + A, (0)
0
h -Atf° T T
= e x(t+h) - A x(t+h) }Jdt + A", 2 (0)
0 -1
0
= al z(0) ,

T ~ [T A
[AO - Al]m(k) + LA1 + AA 1]x()»)
Dol T h “At(,T
= fe (A z(t) + A1x(t—h)>dt + [Ae A_,z(t-h) - x(t))dt
0 °© 0 \"-
2h
+ [AT + AAT1]I e Mz (t-n)at
h

h . .
= fe-At(Agx(t) + A?x(t—h) + A?1x(t-h) - x(t))dt

0
- e Tz + 2l z(-n) - z(0) + (al + aal 1e™ Pz ()
= al.z(-h) - z(0)
The other two equations can be proved analogously. o
. . kxn kxn
Step 2 There exist matrices A, () €RTU[AL, By (M) €RTIAL
such that
(A _-AI Ay+AA_q B_+AB_ B +AB_,
(59) max rank © © = n+k,
AEC _A1(k) 0 B1(A) 0
(60) max rank A, () B1(A)] = k.,
AEC ‘
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-and for almost every A € €

(61) ker [A1(k) B1(k)] = ker [A,]-i—AA_1 B1+XB_1]
Proof By assumption, zrank [A(AO) B(lo)] = n+k for some AO € C.
Hence the matrix [A(KO) B(Ao)] has n + k 1linearly independent

rows. Precisely k of these are contained in the lower

nx {2n+2m) ~block of the matrix [A(AO) B(KO)] which is given by

1 - i A
[A1+AOA_1 0 B1+/\OB_1 0). Now let the matrices A1(A), B1(A)

consist of the corresponding k rows of the matrices A1+AA_1,

B,+AB_,. Then A,(A) and B,(A) have the desired properties. a

7°

k

Step 3 There exists a rational matrix T(A) € R (A) such that

(62) A¥AA_, = T(MAL(A) , B#AB_, = T(AMB, (M)
for almost every A € C.
Proof By (60), there exist real matrices A, E:R(n+m—k)xn and
B, € R(DFM=K) XM ioh that
A, (A) B, (A)
(63) det £ 0
: A2 B2

Now let T(A) € R¥K(), (V) e RMMMK) 4y pe defined by

-1
A, (A) B1(A)]

[T(A) R(A)] = [A1+M\.__1 B1+A.B__1]
B B

Then

T(l){Aj(A) B1(A)] + R(x)[gz BZ] = [A1+AA_1 B1+XB_1J .
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By (61), this implies
ker [A1(x) B1(k)] c ker R(A)[A2 32]

for almost every A € C. Moreover, we have in any case
ker [Az B2] < ker R(A)[A2 B2]

Finally, it follows from (63) that
__n+m
ker [A2 B2] + ker [A1(A) B1(A)] = C

for almost every A € €. Hence R(A)[A2 le = 0. o]

Step 4 The solution x(t) of QT vanishes for t = 0.

Proof It follows from (58) and (62) that
~ A A -AI A.+AA_, B _+AB__ B +AB_
(64) (xT(A) ST(A)T(M) ° 17721 "o ™o T, T,
A1(A) Q B1(A) 0

Moreover, by (59), there exist unimodular matrices M(A), N(A) of

appropriate size such that

(A AT A.+MA , B +AB _ B.+AB
M) o) 1 1 "o -0 1 -1 N (A)
A, (A) 0 By (M) 0
ra1(A) 0 « «» « 0
an+k(k) 0«0

is in Smith form where all the aj(k) are nonzero polynomials.

Now let N(A) consist of the left n + k columns of N(A).

*
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Then we obtain

a1(k)—
A -AT A.+AA . B #AB _ B.+AB . 1. .
a0 0 B, (A) 0 T
d'n+k(>”)

= In+k

By (64), this implies
a7
2t N(A) .. M(A) = (:::T(A,) ET(;\)T(A))

: -1
an+k(k)
The function on the left hand side is of exponential growth zero.
Hence it follows from a theorem of Paley and Wiener (see e.g.
RUDIN (131, theorem 19.3]) that x(A) = 0 and thus z(t) = 0

for t = 0. o

The criterion in the previous theorem can be generalized to
systems with commensurable delays, but we will not do this here.
In a more generél situation, the derivation of an analogous
result seems to be a hard problem.

For retarded systems with undelayed input variables (i.e.
Ay =0 and B_ =B_, = By = 0), the criterion of theorem 3.7
reduces to

(65) rank [

i Bo
= n + rank A1

for some A € C. This condition has been derived by MANITIUS [95].
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Moreover it has been proved in [95] that (65) implies the

existence of a feedback matrix K € mm“n such that the closed

loop system

x (£) A_x(t) + A;x(t-h) + B_u(t)
(66)

u(t)

Rx(t) ,

is F~-complete. This is equivalent to

= n + rank A

A +B K-AI A ]
0 1
1

(67) rank [

A Q

1

for some A € € (corollary III.2.5). In the presence of input
delays such a statement is meaningless since a feedback changes
the structural operator F, even if there are no (additional)

delays in the loop.

3.8 EXAMPLES

(1) We have seen that the scalar n-th order differential-
difference equation (29) is spectrally controllable (example 2.13
(1)) and F-complete (example III.2.6 (ii)). Hence (29) is
F-controllable (corollary 3.6).

(ii) Consider system (33) which is described by the matrices

_[oo _[10 _ o1
o [_-10]' A1”[00 ’ A—1‘[oo]'

_s -=n -0 _I
Bo "B =By~ [o] » By T [o] '

e
I

(see example 2.13 (iii)). This system is spectrally but not

approximately controllable. However, condition (52) is satisfied

Since

;_‘
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-~ 0 1 A 0 1

rank -1 -A 0 0 0 O
’ 1 A 0 0 1 0

6 0 ¢ 0 0 O

for every A € C. Hence (33) is F-controllable.

Note that F-controllability of (33)

delay in the input disappears which means that the matrices

and B are interchanged.

1

If there is any distributed delay in the svstem, then we

cannot apply theorem 3.7. However,

in some cases it is still

will be destroyed,

if the

possible to say something about F-controllability. We will do this

in a final example.

3.9 EXAMPLE We shall prove that the NFDE

(68.1)  d/dt (x1(t) - x3(t-2))

. 0
(68.2) Xz(t) = xz(t—T) ¥
. 0
(68.3) x,(8) = fu(t+t)dze

-1

is F-controllahle, but not controllable in the sense of

definition 2.1

(1) Spectral controllability. We have to show that the

matrix
1 2
-A
‘ A1 e A-1
[A(A) B(e"')] = 0 a-e?
0 0

is of rank 3 for every A € C.

fx3(t+r)dr
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A =0 Note that 1lim A~ (1-e™) = 1. Hence the columns 1, 2,

A-0
and 4 are linearly inpependent.
A =1 The columns 2, 3, and 4 are linearly independent.

A€ iR, A % 0 In this case: A #* eFA and hence the columns

1, 2, and 3 are linearly independent.

-

A& iR, A+ 1 in this case e # 1 and hence the columns

1, 3, and 4 are linearly independent,

(1i) F-controllability. We have to show that the nontrivial

small solutions of the transposed system

(69.1) & () = @ (t) ,
« O
(69.2) z, (t) = fm1(t+f)dr +a, (t-1)
- -1
. . 0
(69.3) x3(t) = x1(t~2) + _{xz(t+r)dr ,
0
(69.4) y(t) = fx3(t+T)dT ’

-1

are observable (theorem 3.5). For this sake let xz(t), t > -2, be
a solution of (69) which vanishes for t > 1, and suppose that the
corresponding output y(t), t = 0, is identically zero.

Then 0 = y(t) = x3(t) - x3(t-1) for t =2 0 and hence
x3(t) = 0 vV t=-1.

By (69.3), this implies

R t+2
x1(t) = - xz(s)ds . t
t+1

v
1
o

14

and thus

x1(t) = 0 Yt=0.
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Finally, it follows from (69.2) that

. t+1
z,(t) = x,(t+1) - [ xz.(s)ds = 0 VYt =20
2 2 k 1
(iii) Approximate controllabilityv fails. Let xj(t) = x3(t)

= 0 for t 2 -2, and let xz(t) be nonzero for =2 £ t < -1 and
zero for t = -1. Then it is easy to see that z{t) 1is a small
solution of (69) with zero ocutput for t 2z -1 = hu—hx. Hence the
small solutions of (69) are not observable. We conclude that (69)
is not strictly observable (proposition 2.7) and hence (63) is not

approximately controllable (theorem 2.6)

CONCLUSIONS

At the end cof this chapter let us briefly review the

controllability properties of the NFDE
/ - - = -7 =
(70) d/dt \x(t) A_,x(t-h) = Ax(t) + Agx(t-h) + Bou(t) .

