Annals of Mathematics, 139 (1994), 581-640

Self-dual instantons
and holomorphic curves

By STAMATIS DOSTOGLOU AND DIETMAR A. SALAMON*

Table of Contents

Introduction

Floer homology for 3-manifolds

Floer homology for symplectic fixed points
Flat connections over Riemann surfaces
Elliptic estimates

Approximation of holomorphic curves by self-dual instantons
Relative Coulomb gauge

Estimates on the curvature

Compactness with bounded curvature
Bubbling

10. The main theorem

References

© RN OE WD =

Introduction

A gradient flow of a Morse function on a compact Riemannian manifold
is said to be of Morse-Smale type if the stable and unstable manifolds of any
two critical points intersect transversally. For such a Morse-Smale gradient
flow there is a chain complex generated by the critical points and graded by
the Morse index. The boundary operator has as its (z,y)-entry the number
of gradient flow lines running from z to y counted with appropriate signs
whenever the difference of the Morse indices is 1. The homology of this chain
complex agrees with the homology of the underlying manifold M and this
can be used to prove the Morse inequalities (cf. [33], [26]).

Around 1986, Floer generalized this idea to infinite dimensional varia-
tional problems in which every critical point has infinite Morse index but the
moduli spaces of connecting orbits form finite dimensional manifolds for every
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pair of critical points. The dimensions of these spaces give rise to a relative
Morse index and the boundary operator is defined by counting connecting or-
bits when the relative Morse index is 1. The resulting Floer homology groups
have played an inportant role in symplectic geometry (cf. [15]) and in 3 and
4 dimensional topology (cf. [14]).

The Floer homology groups of a compact oriented 3-manifold M are gen-
erated by the irreducible representations of the fundamental group in SO(3).
These can be thought of as flat connections on a principal SO(3)-bundle
bundle Q — M and they appear as the critical points of the Chern-Simons
functional on the infinite dimensional configuration space of connections on
this bundle modulo gauge equivalence. The gradient flow lines of the Chern-
Simons functional are the self-dual Yang-Mills instantons on the 4-manifold
M x R and they determine the boundary operator of the Floer homology
groups HFL“St(M ,Q). This construction requires that all flat connections be
nondegenerate. If this is not the case then a suitable perturbation of the
Chern-Simons functional will lead to only nondegenerate critical points. A
more serious restriction is that every flat connection on @ (except for the
0-connection in the case of the trivial bundle) must be a regular point for the
action of the identity component Gy (@) of the group of gauge transformations.
This condition is satisfied if either M is a homology-3-sphere (cf. [14]) or @
restricts to a nontrivial SO(3)-bundle over some oriented embedded Riemann
surface ¥ C M (cf. [16]).

A special case is where the bundle @ = P; is the mapping cylinder of
a nontrivial SO(3)-bundle P — ¥ over a Riemann surface ¥ for an auto-
morphism f : P — P. The underlying 3-manifold is the mapping cylinder
M = ¥j of ¥ for the diffeomorphism h : ¥ — ¥ induced by f. The flat
connections on Py correspond naturally to the fixed points of the symplec-
tomorphism ¢ : M(P) — M(P) induced by f on the moduli space M(P)
of flat connections on the bundle P. This moduli space is a compact sym-
plectic manifold (without singularities) of dimension 6k — 6 where k > 2 is
the genus of . It is well known that this manifold is connected and sim-
ply connected and me(Mp(P)) = Z (cf. [2]). For any symplectomorphism
¢ : M — M of such a symplectic manifold there are Floer homology groups
HEY™P (M, ¢). In this theory the critical points are the fixed points of ¢ and
the connecting orbits are pseudoholomorphic curves u : R> — M which sat-
isfy u(s +1,t) = ¢(u(s,t)) and converge to fixed points * of ¢ as ¢ tends to
+00. The Euler characteristic of HF5Y™P(M, ¢) is the Lefschetz number of ¢.
If ¢ is the time-1-map of a time-dependent Hamiltonian flow then the Floer
homology groups are naturally isomorphic to the homology of the underlying
symplectic manifold M (cf. [15], [27]).
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Hence for every automorphism f : P — P there are two Floer homology
groups HFY™P(M(P), ¢;) and HF™'(2),, Pr). Both arise from the same
chain complex which is generated by the flat connections on P; respectively
the fixed points of ¢¢. In [10] it is shown that the relative Morse indices agree
and hence the chain complex carries the same grading in both theories. The
main result of the present paper asserts that there is a natural isomorphism
of Floer homologies

HF"SY(Sy,; Pr) = HFY™P(M(P), é5).
In particular, when f =id,
HF™Y(% x §1; P x §') = H,(M(P), Z)

The proof requires a comparison of the boundary operators. Think of the
mapping cylinder Py = Py(¢) as the product P x [0,1/¢] and identify P x1/e
with P x0 via the automorphism f. In the limit ¢ — 0 the self-dual instantons
on Py(e) x R will become holomorphic curves in the moduli space M(P). In
other words it follows from an implicit function theorem that near every
holomorphic curve u(s,t) in M(P) there is a self-dual instanton a.(t) on
P¢(e) x R for ¢ sufficiently small. Conversely, it follows from Uhlenbeck’s
compactness that every such family of self-dual instantons a.(t) will converge
to a holomorphic curve in M(P) as € tends to zero. The details will be carried
out in sections 4-10. In sections 1-3 we discuss the necessary background
about Floer homology and flat connections on P.

We would like to thank the referee for pointing out gaps in some of
the proofs in earlier versions of this paper. The problem treated here was
suggested to us by Andreas Floer during a visit to the ETH Ziirich in 1990.
He was a great mathematician and a wonderful human being. We dedicate
this paper to his memory.

1. Floer homology for 3-manifolds

Let @ — M be a principal bundle over a compact oriented 3-manifold with
structure group G = SO(3) which restricts to a nontrivial bundle over some
oriented embedded Riemann surface ¥ C M. Denote by A(Q) the space
of connections and by Gy(Q) the identity component of the space of gauge
transformations. Associated to () is the bundle go — M via the adjoint
action of G on its Lie algebra g = s0(3). Think of A(Q) as an affine subspace
of the space of 1 forms on ) with values in g whose parallel vector space is
' (8q)-

A gauge transformation g :  — G is called even if it lifts to a map
g : @ — SU(2). The subgroup of even gauge transformations is denoted
by G¢V(Q). The degree of a gauge transformation is the integer deg(g) €
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Z determined by the induced map on homology H3(M) = Z — H3(G) =
7. Every even gauge transformation is of even degree and under the above
assumption there exists a gauge transformation of degree 1 (cf. [16], [9]).

The perturbed Chern-Simons functional CSg : A(Q)/Go(Q) — R is de-
fined by

CSu(ap+a) = %/M ((dgpa AN a) + Yo ANa] A ) — H(ag + «)

for a € Q'(gg) and a fixed flat connection ag € Agai(Q). Here (, ) denotes
the invariant inner product on g given by minus the Killing form (in the case
G = SO(3) this is 4 times the trace). The covariant differential d, : Q*(gg) —
0?(gg) is defined by dya = da + [a A ] for a € A(Q) and a € Q(gg) The
perturbation H : A(Q) — R is a function of the SU(2)-valued holonomy of
the connection along finitely many thickened loops in M. Thus H is invariant
under the action of GV (Q). (cf. [14], [30], [9] for a precise definition of H).
The Chern-Simons functional satisfies the identity

(1.1) CSx(a) — CSH(g*a) = 8n? deg(g)
(cf. [3]). The differential of CSy is given by

dCSp(a)a = /M((Fa _Y(a)) Aa),
where F, is the curvature and Y : A(Q) — Q%(gg) represents the differential
of H. The function Y is smooth with respect to the L2-topology on A(Q).
In particular, Y (a) does not depend on the derivatives of a. In other words
the curvature F' is a nonlinear first order operator on A(Q) and Y is a zeroth
order (and therefore compact) perturbation. Both operators are equivariant
with respect to the action of G*'(Q) on A(Q) and Q%(gg). The critical points
of CSy are called H-flat connections. They satisfy F,, = Y (a) and the set
of such connections is denoted by Agat(Q, H). The perturbation H can be
chosen such that every H-flat connection a is a nondegenerate critical point
of CSy (cf. [14], [8], [30]).
The gradient flow of CSp takes the form

(1.2) a+ *xF, —*Y (a) = 0.

With Y = 0 this is the self-duality equation on @ x R. If a satisfies (1.2)
and has finite Yang-Mills energy then a(t) converges to H-flat connections on
Q as t dends to 400 (cf. [14], [22], [30]). Fix a* € Aga(Q, H) and denote
by M(a~,a™) the moduli space of gauge equivalence classes [a] of solutions
of (1.2) which satisfy the limit condition

(1.3) lim a(t) = gia™ € Agat(Q, H)

t—+oo
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for some g1 € Go(Q). Here [a1] = [ag] if and only if as(t) = g*ay(t) for some
g € Go(Q). The solutions of (1.2) minimize the perturbed Yang-Mills action

Vi) = 4 [ (1= Y@y +lalan) d

= CSy(a™) —CS(a™)

subject to the limit condition (1.3). The second equality holds only for a €
M(a~,a™). For a generic perturbation H the space M(a~,a™) is a smooth
manifold of dimension

dim M(a™,a™) = p(a™) — p(a”)

where p(a) = in(D,) — CSu(a)/27? (cf. [8], [14], [22], [30]). Here D, denotes
the extended Hessian of CSy. It is a self-adjoint operator on Q1 (gg) ®2%(gg)

given by
[ *dg —*dY(a) d,
Da = < d: 0 )

and n(D,) denotes its eta-invariant (cf. [3]). In particular,

(14)  plg*a) — pla) = == (CSu(a) — CSu(g a)) = 4deg(g)

27
for g € G(Q) (cf. [3]).
The solutions of (1.2) determine a boundary operator on the chain com-

plex
Cy = @ Zla).

l[a]€ AR, (Q)/90(Q)

np(a)—pp(ag)=k
Choose coherent orientations of the moduli spaces M(a~,a™) as in [14], [18].
Whenever a € M(a™,a™) with u(a™)—pu(a™) = 1 define v(a) = £1 according
to whether the natural flow orientation of a(t) (given by time shift) agrees
with this coherent orientation or not. The (a™,a™)-entry of the boundary
operator

a:Ck_;’_l —)Ck;

is defined by taking the sum of the numbers v(a) over all instantons [a] €
M(a~,at)/R whenever u(a®) — p(a™) = 1. In [14] Floer proved that this
number is finite and that 0 is a boundary operator, i.e. 2 = 0. The homology
groups of this chain complex are called the Floer homology of the pair
(M, Q) and they are denoted by

HF™Y (M, Q) = ker §/im 0

The Floer homology groups are independent of the metric on M and the
perturbation H used to define them (cf. [14], [16]). This means that different
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choices of metric and perturbation give rise to natural isomorphisms. Since
there exists a gauge transformation of degree 1 it follows from (1.4) that
the Floer homology groups are graded modulo 4. The Euler characteristic is
Casson’s invariant of the pair (M, Q).

Remark 1.1. If H can be chosen invariant under all gauge transforma-
tions (not just the even ones) then the group I' of components of the space
of degree-0 gauge transformations acts on HFik]nSt (M, Q) for every k. This re-
quires an equivariant perturbation theory which takes account of the action
of a finite group.

2. Floer homology for symplectic fixed points

Let (M,w) be a 2n-dimensional symplectic manifold and ¢ : M — M be a
symplectomorphism. This means that w is a nondegenerate closed 2 form and
¢*w = w. The tangent bundle of any symplectic manifold admits an almost
complex structure J : T™M — T'M which is compatible with w in the sense
that (v, w) = w(v, Jw) defines a Riemannian metric. Thus T M is a complex
vector bundle and, since the space J(M,w) of all almost complex structures
which are compatible with w is connected, the first Chern class ¢; € H2(M, Z)
of T M is uniquely determined by w (cf. [20], [24]). The symplectic manifold
(M, w) is called monotone if there exists a positive constant A > 0 such that

/ viw = )\/ v¥e;
S2 S2

for every smooth map v : 2 — M. We shall assume throughout that (M, w)
is simply connected and monotone. Under this assumption there are Floer
homology groups HFY™P(M, ¢) whose Euler characteristic is the Lefschetz
number of ¢. Since this is an extension of Floer’s original work in [15] (to the
case where ¢ # id), we summarize the main points of the construction.

Let R x M — R : (s,p) — Hs(p) be a smooth time-dependent Hamilto-
nian function such that Hy = Hsy1 0 ¢. The symplectomorphisms ¢, : M —
M generated by H are defined by

%¢s = Xs o ws, ¢0 = id, L(Xs)w = st

They satisfy
VYs4+1 0 QH = ¢ 0 Ps,

where ¢ := 11 "1 o¢. For a generic Hamiltonian H the fixed points of ¢ are
all nondegenerate. (See [21] for the case ¢ = id. The general case is similar.)
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They can be represented as the critical points of the perturbed symplectic
action functional on the space of smooth paths

Qp={y:R—=>M:(s+1)=0d(v(s))}-

Since M is simply connected the fundamental group of Q4 is m1(24) =
mo(M). The perturbed symplectic action functional ap : @y — R/A\Z is
defined as a function whose differential is given by

1
dap (7)€ = /0 w( — Xa(7),€) ds.

So the critical points of ap are the paths of the form z(s) = 1s(xo) such that
z(s +1) = ¢(z(s)). These are in one-to-one correspondence with the fixed
points of ¢r.

Now choose a smooth map R — J(M,w) : s — Js such that J, =
¢*Jst1. Such a structure determines a metric on {14. The gradient flow lines
of ag with respect to this metric are the solutions u : R> — M of the partial
differential equation

(2.1) Oy (u) = Opu + Js(u) (9su — Xs(u)) =0
with boundary condition
(2.2) u(s + 1,t) = ¢(u(s,t)).

In the case where X; = 0 these are Gromov’s pseudoholomorphic curves
(cf. [20]). If the fixed points of ¢ are all nondegenerate then it follows from
Gromov’s compactness that any solution of (2.1) and (2.2) with finite energy

o) 1
) =3 [ [ (1= Xl + o) dsdt < o0
—00 JO
has limits
(2.3) tligl u(s,t) = g(xF), z* = py(aF)

(cf. [15], [20], [24], [26]). Given any two fixed points x* of ¢y denote by
M(z~,x") the space of all solutions u of (2.1), (2.2), and (2.3). The lo-
cal structure of the space M(x~,z") can be examined by linearizing equa-
tion (2.1). This gives rise to the perturbed Cauchy-Riemann operator D,, :
W;’p(u*TM) — LY (u*T M) defined by

Du& = Vi€ + Js(u)(Vs€ — Ve X () + VeTs(u) (Osu — X (u)).

