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1 Eisenstein integers

Define the complex number ω by

ω := exp(2πi/3) = −1

2
+

i

2

√
3 ∈ C

so that ω ̸= 1, ω = ω2 = ω−1, and

ω3 = 1, 1 + ω + ω2 = 0. (1)

The ring of Eisenstein integers is the set Λ ⊂ C defined by

Λ :=
{
u+ vω

∣∣u, v ∈ Z
}
=

{
k

2
+

iℓ

2

√
3
∣∣∣ k, ℓ ∈ Z, k + ℓ ∈ 2Z

}
. (2)

The elements of Λ form the vertices of a triangulation of the complex plane
by equilateral triangles of sidelength 1. Define the map N : Λ → Z by

Λ(x) := |x|2C = u2 + v2 − uv

for x = u+ vω ∈ Λ with u, v ∈ Z. Then N(x) ≥ 0 and

N(1) = 1, N(xy) = N(x)N(y) (3)

for all x, y ∈ Λ. An element x ∈ Λ is called a unit iff x ̸= 0 and x−1 ∈ Λ.
Thus x ∈ Λ is a unit if and only if N(x) = 1 or, equivalently, x is a sixth
root of unity. An element p ∈ Λ with N(p) > 1 is called a prime iff
every pair x, y ∈ Λ with xyp−1 ∈ Λ satisfies xp−1 ∈ Λ or yp−1 ∈ Λ. It is
called irreducible iff, for every pair x, y ∈ Λ satisfying xy = p, one of the
elements x or y is a unit. Evidently, every prime is irreducible.
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Lemma 1. Λ is a principal ideal domain.

Proof. Let J ⊂ Λ be a nonzero ideal and choose x ∈ J \ {0} such that

N(x) = min
{
N(y)

∣∣ y ∈ J , y ̸= 0
}
. (4)

Fix an element y ∈ J . Then the geometry of the set Λ ⊂ C shows that
every element of the complex plane is contained in an equilateral triangle
with sidelength 1, whose vertices belong to the set Λ. Hence every point in
the complex plane has a distance at most 1/

√
3 to some element of Λ. Thus

there exists an element t ∈ Λ such that |t− y/x| ≤ 1/
√
3. This implies

N(xt− y) = |xt− y|2 = |t− y/x|2 |x|2 ≤ 1

3
|x|2 < |x|2 = N(x).

Since xt− y ∈ J , it follows from (4) that xt − y = 0. Thus we have shown
that J = {xt | t ∈ Λ} is a principal ideal and this proves Lemma 1.

Lemma 2. Let p ∈ Λ be a nonzero element which is not a unit. Then p is
irreducible if and only if p is a prime.

Proof. Assume that p is irreducible. We prove that the set

J := ⟨p⟩ =
{
ps

∣∣ s ∈ Λ
}
=

{
λ ∈ Λ

∣∣λp−1 ∈ Λ
}

is a maximal ideal in Λ. To see this, note first that 1 /∈ J and so J ̸= Λ.
Now let J ′ ⊂ Λ be any ideal such that J ⊊ J ′. Then, by Lemma 1, there
exists an element x ∈ Λ such that J ′ = ⟨x⟩. Since p ∈ J ⊂ J ′, this implies
that there exists an element y ∈ Λ such that p = xy. Since p is irreducible, it
follows that x or y is a unit. If y is a unit, we find that J ′ = ⟨x⟩ = ⟨p⟩ = J ,
in contradiction to our assumption. Hence y is not a unit, hence x is a unit,
and hence J ′ = ⟨x⟩ = Λ. Thus J is a maximal ideal as claimed.

We prove that p is a prime. Let x, y ∈ Λ such that xyp−1 ∈ Λ and suppose
that xp−1 /∈ Λ. Then xy ∈ J and x /∈ J . Hence the set

J ′ := {ps+ xt | s, t ∈ Λ}
is an ideal in Λ which properly contains J . Since J is maximal, it follows
that J ′ = Λ and so 1 ∈ J ′. Thus there exist s, t ∈ Λ such that ps + xt = 1
and hence yp−1 = (ps+xt)yp−1 = sy+txyp−1 ∈ Λ. This proves Lemma 2.

