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Summary

The thesis consists of two chapters. The first one is devoted to the finite
dimensional Morse theory. It gives an exposition of Witten’s approach to
Novikov homology of a closed form. The main result of this chapter is the
isomorphism between Novikov homology and singular homology with local
coefficients. In the second chapter the local Floer-Conley index near the
“clean” intersection of Lagrangian manifolds is computed. The example of
a torus is discussed in details. Also, the Floer homology of a symplectic
perturbation of the zero section in the cotangent bundle is proved to be

isomorphic to the Novikov homology of the flux form of the perturbation.
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Chapter 1

Introduction

Let f: M — R be a Morse function on a compact Riemannian manifold
(M, g). The Morse inequalities provide lower estimates for the number of
critical points of f using topological information about the manifold, namely
ts Betti numbers. In fact, it turns out that the critical points and the
connecting trajectories of the gradient flow carry the complete information
about the topology of the manifold. In particular it is possible to recover the
homology of the manifold as the homology of a chain complex generated by
the critical points. This idea goes back to Smale [Sma60] and, more recently,
has been formulated by Witten [Wit82]. Consider the gradient flow generated
by the equation

Y=-Vf(y)

If z is a nondegenerate critical point of f then its stable and unstable man-

ifolds W?(z) and W*(z) intersect transversally and dimW*(z) = ind(z).

For each critical point z of f choose an orientation (z) of the tangent
space £ := T.W*(z) and define a graded Z-module C.(M,g, f) by setting
Ck(M, g, f) to be the free Z-module generated by the set of all (z) where z

is a critical point of f of index k&

Cv= P Z(z).

ind(z)=k

1
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If we assume that the gradient flow is of the Morse-Smale type, then W*(z)N
W*(y) is a manifold of dimension ind(z) — ind(y). In particular, if ind(z) —
ind(y) = 1 then W*(z) N W*(y) consists of isolated orbits. In fact, since the
the manifold is compact and the function f decreases along the nonconstant
orbits, the number of these orbits is finite. With each of them one can
associate a sign determined by the choice of the orientations (z) and (y).
Let n(y,z) denote the number of orbits connecting = and y, counted with
signs. We define the homomorphism 8,{ : Cy — Ci_1 by

(1.1) Of(z) = 3> nlz,y)y)

ind(y)=k-1

Then (Cu(M, £, g),0?) is a chain complex and
(1.2) H.(C.(M, f)) = H,(M).

An immediate consequence is that the number of critical points of a Morse
function is greater or equal to the sum of the Betti numbers of the manifold.
In the original proof of (1.2) (see [Mil63, Flo89b, Sal90]) one constructs a
filtration § = N.y C Ny C N, C --- C N,, = M of the manifold M such
that all critical points of index % belong to N \ Ni_1. The set of critical
points of index k can be viewed as an isolated invariant set for the gradi-
ent flow and then (Ni, Ni_;) form its Conley index pair. The homology
groups H;(Ni, Ni_1) do not depend on the choice of the filtration and all
of them vanish except for Hy(N, Ni_;) which is a free module whose gen-
erators can be identified with the critical points. Hence Hy(Ni, N,) =
Ck(M, f,g) and moreover it can be shown that the boundary homomor-
phism Ag: Hi(Ng, Ne—q) — Hy(Ni_1, Ni_3) in the exact sequence of the
triple (Ng, Nx_;, Ni—2) coincides with 3,{ . On the other hand A; o Apy1 =0
and a standard algebraic argument shows that the homology of the complex

{Hk(Nk, Niy1), Ax} is isomorphic to that of the manifold M.
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The isomorphism (1.2) can be proved without referring to the identifica-
tion above, via Fredholm theory. Here, W*(z) N W*(y) is identified with the
space of connecting orbits M(z,y) which arises as the zero set of a Fredholm
section of a Banach vector bundle over the manifold of paths connecting z
and y. This approach was invented by Floer ([Flo88b, Flo89a, F 1089b]) who
applied it to a symplectic action functional ay on an infinite dimensional
manifold of loops whose critical points are the periodic orbits of a Hamilto-
nian system on an underlying symplectic manifold. If (M,w) is a symplectic
manifold then a critical point of f can be seen as a 1-periodic orbit of a
Hamiltonian vector field associated with f. This is one of the reasons be-
hind the Arnold conjecture which states that for any l-periodic Hamiltonian
H: S' x M — R the number of closed orbits is greater or equal to the sum
of the Betti numbers provided that all periodic solutions are nondegenerate.

Floer proves the conjecture developing the Morse theory for the functional

an(n) = [ wo+ [ Hir()d

Here v: R — M and u: D* — M extends v over the disc D?. Thus ay
1s defined locally on the space of loops in M. The classical methods of
Morse theory fail for this variational problem. The L?-gradient of ay does
ot define a global flow and moreover the index of any critical point is not
finite. However, the Fredholm approach does not make use of the gradi-
ent flow and detects only the “relative” Morse index between two critical
points. Moreover, even though the ambient manifold is infinite-dimensional,
the spaces of connecting orbits M(z, y) enjoy the compactness property mod-
ulo “bubbling off” of pseudoholomorphic spheres (a phenomenon described
by Gromov [Gro85]), which can be prevented by additional assumptions on
the symplectic manifold. This way, Floer was able to construct a chain com-

plex CF,(M, H,) generated by the periodic orbits such that its homology is



- CHAPTER 1. INTRODUCTION 4

a symplectic invariant of M. Moreover, there is a direct link with the finite
dimensional Morse theory here. If the Hamiltonian is time-independent then
its Morse complex is a subcomplex of C F.(M, H).

There are many generalizations of Floer’s original results, for example
[SZ94] exploits the Maslov index to prove the existence of infinitely many
periodic orbits, [H592], [Ono93] covers the case of weekly monotone manifolds
and [LO93] the nonexact case.

This thesis consists of two separate parts evolving around Floer’s theory.
The first part describes the construction of Novikov homology, that is the
generalization of the Morse complex to the case of a non-exact closed form.
Since in general one cannot expect the existence of a suitable filtration {N:}
an alternative proof that 92 = 0 is needed. Thus there is a good reason to
give a presentation of Floer’s ideas in the simplest finite dimensional case.
This part has mainly expository character (see also [Sal90] and [Sch93] for
a very detailed presentation of Morse homology). Then we show that the
Novikov homology is isomorphic to the homology of the manifold with co-
efficients in a local system (Theorem 2.2.2), a result proved independently
by V. L& Héng and K. Ono ([LO93]). The second part uses Floer homol-
ogy in the context of the Lagrangian intersections. These homology groups
shave not been computed in general. Theorem 3.4.11 provides the method
of computing them when the intersection of the Lagrangian submanifolds is
connected and sufficiently regular. As an example we describe the intersec-
tion of linear tori in T2". Also, in this part we show that the Floer homology
for a non-exact perturbation of the zero section in the cotangent bundle is

isomorphic to the Novikov homology of its lux form.



Chapter 2

Novikov homology

2.1 Introduction

In [Nov81, Nov82] Novikov gives a generalization of Morse theory to the case
of a general closed 1-form o. He considers a covering of M, a Morse function
f whose derivative is a lift of a and the cell complex built of the “surfaces of
steepest descent” of f i.e. the unstable manifolds. The “multiplicity” of the
critical points and noncompactness of the covering are dealt with by introduc-
ing a special coefficient ring and restricting attention to the “regions of finite
energy”. Novikov’s papers do not include the proof that this construction de-
fines a chain complex. Hofer and Salamon [HS92] employed Novikov’s ideas
to generalize Floer homology to a wider class of symplectic manifolds. They
“also remarked that one could define the Witten variant of Novikov homology
in the finite dimensional situation. This construction, described below, is
also carried out by V. L& Héng and K. Ono in [LO93]. They show the exis-
tence of an isomorphism between Novikov homology and the homology with
local coeflicients using an analytical method which they developed to prove
the Arnold conjecture in the non-exact case. In this thesis we present an in-
dependent proof by the methods of differential topology. It seems, however,

to be less suitable for generalization to the infinite dimensional situation.
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2.2 Novikov complex

Let o be a smooth closed 1-form on a compact Riemannian manifold (M, g).
If Va denotes the covariant derivative of a then for any zero point z of o
the Hessian Va(z): T, M ® T.M — R does not depend on the particular
choice of the metric. A zero point z is called nondegenerate iff Va(z) is
nonsingular. Then the indez ind(z) of z is defined as the index of Va(z)
i.e. the dimension of its maximal negative subspace. The form «a is called
nondegenerate if all zeros of a are nondegenerate.

We want to construct an analogue of the Morse complex for . Let X,

be the vector field dual to a:
g(Xa(.’L'),f) =a(z){ for e I:M,zeM
and consider the flow 1,: R x M — M generated by the equation

(2'1) Y = "Xa(’Y)

ie. Ya(-,z): R = M is a solution to (2.1) such that ¢,(0,z) = z. For a

critical point z of (2.1) (a zero of @) define stable and unstable sets

We(z):={yeM: ¢o(y,t) > zast — +o00}

WHz):={y e M: o(y,t) 5z ast— —00}.

A flow is said to be of Morse-Smale type iff stable and unstable manifolds
of any two critical points intersect transversally. This condition is met for a
generic metric g if the form « is nondegenerate (Section 2.5). Then the sets
W*(z~) N W*(z*) are manifolds of dimension ind(z~) — ind(z*). Moreover
R acts freely on W*(z~) N W*(z*) via v, and so for ind(z7) —ind(z*) =1
the set W*(z~) N W*(z*)/R is discrete. However, it may be infinite if o

is not exact. There is a (R equivariant) bijective correspondence between
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W*(z~) N W*(z~) and the set M(z~,z*) of all orbits v: R — M of the

gradient flow satisfying the limit conditions
(2.2) Jm y(s)=2z7  lim y(s)=z*
given by the evaluation map
ev: M(z7,2%) 59 9(0) € W¥(z") N W*(z) c M.

We denote M := M /R. To ensure the finiteness property we impose some
restriction on the orbits v € M(z~,z*). Define the "energy” of a differen-
tiable path y: R — M by

400
£0)i= [ Ks)Pds.
In particular if v € M(z~,z%) then

(2.3) 60 == [Ty ds = - [ a

y
and so the energy is locally constant on M(z7,z*). We say that a se-

quence {7,};2; C C®(R, M) converges to a split trajectory (.. ™)

if there are collections of critical points z+ = Zo,Z1,...Tm = z~, orbits
7* € M(zk, zx-1) and sequences of time shifts {sk},, E=1,...,m such

dhat 7, (- + s¥) converges with its all derivatives on compact sets to y*.
Proposition 2.2.1 For every sequence {7}, C M(z~,z*) satisfying

sup £2(.) < oo

vEN
there is a subsequence -y, converging to a split trajectory (.- ™) with

2 o~ 20k

En) =3 80"
k=1

if v is sufficiently large. If the flow is of Morse-Smale type then ind(z%) <
ind(z;) <--- <ind(z7).
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Proof.(cf. [Sal90, p.136]) First note that it is enough to find sk and 4* such
that 7,(s¥) — 7%(0). Then the required convergence will follow from the
differentiable dependence on initial conditions for solutions of o.d.e.’s. Take
an € > 0 such that d(z,y) > 2¢ for any two different critical points z,y of f
and set |

s, :=sup{s € R: d(y,(s),z0) > ¢}.

Passing to a subsequence we may assume that v, (si) converges and let 7! be
the solution to (2.1) such that 4'(0) = lim, .o, 7,(s2). Then d(7'(s),z0) < ¢
for s > 0 and £2(y') < co which implies that 4! € M(zy,z0) for some
critical point z;. For assume the contrary i.e. that there exists an €1 and a
sequence s, converging to —oo such that d(y'(s,), z) > 2¢; for every critical
point z of a. We may assume that s, — Su41 > 1. If we define M, .= {y €
Xal > 0. Set

M : d(y,z) > ¢ for any critical point z} then ¢ := infay,,
t, =inf{t € [s,,s, +1]: ¥'(t) ¢ M.} if this set is nonempty and ¢, = s, +1
otherwise. Then d(v(s,),7*(¢,)) > €; in the first case and so

ty t
/ P > c/ [4'| > min {cz,cel}
sy sy

which yields a contradiction. Proceeding by induction assume that we have
found z;, {s?} and 77 € M(zj,z5) for j = 1,...,k. If 24 # z~ then
(. (s), zx) > ¢ for large —s. On the other hand there is an s* < 0 such that
d(v*(s),zx) < & for s < s* and so d(7,(sk + 5), zx) < ¢ for sufficiently large

v. Hence
il :=inf{seR: s < s¥ 4+ s* and d(7.(0),z1) < e for s < o < sk + 5}

is finite and the sequence sk +s*—sk+1 converges to infinity since for any T' > 0
and o' € [s* — T, s"] we have d(y,(s* + 0'),7*(¢")) < £ if v is large enough.

Consequently a subsequence of v,(- + s5+1) converges to an orbit Ak ¢
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R

M(Z k41, z4) for some critical point zj4; which completes the induction step.
The energy identity follows immediately from (2.3). 0

Now we are ready to construct the Nowikov complez for the form a.
Choose an orientation (z) of E¥ for each critical point of a. Let 7: M — M
be a covering such that (M) = ker[a] i.e. 7*a is exact: 7*a = df, where
fat M — Ris a Morse function. Let Zi(fs) C M denote the set of all critical
points of f, of index k and define the graded Z-module C, = C.(M, a, g)
where

705
Cy C a‘:EzI,:I(fo) <$)

consists of all { = {€z}:z¢z,(1,) such that
#{Z2 € Zi(fa): falB) > c,b: # 0} < oo forall ceR.

We also require that () = 7*(7(Z£)). The gradient flow of f, w.r.t. the
metric § = 7*g satisfies the Morse-Smale condition and clearly
Mz, )= |J M(3,9)
gen—i(y)

for any critical points z, y of @ and € 7~(z). Moreover if ¥ € M(3, )
then

Erof)==[ a=- [d=1uf2) - fa(5).
It follows from Proposition 2.2.1 that if ind(Z) — ind(§) = 1 the number of
orbits connecting Z and § is finite. To each of them we assign a number n5 €
{~1,+1} in the following way. Since the manifold W*(z) is contractible every
vector bundle over W*(z) is trivial and so (z) induces an orientation in the
tangent bundle TW*(z). Similarly (y) induces an orientation of T YW (y) =
T,M/T,W*(y) and hence an orientation of the normal bundle TM /TW*(y)
of W*(y). For any point p € M(z,y) = W*(z) N W(y) the transversality

condition implies the isomorphism

LW )/ LW*(z) N T,W*(y) = T,M/T,W*(y)
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o st

and we chose an orientation of T,M(z,y) = T,W*(z)NT,W*(y) so that this
isomorphism is orientation preserving. Then the number ny is chosen so that
dr(ns7) is a positively oriented basis of Tro5M(z,y). Denote by n(Z,§) the
sum of ny over all [§] € M(Z, §) and define the operator 8: C, — C.
0)s= 3 &5 forfeCh
ind(#)=ind(7)+1

This sum is finite since n(%,§) = 0 for all 7 with Ja(F) = fa(&) and

#{Z € Zk: fu(§) < ful®) ,& # 0} < o0.

For a similar reason 9¢ € Cy,.

The Z-modules Cy are in general infinite dimensional since there may be
an infinite number of lifts of a critical point of . We take this into account
by introducing an appropriate coefficient ring. Set T' = 7(M)/ker[a] i.e. T
is the group of deck automorphisms for M and let Xa: I' = R be a homomor-
phism induced by [a]: (M) — R. Then T is necessarily isomorphic to Z™
and there is a v € R™ with v; rationally independent such that y,(A) = v- A
for A = (Ay,...,An) € T. Define a subgroup Ay = A4(Z) of the product

H4er Z which consists of elements ) = {A4}4er satisfying
(2.4) #{AET: xa(A)<c;ds #0} < oo forall ceR.

It is a ring with the multiplication given by
(A*p)a =" Appp-14
Bell
and a principal ideal domain ([HS92]). It can be identified with the ring of
formal power series A(t) = Y 4or A4t ...tam with A satisfying (2.4). The
groups C} have a structure of a A,-module defined in the similar manner:

(/\*f);;: ZAAEA“JE fOI'AEAa,EGC*.
Ael
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This is well defined since fo(A™'%) = fo(Z) — xa(A) and clearly C; is iso-
morphic to a free A,-module generated by the critical points of « of index k.
An isomorphism is given by picking an element # € 7~1(z) for each critical
point z. Moreover 3: C, — C. is a A,-homomorphism. Indeed

@Ax&)g= " 3> n(Z§) Y Iabas

ind(Z)=ind(#)+1 A€l

=X M > n(AT'EAT)es;

A€l ind(2)=ind(§)+1

=D Aa(0€) 415 = (A% 88);

AeT
where the second equality follows since the gradient flow of f,, is [~equivariant
and n45 = ns.
‘The ring A, contains the group ring ZT of T as a subring. Hence we have

the representation
m{M) - T — ZT — Hom(A,)

which in turn defines a local system L, on M (see e.g. [Whi78)). The aim of

this chapter is to prove the following

Theorem 2.2.2 (Novikov homology, cf. [Nov81, Nov82, HS92, LO93]

Let a be a closed nondegenerate form on a compact Riemannian manifold

-

(M, g) such that the flow generated by the dual vector field X, satisfies the

transversality condition. Then (C.(M,a,g),0%) is a Ay~chain complez and
H.(C.(M, a0, 90); Aay) = Hu(C.(M, o1,91); Aoy )

for any two forms in the same de Rham homology class. We call it Novikov
homology and denote by HN.(M,[o]; Z) where [o] € Hbg(M,R). It is iso-
morphic to the homology of the manifold with coefficients in the local system
L,.
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Let py denote the number of the critical points of « of index k and B

the rank of Hy(M,L,). The standard algebraic argument (see e.g. [Hir70))

gives then

Corollary 2.2.3 There ezists a polynomial Q with nonnegative integral co-
efficients such that

Domit' =3Bt + (1+1)Q(t).

i=1 =1
In particular for k <n

k k
(1) = 3 (~1) 6.

2.3 Connecting orbits and glueing

Theorem 2.3.1 Let (M, g) be a compact Riemannian manifold and « a non-
degenerate closed form on M such that the flow generated by (2.1) satisfies
the Morse-Smale condition for critical points. Let C.(M,g,a) be the graded
Ao(Z) module defined as in the previous section together with the degree —1
homomorphism 8. Then 8% = 0(mod 2).