Here V denotes the covariant derivative with respect to the s-dependent met-
ric (v,w)s = w(v, Jyw). Moreover, L (u*T M) (respectively W;’p(u*T./\/l))
denote the completions of the space of smooth vector fields §(s,t) € Ty M
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along u, which satisfy (s + 1,t) = d¢p(u(s,t))E(s,t) and have compact sup-
port on S' x R, with respect to the LP-norm (respectively W' -norm) on
S1 x R. If 2 are nondegenerate fixed points of ¢y and u satisfies satis-
fies (2.2) and (2.3) then D, is a Fredholm operator and its index is given by
the Maslov class of u:

indexD,, = u(u)

(cf. [10] and [27]). The Maslov class u(u) is invariant under homotopy, addi-
tive for catenations, and satisfies

(2.4) p(udtv) = p(u) — 2e1(v)

for any sphere v : S2 — M (cf. [10] and [27]).

If D, is onto then M(z~,2") is a finite dimensional manifold near w.
This follows from an implicit function theorem. For later reference we shall
state here a version of that theorem. Fix a reference function ug : R2 — M
which satisfies (2.2) and ug(s,t) = ¥s(x™) for t > 1 and ug(s,t) = s(x™) for
t < -—1.

THEOREM 2.1. Let p > 2 and 1/p+1/q = 1. Then for every constant
co > 0 there exist constants 6 > 0 and ¢ > 0 such that the following holds. If
& € Wé’p(uST./\/l) such that

1€ollwrr < co,  [|0rm(w)||, <O

where u = exp, (§o) and

(2.5) 17lLa < co I DanllLa

for every n € WH(u*T M) then there exists a unique section & = Din €
Wé’p(u*TM) such that

Orm(exp,(©) =0, [€lwrr < cllOsm()y, -

Proof. The proof is an application of the implicit function theorem for
the map F : W;’p(u*TM) — LY (u*T M) defined by

(2.6) F(€) = Pe(9s,1 (expy(€)))

where @ : Lg(expu@)*T./\/l) — L‘Z(u*T./\/l) denotes parallel transport along
the geodesic 7 +— exp,(7€). The map F is smooth and its derivatives are
controlled by the W1P-norm of &y. The differential at zero is given by dF(0) =
D, and the condition (2.5) guarantees that this operator is onto and has a

I The formal adjoint operator D} is obtained from D,, by replacing V; with —V.
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right inverse. In fact, there is a constant ¢; > 0 depending only on ¢y such
that
IDanllwie < et [DuDinllps

for every n € Wé’p (u*T M) such that D}n € Wé’p (u*TM).2 This estimate is
proved by arguments similar to those in the proof of Lemma 4.5 below. It
follows that the operator ¢ +— DZ(D,D;)~!( is the required right inverse of
D,. O

A Hamiltonian function H is called regular if the fixed points of ¢z
are all nondegenerate and the operator D, is onto for every v € M(z~,z™)
and any two fixed points % of ¢g. As in Floer’s papers [11] and [15] it
can be proved that the set H"® = H™8(J) of regular Hamiltonians is generic
in the sense of Baire with respect to a suitable C2°-topology (see also [27]
and [24]). It follows from Theorem 2.1 that for H € H*® and & = ¢y (zF)
the space M(z~,z™") is a manifold whose local dimension near u is the Maslov
class p(u). By (2.4) the Maslov class determines a map u : Fix(¢g) — Zon
(defined up to an additive constant) such that

pu) = p(z”) — p(z™) (mod 2N)

for every solution w of (2.2) and (2.3). Here the integer N is the minimal
Chern number defined by c¢;(m2(M)) = NZ. The additive constant can be
chosen such that

(2.7) (=) = sign det(1 — dpp (z))

for z € Fix(¢m).
As in Floer’s original work (cf. [15] for the case ¢ = id) the moduli spaces
M(z~,x") of connecting orbits can be used to construct a chain complex.

Cy = @ Zx.

r=¢pr ()
p(z)=Ek(mod 2N)

The boundary operator 0 : Cry1 — C} is defined by taking the sum of
the numbers v(u) over all 1-dimensional components of M(x~,z"). These
numbers are defined by comparing the flow orientation of u with the coherent
orientation of M(z~,z") as in [18]. In [15] Floer proved in the case ¢ = id
that 0 is well defined and satisfies 9> = 0. His arguments carry over to
the case ¢ # id. The Floer homology groups of ¢ are are defined as the
homology of this chain complex

HFY™P(M, ¢, H,J) =ker /im 0.

2Warning: This need not be the space Wi’p(u*TM) since u is only assumed to be of class
Wwhp,
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It can be proved as in [15] and [27] that the Floer homology groups are
independent of the almost complex structures J,; and and the perurbation H
used to define them. They depend on ¢ only up to Hamiltonian isotopy. In
other words, there is a natural isomorphism

HES™P (M, ¢, H®, J*) — HFY™ (M, ¢” , H", J7)

whenever ¢* and ¢ are related by a Hamiltonian isotopy (cf. [9]). By (2.4)
the Floer homology groups are graded modulo 2N. By (2.7) the Euler char-
acteristic is the Lefschetz number of ¢

XHEP™ (M, ¢)) = Y sign det(l — don(z)) = L(¢).
r=¢g(z)

Remark 2.2. A similar construction works for some classes of compact
symplectic manifolds M which are neither monotone nor simply connected.
In this case there are Floer homology groups for every component of Q4 and
they are modules over a suitable Novikov ring as in [21].

Remark 2.3. If ¢ = id then the Floer homology groups are naturally
isomorphic to the homology of the underlying symplectic manifold M:

HFS™P (M, id) ~ H, (M, Z).

If M is not simply connected then this continues to hold for the component
of contractible loops on M and this implies the Arnold conjecture (cf. [15]).

Remark 2.4. For every symplectomorphism 1 there is a natural iso-
morphism of Floer homologies HF®™P (M, ¢) = HFY™P (M, )~ opor). (To
see this consider the function v(s,t) = ¢~ (u(s,t)) where u(s,t) is a solution
of (2.1) and (2.2).) Donaldson has suggested the construction of a homomor-
phism

HFSY™ (M, ) ® HFY™ (M, ¢) — HF™ (M, 1) 0 6)

using moduli spaces of J-holomorphic curves with three cylindrical ends (the
pair-of-pants construction). If ) = id then this determines an action of the
homology of M on the Floer homology groups of ¢. If ¢ = ¢ = id then this
should agree with the deformed cup-product of Witten.

We close this section with an existence theorem for solutions of (2.1)
which is based on Theorem 2.1.

THEOREM 2.5.  Assume H € H™8. Let 2% be fized points of ¢ and let
A denote a homotopy class of maps u : R? — M which satisfy (2.2) and (2.5)
with p(u) = 1. Then for every co > 0 and p > 2 there exist constants 6 > 0
and ¢ > 0 such that the following holds. If u : R? — M satisfies (2.2)
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and (2.3) and represents the class A such that
o

(s, b)) < —2

HéJvH(u)HLp S 57

then there exists a unique section & = Dln € Wé’p(u*T./\/l) such that

O5m(exp,(€) =0,  [&lwir < cl|0sa(u)|,-

Remark 2.6. The function f(t) = co/(1 + t?) has been chosen because
it is integrable, p-integrable, and is the derivative of functions F'* which are
p-integrable on R*, respectively. Any function with these properties will do.

LEMMA 2.7. Assume H € H™8 and let ugp € M(z~,2") and p > 2.
Then for every constant cq > 0 there exists a constant ¢ > 0 such that if
&0 € WP (wTM) with |[€ollwrs < co then

ollwrr < e (18751(expuy (€D + 0lls + leollpoc)

Proof. Consider the map F : W;’p(u(’;TM) — LZ(UETM) defined by (2.6)
with u replaced by ug. Since F(0) = 0 and dF(0) = D,,, there is a quadratic
estimate

15 (€0) — Duoollrr < 1 lléollwrm 6ol -

Here the constant ¢; depends only on ug and ¢y. Now the statement follows
from the elliptic estimate |[£o|lwir < €2 (|[Puoolle + [1€0llLs) - O

Proof of Theorem 2.5. If the assertion of the theorem were false then
there would exist a sequence u, representing the class A such that
Co
|Ouy (s, )] < T
but the conclusion of the theorem is not satisfied with © = u, and ¢ = v. Now
the derivatives of u, are uniformly bounded in the L*°-norm and F(u,) < ¢;.
Hence, passing to a subsequence, we may assume without loss of generality

Jin [[07.6 ()| =0,

that wu, converges uniformly on compact sets to a solution ug of (2.1) with
finite energy. Since p(u,) = 1 it follows as in the usual compactness argument
for Morse-Smale gradient flows that ug € M(z~,x™") (cf. [26]). By the uni-
form decay estimate u, converges uniformly on R2. Moreover, u, = expy, (&)
where

sup HSVHWLP < 0, HSVHLP — 0, Hfu”LO@ — 0.
14

Hence, by Lemma 2.7, &, converges to zero in the WP-norm. This implies
that the operators D, satisfy (2.5) for v sufficiently large with a uniform
constant ¢. Hence it follows from Theorem 2.1 that for v sufficiently large the
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functions u, do satisfy the conclusion of the theorem with a uniform constant
c. This contradicts our assumption. Hence the theorem is proved. O

3. Flat connections over a Riemann surface

Let 7 : P — X be a nontrivial SO(3)-bundle over a compact oriented Riemann
surface of genus k& > 2. Denote by Gy(P) the component of 1 in the space of
gauge transformations and by

M(P) = Apat(P)/Go(P)

the moduli space of flat connections. This space is a compact manifold of
dimension 6k — 6. Its tangent space at an equivalence class [A] of a con-
nection A € Ag,(P) can be identified with the twisted deRham cohomology
TigM(P) = HY =ker ds/imda. Here da: Q¥(gp) — QFF1(gp) denotes the
covariant derivative defined by d 4o = dar+ [A A ]. Given a conformal struc-
ture on ¥ we may identify H}4 with the space ker d4 Nker d4* of harmonic
forms. Here d4* = — % da* denotes the L2-adjoint of d4. The moduli space
M(P) carries a natural symplectic structure

wla.8)= [ @ng)

for a, 3 € HY. Every conformal structure on 3 determines a complex struc-
ture on M(P) (cf. [2]). The corresponding almost complex structure on
TM(P) is given by the the Hodge-*-operators on the spaces HY of harmonic
forms and is compatible with w.

The second homotopy group of M(P) is given by

m(M(P)) = m1(G(P)) = Z.

More precisely, a sphere in M(P) can be represented by a smooth map A :
D — Agai(P) such that A(e?™) = g(0)*Ay where D = {z € C : |z] < 1}
is the unit disc, Ag € Agat(P) is a flat connection on P, and g(0) = g(6 +
1) € Go(P) is a loop of gauge transformations. Any such loop has a degree
deg(g) € Z and the integrals of w and ¢; = ¢;(TM(P)) over A are given by

= g {le], A) = 2deg(y)

(cf. [10]). In particular, M(P) is monotone in the sense of section 2 with
\ = 4n2.

Every orientation preserving automorphism f : P — P determines a
symplectomorphism ¢ : M(P) — M(P) defined by [A] — [f*A]. If fy
and fi are isotopic then ¢y, = ¢ and hence the correspondence f — ¢,
determines a symplectic action Aut™(P)/Auto(P) — Diff (M (P),w) where

<Cl’ A>
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Autg(P) denoptes the component of the identity in the group Aut™ (P) of ori-
entation preserving automorphisms. Note that the quotient Aut™(P)/Auto(P)
is a finite extension of the mapping class group Diff 7 () /Diffo (%) by 7o (G(P))
z%*.

The automorphism f also determines a principal bundle Py — 3J;, where
h : % — ¥ is the diffeomorphism induced by f and Py and ¥; denote the
mapping cylinders. A connection a € A(Ps) is a 1-form a = A + ®ds where
A(s) € A(P), ®(s) € Q%gp) and

A(s+1) = frA(s), P(s+ 1) =d(s)o f.

The group G(Py) of gauge transformations of Py consists of smooth maps
g :R — G(P) such that g(s + 1) = g(s) o f. It acts on A(Py) by

ga=g"A+ (g_lg + g_1<I>g) ds.
Here the notation g* is used ambiguously: g*a denotes the action of g € G(Py)
on a € A(Py) whereas g*A denotes the pointwise action of g(s) € G(P) on
A(s) € A(P).

The space of paths

Fix a 1-parameter family of conformal structures on ¥ such that the
associated Hodge-*-operators satisfy *s11 0 f* = f* o %,. Denote by Asx(Pf)
the subspace of those connections a = A(s)+®(s) ds which satisfy 4 = 0 and
da *g (A da®) = 0. For any such connection and every s the section ®(s) €
Qo(gp) is uniquely determined by A since d4 #5 d4® = d4 *5 A. The 1-form
A—d4® is the projection of A onto the space of harmonic forms with respect
to the s-metric. Also denote by Gx;(Pf) the subgroup of those g € G(Py) such
that g(s) € Go(P) for all s. It follows from results in [2] and [5] that the
space Agat(P) is simply connected and hence Ayx,(Py) is connected. There is
a natural bijection Qg = Ax(Pr)/Gs(Ps) and the quotient Ax(Pr)/Go(Pr)
is the universal cover of Qy,. The second homotopy group of M(P) is the
fundamental group of €4, and can be identified with the second homotopy
group of M(P) (ct. [10]):

m1(Qg,) = m(M(P)) = G=(Py)/Go(Py) =

The Chern-Simons functional

The Chern-Simons functional CS : A(Py) — R is given by

:/01/2(%(AA(A—AO)>+<FA/\<I>)) ds

for a = A+ ®ds where Ay = f*Ag is a fixed flat connection. The restriction
of the Chern-Simons functional to Ax;(Ps) agrees with the symplectic action
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on {24 . The critical points are the flat connections on Py and they satisfy

Gauge equivalence classes of such connections are in one-to-one correspon-
dence with the fixed points of ¢¢. If ¢ has degenerate fixed points choose a
gauge invariant holonomy perturbation H, : A(P) — R as in [10] such that

Hoa(fA) = Hy(A).

Think of H as a Hamiltonian function with corresponding Hamiltonian vector
field X, : A(P) — Q!(gp) defined by

dH,(A)a = / (X,(A) A a).

b
Since Hy : A(P) — R is invariant under Go(P) the vector field X satisfies
(3.1) Xo(g"A) = g7 Xs(A)g,  daXi(A)=0

for g € Go(P) and A € A(P). The corresponding Hamiltonian symplecto-
morphisms ¢s : A(P) — A(P) are equivariant under the action of Go(P) and
the curvature is constant along the flow. Moreover, ¥, 1 0 ¢r g = ¢y o),

where ¢ = ¢1_1 o Qrf.
The perturbed Chern-Simons functional CSy : A(Py) — R is defined by

CSp(A+ dds) = CS(A + ®ds) — /01 H,(A(s)) ds.

A connection A + ®ds on Py is a critical point of CSy iff
Fa=0, A—ds®—X,(A)=0.
Denote the space of such critical points by Agat (P, H).