Lemma 2 is a general result about principal ideal domains. It shows
that every nonzero element of Λ which is not a unit can be expressed as a
product of primes, and that this factorization is unique up to reordering and
multiplication of each prime factor by a unit.
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2 Cubes and squares

Lemma 3. Let u and v be nonzero integers and assume that they are coprime.
Then the following are equivalent.

(i) There exists an integer s ∈ Z such that

u2 + 3v2 = s3. (5)

(ii) There exist integers a, b ∈ Z such that

u = a
(
a2 − 9b2

)
, v = 3b

(
a2 − b2

)
. (6)

Proof. We prove that (ii) implies (i). Assume a, b ∈ Z satisfy (6). Then

u2 + 3v2 = a2
(
a4 − 18a2b2 + 81b4

)
+ 27b2

(
a4 − 2a2b2 + b4

)
= a6 + 9a4b2 + 27a2b4 + 27b6

= (a2 + 3b2)3.

Thus we have proved that (ii) implies (i) with s := a2 + 3b2.
We prove that (i) implies (ii). Let s be an integer satisfying (5). We

prove in eight steps that there exist integers a, b that satisfy (6).

Step 1. u and v have opposite parity.

Since u, v are coprime, they cannot both be even. Suppose, by contradiction,
that u and v are both odd and define k := (u − 1)/2 and ℓ := (v − 1)/2.
Then k and ℓ are integers and 2k + 1 = u and 2ℓ+ 1 = v. Hence

u2 + 3v2 = 4k2 + 4k + 1 + 12ℓ2 + 12ℓ+ 3 = 8m+ 4,

where m := k(k + 1)/2 + 3ℓ(ℓ+ 1)/2 ∈ Z. Thus u2 + 3v2 is an even number
which is not divisible by 8 and hence cannot be cube, in contradiction to our
assumption in (i). This proves Step 1.

Step 2. u is not divisible by 3.

Suppose, by contradiction, that u = 3k for some integer k. Then, by our
coprime assumption, v is not divisible by 3. Hence there exist integers ℓ ∈ Z
and ε ∈ {+1,−1} such that v = 3ℓ+ ε. This implies

u2 + 3v2 = 9k2 + 3
(
9ℓ2 + 6ℓε+ 1

)
= 9m+ 3,

where m := k2 + 3ℓ2 + 2ℓε ∈ Z. Since the cube of any integer is congruent
to ±1 modulo 9, this contradicts our assumption in (i) and proves Step 2.
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Step 3. The integers u2 + 3v2 and 2u are coprime.

By Step 1, u and v have opposite parity and so u2 + 3v2 is odd. Moreover,
by Step 2 the number u is not divisible by 3. Thus, if p ∈ N is a prime that
divides 2u, then p /∈ {2, 3}, hence p divides u, hence p does not divide v, and
hence p does not divide u2 + 3v2. This proves Step 3.

Step 4. Let k and ℓ be coprime nonzero integers. Then k and ℓ are coprime
in the ring Λ of Eisenstein integers in (2).

Let x ∈ Λ \ {0} such that kx−1 ∈ Λ and ℓx−1 ∈ Λ. Then

k2

N(x)
= N(kx−1) ∈ Z,

ℓ2

N(x)
= N(ℓx−1) ∈ Z.

Since k and ℓ are coprime, so are k2 and ℓ2. Hence N(x) = 1 and hence x is
a unit in Λ. This proves Step 4.

Step 5. The elements u+ v + 2vω and u− v − 2vω are coprime in Λ.

Let x ∈ Λ \ {0} such that

u+ v + 2vω

x
∈ Λ,

u− v − 2vω

x
∈ Λ.

