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1 Introduction

The Floer homology of a transverse pair of Lagrangian submanifolds in a
symplectic manifold is, under favorable hypotheses, the homology of a chain
complex generated by the intersection points. The boundary operator counts
index one holomorphic strips with boundary on the Lagrangian submanifolds.
This theory was introduced by Floer in [10, 11]; see also the three papers [21]
of Oh. In this memoir we consider the following special case:

(H) Σ is a connected oriented 2-manifold without boundary and
α, β ⊂ Σ are connected smooth one dimensional oriented sub-
manifolds without boundary which are closed as subsets of Σ and
intersect transversally. We do not assume that Σ is compact, but
when it is, α and β are embedded circles.

In this special case there is a purely combinatorial approach to Lagrangian
Floer homology which was first developed by de Silva [6]. We give a full and
detailed definition of this combinatorial Floer homology (see Theorem 9.1)
under the hypothesis that α and β are noncontractible embedded circles and
are not isotopic to each other. Under this hypothesis, combinatorial Floer
homology is invariant under isotopy, not just Hamiltonian isotopy, as in
Floer’s original work (see Theorem 9.2). Combinatorial Floer homology is
isomorphic to analytic Floer homology as defined by Floer (see Theorem 9.3).

Floer homology is the homology of a chain complex CF(α, β) with basis
consisting of the points of the intersection α ∩ β (and coefficients in Z/2Z).
The boundary operator ∂ : CF(α, β) → CF(α, β) has the form

∂x =
∑

y

n(x, y)y.

In the case of analytic Floer homology as defined by Floer n(x, y) denotes
the number (mod two) of equivalence classes of holomorphic strips v : S → Σ
satisfying the boundary conditions

v(R) ⊂ α, v(R+ i) ⊂ β, v(−∞) = x, v(+∞) = y

and having Maslov index one. The boundary operator in combinatorial Floer
homology has the same form but now n(x, y) denotes the number (mod two)
of equivalence classes of smooth immersions u : D → Σ satisfying

u(D ∩ R) ⊂ α, u(D ∩ S1) ⊂ β, u(−1) = x, u(+1) = y.
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We call such an immersion a smooth lune. Here

S := R+ i[0, 1], D := {z ∈ C | Im z ≥ 0, |z| ≤ 1}

denote the standard strip and the standard half disc respectively. We develop
the combinatorial theory without appeal to the difficult analysis required for
the analytic theory. The invariance under isotopy rather than just Hamilto-
nian isotopy (Theorem 9.3) is a benefit of this approach. A corollary is the
formula

dimHF(α, β) = geo (α, β)

for the dimension of the Floer Homology HF(α, β) (see Corollary 9.5). Here
geo (α, β) denotes the geometric intersection number of the curves α and β.
In Remark 9.11 we indicate how to define combinatorial Floer homology with
integer coefficients, but we do not discuss integer coefficients in analytic Floer
homology.

Let D denote the space of all smooth maps u : D → Σ satisfying the
boundary conditions u(D ∩ R) ⊂ α and u(D ∩ S1) ⊂ β. For x, y ∈ α ∩ β
let D(x, y) denote the subset of all u ∈ D satisfying the endpoint conditions
u(−1) = x and u(1) = y. Each u ∈ D determines a locally constant function

w : Σ \ (α ∪ β) → Z

defined as the degree

w(z) := deg(u, z), z ∈ Σ \ (α ∪ β).

When z is a regular value of u this is the algebraic number of points in
the preimage u−1(z). The function w depends only on the homotopy class
of u. In Theorem 2.4 we prove that the homotopy class of u ∈ D is uniquely
determined by its endpoints x, y and its degree function w. Theorem 3.4
says that the Viterbo–Maslov index of every smooth map u ∈ D(x, y) is
determined by the values of w near the endpoints x and y of u, namely, it is
given by the following trace formula

µ(u) =
mx(Λu) +my(Λu)

2
, Λu := (x, y,w).

Here mx denotes the sum of the four values of w encountered when walking
along a small circle surrounding x, and similarly for y. Part I of this memoir
is devoted to proving this formula.
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Part II gives a combinatorial characterization of smooth lunes. Specifi-
cally, the equivalent conditions (ii) and (iii) of Theorem 6.7 are necessary for
the existence of a smooth lune. This implies the fact (not obvious to us) that
a lune cannot contain either of its endpoints in the interior of its image. In
the simply connected case we prove in the same theorem that the necessary
conditions are also sufficient. We conjecture that they characterize smooth
lunes in general. Theorem 6.8 shows that any two smooth lunes with the
same counting function w are isotopic and thus the equivalence class of a
smooth lune is uniquely determined by its combinatorial data. The proofs of
these theorems are carried out in Sections 7 and 8. Together they provide a
solution to the Picard–Loewner problem in a special case; see for example [12]
and the references cited therein, e.g. [38, 4, 28]. Our result is a special case
because no critical points are allowed (lunes are immersions), the source is
a disc and not a Riemann surface with positive genus, and the prescribed
boundary circle decomposes into two embedded arcs.

Part III introduces combinatorial Floer homology. Here we restrict our
discussion to the case where α and β are noncontractible embedded circles
which are not isotopic to each other (with either orientation). The basic
definitions are given in Section 9. That the square of the boundary operator
is indeed zero in the combinatorial setting will be proved in Section 10 by
analyzing broken hearts. Propositions 10.2 and 10.5 say that there are two
ways to break a heart and this is why the square of the boundary opera-
tor is zero. In Section 11 we prove the isotopy invariance of combinatorial
Floer homology by examining generic deformations of loops that change the
number of intersection points. This is very much in the spirit of Floer’s
original proof of deformation invariance (under Hamiltonian isotopy of the
Lagrangian manifolds) of analytic Floer homology. The main theorem in
Section 12 asserts, in the general setting, that smooth lunes (up to isotopy)
are in one-to-one correspondence with index one holomorphic strips (up to
translation). The proof is self-contained and does not use any of the other
results in this memoir. It is based on an equation (the index formula (69) in
Theorem 12.2) which expresses the Viterbo–Maslov index of a holomorphic
strip in terms of its critical points and its angles at infinity. A linear version
of this equation (the linear index formula (76) in Lemma 12.3) also shows
that every holomorphic strip is regular in the sense that the linearized oper-
ator is surjective. It follows from these observations that the combinatorial
and analytic definitions of Floer homology agree as asserted in Theorem 9.3.
In fact, our results show that the two chain complexes agree.
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There are many directions in which the theory developed in the present
memoir can be extended. Some of these are discussed in Section 13. For
example, it has been understood for some time that the Donaldson triangle
product and the Fukaya category have combinatorial analogues in dimension
two, and that these analogues are isomorphic to the original analytic theories.
The combinatorial approach to the Donaldson triangle product has been
outlined in the PhD thesis of the first author [6], and the combinatorial
approach to the derived Fukaya category has been used by Abouzaid [1] to
compute it. Our formula for the Viterbo–Maslov index in Theorem 3.4 and
our combinatorial characterization of smooth lunes in Theorem 6.7 are not
needed for their applications. In our memoir these two results are limited
to the elements of D. (To our knowledge, they have not been extended to
triangles or more general polygons in the existing literature.)

When Σ = T2, the Heegaard–Floer theory of Ozsvath–Szabo [26, 27] can
be interpreted as a refinement of the combinatorial Floer theory, in that the
winding number of a lune at a prescribed point in T2 \ (α ∪ β) is taken into
account in the definition of their boundary operator. However, for higher
genus surfaces Heegaard–Floer theory does not include the combinatorial
Floer theory discussed in the present memoir as a special case.

Appendix A contains a proof that, under suitable hypotheses, the space
of paths connecting α to β is simply connected. Appendix B contains a proof
that the group of orientation preserving diffeomorphisms of the half disc fix-
ing the corners is connected. Appendix C contains an account of Floer’s
algebraic deformation argument. Appendix D summarizes the relevant re-
sults in [32] about the asymptotic behavior of holomorphic strips.

Acknowledgement. We would like to thank the referee for his/her
careful work.
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I. The Viterbo–Maslov Index
Throughout this memoir we assume (H). We often write “assume (H)” to
remind the reader of our standing hypothesis.

2 Chains and Traces

Define a cell complex structure on Σ by taking the set of zero-cells to be
the set α ∩ β, the set of one-cells to be the set of connected components of
(α \ β) ∪ (β \ α) with compact closure, and the set of two-cells to be the set
of connected components of Σ \ (α ∪ β) with compact closure. (There is an
abuse of language here as the “two-cells” need not be homeomorphs of the
open unit disc if the genus of Σ is positive and the “one-cells” need not be
arcs if α∩β = ∅.) Define a boundary operator ∂ as follows. For each two-cell
F let

∂F =
∑

±E,

where the sum is over the one-cells E which abut F and the plus sign is
chosen iff the orientation of E (determined from the given orientations of α
and β) agrees with the boundary orientation of F as a connected open subset
of the oriented manifold Σ. For each one-cell E let

∂E = y − x

where x and y are the endpoints of the arc E and the orientation of E goes
from x to y. (The one-cell E is either a subarc of α or a subarc of β and both
α and β are oriented one-manifolds.) For k = 0, 1, 2 a k-chain is defined to
be a formal linear combination (with integer coefficients) of k-cells, i.e. a two-
chain is a locally constant map Σ\ (α∪β) → Z (whose support has compact
closure in Σ) and a one-chain is a locally constant map (α \β)∪ (β \α) → Z

(whose support has compact closure in α ∪ β). It follows directly from the
definitions that ∂2F = 0 for each two-cell F .

Each u ∈ D determines a two-chain w via

w(z) := deg(u, z), z ∈ Σ \ (α ∪ β). (1)

and a one-chain ν via

ν(z) :=

{
deg(u

∣∣
∂D∩R

: ∂D ∩ R → α, z), for z ∈ α \ β,
− deg(u

∣∣
∂D∩S1 : ∂D ∩ S1 → β, z), for z ∈ β \ α.

(2)
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Here we orient the one-manifolds D∩R and D∩ S1 from −1 to +1. For any
one-chain ν : (α \ β) ∪ (β \ α) → Z denote

να := ν|α\β : α \ β → Z, νβ := ν|β\α : β \ α → Z.

Conversely, given locally constant functions να : α \ β → Z (whose support
has compact closure in α) and νβ : β \ α → Z (whose support has compact
closure in β), denote by ν = να − νβ the one-chain that agrees with να on
α \ β and agrees with −νβ on β \ α.

Definition 2.1 (Traces). Fix two (not necessarily distinct) intersection
points x, y ∈ α ∩ β.

(i) Let w : Σ \ (α ∪ β) → Z be a two-chain. The triple Λ = (x, y,w) is
called an (α, β)-trace if there exists an element u ∈ D(x, y) such that w is
given by (1). In this case Λ =: Λu is also called the (α, β)-trace of u and
we sometimes write wu := w.

(ii) Let Λ = (x, y,w) be an (α, β)-trace. The triple ∂Λ := (x, y, ∂w) is called
the boundary of Λ.

(iii) A one-chain ν : (α\β)∪(β\α) → Z is called an (x, y)-trace if there exist
smooth curves γα : [0, 1] → α and γβ : [0, 1] → β such that γα(0) = γβ(0) = x,
γα(1) = γβ(1) = y, γα and γβ are homotopic in Σ with fixed endpoints, and

ν(z) =

{
deg(γα, z), for z ∈ α \ β,

− deg(γβ, z), for z ∈ β \ α.
(3)

Remark 2.2. Assume Σ is simply connected. Then the condition on γα and
γβ to be homotopic with fixed endpoints is redundant. Moreover, if x = y
then a one-chain ν is an (x, y)-trace if and only if the restrictions

να := ν|α\β , νβ := −ν|β\α

are constant. If x 6= y and α, β are embedded circles and A,B denote the
positively oriented arcs from x to y in α, β, then a one-chain ν is an (x, y)-
trace if and only if

να|α\(A∪β) = να|A\β − 1

and
νβ|β\(B∪α) = νβ|B\α − 1.