Remark 3.1. There is a bijection Aga(Pr, H)/Gx(Pf) ~ Fix(¢sm).
Moreover, an H-flat connection A 4+ ® ds is nondegenerate as a critical point
of CSy if and only if A(0) represents a nondegenerate fixed point of ¢ ¢ g
(cf. [10]). The perturbation H can be chosen such that the symplectomor-
phism ¢ : M(P) — M(P) has only nondegenerate fixed points (cf. [21]).

Instantons and holomorphic curves

Fix two nondegenerate H-flat connections a* = A*+®* ds € Agat (Py, H)
and choose smooth functions A : R? — Ag.(P) and ®,¥ : R? — Q%gp)
which satisfy

A(s+1,t) = f*A(s, t),

(3:2) B(s+1,6) = B(s,t) o f, U(s+1,6) = B(s,t)o f.



SELF-DUAL INSTANTONS AND HOLOMORPHIC CURVES 595
. _ g4t . _ &t : _
(3.3) tilimoo A(s,t) = A~ (s), tllrinoo O(s,t) = D (s), tilimoo U(s,t) =0.

Now choose a smooth family of conformal structures on ¥ depending on a
real parameter s such that x4,1 o f* = f* o %,. Then the perturbed Cauchy-
Riemann equations (2.1) take the form

(3.4) A — dAW + %4 (DA — Xy(A) — dad) = 0.

For solutions of (3.4) the functions ® and ¥ are uniquely determined by A.
In other words the function A : R? — Aga;(s,t) is an anti-holomorphic curve
if and only if the harmonic part of 9; A + *5(9sA — Xs(A)) vanishes. If this is
the case then there exist unique functions ®, ¥ : R? — Q%(gp) such that (3.4)
is satisfied.

Now think of = = A + ®ds + ¥dt as a connection on Py x R. Here
the connections A(s,t) are no longer required to be flat. The perturbed self-
duality equations on Py x R take the form

A — AT + #,(0,A — X (A) — da®) = 0,

(3:5) D — 0,0 — [0, U] + e 2%, F4 = 0.

The first equation in (3.5) agrees with (3.4) while the second equation replaces
the condition on A(s,t) to be flat. The factor 1/¢2 arises from conformally
rescaling the metric on ¥ by the factor 2. The Hodge-*-operator on 1-
forms (the middle dimension) is invariant under conformal rescaling while the
Hodge-+-operator on 2-forms rescales by 1/2. Alternatively, equation (3.5)
can be obtained by considering a solution 2 = A+®ds+Tdt of the self-duality
equation with € = 1 and %, replaced by #*.5 on the domain 0 < s < 1/¢. Then
A(s,t) = A(s/e,t/e), ®(s,t) = B(s/e,t/e)/e, and U(s,t) = U(s/e,t/e)/e
satisfy (3.5). This is a modification of Atiyah’s idea to stretch the neck for
Heegard splittings (cf. [1]).

If = satisfies (3.5) then the perturbed Yang-Mills action of = with respect
to the rescaled metric on 3 is given by

00 1
(3.6) V5 (2) :/_OO/O (104 — da s ) + € [FallPags,,y ) dsdt.
If = satisfies (3.2), (3.3), and (3.5) then

V() =CSy(a™) —CSy(a™).

If instead = satisfies (3.2), (3.3), and (3.4) with F4 = 0 then the the right
hand side of (3.6) is not the Yang-Mills action but the energy of the anti-
holomorphic curve represented by A.
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Index theorem

The Sobolev space W?’p (R?2 x T*Y®gp) is the completion of the space of
compactly supported smooth maps o : R? — Q!(gp) which satisfy a(s+1,t) =
f*a(s,t) with respect to the W*P-norm on R? x Xj,. The space VV/I;’]”(R2 X
gp) is defined similarly. For any smooth map A : R? — Ag,:(P) which
satisfies (3.2) the closed linear subspace W];’p(HA) C VV?”(R2 x T*Y ® gp)
consists of those aq such that aq(s,t) is a harmonic 1-forms on gp with respect
to the s-metric and the connection A(s,t).

Linearizing (3.4) gives rise to the Fredholm operator

Dy = Do(Z) : WP (Ha) — LE(Ha)

defined by
Doag = 74 (Viag + #5Vsag — #5sd Xs(A)ayg) .

Here Vi = 0s + ®, V; = 0; + ¥ and 75 () denotes the harmonic part
of the 1-form « with respect to the connection A(s,t) and the s-metric on
Y. Note that Hy is the pullback tangent bundle of M(P) under the map
[A] : R? — M(P). In view of the periodicity condition (3.2) this is a complex
vector bundle over S! x R and Dy is a perturbed Cauchy-Riemann operator
on this bundle. (See [10] for more details.)

Abbreviate

§=(a,0,70) € W?,p = Wl;’p(R2 XT*C. @ gp ®gp Dgp).
Linearizing (3.5) gives rise to the Fredholm operator

D. =D.(2): WP — L}

defined by
AV 0 0 *sd X (A) x,dg da
D. =V, + 0 0 -V | — —e 2 x,dy 0 0
0 %gVikg 0 —e 2x,dy%s O 0

The notation D.(Z) indicates the dependence of the operator D, on the con-
nection E = A + ®ds + Wdt. The following theorem was proved in [10].

THEOREM 3.2.  For any pair a™ of nondegenerate H-flat connections on
Py and any connection 2 = A+ ®ds + Wdt on Py x R which satisfies (3.2),
(3.3), and F4a =0 we have

index Dy = indexD, = puy(a”,a™).
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The index formula of section 1 shows that for any connection = = A +

® ds + U dt which satisfies (3.2) and (3.3)
_ 1 _
pu(a”,a®) = cnla™) —n(a”)

1
2 2"

oo 1

om2 / // OsA — X5(A) — da®) A (0 A — daV)) dsdt

—oo 0

where n(a) = n(D,) is the eta-invariant of the extended Hessian D, as in
section 1. In particular, if = is a solution of (3.2), (3.3), and (3.4) with
Fy =0 then

1 00 1
(37) pnla,at) = 5nl@)=gn@ 5z [ [ 104 - dav |, dsat,

Moduli spaces

Given a* = A* + ®* ds € Ay (P, H) choose a smooth connection Zg =
Ap + ®ods + Updt which satisfies (3.2) and (3.3) and is locally independent
of t for |t| > 1. For p > 2 denote AP(a",a™) = {Eg+ ¢ : € € W}’p}. The
associated space of gauge transformations G2? is the completion of the space
of all smooth gauge transformations g : Py x R — G such that g(s,t) = 1 for
|t| sufficiently large with respect to the Wf’p—norm of ¢ = g7 dg+¢ 109 ds+
g~ 10,gdt. This space acts on AP(a™,a™) via

JFE=9g"A+ (g_lasg + g_l@g) ds + (g_latg + g_l\I/g) dt.
Consider the space
A(l)’p(a_,a+,H) = {E e AP a") : F4 =0, (3.4)}
of holomorphic curves in Ag,(P) connecting a~ to a™ and the space
AbP(a™ ot H) = {a € AP (a”,a™) : (3.5)}

of self-dual instantons on Py x R connecting a~ to a®. The corresponding
moduli spaces

Mo(a™,a*, H) = AyP(a™,a*, H)/G*P
Me(a™,a*, H) = ALP(a”,a", H)/G*P

are finite dimensional manifolds of the same dimension ug(a™,a™) provided
that the operators Dy and D, are onto for all relevant connections =Z. Thus
denote by Hy® the set of all perturbations H such that the fixed points of ¢ f g
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are nondegenerate and the operator Dy is onto for all a* € Ax(Pf, H) and all
Ze Al’p (a”,a™, H). Likewise, denote by H® the set of all perturbations H
such that the H-flat connections on Py are nondegenerate and the operator
D, is onto for all a* € Ax (P, H) and all £ € AP(a”,a™, H). Both sets
Hy® and HI°® are of the second category in the sense of Baire (countable
intersections of open and dense sets) in a suitable Banach space of smooth
perturbations. (See [15], [24], [27] for the symplectic case and [8], [14], [16]
for the instanton case.)

4. Elliptic estimates

Fix two nondegenerate H-flat connections a* = A* + ®*ds € Ax(Py, H),
let p > 4, and assume throughout that = = A+ ®ds + ¥dt € A (a",a™)
with Fy(s4) = 0 for all s and t. Write Dy = Dy(Z) and D, = D.(Z).

It is convenient to use the e-dependent Banach space norms

1€ e = [ [ (lalls) + 16185 s, + = 191s,) o

on L?,
1€llco.c = latllpoe +€lllLoe + € [[¥ll L

on L%, and

68 = [ [ (o) + < 1%l + 2 [Vl )
4 [ 168y + = 1Vl + % (Wil ) sl
4 7 Wy + 2 1001 3 + = 101 5) s
ondw}vp. Here Vy = 05+ @, Vi = 8+, [|8l%y1.0(m) = 19117 () + 44Ty
al

HQH{JNW(E) = Ha\l’ﬁp(g) + ”dAaHII:p(z) + [|da *s a”ip(z) .

Thus the 1,p,e-norm depends on the connection = and the 1,p,e-norm of
g~ '¢g with respect to ¢*= agrees with the 1, p, e-norm of ¢ with respect to =.

LEMMA 4.1.  For p > 4 there exists a constant ¢ = c¢(p) > 0 such that
|’§Hooe <ce ~2p Hf”l,p,s

for&ewjlc’p and 0 < e < 1.
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Proof. Denote £ = @+ ¢ds + 1 dt where a(s,t) = ales,et), ¢(s,t) =
ep(es, et), and (s, t) = ey(es,et) for 0 < s < e !and t € R. Then €1, =
5~2/ ?||€|lw1r. Hence the statement follows from the usual Sobolev estimate for
£ O

LEMMA 4.2. There exist constants eg > 0 and ¢ > 0 such that

1€l pe < ¢ (2 1PeEllgpe + 17A©)Ls) »

1€ = 7A@l pe < 2 (1Dl e + 7A@l )

for& e W}’p and 0 < e < gg. The constants g and ¢ depend continuously on
= (with respect to the C*°-topology) and they are independent of .

Proof. We prove the statement only for p = 2. Moreover, it suffices to
consider the case Xz = 0. Throughou‘g all the~n0~rms are L2-norms on ¥j, x R.
Let £ = (o, 0,9) € W;’z and denote & = (&, ¢, 1) = D.£. We shall prove the

estimate
[daal® + lda % al* + £ | Vaa|* + € [ Viel
+e2 [[dagll? + & [|Vg])” + £ | Vil
(4.1) +e2 [[dag]]” + et |Vl + e V|
& 2
< ce? (€18 e + llal®) -

To see this assume that £ is smooth (C*°) and consider the identity
(4.2) D:E = DID.c.

Here the operator D} is obtained from D, by replacing V; with —V;. It is
the formal adjoint operator of D, with respect to the Hilbert space structure
induced by the L2-norm. The first component of (4.2) can be written as

—Vid — dath + %, Vi@ — #,dad
= —VVa + %V, %, Voo + e 2da*daa + e 2dada*a
— 45 [C N o]+ [(By — #sBs) ANp] + [(xs By + Bs) A @]
—da *s ks — xgksdad

where %, denotes the derivative of the Hodge-*-operator x4 with respect to s
and

By =0,A—da®,  Bi=0,A—ds¥, C=08%—0,U—[d U]
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Take the inner product with « to obtain

IVeal® + [Vial* + 72 [daal® + &2 [|da %5 aff
= (Vi + %V, @) + (xgdaa, ) — (da* o, )
(4.3) +{a, *5[C A al) — (o, [(Br — %sBs) AN]) — (o, [(xs Bt + Bs) A ¢])
(o, da *s ksh) + (xsksa, dad).

Similarly, the second component of (4.2) can be written in the form

~Vi6 — Vi + e %, dad
= —ViVip — Vs %5 Vi 55 ¢+ £ 2da"dad
+[(C — 725 FA) ANp] — 72 5 [Bs A x50 — e 2 %4 [By A al

—6_24<8dA *g O — g2 xg dgkgu.
Take the inner product with ¢ and use F4 = 0 and

<¢7 VS *s Vs *s ¢> = _HVS¢ + *S*S(ﬁuz

to obtain

IVsol” + IVig]* + 72 [ dagl?
= (Y, @) + (Vs + %5k50, ) — €2 (x5d n 0, @)
(4.4) —2(Vp, *ks0) — || x5 #50||* — (9, [C A D])
+e72(, %5[Bs A *50]) + 2, %[ By A )
e Ha, dg g ked) + € 2 (koks0r, dad).

The third component of (4.2) can be written in the form

_th/; + *svs *s (5"" 5_2 *g dA *g a
= —ViVit) — %,V #s Vi) + € 2da"dat
—[(C—e 2% FA) NP + e 2 %4 [Bs Aa] — e~ 2 %, [B; A x40,

Take the inner product with ¢ and use F4 = 0 to obtain

[Vl + 19l + &2 ld vl
(45) = (V) = (Vv 6) — e (dav, @)
+(1,[C A 6]) = €72, 5:[Ba A a]) + 72, 5[ By A 0.
The estimate (4.1) follows from (4.3), (4.4), and (4.5). This proves the lemma

for p = 2. For general p the estimate can be reduced to the LP-estimate for
Laplace’s equation via the rescaling argument of Lemma 4.1. O
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LEMMA 4.3.  There exists a constant ¢ = ¢(Z,p) > 0 such that
[7a(D=8) = Doma(©)llLy < cll€ = malé)llo e
for & e W}’p.

Proof. Let £ = (o, 0,9) € W}’p and write o = mwa(a) + daC + *sdam.
Then a simple calculation shows that
(4.6) 7A(D:E) = Doma(§) +mwa(f)
where 6 = [B A (] + *5[B An] + *gksdan — xsd Xs(A) x5 dan — [Xs(A) An] and
B = Bt + *5(Bs — X5(A)). Hence [|0]|1, < c [l —ma(§)llg, as required. O

If = satisfies (3.4), the Hodge-x-operator x; = x is independent of s,
and the perturbation X, vanishes then m4 o D = Dg o m4. So in this case
the projection onto the harmonic part determines an isomorphism of the
kernel of D, with the kernel of Dy provided that both operators are onto (see
Lemma 4.5 below).

LEMMA 4.4. Assume

leollry < co l[Pocollrs

for all ag € lec’p(HA) and some constant co > 0. Then there exist constants
go > 0 and ¢ > 0 such that

1€l pe < € (£ 1DEllg e + 74 (D=6l )

1€ —ma(€)

for0<e<egg and&eW}’p.

1,p,e <ce HDE&HOJLE

Proof. For every £ € lec’p
[ma@ll, < collDomalé)llre
< collma(Pe) e + e l€ = 7a()llo
o [17A(D=E) [ + 22 (Dt + 17 ()l )

The first inequality follows from the assumption of the lemma, the second
from Lemma 4.3, and the last from Lemma 4.2. For coeg < 1 this implies

I7a (@)l < 3 (2 1DEllge + ITa(Det) s ) -

Hence the statement follows from Lemma 4.2. O

A

IN
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LEMMA 4.5. Assume Dg is onto. Then there exist constants eg > 0 and
c > 0 such that D, is onto for 0 < e < eg and

ID2¢ll e < € (2 1D-D2Elg e + 7 (DD 1)

IDz€ — ma(DzE) < e | DDzElg e

||17p76
for € € Wi’p )
Proof. The proof is in four steps.