Then, since 1 + 2ω = i
√
3, we find that

u2 + 3v2

x
=

u+ v + 2vω

x
·
(
u− v − 2vω

)
∈ Λ,

2u

x
=

u+ v + 2vω

x
+

u− v − 2vω

x
∈ Λ.

Since u2 +3v2 and 2u are coprime by Step 3, it follows from Step 4 that x is
a unit in Λ. This proves Step 5.

Step 6. There exist elements x, ε ∈ Λ such that

u+ v + 2vω = x3ε, N(ε) = 1. (7)

By assumption in part (i) we have(
u+ v + 2vω

)
·
(
u− v − 3vω

)
= u2 + 3v2 = s3.

By the unique factorization property of the ring Λ of Eisenstein integers
(Lemma 2), the number s is a product of primes p1, . . . , pn in Λ. By Step 5,
each factor pi divides either u + v + 2vω or u − v − 2vω, but not both.
Define I := {i | (u + v + 2vω)p−1

i ∈ Λ} and x :=
∏

i∈I pi and y := s/x.
Then ε := (u+ v + 2vω)x−3 ∈ Λ and δ := (u− v − 2vω)y−3 ∈ Λ and δε = 1.
Hence ε is a unit in Λ and this proves Step 6.
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Step 7. There exist a, b ∈ Z and θ ∈ Λ such that

u+ iv
√
3 =

(
a+ ib

√
3
)3

θ, N(θ) = 1. (8)

By Step 6 there exist k, ℓ ∈ Z and ε ∈ Λ such that

u+ iv
√
3 = u+ v + 2vω = (k + ℓω)3ε, N(ε) = 1. (9)

If ℓ is even, then (8) holds with a := k − ℓ/2, b := ℓ/2, and θ = ε. Thus
assume that ℓ is odd and choose r, s ∈ {+1,−1} such that

2k − ℓ− r ∈ 4Z, ℓ− s ∈ 4Z. (10)

Define

η :=
r

2
+

is

2

√
3. a :=

(2k − ℓ)r + 3ℓs

4
, b :=

ℓr − (2k − ℓ)s

4
. (11)

Then η is a unit in Λ and, by (10), a and b are integers. Moreover,

(k + ℓω)η =

(
2k − ℓ

2
+

iℓ

2

√
3

)(
r

2
− is

2

√
3

)
=

(2k − ℓ)r + 3ℓs

4
+ i

ℓr − (2k − ℓ)s

4

√
3 = a+ ib

√
3.

Thus (8) holds with θ = η3ε. This proves Step 7.

Step 8. There exist integers a, b ∈ Z such that

u+ iv
√
3 =

(
a+ ib

√
3
)3

. (12)

Moreover, equation (12) is equivalent to (6).

We prove that the unit θ ∈ Λ in Step 7 is real. Suppose, by contradiction,
that this is not the case. Then there exist integers r, s ∈ {+1,−1} such
that θ = 1

2
(r + is

√
3). Hence it follows from (8) that

u+ iv
√
3 =

(
a+ ib

√
3
)3

θ =
(
a
(
a2 − 9b2

)
+ 3b

(
a2 − b2

)
i
√
3
)
θ. (13)

Thus

u =
r

2
a
(
a2 − 9b2

)
− s

2
9b
(
a2 − b2

)
, v =

s

2
a
(
a2 − 9b2

)
+

r

2
3b
(
a2 − b2

)
.

Since u and v are integers, it follows that a and b have the same parity, and
hence u and v are both even, in contradiction to Step 1. Thus θ ∈ {+1,−1}
as claimed. By changing the signs of a and b, if necessary, we may assume
that θ = 1. Hence (12) holds. Moreover, the equivalence of (6) and (12)
follows from (13) with θ = 1. This proves Step 8 and Lemma 3.
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3 Euler’s proof of FLT for the exponent 3

Theorem 4 (FLT for n = 3). The equation

x3 + y3 + z3 = 0 (14)

does not admit a solution x, y, z ∈ Z such that xyz ̸= 0.