In particular, when walking along α or β, the function ν only changes its
value at x and y.
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Lemma 2.3. Let x, y ∈ α ∩ β and u ∈ D(x, y). Then the boundary of the
(α, β)-trace Λu of u is the triple ∂Λu = (x, y, ν), where ν is given by (2). In
other words, if w is given by (1) and ν is given by (2) then ν = ∂w.

Proof. Choose an embedding γ : [−1, 1] → Σ such that u is transverse to γ,
γ(t) ∈ Σ \ (α∪ β) for t 6= 0, γ(−1), γ(1) are regular values of u, γ(0) ∈ α \ β
is a regular value of u|D∩R, and γ intersects α transversally at t = 0 such that
orientations match in

Tγ(0)Σ = Tγ(0)α⊕ Rγ̇(0).

Denote Γ := γ([−1, 1]). Then u−1(Γ) ⊂ D is a 1-dimensional submanifold
with boundary

∂u−1(Γ) = u−1(γ(−1)) ∪ u−1(γ(1)) ∪
(
u−1(γ(0)) ∩ R)

)
.

If z ∈ u−1(Γ) then

im du(z) + Tu(z)Γ = Tu(z)Σ, Tzu
−1(Γ) = du(z)−1Tu(z)Γ.

We orient u−1(Γ) such that the orientations match in

Tu(z)Σ = Tu(z)Γ⊕ du(z)iTzu
−1(Γ).

In other words, if z ∈ u−1(Γ) and u(z) = γ(t), then a nonzero tangent vector
ζ ∈ Tzu

−1(Γ) is positive if and only if the pair (γ̇(t), du(z)iζ) is a positive
basis of Tγ(t)Σ. Then the boundary orientation of u−1(Γ) at the elements of
u−1(γ(1)) agrees with the algebraic count in the definition of w(γ(1)), at the
elements of u−1(γ(−1)) is opposite to the algebraic count in the definition of
w(γ(−1)), and at the elements of u−1(γ(0)) ∩ R is opposite to the algebraic
count in the definition of ν(γ(0)). Hence

w(γ(1)) = w(γ(−1)) + ν(γ(0)).

In other words the value of ν at a point in α \ β is equal to the value of w
slightly to the left of α minus the value of w slightly to the right of α.
Likewise, the value of ν at a point in β \α is equal to the value of w slightly
to the right of β minus the value of w slightly to the left of β. This proves
Lemma 2.3.
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Theorem 2.4. (i) Two elements of D belong to the same connected compo-
nent of D if and only if they have the same (α, β)-trace.

(ii) Assume Σ is diffeomorphic to the two-sphere. Let x, y ∈ α ∩ β and let
w : Σ \ (α ∪ β) → Z be a locally constant function. Then Λ = (x, y,w) is an
(α, β)-trace if and only if ∂w is an (x, y)-trace.

(iii) Assume Σ is not diffeomorphic to the two-sphere and let x, y ∈ α∩β. If ν
is an (x, y)-trace, then there is a unique two-chain w such that Λ := (x, y,w)
is an (α, β)-trace and ∂w = ν.

Proof. We prove (i). “Only if” follows from the standard arguments in degree
theory as in Milnor [19]. To prove “if”, fix two intersection points

x, y ∈ α ∩ β

and, for X = Σ, α, β, denote by P(x, y;X) the space of all smooth curves
γ : [0, 1] → X satisfying γ(0) = x and γ(1) = y. Every u ∈ D(x, y) deter-
mines smooth paths γu,α ∈ P(x, y;α) and γu,β ∈ P(x, y; β) via

γu,α(s) := u(− cos(πs), 0), γu,β(s) = u(− cos(πs), sin(πs)). (4)

These paths are homotopic in Σ with fixed endpoints. An explicit homotopy
is the map

Fu := u ◦ ϕ : [0, 1]2 → Σ

where ϕ : [0, 1]2 → D is the map

ϕ(s, t) := (− cos(πs), t sin(πs)).

By Lemma 2.3, the homotopy class of γu,α in P(x, y;α) is uniquely deter-
mined by

να := ∂wu|α\β : α \ β → Z

and that of γu,β in P(x, y; β) is uniquely determined by

νβ := −∂wu|β\α : β \ α → Z.

Hence they are both uniquely determined by the (α, β)-trace of u. If Σ is
not diffeomorphic to the 2-sphere the assertion follows from the fact that
each component of P(x, y; Σ) is contractible (because the universal cover of
Σ is diffeomorphic to the complex plane). Now assume Σ is diffeomorphic
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to the 2-sphere. Then π1(P(x, y; Σ)) = Z acts on π0(D) because the corre-
spondence u 7→ Fu identifies π0(D) with a space of homotopy classes of paths
in P(x, y; Σ) connecting P(x, y;α) to P(x, y; β). The induced action on the
space of two-chains w : Σ \ (α ∪ β) is given by adding a global constant.
Hence the map u 7→ w induces an injective map

π0(D(x, y)) → {2-chains}.

This proves (i).
We prove (ii) and (iii). Let w be a two-chain, suppose that ν := ∂w is an

(x, y)-trace, and denote Λ := (x, y,w). Let γα : [0, 1] → α and γβ : [0, 1] → β
be as in Definition 2.1. Then there is a u′ ∈ D(x, y) such that the map
s 7→ u′(− cos(πs), 0) is homotopic to γα and s 7→ u′(− cos(πs), sin(πs)) is
homotopic to γβ. By definition the (α, β)-trace of u′ is Λ′ = (x, y,w′) for
some two-chain w′. By Lemma 2.3, we have

∂w′ = ν = ∂w

and hence w−w′ =: d is constant. If Σ is not diffeomorphic to the two-sphere
and Λ is the (α, β)-trace of some element u ∈ D, then u is homotopic to u′

(as P(x, y; Σ) is simply connected) and hence d = 0 and Λ = Λ′. If Σ is
diffeomorphic to the 2-sphere choose a smooth map v : S2 → Σ of degree d
and replace u′ by the connected sum u := u′#v. Then Λ is the (α, β)-trace
of u. This proves Theorem 2.4.

Remark 2.5. Let Λ = (x, y,w) be an (α, β)-trace and define

να := ∂w|α\β , νβ := −∂w|β\α.

(i) The two-chain w is uniquely determined by the condition ∂w = να − νβ
and its value at one point. To see this, think of the embedded circles α and
β as traintracks. Crossing α at a point z ∈ α \ β increases w by να(z) if
the train comes from the left, and decreases it by να(z) if the train comes
from the right. Crossing β at a point z ∈ β \ α decreases w by νβ(z) if the
train comes from the left and increases it by νβ(z) if the train comes from
the right. Moreover, να extends continuously to α \ {x, y} and νβ extends
continuously to β \ {x, y}. At each intersection point z ∈ (α ∩ β) \ {x, y}
with intersection index +1 (respectively −1) the function w takes the values

k, k + να(z), k + να(z)− νβ(z), k − νβ(z)

as we march counterclockwise (respectively clockwise) along a small circle
surrounding the intersection point.
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(ii) If Σ is not diffeomorphic to the 2-sphere then, by Theorem 2.4 (iii), the
(α, β)-trace Λ is uniquely determined by its boundary ∂Λ = (x, y, να − νβ).

(iii) Assume Σ is not diffeomorphic to the 2-sphere and choose a universal

covering π : C → Σ. Choose a point x̃ ∈ π−1(x) and lifts α̃ and β̃ of α and β

such that x̃ ∈ α̃ ∩ β̃. Then Λ lifts to an (α̃, β̃)-trace

Λ̃ = (x̃, ỹ, w̃).

More precisely, the one chain ν := να − νβ = ∂w is an (x, y)-trace, by
Lemma 2.3. The paths γα : [0, 1] → α and γβ : [0, 1] → β in Definition 2.1

lift to unique paths γeα : [0, 1] → α̃ and γeβ : [0, 1] → β̃ connecting x̃ to ỹ. For

z̃ ∈ C \ (Ã∪ B̃) the number w̃(z̃) is the winding number of the loop γeα − γeβ

about z̃ (by Rouché’s theorem). The two-chain w is then given by

w(z) =
∑

ez∈π−1(z)

w̃(z̃), z ∈ Σ \ (α ∪ β).

To see this, lift an element u ∈ D(x, y) with (α, β)-trace Λ to the universal

cover to obtain an element ũ ∈ D(x̃, ỹ) with Λeu = Λ̃ and consider the degree.

Definition 2.6 (Catenation). Let x, y, z ∈ α∩β. The catenation of two
(α, β)-traces Λ = (x, y,w) and Λ′ = (y, z,w′) is defined by

Λ#Λ′ := (x, z,w + w′).

Let u ∈ D(x, y) and u′ ∈ D(y, z) and suppose that u and u′ are constant near
the ends ±1 ∈ D. For 0 < λ < 1 sufficiently close to one the λ-catenation
of u and u′ is the map u#λu

′ ∈ D(x, z) defined by

(u#λu
′)(ζ) :=





u
(

ζ+λ
1+λζ

)
, for Re ζ ≤ 0,

u′
(

ζ−λ
1−λζ

)
, for Re ζ ≥ 0.

Lemma 2.7. If u ∈ D(x, y) and u′ ∈ D(y, z) are as in Definition 2.6 then

Λu#λu′ = Λu#Λu′.

Thus the catenation of two (α, β)-traces is again an (α, β)-trace.

Proof. This follows directly from the definitions.
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3 The Maslov Index

Definition 3.1. Let x, y ∈ α ∩ β and u ∈ D(x, y). Choose an orientation
preserving trivialization

D× R2 → u∗TΣ : (z, ζ) 7→ Φ(z)ζ

and consider the Lagrangian paths

λ0, λ1 : [0, 1] → RP1

given by

λ0(s) := Φ(− cos(πs), 0)−1Tu(− cos(πs),0)α,

λ1(s) := Φ(− cos(πs), sin(πs))−1Tu(− cos(πs),sin(πs))β.

The Viterbo–Maslov index of u is defined as the relative Maslov index
of the pair of Lagrangian paths (λ0, λ1) and will be denoted by

µ(u) := µ(Λu) := µ(λ0, λ1).

By the naturality and homotopy axioms for the relative Maslov index (see
for example [30]), the number µ(u) is independent of the choice of the triv-
ialization and depends only on the homotopy class of u; hence it depends
only on the (α, β)-trace of u, by Theorem 2.4. The relative Maslov index
µ(λ0, λ1) is the degree of the loop in RP1 obtained by traversing λ0, followed
by a counterclockwise turn from λ0(1) to λ1(1), followed by traversing λ1 in
reverse time, followed by a clockwise turn from λ1(0) to λ0(0). This index
was first defined by Viterbo [39] (in all dimensions). Another exposition is
contained in [30].

Remark 3.2. The Viterbo–Maslov index is additive under catenation, i.e. if

Λ = (x, y,w), Λ′ = (y, z,w′)

are (α, β)-traces then

µ(Λ#Λ′) = µ(Λ) + µ(Λ′).

For a proof of this formula see [39, 30].
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Definition 3.3. Let Λ = (x, y,w) be an (α, β)-trace and denote να := ∂w|α\β
and νβ := −∂w|β\α. Λ is said to satisfy the arc condition if

x 6= y, min |να| = min |νβ| = 0. (5)

When Λ satisfies the arc condition there are arcs A ⊂ α and B ⊂ β from x
to y such that

να(z) =

{
±1, if z ∈ A,
0, if z ∈ α \ A,

νβ(z) =

{
±1, if z ∈ B,
0, if z ∈ β \B.