Step 1. Choose q > 1 such that 1/p+1/q = 1. Then, since Dy is onto,
there is a constant co > 0 such that for ag € W}’p(HA)

leollLe < co[[DoaollL -

Step 2. There is a constant ¢y > 0 such that for ag € lec’p(HA)

Diag, D
Dol < 1 sup< 020, D5o)

Bo HDSﬁOHLq
Choose an L?-orthonormal basis a1, ..., a,, of ker Dy. Now choose 3 €
L%(Ha) such that
(8, Dyao) = [ Docxollpp . [1BllLa =1

Since Dy is onto there exists a (unique) By € WH9(H4) such that

B = Dybo + Z(/B7 aj)a;

j=1
It follows that

IDjaoll, = (B, Do)
= DoﬂO,DoaQ

5

<D6ﬁ07 D5a0>
HDSﬁO ||Lq

IN

<D6ﬁ07p>0ka0>
1+ g «a a; _—
( H JHLP || ]HLfI) HDSﬁOHLq

j=1
Step 3. For every e > 0 and every £ € W:}’p
17a(D2E) Ly < (1 + 1) [[7a(DZE) — Doma(§)llL» + cocr | Doma(DzE) || -
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For all &, ¢ € lec’p we have

(Doma(Q). Domal§))  _ (DomalQ), Doma(§) — ma(DZE))
1D5mA(O)lq 1D5mA(O)La

(ma(Q), Doma(DLE))
1D5mA(O) g

< Poma(§) — ma(DzE) s

+ |Doma(Dz8) s %

< Domal§) = ma(DE)|ILe + co[[Poma(DZE) I -
The last inequality follows from step 1. Now it follows from step 2 that

IDoma(©)llLe < c1[[Domal€) — ma(PE)lLs + coct [Doma(DzE) [l -

Step 4. We prove the lemma.
By step 3 and Lemma 4.3 we have

[mA(DZ) | < c2llma(DZE) — Domalé)llLs + c2[[Doma(DZE) |1
< all€—=malEllope
+e3 | DZE = ma(DZ) g p,c + c2[ITA(DDZE) ||
cse [ DZEo e
+cag | DeDElg e + c2[|7a(PeDZE) 1o -
The first inequality follows from step 3. The second inequality follows from

Lemma 4.3 applied to both D, and D}. The last inequality follows from
Lemma 4.4 for the operator D} and from Lemma 4.2 for D,. By Lemma 4.2,

1DZEMope < eseDeDZEllg . + 5 lIma(DZE) Iy
< CGE”D:SHO +CGEHD€D:§HO,I),€+CGH7TA(D€D:§)HLP .
With cge < 1 this proves the required estimate. O

_|_

IN

Ds€

5. Approximation of holomorphic curves by self-dual instantons

Let p >4, H € Hi™® be a regular perturbation and fix two H-flat connections
= At +dTds e As (P, H). We shall prove that every holomorphic curve
Ho € Ao’p (a™,a*, H) can be approzimated by a family of self-dual instantons
. € AlP(a ,a+,H ). This requires a refinement of the implicit function
theorem with constants independent of &.
THEOREM 5.1.  Assume pg(a™,a™) < 4. Then for € sufficiently small
there is a smooth map T. : AyP(a™,at,H) — AM(a™,a™, H) such that
E. = 1.(5) satisfies

(5.1) dZ (Bc — Zo) =0, Ee — Zo € rangeD.(Zg)*.
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- 1,p, — —_ . .
for every =g € Ao’p(a ,at, H). Moreover, Z. satisfies an estimates

= = 2

(52) IZe = Zolly e < e

Here the 1,p,e-norm is the one determined by =g and the constant ¢ > 0 can
be chosen independent of 2y and €.

THEOREM 5.2.  Assume pp(a”,a) < 4 and let 29 € AyP(a™,a*, H).
Then there exist constants 6 > 0 and g9 > 0 such that if = € ALP(a™,a™, H)
satisfies (5.1) and

(5.3) IZ — Sollg e + 27 |12 — Eoll oo o < 0¥/PFL/2

0,p,e
with 0 < e < g then 2 = T(E)).

Remark 5.3. Here d= denotes the formal adjoint operator of dz with
respect to the € inner product. The operator d= represents the infinitesimal
action of G*P on AMP(a~,a™) and is given by

d=n = dan + Vinds + Vindt
for n e VVJ%’p(R2 X gp). Its formal adjoint is
d*EES:—*SdA*Sa—€2>kSVS*S¢—52Vtz/J

for £ = (o, 9,0) € W}’p . This operator agrees with the third component of
D, up to a scalar factor.

Remark 5.4. The estimate (5.2) shows that A, 0A./0s, 0A./0t, P,
and W, converge in the LP-norm as ¢ tends to zero while 0®./ds, 0. /0t,
0V, /ds, and 0¥./0t remain bounded, uniformly in e. In particular, the
curvature F4_ converges to zero in the LP-norm like &2.

Remark 5.5. The map 7 is equivariant under the action of G*P
7:(9"Z0) = 9" 1= (Eo).
The induced map of the moduli spaces will also be denoted by 7.

Remark 5.6. In the case pg(a™,a™) > 4 the proof shows that for
sufficiently small ¢ the map 7; can be defined on any compact subset of
Mo(a,a™,H). Tt does not show whether there is a uniform € > 0 which
works simultaneously for all =.
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Proof of Theorem 5.1. We prove that with a suitable constant ¢ and
e > 0 sufficiently small there exists a unique solution Z. € AP(a™,a*, H)
of (5.1) and (5.2) for every Zg € Ay*(a™,a™, H).

Throughout let cg, ¢y, co,... denote constants which are independent of
Eo and e. Since H € H™® the operator Dy = Dy(Zp) is onto for every
20 € AyP(a”,a", H). Since pg(a~,a™) < 4 there is no bubbling and it
follows from Floer’s glueing construction [12] that the operators Dy satisfy
the estimate of Lemma 4.5 with a constant which is independent of Z¢. This is
obvious in the case p = 1 since there are only finitely many connecting orbits
and the estimate is invariant under gauge transformations. In the case u =2
Floer’s glueing construction shows that the estimate holds with a uniform
constant for all orbits near a catenation of two connecting orbits with index
difference 1. This takes care of the ends of the moduli space M(a~,a™) and
the complement of the ends is compact. A similar argument works for u = 3.
But for y > 4 bubbling may occur.

Now it follows from Lemma 4.5 that there exist constants ¢; > 0 and
€1 > 0 such that for every Z¢ € A(l)’p(a_, a™) and for 0 < € < &1 the operator
D, = D.(Zy) satisfies

(54)  [D2lly e + ¥ D2 < 1 (2IDDnlg . + [7a(DDEN) 1) -

Here the L*° estimate follows from Lemma 4.1. The above argument shows
that ¢; can be chosen independent of Z.

The left hand side of (3.5) defines a smooth map F. : AP — L‘? given
by

A NA — dg¥ + %4(0s A — X (A) — da®)
d | 0P — O — [®, U] + 72 %, Fy
v 0

Now Zj is an approximate zero of F. in the sense that

(55) er(EO) < cpe

HO,p,E -

We shall construct the solution =, of F.(Z;) = 0 by Newton’s iteration. The
first step is to define

(5.6) E1 = Zo + &, & = Dino, D.Dlng = —F:(Zo).

In particular, this means that the third component of D.&y vanishes. The last
equation in (5.6) has a unique solution 7y € W]?’p (R? x gp). Since the first
component of F.(Z¢) vanishes it follows from (5.4) that

(5.7) €011 p.c + 7P l1€0lloo.c < 16 1 F=(Z0)llg e < cociE?
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Since the first two components of the operator D, are the linearization of F.
the last equation in (5.6) can be written as dF.(Zg)§o = —F:(Zy). Hence

Fe(B1) = Fe(E0+&) — Fo(Eo) — dF(Z0)é0

—[eo A tbo] = *slag A o] — *s6io
= —[po A o] + 27172 x [ A ]
0

where £y = (o, ¢o, o) and ag = X(Ag + ) — Xs(Ag) — dX(Ap)ag. Hence

HfE(El)HO,p,E < 026_1 |’§0”0,p,€ ”&)”oo,s < 00010251_2/10 ”§0H0,p,€ :

The last inequality follows from (5.7).
Now assume =, € AP has been constructed for » > 1 and define 21
by
Eu—i—l ==,+¢&, 51/ = D:nllv DED:UV = _fe(Eu)-

We shall prove by induction that

“gV“l,p,s + E2/p |’§V|’oo,5 S 201 Hfa(EV)”O,p,s
(5.8) Il e + P N0l < 27 c0cr6%,
||"T€(EV+1)||O,p,5 S 6361_2/p ||£V||O,p,5

for 0 < € < g9 provided that €9 > 0 is sufficiently small. The first inequality
in (5.8) follows from (5.4). (The first component of F.(Z,) no longer van-
ishes.) The second inequality in (5.8) follows from the first and from the
previous induction steps:

Hé.VHLp,e + E2/p Hfl/Hoo@ S 201 ”fE(EV)HQp,e

< 201C361_2/pH§u—1”0,p,e
< 27! Hfu—l”o,p,e

< 27 Hfo”o,p,e

< 27V¢ocE?.

Here we have used (5.7) and chosen gy such that 201035(1]_2/ P <'1/2. This
implies

v—1

(5.9) 20 = Zoll e < 3 Wil e < 200028
§=0

A similar argument shows that

2-2/p
00,€ < 260616 .

(5.10) 120 = Zoll
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To prove the third inequality in (5.8) note that

fe(EV—H) = fE(EV + 51/) - fs(Ey) - d]:g(E(])&,
= f&(EI/ + fu) - fa(Eu) - dj:a(Eu)gu

and hence
IBCElope € IFE+8) - F(E) - dRE)E Ny,
+ H(d}-a(Eu) —d E(EO))EV”O,p,E
< ™ (1l + 180 = Zollooe) Inlo e

< 3coerese’ P 1€ o p.e

The last inequality follows from (5.10) and finishes the induction.
By (5.8) the sequence =, converges in A'P(a~,a™t) and by (5.9) the limit
Ee = lim, o E, satisfies |=; — Eo”l,p,e < 2cgcie?. The second inequality

in (5.8) shows that F.(Z.) = 0 and this proves the theorem. O

Proof of Theorem 5.2. Assume Z € ALP(a™,a™, H) satisfies (5.1) and
(5.3). We shall first prove that if § and e are sufficiently small then

(5.11) 12— Zolly . < 2.

for some constant ¢ > 0 which is independent of = and . To see this note
that, by (5.1), the last component of D.(Z2 — Ey) = (a, ¢,0) vanishes. The
first two are given by

a = [A—AQ/\\II—\IJQ]+*8[A—A0/\(I)—(I)Q]
+ x5 (X5(A) = X5(Ao) — dXs(Ao)(A — Ao))
¢ = [®@— DoAY — Ty — e 25, [A— AgAA— Ag] — C

where Cy = 0,9 — 9% — [Pg, Py]. Moreover, again by (5.1), = — Ey €
rangeD?. Hence, by Lemma 4.5,

[ — @ollpr + ¥ — ¥olL» c1 [|Pe(E — Zo0)llgpe

2 ([lallpe +ellolle)
c3 [|E = Zollooe (12 = Pollps + 1% — ¥olp»)
tez (47| A = Aplly 14— Aol )
c30"? (| ® — ollp + || — Tol|1,»)
+es(e + 6%e2/P).

(VAR VARVAN

IN

The last inequality follows from (5.3). With c3e/? < 1/2 we obtain
1© = ol + [|¥ — Wollp, < 23 + 5%%/7).
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Since ||A — Ag||;, < 6e%/PF1/2 it follows that
- = 2
IZ = Zoll» < 67

provided that ¢ and ¢ are sufficiently small. Now use Lemma 4.5 again to
obtain

12— Zolpe < s (£ID(E ~ E)llgpe + ITao(De(E — Z))lI 0 )
< s (llally +2* 16l
< o (I2 - Zolls |12~ Zollog,. +<7)
< co0e*P |2~ Bollg,e + coc?
< b2~ EOHl,p,s + coe”.

With ¢70 < 1 we obtain (5.11).

Now denote Z. = 7-(Z(). Then both E and =, satisfy the estimate (5.11)
and (5.1). By (5.1) the third component of D.(E — =Z.) = («, ¢,0) vanishes.
The first two are given by

o = [A—Ag/\\l’—\l’o]—{—[Ae—Ao/\\I’—\Ife]
+ x5 [A— A NP — Pg] + #5[A. — Ag AN D — D]
+ x5 (Xs(A4) — X(Ae) — dX(Ao)(A — A2))

¢ = [q)_q)eA\I’_\IJO]_‘_[q)s_q)O/\\I’_\I’E]
—e 2 x [L(A+A) —AgNA— Al

Moreover, again by (5.1), & — E. € rangeD}. Hence, by Lemma 4.5,

12~ Eellope < s (SID=E ~ Ee)llgpe + lImao (De(E — E2)lI )

< oy (llell e +e2l6lr)
< 0™ (I2 = ollug e + 12 = Zolle.e) 12 = el
< enePYE - By,

The third inequality follows by examining o and ¢ term by term. With
c116172/P < 1 this implies = = =.. O

PROPOSITION 5.7.  If pup(a™,a™) =1 then the map Tz : My(a™,a™, H) —
Mc(a=,a™, H) of Theorem 5.1 is injective for € > 0 sufficiently small.

Proof. Suppose not. Then, since Mg(a™,a™, H)/R is a finite set, there
exist connections =g, = € A(l)’p (a=,a™, H) which are not gauge equivalent
and a sequence ¢, — 0 such that =, = 7. () and =], = T, (E() are gauge

equivalent: =/, = ¢*Z,. The usual compactness argument as in [7, pp.64,65]
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shows that the sequence g, has a weakly converging subsequence and hence
= and Z{, must be gauge equivalent. O

The statement of the previous proposition should remain valid without
the assumption of index difference 1 but this is not needed for the proof of
our main theorem. It remains to show that 7; is onto for small ¢ when the
index difference is 1. The proof will occupy the next four sections.

6. Relative Coulomb gauge

The uniqueness theorem 5.2 requires that = — Zy be in the kernel of
the operator d*ES0 and in the range of the operator D = D.(Z¢)*. The first
condition can be achieved by a suitable gauge transformation and the second
by a suitable time shift provided that the relative Morse index is 1. Given
T € R denote

Eoor(s,t)=E(s,t + 7).
We shall prove the following
THEOREM 6.1.  Let B9 € AyP(a~,at, H) with p(a™,a™) = 1. Then

there exist constants €9 > 0 and § > 0 such that the following holds. If
0<e<egand E € AP(a™,a", H) such that

IZ = Eolly . < 02/PF12

then there exist T € R and g € G*P such that g*(Z o 0,) = T:(Zo).