Proof. The proof is by infinite descent. It is based on the observation that
every nonempty set of positive integers contains a smallest element. The
proof will show that the set

F :=
{
|xyz|

∣∣∣x, y, z ∈ Z, x3 + y3 + z3 = 0, xyz ̸= 0
}

(15)

cannot contain any smallest element and hence must be empty. Suppose, by
contradiction, that the set F is nonempty and choose a triple of nonzero
integers x, y, z such that (14) holds and

|xyz| = minF . (16)

We prove in eight steps that there exist nonzero integers k, ℓ,m such that

k3 + ℓ3 +m3 = 0, 0 < |kℓm| < |xyz| , (17)

in contradiction to (16). This contradiction shows that the set F is empty.

Step 1. The numbers x, y, z are pairwise coprime.

If there exists a prime p that divides two of the number x, y, z, then p divides
all three numbers, and hence

x′ := x/p, y′ := y/p, z′ := z/p

are integers satisfying (14) and 0 < |x′y′z′| < |xyz| in contradiction to (16).
This proves Step 1.

Step 2. Precisely one of the numbers x, y, z is even.

If two of the numbers x, y, z are even, so is the third, in contradiction to
Step 1. Hence at most one of the numbers x, y, z is even, and so at least two
of the numbers x, y, z are odd. But if two of these numbers are odd, then
the third one is necessarily even. This proves Step 2.
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Standing assumption. We assume from now on, without loss of generality,
that z is even and hence the numbers x and y are odd.

Step 3. Define the numbers u, v by

u :=
x+ y

2
, v :=

x− y

2
. (18)

Then u and v are coprime nonzero integers, have opposite parity, and satisfy

2u(u2 + 3v2) + z3 = 0. (19)

If x = −y, then (14) implies z = 0 and. if x = y, then (14) implies z3 = −2x3

and so x is even, in contradiction to our standing assumption. Thus u and v
are nonzero integers. They satisfy

u+ v = x, u− v = y

and hence have opposite parity, because x and y are odd. Moreover, u and v
are coprime, because x and y are coprime. By (14) the numbers u and v
also satisfy −z3 = (u + v)3 + (u − v)3 = 2u3 + 6uv2 = 2u(u2 + 3v2). This
proves (19) and Step 3.

Step 4. u is even and v is odd.

By Step 3 the numbers u and v have opposite parity and hence u2 + 3v2 is
odd. Moreover, since z is even, the number −z3 is divisible by 8. Hence, by
equation (19), 2u is divisible by 8, and so u is divisible by 4. Since u and v
have opposite parity, it follows that v us odd, and this proves Step 4.

Step 5. If u /∈ 3Z, then the numbers 2u and u2 + 3v2 are coprime.

Assume that u is not divisible by 3 and, by contradiction, that p is a common
prime divisor of 2u and u2 + 3v2. Then p /∈ {2, 3} because u2 + 3v2 is odd.
Hence p divides u, hence p divides 3v2, hence p divides v2, and hence p a
common divisor of u and v, in contradiction to Step 3. This proves Step 5.

Step 6. If u ∈ 3Z, then the numbers 6u and u2/3 + v2 are coprime.

By Step 3 v is not divisible by 3 and, by Step 4, u/3 is even and v is odd.
Hence the number u2/3 + v2 = 3(u/3)2 + v2 is odd and is not divisible by 3.
Suppose, by contradiction, that there exists a common prime divisor p of 6u
and u2/3+v2. Then p /∈ {2, 3}, hence p divides u/3, and hence p is a common
divisor of u and v, in contradiction to Step 3. This proves Step 6.
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Step 7. If u /∈ 3Z, then there exist integers k, ℓ,m satisfying (17).