In section 2 we have shown that this system is approximately

~controllable in the state space M®  (or equivalently in W1’P)

if and only if

(a) rankA[A(k)-Bo] ‘= n YAECT,
{(b) max rank [A1+AA_1 Bo] = n,
AEC

(see also BARTOSIEWICZ [10], O'CONNOR-TARN [110]).
Motivated by several examples and by the work of MANITIUS

[911, [95] on retarded systems, we have introduced in section 3
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the weaker concept of (approximate) F-controllability. We have
shown that, for the system (70), this concept is equivalent to

condition (a) and

A ~AI  Bj+AR_, B
(b") max rank . = n + max rank [A1+AA_1] .
AEC A1+AA_1 0 0 AECQ

On the other hand example 1.12 shows that a system of the form
(70) may be approximately controllable even though it is not
stabilizable through a feedback of the form

. 0
(71) u(t) = K 1x(t—h) + K x(t) + K,x(t~h) + fK. (T)x(t+T)dz
- o 1 -h_°1

(O'CONNOR-TARN [111], see also chapter V). Does this mean, that
weakening the concept of approximate controllability was a step
into the wrong direction ? We guess that it was not ! To be
more precise, we note that system (70) is stabilizable through a
feedback of the form (71) (with arbitrary decay rate) if and only

if condition (a) is satisfies and

(c) rank [AI-A_1 Bo] = n YVAEC, A +0
(section V.1, O'CONNOR-TARN [1111). Condition (c) means that the
nonzero eigenvalues of A_, are controllable via the input matrix

B,. On the other hand controllability of the zero eigenvalue of

A__1 is equivalent to
(d) rank [A B ] = n ,
-1 o

This condition is stronger than (b). Hence the conditions (c) and
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{b) are independent. In other words, controllability of the
eigenvalue A = 0 of A__1 is completely unimportant for the
purpose of stabilization. It may just be the goal of feedback
| to make all the eigenvaiues of A__1 + BOK_1 to be zero by .
F choice of K_1 (dead beat control). Hence the weakening of
condition (b) does not affect the feedback stabilization
ﬂ properties of system (70).
The question remains if condition (c) has something to

do with the state space properties of system (70). For this

sake let us have a look at the stronger condition
(e) rank [AI—A_1 Bo] = n YyAecC

which is equivalent to (c) and (d). It has been proved by

JARKUBCZYK [62] that (e) is satisfied if and only if the
reachable subspace R of (70) is closed in W1’p and has
a finite codimension. This shows that (a) and (e) together
are equivalent to exact controllability of system (70) in
the state space W1’p (see also RODAS-LANGENHOP [1301,
BARTOSIEWICZ [10, proposition 18], O'CONNOR-TARN [11Q,

corollary 5.8]).

CONJECTURE System (70) is exactly null-controllable in the

state space W1’p if and only if (a) and (¢) are satisfied.
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CHAPTER V

FEEDBACK STABILIZATION

AND DYNAMIC OBSERVATION
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The problems of feedback stabilization and dynamic
observation for retarded systems with undelayed input/output-
variables have been widely studied by various authors. For the
feedback problem we refer to KRASOVSKII [76], OSIPOV [123],
KRASOVSKII-OSIPOV [78], PANDOLFI [125], MaNITIUS {91], OLBROT
[118], OLBROT-GASIEWSKI [120]. The dual problem of designing
a Luenberger type observer for retarded systems with undelayed
output variables hes been investigatad e.g. by GRESSANG [40],-
GRESSANG~LAMONT (41], HEWER-NAZAROFF [51], BHAT-XOIVO [12],

CLBROT [115], SALAMON {132], LEE-OLBROT [83]. Some duality
results between these two concepts can be found in SALAMON [135].

The feedback problem for systems with control delays only has
been treated by OLBROT [113], MANITIUS-OLBROT [97], and - with
different methods - by KWON-PEARSON [80]. WATANABE-ITO [148] and
KLAMKA [72] have constructed a dynamic compensator for systems
with delays in control and observation. A stabilizing control law
and a dynamic observer for retarded systems with general delays in
input, state, and output has been developed in SALAMON [133].

' There has also beesn dcne some research effort for solving the
feedback stabilization problem and designing a dynamic observer
for delay systems within the algebraic theory of systems over
rings. Results in this direction can be found e.g. in KAMEN [66],
MORSE [108], SONTAG [141], HAZEWINKEL [45], HAUTUS-SONTAG [44].

Only very little work has been done on feedback stabilization
of neutral systems. The only papers in this area seem to bé ﬁhose
of PANDOLFI [126], JAKUBCZYK-OLBROT [63], and O'CONNOR-TARN [111].
These papers do not allow delays in the input variables. Moreover,
the assumptions in JAKUBCZYK~OLBROT [63] are rather strong, and
the main result in PANDOLFI [126] (infinite pole shifting) is wrong
Some interesting ideas can be found in O'CONNOR-TARN [111].

Apparently, there are no results on dynamic observation of

NFDEs in the open literature on delay systems.
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V.1 PRELIMINARIES

The main problem in stabilizing a NFDE =~ in comparision with
the retarded case - is the fact that there might exist an infinite
number of unstable eigenvalues. Therefore a neutral system has to
be stabilized in two steps. First one has to apply a control law
which guarantees that there are only finitely many eigenvalues
left. This means stabilization of the difference equation (seé
O'CONNOR-TARN [111] for systems with a single point delay). In a
second step the resulting closed loop system can be stabilized by
finite pole shifting (see PANDOLFI [126] for NFDEs with state
delays only).

Before going into details, let us discuss first the problem
of stability. It is in general not known if the asymptotic
behaviour of the semigroups S(t) and S(t) (introduced in
section II.1) is completely determined by the spectrum of the
generator., Therefore we have to restrict ourselves to the case
that the function w: [-h,0] » R of bounded variation
contains no singular part. This means that wu(t) can be written
in the form

0

1 = - -0 : -
(1) p(x) j£1 A-jx(-w,nhj](t) iA_w(c)dc~, h<t=<o0,

J
function of the interval (-m,—hj], and the matrices A_j satisfy

where 0 < h, <h for j €N, X (o0, ~h 1 denotes the indicator
~c0,-h.
J

w Q
@ T 1Al + fla )| ar < > .
3=1 J -h

The bounded, linear functional M : C -» R™ is then given by

| «© 0
. (3) Mo = ¥ A_jw(—hj) + éA—m(t)w(T)dT , @ €C .

- |

J=1
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In this case it has been proved by HENRY [50] that the exponentia:
growth of the semigroup Sc(t) : C » C is in fact determined by
the spectrum of its generator (see also HALE [42, section 12.101)
The same arguments apply to the semigroups S(t) and S(t)
.(compare theorem 2.7 below) More precisely, we have the following

result.

1.1 THEOREM (Henry)

Llet M : C >R be given by (3), (2). Then

w_ = lim t ' log |[S(t)]]
Q oo L (mP)
= lim 77 log [[S(8)||
oo LW ’P)

= sup {Re A|X € o(a)} .

There is another reason for restricting the discussion of .
this chapter to the case that M is given by (3). This is the
fact that the sequences of eigenvalues of A with bounded real

vart are already determined by the difference egquation

z x(t) = ]

A_.X(t-h-) e
NI i

The eigenvalues of EO are characterized by the complex matrix

function
3 i
(4) AO(A) = I - E A e .

The relation between the eigenvalues of ¥ and those of ZO is

explained in the following lemma which can be obtained by combini



v 209

HALE-MEYER {43, p. 37, lemma 1] with HENRY [50, lemma 3.2]. For

completeness, we give a proof of this result.

1.2 LEMMA Let a < B be gdiven. Then the folLlowing statements
are equivalent.

(4) Therne exists some Ao € ¢ such that o < Re Ao < B
and det AO(AO) = 0,

[L4) There exdisis some € > 0 and a sequence Mo EC such

that |Im A Zends o Anfinity, a+e < Re Ay < B-e, and

!
det A(A) =0 forn every k € NN,

PROOQOF First note that
-1 9 AT -1., A
A AN = A (W) - (A _(t)e”tdt - A L(e™) , A E€EC,
[o] -h —c0

and hence the limit

I
o

(5) lim A7 det A(A) - det A_(A)]
fzmA| - o °
exists uniformly for a < Re A £ B (this follows from the lemma
of”Riemann-Lebesgue). Moreover, det AO(A) is an almost periodic
function in the strip a < Re A < B (see e.g. BOHR [15],
CORDUNEANU [23]).
"(1) = (ii)" Choose € > 0 such that o+2e < Re A< B-2¢

and the implication
0 < |a-
| A Aol < € = det A_(A) # 0
holds for every A € €. Also define

& = inf ldet A, > 0
[A-2 ] = ¢
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Then, by (5), -there exists some constant ¢ > 0 such that the

inegquality
(6) 27" det a(A) - det AJM | = 8/3

holds for every A € ¢ which satisfies o £ Re A £ B and
|Im A| 2 c. Since det A_(A) is almost periodic in the strip
a £ Re A £ B, there exists also a saguencse =N of real numbers

tending to infinity and satisfying

ley + Im AO] > c+ e,
(7)

|det A (A) = det A (A-icy) | < 8/3,

for every k €N and every A € €, & < Re A £ B,

Figure 5

By (6) and (7), the following inequality holds for every k € IN

and every XA € € which satisfies IA—AO—ickI = e,
-n ._. .
IA™ det A(X) - det AO(K—le)I

< 28/3 < & = inf |det A& (A-ic,) |
]k—lo—ick| = €



Hence it follows from Rouché's theorem that, for every k € IN,
there exists some A, € € such that IAk—inck| < e and
det A(Ak) = 0.

Y(ii) = (1) Suppose that det AO(A) # 0 for every A € C

which satisfies a < Re A < B. Moreover let € > 0 and define

& = inf |det AO(A)[ .
ate £ ReA £ B-e
Then it follows from a result of LEWIN [86, p. 267] that & > 0.
Applying again equation (5), we conclude that det A(A) # 0 for
every A € C with a+e £ Re A £ B-e£ and sufficiently large

imaginary part. This contradicts (ii).

The above result has important consequences for the feedback

stabilization of system Q where M is given by (3) and B, ' by
(8) BE = BEO , TE=0, EE€C(-hoRY ,

(no input delays). By lemma 1.2, the uncontrolled system has
infinitely many unstable eigenvalues - including sequences with

real part tending to zero - if and only if
sup {Re A|X € €, det A (M) = 0} P 0 .