This result is an immediate consequence of Theorem 5.2 and the next
two propositions.

PROPOSITION 6.2.  Assume ¢ > p > 2, ¢ > 4, and qp/(q — p) > 4.
Let Zg € AYP(a™,a™) such that Fa(sy) = 0 for all s and t. Then for every
constant cy > 0 there exist constants § > 0 and ¢ > 0 such that the following
holds for 0 < e < 1. If= € A"P(a~,a") satisfies

then there exists a gauge transformation g € G*P such that d*ES0 (g*E—Ep) =0
and

Az (5 - o), S, |12 —Zollg. < 5%,

=0

lg"E = Ellype < ¢ (147272 = S0l ) |

dz, (E - )|
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PROPOSITION 6.3.  Let 29 € AyP(a™,a™, H) with p(a~,a™) = 1. Then
there exist constants €9 > 0, 6 > 0, and ¢ > 0 such that the following holds.
If0<e<egp and = € AYP(a™,a™) such that

(61) HE - EOHl,p,s < 581/1)4_1/2

then there exist T € R and g € G>P such that Z. = g*(Z o 0,) satisfies (5.1)
and ||E. — EOHl,p,a <c|E- EO||17p75'

Note that the assumptions of Proposition 6.2 are satisfied whenever
12 = Zolly,. < 6e%/? with § > 0 sufficiently small. The proof of both propo-
sitions relies on the following three lemmata.

LEMMA 6.4. Let € € lec’p and 0 < € < 1. Then there exists a unique
ne Wf{p(RZ X gp) such that
dZ dg,n = d= €.
This solution satisfies estimates

Hn||27p75 é c ‘\dgog}’Lp ’ ||77||17q75 é ¢ ||€||O,q,£
for 0 < e <1 where the constant ¢ = c(p) > 0 is independent of €.
. 2
Proof. For p = 2 the second estimate follows from |dz,7||g 5. = (d=yn; )
For general p both estimates follow by rescaling as in Lemma 4.1. The first es-
timate shows that the operator d= dg, : er’p (R?xgp) — L‘?(R2 X gp) is injec-
tive and has a closed range. Its cokernel is the kernel of dz; : VVJIC’T(R2 Xgp) —

 with 1/p+1/r = 0.3 Hence the aforementioned operator dZ dz, is bijective
and this proves the existence statement. O

Given 1 € lec’q(RZ X gp) and & € lec’p denote ad(n)é = [n A &].

LEMMA 6.5. Assume g >p > 2, ¢ >4, and qp/(q —p) > 4. Then there
exists a constant ¢ > 0 such that

k k_— k—1
Jadmte] < e lmlE=t (1€l ge Mlape + 1E0 e

g )

*e k k_—2 k—1
|z aate] < e < (Il e 0l + [z ] Wl

fOT’gGW}’p,T]EW?p(Rngp), 0<e<l,and k=1,2,3,....

dz,¢

Proof. To prove the first estimate for £ = 1 note that

107 Al pe < 1 (I€llg g Il e+ €N e Il )

3Since the kernel consists of smooth sections the choice of the Sobolev norm is not important.
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where 1/¢ 4+ 1/r = 1/p. Since ¢ > 4 we have r = gp/(q — p) < 4p/(4 — p).
Hence there are inclusions W14 < L> and W?P < WU and the estimate
follows from Lemma 4.1. To prove the second estimate for £ = 1 note that

dZ [ A €] = [, dZ €] — #s[dagn A xsal — €2 [Nen, 6] — [V, ¢
for £ = a + ¢ ds + 1 dt. Hence
lazmaal,, < e (I€loge lnlh,. + [aze],, Inll) -

Now for general k& both estimates follow by induction. O

LEMMA 6.6. Assumeq >p>2,q>4, andpq/(q—p) > 4. Givency >0
there exists a constant ¢ > 0 a such that, if |||« < co and g = exp(n), then

1 LS

A% (9'E — = — d=n)|

1 12 = Zollg g ) lIm

* = _ =
dz (2 uo)‘

2,p,e

+ee7a ‘

g
and if [|nlly , . + 12— Zollgge < coe?/?, then
19°E = Ellg,g,e < clinllygpe

192 =l e < € (Illgpe + 7T NE = Zolly e Il ) -

Proof. Use Lemma 6.5 and the identity

* - .- (_1)k
_“‘Z(/Hl)!

k=0
for g = exp(n). O

[1]

ad(n)"dzn

9

Proof of Proposition 6.2. The proof is based on a Newton type iteration.
Denote =1 = = and for v > 2 define =, inductively by

Sl = g;Em 9v = eXp(W): dgso (dEOTIV + =2, - EO) =0.

By Lemma 6.4 7, € ch’p (R? x gp) satisfies estimates

az, (B, — Zo)|

C1 ”E,, — EO”O,q,s .

Cl’ ’

LP

(6.2) ‘|77u\|2,p,a +e?/p2la Hn’/Hl,q,E <
<

Hnl/Hl,q,s

We shall prove by induction that there exist constants cs, c3, and ¢4 such that

(63) HEV - EOHO,q,e < HE - EO”O,q,e ’

(6.4) |

Az (2, - Zo)|| | < ese™ |2y -

dz (Ev-1 — E0)‘

‘L Eo”qu)s

(6.5) \

_ —_ 1—
dz (E, — :O)HLP <27

* = _ =
d= (E ~0)‘
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(6.6) 701196 < €a27" |12 = Zollg g,c -

For v = 1 the inequalities (6.3) and (6.5) are obvious, (6.6) follows from (6.2),
and (6.4) is empty. For v > 2 it follows from the previous induction steps with
HLq,e + 1155 - EOIIO,q,a <eiforj=1,--,v—1
Hence, by Lemma 6.6, with a suitable constant c5 > 0

d sufficiently small that ||n;

I1Zj4+1 = Ejllgge < s lImjlly ge < cacs27? |2 = Zollg g -

Here we have used ¢3d < 1. Now use this inequality for j = 1,...,v — 1 to
obtain (6.3) with ca = 1+ ¢4c5. To prove the estimate (6.4) note that, by the
previous induction step, [[7,—1[/{~ < 1 provided that § is sufficiently small.
Moreover,

d*Eso (EI/+1 - EO) = dEEO (g;iEl/ - Eu - dEunu) + dEEO [EI/ - E0 A "71/]

and hence (6.4) follows from the Lemmata 6.5 and 6.6. Now (6.5) follows
immediately from (6.4) and (6.3) with cac3d < 1/2. Finally, we prove (6.6).
For v = 2 it follows from (6.2) and (6.4) that

HTIQHl,q,s < coC1C3 ”E - EOHO,q,e :
Hence in this case (6.6) holds with ¢4 = 4cgcies. For v > 3 we can use (6.4)
twice and one checks easily that

701114, < 8coc163¢36277 |2 = Zollg 4. -

So in this case (6.6) holds with ¢4 = 1 provided that ¢ is sufficiently small.
This completes the induction. Note that the conditions ¢4 > 4cpcicg and
co = 1 + c4c5 are compatible.

Now it follows from Lemma 6.6 that

1241 = Bl e < 6 (14727110 = Boly ) [dE (B0 — o)

Lp

and, by induction,

120 = Eollype < 7P +2[12 = Zoll, .

provided that ¢ is sufficiently small. Hence, by (6.5) the sequence E, converges
in AY(a~,a") and the limit connection =, = lim,,_,, satisfies d*EEO(Ea—EO) =
0 and the required estimate. Moreover =, = h;= where h, = g192---g»
converges in G2P. This proves the proposition. O

Proof of Proposition 6.3. Let = € AYP(a™,a™) satisfy (6.1) with ¢ and
0 sufficiently small. For every T we have

—_
—

HE o UT - ‘_’0H17p75 ”E - EOH17P7€ + HEO © UT - 50”171775

<
< == Zollpe T 17190l -
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Hence it follows from Proposition 6.2 that for |7| < §2/? there exists a gauge
transformation g, € G>P such that =, = ¢*(Z o 0,) satisfies

ds (2 — Z) = 0.

Moreover, we have

(6.7) 12+ = Zolly e < 1 (7] + 12 = ol )
with a suitable constant ¢; > 0. Assume without loss of generality that
go =1

We shall prove that there exists a number 7 such that
(6.8) 97(Eo0r) — Ep € rangeDy, 7] < e2 [|[Z = Zolly e -

To see this note that the operator Dy = Dy(=Zg) is onto and of index 1. Hence
its kernel is spanned by
- 1
fo = 0;Zp € Wf’p.

By Theorem 3.2 the operator D, has also index 1 and by Lemma 4.5 it is
onto. Its kernel is spanned by the vector

§e =8 — D:(DaD:)_IDafo'
The harmonic part of D&y vanishes and hence, by Lemma 4.5,

‘|£€_50H17p75 < ClgHDegOHO,p,g

1/p
= o (uwo —Vtoll? + [Vt + 5V %, <z>oH€p)

c2e? | ma(&o)ll o

IN

The last inequality follows from the basic regularity estimate for Dy.
Now consider the function

9(7_) = 95,5(7—) = <£€7 Er— EO>€

where the expression (, ). abbreviates the e-pairing between L‘} and Lfc with
1/p+1/q = 1. Then equation (6.8) can be written as 6(7) = 0. We shall
prove that there exist constants dg > 0, €9 > 0, and pg > 0 such that

(6.9) |7|+ 1= — Zolly e < 0?2 0<e<eg — 0'(t) > po.
Then the existence of a zero follows from the fact that
10(0)] = [{6, E — Eo)e| < [[&clloge

In fact, if c36 < 1dppo and § < 16y then ||E—Eo||17p75 < %5051/”“/2 and,
by (6.9), there exists a number 7 € R with |7| < [6(0)|/po < 180/PT1/2 such
that 6(7) = 0. This number 7 satisfies (6.8) as required.

< 63561/1)—1-1/2‘

|

== EOHOJLE
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To prove (6.9) define

Nr = gr_l (87'97 - 8tg7')

and observe that
9/(7—) = <§€7 8tE7' + dET7]7->E.

Now differentiate the identity d= (£; — Zo) = 0 with respect to T to obtain
dz, dzon- + d= [Er — Zo A + d= 0,5 = 0.

By Lemma 6.4 this equation has a unique solution 7, € Wi’p (R? x gp) when-

ever e /P |2, — Eolly,p . is sufficiently small. Moreover, 7, satisfies

11511 < €4 10Erllg e < 5 (1471125 = Zoly e ) -

Since dz & = 0 we obtain

(Eerdz,mrdel = (€, [Er — S0 Al
< e l1Zr — Zolloo.e el pe
< e P2, — Zoll el e
< esere P |2, — Sl (147 1B — ol )
< cgdp.

In the last inequality we have used the fact that ¢ > 0 is sufficiently small and,
by (6.7), 127 — Zolly e < ex(l7] + 15~ Zoll.) < e1doe/7+1/2. Moreover,

(€es O1Zr)e = (0k&e, B0 — Er)e + (§e, 01Z0)e
Since 9y Ag # 0 we have
19:Zollg.c > 300 > 0
for some constant pg > 0 and hence
(€, 0Z0)e > 2p0
for £ > 0 sufficiently small. This implies
(&=, O Er +dz,mr)e > po

for [7] + (|2 — Zoll; . < S0e/PT1/2 provided g and e are sufficiently small.
Thus we have proved (6.9) and this finishes the proof of the proposition. O
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7. Estimates on the curvature

This section is of a preparatory nature. We prove estimates on the derivatives
of the curvature for e-self-dual connections with bounded curvature. We also
establish uniform exponential decay of the curvature as ¢ tends to £o00. These
results are used in the next section to prove a compactness theorem for e-
self-dual connections with € converging to zero.

The curvature of the connection = = A + ® ds + ¥ dt is given by

Fz=F4—Bsds— Bydt —Cds Ndt
where
(7.1) Bs=0sA—ds9®, By = 0;A—daV, C =09 — 0¥ — [P, V]
The Bianchi identity takes the form
(7.2) VsFa = daB;, ViFa = daB;, VsBi — Vi By = daC

where V; = 05 + ® and V, = 0; + V. The curvature terms B, By, and C also
appear as commutators

Vida —daVs = By, Vida —daV; = By, ViVs =V, = C.
The perturbed self-duality equation (3.5) can be written in the form
(7.3) B 4 #4(Bs — X,(A)) =0, C+e2%,Fy=0.

If = satisfies these equations with X; = 0 then Fz is harmonic with respect
to the e-dependent Laplacian. This implies the following estimate for con-
nections with L® bounds on the curvature.

THEOREM 7.1. Let Q C C be an open set, Q C € be a compact subset,
and cg > 0. Then there exist constants ¢ > 0 and €y > 0 such that the
following holds. If 2 = A+ ®ds + Vdt satisfies (7.3) for s + it € Q with
0<e<ey and

[ Btllpoe (oxsy + € [[CllLe(axs) < €0
then for 2 < p < oo
| Belliaoxsy + 1daBellaoxsy + 1da s Billioigxs)
+e [VeBtllLr(gxxy + € IViBillLr gux)
(7.4) +e [[daCllr(gxs) + &? [VsCllexsy + &? IVCllLroxx)

< C€2/p (”Bt”m(gxg) +e€ HCHL2(Q><E)> :
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Remark 7.2.  The estimate (7.4) is standard for e = 1 (or if the constant
is allowed to depend on &): the W2P-norm of a harmonic function on a
compact set can be estimated above by the LP-norm on a neighbourhood
of this set. For the standard Laplacian this follows from the mean value

property.

Proof of Theorem 7.1. Consider the nonnegative function ug : & — R
defined by

uo(s,t) = & (| Bi(s, Dllfa(ss,ey + 22 1C(, D255y -

The Laplacian of ug is given by

Aug = VB’ + |VsBi|* + 2 |VC|* + | VC|)?
+HViViB: + ViV By, By) + e2(ViViC + %V Vi %5 C, O)
—2(V, By, %% By) — L(By, %55, By) — 1e%(C, x4%,C).

Here all norms and inner products are L?-norms and L2-inner products on ¥
induced by the xz;-metric. Now we have

2V, % C = —dy *s By,
e2VC = —x,duB,
VtBt + *sVth = *stS(A)Bt + *SdAC,

and

e (ViViC + % VsV %, C) = —#ydax, daC
—2 %4 [By A\ By] + *5[xs Xs(A) A By]
— kg dg xg dXs(A)By — #sd g% By,

ViViB, + V,V,B;, = —c 2s,da*sdaB; — e 2dy %, da %5 By

+3 %5 [B: AN C| + [X5(A) A C]
+dX,(A)V,B; + *,dX,(A)V, By
+dX(A)B; + %V, By — d g x4 #,C
+d* X, (A) (x5 By + Xs(A), By)
+ %5 A2 X (A)(By, By).