(6)

Here the plus sign is chosen iff the orientation of A from x to y agrees with
that of α, respectively the orientation of B from x to y agrees with that of β.
In this situation the quadruple (x, y, A,B) and the triple (x, y, ∂w) determine
one another and we also write

∂Λ = (x, y, A,B)

for the boundary of Λ. When u ∈ D and Λu = (x, y,w) satisfies the arc
condition and ∂Λu = (x, y, A,B) then

s 7→ u(− cos(πs), 0)

is homotopic in α to a path traversing A and the path

s 7→ u(− cos(πs), sin(πs))

is homotopic in β to a path traversing B.

Theorem 3.4. Let Λ = (x, y,w) be an (α, β)-trace. For z ∈ α ∩ β denote
by mz(Λ) the sum of the four values of w encountered when walking along a
small circle surrounding z. Then the Viterbo–Maslov index of Λ is given by

µ(Λ) =
mx(Λ) +my(Λ)

2
. (7)

We call this the trace formula.

We first prove the trace formula for the 2-plane C and the 2-sphere S2

(Section 4 on page 24). When Σ is not simply connected we reduce the result
to the case of the 2-plane (Section 5 page 38). The key is the identity

mgex(Λ̃) +mg−1ey(Λ̃) = 0 (8)

for every lift Λ̃ to the universal cover and every deck transformation g 6= id.
We call this the cancellation formula.
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4 The Simply Connected Case

A connected oriented 2-manifold Σ is called planar if it admits an (orienta-
tion preserving) embedding into the complex plane.

Proposition 4.1. The trace formula (7) holds when Σ is planar.

Proof. Assume first that Σ = C and Λ = (x, y,w) satisfies the arc condition.
Thus the boundary of Λ has the form

∂Λ = (x, y, A,B),

where A ⊂ α and B ⊂ β are arcs from x to y and w(z) is the winding number
of the loop A−B about the point z ∈ Σ \ (A∪B) (see Remark 2.5). Hence
the trace formula (7) can be written in the form

µ(Λ) = 2kx + 2ky +
εx − εy

2
. (9)

Here εz = εz(Λ) ∈ {+1,−1} denotes the intersection index of A and B at a
point z ∈ A ∩ B, kx = kx(Λ) denotes the value of the winding number w at
a point in α \A close to x, and ky = ky(Λ) denotes the value of w at a point
in α \ A close to y. We now prove (9) under the hypothesis that Λ satisfies
the arc condition. The proof is by induction on the number of intersection
points of B and α and has seven steps.

Step 1. We may assume without loss of generality that

Σ = C, α = R, A = [x, y], x < y, (10)

and B ⊂ C is an embedded arc from x to y that is transverse to R.

Choose a diffeomorphism from Σ to C that maps A to a bounded closed
interval and maps x to the left endpoint of A. If α is not compact the
diffeomorphism can be chosen such that it also maps α to R. If α is an
embedded circle the diffeomorphism can be chosen such that its restriction
to B is transverse to R; now replace the image of α by R. This proves Step 1.

Step 2. Assume (10) and let Λ̄ := (x, y, z 7→ −w(z̄)) be the (α, β̄)-trace
obtained from Λ by complex conjugation. Then Λ satisfies (9) if and only if
Λ̄ satisfies (9).

Step 2 follows from the fact that the numbers µ, kx, ky, εx, εy change sign
under complex conjugation.
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Step 3. Assume (10). If B ∩ R = {x, y} then Λ satisfies (9).

In this case B is contained in the upper or lower closed half plane and the
loop A∪B bounds a disc contained in the same half plane. By Step 1 we may
assume that B is contained in the upper half space. Then εx = 1, εy = −1,
and µ(Λ) = 1. Moreover, the winding number w is one in the disc encircled
by A and B and is zero in the complement of its closure. Since the intervals
(−∞, 0) and (0,∞) are contained in this complement, we have kx = ky = 0.
This proves Step 3.

Step 4. Assume (10) and #(B ∩ R) > 2, follow the arc of B, starting at
x, and let x′ be the next intersection point with R. Assume x′ < x, denote
by B′ the arc in B from x′ to y, and let A′ := [x′, y] (see Figure 1). If the
(α, β)-trace Λ′ with boundary ∂Λ′ = (x′, y, A′, B′) satisfies (9) so does Λ.

1

2

−2

x’ x y

−1

Figure 1: Maslov index and catenation: x′ < x < y.

By Step 2 we may assume εx(Λ) = 1. Orient B from x to y. The Viterbo–
Maslov index of Λ is minus the Maslov index of the pathB → RP1 : z 7→ TzB,
relative to the Lagrangian subspace R ⊂ C. Since the Maslov index of the
arc in B from x to x′ is +1 we have

µ(Λ) = µ(Λ′)− 1. (11)

Since the orientations of A′ and B′ agree with those of A and B we have

εx′(Λ′) = εx′(Λ) = −1, εy(Λ
′) = εy(Λ). (12)

Now let x1 < x2 < · · · < xm < x be the intersection points of R and B in
the interval (−∞, x) and let εi ∈ {−1,+1} be the intersection index of R
and B at xi. Then there is an integer ℓ ∈ {1, . . . , m} such that xℓ = x′ and
εℓ = −1. Moreover, the winding number w slightly to the left of x is

kx(Λ) =

m∑

i=1

εi.
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It agrees with the value of w slightly to the right of x′ = xℓ. Hence

kx(Λ) =
ℓ∑

i=1

εi =
ℓ−1∑

i=1

εi − 1 = kx′(Λ′)− 1, ky(Λ
′) = ky(Λ). (13)

It follows from equation (9) for Λ′ and equations (11), (12), and (13) that

µ(Λ) = µ(Λ′)− 1

= 2kx′(Λ′) + 2ky(Λ
′) +

εx′(Λ′)− εy(Λ
′)

2
− 1

= 2kx′(Λ′) + 2ky(Λ
′) +

−1− εy(Λ)

2
− 1

= 2kx′(Λ′) + 2ky(Λ
′) +

1− εy(Λ)

2
− 2

= 2kx(Λ) + 2ky(Λ) +
εx(Λ)− εy(Λ)

2
.

This proves Step 4.

Step 5. Assume (10) and #(B ∩R) > 2, follow the arc of B, starting at x,
and let x′ be the next intersection point with R. Assume x < x′ < y, denote
by B′ the arc in B from x′ to y, and let A′ := [x′, y] (see Figure 2). If the
(α, β)-trace Λ′ with boundary ∂Λ′ = (x′, y, A′, B′) satisfies (9) so does Λ.

−2

y

−1

x x’
2

1

Figure 2: Maslov index and catenation: x < x′ < y.

By Step 2 we may assume εx(Λ) = 1. Since the Maslov index of the arc in
B from x to x′ is −1, we have

µ(Λ) = µ(Λ′) + 1. (14)

Since the orientations of A′ and B′ agree with those of A and B we have

εx′(Λ′) = εx′(Λ) = −1, εy(Λ
′) = εy(Λ). (15)
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Now let x < x1 < x2 < · · · < xm < x′ be the intersection points of R and
B in the interval (x, x′) and let εi ∈ {−1,+1} be the intersection index of
R and B at xi. Since the interval [x, x′] in A and the arc in B from x to x′

bound an open half disc, every subarc of B in this half disc must enter and
exit through the open interval (x, x′). Hence the intersections indices of R
and B at the points x1, . . . , xm cancel in pairs and thus

m∑

i=1

εi = 0.

Since kx′(Λ′) is the sum of the intersection indices of R and B′ at all points
to the left of x′ we obtain

kx′(Λ′) = kx(Λ) +

m∑

i=1

εi = kx(Λ), ky(Λ
′) = ky(Λ). (16)

It follows from equation (9) for Λ′ and equations (14), (15), and (16) that

µ(Λ) = µ(Λ′) + 1

= 2kx′(Λ′) + 2ky(Λ
′) +

εx′(Λ′)− εy(Λ
′)

2
+ 1

= 2kx(Λ) + 2ky(Λ) +
−1− εy(Λ)

2
+ 1

= 2kx(Λ) + 2ky(Λ) +
εx(Λ)− εy(Λ)

2
.

This proves Step 5.

Step 6. Assume (10) and #(B ∩ R) > 2, follow the arc of B, starting at
x, and let y′ be the next intersection point with R. Assume y′ > y. Denote
by B′ the arc in B from y to y′, and let A′ := [y, y′] (see Figure 3). If the
(α, β)-trace Λ′ with boundary ∂Λ′ = (y, y′, A′, B′) satisfies (9) so does Λ.

By Step 2 we may assume εx(Λ) = 1. Since the orientation of B′ from y to
y′ is opposite to the orientation of B and the Maslov index of the arc in B
from x to y′ is −1, we have

µ(Λ) = 1− µ(Λ′). (17)

Using again the fact that the orientation of B′ is opposite to the orientation
of B we have

εy(Λ
′) = −εy(Λ), εy′(Λ

′) = −εy′(Λ) = 1. (18)
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2

−2

x y

−1

y’

1

Figure 3: Maslov index and catenation: x < y < y′.

Now let x1 < x2 < · · · < xm be all intersection points of R and B and let
εi ∈ {−1,+1} be the intersection index of R and B at xi. Choose

j < k < ℓ

such that
xj = x, xk = y, xℓ = y′.

Then
εj = εx(Λ) = 1, εk = εy(Λ), εℓ = εy′(Λ) = −1,

and
kx(Λ) =

∑

i<j

εi, ky(Λ) = −
∑

i>k

εi.

For i 6= j the intersection index of R and B′ at xi is −εi. Moreover, ky(Λ
′)

is the sum of the intersection indices of R and B′ at all points to the left of
y and ky′(Λ

′) is minus the sum of the intersection indices of R and B′ at all
points to the right of y′. Hence

ky(Λ
′) = −

∑

i<j

εi −
∑

j<i<k

εi, ky′(Λ
′) =

∑

i>ℓ

εi.

We claim that

ky′(Λ
′) + kx(Λ) = 0, ky(Λ

′) + ky(Λ) =
1 + εy(Λ)

2
. (19)

To see this, note that the value of the winding number w slightly to the left
of x agrees with the value of w slightly to the right of y′, and hence

0 =
∑

i<j

εi +
∑

i>ℓ

εi = kx(Λ) + ky′(Λ
′).
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This proves the first equation in (19). To prove the second equation in (19)
we observe that

m∑

i=1

εi =
εx(Λ) + εy(Λ)

2

and hence

ky(Λ
′) + ky(Λ) = −

∑

i<j

εi −
∑

j<i<k

εi −
∑

i>k

εi

= εj + εk −
m∑

i=1

εi

= εx(Λ) + εy(Λ)−
m∑

i=1

εi

=
εx(Λ) + εy(Λ)

2

=
1 + εy(Λ)

2
.

This proves the second equation in (19).
It follows from equation (9) for Λ′ and equations (17), (18), and (19) that

µ(Λ) = 1− µ(Λ′)

= 1− 2ky(Λ
′)− 2ky′(Λ

′)−
εy(Λ

′)− εy′(Λ
′)

2

= 1− 2ky(Λ
′)− 2ky′(Λ

′)−
−εy(Λ)− 1

2

= 2ky(Λ)− εy(Λ) + 2kx(Λ) +
1 + εy(Λ)

2

= 2kx(Λ) + 2ky(Λ) +
1− εy(Λ)

2
.

Here the first equality follows from (17), the second equality follows from (9)
for Λ′, the third equality follows from (18), and the fourth equality follows
from (19). This proves Step 6.

Step 7. The trace formula (7) holds when Σ = C and Λ satisfies the arc
condition.