Hence a simultaneous shifting of these eigenvalues to a stable
region of the form {A € C|Re A < -e} by state feedback requires
a change of the difference equation z, (this important fact has
been Tecognized by O'CONNOR-TARN [111, theorem 2] for systems

with a single point delay). Hence we have to allow control laws

of the form

*—_
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- . 0 .

(9) u(t) = ) K_,z(t-h.) + [K__(T)x(t+7)dT + Kr,
j=1 7 ] -h 7%

for system Q. We assume that K 1is a bounded, linear functional

on C with values in ®" and that the matrices K-j satisfy

SN I
1 IR -

(10)

DO

e~18

IIK—w(T)Ilﬁgun ac < o .

3

These observations show that the infinite pole shifting
result of PANDOLFI [126] is wrong, since the control law in [126]
does not change the difference part of the équation.

By theorem 1.1, the closed loop system Q, (9) is
exponentially stable if and only if there exists some € > 6 such
that
I— b -Ah

.0
TAE_.e 3 +AfetR__(m)dr + K(e"')]} + 0

.
det- § A(A) - B
i °Lj=1 =3 -h

for every A € € with Re A 2 —-€. By lemma 1.2, this implies that

. —Ah.
o K_.e ] 1_ + 0

1 =]

e~ 8

det [ Ao(l) - B ;

for every A € € with Re A 2 -e. Hence, we obtain two necessary

conditions for stabilizability.

1.3 COROLLARY Let M be given by (3) and B, I' by (8).

Moreoven suppose that system Q can be made exponentially sitable

through a contrnol Law of the form (9). Then there exists some

g€ > 0 such that

v
!
@

(11) rank [ A(X) BO ] = n YVAEC, ReaA

v
i
[v]

{(12) rank [ AO(A) Bo ] = n YVAEC, ReA



|
|

The necessity of condition (11) has already been proved by
PANDOLFI [126] and the necessity of (12) by O'CONNOR-TARN [111,
theorem 3.1] for systems with a single point delay. The following

examples show that these two conditions are independent.

1.4 EXAMPLES Consider the NFDE Q where L and M are given by

(13.1) Lo AO@(O) + A1¢(—h) '

(13.2) Mo = A_,o(-h)-, ®€C,

and B, I' by (8). Then condition (12) is equivalent to
rank [I—A_1e—kh Bo] =n for all A € C with Re A 2 0.

This means that
(14) rank [ sI-A_; B, ] = n Yvsec, Is| =21 .

17 Bo are as in example

IV.1.12, then system Q is spectrally (even approximately)

(1) If the matrices Ao, A1, A_

controllable, but (14) is not satisfied.
(ii) 1If A, =A; =0, m<n, and if the matrix pair
(A%1'Bo) is controllable, then (14) is satisfied, but the

eigenvalue A = 0 of system Q is not controllable.

The question remains if (11) and (12) are also sufficient for
the stabilizability of system Q. One might expect that condition
(12) guarantees the existence of a stabilizing control law for the

difference equation 20 with the additional input Bou(t).

STABILIZATION OF THE DIFFERENCE EQUATION

Let us consider the case that p has only finitely many

Jumps such that the difference equation I, is of the form



N
by x(t) = ]

A .x(t-h.) + B u(t
L Bgelemhy) + gu(e)

Moreover we will first focus our attention on the extreme
situation that no two delays are rationally independent.

Then we can assume that

j=1,.oo,N’

=
it
Q
[l

for some o > 0 {(commensurable delays). In this case (12)

b is equivalent to

| : N .
i (15) rank | s'I - N s B 1 = n VvseEc, |s| =21
1] j=1 ) o |
and hence to
[ - = N
. sI A‘_“1 A_2 A—N Bo
-I sI 0
rank . = : = nN
A -I sI o ]

for every s € @, [s| = 1. This condition is satisfied if and only
if there exist feedback matrices K-1""’K—N E.Bpxn, such that

the eigenvalues of the block matrix

A_,+B_K_, A_*B_K_y




are inside the unit circle. It is easy to see that this is
equivalent to the stability of the closed loop system Z,

with the control law
N
(16) u(t) = ] K_. x(t=hj) .

We conclude that, in the case of commensurable delays, condition
(12) is in fact equivalent to the stabilizability of the
difference equation ZO.

The derivation of an analogous result for systems with
rationally independent delays seems to be a difficult open
problem. But note that a statement in this form is only useful
if all delays are fixed and known exactly, and if the delays
can be determined precisely in the loop (16). These assumptions
will be rather unrealistic, in general. In the applications one
can assume that all the independent parameters are not known
exactly. However, not all the parameters will be free in any
case. For example, a "shunted transmission line" (HALE [42,
section 12.5]) may lead to a scalar equation of the form Z,
where N = 3 and h3 = h1 + h2. In this situation one should
allow variations of the delays h1 and h2, but the third delay
islalways the sum of these two.

If there are any two independent delays, then we have to
deal with the difficulty that the stability of Z, is highly
sensitive with respect to variations in the delays (see e.g.
MELVIN [103], HENRY [50], HALE [42, section 12.5], CARVALHO [20]).
Contrary to this sensitivity, stability is not affected by small
variations in the coefficient matrices A—j'

In the extreme case that all delays are independent, it
should be the goal of feedback to make the system Zq sLrnongly

dtable, i.e. stable for any choice of the delays h1,---,hN-

| — O
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A characterization of strong stability has been given by HALE [42,
section 12.5, theorem 5.1]. He has shown that system Zo is
strongly stable if and only if it is stable for some fixed,
rationally independent set of delays ‘{h1,...,hN}, and that this

is equivalent to
N id.y\ |
(17) r(E > 1= sup {r( ] A_.e J> 0298, < 2n} < 1
o 3 -] J

where »r(T) denotes the spectral radius of a matrix T.
‘ : A necessary condition fof strong stabilizability is that (12)
l? holds for every set of delays h1.,...,hN (e depending on the
hj). It seems to be a difficult open question whether this
u condition is also sufficient.
L; Again, there is the additional difficulty that the delays

in the feedback loop must be determined precisely in order to

compensate any of the matrices A_j. If this is not possible, i.e.
if the delays in the feedback loop are allowed to vary (within a
certain tolerance) independently of the delays in the given
equation, then évery feedback term BoK—j has:td‘be treated as an
additional term in the difference equation Eo‘ Now the followin
lemma shows that r(zo>, as defined by (17), becomes larger with
every additional term. We conclude that - in the case of
independent delays in the given equation and in.the feedback loop -
any control law of the form (16) leads to a worse stability
behaviour of the difference equation ZO.

The proof of the following result has been personally

communicated to the author -by U.HELMKE.

n

1.5 LEMMA Let A, T € ¢™™™ be given. Then

r (A) < STP r (A+sT)
' s (=1




PROOF Suppose that

sup r (A+sT) < r(A) .
[s]=1

Moreover note that

K 1/k
r(A+sT) = 1lim || (a+sT)"|] .
k=0
Hence it follows from the compactness of the unit circle in the
complék plane that there exists some k € IN such that
k k

[ | (Aa+sT) | | < | |a™] | YyseEcC, [s] =1 .
This is a contradiction to the maximum principle (HILLE-PHILLIPS
[53, theorem 3.13.1]) applied to the holomorphic matrix function

k
s - CA+ST) ¢

Q.E.D.

Let us now suppose that the difference equation EO is
exponentially stable. Then system I has only finitely many
unstable eigenvalues and we can apply the finite pole shifting
method of PANDOLFI [126] for NFDEs with general delays in the
State variable and undelayed input variables, In section 3 we
Prove an analogous statement for systems with general delays
in state and input as well as the dual result for NFDEs with
output delays. For this sake we have to study the perxturbed
Semigroups which are obtained by applying the results of section

T T o =

I.3 to the systems ®7, 37, %, Q. This will be done in the

next section.

=
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V.2 THE PERTURBED SEMIGROUPS

' Throughout the rest of this chapter we will always assume
that I' = 0. Moreover, for the stability results, we need the
F assumption that M is given by (3).

r

This section is devoted to the study of the {(perturbed)

semigroups arising in state feedback and dynamic observation

!
f
!

of a NFDE. On the level of the state space description we will
discuss the closed loop feedback system only within the dual
state concept (forcing terms). Hence we will work with the
systems g and T in the state spaces M and w P, one
reason for this choice are the infinite dimensional variation-of-
constants formulas given in theorem II.3.6. Correspondingly the
observer semigroup will be introduced within the original state
concept (initial functions) represented by the systems ET and

QT in the state spaces %  ana W1'q. Let us begin with the

. T
observer semigroup of system I°.

THE OBSERVER SEMIGROUP.

Recall that the state (z(t),xt) e M3 of system g7 is
described by the semigroup ST(t). The corresponding .output

operator BT ) W1’q > R" is given by

0
8Ty = fasT(viu(n) , vew'q,
-h

and cannot be extended to an operator on Mq, in general. However,

this output operator satisfies the hypothesis (H3) of section I.3

which means that for every T > 0 there exists some bT > Q such

that




T.T T
[1B7S™ (g | < bo v 0] ]
L (10,1 ;R T ma

for every U € W1'q (remark IT.3.4 (ii)). This fact allows us to
apply the theory of section I.3 in order to obtain an observer
semigroup Sg(t) in the state space M2, Therefore we permit

output injection operators KT : Bgn > M4 given by

T
Kly = (Kgy,K1(.)y) e MT, vy er",

where X e ®™®  ang R, (.) € L ([-h,0];R™" .