Hence Aug = 2vg + fo where
v = 3 (e [daB]® +&72 |lda % Bill”

+ VB + VB + [ldaC”
+2 [VC|* + e [%Cl?)
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and
fo = 5(Bi,#s[Bt AN CI) + 2(By, [Xs(A) A C))
+{daC,dXs(A)B;) — (daC, *s%sBy) + (da x5 By, %sC)
—2(V By, %% Bt) — L(By, x5¥5By) — 1e%(C, x5%5C)
+(By,dX(A)Vs By + #5d X5 (A)V, By) + (By, dX(A) By + %5V, By)
+(By, > X (A) (s By + Xo(A), By) + %.d* X (A)(By, By)).
It follows from the L estimate on the curvature that |fo| < vg 4 ciug with a
suitable constant ¢; > 0. In particular, |[Fallpe sy < €co and Xs(A), dX(A)
and d?X,(A) are uniformly bounded in this domain. Hence
(7.5) Aug > vg — c1up

and, by Lemma 7.3 below,

supuo+/1)0§62/U0
Q Q Q

with a suitable constant ¢, > 0. This proves the proposition for p = 2. We
shall now prove the estimate for p = oo and then the general case will follow
by interpolation.

Consider the functions u1,v1 : {2 — R defined by

w =3 (I%B* + VB + 2 %O + & %))
and
o = 4 (e daViB + &7 da s VB

+e 2 AV Byl + €7 [|da s Vi By

+ 1daVCl* + [[da% O

+ VeV B * + VB + [VaVeBl | + VeV By |*

T IO + & [MNCIP + 25 [V WiC)
Here all norms are L?-norms on ¥ with respect to the s-metric. To simplify
the formulae we shall now restrict ourselves to the case where the Hodge-x*-
operator x5 = % is independent of ¢t and the perturbation Xy = 0. Then we

have
Auy = 2v1 + f1

where
fi = e 2(da*daC,[B; A By]) — 43(C, [V, C, V;C))
—3(C,*[daC A daC)) + 10(C, [V, By A 5V By])
—10(V:;C, *[Vs By A By]) — 10(V,C, %[V, By A\ By))
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Now it follows from the the L*° estimates on the curvature that
‘flf <vi+ec3 (8_1’00 + €_2u0)

In particular, the term e 72||da * dAC||?> = e 2||daV; By + d4 * V,B¢||? can be
estimated by v1. Hence

Auy > vy — e tegug — e 2e3up.
If ecs < 1/2 then, by (7.5),

vo + &?21)1 — CoUQ — EC3Vy — C3UQ

A(ug +e?uy) >
> (v + e2v1) — cqug

where ¢4 = cg+c3. This inequality remains valid in the general case (arbitrary
metric and perturbation) and it follows again from Lemma 7.3 below that

sup(ug + €%uy) < 05/ Q.
Q Q
Similar arguments show that
2 4 6
sup(ug + e“uy + e ug + e uz) < CG/ Uug.
Q Q

where u; is defined as above with derivatives of order j. This implies the
assertion of the theorem for p = co. To see this note that (pointwise for every
s and t)

e? HVtBtHioo(z) < e (HVtBtHiZ(z) + [lda dAVtBtHi%z)
+ HdA *s dA *s VtBtHiQ(E))
< cg (uo + €2u1 + €4U2 + E6U3) .
The first inequality follows from arguments similar to Lemma 7.6 below. The
second inequality follows from identities of the form
ViViViB: + Vi Vs Vs By

:vtdAVsC‘i'vt*sdAVtO"i'agvt *g [Bt/\C] + -

= daViVsC + %sdaViViC + - -

= —e 2da ke da s ViBy — e 2w daxg daViBy + -

Thus we have proved the proposition for p = 2 and p = oo. For general p the
statement follows from the interpolation inequality ||lull;, < ||u||i/2p Hu||11;o2/ P

for 2 < p < . O
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LEMMA 7.3. Let B = {s +it: s>+ 1> < R?}, u: Bpyr — R be a
C?-function, and v : Bry, — R be continuous such that

Au > v — cu, u > 0, v>0

for some constant ¢ > 0. Then

v c+ — u —supu c+ — u.
- r2 ’ 2 BIE) - r2

R BRr4r Brir
Proof. 1t suffices to prove the lemma for » = 1. To prove the first
estimate note that
ou _ d
v—c u < — < — U
/ / - v ~ ds /
Br Bgri1 OBR+s OBR+s

for 1/2 < s < 1. (The last inequality holds since v > 0.) Integrate this
inequality from 1/2 to t to obtain

[o-e [usz [

Br Bri1 OBRyt

for 1/2 <t < 1. Integrate this inequality again from 1/2 to 1 to obtain the
first estimate for r = 1.
To prove the second estimate for » = 1 consider the function

f(p) = (1= p)?supu.

»
Choose p* < 1 to be any number at which f attains its maximum value
and define ¢* = supp , () u = u(w*) and § = (1 — p*)/2. Then u(w) < 4c*
for w € B,+45(0) and hence Au > —4ec* in Bs(w*). This implies that the
function @(w) = u(w) + cc*|w — w*|? is subharmonic in Bs(w*) and hence

* 2 1
c*:u(w*)§ CC2p +7T—,02 / u, 0<p§(5
Bp(w*)

If ¢62 > 1 choose p2 = ¢~ 1 < 62 to obtain

T
Bp(w*)

2
u(0)§0*<—c / u.
If ¢6? < 1 choose p = § to obtain

2
o< = / U
T

Bs(w*)
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and use the inequality u(0) = £(0) < f(p*) = (1—p*)%c* = 46%c*. This proves
the second estimate for » = 1. The general case can be reduced to the case
r = 1 by rescaling. O

We shall now prove an exponential estimate on the curvature of a connec-
tion = € ALP(a”,a™, H) for t — co. For a fixed number £ > 0 such estimates
are well known. Our result is quantitative and shows how the constants vary
as € tends to 0.

THEOREM 7.4.  Assume all H-flat connections a € Agu(Py, H) are
nondegenerate. Then for every co > 0 there exists a constants 6 > 0, g > 0,
c >0, and p > 0 such that the following holds. If = € AP(a=,a™, H) with
0 < e < ¢q satisfies

(7.6) e 1P Al s xm) + 10:A = da¥ oo (53, ) < 0
and
Vo) (E) = € 2 I Fallta (s, xj0,00)) + 1004 = da¥ 1 f2 (5, x[0.00)) < 6
then
Viroy(E) <ce?, T >0.

LEMMA 7.5.  Assume all H-flat connections a € Agat(Py, H) are non-
degenerate. Then there exist a constants 6 > 0, eg > 0, and ¢ > 0 such that
for every connection A+ ®ds € A(Py) with

[EallLoe s,y + 11054 = Xs(A) = da®|| o (s,) <6
and for 0 < € < gq there is an estimate
ol + € (1)1 + &2 11
(7.7) <c (H*sVsa — s d X (A)a — #gd g — d g1

+&? ’ V) — 5_2dAozH2 +&2 ‘

_9 2
Vs x5 @+ € dA*saH
for a € lec’z(R X T*E ®gp) and ¢, € W}’2(R x gp). Here all norms are
L2-norms on Xy,

Proof. Suppose not. Then there exists a sequence ¢, — 0 and a sequence
of connections A, + ®, ds € A(Py) such that

Tim ([Fa, s,y + 10540 = X(Ay) = da, @yl e, ) = 0

and the estimate (7.7) does not hold with ¢ = v and A + ® ds replaced by
A, 4+ @, ds and ¢ replaced by ¢,. By Uhlenbeck’s compactness (cf. [32]) we
may assume that A, + &, ds converges to an H-flat connection A + ®ds €
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Apgat(Pr). (If necessary, pass to a subsequence and apply a sequence of gauge
transformations. Note that the estimate (7.7) is invariant under gauge trans-
formations.) Since A 4+ ® ds is nondegenerate there exists a constant ¢ > 0
such that the estimate

laol|* < eo [[ma, (Vsao — dXs(4, ) o) ||

holds for v sufficiently large and ag(s) € HY (s,t) with ag(s + 1) = f*ao(s).
Hence it follows from Lemma 7.4 in [10] that there exist constants ¢ > 0,
vo € N, and ¢ > 0 such that the estimate (7.7) holds with 0 < ¢ < ¢ and
A+ ®ds replaced by A, + ®, ds where v > vy. With € = ¢, and v > ¢ this
contradicts our assumption. O

LEMMA 7.6. Let p > 2. Then there exist constants 6 > 0 and ¢ > 0
such that for every connection A € A(P) with

[Fallps <6
there are estimates

[l < clldad]is [dadllie < cllda*s dadlps
for ¢ € C>®(gp) and s € R.

Proof. Since every flat connection on P is irreducible the estimates hold
when F4 = 0. Moreover, given a flat connection Ay, there exist constants
0 > 0 and ¢ > 0 such that the estimates hold for every connection A € A(P)
with

1A = Aol + Il < 6.

Now, if the statement were false then there would exist a sequence A, € A(P)
such that ||F4, |/, — 0 and one of the estimates fails to hold with ¢ = v. By
Uhlenbeck’s compactness theorem there exist a subsequence (still denoted by
A,) and a sequence g, € G(P) such that g A, converges in the LP-norm to a
flat connection Ag. Hence the estimates hold for the connections g A, with a
uniform constant ¢. Hence they hold for A, with a uniform constant ¢. This
contradicts our assumption on A, and proves the lemma. O

Proof of Theorem 7.4. Consider the function

5O =1 [ (1Bl + < 1Csgs.) ds
where B; and C' are defined by (7.1). By (7.6) we have
ft) < Vol(2)e = 1
for t € R. By (7.2) and (7.3) we have
eV, = — %, daB;, €*VV,C = — %, da Vi By — #4[B; A By]
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and, since V; X (A) = dX,(A)B,
ViBy = — 5 (ViBy—dXs(A)B; —daC),
ViViBy = — x5 (VsViBy — dX(A)V; By — daVi0)
2%, [C A By] 4 #d> X (A)(By, By).
Now f/(t) = (V;By, B) + £2(V;C, C) and the second derivative is given by
1"t = B+ [MC|* + (MViBe, By) + €2 (%WC, C)
= [IMB* + &7 [daByf?
—(*s(Vs Vi By — dXs(A)Vi By — daViC), By) — (xsdaVi By, C)
—(2 %4 [C' A By] + #sd*X(A)(By, By), By) — (*s[Bi A By], C)
= [IMB* + &7 [daByf?
—(VBy, #5(Vs By — dX(A)By — daC)) — (VC, x5d o By)
—3(C, *s[By A By)) + (x5d>X(A)(By, By), By)
= 2||ViB; — dX,(A) By — daC|* + 2¢ 72 ||da By |
—3(C, *4[Bs A By]) + (xsd* X, (A)(By, By), By)
= |VeBi — dXs(4) By — daC|* + [V By — dX(A)Bi* + [|daC*
+2e72||daBy||* — 2(daC, Vi By — dX(A)By)
—3(C, *5[Bs A By]) + (xsd* X, (A)(By, By), By)
= |VeBi — dXs(A) By — daC|* + Ve By — dX(A)Bi* + [|[daC*
+2572 [ daBe|* + 2572 ||da %, Bil| +2(daC, dX,(A)By)
+2(#5[Xs(A) A O], Be) + 2(ksC,da s By) — 2(daC, x5%sBy)
—5(C,*s[By A By]) + (xsd*X(A)(By, By), By).
Here all norms and inner products are L2-norms and L%-inner products on
3n. The third equality follows from the fact that the operators a — sV«
and a — *3dXs(A)a are self-adjoint. Here the “bad” terms are the ones
which involve the product of B; and C. To control these, it is necessary to
isolate the term ||d4C||? in the above identity. For fixed ¢ it would have been
sufficient to use the fourth expression.
By Theorem 7.1, we have
et ||FAHLO<>(2th) + [0sA — Xs(A) — dA(I)HLOO(Eth) <20

for T'> 1. Choose 6 > 0 so small that Lemma 7.5 holds with § replaced by
c29. Choose g9 > 0 and ¢3 > 0 to be the constants of Lemma, 7.5 so that the
estimate (7.7) holds with ¢ = ¢z, A(s) = A(s,t), and ®(s) = D(s,t) provided
that ¢ < eg and t > 1. Apply this estimate to a = B, ¢ = C, ¥ = 0, and use
the identity V; xs C + e~ 2d 4 *, By = 0, to obtain

1Bel + 2 [C1 < e (I¥:By — dXu(A) By — daC|> + 72 |[daBi]?)
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Moreover, by Lemma 7.6, there is a constant ¢4 > 0 such that
ICI* < ea [|daC|®

for t > 0 provided that ¢¢ is sufficiently small. Hence the above formula for
f"(t) shows that there exists a constant p > 0 such that

)= pPft),  t>1
This implies
f) <e Pt Vra)y<e Ve,  t>1.

(To see this note that the function g(t) = e P'(f'(t) + pf(t)) is strictly in-
creasing. Since f(t) does not converge to infinity it follows that ¢g(t) < 0 and
hence e’ f(t) is decreasing.) Hence

Vir o) (E) = /T £ dE < pleyeT=D = g o=rT

for T'> 1. With ¢5 > de” the theorem follows. O

8. Compactness with bounded curvature

In this section we shall prove that every sequence of ¢,-self-dual instantons =,
connecting a~ to a™ with €, — 0 has a subsequence which converges, modulo
gauge transformation and time shift, to a holomorphic curve Zg. We shall also
prove that the convergence is sufficiently fast (with the rate Ei+2/ P so that,
by Theorem 6.1, =, is in the range of the operator 7, : Aé’p(a_, at,H) —
AlP(a~,a™, H) of Theorem 5.1 for v sufficiently large.

reg

THEOREM 8.1.  Assume H € Hy°. Then for every constant co > 0 there
exists a constant g9 > 0 such that the following holds. If a* € Agat(Py, H)
with p(a=,a") =1 and = € ALP(a",a™, H) with 0 < e < gy and

(8.1) e 2| Fallpoe + 1004 — da¥|; o < co
then there exists a connection Eg € Aé’p(a_,cﬁ, H) such that

= T.(Zo).

(1]

LEMMA 8.2. Let p > 2. Then there exist constants 6 > 0 and ¢ > 0
such that the following holds. For every connection A € A(P) with

[Fall, <0
there exists a unique section n € C*(gp) such that

Faysdun =0, [danllpe < cl|Fallps -
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Proof. The condition F'g44q,, = 0 is equivalent to
Fp+dgy* dA77 + %[dAn A dAn] = 0.

Hence the result follows from Lemma 7.6 and the implicit function theorem.
More explicitly, use a Newton type iteration argument by constructing a
sequence 1M,+1 = My + ¢, where 1 = 0 and ¢, is the unique solution of the
elliptic equation

da * dACl/ + FA—{-*dAn,, =0.