Proof. If we write down the formula for §:

-

(@0:= 3 n(E9n,56 el
“dret

we see that the condition 92 = O(mod 2) means that the number of pairs
of orbits ([v7], [v*]) € Uinagg)=¢ M(z,§) x M (9, %) is even for every critical
points Z, Z of f, with ind(%) = ind(2) + 2 = k 4+ 1. In fact, we will prove
that such pairs of orbits occur in pairs. If ind(z) — ind(z) = 2 then the
quotient manifold M(z, z) = M(z,z)/R is one-dimensional i.e. consists of a

number of circles and open intervals. Since the energy £%(7) is constant on a
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Y2
H L

Figure 2.1:

connected component of M(z, z) each “end” of such an interval converges to
a split trajectory (y~,y%) € M(z,y)x M(y, 2) (strictly speaking, if [y,] € M
does not converge in M then 7 converges to (y7,7%)). Hence in order to
prove that 02 = 0 it is enough to show that thisisa 1—1 correspondence. For
this sake we employ Floer’s concept of glueing orbits i.e. a family of orbits
YR € M(z,2), with R€ R, R > R, converging to (y~,7%). This family
is unique i.e. any orbit connecting z and 2 sufficiently close to v~ and 4+
belongs to the family ~x.

We introduce the setup for the construction of Yr. For any critical points

z~ and z% of « define the space P = P(z~, zt):

P(z7,a%) = {v: R > M :y € Wi2(M),
3T > 0, 36 € W'((—o0, —T}; T,-M),
%, € WHA(T, 00); Tus M)
such that (s) = ezp,+£s(s) for £s > T}.
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[

Clearly any solution to (2.1) with limit conditions (2.2) belongs to P. For
7 € P we will write F(7) := 7+ Xa(7) i.e. M(z™,2%) = F-1(0). Define the
Banach spaces of vector fields along v € P(z~, z*):

+o0
L) = {€: R TM : (s) € TyyM and Lt <o}
Wh2(y) = {€ € I*(v) : V€ € L2(v)},
W2 (y) = {e€ L¥(y) : VE€ W 22(y)}

where V denotes Levi-Civita connection on M. We define the operator

D.: W'2(y) — L?(v) by the formula:
D€ = VE + VX,

Let D*: W'?*(y) — L?*(y) be the formal adjoint of D. Since « is closed V.X,

is a symmetric tensor
(VeXa, () = (6, V¢ Xa) foré, (€T.M, z€M
an so D3¢ = ~VE+ Ve X,.

Theorem 2.3.2 ([Sal90]) Ifz~ and zt are nondegenerate critical points of
a closed form a and v: R — M is a smooth path satisfying (1.8) then D, is

a Fredholm operator and
ind D, = ind(z”) — ind(z™).

If F(7v) = 0 then D, is onto iff W¥(z~) and W*(z*) intersect transversally

along 7.

The Fredholm property allows us to formulate an“existence and unique-
ness” result, a version of the implicit function theorem which is the main tool

for the construction of glueing orbits.
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Theorem 2.3.3 For any ¢ > 0 there are positive constants c1,€o such that
the following holds.
a) if 0 <e <o and v € P satisfies

¥llz2 < e,

c|Dinllee 2 lInllwre  for any n € Wh2(y)

and

IF()Nlze <e

then there is a unique vector field ( € Di(W??(v)) such that ||(||lwrz < cie

the path yo = exp,( satisfies F(v) = 0 and

4| Dinllee 2 lInllwra  for any n € Wh3(x,)

b) For v as above if F(y) = 0 then there is a C'-function ¢ defined on
the neighbourhood of zero in ker D.,, ¢: ker D, — Dz (W12(y)) such that for
any ¢ € W(y) we have ( = £ + $(£) for some € in the domain of ¢ iff
F(ezp,() =0 and ||C||wr2 < 0.

The proof of this theorem based on Newton method is given in the next

section.
= Let z,y, z be critical points of @ and v~ € M(z,y),v+ € M(y,z) and let
B: R — [0,1] be a cut-off function:

0, fors< -1
Als) = {1, for s > 1.

For a positive R € R define an approximate solution to (2.1):

v~ (s + R), for s < —1
r(s) = { ezpy(B(s)€* (s — R) + (1 — B(s))¢~(s + R)), for s € [-1,1]
v*(s - R), ; fors>1

where 7*(s) = ezp,£*(s) for [s| > R — 1 an R sufficiently large.
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Proposition 2.3.4 There are positive constants k,C, Ry such that for R >
Ry the family g defined by satisfies the estimates

I3l < €

CliDspnllzz 2 lInllwre  fornp € Wh3(y)
IF(AR)|IL: < Ce*R,

Thus qp satisfies the assumptions of the part a) of Theorem 2.3.3 and
leads to a family yg of glueing orbits. Then the uniform estimates on the
norm of D7 yields the uniqueness result. The properties of yg are summa-

rized below

Proposition 2.3.5 The family v of solutions of (2.1) converges (y~,~%).
Moreover, for any sequence {7} € M(z,2) converging to the pair (=)
a curve ; belongs to the same component of M as the family yp for j

sufficiently large.

In other words there exists precisely one end of a component of M (z,2)

which converges to (y~,4*). This proves Theorem 2.3.1.

2.3.1 Proof of Theorem 2.3.3

1In the following we will — abusing notation — denote by K subsequent
constants depending only on the Riemannian metric and the function f.

Let € be less than the injectivity radius for the metric g. For v €
P(z~,z*) define

Ue(7) :=={€ € WH(y) : |l¢]lzw < €}

Since [|¢]lzo < ||€]lwra the set Ue(7) is open in W?(y). We denote also
TM(eo) = {veTM: |v]<e}. The set P(z~,z*) is a Banach manifold
modeled on W*?(y) where v € C®(M) NP with the charts induced by the
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exponential map. The proof of this fact is essentially given in [K1i78] and we

summarize it below for the sake of completeness. We need the following

Lemma 2.3.6 There is a positive constant K such that for any interval
J C R of length greater than 1, a path v, € WA (J; M) and a vector field
o € W (%), llbollwra < @

(2.5) allze < 1Follz2 + K (1 + |1ollz2) l€ollwa2

where 11 = exp,. & and the following holds.
If & € Wh¥(expy&o), with ||&|lwrz < 2 then there is a vector field
& € WY () such that

(2.6) €ZPro§2 = €T Perp,goéi

and
162 = Gollwrz < K1+ Follz2 + [[€oflwra) |6 |lwra.

Conversely if &, € W'?(,) is such that 1€2 = Eollwre < % then there is a
&1 € Wh%(ezp,,&o) satisfying (2.6) and

allwrz < K1+ lAollze + llollwa)ll€2 — &ollwr.z.

Proof. We denote by E(z, ) the representation of exp;£ in local coordinates

7', &. Then

1 = Yo + (Ex(70, &) — id)¥o + E¢(7o,&)é
B o) = id = [ Bug(o, o)t dt

and since V¢ = ¢ + ¢y

Pl < Hol + K(I€] 1ol + 1V¢])
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where K bounds the derivatives of the exponential map and the Christoffel
symbols I' on TM(eo). This yields (2.5).

We prove first of the remaining inequalities. The vector field ¢, exists
if L* norms of {o and & are small and clearly ¢, € W1?(v,). In normal

coordinates at o we have {, = E(&, &) and

62— 0= Bléo, &) ~ B(60,0) = [ Ee(6o, 61)és dt
|62 — &o] < K&

This implies the L? inequality. Differentiating (2.6) in local coordinates we

obtain

E¢(70,&) (&2 — bo) = E¢(E(70,6), &)6
+ (Ez(E(70, ), &1) — id) (E¢(70, &0)éo + Ez (70, €0)F0)
+ (E2(70,€2) = (Ez(70,£0)) A0 + (Ee(70, é0) — E¢(70,£2)) bo.

As E¢ is invertible and || E; || is bounded on T M(e,) it is enough to estimate
the RHS in terms of ¢;. We have

Ee(70,é0) = Ee(10,&2) = /01 Eee(7, 6o+ (&2 — &o)) (&2 — &) dt
| E¢(70, €0) — Ee(70, &)|| < K€ — &

Similarly

| £z (70, &2) = (Ez(70,&0)|| < K& — &ol
| Ez(E(70,&0), &) —id || < K|&|.

Putting these estimates together we obtain

[VE — Véo| < |€2 = o] + D062 — &0)| < K(IV&l+ &30l + €] + [VE]))



“CHAPTER 2. NOVIKOYV HOMOLOGY 19

where I' are the Christoffel symbols. This yields the result. The second
inequality is proved in a similar manner.
From the lemma follows that we can define the exponential map for v €

CenNnPp
ezpy: Uy (7) = P(z7,zt)
ezp,(s) = ezpy(s)¢(s)-
Indeed if € U,,(7) and (s) = ezp;+{+(s) then Lemma 2.3.6 guarantees

the existence of s € W12(J, T:+ M) with ezp,+ny = exp,n. Also, if Yo, 71 €
C*® NP then

e:l:p;ol (exp‘ro (Uto (70) n €T P, (Uto (71 ))

is open in U, (7). The transition map can be described as follows. Let U

be an open subset of v*T'M defined by
Uls) = UN Ty M = ezp ), (€2, (5 Ty ey M (e0)).

Thus we have a bundle map V: U — 3jTM, ¥ = ezp,! o ezp,, and the

transition map is given by ¢ — ¥ o ¢.

Proposition 2.3.7 (cf. [K1i78]) Let ro: Ey — R, m1: E; — R be two Rie-
nannian vector bundles over R and U: U — Ey a smooth bundle map defined
in an open set U C Ey with bounded derivatives in vertical direction. Then

the assignment £ v W(¢) := ¥ o ¢ defines a C* map
‘AI’: 0 — Wl’z(El)
on any open set U C {¢ € WIH(Eo) : E(s) € U}

proof. Let D¥¥(z) denote the k-th derivative of W at z. Then for

l1r°' HNro(z
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¢,1 € U we have VU o{ = D,(€).V¢ and
[Yo&—Toy < sup |D, Y- [ —
[V¥ o0& —VW¥on| <|Dy(€) - Dy(n)| - [VE| + |Dy(n)] - |VE — V|
< sup [DJW] - [ — ] - [VE| + sup | Dy U] - [V€ —~ Vn|

which shows that ¥ is continuous. Similarly the bundle map D, ¥: U —

L(Eo, E1) induces a continuous map
D,V: U — W (L(Ey, Ey)).
If A€ WY(L(Eo, Er)), € € W'3(E,) and Aé(s) = A(s).£(s) then

A&z < JlAllze - 1€z
IV(AON L2 = [[VAE + AVE]| 2 < [[VA[lz2 - |Ellze + | Alles - [|VE 22

and so we have a linear continuous map
#: WY (L(E,, Ey)) - L(W'?(E), W2(E))

with [|#]| < 2. We define derivative of ¥ as D¥ = #o D,¥. From Taylor

formula
- W) = W(n(s)) = Dyl (n(s))-(&(s) — n(s)) = r(&(s), 1(s))-(€(s) — n(s))

where r: U x U — L(Ey, E;) is a bundle map with bounded derivatives.
Hence
¥(€) — ¥(n) — DY(n).(6 - 1) = ##(&,n)-(.6 = )
and ||#7#(&,)llwrz — 0 as [|€ - pllwrz — 0. O
Thus the maps ezp, introduce a differentiable structure on P. Note,
that this structure is compatible for different metrics if they are C! close.
Indeed, this reduces to the observation that for such metrics W2 norms are

equivalent.
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If vy € P(z™,2%) then for large |s| we have 1(s) = exp.+£i(s) with
[€+(s)] < €0 and since X, is locally Lipschitz

IFO(6)] < ldezposta(s)] (Jeel + 1Xa(€x) — Xa(0)]) < K (sl + €x])

and hence F(y) € L%(y). For ¢ € Be,(7) denote by 7¢(to,t,) the paral-
lel transport along ezp,t¢ from ezpytof to erp,t;€ and define the function
Foyt WH(30) = 12(30)

‘7:‘70(6) = Te(l,O)f(ezp.m{).

Proposition 2.3.8 The function Foo is continuously differentiable in B,, (7)
with differential dF,,(€) := Dg: W'2(,) — L*(v)

De’l = TE(I’O)D‘n o dexp(f)” + A{(n,f’m(f))

where 11 = exp, ¢ and A is a bounded bilinear form on TM (o) and Ao = 0.
More specifically there is a constant K independent of o such that for every
¢ € Bey(10) and n € W2(y,)

1F0 (€ +7) = F5(€) = Denllze < K [Inllyaa lInllze(l0llz2 + 1)
and moreover
- 1D¢n — Donllzz < K (liEllwaa + | P (€)l1z2) 7 llwasa-
Proof. Let £,7 € W12(v) and set
u(rt) = u(rt,s) = ezpor(6(s) + tn(s)), % =u(r,0) and & = £ + tr.
Denote by 77 the parallel transport along u(1,t) and consider the difference

(27) Fool€ +1) = Fo(€) = 4(1,0)F (u(1, 1)) — 4(1,0)F ((1,0))
= (r% = 74(1,007(1,0)) F (u(1,1))
= 71,00 (7"(1,0)F (u(1,1)) - F (u(1,0))).
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The first step is to obtain the estimate

(L0 (u(1, 1) - F (u(1,0)) - D, 21,0)

(2.8)

L2
< Klnllwsa Illze(9ollze + 1).

Denote

2.0 =770,0) (5010 + X ),
0.(0)=F)e) (1) = (L 0)F(u(l, 1))

Since the derivative of the parallel transport of a vector field along a curve

is the covariant derivative of the vector field,

@I(to) = Ed-lt n(to, O)Tn(t to) ( + X (u))

= (t,0)V, (g“ + X, (u)) = 7(to,0) ( g;‘ + vtxa(u)) :

, ou
o (0) = D’n 'a—t(l’o)' ; '

du du — k-2 — du
Here we use the fact that S0 5. = u5, 33 = 0 and so V, & 3t = Vize. To

prove (2.8) we estimate second derivative of ®

Ju

®"(t) = 77(t, 0)V, ( o

+ VX, (u))

We have

- u ou 8u du\ Su
Vtv,a -_ V,Vga = R (E, -a—s-> E,

Vi (ViXa ("))—Vv, u Xo(u) + Vi (VX, (u)) 6

Since both R and V(X,) are smooth sections of the appropriate tensor bun-

dles and parallel transport is an isometry

Ou Ou\ du dul’ |ou

’7 —_— —

(2.9) (¢, O)R( = a) < IRl || |52
a 2

(2.10) ,T"(t,O)vt(vxa(u))g'tf,5||V(X,,)||,,w -a—’; ,
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and moreover I%'til < lldezp(€ + tn)||Lo|n|. We estimate I%l in local coordi-

nates

52| = [35tE0n )| < 1B.on ) B, )i < K (5l 4 191+

since |7j| < |Vy| + || |7]|T| where I' denote Christoffel symbols. Similarly
11l < K (Il + [VE| + [0l [€]) -
It remains to estimate V,2%(1,¢) and V.V.2(1,t). We have
V:%(l,t) = Bges(7,$ +tn)n'n’ + Egi(7,€ + 1) Egs (v, € + tn)n'niT;.

It follows that lvt% < K|n|? and similarly

du

V.V, 5

< K (InP* + (V2] + Kol In)In])

where K is a constant bounding I' and its derivatives and the derivatives
of the exponential map on TM(eo). Note that V,% and VSV,%% vanish if

¢ = 0. Putting all estimates together and assuming that g9 < 1
|®(1) — 2(0) - '(0)|
< K (InP (5l + 101 + Ballal) + (1 + oDinf? + ] n])

< K (InP(Hol +1) + V7] [n])

which implies (2.8).
To deal with the first term of (2.7) let v(t) = 77(1,8)F (u(1,1)) and

w(r,t) = 7%(1,r)v(t). Thus we are to estimate the difference
1
w(0,1) — w(0,0) = V,w(0,0) + / (1 = £)7"(t, 0)V,Vw(0, ) dt.
0

The second term is quadratic in 5 by the same argument as above applied

to u1(0,t) such that w(0,t) = 24.(0,t) and w(0,t) = u(0,%). On the other
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hand since V,w = 0 and V,w(1,t) =0

Vw(0,0) = V,w(0,0) — 7¢(1,0)V,w(1,0)
Ju Ou

—/ (r,0)V,V,w(r,0) dr = —/ 7¢(r,0)R (6 6t) 7¢(1, r)v(0) dr
= —/0 ¢(r,0)R (dexzp(ré)¢, dexp(r€)n) Tf(l,r)v(O) dr
= A¢(n, 7¢(1,0)v(0))

and A is a bounded bilinear form on 7'M (&o) (more precisely,if 7: TM — M

is the projection then A is a form on 7T MiTp(e,)). Summarizing

@11) (¢ = 74(1,0077(1,0) F (u(1,1)) - A¢ (0, Fo ()] ,
< Allzellnllz= [177(1,0)F (u(1,1)) = F (u(1,0))]l»
+ Kllnllwaa2ll7lle=(l5ollz2 + 1)

which together with (2.8) implies that the linear operator

De: Wh¥(10) 3 1+ 74(1,0)D,, 0 dexp(€)n + A¢(n, Foo (€)) € L¥ (o)

is the differential of F,, at the point £. Moreover the quadratic estimates

follows since in view of (2.8)
0 .
I77(1,0)Fs0 (€ + 1) = Fou (€)) I < HDna—Q:(l, 0)llze + Klinlliysz (liFoll2 + 1)

and the norm of D, : W'2(y;) — L?(v4) is bounded by a universal constant.
To estimate D¢ — Do define wy(r) = D, %(r,0). Thus w;(0) = 0 and
Den = 7¢(1,0)wn(1) + Ae(n, Fo(€)) and

Ju du du\ Ou
V,wl—V,Va +R(3 6)at+VvauX + V., (VXO,)——
On the other hand % =0and V, & g‘t‘ I =150 V,w;(0) = Don. We can

also apply the same kind of argument as previously to obtain the estimate

IVeVrwd] < K([E]- In] + V€] - [n] + (€] - [Vn]).
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Therefore

(2.12) || D¢ — Don||1e
< 1741, 0)wi (1) — w1 (0) — V,w, (0|22 + 1 Ae(n, Foo ()| 22
< K ([Ellwrz + | Fo (E)llz2) Inllw:.2

for {,n € B.,(7%). Similar argument proves continuity of the derivative in

Bco (70) O
If the flow satisfies the Morse-Smale condition then Proposition 2.3.9

together with Theorem 2.3.2 implies that for every v € M (z=,z%) there is

the implicit function
¢y ker D, — D*(W??(~))

such that F(ezp,(¢ + 4,(£))) = 0 for £ in a neighbourhood of 0 in ker D,
which provides locally the manifold structure for M(z~,z*) near 7. The

evaluation map

ev: M(z7,zt) 37 9(0) e M

is an embedding w.r.t. this structure. Clearly, the evaluation Wri(y) 3 €
£(0) € T)M is a continuous linear map and so 9.: ker D, — M defined
by

Yy(€) = evoexpy (£ + 64(€)) = ezpy0)€(0) + 4,(£)(0)

is differentiable. Moreover d.,(0)¢ = £(0) as d¢,(0) = 0. Since D,£ =0is a
first order linear equation £(0) = 0 implies ¢ = 0 for ¢ € ker D,,.