By theorem 1I.3.9, there exists a unigque Co-semigroup
S;E(t) : um? - M4

such that the following equation holds for every ¢ € W]’q and

every t > 0

t
(18) sg e = sTe) Ty + [sTe-s) k"8 () vas .
0

The infinitesimal generator of this semigroup is given by

dom Ag = ran LT ’
Ty = AT Ty o+ k"5 pew d,
or explicitly
T 1
(19) dom Ay = {yendfy' ew'q, ° =y () - Ty,
z :
agh = ol + <8000 + 5T 0BT

(theorem 1.3.9 (ii), (iii)). This operator is not of the same type

E
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as AT unless K1(,) = Q or BT = Q. Hence the semigroup Si(t)

m

A

; does not correspond to any neutral system of the form L7, in
general (compare SALAMON [132] for retarded systems in the state
space (). However, we will show that Si(t) can be regarded as

| a state space description for a-certain system of the type (I.13).

We make use of the abbreviation

0
K? ¥ (1) = ij<r—c)g(o)do , -h
T

A

T < 0.

it 2.1 THEOREM Let v (.) € LI ([0,=);R") be given and Zet the

loc

rL' |
| thiple z € Wléz([o,w)ﬂRn), x € L _([-h,=) &),
v € Lgoc(i-h,m);EWB satisdy the equations
l : _ .7 . T T
! z(t) = L (xt + K1 * Vt) + Kov(t)
| T _ T T
A Ty x(t) = z(t) + M (xt + K1 * vt)
L _ g7 o P
! v(t) B (xt + K Vt) y(t)

gor t =2 0. Then

A PR, ==

e e e e e e 4 e e

~

(20) x(t)

(z(t) ,x, + Kf *v) e Ml

i o

{8 gdven by Zhe vardlation-of-consitants formula

N A t *
(21) x(t) = SZ()x(0) - gsg(t-s)KTy(s)ds

PROOF Let
sﬁ(t) s M9 x 19 L M9k 1f

denote the Co—semigroup which describes the evolution of the state
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(z(t),xt,vt) € M? x 19 of the homogeneous system zi, i.e.

0 (corollary I.2.4). Then the infinitesimal generator

y(t)
o . .
of SK(t) is given by

1

dom ig = {0 em x 19y e w9, ¢ e wY([-n,0];FY,

0¥ = w0 - MW kT, co = BT Moy

a0 = @Il o',

(theorem I.2.6). Moreover we introduce the bounded, linear

operator T : M% x 1.9 5 M9 by defining
Tw,) = Wl v k] x D), vemd, ge1d

Now let (¢,C) € dom Al

x and ¥ = T(y,T) € MI. Then

W1 € W1’q and

© = ° = o) - Tl Kf'* o = v - nTy .
Hence V¥ € ran LT = dom Ag. Moreover, by (19),

[agw1® = 1Tyl 4 KBy = nT! 4 K] * T) + K.C(0) ,

a1’ (n = vl + kT (08

= 2 (o + KT tm ) + K]
= o+ Kf * T, -h £t <0.

We conclude that T(y,7) € dom AT

x and AgT(w,g) = Tgﬁ(w,ﬁ) for
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every (U,T) € dom Ag. By lemma I.3.8, this implies

v
o

(22) S'f((t)’l‘ = Té;r((t) , £

Thus we have proved. (21) for the case y(t) = 0.
In order to prove the second part of formula (21), we define

72(t) € R™M™™, ¢+ > 0, and x(t) € R™™®, v(t) em™™, £ » -h, to be

the unique solution of the homogeneous system Eg (y(t) = 0)
corresponding to the initial condition
z(0) = K., X(1) = Ki(u), V(@ = 0,
for ~-h £ v < 0 (theorem I.2.3). Then, by (22), wa have
(23) (Z(£), X, + Kp * V) = Sg(OK t20 .

Moreover, we define

t
z(t) = - [Z(t-s)y(s)ds
0
t
x(t) = = [X(t-s)y(s)ds , x(t) = 0,
0
(24)
t
vit) = = [V(t-s)y(s)ds - y(t) , viz) = 0,
0
& T
x(t,T) = = é[xt_s(r) + Ky * Vt_s(T)]y(s)ds ,

~for- £t 2 0 and <-h < T £ 0. Then we obtain

t t 0
x(t,t) = = [X(t-s+7T)y(s)ds -~ | jK?(T-O)V(t-S+O)y(S)dOdS
0 0=



t
= x(t+1) - [ X(t-s+T)y(s)ds
t+T
0 t+o

- JK](v=0) [ V(t-s+o)y(s)dsdo
T 0]

0
= x(t+1) + [K] (t~0)V(t+o)do
T

and hence
T
x(t,.) = X, + K1 * Vo t=20.
This implies
. t.
z(t) = = [Z(t-s)y(s)ds - 2(0)y(t)
0
t O T T
= - ok
é _{dn (r)[Xt_s(t) + K, Vt_s(r)]y(s)ds

- KT ?V(t— )y(s)ds - Kiy(t)
o/ s)y(s)ds oY

= 1T (x(t,.)) + Kov(t)

- T T , T
L (x.t + K "Vt) + Kov(t)

1

and analogously

x(t) = z(t) + MT(xt + K? * v,
vit) = BT(xt + Kf * vy -y .

We conclude that the triple z(t), x(t), v(t) satisfies zg, which

means x(t) = (z(t),x_ + K; * v,) = (z(t) ,x(t,.)) . Hence, by (23)

1 t)
and (24), the following equation holds for every ¢ € MY
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A
< x(t),e >

It

< (z(t),x(t,.)),p >

t T
= j{z(t-s)y(s)] @Ods
Q

T

T4
1 (T)Y(S)] o’ (t)dsdT

o

* v

1
o
Ot

{x (t)y(s) + K

t-s t—-s

t
[ < Syp(t=s)K'y(s),0 > ds
a

.t
= < = fsg(t-s)KTy(s)ds,m > .
o]

2.2 REMARKS

(1) £ BT = q, then Sg(t) = ST(t) for every t 2 O.

In this case theorem 2.1 leads to the following interesting

- interpretation of an (arbitrary, finite dimensional) input

operator KT :.m@'# M2 for the semigroup ST(t).

Lez z € W.73([0,) /&Y and x € 1Y ([-h,=) R®)  satisdy

loc loc
the equations
z(£) = LT(x_ + K] * v.) + Kov(e) ,
(25) o _
= *
x(t) z{(t) + M (xt + K Vt) ,

§or some v € Lgoc([—h,W)ﬂRm). Then Zhe evozqtion 0f Zhe painr
T

§(t) = (z(t),xt + K]

of-constants formula

* v.) € MY s desenibed by the variation-

~ ~ t
(26) x(t) = ST(£)x(0) + fST(t-s)K'v(s)ds .
0



(ii) In the case Kj(r) = 0 equation (26) reduces to the
'classical' variation-of-constants formula (II.44).

(1iii) For retarded systems with undelayed output variables
theorem 2.1 has been proved in SALAMON [135, theorem 4.2]. A
preliminary version of this result for RFDEs with output delays

in the state space ( can be found in SALAMON [133].

Note that formula (21) describes the mild solutions of the

abstract evolution equation
2 T » T
(27) d/dt x(t) = Ay x(t) - Ky(t)

in the Banach space M2, This is precisely the observer equation
which was introduced in section I.3 (compare the equations (I.34)
and (I.35)). Hence we have to check the stability of the
semigroup Sg(t) on MY,

On the level of delay equations, system EE can be regarded
as a concrete observer equation for system ZT. In fact, it is
easy to see that, for any solution =z(t), x(t) of ET and any

corresponding solution z(t), x(t), v(t) of Eg, the 'error'

g(t) = z(t) - z(£) , e(t) = x(t) - x(t) ,

together with v(t) satisfies the homogeneous equation ZE
(note that the variable v(t) in zg may be interpreted as the

)

‘error of the output'). The evolution of this triple (g(t),et,vt
is describeqd by the semigroup Sg(t) on M% x ! which was
introduced in the proof of theorem 2.1. Therefore we will also

analyse the stability behaviour of this semigroup.
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For this sake we need the following characterization of the

spectrum of the operator AE via the complex matrix function

AT(A) —KT-LT(KT * ek')—kMT(KT % e}\')
T _ e} 1 1
~B7 (e"") I-B (K1 * e™t)
2.3 LEMMA
(<) The exponenitial ghowih 0§ system Eg L4 given by
-1 T
w, := lim t = log |[|S;(t)]|]|
K £ K L9
= lim t~' log Ilsg(t)]|
oo tm? x 19

(i) Let A €C and ¢, ¥ € MI be given. Then ¢ € dom Ai

and (AT - A4 =¥ if and only if

0
(29.1) ' (1) Ty’ (0) + f«a“"“’)(w1 (@) + Kf(o)B%‘)dc ,
T

(29.2)  w° = w'(o) - MTu' ,
i V(o) @© + 1T (e x wly s T (e % wl)
M pry1 3T (er * gl *

T, -1

(£44] The resolvent operator (AL = Az) L4 compact fon

every XA § o(a).
T

(iv) o(ag) = Po(ay)

PROOF (1) Note that the operator T : M? x 19 - Mq, introduced

c(gg) = {A € ¢|det Ag(k) = 0} .

in the proof of theorem 2.1, is surjective. Hence, by (22), the
exponential growth Wy of Sg(t) is not larger than the
exponential growth of Sg(t), On the other hand, let w > Wy and

P
let z(t), x(t), v(t) be any solution of the homogeneous system ZIg
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Then it follows again from (22) that the functions

[z ™, ||z, + K] * v

tend to zero if t goes to infinity. Hence, by the last two
equations in ZE, the function t - |[(z(t),xt,vt)|{e—(’°t is
bounded on [0,«). This proves that the exponential growth of the
semigroup gg(t) is less than or equal to w.