This solution exists by Lemma 7.6 and the sequence 7, converges to the
required solution 7. The details of this argument are left to the reader. O

Proof of Theorem 8.1. Assume that the statement were false. Then there
exist H-flat connections a* € Agyy (Pf, H), asequence €, — 0, and a sequence
E, € ALP(a,a™, H) such that (8.1) holds with £ = E, and ¢ = ¢, but Z,, is
not in the range of 7;,. Hence ¢g*(Z, o 0;) is not in the range of 7, for every
g € G>P and every 7 € R. Applying a suitable time shift we may assume
without loss of generality that

CS1(Ay(5,0) + B, (s,0) ds) = 1(CSp(a™) +CSu(at))

Applying a suitable gauge transformation we may also assume that ¥, (s,t) =
0 for |t| > Ty. We shall prove in seven steps that =, is in the range of 7. for
some v in contradiction to our assumption.

Step 1: There exist constants ¢ > 0 and p > 0 such that
Vit oo (Ev) < ce™"
for T > 0 and similarly for T < 0.
In view of Theorem 7.4 it suffices to prove that
Th_r)rgo if}f y[EijT} (2,) =CSu(a™) —CSy(a™).

We prove this by contradiction. If this equation would not hold then there
would exist a number 6 > 0, a subsequence (still denoted by =Z,), and a
sequence 1,, — oo such that

Ye'r, m,(Ev) < CSula™) = CSu(a™) - 0.

Now the curvature of =, satisfies a uniform L estimate. Hence, by Uh-
lenbeck’s weak compactness theorem (cf. [32]), we may choose a further
subsequence and a sequence g, € G*P such that g*Z, converges to Zg =
Ag+ P ds+ U dt, uniformly on compact sets and weakly in WP on compact
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sets. The limit connection =g satisfies the holomorphic curve equation (3.4)
and has finite energy

co 1
E(S) = / 10 Ao — dag Wol2as,,.) dsdt < CSp(a™) — CSu(a™) — 6.
—oco 0

Hence the limits of Zg for ¢ — +oo exist and are H-flat connections on Py.
Since p(a”,a’) = 1 the limits of Z( agree with those of =,. Otherwise it
would follow from the usual arguments in Floer homology or in finite di-
mensional Morse theory (see e.g. [26]) that there exist H-flat connections
ap,ai,...,ap € Asx(Pp, H) with ¢ > 1 such that ay = a~, ay = a™, and
Mo(aj,aji1, H) # 0 for every j. Since H € Hy™® this would imply that

pa(aj,aj41) > 1

for every j and hence

-1

pr(a™,a™) =3 pmlajaj) > 2
=0

in contradiction to the assumption pgy(a~,a™) = 1. This shows that 2y €
AyP(a~,a*, H) and hence

E(Eo) = CSH(CL_) — CSH(CL+)
This contradicts the above inequality and proves step 1.

Step 2: Let p be the constant of step 1. Let BY, BY and C" be defined
by (7.1) with E replaced by =,,. Then there exist constants ¢ > 0 and vy € N
such that

512/p HBt”HLp(th[T,OO)) + ||dAuBzIejHLp(zhx[T,oo)) + [da, *s BfHLp(zhx[T,oo))
+eu HVstHLP(Ehx[T,oo)) téey HVthHLP(th[T,oo))
+eu |da, C¥ |l (s,  [1,00))
e [IVaC¥ Loy xir00)) €0 1V lip (35, x(700))
< ce?/PerT
for2<p<oo,v >y, and T > 0. Similarly for T < 0. Moreover,
1C¥ Iy < ¢

for2 <p<oo andv > vy.

The first inequality follows from step 1 and Theorem 7.1. For p = 2 the
second inequality follows from the first and for p = oo it holds by assumption.
For general p it follows by interpolation using Holder’s inequality.
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Step 3: By Lemma 8.2 choose n,(s,t) € C™(gp) such that
Fa =0, Al = Ay, +xda,my.
Moreover, choose ®),(s,t),¥! (s,t) € C*(gp) such that
day 5 (054, — day @, — Xo(4,)) =0, day *s (BA), —day ¥,) =0.

Then Z!, € AY"P(a~,a™) and there exist constants ¢ > 0 and vy € N such that

(8.2) 12, = Eullype, =, < et/
(83) HatAL — dA/u\Il;/HLOO(Z,*S) < ce_PM’
(8.4) [00A], — day W), + x5(0s 4], — X(A}) — da, @), < ceb

forv>uvy and 2 < p < 0.

We shall suppress the subscript v and write A, A’, € for A,, A}, €, etc.
All constants are independent of v. By Lemma 8.2 we have an estimate

A"~ AHLOO(E,*S) <a HFAHLP(E,*S)
pointwise for every s and ¢. Hence, by step 2,
|47 = Al < c2¢?

for 2 < p < oo where the LP-norm is to be understood on the infinite cylinder
¥ X R. It follows also from step 2 that

HA/ _ AHLOO(E,*s) + HFA”LOO(E,*S) S C3E‘€_P|t‘
pointwise for every s and t. Now differentiate the identity
Fy+da*sdan+ §[dan Adan] =0
with respect to t to obtain

da*sdaVin = —daB;—[daVin Adan] — [[B: An] Adan)
(85) —2[Bt A\ *gdAn] - [dA *s By N 77]

This implies

”dAthHLOO(E,*S) <4 (HdABt”Lp(z,*s) + HA, - AHLP(E,*S)) )

4The subscript 2, in (8.2) indicates that the covariant derivatives in the definition of the

1, p,e,-norm are with respect to the connection Z,.
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and hence
(8.6) 1AVl ey < ese™, [daVinllp, < ese™P.

A similar estimate holds for Vin.
Now denote B, = ;A" —d4®" and B] = 9,A’ —d V. Then B} — B, =
da (¥ —U') + V(A" — A) and hence

(87) B; — Bt = dA/(\I’ — \I//) + *sdAVtTI + *s[Bt A 7]]

This implies

dg *g dA(\I’/ —U) = dyx*s By — [A/ — ANdaVin + [Be A 1]
(8.8) —[daBt An] = [Fa A Vin]
Hence
lAA(Y = W)l sy < e da(W =), < coep?
and, by (8.7),
HB;/HLOO(E,*S) < ere M, |Bi — Bil|» < cres/P

This proves (8.3).
It follows also from (8.7) and an analogous identity for B, — By that

B; + *S(B; - XS(A/)) = kgksdan — [Xs(A) An] — *s(Xs(A/) - Xs(4))
+H[A — AAVin] — xs[A" — AN Vin)
—dA/(\I// - + VST]) — *SdA/(CI)' —® — th)

In view of (8.6) it follows that the A’-harmonic part of B; + s(B. — X(A"))
can be estimated by A’ — A. This proves (8.4).
To prove the estimate (8.2) note that

da(A'—A)=—-Fa+3i[A-A'NA- 4, da*s (A" — A) = —[Fa An).

The LP-norm of both terms can be estimated by 2. The LP-norm of d (¥’ —
W) has already been estimated above by £2/? and for d 4(®' — ®) the argument
is similar. Since

VU(A' — A) = %,[Bi An] + %, da Vi

it follows from (8.6) that the LP-norm of V,(A’ — A) can be estimated by
/P, Similarly for V,(A’ — A). To estimate V;(¥' — W) differentiate the
identity (8.5) with respect to ¢ to obtain an estimate for V;Vin in terms of
£2/P=1 Then differentiate (8.8) with respect to t. The expressions V, (¥ — ),
V(@' — @), and V,(®' — @) can be estimated by similar arguments the details
of which are left to the reader. This proves (8.2).
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Step 4: Fix a constant p > 4. Then for v sufficiently large there exists a
smooth map A" : R? — Agai(P) which satisfies the Cauchy-Riemann equa-
tions (3.4), the boundary condition (3.2),

(8.9) dag *s (A — A;,) =0,

and
|47 — Al + 147 — A} [l < cel

v
10:A] — dap V), — 0L A}, + da, U ||, < cep
Here W) is chosen such that dan *, (0;A;, — dayV¥,) = 0. The constant c is

independent of v.

The assertion follows from step 3 and Theorem 2.5. Condition (8.9)
means that for every s and ¢ the connection A”(s,t) minimizes the L2-distance
of the orbit of A!(s,t) under G(P) to the connection A/ (s,t) with respect to
the s-metric.

Step 5: For v sufficiently large there exists a smooth map A% : R? — Aga; (P)
which satisfies (3.4), (3.2),

(8.10) da, *s (A, — A%) =0,

and
o

2
- < cg;,

HatAV —da U, — 9,A% + dAg\I’BHLP < ce2r.

Here W9 is chosen such that d 40 *s (0, AY — dAg\I’IO,) = 0. The constant ¢ > 0
1s independent of v.

It follows from step 3 and step 4 that

||A,, - AZIILoo + HAV - AZHLP < 01512/

and
100 Ay — da, U, — QAL + day V|, < c1%/?
with a suitable constant ¢; > 0. Moreover, with 7, as in step 3 we have
da, *s (A, — AY) = da, *s (A, — A) +da, *s (A, — A7)
= —da,da,m + [A, — A7 A xs(A], — A7)
= —[Fa, Am]+[A, — A, Axg(4;, — AD)].

and
da, (4, — AZ) =Fy, — i[A, — A'V' NA, — AL’]
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Hence there is a constant co > 0 such that for every v
Sup| Ay = Ayllwns,e) + 114v = Al < Cacy
This implies that for all s and ¢ there exists a gauge transformation g, (s,t) €
G(P) such that the map A% = g} A satisfies (8.10) and
o

v

WL (S,%s) < es |4y = AYllwins )

with a suitable constant ¢ > 0. Since A, and A/ are smooth so is g,,. Hence
AY satisfies the requirements of step 5. In particular the last estimate follows
from the identity

O AY + dao ) = g, (B A] + dag U)) g

Step 6: Choose ®% and WO such that
dAg *g (OSAB — dA’g(I)B — XS(AS)) = 0, dA?, *g (atAg — dAg\I’S) =0.

Then = € Aé’p(a_,aJr, H) and there exist constants ¢ > 0 and vy € N such
that

= =0
=

1+2/p
=T 20|l e <cgy,
WHEV =1

forv > uyg.

Again we shall suppress the subscript v and write A4, A%, ¢ for A,, AY,
g, etc. Moreover, denote V. = 9, + 00, V,0 = 9, + @9, B,? = 0, A% — d 4000,
and B? = 9;A° — d40®°. The identity

dgo(A—A%) =Fy — 1[A— AN A— A"

3
shows that
a0+ ta - 20, et

As in the proof of step 3 we have
(8.11) dao(V — 0% =4 - A% + BY - B,.
Differentiating the identity d 4o *s (A — A%) = 0 with respect to ¢ gives

dpo *s V;O(A — A%) = [A — A" A %, BY]
and hence
(8.12)  dyo#sdgo(¥—W0) = —d g, By +[A— A Ay (By+ BY —d 40 (T —T0))].

This implies
HdAo(\I' - ‘I’O)Hm < o,
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By step 5, we have
_po 2/p
| =Bl < cae

and hence it follows from (8.11)
fovta— ], <

To estimate V;°(¥ — ¥0) and V,O(¥ — ¥0) by %7~ differentiate the iden-
tity (8.12) with respect to t and s. The expressions d 40(® —®°), V,0(A - A?),
V' (® — %), and V,°(® — ®°) can be estimated by similar arguments. This
proves step 6.

Step 7: For v sufficiently large there exist g, € G*P and 7, € R such that
glt(EV o UTZ/) = 7-51/ (EB)

The real numbers act on the moduli space My(a™,a™, H) by time shift.
Since pu(a™,a’) = 1 the quotient My(a™,a’, H)/R consists only of finitely
many points. Now the constants § and ¢¢ of Theorem 6.1 are invariant under
gauge transformations and time shift. Hence step 7 follows from step 6 and
Theorem 6.1. This proves Theorem 8.1. O

9. Bubbling

In this section we prove that the assumption of bounded curvature in Theo-
rem 8.1 is necessarily satisfied when the index difference is 1 or the energy is
sufficiently small.

THEOREM 9.1.  Let a* € Ax(Py, H) and assume that either CSp(a™) —
CSp(a™) <82 or H € Hy™® and puy(a™,a™) < 3. Then there exist constants
co > 0 and g9 > 0 such that

e ? [Fallpe + [|0:A — da¥l100 < co
for every = € ALP(a=,at, H) with 0 < ¢ < &g.

Theorem 5.1 asserts that every holomorphic curve =g € Aé’p (a=,a*, H)
can be approximated by self-dual instantons =. € AP(a~,a*, H). The next
theorem asserts that when the relative Morse index is 1 then for ¢ sufficiently
small every self-dual instanton connecting a™ to a™ can be obtained this way.

THEOREM 9.2. Assume H € Hg® and a* € Agat(Pr, H) such that
pr(a=,at) = 1. Then the map T : AyP(a,a", H) — AYP(a™,a", H) of
Theorem 5.1 is onto for € > 0 sufficiently small.

Proof. Theorem 8.1 and Theorem 9.1 O
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The proof of Theorem 9.1 involves a bubbling argument. Roughly speak-
ing, a sequence of ¢,-self-dual instantons with €, — 0 may not satisfy a uni-
form L°-estimate in arbitrarily small neighborhoods of finitely many points
and in this case either instantons on S* or instantons on C x P or holomor-
phic spheres in M(P) will split off. But this cannot happen when the relative
Morse index is 1. We use the following observation due to Hofer.

LEMMA 9.3. Let M be a complete metric space and f : M — R be
continuous and nonnegative. Given x € M and r > 0 there exist £ € M and
0 < p < r such that

d(x, &) <, sup f <2f(€),  pf(&) =rf(z)/2.

Bp(§)

Proof of Theorem 9.1. Assume that the statement were false. Then there
would exist a sequence =, € A;;jp(a_, a™, H) with &, — 0 such that

(9.1) e 1Fa, s + 10:Ay = da, Wy [l — oo

We first prove that a subsequence (still denoted by Z,) satisfies the estimate
(9:2) sup (6172 1Ea, I Loe (1) + 101 A, — dAu\IjVHLOO(K)) <0

for every compact subset K C (C\ W) x X where W C C is a discrete set (to
be constructed) which intersects [0,1] 4 R in a finite set. If (9.2) does not
hold for some compact set K C C x X then there exists a bounded sequence
w, € C such that

1/2
Loe

e = o) = & || Fay || ) 0o (00) = ity W)

Lee (%)

diverges to co. (Pass to a subsequence if necessary.) Assume without loss of
generality that w, converges and denote its limit by wg = sg + itg. There are
three cases.