It follows from Steps 3-6 by induction that equation (9) holds for every (α, β)-
trace Λ = (x, y,w) whose boundary ∂Λ = (x, y, A,B) satisfies (10). Hence
Step 7 follows from Step 1.
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Next we drop the hypothesis that Λ satisfies the arc condition and extend
the result to planar surfaces. This requires a further three steps.

Step 8. The trace formula (7) holds when Σ = C and x = y.

Under these hypotheses να := ∂w|α\β and νβ := −∂w|β\α are constant. There
are four cases.

Case 1. α is an embedded circle and β is not an embedded circle. In this
case we have νβ ≡ 0 and B = {x}. Moroeover, α is the boundary of a unique
disc ∆α and we assume that α is oriented as the boundary of ∆α. Then
the path γα : [0, 1] → Σ in Definition 2.1 satisfies γα(0) = γα(1) = x and is
homotopic to ναα. Hence

mx(Λ) = my(Λ) = 2να = µ(Λ).

Here the last equation follows from the fact that Λ can be obtained as the
catenation of να copies of the disc ∆α.

Case 2. α is not an embedded circle and β is an embedded circle. This
follows from Case 1 by interchanging α and β.

Case 3. α and β are embedded circles. In this case there is a unique pair of
embedded discs ∆α and ∆β with boundaries α and β, respectively. Orient
α and β as the boundaries of these discs. Then, for every z ∈ Σ \ α ∪ β, we
have

w(z) =





να − νβ, for z ∈ ∆α ∩∆β ,
να, for z ∈ ∆α \∆β,

−νβ , for z ∈ ∆β \∆α,
0, for z ∈ Σ \∆α ∪∆β.

Hence
mx(Λ) = my(Λ) = 2να − 2νβ = µ(Λ).

Here the last equation follows from the fact Λ can be obtained as the catena-
tion of να copies of the disc ∆α (with the orientation inherited from Σ) and
νβ copies of −∆β (with the opposite orientation).

Case 4. Neither α nor β is an embedded circle. Under this hypothesis we
have να = νβ = 0. Hence it follows from Theorem 2.4 that w = 0 and Λ = Λu

for the constant map u ≡ x ∈ D(x, x). Thus

mx(Λ) = my(Λ) = µ(Λ) = 0.

This proves Step 8.
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Step 9. The trace formula (7) holds when Σ = C.

By Step 8, it suffices to assume x 6= y. It follows from Theorem 2.4 that every
u ∈ D(x, y) is homotopic to a catentation u = u0#v, where u0 ∈ D(x, y)
satisfies the arc condition and v ∈ D(y, y). Hence it follows from Steps 7
and 8 that

µ(Λu) = µ(Λu0) + µ(Λv)

=
mx(Λu0) +my(Λu0)

2
+my(Λv)

=
mx(Λu) +my(Λu)

2
.

Here the last equation follows from the fact that wu = wu0 + wv and hence
mz(Λu) = mz(Λu0) +mz(Λv) for every z ∈ α ∩ β. This proves Step 9.

Step 10. The trace formula (7) holds when Σ is planar.

Choose an element u ∈ D(x, y) such that Λu = Λ. Modifying α and β
on the complement of u(D), if necessary, we may assume without loss of
generality that α and β are embedded circles. Let ι : Σ → C be an orientation
preserving embedding. Then ι∗Λ := Λι◦u is an (ι(α), ι(β))-trace in C and
hence satisfies the trace formula (7) by Step 9. Since mι(x)(ι∗Λ) = mx(Λ),
mι(y)(ι∗Λ) = my(Λ), and µ(ι∗Λ) = µ(Λ) it follows that Λ also satisfies the
trace formula. This proves Step 10 and Proposition 4.1

Remark 4.2. Let Λ = (x, y, A,B) be an (α, β)-trace in C as in Step 1 in the
proof of Theorem 3.4. Thus x < y are real numbers, A is the interval [x, y],
and B is an embedded arc with endpoints x, y which is oriented from x to y
and is transverse to R. Thus Z := B ∩ R is a finite set. Define a map

f : Z \ {y} → Z \ {x}

as follows. Given z ∈ Z \ {y} walk along B towards y and let f(z) be the
next intersection point with R. This map is bijective. Now let I be any of
the three open intervals (−∞, x), (x, y), (y,∞). Any arc in B from z to f(z)
with both endpoints in the same interval I can be removed by an isotopy
of B which does not pass through x, y. Call Λ a reduced (α, β)-trace if
z ∈ I implies f(z) /∈ I for each of the three intervals. Then every (α, β)-
trace is isotopic to a reduced (α, β ′)-trace and the isotopy does not affect the
numbers µ, kx, ky, εx, εy.
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x y yx

yxyx

Figure 4: Reduced (α, β)-traces in C.

Let Z+ (respectively Z−) denote the set of all points z ∈ Z = B∩R where
the positive tangent vectors in TzB point up (respectively down). One can
prove that every reduced (α, β)-trace satisfies one of the following conditions.

Case 1: If z ∈ Z+ \ {y} then f(z) > z. Case 2: Z− ⊂ [x, y].
Case 3: If z ∈ Z− \ {y} then f(z) > z. Case 4: Z+ ⊂ [x, y].

(Examples with εx = 1 and εy = −1 are depicted in Figure 4.) One can then
show directly that the reduced (α, β)-traces satisfy equation (9). This gives
rise to an alternative proof of Proposition 4.1 via case distinction.

Proof of Theorem 3.4 in the Simply Connected Case. If Σ is diffeomorphic
to the 2-plane the result has been established in Proposition 4.1. Hence
assume

Σ = S2.

Let u ∈ D(x, y). If u is not surjective the assertion follows from the case
of the complex plane (Proposition 4.1) via stereographic projection. Hence
assume u is surjective and choose a regular value z ∈ S2\(α∪β) of u. Denote

u−1(z) = {z1, . . . , zk}.

For i = 1, . . . , k let εi = ±1 according to whether or not the differential
du(zi) : C → TzΣ is orientation preserving. Choose an open disc ∆ ⊂ S2

centered at z such that
∆̄ ∩ (α ∪ β) = ∅
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and u−1(∆) is a union of open neighborhoods Ui ⊂ D of zi with disjoint
closures such that

u|Ui
: Ui → ∆

is a diffeomorphism for each i which extends to a neighborhood of Ūi. Now
choose a continuous map u′ : D → S2 which agrees with u on D \

⋃
i Ui and

restricts to a diffeomorphism from Ūi to S
2 \∆ for each i. Then z does not

belong to the image of u′ and hence the trace formula (7) holds for u′ (after
smoothing along the boundaries ∂Ui). Moreover, the diffeomorphism

u′|Ūi
: Ūi → S2 \∆

is orientation preserving if and only if εi = −1. Hence

µ(Λu) = µ(Λu′) + 4

k∑

i=1

εi,

mx(Λu) = mx(Λu′) + 4

k∑

i=1

εi,

my(Λu) = my(Λu′) + 4

k∑

i=1

εi.

By Proposition 4.1 the trace formula (7) holds for Λu′ and hence it also holds
for Λu. This proves Theorem 3.4 when Σ is simply connected.

5 The Non Simply Connected Case

The key step for extending Proposition 4.1 to non-simply connected two-
manifolds is the next result about lifts to the universal cover.

Proposition 5.1. Suppose Σ is not diffeomorphic to the 2-sphere. Let
Λ = (x, y,w) be an (α, β)-trace and π : C → Σ be a universal covering. De-
note by Γ ⊂ Diff(C) the group of deck transformations. Choose an element

x̃ ∈ π−1(x) and let α̃ and β̃ be the lifts of α and β through x̃. Let Λ̃ = (x̃, ỹ, w̃)

be the lift of Λ with left endpoint x̃. Then Λ̃ satisfies the cancellation for-
mula

mgex(Λ̃) +mg−1ey(Λ̃) = 0 (20)

for every g ∈ Γ \ {id}. (Proof on page 32.)
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Lemma 5.2 (Annulus Reduction). Suppose Σ is not diffeomorphic to the

2-sphere. Let Λ, π, Γ, Λ̃ be as in Proposition 5.1. If

mgex(Λ̃) +mg−1ey(Λ̃) = mg−1ex(Λ̃) +mgey(Λ̃) (21)

for all g ∈ Γ\{id} then the cancellation formula (20) holds for all g ∈ Γ\{id}.

Proof. If (20) does not hold then there is a deck transformation h ∈ Γ \ {id}

such that mhex(Λ̃)+mh−1ey(Λ̃) 6= 0. Since there can only be finitely many such

h ∈ Γ \ {id}, there is an integer k ≥ 1 such that mhkex(Λ̃) + mh−key(Λ̃) 6= 0

and mhℓex(Λ̃) +mh−ℓey(Λ̃) = 0 for every integer ℓ > k. Define g := hk. Then

mgex(Λ̃) +mg−1ey(Λ̃) 6= 0 (22)

and mgkex(Λ̃) +mg−key(Λ̃) = 0 for every integer k ∈ Z \ {−1, 0, 1}. Define

Σ0 := C/Γ0, Γ0 :=
{
gk | k ∈ Z

}
.

Then Σ0 is diffeomorphic to the annulus. Let π0 : C → Σ0 be the obvious
projection, define α0 := π0(α̃), β0 := π0(β̃), and let Λ0 := (x0, y0,w0) be the
(α0, β0)-trace in Σ0 with x0 := π0(x̃), y0 := π0(ỹ), and

w0(z0) :=
∑

ez∈π−1
0 (z0)

w̃(z̃), z0 ∈ Σ0 \ (α0 ∪ β0).

Then

mx0(Λ0) = mex(Λ̃) +
∑

k∈Z\{0}

mgkex(Λ̃),

my0(Λ0) = mey(Λ̃) +
∑

k∈Z\{0}

mg−key(Λ̃).

By Proposition 4.1 both Λ̃ and Λ0 satisfy the trace formula (7) and they have
the same Viterbo–Maslov index. Hence

0 = µ(Λ0)− µ(Λ̃)

=
mx0(Λ0) +my0(Λ0)

2
−
mex(Λ̃) +mey(Λ̃)

2

=
1

2

∑

k 6=0

(
mgkex(Λ̃) +mg−key(Λ̃)

)

= mgex(Λ̃) +mg−1ey(Λ̃).

Here the last equation follows from (21). This contradicts (22) and proves
Lemma 5.2.
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Lemma 5.3. Suppose Σ is not diffeomorphic to the 2-sphere. Let Λ, π, Γ,
Λ̃ be as in Proposition 5.1 and denote νeα := ∂w̃|

eα\eβ and νeβ := −∂w̃|eβ\eα.
Choose smooth paths

γeα : [0, 1] → α̃, γeβ : [0, 1] → β̃

from γeα(0) = γeβ(0) = x̃ to γeα(1) = γeβ(1) = ỹ such that γeα is an immersion
when νeα 6≡ 0 and constant when νeα ≡ 0, the same holds for γeβ, and

νeα(z̃) = deg(γeα, z̃) for z̃ ∈ α̃ \ {x̃, ỹ},

νeβ(z̃) = deg(γeβ, z̃) for z̃ ∈ β̃ \ {x̃, ỹ}.

Define
Ã := γeα([0, 1]), B̃ := γeβ([0, 1]).

Then, for every g ∈ Γ, we have

gx̃ ∈ Ã ⇐⇒ g−1ỹ ∈ Ã, (23)

gx̃ /∈ Ã and gỹ /∈ Ã ⇐⇒ Ã ∩ gÃ = ∅, (24)

gx̃ ∈ Ã and gỹ ∈ Ã ⇐⇒ g = id. (25)

The same holds with Ã replaced by B̃.