Assume that u is not divisible by 3. Then 2u and u2 + 3v2 are coprime by
Step 5. Thus, by equation (19) in Step 3, there exist integers r, s such that

2u = r3, u2 + 3v2 = s3. (20)

Hence, by Lemma 3 there exist integers a, b such that

u = a(a2 − 9b2), v = 3b(a2 − b2). (21)

Since u and v are nonzero, so are the numbers a, b, a− 3b, a+3b, a− b, a+ b.
Moreover, it follows from (20) and (21) that

r3 = 2u = 2a(a− 3b)(a+ 3b). (22)

We prove that the numbers 2a, a− 3b, and a+ 3b are pairwise coprime. To
see this, note first that by (21) and Step 3 the numbers a and b are coprime
and that they have opposite parity, because otherwise v would be even, in
contradiction to Step 4. Thus a2 − 9b2 and a2 − b2 are odd and so a is even
and b is odd, again by Step 4. Moreover, a is not divisible by 3, because u
is not devisible by 3. Thus a − 3b is odd and is not devisible by 3. Hence
any common prime divisor of 2a and a − 3b cannot be equal to 2 or 3, and
therefore must also be a prime divisor of a and b, in contradiction to the
fact that a and b are coprime. This shows that 2a and a − 3b are coprime.
Since 2a = (a+3b)+ (a− 3b), it follows that also 2a and a+3b are coprime,
as are a+ 3b and a− 3b.

Since the numbers 2a, a−3b, and a+3b are nonzero and pairwise coprime,
it follows from (22) that there exist nonzero integers k, ℓ,m such that

k3 = −2a, ℓ3 = a− 3b, m2 = a+ 3b.

Take the sum of these equations to obtain

k3 + ℓ3 +m3 = 0

and take the product to obtain

|kℓm|3 = |2a(a2 − 9b2)| = |2u|
= |x+ y| ≤ |x|+ |y| < 2 |x| |y| ≤ |xyz| .

Thus k, ℓ,m satisfy (17) and this proves Step 7.
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Step 8. If u ∈ 3Z, then there exist integers k, ℓ,m satisfying (17).

Assume u ∈ 3Z and define w := u/3. Then w ∈ Z and, by (19), we have

−z3 = 2u
(
u2 + 3v2

)
= 6w

(
9w2 + 3v2

)
= 18w

(
v2 + 3w2

)
.

By Step 3 the numbers v and w are coprime, by Step 4 the number w is even
and v is odd, and by Step 6, the numbers 18w and v2 + 3w2 are coprime.
Hence there exist integers r, s such that

18w = r3, v2 + 3w2 = s3. (23)

Since v, w are coprime, it follows from Lemma 3 and equation (23) that there
exist integers a, b such that

v = a
(
a2 − 9b2

)
, w = 3b

(
a2 − b2

)
. (24)

Since v and w are nonzero, so are the numbers a, b, a− 3b, a+3b, a− b, a+ b.
Since v, w are coprime and w is even, it follows that a, b are coprime and
have opposite parity. Thus a is odd and b is even. Also, by (23) and (24),

r3 = 18w = 54b(a− b)(a+ b).

Hence r is divisible by 3 and(r
3

)3

= 2b(a− b)(a+ b).

Since a, b are coprime, a is odd, and b is even, the numbers 2b, a − b, a + b
are pairwise coprime. Hence there exist nonzero integers k, ℓ,m such that

k3 = −2b, ℓ3 = b− a, m3 = b+ a.

Take the sum of these identities to obtain

k3 + ℓ3 +m3 = 0,

and take their product to obtain

|kℓm|3 =
∣∣2b(a2 − b2)

∣∣ = |r3|
27

=
|18w|
27

=
|2u|
9

=
|x+ y|

9
< |x+ y| ≤ |x|+ |y| < 2 |x| |y| ≤ |xyz| .

Thus k, ℓ,m satisfy (17) and this proves Step 8.
By Step 7 and Step 8 the set F ⊂ N in (15) does not contain any minimal

element and hence must be empty. This proves Theorem 4.
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There is no claim to originality in these notes. The purpose is merely
to translate and spell out in slightly more detail the beautiful exposition by
Günter Bergmann [1] of the proof of Fermat’s Last Theorem for the exponent
three given by Leonhard Euler in 1770. In particular, the proof of Lemma 3
in these notes follows closely the exposition in [1].
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