Proposition 2.3.9 There is a constant K such that for any ¢ > 1 the fol-
lowing holds. If vy satisfies

cllD5Cllze 2 [Kllwre  for all ¢ € Wh¥(mp)

then
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1. the operator Dy, Dy : W2(vyg) — L2(p) is invertible;
2. Dy nollwra < KCu()|50lf2, + DI Do D3, mollz2 for all no € W22(~,);

3. if & € W2 (o), llbollwre < K~'C_; and T = ezp.,&o then

4c|| D, Cllze > JI¢ w2 for all ¢ € W ().

Proof. We first establish some preliminary properties of D and D*. Consider

the norm of D:
IVE+ VeXalle < l€llwra + | VeXa |22

The covariant derivative VX, is a smooth section of T*M ® T'M and so

[[VXa]| is bounded by some constant K. Hence
(2.13) IVeXallze < K]

and |[|D|| is bounded by some universal constant X. The operators D and

D~ are also bounded as operators from W22 to W12, We have
- IV5(DE)Iz2 < |léllwaa + || V5 VeV £l 2
and V(VeXa) = V(VX,)E + VX, so
IV (VeXa)lle S IV (VX w4l €]l + 1|V Xl | VE]| 2
le.
(2.14) IVeXallwra < K(1+ |4]l22) 1€ ]|wr.2

We can extend D and D* to bounded operators from L2 to W~12 := (W)=,
Indeed, the mapping ¢ — —V¢ extends to the adjoint of V: W12 — [2 and
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from (2.13) follows that VX,: L? — L? is bounded. Moreover VX, is
selfadjoint and so the operator D*: L2 — W~12 is the adjoint of D: W'? —
L2

We can also obtain the following estimates for [VeXallw-12 with € €
L?* c W12, For any ¢ € W12

(2.15)  IVeXa(O)l = KVeXar ()12] = (€, VeXa) 2] < N€llw12 ]|V Xalwrs
< ll€lw-12 K (1 + 14ll22) € ]lwra

and hence

(2.16) IVeXallw-12 < K(1 4 |4]22) 1€l w12

Since all operators under consideration clearly have closed range the con-
dition || D} n|lz2 > C_1|n|lw:.2 implies that DD*: W12 — W-12 is invertible

and

Inllfvsz < (D0, D*n) 12 = & |DD*5(n)] < H|nllwsz || DD gllw-1a
ie.
(2.17) I(DD*)~|| < &

Similarly, DD*: W22 — [2 s invertible since D*: W22 — W12 is injective.
We shall investigate the norm of (DD*)~1: L2 — W22, For n € L? we have

inequalities
(2.18) IVallw-12 <llnll,  and  |lgllw-22 < fl9lz,

where V: L? — W~12 is the adjoint of V: W12 — L2, Hence, using (2.17)

(2.19)
Inllwaz < |[Vallwsa + llnllwea < & (|DD*gllw-12 + || DD* Vy|jy-14)

< & (2IDD"nlly, + [[VDD*y — DD Vyfly-1s).
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In the last expression the 3rd order terms cancel out, namely

VDD*p — DD*Vq
= —Vvv,,Xa + Vvvﬂxaxa + 2V(Vv,7Xa) - VVV,,Xa + V(Vv,,ana).

Using several times inequalities (2.18) (2.13) (2.14) and (2.16) we obtain
IVDD™n — DD*Vnllw-12 < K(1 + |I51I2,)linllw:.a.
Combining this with (2.17) yields
[7llw2e < Ke*(1 + 92,1 DD 1]z,

This proves part (2) of Proposition 2.3.9 as || D*n|ly12 < K||n]|w2..
Proof of (3). As in the proof of Proposition 2.4.1 let

u(s7 t) = e:z:p.,o(.,)tf(.s’)

thus ¥;(s) = u(s,7) for i = 0,1. Let (; € W¥?(v) and let (;(s) = ((s,t) be
the continuous section of u*TM such that ((s,-) is a parallel transport of G
along u(s,-) i.e. Vi{ =0. Assume that ||¢||y12 < €. We will find a constant
K such that ||z < ¢ and ¢|| D3 Collz2 > ||Go|lwrz for o = ((,0) implies
4¢|| D3, Gillze 2 ||Gillwr2 provided that Kee < 1. We first establish relation
T)etween W12 norms of (p (resp. ‘D3, (o) and (; (resp. D7 ;). Since Vi =0
the length |(| does not depend on ¢, in particular |(o| = |¢;| and

Ju Ou

v:9.60= |7 (50, 52) 6] < K ol + 11w i

if only € < €y. Hence

V.Gil = [r4(1,009.6 < V.6l + sup [VeV., G
IVaillze < WVuCollzs + K (ollzs + [VE[Iz2) €]l zos i zoe
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and
IGllwiz < | Vaollze + 2K (c + €)ellCollwaa + [|¢ollzs < 2l[Collwra

if 2K(c + €)e < 1. Analogously, using (2.7) and (2.8),

VD56 = R (5 3 ¢ 4 Vi)

and we obtain the estimate
D% ollz < |1D5, Gillee + K (e + & + 1)el| Gl

Combining (2.3.1), (2.3.1) and the assumed inequality | D3, Collze = |ldollwr
yields
IGullwaa < 2¢ (105, Gullue + K(e+ e + el llwaa)

and so [|Gllwr2 < 4| D, Gille2 if Ke(c+e+1)e < 1.

Proof of Theorem 2.3.3. We will use the notation of Proposition 2.3.8.
We apply Newton method of successive approximations in order to find a
zero of the function f := F, 0 D}: W??(y) — L?(v) in a neighbourhood of
the origin in W??(y). By Proposition 2.3.9 its derivative Df(n) = Dp, 20D
is invertible at 0. Thus we have to find A, 8 > 0 such that if 170 < ;\- and
llnll < B then

12.20) IDf(n) = DO < A~*
(2.21) Df(n)™" exists and || Df(n)7!]| < 271\

Then the condition
Mn4l = Nn — Df(O)_lf(ﬂn), o =0

defines a cauchy sequence, ||n — -1 || < 278 and || f (ma)|l < 27"A71B. This
is proved inductively since [|a41 — 7]| < 272\||f(7)|| and

17 ns2)ll = 1f (741) = £(12) = DFO)(Mnts = 1)l < A7 141 — 70
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by the mean value theorem. Then the limit 1 := limn_, 7 is a unique solu-
tion to F(ezp,D3n) = 0 in the ball Bs(0) C W22 and ND5nll < |D3)l inll <
K(1+c%)B.

By the assumptions and Proposition 2.3.9 |[Df(0)~!|| < Kc® =: );. For
any bounded operator L: W??(y) — L2(y) such that IL—=Df(0)|| < AT! the
inverse L1 exists and |[L~Y|| < Txllﬁ\m' Hence if we set A = 3); then
the condition (2.20) implies (2.21). On the other hand by Proposition 2.3.8
we have

17() = FO < 1D DIt - imil + I(Ilnll’(l +¢?)

and so

ID£(n) = DS < KIDIDsnll + 11£(n) = £O)II + 117 (0)Il)

< K(1+&) (1 + )l + 17 0)]) < 2

>|

the last inequalities following if ||| < 8, IfF(0))| < -,‘% and
2 2 -1
B< KA+ +A)+1))7.

This together with the Proposition 2.3.9(3) completes the proof of the The-
orem 2.3.3a).

_ Inorder to prove the remaining assertions of the theorem we have to look
closer at the size of the domain in which the implicit function is defined.
Denote G = D3(D,D;)ie. Do G = tdr2(,). If we go through the proof
of the implicit function theorem (see e.g. [Die69]) we see that it is enough to

find &; > €9 > 0 such that

1F3(61) = Fo(&a) = Dy (&1 = &)lI22 < @IGI) s — &sllws

for [[&]lwi2 < €1 and 1F(E)]lz2 < & for ||¢|lwr2 < eo.
1° By Propositions 2.3.9 |G| < Kc®
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2° From the Proposition 2.4.1 follows that

IF~ (&) — Fo(&2) = Dy(62 — &2)|I12
< I3 (6) = Fo(&) — Dey (61— &)ll12 + || Dey (61 — £2) = Do(éy — &)l
< K (1R (&)l + llellwra + 61 = Eallwrz) |é — &aflwrzv

3° Again, by Proposition 2.3.8
IF5llze < IDséllz2 + KS|El3ra < KE||€]wna.

Putting these estimates together yields the result.
Proof of Proposition 2.3.4. Since y is a hyperbolic fixed point of the flow

there are positive constants k and ¢ such that

V(s + R)| <cli™(s)le™,  [i*(s = R)| < c[y*(s)]e™*R
and

(s + R <y (s)le™,  |y*(s = R)| < cly*(s)le*R

in normal coordinates at y, for R sufficiently large. It follows that AR con-

verges locally uniformly to y with R — 400 and since for s € [-1,1]
23(5) = BV (s+ RYH1=B(6)5* (s R)+B(s) (v~ (5 + R) = v*(s — R))
and |A| is bounded,
HR(S)I <ce MR forse -1,1].

Hence ||7]12. < 2cie” R4 2(y=) 4 £2(4*). Also, since X, is locally Lipschitz

[Xe (3R(s))] < L[3r(s)| < c2e™™R  for s e [-1,1].
It follows that
(222) NFGRIE = [ [in(s) + Xo Ga(s)]' ds

1. N i )
< /.1 |7R(3)| +|Xa (r(s))[* ds < cze™R.



" “CHAPTER 2. NOVIKOV HOMOLOGY 32

In order to prove the second inequality take a { € W2(3g). We first
establish the estimate for a{ and (1 — a)¢ where a € W12(R, R) is given by
0, for |s| >T+1
a(s) ={2+ =, for1 <+s<T+1
1, for |s] <1

N

with some T' > 0. Since y~, ¥+ and y are solutions of (2.1), D, is onto and

cllDiClee 2 |ICllwrz for (€ WhE(y)

where ¥ = 77,9% or y. Consequently, if we write (1 — a){ = (™ + (¢t with
(F € Wh2(4¥F), (¥F(s) = 0 for Fs < 0 then

(1 = a)llwrz = I¢ llwrz + ||¢H|lwaa
1D3.(1 = a)Cllz2 = | D3-¢ |12 + 1| D5 €2
and hence
col| D3, (1 — a)Cllz2 = I(1 — @){|lwra.
Next, define ég € W'?(y) by

et TH3p(=T - 1), fors<-T —1
Er(s) = { 4r(s), forse[-T—1,T +1]
- et TH5(T +1), fors>T+1.

Since g is a vector field along the constant path y, Vg = C:R and
3 /. -
(223) erliya = 5 (FR(=T = 1) + |3a(T + 1))
T+1 ,, 2 . 2 kR
+ o BRI + Ba(o)? ds < eieeR.

Clearly, Diaf = D¢ af and if R is big enough it follows by Proposi-
tion 2.3.9(2) that
doo| D5 a2 2 [laC]lwra.
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Putting (2.3.1) and (2.3.1) together:

(2.24)
IKllwa < NI(1 = @)Cllwrz + llaCllwra < eof| D3, (1 — a)C|lz2 + 4eol| DE, ¢ 2

* . * 1
< 8o (D55l + 6u=1llzz) < 5co (D350 + Clhsa)

Therefore Proposition 2.3.4 follows for T > 5¢o and R sufficiently large.
Proof of Proposition 2.3.5. The family 9z converges to (¥~,7*) and since

sup d(7n(s), 7m(s)) < Koe™®

s€
YR converges to (y~,y%) with R — 400 as well. Note that since

m Rl = £(v7) + ().
we have £2(yr) = £2(y~) + £2(7*). Define
U, = {x €M: 3s € Rs.t. d(z,y7(s)) <e or d(z,7"(s)) < 5} .

It is easy to see that for any € > 0 and a sequence {7;} € M(z, z) converging
to (y7,v*) there is a jo € N such that 7;(R) C U, for j > jo. Consequently,
in order to finish the proof of Proposition 2.3.5 it is enough to show the

following

Lemma 2.3.10 For any e > € > 0 there is an Ry > 0 such that the
following holds. If v € M(z,z) and v(R) C U, then for any R > Ry there
s an element £ € W (4g) such that vy = exps £ (modulo time shift) and
léllwiz < Ke where K is independent of € and 7.

Proof. We may assume that d((0),y) < &. Thereis an Ry > 0 such that for
R > Ry we have d(7(0),77(R)) < 2¢ and d(y(0),7*(—R)) < 2¢. Since the
manifolds W*(z) and W*(z) are hyperbolic sets there are positive constants

C1, k; such that

d(7(—3),7 (s + R)) < 2¢Cre™*
d(7(s),7*(s — R)) < 2eCye~™*
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for s > 0. Therefore the required £ € W%(35) satisfies ||¢]|2, < (2¢)?(2T +
%‘2-), l€llz~ < 2Ci€ and from Proposition 2.4.1 follows that

IVEllz — IF(5R) + VeXallze < K||él|zeo||€)lwr2 (17R]2: + 1)
1 . -
§”€||w1'= S WFGERMLe + IVeXallir < Ce™ R + Ko|€)|12 < Kse

if 2¢ < (K(J|9gll22 +1))7! and R is sufficiently large.

2.4 Orientation

To complete the proof of the identity 9% = 0 we need the following

Proposition 2.4.1 Letz and z be two critical points of a, ind(z) = ind(z)+
2 = k. Assume that there is a connected component of Xd\(x,z) whose ends
converge to (v, 7) and (v;,7F) with 47 € M(z,w), % € M(y;, z) and
ind(y;) =ind(y;) =k — 1. Then

M= T 4 + MMyt = 0.

Since we deal with a connected component of M (z,2) we may assume
that « = df. For f(z) > a > f(z) we have a diffecomorphism M(z,z) =
Ma(z,z) := W¥(z) N W?*(2) N f~Y(a). Indeed, let ¥: R x M — M denote
The gradient flow of f. Since f decreases along nonconstant trajectories of the
flow 3 for any noncritical point z € M there is at most one real number 7a(z)
such that ¥(7.(z),z) € M,. It follows from the implicit function theorem
applied to f o1 that 7, is a smooth function defined on an open subset U,

of M. Then the diffeomorphism is induced by the map

M(z,2) 3 7+ y(7.((0))) € f(a).

If we take @ = f(77(0)) then 47(0) is a boundary point of M,(z,2) and
let »; be the unit vector field tangent to Ma.(z, z) pointing inward at v;(0).
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Then ( IIT?II’ v;) form an orthonormal basis for TM(z, z). Thus the proposition

follows immediately from
Lemma 2.4.2

{+1 if ("i,w) matches the orientation of M(z, z),
n-n+ = 7l

-1 otherwise.

Proof. Recall that the orientation of M(z,y) is determined by the orienta-
tions (z), (y) of TW*(z) and T,W*(y) using the isomorphism

(2.25)
LW*(2)[T;M(z,y) = T,M/T,W*(y) = T,M/T,W*(y) = T, W*(y)

and for ind(z) = ind(y) + 1 the numbers n., are defined so that n.¥ forms a
positively oriented basis of M(z,y). We assume the convention that for ori-
ented vector spaces V, W the natural isomorphism V & (W x V)/W induces
the orientation of the quotient. Then we have the orientation preserving
isomorphisms ({w) denotes the vector space spanned by w)
LW¥(z) = Tqylvu(x)/(n-y;ﬁ’i_) X ((—l)kn’y;'}'i_)
= T, W) x ((~1)¥n,-57)
T W¥(40) 2 T W (3) /(3 3 % (=1)*m5)

= LW (z) x ((=1)*"n+ %)

.and consequently
TW*(z) = T,W*(2) x (n,yi-"yf) X (n,y‘y}';")
(2.26) TM(z,2) % (n,257) % (n,33¢).
Consider a solution of the equation
V"y'.—£ = “VEXa(’Yi")-

In local coordinates

(2.27) €s) = A(s)E(s),  As) = Ao
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where Ap is the Hessian —V X, (y;). We assume for simplicity that Ao has the
simple eigenvalues y,..., A, (this holds for a generic metric). Let py,...,p.
denote the corresponding orthonormal basis of eigenvectors. Then the fun-
damental solution to (2.27) has form
n
X(0) = 36 (Rt Rit)
where P; denote the projection onto p, and the matrices R; converge to zero

with ¢ — +oo (see e.g. [Hil65]). If £(¢) is a solution with initial value
§O)=&p+- + & pi, & A0

then it follows that

£@)
(2-28) tLOO If(t)l 1mnz
where ;.. = max{);,..., ;. }. In particular, we have the limits

lim T = v; € T,,W*(y:)

= I3l

A
S, o = o € T ()

Let 7 be a limit point of v; at 47 and 7:(s) a solution to (2.27) with the
4nitial value 7;(0) = 0. Define

oo . 4
7 = lim —
3= [[n]

Since 7 is a solution to (2.1) 7; is an orbit of the tangent flow

7i(s) = dips (7 (0))-ni-

Moreover 7i(s) is not colinear with 4; and di,.; € TW¥(z). Therefore
from the transversality of the intersection TW*(z) N TW*(y;) follows that
77" € T;W*(y:) (note that the limit (2.28) belongs either to T}, W*(y;) or
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Figure 2.2:

T:W*(y:))- On the other hand dip,.1; € TW*(z) and the Morse-Smale condi-
tion for y; and z implies that p° = v}. Consequently, we have an orientation

preserving isomorphism
Y e
('ﬁ;y—”ﬂ/i) = ('U,- » Vg ) = (7:' » Vi )

which together with (2.26) proves the lemma.

2.5 'Transversality

In this section we show that the Morse-Smale condition can be achieved by
an arbitrarily small perturbation of the metric g. This result is due to Smale
“([Sl]) and we will follow the argument presented in [F2].

Let G denote the space of all smooth metrics on M. G is a subset of the
space C*(S?T' M) where S?TM C T*M ® T*M is the bundle of symmetric
tensors. Thus with the identification 7*M ® T*M = Hom(TM,T*M) we
may write X9 = g71a.

Let € = {er}ren be a sequence of positive numbers and define the subspace
CX(S2TM) C C®(S?*TM) of all sections A € C*(S*T M) satisfying

41l = 3~ eull Alloxn < oo

=0
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where the C* norms are taken w.r.t. a fixed metric ho. This is a separable
Banach space which is dense in L?(S2T M) for sufficiently rapidly decreasing
sequence ¢ ([Flo88b)).