Proof. If α is a contractible embedded circle or not an embedded circle at all
we have Ã ∩ gÃ = ∅ whenever g 6= id and this implies (23), (24) and (25).
Hence assume α is a noncontractible embedded circle. Then we may also
assume, without loss of generality, that π(R) = α, the map z̃ 7→ z̃ + 1
is a deck transformation, π maps the interval [0, 1) bijectively onto α, and

x̃, ỹ ∈ R = α̃ with x̃ < ỹ. Thus Ã = [x̃, ỹ] and, for every k ∈ Z,

x̃+ k ∈ [x̃, ỹ] ⇐⇒ 0 ≤ k ≤ ỹ − x̃ ⇐⇒ ỹ − k ∈ [x̃, ỹ].

Similarly, we have

x̃+ k, ỹ + k /∈ [x̃, ỹ] ⇐⇒ [x̃+ k, ỹ + k] ∩ [x̃, ỹ] = ∅

and

x̃+ k, ỹ + k ∈ [x̃, ỹ] ⇐⇒ [x̃+ k, ỹ + k] ⊂ [x̃, ỹ] ⇐⇒ k = 0.

This proves (23), (24), and (25) for the deck transformation z̃ 7→ z̃ + k. If g
is any other deck transformation, then we have α̃∩ gα̃ = ∅ and so (23), (24),
and (25) are trivially satisfied. This proves Lemma 5.3.
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Lemma 5.4 (Winding Number Comparison). Suppose Σ is not diffeo-

morphic to the 2-sphere. Let Λ, π, Γ, Λ̃ be as in Proposition 5.1, and let
Ã, B̃ ⊂ C be as in Lemma 5.3. Then the following holds.

(i) Equation (21) holds for every g ∈ Γ that satisfies gx̃, gỹ /∈ Ã ∪ B̃.

(ii) If Λ satisfies the arc condition then it also satisfies the cancellation for-
mula (20) for every g ∈ Γ \ {id}.

Proof. We prove (i). Let g ∈ Γ such that gx̃, gỹ /∈ Ã∪ B̃ and let γeα, γeβ be as
in Lemma 5.3. Then w̃(z̃) is the winding number of the loop γeα − γeβ about

the point z̃ ∈ C \ (Ã∪ B̃). Moreover, the paths gγeα, gγeβ : [0, 1] → C connect

the points gx̃, gỹ ∈ C \ (Ã ∪ B̃). Hence

w̃(gỹ)− w̃(gx̃) = (γeα − γeβ) · gγeα = (γeα − γeβ) · gγeβ.

Similarly with g replaced by g−1. Moreover, it follows from Lemma 5.3, that

Ã ∩ gÃ = ∅, B̃ ∩ g−1B̃ = ∅.

Hence

w̃(gỹ)− w̃(gx̃) =
(
γeα − γeβ

)
· gγeα

= gγeα · γeβ

= γeα · g−1γeβ

=
(
γeα − γeβ

)
· g−1γeβ

= w̃(g−1ỹ)− w̃(g−1x̃)

Here we have used the fact that every g ∈ Γ is an orientation preserving
diffeomorphism of C. Thus we have proved that

w̃(gx̃) + w̃(g−1ỹ) = w̃(gỹ) + w̃(g−1x̃).

Since gx̃, gỹ /∈ Ã ∪ B̃, we have

mgex(Λ̃) = 4w̃(gx̃), mg−1ey(Λ̃) = 4w̃(g−1ỹ),

and the same identities hold with g replaced by g−1. This proves (i).

We prove (ii). If Λ satisfies the arc condition then gÃ ∩ Ã = ∅ and

gB̃ ∩ B̃ = ∅ for every g ∈ Γ \ {id}. In particular, for every g ∈ Γ \ {id},

we have gx̃, gỹ /∈ Ã ∪ B̃ and hence (21) holds by (i). Hence it follows from
Lemma 5.2 that the cancellation formula (20) holds for every g ∈ Γ \ {id}.
This proves Lemma 5.4.
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The next lemma deals with (α, β)-traces connecting a point x ∈ α ∩ β to
itself. An example on the annulus is depicted in Figure 5.

Lemma 5.5 (Isotopy Argument). Suppose Σ is not diffeomorphic to the

2-sphere. Let Λ, π, Γ, Λ̃ be as in Proposition 5.1. Suppose that there is a deck
transformation g0 ∈ Γ \ {id} such that ỹ = g0x̃. Then Λ has Viterbo–Maslov

index zero and mgex(Λ̃) = 0 for every g ∈ Γ \ {id, g0}.
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Figure 5: An (α, β)-trace on the annulus with x = y.

Proof. By hypothesis, we have α̃ = g0α̃ and β̃ = g0β̃. Hence α and β
are noncontractible embedded circles and some iterate of α is homotopic to
some iterate of β. Hence, by Lemma A.4, α must be homotopic to β (with
some orientation). Hence we may assume, without loss of generality, that
π(R) = α, the map z̃ 7→ z̃ + 1 is a deck transformation, π maps the interval

[0, 1) bijectively onto α, R = α̃, x̃ = 0 ∈ α̃∩ β̃, β̃ = β̃+1, and that ỹ = ℓ > 0
is an integer. Then g0 is the translation

g0(z̃) = z̃ + ℓ.
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Let Ã := [0, ℓ] ⊂ α̃ and let B̃ ⊂ β̃ be the arc connecting 0 to ℓ. Then, for

z̃ ∈ C \ (Ã ∪ B̃), the integer w̃(z̃) is the winding number of Ã− B̃ about z̃.
Define the projection π0 : C → C by

π0(z̃) := e2πiez/ℓ,

denote α0 := π0(α̃) = S1 and β0 := π(β̃), and let Λ0 = (1, 1,w0) be the
induced (α0, β0)-trace in C with w0(z) :=

∑
ez∈π−1(z) w̃(z̃). Then Λ0 satisfies

the conditions of Step 8, Case 3 in the proof of Proposition 4.1 and its
boundary is given by να0 = ∂w0|α0\β0 ≡ 1 and νβ0 = ∂w0|β0\α0 ≡ 1. Hence

Λ0 and Λ̃ have Viterbo–Maslov index zero.
It remains to prove that mgex(Λ̃) = 0 for every g ∈ Γ \ {id, g0}. To see

this we use the fact that the embedded loops α and β are homotopic with
fixed endpoint x. Hence, by a Theorem of Epstein, they are isotopic with
fixed basepoint x (see [8, Theorem 4.1]). Thus there exists a smooth map
f : R/Z× [0, 1] → Σ such that

f(s, 0) ∈ α, f(s, 1) ∈ β, f(0, t) = x,

for all s ∈ R/Z and t ∈ [0, 1], and the map R/Z → Σ : s 7→ f(s, t) is an
embedding for every t ∈ [0, 1]. Lift this homotopy to the universal cover to

obtain a map f̃ : R× [0, 1] → C such that π ◦ f̃ = f and

f̃(s, 0) ∈ [0, 1], f̃(s, 1) ∈ B̃1, f̃(0, t) = x̃, f̃(s+ k, t) = f̃(s, t) + k

for all s, t ∈ [0, 1] and k ∈ Z. Here B̃1 ⊂ B̃ denotes the arc in B̃ from 0 to 1.
Since the map R/Z → Σ : s 7→ f(s, t) is injective for every t, we have

gx̃ /∈ {x̃, x̃+ 1, . . . , x̃+ ℓ} =⇒ gx̃ /∈ f̃([0, ℓ]× [0, 1])

for every every g ∈ Γ. Now choose a smooth map ũ : D → C with
Λeu = Λ̃ (see Theorem 2.4). Define the homotopy Feu : [0, ℓ] × [0, 1] → C

by Feu(s, t) := ũ(− cos(πs/ℓ), t sin(πs/ℓ)). Then, by Theorem 2.4, Feu is ho-

motopic to f̃ |[0,ℓ]×[0,1] subject to the boundary conditions f̃(s, 0) ∈ α̃ = R,

f̃(s, 1) ∈ β̃, f̃(0, t) = x̃, f̃(ℓ, t) = ỹ. Hence, for every z̃ ∈ C\ (α̃∪ β̃), we have

w̃(z̃) = deg(ũ, z) = deg(Feu, z̃) = deg(f̃ , z̃).

In particular, choosing z̃ near gx̃, we find mgex(Λ̃) = 4 deg(f̃ , gx̃) = 0 for
every g ∈ Γ that is not one of the translations z̃ 7→ z̃ + k for k = 0, 1, . . . , ℓ.
This proves the assertion in the case ℓ = 1.
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If ℓ > 1 it remains to prove mk(Λ̃) = 0 for k = 1, . . . , ℓ− 1. To see this,

let Ã1 := [0, 1], B̃1 ⊂ B̃ be the arc from 0 to 1, w̃1(z̃) be the winding number

of Ã1 − B̃1 about z̃ ∈ C \ (Ã1 ∪ B̃1), and define Λ̃1 := (0, 1, w̃1). Then, by

what we have already proved, the (α̃, β̃)-trace Λ̃1 satisfies mgex(Λ̃1) = 0 for
every g ∈ Γ other than the translations by 0 or 1. In particular, we have
mj(Λ̃1) = 0 for every j ∈ Z \ {0, 1} and also m0(Λ̃1)+m1(Λ̃1) = 2µ(Λ̃1) = 0.

Since w̃(z̃) =
∑ℓ−1

j=0 w̃1(z̃ − j) for z̃ ∈ C \ (Ã ∪ B̃), we obtain

mk(Λ̃) =

ℓ−1∑

j=0

mk−j(Λ̃1) = 0

for every k ∈ Z \ {0, ℓ}. This proves Lemma 5.5.

The next example shows that Lemma 5.4 cannot be strengthened to assert
the identity mgex(Λ̃) = 0 for every g ∈ Γ with gx̃, gỹ /∈ Ã ∪ B̃.

Example 5.6. Figure 6 depicts an (α, β)-trace Λ = (x, y,w) on the annulus
Σ = C/Z that has Viterbo–Maslov index one and satisfies the arc condition.

The lift satisfies mex(Λ̃) = −3, mex+1(Λ̃) = 4, mey(Λ̃) = 5, and mey−1(Λ̃) = −4.
Thus mx(Λ) = my(Λ) = 1.
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Figure 6: An (α, β)-trace on the annulus satisfying the arc condition.
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Proof of Proposition 5.1. The proof has five steps.

Step 1. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ such that

gx̃ ∈ Ã \ B̃, gỹ /∈ Ã ∪ B̃.

(An example is depicted in Figure 7.) Then (21) holds.
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Figure 7: An (α, β)-trace on the torus not satisfying the arc condition.

The proof is a refinement of the winding number comparison argument in
Lemma 5.4. Since gx̃ /∈ B̃ we have g 6= id and, since x̃, gx̃ ∈ Ã ⊂ α̃, it
follows that α is a noncontractible embedded circle. Hence we may choose
the universal covering π : C → Σ and the lifts α̃, β̃, Λ̃ such that π(R) = α,
the map z̃ 7→ z̃ + 1 is a deck transformation, the projection π maps the
interval [0, 1) bijectively onto α, and

α̃ = R, x̃ = 0 ∈ α̃ ∩ β̃, ỹ > 0.

By hypothesis and Lemma 5.3 there is an integer k such that

0 < k < ỹ, gx̃ = k, g−1ỹ = ỹ − k.

Thus g is the deck transformation z̃ 7→ z̃ + k.
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Since gx̃ /∈ B̃ and gỹ /∈ B̃ it follows from Lemma 5.3 that g−1ỹ /∈ B̃ and
g−1x̃ /∈ B̃ and hence, again by Lemma 5.3, we have

B̃ ∩ gB̃ = B̃ ∩ g−1B̃ = ∅.

With γeα and γeβ chosen as in Lemma 5.3, this implies

γeβ · (γeβ − k) = (γeβ + k) · γeβ = 0. (26)

Since k,−k, ỹ + k, ỹ − k /∈ B̃, there exists a constant ε > 0 such that

−ε ≤ t ≤ ε =⇒ k + it, −k + it, ỹ − k + it, ỹ + k + it /∈ B̃.