(ii) Recall that the operator Ag is given by (19). Hence
© and (AT - A7) = ¥ if and only if ¢ € w''9,

y° = ¢1(0) - MTw1, and

Y € dom A

(30.1) Al - LTyt - KgBTw1 = ¢° ,

30.2) wa'(r) - o'(m) - KT(T)BT¢1 = wv'(t), -h<tT<o0.

Note that (29.1) is equivalent to (30.2). If (29.1) is satisfied,

then (30.1) is equivalent to

kw1(0) = LT¢1 _ XMT¢1

v° 4 KgBT¢1

1

A(A)¢1(0) - LT(eA' *y) - AMT(eA' * gl

AaynT 1

yBTY Aoy, T 1

- LT(K] * e - (x] *x )BTyl |
T
also, BTy! ;g given by

T
B ljJ1 . BT(eX°)¢1(0) + BT(eA' * W1) + BT(K$ * eA.)BT¢1 .

T N
hese two €quations are equivalent to (29.3).
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~m

By theorem I.2.7, the spectrum of the operator AK (i.e. of

system Zg) is characterized by the complex matrix function

i ' [ AT - 1T M) - Kg - LT(Kf x ety
pry) = | -1 T - uE(eM) - M7 (] * et :
0 - 8T (M) T- BT(K? x gh)

[b]
*.—I

Scme ementary ceperations show that this matrix becomes
. 5 - . T e .
nensingular if and only if det AK(A) + 0. Now (iii) and (iwv)

follow easily from (ii).

| In the following we will assume that M is given by (3).

Then the next result shows that the stability of the difference

egquation Zg

is a necessary condition for the stability of the

closed loop system EE.

2.4 LEMMA Let a < B be gdven, Then the following statements
are equivalent,
(<) Thene exists some A, € € such that o < Re A < B
T =
and det AO(AO) = 0,
(4] There exists some € > 0 and a sequence Ao €T such

that |[Im A Zends Zo Anfinity, ate < Re A S B-e, and

|
det Ax(A,) = 0 fox every k €.

PROOF Note that ATR get Ag(l) is the determinant of the matrix

1 1 1,7

0
T -1.T, A, T AT 1T 4= .
Ag(A)=A L7 (e )-_%A_m(r)e dr  -A 'K.-A L7 (Ky*e™')-M" (K *e

—BT(eA') I-B" (K

This implies that the limit
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il
o

lim (A" get al(h) - det aT(A)|
K o}
[ImA| >
exists uniformly for o < Re A £ B. The rest of the proof is
precisely the same as in lemma 1.2.

Q.E.D,

We are now going to show that the spectrum of the generator
Ag determines the exponential growth of the semigroup Sg(t)f
For this sake we need the concept of a Fredhofm operator (KATO
[68, p. 230]). A bounded linear operator T : X - X on a Banach

space X 1is said to be a Fredholm operator if

ran T is closed ,

dim ker T < ©

4

codim ran T < o

The following result can be found in KATO [68, p. 238

[4

theorem 5.267,

2.5 THEOREM .Let X be a Banach-space, T € L(X), and K € L(X)

compact. Then T 4is a Fredholm operator if and only if T + K 44.
Let us now introduce the semigroup
Sg(t) : M9 o M9
BY defining sT(t)y = (0,x) for ¢ € M? where

x(t) = § al, x(e=hy) t 20,

x(T)

I
€
—
o
|
=2
A
I
A
o
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‘Then the following result has been proved by HENRY [50, theorem
3.2 and lemma 4.7} in the context of the state space (. The same

arguments apply to the product space situation.

2.6 LEMMA
(4] Let s € o(si(t)), s + Q. Then
s| e cr({e®® Maet al(n) = o)) .
({L) The operatonr ST(t) - Sg(t) L4 compackt.

The most difficult part in the proof of this result is statement
(i). It is the main step towards our desired 'spectrum determinec

growth' condition! for the semigroup Si(t).

2.7 THEOREM [et M be given by (3). Then

©, = lim t~ log (|s§<t)lf

T L)
= sup {Re A|det Ar(A) = 0}

PROQF Suppose that

0}

w, > sup {Re A|det Ag(k)

and note that the spectral radius of the operator Sg(t) is give

w.,t
by e K (ZABCZYK [149, lemma 1]). Then there exists some

s € o(Sg(t)) such that

! This notion has been introduced by TRIGGIANI-PRITCHARD [144].
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s] > sup {f® At[det Ag(x) = 0}
> sup {e"® Mlaet A1) = 0)
. . At T
(lemma 2.4). Now let A € C satisfy e = s, Then det AK(A) # 0

and hence A 1is neither in the point spectrum of Ag nor in the
*

point spectrum of AE (lemma 2.3). By HILLE-PHILLIPS [53,

theorem 16.7.2], this implies

*
s =Mt ¢ Pc(S%(t)) u Po(s£ (£))

- Pc(sg(t)) u RO(Sg(t))

We conclude that s € Co(Sg(t)) and hence sI = Sﬁ(t) is not a
Fredholm operator.

Now we make use of the fact that Sg(t) - ST(t) is a compact
operator (corollary I.3.11). By lemma 2.6 (ii), this implies that
the operator Sg(t) - Sg(t) is also compact. Applying theorem 2.5,
we obtain that sI - Sg(t) is not a Fredholm operator. This is a
contradiction to lemma 2.6 (i).

Q.E.D,

Let us now briefly discuss the properties of the observer

semigroup for system QT

that ran KT c ran LT, i.e.

(' = 0). For this sake we have to assume

KE(.) = K1) € W '9d([-h,0] ®D
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This means that

(31) K™ = (7K

where we have identified the functdion KT with the operaton

KT : R - w9 which maps y € R™ into KT(.)y € W1’q. Now

Now the observer semigroup
si(t) w9 L owlid

of system QT is generated by the boundedly perturbed operator

By theorem I.3.9 (iv), this semigroup satisfies

Y
o

T T T T
(32) L SK(t) = SK(t)L , t

Hence the operator (sI - A§)LT : W1'q - Mq, s € o(Ag), is a
similarity action between the semigroups SE(t) and Sg(t)
{lemma I.3.2 (iii)). This implies that the semigroup Sg(t)

has analogous properties as Sg(t). The main facts are summarized

in the corollary below.

2.8 COROLLARY Suppose that M 44 given by (3) and KT by (31).

(<) Let y € 19 ([0,%);R™) be given and Let the pain

loc
x € Wlég([-h,w) AR, v € LI _([-h,e) R satisfy the equations
zt) = 1T, + kT * v + KT @y (1)
T T, °T T
Qx + M, K xv - K (o)vt)
v = B+ K * v -yt
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don t = 0. Then

(33) z(t) = @+ KT * o
{8 gdven by the variation-of-constants {ormula

N ~ t
(34) z(t) = S (t)z(0) - [SE(t-s)KTy(s)ds £
0

v
o

(L4} The generaton AK has a pure point spectrum
T _ T _ T _
olAg) = Po(A) = {A € Cldet Ag(d) = 0}

and the nesolvent operator (AI --'AE)-1 L5 compacit forn A €& o(Az).

(L&) The exponential growth of sysztem Qg 48 given by

@, = lim t7! log IISi(t)ll
L

K £u00 (W1 Iq)

= sup {Re A|A € o(A})}

T
K

define x(t) := z(t), v(t) :=v(t) for t = -h as well as

PROOF (1) Let the pair =z (t), v(t), t 2 -h, satisfy Q. and

z(t) = z(t) - MT(xt + KT * 9 for t > 0. Moreover let KT be

t)
given by (31). Then the following equation holds

T d

. ? T } T
x, - du (r)(—— K (t+r—s)v(s)ds>
t -h dt t+T

z (t) z(t) - M

z(t) - MT(ét + KMo (e) = kT(0)v, + KT * ”t)

| = LT(xt + KT * vt) + <KT(0) - MTKT>v(t)




234 v

Hence the triple 2z (t), x(t), v(t) satisfies ET. By theorem 2.1,

X
this implies that x(t) = (z(t),xt + K? * vt) = LTx(t) e Mm% is
given by
T T, . T" tor T, T
Lz () = Sp(t)iuTa(0) - fSK(t-s)L Ky (s)ds
0

~ t -
LT(sﬁ(t>m(0) - fSE(t—s)Kly(s)ds>
A 0
This proves (34).
The statements (ii) and (iii) follow directly from the
similarity of the semigroups Sg(t) and S%(t) together with

lemma 2.3 and thecrem 2.7.

THE FEEDBACK SEMIGROUP

~

Let us begin with the discussion of system Q.