Theorem 2.5.1 Let a be a closed nondegenerate form on a compact man-
ifold M. There is a dense set Greg C G such that for every g € G, and
7: R — M satisfying

(2.29) F(r,9)=4+ga(y) =0
the operator D§: W*(y) — L*(y), D¢ = Vit + ViX3 is onto.

Let z=,zt be critical points of a. Given a metric go € G let N be an
open subset of M such that y™}(N) # @ for any v € Mg, (z7,zt). We define

the closed subspace

G(N) C C=(S*TM)

of those sections which vanish outside N. Let U, be a neighbourhood of
zero in G(N) such that g4 = go + A is a metric for 4 € Uy,- Moreover if we

take Uy, small enough then g4 are uniformly equivalent to go i.e.

o90(v,v) < g4(v,v) < 07 2go(v,v) forallv e TM

-

where o is a constant independent of A. Then Theorem 2.5.1 is a consequence

of the following

Theorem 2.5.2 With the notation as above, the set of all A € Uy, such that

D34 is onto for every v € My, (z~,zt) is residual in Uy -
Proof. We claim that the set

Z={(1,A)€P x Uy, : F(7,94) =0}
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is a manifold. For (v, Ao) € Z consider the function

F= f:v,Ao: Bey(7) x Uyy — Lz('?')
}:(fa A) = TE(I,O)f(exp.,f, A)

where the exponential map and the parallel transport are taken w.r.t. gy
and the L2-product — w.r.t. 9A,- As g4 are uniformly equivalent to go, from
the proof of Theorem 2.3.3,b) follows that F is continuously differentiable

and
AF(0, A0)(€, A) = V£ + VIR XE% — 9310 Ao gla = DIME + dy F(Ao)A.

Since D3* is a Fredholm operator the kernel of dF (0, Ao) splits. Indeed we
can write

W'2(y) = ker D3* ¢ W
where Vi C W'2(7) is a closed subspace. Clearly ker dF(0,A0) N V; = {0}
and

ker dF(0, Ao) ® Vi = dF (0, Ag)™} (Do (W12(4))

Hence codim ker df'(O, Ao) ® Vi < oo and so ker df'(O, Ao) has a closed com-
plement in W'?(y) x G(N). In order to show that Z is a submanifold of
P x Uy, we prove that dF(0, Ao) is onto. The range of dF(0, Ao) is closed
since D, is Fredholm. Hence it is enough to proof that for any n € L?(y) the

condition
<d.7:'(§, A),n)L2 =0 for all ¢ € W'?(7) and A € G(N)
implies 7 = 0. The above condition means that
{Dy,m) =0
and

oo -1 9Ap
/ 94, (ng AXa )’7) =0.

-0
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First equation yields

(V€ m)| = (VeXa, )l < Kllnllz2ll€]]22

i.e. 7 € W'?(7) and it satisfies first order linear equation D*5 = 0. Hence it
is enough to show that the second equation implies that 7 vanishes at least

at one point. We have
940(924, © AXa, 1) = (AXa)n = (Xa ) Al

where the last equality is understood w.r.t. some basis {e;} along 7. Suppose
that 7%°(s0) # 0 for some index jo and s € y"}(N). We find a symmetric
fatrix A such that

(Xa(7(s0)))" An(s0) # 0.

If (X,)° # 0 we take fij: =1 and fi; = 0 otherwise. Else, there is an index
t0 # Jjo such that (X,)%® # 0 since X, does not vanish along 4 and we may
take .;1;'; = /ifg =1 and fi; = 0 otherwise. Choosing an appropriate cutoff

function we can extend A to an element of G(N) such that
+o0 .
| X)) Alr(s)n(s)ds # 0

which leads to contradiction.

= To conclude the proof of Theorem 2.5.2 consider the projection
m: Z — Uy,.

This is a differentiable map between Banach manifolds. The tangent space
to Z at the point (7, Ao) is the subspace of W?(y) x G(N ) given by the

equation

.D.yf + dzﬁ(Ao)A =0.

Hence kerdn(7, Ao) = ker Dy and imdr = dyF~1(im D,). Consequently,

we have dim cokerdr = dimcoker D,, as dF is onto. It follows that dr is
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Fredholm and A is a regular value of = iff D34 is onto for every v satisfying
¥+ g3'a(y) = 0. By Sard-Smale theorem ([Sma73]) the set of regular values

of 7 is residual in U,, which yields the result.

2.6 Continuation

The homology groups we have constructed depend on the form « as well as

on the metric g. The aim of this section is to prove

Theorem 2.6.1 Let ag and o, be closed nondegenerate forms on a compact
manifold M such that the form oy — g is ezact and go, ;1 Riemannian
metrics such that the corresponding flows generated by Xaiy t = 0,1 satisfy

the transversality condition for critical points. Then Aoy = Ay, and
H*(ao,go) = H-(alsgl)-

Proof. We begin with defining the Novikov complex in slightly more general
situation. An open set U in M is called an isolating neighbourhood for a
flow % if the closure of the sum of all orbits contained in U is contained in

U ie.
(2.30) S(U):=cl{z€U: ¢*(z) € U for all s € R} C U.

T U is such a neighbourhood for the flow of X, we may define the Novikov
complex relative to U setting C.(U, a, g) to be the submodule of elements
{ € Cu(M, a,g) such that £z = 0 whenever # ¢ 7~!(U) with the boundary
operator 3*(U, a, g) defined as before except that we count only these con-
necting orbits which lie in #~}(U). That 8% = 0 is clear because M(z,z)NU
is open and closed in M(z, z).

In order to construct a chain homomorphism between C.(a0,90) and
C.(a1,91) pick an €; > 0 and smooth homotopies a;, g; which are con-

stant near 0 and 1i.e. a; = ap, gt = go if t < &; and o=y, gt =g if
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t > 1 — ¢; and such that -f;at is exact. Thus o, induce the same homomor-
phism Xa, = Xa: ' = R and the coefficient ring Ag. Let 7: M - M
be a covering with m;(M) = ker[oy). Then there is a smooth function
f:[0,1) x M — R with df, = 7*a, for t € [0,1]. The following function

is well defined and smooth on M x S? where S? is parametrized by ¢t - e™*

F:MxS'SR

F(z,t) = fiy + gcosm—t for t € [-1,1].

Moreover F(Az,t) = F(%,t) + xa(A) for any A € T and the differential dF
descends to a closed form 8 on M x S! with ker[f] = ker[oy] x m1(S?) and
X8 = Xa: I' = R. Since M is compact all critical points of 8 have form
(z,%) where z is a critical point of o;, i = 0,1 if only K is sufficiently large.
Moreover f(z,t) = a;(z) — K sin7tdt for |t — i| < &, and therefore these
points are nondegenerate with ind(z,7) = indz + 1 — i. Next we define the

"product-like” metric on M x S?
Geny=g:91

where 1 denotes the metric on S? provided by the parametrization. For

[t — i| < &, the dual vector field Xj has form

-

(2.31) X5 (2,8) = (X¥0u(x), - K sin td")

and so the submanifolds M; = M x {i}, i = 0,1 are invariant w.r.t. the
flow and the restricted flow satisfies the Morse-Smale condition. If ¢ #0,1
and v = (11,72): R = M x S! is a solution to ¥ = —Xpg(7) through a point
(z,t) then from (7.1) follows that lim,_,_, Y2(s) = 0 and lim,_ 40 72(s) = 1.
In particular there are no orbits going from M, to M, and those connecting
two critical points in My (resp. M;) are contained in M, (resp M;). Hence

by Theorem 2.5.2 we can obtain the Morse-Smale condition by an arbitrarily
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small perturbation G of G on the set N = {(z,t) e M xS': t#£0,1}. A
homotopy a; with such a metric will be called admissible.

Theset U= M x (—€2,1 +62) C M x S with 0 < ¢, < 3 is clearly an
isolating neighbourhood since Xj is transversal to 8U. Thus we may consider
the complex (C?, A) := (C.(U, B, é),B(U, B, G’)) Then C? = C% @ C? with
C: generated by ((%,4)) where 7 is a critical point of F' and we assume the
orientations ((Z,)) to be induced by the obvious isomorphisms

Tip,0)W*(z,0) = T,W¥(z) x ToS?
T yW"(z,1) = T,W*(z)
for any p € M. Using this identification and (2.25) we obtain the orientation

preserving isomorphisms
TL,W*(z) X ToS" [T M((2,0), (¥,0)) = T W*((y, 0))

= LW¥(z)/T,M(z,y) x ToS* = T,W*(z) x ToS/T,M(z, )
TpyW*(2, 1)/ TeyM((2,1), (y,1)) = Ty yW*(y, 1)

S LW*(z)/T,M(z,y)
and hence the orientation preserving inclusions M(z,y) = M((z,i),(y,1)).
(Recall that we adopt the convention that the natural isomorphism V =
(W x V)/W is orientation preserving.) If we denote A = i j=01 Ai; where

A;j: CI — Ciit follows that we have the identifications
Xi* (Cr(@i; i), 0a;) = (Ciyyiy Aii)
Xi(§)z = {(z,9)-
Clearly x; are well defined A, homomorphisms since the injections M; <

M x S? are I-equivariant. Since in view of the remarks above Aoy = 0 the

equality A? = 0 reduces to
AL =0 for:=0,1
A0 Ago+ Aj10 Ay =0.
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In particular the second equation means that
10 = (—1)*x7" 0 Aro 0 X0: Cu(t0, 90) — Cu(@1, 1)

is a degree 0 chain homomorphism. If a; = ag, g¢ = go for all £ € [0,1] and
G =G =go®1 then the set M((z,0),(y,1)) C U is nonempty and consists
of a single orbit precisely when z = y. For any point (z, t) in M((z, 0), (z, 1))

we have isomorphisms

(232) TieqW*(2,0)/ Ty M((,0), (2,1)) & TeenyW*((z, 1))
= T,W*(z) & T.W*(z) x T,S'/T,S"

and the last one preserves the orientation iff ind(z) is even. Hence in the
case of the constant homotopy 140 is an identity. 7

Note that in terminology of [Spa66] C? is a chain cylinder of the homo-
morphism vg;.

We may repeat the whole construction for 2-parameter homotopies o,
g1+ Joining four forms and metrics o, g; for i = 2t +r, t,r = 0,1 to obtain
the Novikov complex C? = (C,(8,G,U ), A) associated with the form A on
the manifold M x S x $? such that 7*3 = dF and

- F:MxS$ xS —R
F(z,t,r) = fi.(z) + —I;r{(cos 7t + coswr).

where dfy, = 7*a;,. Here U = M x (—¢3,1 + €2)%. As previously, C? =

@051’ <3 C-: ’

Ag 0 0 o0
Do An 0 0
Ay 0 Ap 0
A30 A31 A32 A.?»3

A=
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where A = 82 denotes the boundary operator and we have natural identifi-

cations
Xo: (CZ°,0%) — (C5*?, Aco)
xi: (Cg%,0%) — (CF, Ay) fori=1,2
x3: (Ci*,0%) — (C3, As).

We also obtain chain homomorphisms

$10 = (—1)**'x7! Ao X0, 30 = —x3 " Aso Xo

pi; = (=1)* x7* Aij x; otherwise,

which fit into the diagram

Y10
Cfo —_— Cfx

1/'201 w J*ﬁsx

C°2 —_— Tag
= *
Y32

The condition A? = 0 gives, among the others, the equation
Aso 0 Agg + Az1 0 Ao+ Azz 0 Agg + Azz0 Az =0

which means that the degree +1 homomorphism 39 provides the chain ho-
motopy between )3; 0 ;9 and 135 0 1g0.

Note that if all one-parameter homotopies (i.e. for t or r = 0,1) are
admissible then we can obtain the transversality condition perturbing the
metric in the set No = {(z,t) € M x S' x S : t # 0,1 and r # 0,1}
thus without affecting the homomorphisms Y10, P20, P31 and 3. If we take
ag = oz and o = a3 and a homotopy which is constant w.r.t. ¢ for r = 0,1
then we can conclude that hage, = H.(t10) = H.(9s2) is independent of the
particular choice of the homotopy joining ap and e;. Similarly, with a; = a3
we obtain that

hagd; o ha;ao = hazao
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and hence all ha;a; are isomorphisms as hoajo; = idcg.'. This proves Theo-

rem 2.6.1.

2.7 Twisted coefficients

The reason for Novikov construction is that for a nonexact form one cannot
expect that the number of orbits connecting two critical points is always

finite.

Example 2.7.1 Consider a function on R3 given by
f(2,9,2) =y + (1 — cosz) cosy + cos z.

Its differential descends to a I1-form a on the 9-torus T® (parametrized by

T — € etc. )
a=sinzcosydz + (1+ (cosz — 1)siny) dy — sin zdz

which is homologous to the constant form dy. Hence I' = Z and the ring A,
consists of formal series T ;cz Ait' in one variable t with the finite number
of nonzero X; for negative i. The flow generated by the vector field dual to
a w.r.t. the Fuclidean metric on T3 splits in z,y and in z direction. Its
Ybehaviour on the invariant 2-torus given by {z = 0} or {z = 7} is sketched
above (fig.3a). We restrict our attention to an isolating neighbourhood U, :=

{(z,9,2) € T%: ~e < z < m +€}. There are eight critical points:

II

(7r, %, ) of indez 3
s T 7 3 « )
(W, 5, ) (5, -2-,0) ; T = (T?—’E’O) of index 2
3

T 7T T 7T R
—( "’) (5'5’“)’3’2=(7'5”’) of indez 1

27
3
(‘Jl', %I, 7r) of indez 0

A
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27

/ f z=0 y
z z
z z
Figure 2.3:

and two periodic orbits (t — (0,—t,0) and t > (0,—t,7)). From the symme-
try of the equation follows that there are homoclinic orbits (i.e. connecting
a point with itself) at the critical points z;,y;, i = 1,2. For the same rea-
son the unstable manifold of r, intersects the stable manifold of y; along a
2-dimensional manifold. These are the only cases where the Morse-Smale
condition fails. It is easy to see that there is one orbit connecting (in U,).
each of the following pairs of points: w and z;, i = 0,1,2, zo and y;, z;
and Yo, yi and z for i = 1,2, yo and z. We perturb the metric to destroy
the homoclinic orbits and create one more orbit connecting w with z; and y;
with z, 1 = 1,2 as follows. Pick an 0 < € < Zandan 0 < a <1 and let
¥: R — [0,0] be a cutoff function satisfying
Ply) = {0’ A T:' = .
a, ifl!l“g‘lS;-
Define new metric g = dz® + dz? + dy? — 1 (y) cos zsin z dzdy. The perturbed
system is pictured at the figure 3b. The stable manifold of z, is contained in
the unstable manifold of w and the part of the unstable manifold of z; which
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is contained in the 2-torus {z = 0} consists of one orbit converging to yo and
the another one winding around the periodic orbit. The analogous picture
can be drawn for the torus {z = x}. Further perturbation of g in order to
secure the transversality condition for z; and y;, 1 = 1,2 can be made in the
set N = {(z,y,2) € T3> : z #0,|y — ) < &0 < z < 7} thus without
affecting any of the connecting orbits mentioned above. By considering the
global section S = {y = 3} of the flow and the behaviour of the Poincaré
map of the two periodic orbits defined on an open subset of the section one can
give a topological proof of the ezistence of infinitely many orbits connecting
z1 and y;. There is, however, a simple algebraic argument proving this fact.

We consider the Morse complez restricted to U, and write down the boundary

operator (with the appropriate choice of the orientations)
0(w) = (zo) + (1 = t)(z1) — (1 = t)(=2),
9(zo) = (1) — (32),
I(z1) = (yo) + ar(y1),
9(z2) = (yo) + a2(y2),
9(yo) = (2),
9y) = (1 —t)(z),
9(y2) = (1 -t)(2)
where ay, a; are some coefficients in A,. The conditi’on 0% = 0 implies
1+(1=t)ay =1+ (1-t)ay =0
and 0 a1 = a3 = —(1 —t)™! = —32 t*. Thus there must be an infi-

nite number of orbits connecting z; and y; (z; and y, ) each in a different

homotopy class.

Example 2.7.2 If M is a torus T" then Hhp(M,R) = Hom(Z™R) every

homology class is represented by a constant form and so the Novikov homology
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I Zo

Figure 2.4:

s trivial unless a is ezact.

Example 2.7.3 Consider the constant form dz € C*(T*S) where the circle
is parametrized by 7: R 3 z — €'* € S, and its ezact perturbation a = (1-
2sinz)dz. The associated flow has two critical points o and z, of indez 0 and
1 and two connecting orbits. Therefore it is a gradient flow for some Morse
function f: S? — R w.r.t. a different metric (see fig.4). The ring A, is as in
Ezample 2.7.1 and if we consider the complez C.(S', a) as a free A,—module
generated by zo and z, then the boundary operator for Novikov homology 8N

has the form (with an appropriate choice of %; € 7 z:),1=0,1)
03 (z1) = (t = 1)(z0).
This is an isomorphism since t — 1 is invertible in A, and so HN,(S',[a]) =

0. On the other hand we may consider the Morse complez for the function f

tensored with Ay with the boundary
id,\a ® 6{," Ay ®z Cl(Sl,f) — A, ®z Co(Sl,f).

This operator is trivial and in fact it is an evaluation of 8Y att=1. Thus
Hi(C.(5', f); Aa) = A, for i = 0,1 and we obtain the homology of S* with
coefficients in A,.

More general if we have a form o and a metric g such that the corre-

sponding flow has no other limit sets than critical points then it is a gradient
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flow for some Morse function f and a different metric ([Sma61]). In this case
the number of the connecting orbits in the definition of the boundary is finite
and the operator has form
A= T (SalmArt..id) @
ind(y)=ind(z)-1 \ 4

where n(y, z; A) counts the orbits in the homotopy class corresponding to
A (there are several choices involved here) and A ranges in a finite set.
Note that taking ¢ = (1,...,1) we obtain the Morse complex for f with
coefficients in A,. In fact by making a special choice of the gradient flow
X we will construct an isomorphism between the Novikov complex and the

Morse complex with twisted coefficients.

Proposition 2.7.4 Let M be an n-dimensional closed manifold and a €
HY(M,R). There ezists a I-form € a, a Morse function f and Riemannian
metrics g1, g2 such that g7'a = g7 df and the flow generated by this vector
field is of Morse-Smale type.

Proof. Step 1. Let uy,...,u; be a basis for the free part of Hy(M,Z). We
choose the corresponding dual manifolds Ni,....Ni so that they intersect
‘Eransversally.