The paths gγeα ± iε and gγeβ ± iε both connect the point gx̃± iε to gỹ ± iε.

Likewise, the paths g−1γeα±iε and g−1γeβ±iε both connect the point g−1x̃±iε

to g−1ỹ ± iε. Hence

w̃(gỹ ± iε)− w̃(gx̃± iε) = (γeα − γeβ) · (gγeα ± iε)

= (γeα − γeβ) · (γeα + k ± iε)

= (γeα + k ± iε) · γeβ

= γeα · (γeβ − k ∓ iε)

= (γeα − γeβ) · (γeβ − k ∓ iε)

= (γeα − γeβ) · (g
−1γeβ ∓ iε)

= w̃(g−1ỹ ∓ iε)− w̃(g−1x̃∓ iε).

Here the last but one equation follows from (26). Thus we have proved

w̃(gx̃+ iε) + w̃(g−1ỹ − iε) = w̃(g−1x̃− iε) + w̃(gỹ + iε),

w̃(gx̃− iε) + w̃(g−1ỹ + iε) = w̃(g−1x̃+ iε) + w̃(gỹ − iε).
(27)

Since

mgex(Λ̃) = 2w̃(gx̃+ iε) + 2w̃(gx̃− iε),

mgey(Λ̃) = 2w̃(gỹ + iε) + 2w̃(gỹ − iε),

mg−1ex(Λ̃) = 2w̃(g−1x̃+ iε) + 2w̃(g−1x̃− iε),

mg−1ey(Λ̃) = 2w̃(g−1ỹ + iε) + 2w̃(g−1ỹ − iε),

Step 1 follows by taking the sum of the two equations in (27).
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Step 2. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ. Suppose that
either gx̃, gỹ /∈ Ã or gx̃, gỹ /∈ B̃. Then (21) holds.

If gx̃, gỹ /∈ Ã ∪ B̃ the assertion follows from Lemma 5.4. If gx̃ ∈ Ã \ B̃ and

gỹ /∈ Ã∪B̃ the assertion follows from Step 1. If gx̃ /∈ Ã∪B̃ and gỹ ∈ Ã\B̃ the
assertion follows from Step 1 by interchanging x̃ and ỹ. Namely, (21) holds

for Λ̃ if and only if it holds for the (α̃, β̃)-trace −Λ̃ := (ỹ, x̃,−w̃). This covers

the case gx̃, gỹ /∈ B̃. If gx̃, gỹ /∈ Ã the assertion follows by interchanging Ã
and B̃. Namely, (21) holds for Λ̃ if and only if it holds for the (β̃, α̃)-trace

Λ̃∗ := (x̃, ỹ,−w̃). This proves Step 2.

Step 3. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ such that

gx̃ ∈ Ã \ B̃, gỹ ∈ B̃ \ Ã.

(An example is depicted in Figure 8.) Then the cancellation formula (20)
holds for g and g−1.
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Figure 8: An (α, β)-trace on the annulus with gx̃ ∈ Ã and gỹ ∈ B̃.

Since gx̃ /∈ B̃ (and gỹ /∈ Ã) we have g 6= id and, since x̃, gx̃ ∈ Ã ⊂ α̃

and ỹ, gỹ ∈ B̃ ⊂ β̃, it follows that gα̃ = α̃ and gβ̃ = β̃. Hence α and β are
noncontractible embedded circles and some iterate of α is homotopic to some
iterate of β. So α is homotopic to β (with some orientation), by Lemma A.4.
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Choose the universal covering π : C → Σ and the lifts α̃, β̃, Λ̃ such that
π(R) = α, the map z̃ 7→ z̃ + 1 is a deck transformation, π maps the interval
[0, 1) bijectively onto α, and

α̃ = R, x̃ = 0 ∈ α̃ ∩ β̃, ỹ > 0.

Thus Ã = [0, ỹ] is the arc in α̃ from 0 to ỹ and B̃ is the arc in β̃ from 0 to ỹ.
Moreover, since α is homotopic to β, we have

β̃ = β̃ + 1

and the arc in β̃ from 0 to 1 is a fundamental domain for β. Since gα̃ = α̃,
the deck transformation g is given by z̃ 7→ z̃ + ℓ for some integer ℓ. Since
gx̃ ∈ Ã \ B̃ and gỹ ∈ B̃, we have g−1ỹ /∈ B̃ and g−1x̃ ∈ B̃ by Lemma 5.3.
Hence

0 < ℓ < ỹ, ℓ /∈ B̃, ỹ + ℓ ∈ B̃, ỹ − ℓ /∈ B̃, −ℓ ∈ B̃.

This shows that, walking along β̃ from 0 to ỹ (traversing B̃) one encounters
some negative integer and therefore no positive integers. Hence

Ã ∩ Z =
{
0, 1, 2, · · · , k eA

}
, B̃ ∩ Z =

{
0,−1,−2, · · · ,−k eB

}
,

where k eA is the number of fundamental domains of α̃ contained in Ã and k eB

is the number of fundamental domains of β̃ contained in B̃ (see Figure 8).

For 0 ≤ k ≤ k eA let Ãk ⊂ α̃ and B̃k ⊂ β̃ be the arcs from 0 to ỹ− k. Thus Ãk

is obtained from Ã by removing k fundamental domains at the end, while B̃k

is obtained from B̃ by attaching k fundamental domains at the end. Consider
the (α̃, β̃)-trace

Λ̃k := (0, ỹ − k, w̃k), ∂Λ̃k := (0, ỹ − k, Ãk, B̃k),

where w̃k : C \ (Ãk ∪ B̃k) → Z is the winding number of Ãk − B̃k. Then

B̃k ∩ Z =
{
0,−1,−2, · · · ,−k eB − k

}

and Λ̃0 = Λ̃. We prove that, for each k, the (α̃, β̃)-trace Λ̃k satisfies

mj(Λ̃k) +mey−k−j(Λ̃k) = 0 ∀ j ∈ Z \ {0}. (28)

If ỹ is an integer, then (28) follows from Lemma 5.5. Hence we may assume
that ỹ is not an integer.
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We prove equation (28) by reverse induction on k. First let k = k eA. Then

we have j, ỹ − k + j /∈ Ãk for every j ∈ N. Hence it follows from Step 2 that

mj(Λ̃k) +mey−k−j(Λ̃k) = m−j(Λ̃k) +mey−k+j(Λ̃) ∀ j ∈ N. (29)

Thus we can apply Lemma 5.2 to the projection of Λ̃k to the quotient C/Z.

Hence Λ̃k satisfies (28).
Now fix an integer k ∈ {0, 1, . . . , k eA − 1} and suppose, by induction, that

Λ̃k+1 satisfies (28). Denote by Ã′ ⊂ α̃ and B̃′ ⊂ β̃ the arcs from ỹ − k − 1

to 1, and by Ã′′ ⊂ α̃ and B̃′′ ⊂ β̃ the arcs from 1 to ỹ − k. Then Λ̃k is the
catenation of the (α̃, β̃)-traces

Λ̃k+1 := (0, ỹ − k − 1, w̃k+1), ∂Λ̃k+1 = (0, ỹ − k − 1, Ãk+1, B̃k+1),

Λ̃′ := (ỹ − k − 1, 1, w̃′), ∂Λ̃′ = (ỹ − k − 1, 1, Ã′, B̃′),

Λ̃′′ := (1, ỹ − k, w̃′′), ∂Λ̃′′ = (1, ỹ − k, Ã′′, B̃′′).

Here w̃′(z̃) is the winding number of the loop Ã′− B̃′ about z̃ ∈ C \ (Ã′∪ B̃′)

and simiarly for w̃′′. Note that Λ̃′′ is the shift of Λ̃k+1 by 1. The catenation
of Λ̃k+1 and Λ̃′ is the (α̃, β̃)-trace from 0 to 1. Hence it has Viterbo–Maslov
index zero, by Lemma 5.5, and satisfies

mj(Λ̃k+1) +mj(Λ̃
′) = 0 ∀j ∈ Z \ {0, 1}. (30)

Since the catenation of Λ̃′ and Λ̃′′ is the (α̃, β̃)-trace from ỹ− k− 1 to ỹ− k,
it also has Viterbo–Maslov index zero and satisfies

mey−k−j(Λ̃
′) +mey−k−j(Λ̃

′′) = 0 ∀j ∈ Z \ {0, 1}. (31)

Moreover, by the induction hypothesis, we have

mj(Λ̃k+1) +mey−k−1−j(Λ̃k+1) = 0 ∀j ∈ Z \ {0}. (32)

Combining the equations (30), (31), (32) we find that, for j ∈ Z \ {0, 1},

mj(Λ̃k) +mey−k−j(Λ̃k) = mj(Λ̃k+1) +mj(Λ̃
′) +mj(Λ̃

′′)

+mey−k−j(Λ̃k+1) +mey−k−j(Λ̃
′) +mey−k−j(Λ̃

′′)

= mj(Λ̃k+1) +mj(Λ̃
′)

+mey−k−j(Λ̃
′) +mey−k−j(Λ̃

′′)

+mj−1(Λ̃k+1) +mey−k−j(Λ̃k+1)

= 0.
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For j = 1 we obtain

m1(Λ̃k) +mey−k−1(Λ̃k) = m1(Λ̃k+1) +m1(Λ̃
′) +m1(Λ̃

′′)

+mey−k−1(Λ̃k+1) +mey−k−1(Λ̃
′) +mey−k−1(Λ̃

′′)

= m1(Λ̃k+1) +mey−k−2(Λ̃k+1)

+m0(Λ̃k+1) +mey−k−1(Λ̃k+1)

+mey−k−1(Λ̃
′) +m1(Λ̃

′)

= 2µ(Λ̃k+1) + 2µ(Λ̃′)

= 0.

Here the last but one equation follows from equation (32) and Proposition 4.1,

and the last equation follows from Lemma 5.5. Hence Λ̃k satisfies (28). This
completes the induction argument for the proof of Step 3.

Step 4. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ such that

gx̃ ∈ Ã ∩ B̃, gỹ /∈ Ã ∪ B̃.

Then the cancellation formula (20) holds for g and g−1.

The proof is by induction and catenation based on Step 2 and Lemma 5.5.
Since gỹ /∈ Ã ∪ B̃ we have g 6= id. Since gx̃ ∈ Ã ∩ B̃ we have α̃ = gα̃
and β̃ = gβ̃. Hence α and β are noncontractible embedded circles, and they
are homotopic (with some orientation) by Lemma A.4. Thus we may choose

π : C → Σ, α̃, β̃, Λ̃ as in Step 3. By hypothesis there is an integer k ∈ Ã∩ B̃.
Hence Ã and B̃ do not contain any negative integers. Choose k eA, k eB ∈ N

such that

Ã ∩ Z =
{
0, 1, . . . , k eA

}
, B̃ ∩ Z =

{
0, 1, . . . , k eB

}
.

Assume without loss of generality that

k eA ≤ k eB.

For 0 ≤ k ≤ k eA denote by Ãk ⊂ Ã and B̃k ⊂ B̃ the arcs from 0 to ỹ − k and

consider the (α̃, β̃)-trace

Λ̃k := (0, ỹ − k, w̃k), ∂Λ̃k := (0, ỹ − k, Ãk, B̃k).
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In this case
B̃k ∩ Z = {0, 1, . . . , k eB − k}.

As in Step 3, it follows by reverse induction on k that Λ̃k satisfies (28) for
every k. We assume again that ỹ is not an integer. (Otherwise (28) follows

from Lemma 5.5). If k = k eA then j, ỹ − k + j /∈ Ãk for every j ∈ N, hence it

follows from Step 2 that Λ̃k satisfies (29), and hence it follows from Lemma 5.2

for the projection of Λ̃k to the annulus C/Z that Λ̃k also satisfies (28). The
induction step is verbatim the same as in Step 3 and will be omitted. This
proves Step 4.