~

We have seen that the state z(t) = (x(t),xt) e MP of @ at

time t 2 0 =~ corresponding to some input u € L?oc([o,m)ﬁRm)
and some initial state f € MP - is described by the variation-
of-constants formula

- 7 p*=1 € ¥ T
(35) z(t) = S (t)f + . 8™ (t-s)B” u(s)ds .
: 0

*
BT : R® o /P

(theorem II.3.6). Moreover the input operator
satisfies the hypothesis (H2) of section I.3 (see remark II.3.7).
This implies that the state ;(t) e-MP of system 5 is the
unigue solution of the Cauchy problem

* N

¥ T* T*“ *
a/dt v~ =z(t). = A" .

x(t) + BT u(t) ,
(36)

x(0) = fFf € MP,
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in the sense of definition I.3.3 (see page 102).
We want to apply theorem I.3.7 in order to obtain a feedback

semigroup for system Q in the state space MP, Therefore we allow

control laws of the general form

*a 0 ¢
(37) u(t) = K z(t) = Kax(t) + [Ki(o)z (0)do .
-h

Then, by theorem I.3.7 (i), there exists a unique Co-semigroup

such that the following equation holds for every f € MP  and
every t 2 0

T* T* T* T* t * T* T* T*
(38) T s (8)f = 8T (r)f + fsT (t-5)8T & s (s)fds .
0]

This equation can be obtained by inserting (37) into (35) and
replacing ;(t) by Si*(t)f. Hence Sg (t) 1is in fact a feedback
semigroup for system 5. Moreover, it follows from the equations
(38) and (18) that this feedback semigroup is precisely the
adjoint of the observer semigroup Si(ti for system ET.

The infinitesimal generator of SE (t) 1is given by

o* o* o* o o *
dom AK = 3f € MP’A L\" f + B K f € ran LT
* _ *% * % x %
T T
LAy f = AT T r 4 gT &7 f
(theorem 1.3.7 (1ii)). Its spectrum can be characterized via the

comp lex matrix function
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A

A(N) - B(e™")

f (40) A, (A) =
: K - < KT, Fe™ > T - < KY,Ee™ >

it Note that this is the transposed of the matrix Ag(k) which is

defined by (28).

2.9 THEOREM

(i) Let z € W P ([-h,o)®RY) and u € Lgoc([~h,w)ﬂ3m>

. loc
b, satisdy the equaiions
z(t) = La, + Mo, + Bu_
0 0
u(t) = Kx(t) + [ [Ky(t-0)dn(t)x(t+o)do
_hT
Q
K 00 .
+ [ JR,(t-0)du(t)z (t+o)do
-h T
00
+ [ fR (t-0)dB (t)ult+o)do
-h T

and dejine

(41) z(t) = Fux

*A
Then u(t) = KT z(t) and

*

(42) z(t) = s§ (£)z(0) , £

v
o

¥
(L4} The generaton A§ has a pure point specitrum

oAy ) = Po(ar) = { € Cldet A (A) = 0}

* -1
and Zhe nesolvent operator (AT - Ag ) L8 compack.
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(£ii) T4 M 4s defined by (3), then the exponential growth of

sdystem Rp 4Ls gilven by

*
lim ¢! log |]S§ (t) ]|

20 L (MP)

€
Il

sup {Re A|A € O(Ai )}

PROOF (1) If x(t) and ul(t) satisfy Qe and if x(t) is
defined by (41), then it follows from the definition of the

*A
operators F (page 75) and E (page 103) that u(t) = KT z(t).

Moreover, the first equation in @ implies

K
~ T* ~ *_1 t * T*
z(t) = 8 (0)x0) + 7 [T (t-5)8T u(s)as
0

(corollary II.3.8). Hence (42) follows from the definition of the
%

T
t).
g (t) N

Now we prove that the semigroup Sg (t) 1is stable with

semigroup S

exponential decay rate o if and only if system QK has the same

Property which means that the functions

lx(t) ’e"'(x)t , Iu(t) le"wt , t

v
o

*

are bounded for every solution of QK. If the semigroup Sg (t)

is stable, then the stability of Qp follows from statement (i).
Conversely, let system i be stable. Then it follows again from

(i) that the function

%

(43) |IS§ (t)o| et , t

v
o

is boundegd for every ¢ € ran [F E]. Now it follows from (38) that
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*

(44) ran Si {t) < ran [F E] v t

v
o

(see theorem II.2.3 and corollary II.3.8). Hence the function (43)
*
is bounded for every ¢ € P and the stability of SE (t) is a

consequence of the uniform boundedness theorem.
Statement (ii) and the remainder of (iii) follow from

lemma 2.3 and theorem 2.7 by duality.

Q.E.D

2.10 REMARKS

(1) System QK admits a unique solution for every initial
condition of the form (II.47).

In fact, the introduction of the new variable z(t) := x(t)
in QK leads to the following equivalent system of the form (I.13)
(45.1) z(t) = z(t) ,
(45.2) z(t) = L&_ + Mz_ + Bu

t t t !

]

00
(45.3) uit) Kox(t) + IK1(r-c)dn(r)m(t+o)dc

~h T

K, (t=o)du(t) z(t+o)do

+
oo
Ao

00
+ [ JR (t-0)éB(t)ult+o)do
-h t

Hence the above statement follows from theorem I.2.3.

(ii) Note that system (45) can be obtained from 5T by

K
transposition of matrices. In particular, both systems have the
same spectrum, characterized by the complex matrix function

Ax(A) which is defined on page 228.
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At the end of this section we consider the feedback semigroup

for system 3I.
Recall that the state x(t) = n(w(t),wt,xt) e w P of s

at time t 2 0 - corresponding to some input u € Lp([O,aﬁ;nfn) -

is given by the variation-of-constants formula

* * *
T

- ~ t oo T
(46) x(t) = 8 (£)x(0) + [S” (t-s)B” u(s)ds
0

(theorem II.2.6). This means that x(t) is a mild solution of the

Cauchy problem

(47) a/dt x(t) = AT %(t) + BY u(t)

(see page 102).

In order to transform (37) into a control law for (47), we

*

T

have to assume that X : MP a'm@ can be extended to a bounded,

1

linear functional on W '‘P. This means that

T ™ T
(48) L

EJ
for some KT € L(W ''P®RM (compare equation (31)). If such a
*

factorization is possible, then the operator Kt can be
represented by the matrix function K(.) = K1(.) € W1’q([—h,0];nfnxn)
in the following way

T* 0

| (49) K" nf = k(0)£° + f(K(T)f1(T) + k(T)fz(T))dT , £ e M,
| =h

Applying the control law

J *A
(50) u(t) - KT x ()
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to the Cauchy problem (47), we obtain the perturbed semigroup

%
Sz (t) : W—1'p - W_1’p

which 1s generated by

This is the adjoint of the observer semigroup Sg(t) for system
E 3

| N T ~
QT. Hence the feedback semigroup Sk (t) of systems I can be
x
regarded as an extension of the feedback semigroup SK (t) of
*

system Q +to the state space w P - if xY s given by (48).

This fact is formalized in the following egquation

* * * *

T (t)LT = - 8, (t) , t=20,

(51 SK

{compare (32)).
The main properties of the semigroup Si (t) are summarized
in the theorem below. The proof will be omitted since it is

analogous to that of theorem 2.9.

2.11 THEOREM

E
|

(£)  Let the complex matrix - Ap(R)  be gdven by (40) whexre

T

K satisfles (48). Then

* *
olhg ) = PolAg) = {i € cldet 4 (1) = 0

i * -1
and Zthe resolvent openator (AL - AT ) 45 compackt §on
*
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(40)  Let w € W B([0,@) ™), x € LB__([-h,=) &), and

u € L?oc([—h,w)ﬂRm) satisfy the equations
w(t) = th + But
x(t) = w(t) + Mxt
00
Tg u(t) = K(O)w(t) + [ [K(r-o0)dn(t)x(t+oc)do
-h T
0 0.
+ [ JK(z-o)du (1) x(t+o)do
-h T
00
+ | [fK(t=0)dB(t)u(t+o)do
-h 't
and define
(52) x(t) = Fw(t) ,x) + Bu, € W /P
T*"
Then u(t) = K° x(t) and
(53) x(t) = sK (t)x(0) , t>20.

(L44) 1§ M 4is deféned by (3), then the exponential growth

0f system Zp A8 gdven by

*

=1 log IlSi (t)llL

[
i

lim t

to

(W 1rP)

' *
sup {Re A|A € o(Ay )} .
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V.3 FINITE POLE SHIFTING

In the previous section we have seen that the exponential

- T T
growth Wee of the closed loop systems EK, QK’ QK’ EK as well
, T T T* T*
as of the ,closed loop semigroups SK(t), SK(t), SK (), SK (£)
is determined by the complex matrix function AY(A)» if equation
(31), respectively (48) is satisfied. The remaining problem is
the following.
Given w £ 0, find some function
K(.) € w '9([=h,0]R™D
respectively some pair
K, e ®EV", Ky(.) € W 3([-h,0] R ,
(satisfying equation (31)) such that w, < w. This means that all

K
zeros of det AK(A) are contained in some given left halfplane

{A € C|Re A £ w~€}, & > 0. By lemma 2.4, this regquires the
condition

(54) det AO(A) = 0 = Re A £ w=-c¢ .
If (54) is satisfied, then
A = {) € Cldet A(A) = 0, Re A 2 o}
is a finite symmetric subset of the complex plane (lemma 1.2).

For this set we introduce the real generalized eigenspaces

Xy < W1'p, XX = w'd and the complementary subspaces XA W1;p,
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T

A

X c W1’q associated with the operators A and AT. Then

dim XA = dim XX =: N (remark II.4.5) and there exist bases
o = [¢1 “en ¢N]' € W1’p([—h,o];RPXN) ;
v o= [w1 wN] e wr(-n,01RN)

T
of XA and XA such that

(55) SUFLO > = < W, Fe> = T

(compare equation (II.62)). Under this condition the real NxN-

matrix A,, defined by

A

has the following properties

T

s
57. =
( 1) ATw WAA ’

aTs
(57.2) T(t) = w(0)e . -h<t<o0.
(57.3) O(AA) = A,

i (proposition II.4.7). Now let us define the input matrix

0

' (58) B, = (¢ (mag(t) e B,
-h

Then the lemma below is a consequence of proposition IV.1.2 and

the well known finite dimensional pole shifting result.