Each u; can be represented as a differential of a function %;: M — S! =
R/Z (unique up to homotopy) and an inverse image N; = 4;'(p;) of any
regular value p; is a dual manifold of u; i.e. the value of u; on any l-cycle
z is equal to the intersection number z - N; (see [Mil68]). Set @#t: M —
Tk 4 = (t,.. ., Ux) and let Pliy..ip: T* — T? denote the projection of the
torus T* onto T?, Pripip(T1,. .0 2k) = (24,.. -»Zi,). Choose a point p =
(P1,-..,pk) € T* such that (piys- .. »Pip) is a regular value of Priy..ip © U for
any collection of subscripts {i;...3,} C {1,...,k} (such p exists by Sards
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theorem since the projections are open maps). Then

P P

(N = ()35} (pi,) = (priy..p 0 @) (piys - - - 1i,)

j=1 i=1
are manifolds of dimension dimker d(pr;, ip0U)=n—p Ifz € Nzﬂﬂg’_l N
for I # 15, j = 1,...,p then it follows that T,.(N; N MG=1Ni;) G T =y N,
Therefore N; th, Ni-s N;; since codim N; = 1.
Step 2. We construct vector fields X; defined in some neighbourhoods U; of
N; such that

(2.33) X; th N;,

(2.34) X;IN C TN; fori # j
J

(2.35) [X:, X;] =0

for 1 <i,57 <k.

First notice that for any zo € U, V; there is a neighbourhood V of z,
and a chart ¥y: V — R™, ¢y (o) = 0 such that if N;NV # 0 then zo € N;
and ¢v(N; NV) is contained in a hyperplane {(z1,... yTn) €ER™: z; =0}
for some 1 < j < n. In the neighbourhood V we define XY = gb{,-a—a— where
az = (0,.. J -,0). We also choose ¥y so that di;(X)) induces the
positive orientation of S'. Now we can use a partition of unity to obtain
vector fields X{ defined on some neighbourhood U! of N; satisfying (2.33),
(2.34), transversality following from the fact that dii;(X!) # 0 as a convex
combination of dit;(X}). Proceeding by induction let us assume an existence
of vector fields Xj, ..., X; satisfying (2.33), (2.34) for i <1, j < k and (2.35)
for 7,5 < 1. Let ¢} be the local group of diffeomorphisms generated by X;
and €9 > 0 such that N is contained in the domain of i for |t| < o and
1 < I If we set Uf = ¢(_, (V) for 0 < € < g0 then [X;, X;] = 0 implies
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$i(Us) C Us. If we denote .

P
L, = U ﬂNf,-ﬂNm
{i:,...,i'p} Jj=1

c{1,...1}
then Liy; = 0, L; = 0L N; and Ly = Nyy;. Starting with p = l+1 we shall

=1
construct inductively vector fields Y, in some neighbourhoods W, of L, and
set Uy = Wo, X1y = Y5
Thus assume that Y} satisfies (2.33), (2.34) and (2.35). W.l.o.g. we may
take
Wo=Wi= U () énn7)

{11 ..... ip} J-‘l
c{1,...1}

where V C UI’+1 is a neighbourhood of Ny, and 0 < ¢ < go. Let V' C U,
be a neighbourhood of Ny; such that $i_eso, e2)(V') C Vifori <1 For
any {i1,...,4-1} C {1,...,1} the set K = K; . gy = BLIN; NV is a
submanifold of V’ and (K \ WE/ 2,1{ N W;) is an open cover in Ki.ipy-
Using cutoff functions we can glue together vector fields X T and
YlenW; to obtain a vector field ¥, ;. _,: K, i,y = TM satisfying (2.33)
and (2.34). Now notice that the map

® = Pir-ir : (—€/2, e/2)P1 x K;, .. vipoy — M,
(t, .. sy tp-1,Z) ¢ ;Z_i (z)

is a diffeomorphism onto some neighbourhood V,-l__,,-p_1 of _’,-’;11 Ni; N Niy,q.

On V.4, weset ¥,; = 2.Y,..4,,- Since ¢i;(N,) C N, for all ¢ < k
the vector field ¥,; satisfies (2.33) and (2.34) and clearly [Y,-1, X;;] = 0 for
J=1,...,p—1. On the set ®((—e/2,¢/2)"~1 x (KNWg/?)) we have Y,_; =Y,
since [, X;;] = 0. On the other hand ®((—¢/2, /2P x (K\W;/*))nUe/? =
0ifg#i;,7=1,...,p—1and ¢ <. Hence [Yo-1,Xi] =0o0n V,_,_, for
all ¢ < I. Moreover our choice of V' guarantees that Vj, wipmy N Vigipaip, C
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®((—¢/2,¢/2)P" x (K N W/?)) and therefore Y,_, is well defined in

Woei= U Viyipes-
s

This concludes the inductive step.
Step 3. We finish the proof with a simple rescaling argument. Define a
function 7;: Uf — R by the condition 7;(4i(z)) =t where z € N;. If : R —
R is a smooth function satisfying supp 8’ C (—¢, €) then d(Bo7;) = B’ o rydr;
extends to a closed form on M. It is easy to see that d(Bo; is homologous to
(B(e) = B(—¢))it;. Indeed, w.l.o.g. assume that N; = a;71(0) and B(%e) = +3
ie. for: M — S, ﬂ°7'i|M\U: = 1. We have to show that #; and Bo T,
are homotopic. If &; > 0 is such that @;([—e;,6,]) C UF and x: S — S?
satisfies x(S' \ (—€1,€1)) = 3 and x~1(0) = 0 then #; = y 0 &; is homotopic
to &; and ;71(S*\ {1}) C Uf. Hence #; agrees with 8o 7; outside Uf and the
homotopy tB o7 + (1 — t)0; is well defined in Ut.

Choose 0 < €; < €3 < € and smooth functions p,h: R — R such that
supp h' C (e1,€2), h(e1) = 0, h(e2) = 2, p > 0, p(1) = p(0) = 1, suppp’ C
int(supp k') and [} ph’ = 1. Define
. A = {gg()_t) ;f: i g

Thus [d(B o 7;)] = u; and (pB") 0 7;d7; is exact since Jo pB' = 0. Therefore we

may define a € a by
k
Q= Za,d(ﬂ o 7',')

=1
where a = Yoju; € HHp(M,R) and o; € R. Next we construct metrics
91 and g; such that ¢(X;, X;) = &, 92(Xi, X;) = &ijp o 7; and X; are
perpendicular to kerdr; w.r.t. both metrics. This can be done locally using

coordinates induced by X; since [X;, X;] = 0 and X, ; € TN; implies dr;(X;) =
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0 and then we may use a partition of unity. Hence we have ¢;(X;,-) = drn;

and

a(Q_aif orXiy) =«
9D aif o X;,") = > i(B'p) o Tidr; =: df.

ie. Taif o X; = g7'a = g;'df. Notice that a does not vanish on the
closure of the set W = {z € M : g,(z) # g2(z)}. Therefore we may add
a small Morse function with the support away from W so that a becomes
nondegenerate. Since no orbit connecting two critical points is contained en-
tirely in W we may obtain the Morse-Smale condition perturbing the metric
in M \ W which does not affect the construction. O

In order to apply the above proposition we recall the concept of equiv-
ariant homology (see e.g. [Whi78]). If 7: M — M is a covering with the
group of deck automorphisms I' then the action of T' on the singular chain
complex A.(M) of M turns it into a ZI'-module where ZT is the group ring
of I'. Let A be a ring on which I acts on right thus inducing on A a structure
of ZI'-module. The (singular) equivariant homology HI(M;A) is defined as
the homology of the ZI'-complex A, with coeficients in A or equivalently
HI(M;A) = H.(A® A./Q) where the submodule Q = Q(C.,A) C A ®z A.
is generated by the elements of the form AMA®c—A® Acwith A €T, X € A.
It is isomorphic to the singular homology of M with local coefficients system
induced by the action of I on A ([Whi78]). Similarly we define the equivari-
ant Morse complex. Although M is not compact a Morse complex C, (M, f)
lifts to a complex C.(M, f, §,f=fom, g = m*g which is equivariant. We
obtain the homology groups HI (M ,f\ A) defined analogously.

Proposition 2.7.5 The groups HY (M, f,§; A) are independent of the choice
of the function f and the metric g. They are isomorphic to the singular
equivariant homology HT (M;A).
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Proof. The proof of independence of the choice of f and g is the same as for
the ordinary Morse complex The prove of the remaining part of the propo-
sition is very much the same as in the ordinary case (see [Flo89b, Sal90].).
Thus we may choose a Morse function f: M — R and a filtration § = N_, C
+++ C N, = M so that (N;, N;_,) is an index pair for an isolated invariant
set consisting of critical points of index i. We may also choose an index
pair (Nz, L;) homeomorphic to (D' x D™, §-1 x D"~%) for every critical
point z of f (ind(z) = ?) so that (N, L,) C (N;, N;_;) and this inclusion
is a composition of an excision map and a homotopy equivalence, homotopy
being induced by the gradient flow. If we set N; = =~'N;, N, = =~1N,,
L, =1L, it follows that the inclusion
U (‘Vz, -Z’z) C (M,-Ni—l)
ind(z)=i

being a composition of an equivariant excision map and an equivariant ho-
motopy equivalence induces isomorphism in the equivariant homology. Thus

HE(N;, Ni-1) is nonzero only if k = i and the natural transformation from

the universal coefficients theorem
Xx: A ®ZF Ht(]via Ni—l) — Hf(Jvn j-vt—l;A)

is an isomorphism. Thus there is a commutative diagram

- @ A®ZFHi(Nx,z/z) _E"’ @ er(fvmzlx;A)

ind(z)=¢ ind(z)=¢
A ®zr Hi(N;, Niey) =5 HI(N;, Ni_y)

1Q®3; af

l
A ®zr H;y (Ni—l y Ni-z) = H.-P_l (Ni-l, Ni-z)

™ =

@ A ®zr Hi(Nz’ I:z) — @ HgF(Nz, zz; A)

ind(z)=1-1 ind(z)=t-1
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where 8, 0" are the boundary homomorphisms in the exact sequence of the
triple (N,, N,-_l, N;_g). Now notice that (1\7,, E,) is a disjoint union of pairs
(Nz, Lz) over all 2 € n~!(z). Therefore we may consider the composition
A ®r A of the left vertical arrows separately for each pair (,9) of critical
points of f, ind(Z) = ind(§) + 1. But these are contained in a compact
invariant set and therefore A is isomorphic to the boundary operator in the
Morse complex ([Flo89b]). On the other hand a standard algebraic argument
shows that the homology of the complex HT (N, Ni_,), 8") is isomorphic to

the equivariant homology of M.

Corollary 2.7.6 Ifa € H;(M,R) and T = 7,/ kera then
HN.(M,a;Z) =5, HE(M;A,(Z))

with the action of T' on A, given by (AA)(B) = A\(BA™?).

Proof. We describe the chain isomorphism between the Novikov complex of
a and the equivariant Morse complex of f with a € @ and f chosen as in the

Proposition 2.7.4. Thus the corresponding flows are identical and we define
®: A, ® Cu(M, f) = Cu(M, )

® (zz: Az ® :c) (zo0) = %:/\Azo (A7Y).

It is easy to see that ® is an epimorphism and Q C ker ®. If YAz ®z €

ker ® then 0 = (T, A, ® z)(Azo) = 3p ABazo(B™') = Tp ABz(AB™?) =

(B 2Bz, B)(A)ie.T5 ABz,B=0. Hence ¥, A, ®z =Yg 22y ABzo ® Bxo—
220 2B ABz, B ® Zo € @ where we pick one z, in every orbit of I'. Thus @ is

-



- CHAPTER 2. NOVIKOV HOMOLOGY - &7

an isomorphism Furthermore, we have
a9 (Xx: Az ® :c) (¥) = Z; n(z’,y0)® (Z,—.: Az ® .7:) (z")
= Z; zA: n(:c", Y)Aaz (A7) = ; D o n(Az,y) (A7)
o6" (2 Ao ® z) (1) =0 (z > den(z,y) @ y’) (v)
= ZA:Z n(z, Ay)A-(A7?)

and so 9 is a chain map since n(Az, Ay) = n(z,y). This proves the last

assertion of Theorem 2.2.2.



Chapter 3

Floer theory

3.1 Introduction

In this chapter we prove a technical result which we hope can be used in
computing Floer homology for Lagrangian intersection whenever it has a
simple structure. The two extreme cases are on the one hand, when two
Lagrangian submanifolds Lo, L; intersect transversally at a single point and
on the other hand, when they are equal. If we are interested in the “local”
behaviour of Floer’s complex near the intersection then the first case is trivial:
there is one generator of the complex and no connecting orbits. When Lo =
L, then locally it can be seen as the zero section of the cotangent bundle
T"Lo. This has been investigated in [Flo88a] and it turns out that the Floer
complex can be identified with the Morse complex of a function on L. If
we want to draw an analogy with the finite dimensional Morse theory then
the first case corresponds to a single critical point of a Morse function while
the second to a constant function i.e. the whole manifold consists of critical
points. An “intermediate” stage is when the critical set of a function consists
only of nondegenerate critical manifolds. Then there is a spectral sequence
whose entries are the homology of critical manifolds and which converges to

the homology of the manifold ([Bot82]). We think that the clean intersection

58
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should play the role of the nondegenerate critical manifold in Floer theory.
The main theorem of this chapter (Theorem 3.4.11) states that the Floer
homology in a neighbourhood of a connected clean intersection is isomorphic
to the singular homology of the intersection. The difficulty one encounters
trying to obtain a global result is the possibility of the existence of “large”
gradient lines i.e. connecting orbits which cannot be deformed into a small
neighbourhood of Ly N L;. We can avoid this by imposing quite restrictive
topological assumptions or sometimes these additional solutions do not exist
for “dimension” reasons.

The set-up is described in the following two sections. Floer presented his
theory in a series of papers ([F1o88b),[Flo89b],[Flo88a)]) under the assumption
that the symplectic form vanishes over m3(M, L;). Details in the monotone
case have been carried out in [Oh93a] and we shall base our set-up on these
papers. The analysis necessary to construct Floer homology is a vast subject
and we do not make an attempt to reproduce all details here. We state
the facts necessary for understanding and proving the results of Section 3.4.

Section 3.5 contains some straightforward consequences of Theorem 3.4.11.

3.2 Preliminaries and notation

-A 2-form w on a manifold M is said to be symplectic iff it is closed and
nondegenerate. This means that M is necessary of even dimension 2n and
that the exterior power w® = wA- - -Aw is a volume form on M. An example of
a symplectic manifold is the total space of the cotangent bundle 7y: T*N —
N of any manifold N, equipped with the symplectic form wgp.y = —d-n"

where Arey is the canonical 1-form on T*N:

Aren(a) = aodny, a€T"N.
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A diffeomorphism ¢: (My,w;) — (M2,w;) between two symplectic manifolds
is called a symplectomorphism if ¢*w; = w;. The Darboux theorem asserts
that any symplectic manifold is locally symplectomorphic to an open subset
of R?" with the standard symplectic form
WR2n = Zn: dg; A dp;.
i=1

An n-dimensional submanifold L of (M,w) is called Lagrangian if w van-
ishes on T'L. The ingenious argument by Moser, used in the proof of the
Darboux theorem, also yields the Lagrangian Neighbourhood Theorem: A
neighbourhood of a Lagrangian submanifold L in M is symplectomorphic to
a neighbourhood of the zero section in T"L.

Any symplectic manifold (M,w) admits an almost complex structure,
that is an endomorphism J of the tangent bundle such that J? = I. This

structure can be chosen to be compatible with w, meaning that
w(Jv,w) + w(v,Jw) =0 forv,we TM

and gj := wo(id x J)is a Riemannian metric on M. This gives the reduction
of the structure group of TM to U(n). Moreover, the space of w-compatible

almost complex structures is contractible.

3.3 Floer homology '

Let Lo, L; be two compact Lagrangian submanifolds of a symplectic manifold

(M,w). Define the space of paths
(3.1) WLo, Ln) = {y € C*=([0,1), M) : (3) € L, i = 0,1}

and let Q(Lo, L1,70) denote the path component of 79 € Q(Lo, L;). Since L;

are Lagrangian, the formula

(3.2 oe = [ wle,5)dt
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where v € (Lo, L;) and £ is a vector field along v, defines a closed 1-form
on Q(Lo, L;) in the sense that if a map u: S* x I — M, u(s,-) € Q(Lo, L1)

represents a contractible loop in Q(Lo, L;) then
6](u) = / u'w =0,
This way w induces a homomorphism
I,: m(Q(Loy L1),7) = R

If I, vanishes then da, = & where qa,, is a real valued function. In general,
the symplectic action functional is defined only on the universal cover §} of

Q

(33 a(i) = [ww

Lo, L1,70) —> R

| |

Q(Lo,Ll,’)'o) A R/Imlw
where u: I x I — M represents an element ¥ € ) that is u(0,t) = ~(t),
u(1,t) = v(t) and u(s,?) € L;.

3.3.1 Description of m1(Q(Lg, L)) and mo(2(Lo, L1))

The path components, the fundamental group of (Lo, L) and the homo-
morphism induced on 7;(2(Lo, L,)) by the symplectic form w can be easily
visualized. On the other hand it may be convenient to describe them more
directly in terms of mx(M) and mi(L;). In the following we may assume that
Q(Lg, L1, o) consists of all continuous paths connecting Lo and L;, since this

space has the same weak homotopy type.
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Fix a base point 70 € Q(Lo, L)) and set z; = (i) for i = 0,1. We

introduce the notation
li:Liy— M
ki (M,:L',') - (Msz)
pi: ULo, L1) 3 v+ 7(i) € L;

where k;, I; are the inclusions.

Lemma 3.3.1 If L; are connected then there is a bijection
(3.4) mo(QU(Lo, L1)) = im w1 (lo)\m1(M)/im m (1)

where on the right side two elements a,b € m (M) are in the same equivalence
class iff there are ¢; € m(Li) such that a = m1(lp)(co)bm1(l)(c1).

Moreover, there are short exact sequences

(3.5)
0 — m2(M)/im(ma(ly) — ma(l)) — 71(ULo, L1)) — ker rl(lo)"ltfrl(l,) — 0

and

(3.6) 0 — ma(M, Lo) @ m3(M, L)/ (ma(ko), ma(k1))ma( M) —
— WI(Q(LQ, Ll)) — im 7l'1(lo) n im7r1(ll) — 0.