Step 5. We prove Proposition 5.1.

If both points gx̃, gỹ are contained in Ã (or in B̃) then g = id by Lemma 5.3,
and in this case equation (21) is a tautology. If both points gx̃, gỹ are not

contained in Ã∪ B̃, equation (21) has been established in Lemma 5.4. More-

over, we can interchange x̃ and ỹ or Ã and B̃ as in the proof of Step 2. Thus
Steps 1 and 4 cover the case where precisely one of the points gx̃, gỹ is con-
tained in Ã ∪ B̃ while Step 3 covers the case where g 6= id and both points
gx̃, gỹ are contained in Ã∪ B̃. This shows that equation (21) holds for every
g ∈ Γ \ {id}. Hence, by Lemma 5.2, the cancellation formula (20) holds for
every g ∈ Γ \ {id}. This proves Proposition 5.1.

Proof of Theorem 3.4 in the Non Simply Connected Case. Choose a univer-
sal covering π : C → Σ and let Γ, α̃, β̃, and Λ̃ = (x̃, ỹ, w̃) be as in Proposi-
tion 5.1. Then

mx(Λ) +my(Λ)−mex(Λ̃)−mey(Λ̃) =
∑

g 6=id

(
mgex(Λ̃) +mg−1ey(Λ̃)

)
= 0.

Here the last equation follows from the cancellation formula in Proposi-
tion 5.1. Hence, by Proposition 4.1, we have

µ(Λ) = µ(Λ̃) =
mex(Λ̃) +mey(Λ̃)

2
=
mx(Λ) +my(Λ)

2
.

This proves the trace formula in the case where Σ is not simply connected.
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II. Combinatorial Lunes

6 Lunes and Traces

We denote the universal covering of Σ by

π : Σ̃ → Σ

and, when Σ is not diffeomorphic to the 2-sphere, we assume Σ̃ = C.

Definition 6.1 (Smooth Lunes). Assume (H). A smooth (α, β)-lune is
an orientation preserving immersion u : D → Σ such that

u(D ∩ R) ⊂ α, u(D ∩ S1) ⊂ β,

Three examples of smooth lunes are depicted in Figure 9. Two lunes are
said to be equivalent iff there is an orientation preserving diffeomorphism
ϕ : D → D such that

ϕ(−1) = −1, ϕ(1) = 1, u′ = u ◦ ϕ.

The equivalence class of u is denoted by [u]. That u is an immersion means
that u is smooth and du is injective in all of D, even at the corners ±1.
The set u(D ∩ R) is called the bottom boundary of the lune, and the set
u(D ∩ S1) is called the top boundary. The points

x = u(−1), y = u(1)

are called respectively the left and right endpoints of the lune. The locally
constant function

Σ \ u(∂D) → N : z 7→ #u−1(z)

is called the counting function of the lune. (This function is locally
constant because a proper local homeomorphism is a covering projection.)
A smooth lune is said to be embedded iff the map u is injective. These
notions depend only on the equivalence class [u] of the smooth lune u.

Our objective is to characterize smooth lunes in terms of their boundary
behavior, i.e. to say when a pair of immersions uα : (D ∩ R,−1, 1) → (α, x, y)
and uβ : (D ∩ S1,−1, 1) → (β, x, y) extends to a smooth (α, β)-lune u. Recall
the following definitions and theorems from Part I.
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Figure 9: Three lunes.
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Definition 6.2 (Traces). Assume (H). An (α, β)-trace is a triple

Λ = (x, y,w)

such that x, y ∈ α ∩ β and w : Σ \ (α ∪ β) → Z is a locally constant function
such that there exists a smooth map u : D → Σ satisfying

u(D ∩ R) ⊂ α, u(D ∩ S1) ⊂ β, (33)

u(−1) = x, u(1) = y, (34)

w(z) = deg(u, z), z ∈ Σ \ (α ∪ β). (35)

The (α, β)-trace associated to a smooth map u : D → Σ satisfying (33) is
denoted by Λu.

The boundary of an (α, β)-trace Λ = (x, y,w) is the triple

∂Λ := (x, y, ∂w).

Here
∂w : (α \ β) ∪ (β \ α) → Z

is the locally constant function that assigns to z ∈ α\β the value of w slightly
to the left of α minus the value of w slightly to the right of α near z, and
to z ∈ β \ α the value of w slightly to the right of β minus the value of w
slightly to the left of β near z.

In Lemma 2.3 above it was shown that, if Λ = (x, y,w) is the (α, β)-trace
of a smooth map u : D → Σ that satisfies (33), then ∂Λu = (x, y, ν), where
the function ν := ∂w : (α \ β) ∪ (β \ α) → Z is given by

ν(z) =

{
deg(u

∣∣
∂D∩R

: ∂D ∩ R → α, z), for z ∈ α \ β,
− deg(u

∣∣
∂D∩S1 : ∂D ∩ S1 → β, z), for z ∈ β \ α.

(36)

Here we orient the one-manifolds D∩R and D∩S1 from −1 to +1. Moreover,
in Theorem 2.4 above it was shown that the homotopy class of a smooth map
u : D → Σ satisfying the boundary condition (33) is uniquely determined by
its trace Λu = (x, y,w). If Σ is not diffeomorphic to the 2-sphere then its
universal cover is diffeomorphic to the 2-plane. In this situation it was also
shown in Theorem 2.4 that the homotopy class of u and the degree function
w are uniquely determined by the triple ∂Λu = (x, y, ν).
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Remark 6.3 (The Viterbo–Maslov index). Let Λ = (x, y,w) be an
(α, β)-trace and denote by µ(Λ) its Viterbo–Maslov index as defined in 3.1
above (see also [39]). For z ∈ α∩β let mz(Λ) be the sum of the four values of
the function w encountered when walking along a small circle surrounding z.
In Theorem 3.4 it was shown that the Viterbo–Maslov index of Λ is given by
the trace formula

µ(Λ) =
mx(Λ) +my(Λ)

2
. (37)

Let Λ′ = (y, z,w′) be another (α, β)-trace. The catenation of Λ and Λ′ is
defined by

Λ#Λ′ := (x, z,w + w′).

It is again an (α, β)-trace and has Viterbo–Maslov index

µ(Λ#Λ′) = µ(Λ) + µ(Λ′). (38)

For a proof see [39, 30].

Definition 6.4 (Arc Condition). Let Λ = (x, y,w) be an (α, β)-trace and

να := ∂w|α\β , νβ := −∂w|β\α.

Λ is said to satisfy the arc condition if

x 6= y, min |να| = min |νβ| = 0. (39)

When Λ satisfies the arc condition there are arcs A ⊂ α and B ⊂ β from x
to y such that

να(z) =

{
±1, if z ∈ A,
0, if z ∈ α \ A,

νβ(z) =

{
±1, if z ∈ B,
0, if z ∈ β \B.

(40)

Here the plus sign is chosen iff the orientation of A from x to y agrees with
that of α, respectively the orientation of B from x to y agrees with that of β.
In this situation the quadruple (x, y, A,B) and the triple (x, y, ∂w) determine
one another and we also write

∂Λ = (x, y, A,B)

for the boundary of Λ. When u : D → Σ is a smooth map satisfying (33)
and Λu = (x, y,w) satisfies the arc condition and ∂Λu = (x, y, A,B) then the
path s 7→ u(− cos(πs), 0) is homotopic in α to a path traversing A and the
path s 7→ u(− cos(πs), sin(πs)) is homotopic in β to a path traversing B.
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Theorem 6.5. Assume (H). If u : D → Σ is a smooth (α, β)-lune then its
(α, β)-trace Λu satisfies the arc condition.

Proof. See Section 7 page 55.

Definition 6.6 (Combinatorial Lunes). Assume (H). A combinatorial
(α, β)-lune is an (α, β)-trace Λ = (x, y,w) with boundary ∂Λ =: (x, y, A,B)
that satisfies the arc condition and the following.

(I) w(z) ≥ 0 for every z ∈ Σ \ (α ∪ β).

(II) The intersection index of A and B at x is +1 and at y is −1.

(III) w(z) ∈ {0, 1} for z sufficiently close to x or y.

Condition (II) says that the angle from A to B at x is between zero and π
and the angle from B to A at y is also between zero and π.

1

1

2
−1

2

−1

1 1 1

1

Figure 10: (α, β)-traces which satisfy the arc condition but are not lunes.

Theorem 6.7 (Existence). Assume (H) and let Λ = (x, y,w) be an (α, β)-
trace. Consider the following three conditions.

(i) There exists a smooth (α, β)-lune u such that Λu = Λ.

(ii) w ≥ 0 and µ(Λ) = 1.

(iii) Λ is a combinatorial (α, β)-lune.

Then (i) =⇒ (ii) ⇐⇒ (iii). If Σ is simply connected then all three conditions
are equivalent.

Proof. See Section 8 page 63.
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Theorem 6.8 (Uniqueness). Assume (H). If two smooth (α, β)-lunes have
the same trace then they are equivalent.

Proof. See Section 8 page 63.

Corollary 6.9. Assume (H) and let

Λ = (x, y,w)

be an (α, β)-trace. Choose a universal covering π : Σ̃ → Σ, a point

x̃ ∈ π−1(x),

and lifts α̃ and β̃ of α and β such that

x̃ ∈ α̃ ∩ β̃.

Let
Λ̃ = (x̃, ỹ, w̃)

be the lift of Λ to the universal cover.

(i) If Λ̃ is a combinatorial (α̃, β̃)-lune then Λ is a combinatorial (α, β)-lune.

(ii) Λ̃ is a combinatorial (α̃, β̃)-lune if and only if there exists a smooth
(α, β)-lune u such that Λu = Λ.

Proof. Lifting defines a one-to-one correspondence between smooth (α, β)-

lunes with trace Λ and smooth (α̃, β̃)-lunes with trace Λ̃. Hence the assertions
follow from Theorem 6.7.

Remark 6.10. Assume (H) and let Λ be an (α, β)-trace. We conjecture
that the three conditions in Theorem 6.7 are equivalent, even when Σ is not
simply connected, i.e.

If Λ is a combinatorial (α, β)-lune
then there exists a smooth (α, β)-lune u such that Λ = Λu.

Theorem 6.7 shows that this conjecture is equivalent to the following.

If Λ is a combinatorial (α, β)-lune

then Λ̃ is a combinatorial (α̃, β̃)-lune.

The hard part is to prove that Λ̃ satisfies (I), i.e. that the winding numbers
are nonnegative.
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Remark 6.11. Assume (H). Corollary 6.9 and Theorem 6.8 suggest the
following algorithm for finding a smooth (α, β)-lune.

1. Fix two points x, y ∈ α ∩ β with opposite intersection indices, and two
oriented embedded arcs A ⊂ α and B ⊂ β from x to y so that (II) holds.

2. If A is not homotopic to B with fixed endpoints discard this pair.1 Oth-
erwise (x, y, A,B) is the boundary of an (α, β)-trace Λ = (x, y,w) satisfying
the arc condition and (II) (for a suitable function w to be chosen below).

3a. If Σ is diffeomorphic to the 2-sphere let w : Σ \ (A ∪ B) → Z be the
winding number of the loop A − B in Σ \ {z0}, where z0 ∈ α \ A is chosen
close to x. Check if w satisfies (I) and (III). If yes, then Λ = (x, y,w) is a
combinatorial (α, β)-lune and hence, by Theorems 6.7 and 6.8, gives rise to
a smooth (α, β)-lune u, unique up to isotopy.