3.1 LEMMA  The {§ollowdng statements are equivalent.
{£) The maitrix padlir A, By L5 conthollable.
({4} For everny symmetric set A' of N complex numbens

Lthere exists some heal mxN-matrix KA such that A' 44 the

spectaum 04 AA + BAAA.

[ii4i) Forn everny A € A Zthe following equaition holds

(59) rank {A(A) B(ek')] = n.

Given a matrix KA as in the previous lemma, we define

(60) Ko = K¥ (1), -h<Tso0

Then equation (31) implies that K, and K1(.) are given by

(61.1) K1(T) = KAgT(T) ’ “-h<+t=<0,

0

T T
(61.2) K, = KAW {0) - KA_éw (t)du(T)

In this case the zeros of det AK(A) can be determined explicitly.
This is done in the next theorem which generalizes PANDOLFIs £inite

pole shifting result [126, theorem 3.1] to NFDEs with input delays.

3.2 THEOREM  Let K, K, () be given by (61) and Ay (A) by (40).

Then
{r € ¢ldet AL (A) = 0}
= {A € C{det A(X) = 0, XA § A} U o(A

A + BAKA)
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PROOF First recall that

AN - B(eM")

(62) b () = T T .

A. A
- KA < L9, fFe > I - KA < V'Y, FEe >

Moreover, the following equation holds for every A € C

(AI -8, < Ly, Bt >

00
(AL - a,) f IWT(T‘O)edeOdB(T)

-h <t
0,0 (A - A)o AT
= j(f(xl -a,) e A do)e A 9% (0)as (1)
“h\7 :
(63)
0 (A - A )ty A T
= I(I - e A >e 29T (0)as (v)
-h
0 0
= iWT(T)dB(T) - vt (0) fePTap (1)
- -h

_ _ T A.
= BA YT (0)B(e™")

The next equation can be established analogously by the use of

the identity W(O)Ai = w(0) = nTw + MT&

(64) a1 - a0 <o, ret > = wTo)am

Now let det A(A) = 0 and A ¢ A. Then there exists some

A
e

} nonzero x € ¢" such that A{(A)x = 0. Hence ¢ = X € ker (AI - A)

A

(lemma IT.4.1). Since A ¢ A, this implies ¢ € X and thus

T,T
Fo L XA (theorem II.4.6). In other words, < LTW,FeA' > x = 0.

By (62), we obtain AK(A)<g> = 0 and hence det AK(A) = 0.

i
=
F;_



246

Secondly, let A € G(AA + BAKA)' Then there exists some
nonzero z € CN such that
z'(\I - A,) = z'B,K

ATA

f1 Defining

we obtain by (64)

xTA(M) = zTwt(0)alA)
= zT(AI - AA) < LTWpFeA'. >
= zTBAKA < LTW,FeK' >
= uTKA < LTQ,Fek' >
and by (63)
TRty = 2Tl (0)B (M)

T
(AT AA) <

= ZT(BA ‘F,EeAﬂ > >

uT(I - KA < LTW,EeA' > )

Hence the row vector (xT uT) is orthogonal to AK(A). Now

1

suppose that x = 0 and u = 0. Then zT(AI - AA) uTKA =0

and hence the following equation holds for -h < 1 < 0
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ATT
w(t)z = V¥(0)e A z = eATW(O)z = ehrx = Q

This means that z = 0, a contradiction. We conclude that
(xT uT) # 0 and hence det AK(A) = 0.

Finally, let det Ay(A) =0 and A ¢ o(p, + B,K,) . Then
there exists a nonzero pair x € €7, u € c® such that

A

(65.1)  A(AM)x = B(e"")u ,

T
(65.2) KA < LTW,FeA' >x = u - KA < b W,Eek' >u .

Defining 2z := < LTW,FeA'x + Eek'u > € CN, we obtain

v (0)B(eM)u + (AI - A, < T, ge* > u

v 0)a)x + (AT - a0 < Ty, gee

>u

(AL - AA)z .

Here we have used the equations (65.2), (63), (65.1), and (64).
Now recall that A ¢ o(A, + B,K,) and hence z = 0. By (65.2),
this implies u = KAz = 0 and thus x # 0. On the other hand, it
follows from (65.1) that A(M)x = B(ek')u = (0. We conclude that
det A(A) = 0 and Q= ek'x € ker (AI - A). Finally, we have

< LTW:Fw >=< JTu,Fer > x =z = 0 and hence ¢ € X“. This
shows that ¢ A.

Q.E.D.
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As a consequence of theorem 3.2, together with lemma 3.1, we
obtain the following criterion for stabilizability of NFDEs with

a stable difference equation EO

3.3 COROLLARY Let M be given by (3) and suppose that ihe

didference equaition Z 44 stable with exponentdial decay rate
w £ 0, {.e. (5B) is satisfied forn some € > 0. Then the 4o0lZcwing
staztements are equlvalent.

(L) There exists some X : MY - RT and some € > 0 4uch
that det AK(A) # 0 for every A € C, Re A 2w - €.

{LL) Forn every A € EC, Re A 2 w,

rank [A(A) B(ek')] = n

SENSITIVITY

Let us now discuss the question how the stability of the
closed loop system reacts on small variations of the parameters.

If the difference equation EO remains unchanged, then it
it is ré}aﬁivgly easy to see that the closed loop system remains

stable after sufficiently small perturbations. This is a

consequence of the following three facts which we will not prove.

1% If (54) is satisfied, then the complex function det A (A)
is uniformly bounded away from zero on the right half plane

{XA € C|Re A 2 w}.

2° In the domain Re A 2= 0, the limit

lim AR det AL(A) - det A (M)] = 0
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exists uniformly for bounded parameter values VAR n, VAR B,

[a_ || 1o LIE[] (compare the proof of lemma 2.4).
e P L (MP,]Rm)

3° On every compact domain the zeros of det AK(A) depend

continuously on the system—- and feedback-parameters.

For the implementation of a dynamic observer, it is clearly
necessary to allow (small) variations of the parameters hj, A—j
of the difference equation. In view of the considerations in
section 1, we must assume that these variations do not affect the
stability of -ZO. Moreover.we-peed the ét;onger property that
condition 1° 1is satisfied uniformly in the parameters hj’ A—j'
This is easy to check for systems with a single point delay,
since in this case A_(A) = I - A_1e_kh. .

We conclude that, for systems with a single point delay
and a stable difference equation (i.e. ls] < By o5 c(A_1)),
the stability of the closed Loop system is not affected by
sufficiently small variations in all parametens.

In general, this seems to be an open problem.

Finally, we will briefly point out the consequences of our
results for the problem of stabilizing a NFDE by dynamic output
feedback.

DYNAMIC COMPENSATION

Consider the NFDE

Q(t) = th + Bu,
z x(t) = w(t) + Mx_
y(t) = rx

t
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with general delays in input, state, and output. Let M Dbe given

by (3) and assume that the difference equation Z is stable,

i.e. (54) holds for some ¢ > 0. Moreover suppose that
A _ ;
(66) rank {A(A) B(e™") = ran}

for every A € €, Re A 2 w. Then there exists a stable obsexrver

for system I, described by the egustions

v = < * 3
w(t) L(xt - H1 vt; + Hov(t) + But
w = ¥, *
Iy x(t) v (L) + M(xt + H1 vt)
< = . : * -
v (t) P(xt F H1 vt) yv{t)

(lemma 2.3, theorem 2.7, corollary 3.3). Moreover there exists a
stabilizing control law of the form (50), (52) (theorem 2.11).
In this control law we replace the state variables w(t), x(t)
of system I Dby the state variables ;(t), ;(t) of the observer

Z... This leads to the following eguation

H
~ 00 ~
u(t) = KO)w(t) + [ [K(z-o)dn(z)x(t+o)do
-h T
0 0. -~
(67) + [ [K(t-0)du(t)x(t+o)do
-h T

K(t-o)dp (t)u{t+oc)do .

+
Do
o O

It is easy to see that the ‘error' variables g(t) = w(t) - w(t),

e(t) = x(t) - x(t) together with v(t) satisfy the homogeneous

~

system I,. Now replacing w(t) and x{(t) in (67) by

w{t) + g(t) and x(t) + e(t), shows that the closed loop system

Z, 3 (67) is stable with exponential decay rate w.

Hl
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INPUT-OBSERVABILITY

In this section we considexr the finite dimensional linear

system

x(t)

Ax(t) + Bu(t)
(A1)

y(t) Cxz(t) + Du(t)

. 2 m ,
where x € Rn, u €ER7, v € R and A, B, C, D. are real matrices

f with the appropriate numbers of rows and columns.

A2 DEFINITION  System (A1) L4 sadd Zo be Lnpuit-observable if the

|
i
it g0llowing implicaticn holds for every control function

u € LEOC(IR,IRE), 1 < p < o,

{A3) y(t) = 0 , x(Q) =0 = x(t) Q

At REMARR If D = (, then system (A1) is input-observable if and

only if the maximal reachability subspace in ker C is zero. It

has been proved in MOORE-LAUB [107] that this is eguivalent to

A-AI B
(AS) max rank = n + rank B
AECQ Cc 0

The following theorem generalizes this criterion to the case

D # 0.
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A6 THEOREM Left T, < T4 be given. Then Zthe folLowing

statements are equivalent.