Proof. The evaluation map

P := (o, p1): VLo, L1) 3 7+ (7(0),7(1)) € Lo x L,

is a Serré fibration and the fiber p~ (o) R (Lo, L,) is homotopy equivalent

to the space of loops

M, z0) = {7: [0,1] » M : 7(0) = 20 = 7(1) € L,}

P51 () D7 v+t € QM, zo).
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Therefore 7x(py*(70)) = mk+1(M, o) and there is the exact homotopy se-

quence of homotopy groups

(3.7) o 4 7rk+1(M) (M) Wk(Q(Lo, Ll)) ("k(mﬂf(?l))

—s mi(Lo) @ mi(Ly) ™3 1 (M) —
from which (3.4) and (3.5) follow. Note that, although the map
W](lo)_lﬂ’l(l]): 71'1(LQ) o) 7T1(L1) ] (a, b) = wl(lo)a'larl(ll)b € 71’1(M)

is not a homomorphism, its kernel is a subgroup of m1(Lo) @ 71(L1). Then

the map
(7{'2(’60), 0)' WQ(;M) - 7l'2(M, Lo) o) 7l’2(M, L1)

induces the isomorphism
mo(M)/(im ma(lo)+im mo(ly)) = 7wo(M, Lo)®ma(M, L)/ (m2(ko), w2 (k1)) 72 ( M).
We have also the isomorphism

ker 731 (lo) "' m1(lh) 3 (a0, @1) — m1(lo)ao = m(h)a; € immy (L) Nimmy (1)
and thus (3.6). O

3.3.2 Monotonicity
There is another homomorphism defined on 7; of the path space
I# = duLo,Ly - WI(Q(LO, Ll)’ 70) —Z

namely, I,(u) is the Maslov class of the bundle w*TM — S x I. This may
be described as follows. The bundle u*T'M admits a symplectic trivialization

V: u*TM — S x I x C* which restricted to S x {i} gives a loop

X: S5t U(u"TLi(t,i)) c C
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of Lagrangian planes in C*. We set

L (u) = p(A1) = #(%)
where u is the Maslov index. If ¥’ is another symplectic trivialization then
U o U, s,2) = (8, 5,,(t)2)
and ¥,(t) € Symp(2n). We have then the formula for the Maslov index of
Alst o U(uwTLi(t,1))
p(X) = p(¥i o X)) = p(X) + p()

where in the last term x denotes the isomorphism between 7, (Symp) and Z.
But the loops ¢; are homotopic in Symp(2n) and so I¥'(u) = I¥(u). We say
that a triple (M, Lo, L1, %) is monotone if

I, =),
for some A > 0.

Remark 3.3.2 In view of the decomposition (3.6) the monotonicity means
that I, and I, are proportional over mo(M, L;) and that the induced homo-
morphism

(I, = AL)g: imm(l) Nimm (L) - R

vanishes. This happens e.g. if one of the groups imm(L;) is torsion or if
Lo = Ly since in the latter case any element in immy(1;) is represented in §
by a loop u of constant paths and so I,[u] = I,[u] = 0. Note that these are
the topological assumptions in [Oh93a].

If A € m(M) and my(5): mo(M) — 71(R) is as in (3.7) then

Iy om(7)(A) = 2a1(4)
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where ¢, is the first Chern class of TM (see [Flo88a, Oh.93;z]). In particular,
if N, is the minimal Chern number and N, the minimal Maslov number, i.e.
the positive generator of imI,, then N, necessarily divides 2N,,. Similarly,
if £; denote the generators of im Iy, a1y then N,|Z:|2N,, . Also, if a triple

(M, Lo, Ly) is monotone then M is itself monotone, i.e.
[Wlm ) = 2AC1my0M)-

Conversely, if M is monotone and the groups m1(L;) are torsion then it fol-

lows from (8.5) that (M, Lo, L,) is monotone as well.

3.3.3 The gradient flow

In order to develop the Morse theory we have to introduce a Hamiltonian
perturbation of (3.2) since the form @ may be degenerate. Let X: be a
Hamiltonian vector field on M with the Hamiltonian H: [0,1] x M — R,

that is
Z.sz = dHt te [0, 1]

and let ¢; be the family of symplectomorphisms generated by X;. Consider

the perturbed form
-~ -~ 1 1 .
on(E =0+ [ (D) dt = [ e - Xulm) de
It is exact if @ is exact and Wy = day with
1
an(r) = [ww+ [ Hix®) dt

where u is as in (3.3). The critical points of ay are precisely the paths

z € )(Lo, L) satisfying

(3.8) 5(t) = Xi(2(2))
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which in turn are in the 1—1 correspondence with the intersection points of

Lo and ¢7'(L,). A solution to (3.8) is a nondegenerate critical point of ay if
d¢~ (ToqyLa) N T:(0)Lo = {0}

that is if Lo intersects ¢7(L,) transversally. We shall say that a Hamiltonian
H regular if all critical points of ay are nondegenerate. This holds for a
generic function in H := C®(I x M,R). Let J, denote the space of all
smooth ¢-dependent families J: [0,1] x M — End(TM) of w-compatible

a. c. structures on M. For a given J € J,, the L-gradient of ay is given by

graday(y) = J(¥ — X(7))

and we may write the gradient equation

- ) E;
(3.9) 3 (u) = ?9'3 + J,(u)a—ltl + VHy(u) =0
(3.10) u:RxI— M, u(si)elL;

where VH; = —J, X, is the gradient of H; w.r.t. the metric gy,.

This is an elliptic equation and so the Cauchy problem is not well posed.
On the other hand, by the elliptic regularity, any W,,” solution to (3.9), (3.10)
with p > 2 is smooth ([Flo88b, Lemma 2.1]). Instead of trying to define
a gradient flow of ay globally, Floer considers the solutions with bounded

energy {2

2
@ dtds
0s ||,

£(u) := [;w /01

Mip(Loy L) :={u: 8s4(u) =0 and £*(u) < o}

It turns out that these are precisely the solutions which satisfy the limit

conditions

u(s,-)—z%, s — *oo
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for some z~,zt € Critay. We have then

)= [uot [ " Hy(a*(2) = Hi(z(2)) dt

We denote the set of these solutions by M u(z~,z%). We fix a p > 2 and
similarly as in the previous chapter we introduce the space of paths P(z~,z ™)

connecting z~ and z% in (i

Pz™,z*)={u:Rx I > M: ue WP(R x I, M),
AT >0, 3¢ € WH?((—c0, —T] x I;(z~)"TM),
3¢ € WHP([T, 0) x I; (z*)*T M) such that
u(s,t) = ezp.s(pés(s,t) for £s > T and t € I}.

It is clear that the definition does not depend on the choice of a metric on
M. If z* are nondegenerate then P(z~,z%) is a Banach manifold ([Flo88b,
Theorem 3]), whose tangent space at u € P(z~,zt)NC*(R x I, M) consists
of W1P-sections of the pullback bundle u*TM satisfying £(s,:) € Tu(si)Li,
which we denote by Wi;’f 1, (wTM). Then 8y can be seen as a section of
the Banach vector bundle £ — P with fibres £, = L?(u*TM). For any u € P

the linearization of 8,4 along u € P(z~,z*%),

5}
(3.11)  Dig(u)é = V. + J(u)Vi + veJ,(u)—a% + VeVH(u)
defines a bounded operator D y(u): W,f;”’ 1, (W TM) — LP(u*TM).

Theorem 3.3.3 If z7,z% are nondegenerate critical points of ay then the
operator Dy (u) is Fredholm. There is a generic set (J X H)reg(Lo, L1) C
J x H such that Djy (u) is onto for any (J,H) € (J X H)rey and u €
Mn(Lo, L) and then Mjy(z~,z%) is a collection of finite dimensional
manifolds with

dim, Myu(z~,2%) = ind Dy y(u)
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That Djy(u) is Fredholm was proved in [Flo88b]. The proof of the transver-
sality result in that paper contains some gaps which were filled in [FHS94].
The main idea is essentially as in Section 2.5. We may assume w.l.o.g. that
H = 0 (see Remark 3.13 below). We take J as the parameter space and
consider the Fredholm section
F:PxJT>(u,J)—0,(u)€€
We have to prove that F is transversal to the zero section. Then the set
Z={(u,J) €P x J: 9;(u) =0}
is an infinite dimensional Banach manifold and the projection
1Z2-J

is a Fredholm map. The set ., consists precisely of the regular values of

7 and thus is residual in J by the Sard-Smale theorem. It remains to prove
that the vertical part of dF:
DF(u, )€ Y) = Daw)é +Y () 2
is onto for any (u,J) € P x J. As in Section 2.5 it is enough to show that
DF(u,J) has a dense range. Suppose then by contradiction that a non-zero
vector field 7 € L?(u), where 1 + » =1, satisfies
Di(u)n =0
(3.12) I Ve 2y dtds = 0
—o0 JO ot
Since D%(u) is an elliptic operator with smooth coefficients, vanishing of 7 in

a non-empty open set yields, by the Aronszajn unique continuation theorem,

n = 0. Now, define

R(u): ={(s,t) € R x (0,1): % #0,
u(s,t) # z* and u(s,t) ¢ u(R — {s},t)}



COAArien s. rooen 1oORY

A calculation in [SZ94] shows that if 5(s,t) # 0 for some (s,t) € R(u) then
there exists Y € TJ such that the infegral (3.12) is positive. The subtlety
of the argument lies in proving that R(u) is non-empty. The proof based
on the Carleman similarity principle is formulated in [FHS94] although in
slightly different set-up, for pseudoholomorphic maps defined on the whole
R2 Theorem 4.3 in that paper states that R(u) is open and dense in R2.
However, the argument has local character and so we may simply disregard

the boundary points in our case.

Remark 3.3.4 We assumed above that H = 0. It is easy to see that this
does not affect generality of the proof: Let ¢ be an ezact symplectomorphism

and ¢, a Hamiltonian isotopy joining td and ¢. There is a bijection
(3.13) @*: Q(Lo, L1,7) — Lo, $7*(L1), 67" 0 70)

given by ®(7)(t) = ¢;'(y(t)) and this gives the 1-1 correspondence between

the trajectory spaces
M (Lo, Ly) = M o(Lo, 7 (L1))

where J; = ¢;J;. Indeed, if u: R x I — M satisfies (3.9) and (8.10) then
(s, t) := @7 (u(s,t)) defines a solution to

ou
ity

with 4(s,0) € Lo and i(s,1) € ¢'1(L1). Similarly, the correspondence £ — €,
£(s,t) := dg;€(s,t) defines the isomorphisms ®7: LP(u*TM) — LP(a*TM),
(@ : WPy, (wTM) —» WP, ., (&*TM)) and

Dj,o(ﬁ) (o} CI);V = q’z o} DJ_H(u).

This is because the Levi-Civita connection V7t associated with g5, is equal to
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the pullback ¢; V7t and also because
5],0@) = ‘gg (¢;—1 o U) +dg; 0 J o dgy ( (¢, 0 u))
dg7t (6“ + Je(u) ( Xt(u))) = Oz n(u)

Hence the operators Djo(it) and Dy (u) have the same indez and (J,0) €
(T X H)reg(Loy¢7 (L)) iff (J, H) € (T X H)reg(Lo, L) (more generally, a
pair (J, Hy) corresponds to (J, Hy) with Hy = (H — Hy) 0 ¢).

Clearly, the map (3.13) preserves also the homomorphisms I, and I,

Iw,Lo,d"‘(Lx) 0% = Iw,Lo.Lx and I#.Lo,¢"(L1) 0®" =1 ,Lo,L1

The index p, := ind Djy(u) depends on the homotopy class of u and
is equal to the Viterbo index. This is defined as follows ([Vit87, Flo88a)).
In view of the remark above we may assume w.l.o.g. that H = 0 and let
u: I - M be a paths in Q(Lo, L;) joining two nondegenerate intersection
points, u(s,?) € L;, u(0,t) = z~, u(1,t) = z+. We may choose a symplectic
trivialisation ¥: u*TM — I? x C* which is constant at the end points u(, t)
and such that W(T,+L,) = i¥(T,+Lo). Then the index m,, is defined as the
Maslov class of the loop

>0
.._iezﬂ’iT\Il(T;-I-Lo) for 1 1 <7< ;,
V(To3-4r1)L1) for <7< 2,
ie21ri"'\Il(Tz—L1) fOI' 1 <7<l

,‘I’(Tu(c:-r,o)Lo) for0<r<1
A(T) =

In [Flo88a] Floer proves that these indices coincide. More precisely, let
B: R — I be a cutoff function such that #((—o0,0]) = 0 and B([1, +o0)) = 1
and let u € M o(Lg, L1). Then

Myt = fy
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where u': I* = M is chosen so that u and u/(8(s),t) are homotopic in
Q(Lo', L,) with the end points fixed. There is a st;'aightforward relation

between the Viterbo index and I,;:

Lemma 3.3.5 Ifuy,us: I? — M connect two intersection pointsz~,z™* then
Iy(u1 * (—u2)) = my, —my,

Here we use the notation

uy(2s,1) s <
uz(l —2s,t) s>

(w1 * (—u2))(s,t) = {

= N

This results together with Remark 3.3.4 implies

Corollary 3.3.6 If the triple (M, Lo, L,) is monotone and H is reqular then
for any uy,uz € Myy(Lo, L)

E(ur) = £(u2) & puy = pu-

In order to construct the boundary operator we need a compactness prop-
erty for 1- and 2-dimensional parts of M jy(Lo,L,) similar as in Proposi-
tion 2.2.1. We say that a sequence {u,}2; C C*®(R x I, M) converges
to a split trajectory (ul,...,u™) if there are collections of critical points
zt = z9,21,...Zm = =~ of &y, trajectories u¥ € M;y(zk,zr-1) and se-
quences of time shifts {s¥}°2,, k= 1,...,m such that u, (- + sk, -) converges
with its all derivatives on compact sets to u*.

The following propositions summarize the compactness results. For the
proof we refer to [Flo88b, Flo89a, Oh93a]. Let u, € My, g, (Lo, L1) be a

sequence of trajectories with (J,, H,) converging to some (J, H) in C*.

Proposition 3.3.7 Assume that wix,(m,L,) = 0 and the energy of u, is
bounded
£u,)<C
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Then a subsequence of u, converges to a split trajectory u C Myu(Lo, L1)

and

3" (') < limsup £2(u,)

Proposition 3.3.8 Assume that the triple (M, Lo, L1) is monotone, Lo th L,
and¥; > 3, fori =0,1. Letu, € My, u,(Lo, L1) be a sequence of trajectories
of indez p,, = 1 or 2. Then a subsequence of u, converges to a split trajectory

u € Myu(Lo, Ly).
Lemma 3.3.9 If¢*(u,) — 0 then u, converges uniformly to a constant map.

In the statements above we assume the energy bound for u, that is a bound
in W12 topology. If the derivatives of u, are bounded in L* then they are
bounded in L? for p > 2 and the elliptic bootstrapping argument yields a sub-
sequence convergent in C{2. Otherwise, a non-constant pseudoholomorphic
disc or sphere would bubble off. Such disc must have positive energy, which is
impossible under the assumptions of Proposition 3.3.7 or Lemma 3.3.9. If the
intersection is transverse, then the index of the disc is well defined and can-
not exceed the index of u,. This guarantees convergence in Proposition 3.3.8
(recall that X; denote the generators of im #ln(M,L;))'

The Floer’s complex C. (Lo, L1,70, J, H) is defined for a regular pair (J, H).
It is generated as a Z, module by the critical points of ay and the boundary

operator 0: C, — C, is given by

(3.14) 8z = 3 (y,02)y

where (y,0z) is the number modulo 2 of one-dimensional components of
Mu(z,y). Propositions 3.3.7 and 3.3.8 imply that the number of these
components is finite and thus (3.14) is well defined. Then compactness of

the 2-dimensional parts together with the gluing argument yields 309 = 0 as
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in the finite dimensional case. The following theorem is the central result of
Floer’s papers [Flo88a, Flo88b, Flo89b]. Details in the monotone case have
been carried out in [Oh93a).

Theorem 3.3.10 Assume that I, = 0 or that the triple (M, Lo, Ly,7) is
monotone with ¥; > 3. Then the boundary operator is well defined and
008 = 0. For any two regular pairs (J°, H®) and (J*, H') there is a natural

isomorphism between the resulting homology groups
(315) HF..(LQ, L1, Y0, Jo, Ho) = HF.(Lo, L1,")’o, Jl, Hl).
We denote these groups by HF.(Lo, L1,70).

Remark 3.3.11 a) Obviously the Floer complez is symplectically invariant

i.e. for any symplectomorphism ¢
C.(Lo, L1, 70, J, H) = C(¢(Lo), (L1), 6 © Y0, $uJ, H 0 ¢7%).
b) The map (8.13) yields the isomorphism between the Floer complezes
Cu(Lo, L1,70,J, H) = Cu(Loy 67 (L1), 67" © 70, 672, 0)
for any regular pair (J, H). Consequently, we obtain an isomorphism
HF.(Lo,L,) & HF.(Lo, ¢7*(L1)).

However, unlike the isomorphism in (8.15), this is not naturally defined,

because it depends a priori on the homotopy class of the Hamiltonian isotopy

$:.
3.3.4 Floer homology of an isolated invariant set

We can define Floer homology in slightly more general setting. Let & C

(Lo, L,) be a closed subset and assume that U is bounded i.e. the evaluation



caAarion . FLOEBR THEORY 74

map U x I 3 (7,t) = 7(t) € M has precompact image. Let M y(Lo, L1,U)
denote the set of such u € My (Lo, L) that u(s, ) € U for all s € R.
Then the maximal invariant subset Sy () of U is defined to be the image
of M 1(Lo, L1,U) under the evaluation map

ev: R x Myy(Lo, Ly) = (Lo, Ly), ev(s,u)(t) = u(s,t).

We say that S;x(U) is isolated if its closure is contained in the interior of I
(cf (2.30)). |

If S5u(U) is isolated and u, € Myy(Lo,Ly,U) converges to some u €
Myu(Lo, Ly) then u € Mjy(Lo, Ly,U). Therefore we can build the local
Floer homology H.(C.(Lo,Ly,U,J, H)) out of all critical points of &y in
U and the connecting orbits in My (Lo, L1,U). The following proposition
is the analogue of [Flo89a, Proposition 1.2] in the Lagrangian intersection

setting.

Proposition 3.3.12 Assume that U is bounded, Ssu(U) is isolated and the
symplectic action ay is defined on U. There is an € > 0 such that if ||J' —
Jller < € and |[H' — H|lcr < € then Sy p1:(U) is isolated and if moreover the
pairs (J,H), (J', H') are regular then

H.(Cu(Lo, L1,U,J', H')) = H.(C.(Lo, L1, U, J, H)).

In this context we say that Sy y(U) is a continuation of Sy (U). This is

the general abstract situation. Lemma 3.4.12 suffices for our purpose.

3.4 Clean intersection

The aim of this section is to prove that the local Floer homology in a neigh-
bourhood of a Lagrangian intersection is isomorphic to its singular homol-

ogy provided that the intersection is appropriately regular. We say that two
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submanifolds Lo, L; of M have a clean intersection along a manifold N iff
N CLonNL and T;N = T;LoNT;L, for ¢ € N. A special case where
Ly = L, = N has been considered by Floer who proved the existence of
the isomorphism in [Flo88a]. The results of this section should be seen as a
generalization of Floer’s theorem.