Instantons on S*

Assume that the sequence e,c, is unbounded. Consider the self-dual
instantons
v =A,+P,ds+ V¥, dt

[Th

given by
ﬁ,,(w) = A, (w,+e,w), EIVD,,(w) =¢e,P,(w,+e,w), @V(w) =, ¥, (w,+e,w)

for w = s + it. Passing to a subsequence we may assume that €,¢, — o0.
Hence there exists a sequence z, € ¥ such that the norm of the curvature
of E, at (0,2,) diverges to co. Assume without loss of generality that z,
converges to zg. Then it follows from the usual renormalization argument
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that an instanton on S* splits off near (0, zg) (cf. [29]). This implies that the
energy of =, in an arbitrarily small neighbourhood of w, x X is in the limit
at least 16m2. Hence an instanton on S can only split off near finitely many
points (wo, 29). Let W7 denote the discrete set of complex numbers wy € C
such that there exists a sequence w, — wy with sup,, £,¢, (w,) = oc.

Instantons on C x P

Let wg € C\ W7 and assume that there exists a sequence w, — wq such
that €,¢,(wy,) > d > 0. Since wy ¢ W7 there exist constants ¢ > 0 and p > 0
such that

sup gy (w) <c
lw—wy[<p
for every v. Let é,, = ﬁy + <T>,, ds + \T/,, dt be defined as above. Then é,, is a
sequence of self-dual connections on C x P

at;[z/ - dg {jy + *s, 4e,s (8312{1/ — dg &)I/) =0
8t&)1/ - 85@1/ — [5,/, \INII/] —+ *SV—"_EVSFZ = 0

(Here s, = Rew, and s = Rew.) The curvature of Z, is uniformly bounded
on any compact set. Hence it follows from Uhlenbeck’s compactness theorem
that there exists a subsequence (still denoted by éy) and a sequence of gauge
transformations g, : C x P — G such that gjéy converges uniformly with all
derivatives on compact sets. The limit connection

E=A+dds+ Udt = lim =,

V—00

is self-dual on C x P with respect to the metric * = *,, on ¥ where sy = Rewy.
Since €,¢, > § > 0 it follows that

(9:3) [F50) sy * 100400) = dz OO ) #0

Now introduce polar co-ordinates w = s + it = et and define & = A +
®ds + Wdt by

A0,7) = A7)
®(0,7) = € cosOU(e™) — T sinf (e
VO, 7) = e cosOB(e) + e sinf W(e™HY)
Then
04) O A —daV — % (JpA — da®) = O,

0; P — U — [®, U] —e¥" %, Fy = 0
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and the Yang-Mills action of = is finite

00 2m
y(E) = ‘/_ /0 (HaTA — dA\IIHiQ(E) + €2T HFA”%Q(E)) dfdr < oo

Similar arguments as in section 7 show that the curvature decays exponen-
tially as 7 tends to co. Moreover, we may assume without loss of generality
that = is in radial gauge, i.e. ¥ = 0 for 7 sufficiently large. This implies that
the limits

As(0) = lim A(0,71), ®(0) = lim ®(0,7)

exist and define a flat connection on P x S1. Hence

Ass(0) = g(0)* Ao, Poo(B) = g(6) ' (0)
where g(0) = g(0 + 2m) € Go(P) and Ay = Ax(0) € Agat(P). It follows that
the Yang-Mills action of = is given by

o) 21
V@) = [ [T (1Al + e 1FalRags ) doar
o 27
= / E/O /E(%<89A/\(A—Ao)>+<FA/\CI)>) dodr

2m .
= /0 L %(Aoo A (Aoo - A0)> d¢
= —8r?deg(g).

By (9.3) the Yang-Mills action of = is positive. Hence the Yang-Mills action
of =, in an arbitrarily small neighbourhood of wqg x ¥ is in the limit at least
872. This shows that an instanton on C x P can only split off near finitely
many points wg. Let W5 denote the discrete set of complex numbers wg € C
such that there exists a sequence w, — wy with €,¢,(w,) # 0.

Holomorphic spheres in M(P)

Now let wg € C\ Wy and assume that there exists a sequence w, — wq
such that ¢, = ¢,(w,) diverges to co. By Lemma 9.3 we may assume that
there exists a sequence 0 < p,, < 1/2 such that

(9.5) sup  ¢p(w) < 2¢(wy), puey(w,) — 0.

lw—wy |<py
Moreover, since wg ¢ Wy
lim e,¢,(w,) = 0.
V—00

Now define 2, = A, + (AISNV ds + U, dt by A,(w) = A, (w, + ¢, w), &, (w) =
c; 1@, (wy, + ¢ tw), and ¥, (w) = ¢, 'V, (w, + ¢, w). This sequence satisfies
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the partial differential equation
8tgy — dg \Al;y + *s,+s/cy (asﬁ,, — dg (T),,) = 0,

atél, — OS\I’,, — [éy, i’y] -+ CPO) *8y+8/cu FA’ = 0.
EVCV

Moreover, the Yang-Mills action is finite over B, ., (0) x X:

R e

) dsdt < ¢,
L2(%)

and, by (9.5), the curvature is bounded:

sup - + Hﬁtﬁ,,(w) — dgu(w)\ll,,(w)HLoo(E)) < 6.

1
|w|<pucy (% HFXV(UJ)HLOO

By Uhlenbeck’s weak compactness theorem (cf. [32]) we may assume, passing
to a subsequence and up to gauge equivalence, that ch converges strongly in
L> and weakly in W'? on compact sets. The limit connection Z( represents
a non-constant holomorphic map C — M(P) with respect to the conformal
structure * = x4

atA(]—dAO\I’O—I—*(asAo—dAO(I)()), FAO =0.

Since p, ¢, (w,) — oo this holomorphic curve has finite energy

B(Eo) = [ 10140 — dag¥ollZars, dsdt < c.
C

By the removable singularity theorem Z( extends to a nonconstant holomor-
phic sphere vg : S — M(P). The energy of such a holomorphic sphere is at
least 872 (cf. [10]). Hence a holomorphic sphere on M(P) can only split off
near finitely many points wg. Thus we have proved that the set W C C of
all points wg such that there exists a sequence w, — wy with ¢, (w,) — oo
intersects [0, 1] + iR in a finite set. We must prove that this set is empty.

Assume, by contradiction that W is nonempty. By (9.2) and Uhlen-
beck’s weak compactness theorem, we may assume that =, converges, mod-
ulo gauge equivalence, on the complement of W to a connecting orbit =Z¢ €
A(l)’p(ao,al,H) for some H-flat connections ag,a1 € Agat(Pr, H). We may
assume without loss of generality that ag = ¢~ and proceed by induction as
in [26] to obtain finitely many such limit trajectories

=€ AyP(aj,a541, H),  §j=0,....0—1,
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with ay = a®. Now each bubble carries energie at least 872. Since W # 0 it
follows that the limit connections have total energy

{—1
Y E(E;) < E-—8nr°
j=1

where E = CSp(a~) — CSp(a™) is the perturbed Yang-Mills action of the
connections =,. This is not possible if E < 872. Hence in this case it follows
that W = 0. If pg(a=,a™) < 3 and W # ) then the index formula (3.7)
shows that

-1 -1

1
S wn(agan) = 3 (30(Day) — 10Da)) + 55 E(E))
j=1 j=1
1 /—1
= in(Dg+) — 3n(Dg-) + 5.2 E(5;)
T j=1
1
< 3n(Dg+) = 3n(De-) + o2l —4
= NH(CL_7 CL+) —4
< -1

Hence p157(aj, a;+1) < 0 for some j. But since H € Hg™® it follows that for this
value of j the set A(l]’p (aj,aj+ 1, H) must be empty. This is a contradiction

and shows that W = () whenever pupg(a™,a™) <3 and H € Hg®.

Thus we have proved in both cases that W = (). Hence the estimate (9.2)
holds for every compact subset K C C. It continues to hold when Z, is
replaced by E, o 0, with any sequence 7, € R. Hence (9.2) holds for K = C
in contradiction to (9.1). This proves the theorem. O

10. The main theorem

THEOREM 10.1. There is a natural isomorphism of Floer homologies
HFE"™Y (S, Pp) = HEY™(M(P), ¢).
In particular, for f =id,
HF™ (% x S' P x SY) = HF,(M(P),Z).

Coherent orientation

We follow the line of argument in [18]. Let H € H™#(0) and fix two
H-flat connections a* € Ax(Py, H). Let p > 4 and denote

Alz’p(a_,aJr) = {E = A+ dds+Vdt € AP(a",a") : Fa= 0}.
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This space is nonempty, connected, and simply connected. For every = €
.Alz’p (a,a™) there are Fredholm operators Dy(Z) and D.(Z). Consider the
determinant line bundle

Lo — Ag'(a”,a")

whose fibre at = is the 1-dimensional real vector space
det(Dy(E)) = A"**(ker Dy(Z)) @ A" (ker Dy(E)™)

The bundle £, — Ayf(a™,a") is defined similarly. Since Ayf(a™,at) is
simply connected both line bundles are orientable. For the bundle £, this
also follows from the fact that it extends to a determinant line bundle over
the affine space

L. — AYP(a™,a™).

Denote by Org(a™,at) and Orc(a™,a™) the spaces of orientations of Ly and
L., respectively, each consisting of 2 elements. The spaces Or.(a™,a™) for
different values of ¢ are naturally isomorphic.

PROPOSITION 10.2.  For every pair a* € Agat (Py, H) there is a natural
bijection
T.(a”,a™) : Org(a™,a’) — Or.(a”,a™).
Proof. 1t Dy(Z) is onto and £ > 0 is sufficiently small then, by Lemma 4.5

and Lemma 4.3, there is a linear bijection
T.(Z) : ker Dy(E) — ker D(2)

given by
T.(Z)ag = & — DX (D.DZ) ™' Detp.

Here £y = ag+ ¢g ds+1)g dt and ¢y and 1)y are determined by the requirement
that
Dy(E)ag = Viag — dahg + *4(Vsag — dX(A)ag — daco)

is harmonic. If Dy is not onto choose a number N and a linear map L : RN —
L?(HA) such that

Do ®L: WP (Hy) @R — LE(Hy).

is onto. As in Lemma 4.5 one can show that the operator D, & L is onto for
¢ sufficiently small and there is a linear bijection

det(Dy) ~ A" (ker(Dy @ L)) — A" (ker(D. ® L)) ~ det(D).

The induced map Or(det(Dy)) — Or(det(D,)) is independent of the extension
L used to define it. O
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Now for any three H-flat connections ag,a1,a2 € Aga(Pr, H) Floer’s
glueing construction determines a natural map

oo(ao, a1, az) : Org(ag, ar) ® Org(ay,az) — Org(ag, az).

A coherent orientation for Ly is a collection of orientations og(a™,a™) €
Orp(a™,a™) such that

oo(ao, a1,a2)(oo(ao, a1),oo(ar,az)) = oo(ao, az).

Similarly for £.. In [18] it is shown that such coherent orientations exist. The
next proposition asserts that 7. and ¢ commute and hence every coherent
orientation for £y is mapped under 7. to a coherent orientation for L.

ProrosiTioN 10.3.

oc(ag, a1, az) o 7e(ag,a1) ® 7:(a1, a2) = 7:(ao, az) o og(ag, ai, az)

Proof. Let 2 € AsP(ap,a1) and ' € AgP(a1,ay) such that U(s,t) =
U'(s,t) =0, A(s,t) + ®(s,t)ds = aq for t > T, and A'(s,t) + D' (s,t)ds = a3
for t < —T. Assume without loss of generality that Dy(Z) and Dy(Z') are
onto.

For R > T define the catenation Z7, = Z#rZE' € .Alz’p(ao, az) of Z and Z’
by Z"(s,t) = E(s,t + R) for t <0 and E;(s,t) = Z/(s,t — R) for t > 0. Then
for R > 0 sufficiently large there exist isomorphisms

So : ker Dy(E) @ ker Dy(E') — ker Do(E%),
S. : ker D.(E) & ker D.(Z') — ker D(E};).

These maps are small perturbations of the obvious shift-overlap maps (£,£’) —
£ (s,t) = &(s,t + R) + &' (s,t — R). They induce the maps o¢(ag, a1, as) and
oe(ag, a1, az) on the spaces of orientations. Now let T-(Z) be defined as in
the proof of Proposition 10.2. Then the linear operators

S: 0 T-(2) ® T(Z') : ker Dy(Z) @ ker Do(Z') — ker D(Z}),
T.(ER) 0 So : ker Do(Z) @ ker Do(Z') — ker D(ER)

are close to each other for € > 0 sufficiently small and R > 0 sufficiently
large. This is because the maps Sg and S; for large R > 0 are close to the
shift-overlap maps while T.(Z) for small € > 0 is close to the identity. The
details are left to the reader. (For maps of the form Sy and S. see [18].) O

Proof of Theorem 10.1. Choose € > 0 sufficiently small and let H €
Hy® N HE8. Throughout fix a sequence of H-flat connections ag,ar,az, ...
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such that each equivalence class in Aga(Pr, H)/Go(Py) is represented by pre-
cisely one member of this sequence. Both Floer homology groups are gener-
ated by the same chain complex

Ck = @ Z[aj].
pr(ao0,a;)=k
By Theorem 3.2 the grading of this chain complex is the same in both theo-
ries. We must prove that the boundary operators Y™ and 9i*' agree for e
sufficiently small.

Choose coherent orientations og(a™,a™) for Ly and consider the induced
coherent orientations o.(a”,a™) for L.. These determine orientations of the
moduli spaces My and M, and hence of the quotient spaces Mvo = My/R
and Mvg = M. /R of connecting orbits modulo time shift. These orientations
are invariant under Floer’s glueing maps

SO(ajyakyaZ) : MVO(ajaakyH) X (Rv OO) X MO(CLk,G(,H) - MO(ajvava)‘

in the symplectic case and under the corresponding maps Sc(a;,ax,ar) in
the instanton case. To see this note that the induced maps on the spaces of
orientations are given by oq(a;, ax,ar) and o.(aj,ax,ar), respectively. Now
fix two H-flat connections a* € Afgat(Py, H) and consider the map

,]:;‘ : MO(a_7a+7H) - M&(a_7a+7H)

of Theorem 5.1. The induced map on the space of orientations agrees with
the map 7.(a~,a™) of Proposition 10.2. Hence 7 is orientation preserving.

Now assume p(a~,at) = 1. Then, by Proposition 5.7 and Theorem 9.2,
the map 7; is bijective and hence induces a bijection of finite sets

’]N'6 : Mvo(a_,a+,H) — Mvg(a_,a+,H)

for £ > 0 sufficiently small. By the above argument, this map preserves the
coherent orientations. Moreover, the differential d7;(Z() satisfies

d7.(Z0)0r=0 = O Ec

where =, = T.(Zp). Since pug(a~,a™) = 1 the vector 9;=y determines the
flow orientation of Mq(a™,at, H) while 3;=. determines the flow orientation
of Mc(a™,a™, H). Hence 7. preserves both the coherent orientation and the
flow orientation. Hence it preserves the signs vY™P(Zg) and v™'(Z.) which
are determined by comparing both orientations. This shows that the oriented
number of connecting orbits from a~ to a™ is the same in both theories. Hence
the boundary operators 9%™P and "' agree for ¢ > 0 sufficiently small. This

proves the theorem. O
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