(<) System (A1) L8 Ainput-observable.
(L4) T4 y(t) =0 {or TO <t < 'I‘1 and x(To) = 0, Zhen
x(t) =0 {4on Ty < t 7T,
(L44) T4 y(t) =0 {fon T, s t=< T, and x(T1) = Q, then
x(t) =0 for T, <t<sT,
(Lv) There exists some A € € such that
{A-AI BJ {B}
(A7) rank = n + rank .
c D D
A8 REMARKS
(1) Without loss of generality we can choose T. =0 in

0
the statements (ii) and (iii) of the previous theorem, since

system (A1) is time invariant.

(ii) Condition (A7) implies that

' PROOF OF THEOREM A6 Without loss of generality we can assume

B
that rank [D] = L. Moreover there exist unimodular matrices

M(A) and N(A) such that

A-AI B A 0
(A9) M(A)[ N(A) = % 2_
c D 0 :

Smith form. Then condition (iv) is satisfied iff all
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columns on the right hand side of

(A9) are nonzero.

Now suppose that (iv) does nct hold. Then there exist

nonzero polynomials

k
p(A) = ]

3=0 -

such that
(A - AD)p(A) + Bg{A) =0 ,

for all XA € € or eguivalently

P = o,
P = Ap. + Bg. ,
(10) 31 R
@ = &p, %%Fqb”?
0 = Cp, + Dg. | =
Pj qj ’ J

Moreover let T € R and define

k. k=3
(£-T)
x(t) = Z Ps ~ 7 —=v7— 1 u
j=¢ 3 (k=3) 1!
Then (A10) implies that =x(T) =.0

equations hold for every t € R
x(t) = Ax(t) + Bu(t) , y

With appropriate values of T (=
contradiction to (i), (ii), (iii)
Next we show that (iv) impli

'I‘1 = T. For this sake let x(t)

k
() = 7

qjkj e gE(0T
j=0

Cp(X) + Dg(A) =0 ,

0,...,k

(t) = % q tem
s2g 3 k=31
-

and that the following

() = Cx(t) + Du(t) = 0

Q, TO' T1), this is a
; respectively.
es (iii) with T0 = 0 and

be a solution of (A1) such that
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u(t) = 0 and x(t) =0 for t 2T and y(t) =Q for t > 0.
la) A
Then the Laplace transforms x(A) and u(l) of x(t) and u(t)

(t 2 0 !) are entire functions satisfying

{A—}\I B} <§m> <—x(0)>
(a11) A n = )
C D u(r) 0

Since (iv) is satisfied, we have m > £ and can define M(A) €
m(n+£)x(n+m)[A] to consist of the upper n + £ rows of M(A).

Then it follows from (A9) that

(A12) M(A)

0 an+£(l)

where all the aj(k) are nonzero polynomials. Combining (A11)

and (A12), we obtain the following equation

-1
) a1(§)

| 2 (0 ) ~  /=x(0)
| <A = N . M) )
| u(A) ‘ °. 1 0

an+£(k)

I This is an entire function (left hand side) of exponential growth
l 2ero (right hand side). Applying a theorem of Paley and Wiener

(see e.g. RUDIN [131, theorem 19.3]), we obtain that x(t) = 0
. and u(t) = 0 for t =2 0.

That (iv) implies (ii) follows from the fact that system

(A1) has the Property (ii) if and only if the (time inverse)
System
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- Bu(t)

- Ax(t)

% (t)

Cx(t) + Du(t)

vy (£)

Y m (ii)

ollows trivially fro

=
L

(1)

Finally,

-
-
-4
>
i)
4
@
o}
0
5
o
[0}
Kol
P
1]
[}
g

and (iii).

B
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The criterion in the above theorem can be generalized to systems with
commensurable delays, but we will not do this here. In a more general situ- . rank
ation, the derivation of an analogous result seems to be a hard problem.

For retarded systems with undelayed input variables (i.e., A_1 = 0 and
for every x € C

By~ By =8y 7 0), the criterion of Theorem 4.3.7 reduces to
Note that F-
Ayl Ay B the T?put disap
rank A, 00 = n + rank A, (65) _ (ii1) The 1

for some x € C. This condition has been derived by Manitius [95]. Moreover ;
it has been proved in [95] that (65) implies the existence of a feedback T

matrix K € R " such that the closed 10op system ? Ro
x(t) = Agx(t) + A1x(t—h) + Bou(t), f Uglh
(®) ) (66) L
w(t) = Kx(t),
l& I
is F-complete. This is equivalent to gf
A +B K-AT A &
00 1
rank [ A 0} = n + rank A, (67) Jf E,lt) ‘[
for some A € € (Coroliary 3.2.5). 1In the presence of input delays such a g
statement is meaningless since a feedback changes the structural operator F, %_ /7%l;;;
even if there are no (additional) delays in the loop. -%
3
& =
4.3.8 EXAMPLES 5 0
(i) We have seen that the scalar n-th order differential-difference ;@
equation (29) is spectrally controllable (Example 4.2.13 (i)) and F-complete E}
(Example 3.2.6 (ii)). Hence (29) is F-controllable (Corollary 4.3.6). 4 can be descril
(ii) Consider system (33) which is described by the matrices _.ﬁ; sU
i X
A = [0 0] A = 1 0] AL = [0 1] i .
0o~ [-1 o] ™1 [0 0> "-1 " [0 op -rg with boundary
: ¥ : ‘_r
P L P Y & u(t,0
By = B_g = By = [o)” B1 7 Lo’
-, Ug(t)
(see Example 4.2.13 (ii1)). This system is spectrally but not approximately |0
controllable. However, condition (52) is satisfied since “Fﬁ. I(t,(
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3 A0 1 a0 g ]
. i t-x 00 0 g
situ- gra rank X 0 0 1 ol = 3 .i"
I 000 00 0 ¢ i
i ol
1d i 'f
¥ for every » € €. Hence (33) is F-controllable. .ﬁ
" Note that F-contro]]abﬂity of (33) will be destroyed, if the delay in ‘f_l'_
I e |
the input disappears which means that the matrices B0 and B1 are interchanged.
(65) 4 (i11) The lossless transmission line ||
Lt i
over —
!
r . |
Uy(t)
(66) U(t,x) Ly G,
Lt
(67)
y
a ———————
w F,
] .
l o
1 X
Figure 5
ete s
|  can be described by the hyperbolic PDE
| L) S) U]
L3 x b Wt O (68)
| with boundary conditions
i UEE0) = Up(t) = RI(£,0) + Eg(t), U(t,1) - Up(t) + RI(L,1), (69.1)
ety Uo(t) = -LOIO(t), U1(t) = L1I1(t), (69.2)

/
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Integrating the

>
—
—
ct
~
n

>
~No
—
o+
~——
n

PDE (68) along its characteristics we

obtain

/T U(t,0) + /O I(t,0) = vT U(t+h,1) + /L[ I(t+h,1),

‘/-C U(t,1) - /[—_ I(t,1) = ‘/-C U(t+h30) - /E I(t+h,0)a

where h = /CL. Now let us introduce the additional variables x3(t) = 2/L IO(t),

x4(t) = 2/T 11(t) and u(t) = 2/T EO(t).
lead to a NFDE of the form

d/dt (x(t) - A_1x(t—h) - B_Ou(t)) = on(t) + A1x(t—h)

The corresponding matrices are given by

Then the boundary conditions (69)

+ BLu(t). (70)

0

g 0 ay 0 Mo o 0 0 (07
Ay L 1 A - | % 0 0 0 B, - 0|
-ty 0 0 0 0 iy 0 0 a280
0 ag 0 0 -Qi30p 0 0 0 0_
(71.1)
0 a 0 07 8]
ag 0 0 0 0
Ag= 10 0o o o800/
0 0 0 0 0
(71.2)
where
1T g R RYTL
0.0 = 'C— [ 0«2 = "L_ s U«4 =TT 80 - _—,(71-3)
0 RO/C4/E 0 /T RO/Ck/[' RO/Ck/f
g JT o R1/C¥/f' ) R1/C;/E 71.0)
(x1 - C_‘ — 9 a3 - T__ _———_—, as =TT T T ( -
1 R1/U+/L' 1 /T R1/C+/E

It is easy to see that the corresponding free system satisfies the F-complete-

ness criterion (3.13) as long as C, L, CO, L

and RO’ R, are finite. Moreover, we have

1

0’

C1, L1 are nonzero and finite

Hence

which

In thic

We ¢
does nc
is sati

If t
Theorem
about F

4.3.10



= 2/0 (Y, |
; (69) =

£). (70) de

—,(71.3)
n

(71.4)

F-complete- 1
ind finite ;f

s

ﬂi Theorem 4.3.7.

‘o

[ ]
rank LA(A), By + AB_OJ
[' Aoy —(oc0+m4)e'kh - 0 A8
'(0L1+>\OL5)e_>\h }\‘HLI 0 a 0
= rank
-Ah
% mapae A0 a8
A
008 h -oig 0 A 0 |
T Ah -Ah 7
age -age -a 0 )\BO
= rank -aqag a4 0 u1a3+A2 0
3 g0, -aq 0 A 0

Hence spectral controllability fails in the resonance case

Apop = Qg0 = kzﬂz/hz, k €N,
which is equivalent to
Colg = CoLy = CL/KPHZ, K e N, (72)
0-0 171 ? °

In this situation A

+ i//CDEO is an uncontrollable eigenvalue.
We conclude that system (70), (71) is F-controllable if and only if (72)

~ does not hold (note that ag can never be equal to one). Moreover; if (72)
~ is satisfied, then the system is not stabilizable.

If there is any distributed delay in the system, then we cannot apply
However, in some cases it is still possible to say something

. about F-controllability. We will do this in a final example.

4.3.10 EXAMPLE. We shall prove that the NFDE

0
a/dt (x,(t) = x5(t-2)) = x,(¢) +[ X, (tet)dr
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