We sketch the main points of the proof. If two Lagrangian submanifolds
Lo, Ly of M intersect cleanly along a compact manifold N then, seen as a
subset of the pathspace, N C (Lo, L;) is an isolated invariant set for the
unperturbed symplectic action. This is because N is a strong deformation
retract of its neighbourhood U in Q(Lo, L,) and therefore & is exact in U.
Moreover the critical points of the action functional a in I/ are the constant
paths at the points of N and if N is connected they lie in the same level set
of a. Since a decreases along its gradient lines there are no connecting orbits
in U except for the constant ones and U isolates N. The critical points in N
are degenerated, in fact the kernel of the Hessian of a at z is exactly T, N.
We must then, by adding a Hamiltonian term, perturb the functional in the
direction of N only. In other words the Hamiltonian H may be constant in
the direction orthogonal to N. But then the gradient of H is tangent to N
and the critical points and the gradient lines of Hjy coincide with those of
ay which are t-independent. The crucial point of the proof is that they are
the only ones in ¢ and therefore the Floer complex coincides with the Morse
complex of Hy.

The section begins with the description of a normal form neighbourhood
of a clean Lagrangian intersection. In this form we then construct the appro-
priate Hamiltonian H which, however, is not compactly supported. Finally,
putting these results together we formulate and prove the main theorem of

this section — Theorem 3.4.11.
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3.4.1 The normal form of a clean Lagrangian intersec-
tion

Let L be a manifold and N a submanifold of L. Let TN*** c T*L be a

subbundle of T*L|x annihilating T'N:

TNk .= {a € T"Lin : qrn = 0}

This is a Lagrangian submanifold of (T*L,wr..) since dim TN°"* = dim L
and the canonical 1-form Ar.z, vanishes on TN*"™*, Clearly N = LNT Nernh
is a clean intersection, since T,(TN°""*) = T,N @ T, N*" for z € N. We
prove that every clean Lagrangian intersection can be put in this form. Thus
the following proposition may be seen as a generalization of the Lagrangian

neighbourhood theorem.

Proposition 3.4.1 Let (M,w) be a symplectic manifold and Lo, L, two La-
grangian submanifolds of M which intersect cleanly along a compact manifold
N. There ezist a vector bundle 7: L — N, a neighbourhood Vo of N in T*L,
a neighbourhood Uy of N in M and a symplectomorphism ¢: Uy — Vp such
that

(3.16) S(LoNUo)=LNVs and ¢(L;NUp) = TN*™* V4.

Proof. By the Lagrangian neighbourhood theorem there is a symplecto-
morphism xo: (W,wr.1,) — (M,w) defined on a neighbourhood W of the
zero section in T™*Lg such that Xo|L, = ¢d. Fix any metric on Ly and take
L =TN* C TLg to be the orthogonal complement of TN in T'Ly. Then the
exponential map is a diffeomorphism between neighbourhoods of N in L and
in L, which induces a natural symplectomorphism of the cotangent bundles
(restricted to these neighbourhoods). Therefore we may assume w.l.o.g. that

Lo=Land M =T*L.
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Denote L; = TN°"* C T*L. The proof of the proposition is based on
the observation that both L; and L, are transversal to the “complement” of
N in T*L and therefore L, can be seen as a graph over L,. More precisely,

we shall prove

Lemma 3.4.2 There ezists a symplectomorphism x1: Uy — Vi where U; C

T*L, Vi C T*L; are neighbourhoods of N, such that
X110, = id, x(LNU) CT Lyy and  xi(L1NUh) = grapha

where a is a I-form on L,.

Then a is closed as L, is Lagrangian and moreover N C graph « or in other

words oy = 0. Hence the map
VYa:T;Ly 2 B B—a(z) € T;L,, ze€ LNl

is a symplectomorphism. We have 1,(grapha) C L, and 9, restricted to
T* L,y is the identity. In particular ¥(V2) C x1(Ui) for a sufficiently small
neighbourhood V, of N in T*L,. Now, a symplectomorphism

$(z) = X1 Yaxa(z)

is well defined and clearly satisfies (3.16) if we take Uy = x7'(V2). O
Proof of Lemma 3.4.2. A submanifold of T*L, is (locally) a graph of a
1-form if it has the dimension of L, and is transversal to the fibres T L,,
z € Lj. Since transversality is an open condition it is enough to show that
x1(L1) thy T2 L, for z € N.

Let E = ker dr be the vertical subbundle of TL and E**™* the subbundle
of T*L annihilating E. For z € N consider the following decomposition

T.(T*L) = T.L® T'L = E, ® T,N & TNe™h g Eannih,
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The clean intersection L; N L implies that T,L, N E, = {0}. The first
three summands of the above decomposition form the symplectic complement
T:N* of T.N. On the other hand T,L; C T-N* and so T, L, N E™ik = {0}
as well. Now, E, @ E2"™h is the tangent space at z to the restricted bundle
Eff™* (seen as a submanifold of T*L). Thus L, is transversal to Ef7mk at .

Hence it is enough to construct a symplectomorphism x; in such way that
x1 (BT N Uy) C T; L.

Note that the last condition implies also that x3(L) C T*Lyy. Now the
existence of the required symplectomorphism x; follows immediately from

the two lemmas below.

Lemma 3.4.3 There is a vector bundle o: T*L — TNk whose fibers are

Lagrangian submanifolds of T*L. In particular, ¢='(z) = E&’;ﬂi" forz €N,

Proof. Firstly, we have the restriction map T*L — E*. Secondly, E is
isomorphic to the pullback bundle 7*L, which gives the isomorphism of the
dual bundles, E* = 7=L*. Thirdly, TLny=L@®TN and the restriction

TNanm'h Sa— alL € L*

is the bundle isomorphism. Putting all these facts together, we obtain a

vector bundle map o
0: "L — E* = 7"L" — L* = TN*"h,

Clearly, o7 !(z) = E&’;"‘h if z € N. To see that o carries a vector bundle

structure consider the local coordinates

: W xRS (¢,¢) = (9153 9n: 915+ -2 k) = $(0,¢) €L, WCR"

induced by a local trivialization of 7: L — N, that is ¥(q,0) € N, Ly(e0) =
$({q} x R*) and if p: W x R*¥ — L is another chart of this type then the
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change of the coordinates takes form

$7%(0,4) = (Al9), B(9)") = (Ai(q), - -, An(q), BN@)dh - - -, B¥(g)d))

where A: WN~19(W) — R* is a diffeomorphism and B: WN=19%(W) —
GL(R*). Let

(3.17)  ¥: W xR*xR™* 3 (¢,¢,p,p) = ¥(q,¢,p,p') € T*L

denote the natural coordinates on T*L induced by . In these coordinates

the map o becomes the projection
oy = ¥7'0¥: (¢,¢',p,P') - (4,0,0,7)
and this induces the vector structure in the fibre
o7 (¥(2,0,0,p)) = {g} x R* x R" x {p'}.

This is because the change of the coordinates @ = ¥~! o ¥ is given by

0(0,¢,p.7) = (¥7%(9,9), (7 P)d(g) (P79) )
= (A(9), B(a)q,pC(q)™ — D(¢,7))¢',p'B(g)™")

where C: W — GL(R"), D: W x RF - L(R*R"™),

Clg); = B and  D(g,7); = p (B(g)" ), ( 95@) (ca)- )
Thus O restricted to {g} xRFxR"x {p'} is linear and so the atlas consisting of
the charts as above yields the structure of a vector bundle on o: T*L — L.
Moreover, from the local description of o follows clearly that a fibre o~ 1(z)

is a Lagrangian submanifold of T*L. O

Lemma 3.4.4 Let0: V — L be a vector bundle such that (V,wo) is a sym-
plectic manifold and the zero section L C V and the fibres V,, are Lagrangian.
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Then for every compact subset K € L there is a fibre preserving symplecto-

morphism x defined in a neighbourhood U of K in V
x: (Uywo) = (T"L,wre), mpox=oy and xp =id.

Proof. Thisis a special case of [Wei71, Theorem 7.1]. Define a vector bundle

isomorphism
Vo VeTL=TV, =8 TV;=(VeTL) - T'L

that is n(v) = —tywirr. Now, wo = n"wreLL and so wp and w; = N wp.p
are diffeomorphic in some neighbourhood of K. Moreover, a close look at
the Moser’s proof reveals that this diffeomorphism is fibre preserving. For
the sake of the completeness we recall the argument. Let § = w; — wy. Then
df = 0 and 6 vanishes on TV|L. Moreover by, .= 0 as the fibres V, are
Lagrangian w.r.t. both wp and wy. Then 8 is exact in a neighbourhood of K,

6 = dp and one defines the vector field X; by
ix,wy = —p, where w; = wp + t6.
If ¢; is the family of diffeomorphisms generated by X, then
2 g = $i(Lxor +0) = 8(dixan+ dp) = 0

and so ¢jw; = wo. The diffeomorphism ¢, is fibre preserving if only X is
tangent to the fibres. As fibres are Lagrangian w.r.t. w; this is equivalent to
pw, = 0. Define a smooth map ¥: R x V — V, ¢(t,w) = tw and the family
of 1-forms p;: TV — R

pts = 006, ) (6,9 o

Then p = [} p;. But v, = 0 and %‘tk is tangent to the fibres and so prv, =0

which completes the proof of the lemma and of the proposition. O
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3.4.2 The t-independence of the gradient lines of ay
in the normal form

Let N be a compact, connected manifold and 7: L — N a vector bundle
over N. Recall that #: T*L — L denotes the projection.
For any function f: N — R we define its extension to T L by composing

it with the projections
fri=for:L-oR Hi:=from:T"L - R

Let gy be a metricon N. Our next step is to extend gy to T*L. Consider a
metric g on the manifold L such that

® gIN = gN,

e the fibres L, = 77!(z) are orthogonal to N,

e N is a totally geodesic submanifold of L.

Note that the second condition implies that
VifL(z) = V¥ f(z)

for z € N. The Levi-Civita connection associated with g provides the split-
ting of T¢(T*L) into horizontal and vertical subspaces T¢(T"L) = He ® Ve
and Vi = T¢(T7)L) is canonically isomorphic to Ty L while dr gives the
isomorphism d¢mpy, : He — Tr(¢)L. These give the “diagonal” lift of g to a
metric g” on T*L (the Kaluza—Klein metric) such that He L V; and the above

isomorphisms become isometries. In the canonical coordinates (g, p) we have
gD(aq"’ aq)') = Gij + gklrfrr.lisp"ps

gD(apn aqj) = gikrflpl

QD(aPn apj) = gij-
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Here T' are the Christoffel symbols in the cotangent bundle. In particular, if
z € L then T(T*L) = TL®T*L and ¢°(z) = g(z) ® ¢*(z). The metric g?

compatible with the canonical symplectic structure and the induced almost
complex structure J = J, maps a horizontal vector w € H to the vertical

lift of i4,5ug € T, (€)L Thus in the canonical coordinates

—A -

J= ( I+ A? A)
where Af = I'%p; is the connection matrix.
Lemma 3.4.5 The action functional is well defined in (T*L, L, TN°™i*),
Moreover

lau(7) = au(2)] < |I71iZ2
foranyz € N and v € 0.
Proof. The symplectic form w is exact, w = d\ and ML = AjrNannin =

0. Therefore, if u: I x §' — T~L, ug(s) = u(0,s) € L, uy(s) € TNennik

represents a loop in § then

[@][u] = /uw—/ul /uS)\:O

and @ is exact. We can also assume that a,(y) = 0if v C L. Let v € .
In the canonical coordinates v = (g, p) with p(0) = 0 and p(1) € Ty)Nonmih,
Define u: I x I — T*L, u(s,t) = (¢(t), sp(t)). Then

1
w = *w = *A =/ 1 dt = y 7
a.(7) /I,uw /wu | pidt=(p,d)1»
Now [¥¥| = |¢| and |4¥| = |Vp| and |p|z2 < 2|Vp|12 since p(0) = 0 and so
law (M < Iplezldlee < 21Vplealdlee < 1313 + 15713 = 14122. O

The main result of this section is the following proposition which is a

generalization of Floer’s [Flo88a, Theorem 2]
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Proposition 3.4.6 Let (N, gn) be a compact, Riemannian manifold, 7: L —
N a vector bundle over N and f: N — R a C? function on N. Let J = J,
and H = Hy be constructed as above and suppose that there is a neighbour-

hood U of N in L such that
(3.18) IVedfL(z)]| <1
for x € U. Then the following holds

(a) all critical points and gradient lines (w.r.t. J) of the action functional
ag in Q(n2(U),U, TN°""*) qre t-independent and so they are in 1—
1 correspondence with the critical points and the gradient lines of f
(w.r.t. gn),

(b) the critical points of ay are nondegenerate if f is a Morse function.
In this case if z=,z% € Critf and u: R — N is a t-independent

element of P(z~,z%) then the linearized operator Dyy(u) is onto iff

the operator Dy(u): W'P(u"TN) — LP(w*TN)
Dy(u)f = V£ + VeV f(u)

is onto and the assignment & — £'(s,t) = £(s) gives the isomorphism

ker Dy(u) = ker Dy y(u).

Proof. Consider the local coordinates (g, ¢, p,p’) as in (3.17). Then

OH OH OH
dp Oy 9¢

= 0 and Xy = (0,0, df(q),0)

and the Hamiltonian flow associated with H takes form 4:(q,¢',p,p) =
(0:4',p +tdf(q),p). I z = (¢,¢,p,p') € Lthenp = p' = 0. If 4(z) €
TNeh then ¢’ = 0 and p+df(g) = 0. Thus the only solutions to (3.8) with
the boundary conditions £(0) € L, z(1) € TN°"* are the constant paths
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z(t) = (¢,0,0,0) where ¢ is a critical point of f. Furthermore, we have in

these coordinates !

0
Dér(=) = D’?’(q) :
0 0

where the Hessian D?f(q) is nondegenerate. Let v = (Q,Q’,0,0) be a vec-
tor tangent to L. The vector D¢, (z)v = (Q,Q’, D?*f(q)@,0) is tangent to
TNk iff Q' = D*f(q)Q = 0. But then also Q = 0 which shows that

D¢y (z)(T,L) N T,TN°"* = {0} i.e. z is nondegenerate.

00
00
I0
0 I

Remark 3.4.7 Obviously, the established correspondence implies that the Z,
intersection number #3(Lo, L1) is equal to the Euler characteristic x(N,Z,)
of N. It is not difficult to see that this is true generally, in the differential

topology category and also, up to an appropriate sign, over Z.

Since dH = dft o dr vanishes on the vertical subbundle V C T(T*L),
the gradient of H w.r.t. the metric g” belongs to the horizontal subspace,
VH({) € He. Furthermore demy, is an isometry and hence den(VH(£)) =
VH(n(£)) = V9fL(n(€)), that is VH is the horizontal lift of V9f,. In
particular, if z € N then

VH(z) = V¥ f(z) € TN.

Therefore if u: R — N is a gradient line of f then u(s,t) := u(s) is a solution
to (3.9) satisfying the appropriate boundary conditions.

Conversely, let u: R x I — U be a solution to (3.9),(3.10). We want to
show that 2 = 0. Let z(s,t) and y(s,t) be the horizontal and the vertical
components of u(s,t). Strictly speaking z = 7 o u and y is a section of T*L
along z i.e. y € [(z*T*L). Then § (and similarly 2¢) decomposes into the

horizontal and vertical parts, where (%¢)H is the horizontal Lift of %2 and
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24)V is the vertical lift of V,y € T2L. Thus we may write the equation

(3.9) in the form

-g-“ﬁ Vi + dH(z) = 0
oz*
vs!/'i"a =0

where v* = g(v,-) = J(v) for v € TL. The boundary conditions are

y(s, 0) =0, :c(s, 1) € N, y(s, ]) € Tz(s,l)Nannih,

Jim y(s,t)=0 and Jim z(s,t) = z*

for some critical points z*, z~ of f. We have to show that y = 0. Then

at = 0 and z: R — N is a gradient line of f. This is in principle an

application of Green’s identity since y is a solution of the elliptic equation
—(VdfL,V.y) =0.
Define
1) =5 [ (s dt = ()l
2 Jo ’ 2 L

Since lim,_,+,7(s) = 0 and v is nonnegative it attains a maximum in R. On

the other hand the following lemma shows that v is convex and so v = 0.
Lemma 3.4.8 If IV fLllLeow) < 1 then v"(s) > 0 for all s € R.

Proof. (Cf. [Flo88a, Lemma 5.2]) As the Levi-Civita connection is torsion

free V, 22 = Vt and we may compute

st —
d

2 Oz
2 _ 2 2 _ oz
SO = VP + (720,0) = 1951 - (7,550

= |Vayl* = (Viv,y) +(Veedfi,y)

Integrating by parts the second term yields

/ (Vty’y = (ng(s, 1)7 y(s’ 1)) - (viy(‘s’O)’ y(3’0)> - [}1 lvtylz dt.
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Now, y(s,0) = 0 and y(s,1) € Ty(,1)N°*"*. On the other hand &(s,1) €
T:N and Vfi(z(s,1)) € T.N. We have then

(Tate, 1) = (30611, 55 (0,1 + (o))
= (1) (Go(0 1)+ V1u(e)) =

for all s € R. Consequently

1) = IV @I + IV = [ (Vo,4din(a),v)
2 V() + IV ~ 192wl P,y laalllze

Since y(s,0) = 0 the Poincaré inequality gives ||y(s)||z: < 2||Vey(s)]||z2 and
therefore 7" > 0 if only ||VdfL|[L~ = sup,¢y [Vdfi(z)| < 1.0
The isomorphism ker Dy(u) = ker Djy(u) can be proved in the similar

manner. A vector field £ € I'(u*T(T*L)) decomposes into
=((,n) eTLLOT;L.

Since {(s,t) € Ty()(T*L) for all ¢ € [0,1] we have V¢ = %f. Furthermore,
direct computation of the Christoffel symbols of the Levi-Civita connection

associated with ¢g? yields
Vo, 03;(4,0) = V5, 05,(9) € T,L and Vy,3,,(q,0) € T%.

Therefore

Vo(=VI(€T,L and V,peT:L.
Since dH(q,p) = 8, fLdg; we have also
V(dH(u) = V{dft(u) and V,dH(u)=0.

Thus the linearized equation (3.14) takes form

(3.19) VT — @ + Vdfy (u) =0
ac*

Ven+

=0
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with the boundary conditions

(3.20) |
77(3, 0) =0, C(S, 1) € Tu(,)N, 17(3, 1) € Tu(’)Nanmh’

slirinw n(s,t) =0 and ’_ljglm ¢(s,t) =0.
If { € TyN then, since N is totally geodesic in L, we have Vi( = VI¥( and

Vidfy, = VE¥ f and so any vector field { € ker Dy(u) is a solution to (3.19),
(3.20). If we set

o) =5 [ It dt

then the converse follow from the lemma similar to Lemma 3.4.8.
Lemma 3.4.9 If ||V?dfL||Low) < 1 then v{(s) >0 for all s e R.O

Finally, the same argument provides the isomorphism between the kernels of
the adjoint operators

ker D}(u) = ker D7 y(u)
and so Dy(u) is onto iff Djy(u) is onto which completes the proof of the

proposition. [J

Remark 3.4.10 Consider the case L = N = TN°"k_ [t is easy to see that
the ezactness was not used in the proof, that is the result holds if we replace

df = dfy, with a closed nondegenerate form a on L such that
Vel <1

w.r.t. some regular metric g on L. But this condition can be always satisfied

if we rescale the metric

ge := 529

This is because the Levi-Civita connection is invariant under rescaling, V9 =
V9 and || - |lg = €|l - ||g- Clearly, g. is reqular if g is regular. We shall draw

the conclusions of this fact in section 3.5.8.
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3.4.3 The main result

Theorem 3.4.11 Let (M, w) be a symplectic manifold and Ly, Ly two Lagrang-
ian submanifolds of M. Let N be a compact connected component of LoN L,
such that Lo and L, intersect cleanly along N. Fiz a base point zo € N. If
U is any relatively compact neighbourhood of N such that

(a) there are no critical points of a other than those in N in the connected

component YU, Lo, L1, o) of zo in the path space Q(U, Lo, L),
(b) the action functional of w is well defined in Q(U, Lo, L, zo).

Then U = QU, Lo, L1, o) is an isolating neighbourhood and Syo(U) = N for
any a.c. structure J. There ezists an a.c. structure Jo and a Hamiltonian

Ho: M — R such that
1. 8j,,1,(U) is a continuation of N,

2. (Jo, Hy) is a regular pair and if gy = guin, f = Hon then (gn,f) is a
regular pair in the sense of (2.5.1),

3. The Floer complex CF.(U,Jo, Ho) coincides with the Morse complex
CMeorse(N,gn, f) of f and thus

HF.(U,Z,) = H™(N, Z,).

Proof. Let ¢: Uy — V; be as in the Proposition 3.4.1. Then clearly U
satisfies (a) and (b). Let U; be another neighbourhood of N such that U; C
U; C U,. Fix a Morse function f: N — R and a regular metric gy on N
such that

IVdfllze <1



CHAPTER 3. FLOER THEORY 89

and take an almost complex structure Jy and a Hamiltonian Hy on M such

that
JOIUI = ¢‘J9|U1 and H°|U, = Hf o ¢IU1

where J; and Hy are constructed as in Proposition 3.4.6. Thus if u is a critical
point or a gradient line of ay, contained in U; then ¢ o u is a critical point
or a gradient line of ay,. If we choose U; small enough then the assumption
(3.18) of Proposition 3.4.6 is satisfied and so u is ~independent. Now the

following lemma finishes the proof of the theorem.

Lemma 3.4.12 Let U be a neighbourhood of N satisfying (3.4.11)(a)(b) and
let Uy C U. Then there ezists an € > 0 such that if ||H||c: < € then any
solution to (3.8) and (3.9) contained in U lies in fact in Uy.

Proof. Let z: [0,1] — U satisfy £ = Xy(z) and z(0) € Lo. We then have
dist(2(0), z(t)) < / 12(s)| ds < || H |
Choose a neighbourhood U; of N such that U, C U;. Then
d = min(dist(Us, M \ Us), dist(Lo 0 (U \ Us), L)

is positive. Assume [|H|lc1 < d. It follows that z(0) € U, implies z(t) € U,
for all ¢ € [0,1] and if z(0) & U, then z(1) & L;.
Suppose now that there is a sequence {€,},en C R4 converging to 0 and

for every n € N and a solution u},: I x R — U to

Ou,

s +J(n) +VH(u)

where ||Hu|lcr < €n and J, is a regular a.c. structure, with the limit condi-

tions u,(s,) € L;, 2 = 0,1,

. 7 — i
Jim u(s)=z3Cclh
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and such that u/ (IxR) ¢ U;. AsU is compact there is a subsequence {u,} C
{u’} and a sequence (sn,%,) such that limp e Un(Sn,tn) = yo € U \ Uy. We
may assume that lim, . t, = ?o and using time shift, that s, = 0 for all

n € N. Now, since w is exact in i/ we have
1
£ (u,) = ay(z™) — au(zt) + /0 (Hyoz} —H,oz;)dt >0

by Lemma 3.4.5 and it follows from Lemma 3.3.9 that a subsequence of
{un} converges locally uniformly to a constant map uo. Because of the limit
conditions ug € N. On the other hand uo(0,%) = limu,(0,,) = yo, a

contradiction. O

Corollary 3.4.13 Assume that (M, Lo, Ly,7) is a monotone triple such
that X; > 3, 1 = 0,1. Assume that Lo intersects Ly cleanly along a con-
nected manifold N = Ly N Ly such that im N +1 < N,. Then

HF.(M, Lo, L1, Z,) = H¥"(N, Z,).

Proof. Clearly it is enough to show that all trajectories of index 1 must liein
a small neighbourhood U, of N in M if only the Hamiltonian perturbation is
sufficiently small. We proceed as in the proof of Lemma 3.4.12. Thus suppose
that there are sequences J, — J, H, — 0 and u, € My, y,(z,z}) such
that g,, = 1 and u,(R x I) ¢ U. We may assume that H is constructed
as in Proposition3.4.6 so that z¥ are t-independent. For each n choose a
path v,: R — N connecting z and z} that is, v, € P(z;,z}). Then

Proposition 3.4.6 together with Theorem 2.3.2 implies
v, =ind Dy, u,(va) = ind Dy(v,) = indz,; —ind z}

Consequently, |I,(un * (—v))| = |pup, — o] £ dimN +1 < N,. But this

means that I,(u, * (—v)) = 0. Since (M, Lo, L,) is monotone and obviously
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Jvjw = 0 this yields

/u;w = /u;w - /v,‘,‘w = I, (un * (-v)) =.0.

The conclusion follows as before. (J

3.5 Applications

3.5.1 Example: Intersection of the linear Lagrangian
tori in T

Consider the torus 7% with the standard symplectic structure wp = 3 dz; A
dy;. For i = 0,1 let A;: T* — T?* be an inclusion which is induced by a
linear map of the universal covers 4;: R¥* — R2*, We have rkA; = k and fi,-
is an injection iff A;z € Z?* implies that € Z* that is iff

AQF N Z%*/AZ* = Tor(Z%*/A;Z) =0
where Tor denotes the torsion part of the group. The latter condition is
equivalent to the greatest common divisor of the k-minors of A; being equal
1. Assume that L; := A;(T*) is a Lagrangian submanifold of T'2* (that is
(AT AY )T = AT A where A; = (A}, AY)). In order to describe mo(Q2(Lo, L))
and 71 (§2(Lo, L1)) we use (3.4) and (3.6). We have my(L;) = ZF, m (M) = Z?*,
72(M) = 0 and

m1(io) T 'mi(11) = A = —Ao @ Ay: 2% — Z7*,
Consequently
(3.21) mo(Q(Lo, L1)) = Z**/AZ** = coker A
m1(QLo, L1)) X ker A

The intersection Lo N L, is a closed subgroup of T?* so Ly NL; =T & G

where G is discrete and r = dimim Ap Nim A; = dimker A. The injection

Lo 2 Lo N L1 — 7l'O(Q(L% Ll))
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can be described as follows. Let p € LoN L, and [z,] = A5%(p) [v,) = AT (p).
Then there is an n, € Z% such that Ay, — Aoz, + n, = 0. Obviously
n, € AQ?*. Moreover if z' € [z,) and ¥’ € [yp] then z, = 2’ +myg, yp = y'+my
and

Aly’ - onl + Ny + A1m1 - Aomo =0

and so n, is well defined modulo AZ?*. It is easy to see that o(p) = [n,] €
Tor(Z*/AZ*). Indeed, the homotopy 7,(t) = [(1 — s)Aoz, + stn,] € T?*
gives a path in (Lo, L) connecting the constant path at p and the loop [tn,)]
representing the class [n,] under the isomorphism (3.21). The fibres of o are
connected: if Ajy—Aoz+n =0, A1y'—Aoz’+n’ = 0and n—n' = Aym,—Agmy

then
7(t) = [Ao(t(z + mo) + (1 = t)z")] = [A1(t(y + mo) + (1 —t)y")]

connects p = [Aoz] and p’ = [Aoz’). Summarizing, Lo N L; consists of the
r-dimensional tori Ty, & € Tor(Z** [AZ?) each in the different component of
(Lo, L,). There are no intersection points in the components of (Lo, ;)
represented by the nontorsion elements of Z%*/AZ*.

Let [n] € Z?*/AZ?*. Then the isomorphism 71(Q(Lo, L1, [tn])) = ker A

can be written explicitly
ker A > m = (mo,m1) > [F,,] € m(Q(Lo, L1, [tn]))
Fin(s,t) = [sAomo + tn] = [sAym; + tn] € T?*
Thus
[0): kerA3 m > / Frw=nTJoAomo € R
IxI

and [0] vanishes iff n annihilates AGR* N A;R* that is n € AR or, equiv-
alently, [n] € T or(Zz"/ZZ”‘). We may then apply Theorem 3.4.11 to each

component of Lo N L; with U = T?*. We summarize the above remarks as
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Corollary 3.5.1 Fori=0,1 let A; = (A}, AY): Z* — Z?* satisfy

— rkA; =k,

— the gcd of the k-minors of A; is equal I,

— (A7AN" = A" AL

Then Ao(T*), Ay(T*) are Lagrangian submanifolds and
HF.(Ao(T*), A(T*)) = H5™(T") x Tor(Z**|AZ*)

where A = —Ao @ A; and 2k — r = rk A. Consequently, if L; = gbg(fi,-(T"))
where 1; is an ezxact symplectomorphism and Lo intersects Ly transversally

then
#LoN Ly > 27 - gcd of the k-minors of A.

3.5.2 Floer homology of a symplectomorphism

Let (M,w) be a compact symplectic manifold and ¢: M — M a symplecto-
morphism. There are two ways of constructing Floer homology detecting its
fixed points, Fiz¢.

Firstly, the graph of ¢ is a Lagrangian submanifold of (M x M, (—w) X w)
and its fixed points correspond to the intersection points of graph ¢ with
the diagonal A = {(z,z) € M x M}. Thus we have the Floer homology
of the Lagrangian intersection HF.(M x M, A, graph ¢). This intersection
is transversal if the fixed points of ¢ are nondegenerate, i.e. if 1 is not an
eigenvalue of d¢(z), for z € Fix. The second approach was mentioned in

[Flo88a] and presented with details in [DS93b, DS93a, FHS94]. There the

action

(3.22) @r(7)¢ = /01 w(é, 7 — Xi(7)) dt
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is defined on the space of paths
Qg:={r:R>M: y(t+1)=4(v(t))}

The tangent vector field ¢ € I'(y*T'M) in (3.22) satisfies £(¢ + 1) = d¢é(t)
and X; is a Hamiltonian vector field with the Hamiltonian H: R x M — R
satisfying the periodicity conditions Hi41 0 ¢ = H;. The critical points of
(3.22) correspond to the fixed points of 15! 0 ¢ where 1y is the time one map
of the Hamiltonian system £ = X;(z). Similarly, we choose an w-compatible
almost complex structure J: R x M — End(T M) such that ¢*J;4; = J; and

write down the Cauchy-Riemann equations

= Ou Ou

(3.23) Op, 0.1 (u) = % + Jt(u)a + VH(u)=0
uwRxR—-M
u(s,t + 1) = ¢(u(s,t))

Finally, we set

Mig(M,¢) :={u: 945u(u) =0 and £2(u) < o}

As before, for a generic J and H, this is a collection of finite dimensional
manifolds and one can construct a Z,-complex CF.(M, ¢) generated by the
fixed points of ¢. It is worth mentioning that this construction provides a

link between symplectic and instanton Floer homology (see [DS93a, DS93b)).

Lemma 3.5.2 For a symplectomorphism ¢: M — M and J;, H, as above
there ezist an almost complez structure J; and a Hamiltonian H, on (M x

M, (—w) X w) and a bijection
Miu(M,¢) 3 uwr i € Mjg(M x M, graph ¢).

Moreover, @ is regular if only u is reqular.
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Proof. The lemma is a simple consequence of the observation that there is
a bijection
Qg > 75 € YA, graph ¢)
() = (3 (1), 12(1)) = (v(}5H), ()
between the path spaces. It is easy to see that this correspondence translates

all necessary concepts of Floer’s construction from one setup to the other.

Indeed, let v € O satisfy (3.8). Then

F1(t) = 1 X1t (32 (1))

52(t) = Xoge (1a(8)).

The vector field X, := 3( Xz, X %e_) has the Hamiltonian

-t
2
§ = %(H;_;_. opry + H%_: o pry)
where pr;: M x M — M denote the projections. If we set
jt = (—J%) X Jl_;_t
thenthemapﬁ:RxI—-erM
(s, t) = (s, t), a(s, 2)) = (u(';"’l"zﬂ)’u(%’ 'Ldzﬂ))

satisfies

(3.24) o A - K@) =0

for any u € My (M, $). Conversely, any solution to (3.24) defines a W.?,

and thus smooth, solution % to (3.23)

- ¢[t] 01y(2s,1 —2t') fort' < 1
u(s, t) = 2
¢ 0 iiy(2s,2t' = 1) for t' > 3
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where t = [t] + ¢’ and [t] is the integer part of ¢. Similarly, there is an

isomorphism between the kernels of the linearized operators

ker D%(u)s,z = ker Dy g(it)
and their adjoints which shows that ind D%(u);x = ind Dy g(d) and 4 is
regular iff u is regular. O

Corollary 3.5.3 If J,H is a regular pair then there is an isomorphism
HF.(M,$,J,H) = HF.(M x M, A, graph ¢,J, H)
induced by an isomorphism of the chain complezes.

The concept of clean intersection translates to a nondegenerate manifold of
fixed points i.e. a submanifold N C M such that N C Fix ¢ and Fixd¢(z) =
T,N forz € N.

Corollary 3.5.4 Let (M,w) be a symplectic manifold and ¢: M — M a
symplectomorphism with a connected nondegenerate manifold of fized points,

Fix¢ = N. Assume that I, 4 = 0. Then

HF.(M,¢) = H"(N,Z,).

3.5.3 The Novikov homology in the cotangent bundle

We end this chapter with some remarks on a “non-exact” intersection, based

rather on Floer’s original result ([Flo88a]) than on the generalization of the

previous section. Let Lo, L; be two Lagrangian submanifolds of (M,w).

Assume that .
WmyM,L) =0  fort=0,1.

Then, according to the decomposition (3.6) of m1(€(Lo, L;)) the homomor-

phism I, descends to

wy : itmmy(lo) Nimmi(l) — R.
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This can be described directly as the integral of w over a cylinder which

represents a homotopy in M between two loops o; C L; such that m; (lp)[ao) =

Wl(ll)[a;l].
Proposition 3.3.7 provides the compactness property for the subsets of

M(Lo, L) with bounded energy. Therefore we may construct the Floer

complex over an appropriate Novikov ring similarly as in Section 2.2. Let
I' = imm(lo) Nimmi (1) / ker wg

and ¢,: I' = R be the induced homomorphism. Fix a regular pair (J, H)
and for any solution z to (3.8) choose a path v, connecting z with the base

point in Q(Lg, L1), i.e.
vp: I XTI — M, v(s,i)€L; v (0,-)=7% and v (l,:)=z.
For any class A € T and z* € Crit ay denote
My(z™,zt, A) == {u € My(z7,2%): pry =1, vo- % ux (—v4) € A,

If u € My(z~,zt, A) then its energy is bounded:

1

Pu) = / ww + / Hy(z~(t)) - H(z*(t))dt and
0
1 1
/u w = ¢,(A) —/0 vz_w+/0 V4w

We define the Floer complex as a free module generated by the zeros of wy

over the Novikov ring

A, = AT, ¢, 2Z,)

The boundary operator @ = 3, is given by (3.14) where (y,dz) € A, and
(ya az)A = n(x, Y, A) = #Ml(r’-v .‘B+, A)/R

Proposition 3.3.7 assures that d is well defined.



CHAPTER 3. FLOER THEORY 98

Proposition 3.5.5 83 = 0 and the resulting homology is naturally isomor-

phic for different choices of a regular pair (J, H)

Remark 3.5.6 Let X;, t € [0,1] be a symplectic vector field, o the fluz form
of Xt
1 .
a = Fluz[Xy] = /0 ixwdt
and ¢; the family of symplectomorphisms generated by X. Then, as in Re-
mark 3.13, there is a bijection between Q(Lo, L) and Q(Lo, $71(L1)) and it

is easy to see that
wy = w (Lo, ¢1_1(L1)) = wy (Lo, L) + [@imm; (to)rimms (1)

Moreover, the Floer complez CF.(Lo, $7 (L1)) can be identified with the com-
plez CF.(Lo, L1, Xi, Aue) which is built from the solutions to

(3.25) 3(t) = Xi(2(2))

(3.26) %‘f + Ji(u) (— - Xt(u)) =0

If Y, is another symplectic vector field with the fluz homologous to a, gener-
ating the family of symplectomorphisms ¥, then ¢; and ¥ can be connected
by a Hamiltonian isotopy (Banyaga, [Ban78]) and thus

CF*(LO) L11Xt1 Aw") = CF*(LO’ Ll) },t) Aw")

We denote the homology by HF.(Lo, L1,[a]), where [a] € Hpgr(M,R), al-
though this is an abuse, since the isomorphism above is not natural (Re-

mark 8.3.11)

Now let L be a compact manifold and « a closed nondegenerate form on

L. If we define the family of symplectomorphisms of T*L by

$e: T*L'> B B+ ta(n(B)) € T*L
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then the flux of the associated vector field is just oo 7 and
w*=[a]: m(L) > R

Therefore Proposition 3.4.6 together with Remark 3.4.10 imply that all so-
lutions to (3.25), (3.26) are t-independent. This yields

Corollary 3.5.7 The Floer homology HF,(T*L, L, L,[a o 7]) is isomorphic
to the Novikov homology HN,(L,|[a], Z,).

Note that this result is not so strong because, unlikely in the exact case,
it cannot be immediately generalized to an arbitrary Lagrangian subman-
ifold of M, even under assumption that wyn,m,y = 0. The argument of

Lemma 3.4.12 fails simply because we do not control the energy of u,,.
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