3b. If Σ is not diffeomorphic to the 2-sphere choose lifts Ã of A and B̃ of B
to a universal covering π : C → Σ connecting x̃ and ỹ and let

w̃ : C \ (Ã ∪ B̃) → Z

be the winding number of Ã − B̃. Check if w̃ satisfies (I) and (III). If yes,

then Λ̃ := (x̃, ỹ, w̃) is a combinatorial (α̃, β̃)-lune and hence, by Theorem 6.7,
gives rise to a smooth (α, β)-lune u such that

Λu = Λ := (x, y,w), w(z) :=
∑

ez∈π−1(z)

w̃(z̃).

By Theorem 6.8, the (α, β)-lune u is uniquely determined by Λ up to isotopy.

Proposition 6.12. Assume (H) and let Λ = (x, y,w) be an (α, β)-trace that
satisfies the arc condition and let ∂Λ =: (x, y, A,B). Let S be a connected
component of Σ \ (A∪B) such that w|S 6≡ 0. Then S is diffeomorphic to the
open unit disc in C.

Proof. By Definition 6.2, there is a smooth map u : D → Σ satisfying (33)
such that Λu = Λ. By a homotopy argument we may assume, without loss
of generality, that u(D ∩ R) = A and u(D ∩ S1) = B. Let S be a connected
component of Σ \ (A ∪ B) such that w does not vanish on S. We prove in
two steps that S is diffeomorphic to the open unit disc in C.

1 This problem is solvable via Dehn’s algorithm. See the wikipedia article

Small Cancellation Theory and the references cited therein.
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Step 1. If S is not diffeomorphic to the open unit disc in C then there is
an embedded loop γ : R/Z → S and a loop γ′ : R/Z → Σ with intersection
number γ · γ′ = 1.

If S has positive genus there are in fact two embedded loops in S with
intersection number one. If S has genus zero but is not diffeomorphic to the
disc it is diffeomorphic to a multiply connected subset of C, i.e. a disc with
at least one hole cut out. Let γ : R/Z → S be an embedded loop encircling
one of the holes and choose an arc in S which connects two boundary points
and has intersection number one with γ. (For an elegant construction of
such a loop in the case of an open subset of C see Ahlfors [3].) Since Σ \S is
connected the arc can be completed to a loop in Σ which still has intersection
number one with γ. This proves Step 1.

Step 2. S is diffeomorphic to the open unit disc in C.

Assume, by contradiction, that this is false and choose γ and γ′ as in Step 1.
By transversality theory we may assume that u is transverse to γ. Since
C := γ(R/Z) is disjoint from u(∂D) = A ∪ B it follows that Γ := u−1(C)
is a disjoint union of embedded circles in ∆ := u−1(S) ⊂ D. Orient Γ such
that the degree of u|Γ : Γ → C agrees with the degree of u|∆ : ∆ → S.
More precisely, let z ∈ Γ and t ∈ R/Z such that u(z) = γ(t). Call a nonzero
tangent vector ẑ ∈ TzΓ positive if the vectors γ̇(t), du(z)iẑ form a positively
oriented basis of Tu(z)Σ. Then, if z ∈ Γ is a regular point of both u|∆ : ∆ → S
and u|Γ : Γ → C, the linear map du(z) : C → Tu(z)Σ has the same sign as
its restriction du(z) : TzΓ → Tu(z)C. Thus u|Γ : Γ → C has nonzero degree.
Choose a connected component Γ0 of Γ such that u|Γ0 : Γ0 → C has degree
d 6= 0. Since Γ0 is a loop in D it follows that the d-fold iterate of γ is
contractible. Hence γ is contractible by A.3 in Appendix A. This proves
Step 2 and Proposition 6.12.

7 Arcs

In this section we prove Theorem 6.5. The first step is to prove the arc
condition under the hypothesis that α and β are not contractible (Propo-
sition 7.1). The second step is to characterize embedded lunes in terms of
their traces (Proposition 7.4). The third step is to prove the arc condition
for lunes in the two-sphere (Proposition 7.7).
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Proposition 7.1. Assume (H), suppose Σ is not simply connected, and
choose a universal covering π : C → Σ. Let Λ = (x, y,w) be an (α, β)-trace
and denote

να := ∂w|α\β , νβ := −∂w|β\α.

Choose lifts α̃, β̃, and Λ̃ = (x̃, ỹ, w̃) of α, β, and Λ such that Λ̃ is an (α̃, β̃)-

trace. Thus x̃, ỹ ∈ α̃ ∩ β̃ and the path from x̃ to ỹ in α̃ (respecively β̃)
determined by ∂w̃ is the lift of the path from x to y in α (respectively β)
determined by ∂w. Assume

w̃ ≥ 0, w̃ 6≡ 0.

Then the following holds

(i) If α is a noncontractible embedded circle then there exists an oriented arc
A ⊂ α from x to y (equal to {x} in the case x = y) such that

να(z) =

{
±1, for z ∈ A \ β,
0, for z ∈ α \ (A ∪ β).

(41)

Here the plus sign is chosen if and only if the orientations of A and α agree.
If β is a noncontractible embedded circle the same holds for νβ.

(ii) If α and β are both noncontractible embedded circles then Λ satisfies the
arc condition.

Proof. We prove (i). The universal covering π : C → Σ and the lifts α̃, β̃,

and Λ̃ = (x̃, ỹ, w̃) can be chosen such that

α̃ = R, x̃ = 0, ỹ = a ≥ 0, π(z̃ + 1) = π(z̃),

and π maps the interval [0, 1) bijectively onto α. Denote by

B̃ ⊂ β̃

the closure of the support of

νeβ := −∂w̃|eβ\eα.

If β is noncontractible then B̃ is the unique arc in β̃ from 0 to a. If β is
contractible then β̃ ⊂ C is an embedded circle and B̃ is either an arc in β̃
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Figure 11: The lift of an (α, β)-trace with w̃ ≥ 0.

from 0 to a or is equal to β̃. We must prove that A := π([0, a]) is an arc or,
equivalently, that a < 1.

Let Γ be the set of connected components γ of B̃ ∩ (R× [0,∞)) such that
the function w̃ is zero on one side of γ and positive on the other. If γ ∈ Γ,
neither end point of γ can lie in the open interval (0, a) since the function
w̃ is at least one above this interval. We claim that there exists a connected
component γ ∈ Γ whose endpoints b and c satisfy

b ≤ 0 ≤ a ≤ c, ∂γ = {b, c}. (42)

(See Figure 11.) To see this walk slightly above the real axis towards zero,

starting at −∞. Just before the first crossing b1 with B̃ turn left and follow
the arc in B̃ until it intersects the real axis again at c1. The two intersections
b1 and c1 are the endpoints of an element γ1 of Γ. Obviously b1 ≤ 0 and,
as noted above, c1 cannot lie in the interval (0, a). For the same reason c1
cannot be equal to zero. Hence either c1 < 0 or c1 ≥ a. In the latter case γ1
is the required arc γ. In the former case we continue walking towards zero
along the real axis until the next intersection with B̃ and repeat the above
procedure. Because the set of intersection points of B̃ with α̃ = R is finite
the process must terminate after finitely many steps. Thus we have proved
the existence of an arc γ ∈ Γ satisfying (42).

Assume that
c ≥ b+ 1.

If c = b + 1 then c ∈ β̃ ∩ (β̃ + 1) and hence β̃ = β̃ + 1. It follows that the

intersection numbers of R and β̃ at b and c agree. But this contradicts the
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fact that b and c are the endpoints of an arc in β̃ contained in the closed
upper halfplane. Thus we have c > b + 1. When this holds the arc γ and
its translate γ + 1 must intersect and their intersection does not contain the
endpoints b and c. We denote by ζ ∈ γ \ {b, c} the first point in γ + 1 we
encounter when walking along γ from b to c. Let

U0 ⊂ β̃, U1 ⊂ β̃ + 1

be sufficiently small connected open neighborhoods of ζ , so that π : U0 → β
and π : U1 → β are embeddings and their images agree. Thus

π(U0) = π(U1) ⊂ β

is an open neighborhood of z := π(ζ) in β. Hence it follows from a lifting
argument that U0 = U1 ⊂ γ + 1 and this contradicts our choice of ζ . This
contradiction shows that our hypothesis c ≥ b + 1 must have been wrong.
Thus we have proved that

b ≤ 0 ≤ a ≤ c < b+ 1 ≤ 1.

Hence 0 ≤ a < 1 and so A = π([0, a]) is an arc, as claimed. In the case a = 0
we obtain the trivial arc from x = y to itself. This proves (i).

We prove (ii). Assume that α and β are noncontractible embedded circles.
Then it follows from (i) that there exist oriented arcs A ⊂ α and B ⊂ β from
x to y such that να and νβ are given by (40). If x = y it follows also from (i)
that A = B = {x}, hence

νeα ≡ 0, νeβ ≡ 0,

and hence w̃ ≡ 0, in contradiction to our hypothesis. Thus x 6= y and so Λ
satisfies the arc condition. This proves (ii) and Proposition 7.1.

Example 7.2. Let α ⊂ Σ be a noncontractible embedded circle and β ⊂ Σ
be a contractible embedded circle intersecting α transversally. Suppose β is
oriented as the boundary of an embedded disc ∆ ⊂ Σ. Let

x = y ∈ α ∩ β, να ≡ 0, νβ ≡ 1,

and define

w(z) :=

{
1, for z ∈ ∆ \ (α ∪ β),
0, for z ∈ Σ \ (∆ ∪ α ∪ β).

Then Λ = (x, y, να, νβ,w) is an (α, β)-trace that satisfies the hypotheses of
Proposition 7.1 (i) with x = y and A = {x}.
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Definition 7.3. An (α, β)-trace Λ = (x, y,w) is called primitive if it satis-
fies the arc condition with boundary ∂Λ =: (x, y, A,B) and

A ∩ β = α ∩ B = {x, y}.

A smooth (α, β)-lune u is called primitive if its (α, β)-trace Λu is primitive.
It is called embedded if u : D → Σ is injective.

The next proposition is the special case of Theorems 6.7 and 6.8 for em-
bedded lunes. It shows that isotopy classes of primitive smooth (α, β)-lunes
are in one-to-one correspondence with the simply connected components of
Σ\(α∪β) with two corners. We will also call such a component a primitive
(α, β)-lune.

Proposition 7.4 (Embedded lunes). Assume (H) and let Λ = (x, y,w)
be an (α, β)-trace. The following are equivalent.

(i) Λ is a combinatorial lune and its boundary ∂Λ = (x, y, A,B) satisfies

A ∩ B = {x, y}.

(ii) There exists an embedded (α, β)-lune u such that Λu = Λ.

If Λ satisfies (i) then any two smooth (α, β)-lunes u and v with Λu = Λv = Λ
are equivalent.

Proof. We prove that (ii) implies (i). Let u : D → Σ be an embedded (α, β)-
lune with Λu = Λ. Then u|D∩R : D ∩ R → α and u|D∩S1 : D ∩ S1 → β are
embeddings. Hence Λ satisfies the arc condition and ∂Λ = (x, y, A,B) with
A = u(D ∩ R) and B = u(D ∩ S1). Since w is the counting function of u it
takes only the values zero and one. If z ∈ A∩B then u−1(z) contains a single
point which must lie in D ∩ R and D ∩ S1, hence is either −1 or +1, and so
z = x or z = y. The assertion about the intersection indices follows from the
fact that u is an immersion. Thus we have proved that (ii) implies (i).

We prove that (i) implies (ii). This relies on the following.

Claim. Let Λ = (x, y,w) be an (α, β)-trace that satisfies the arc condition
and ∂Λ =: (x, y, A,B) with A ∩ B = {x, y}. Then Σ \ (A ∪ B) has two
components and one of these is homeomorphic to the disc.

To prove the claim, let Γ ⊂ Σ be an embedded circle obtained from A ∪ B
by smoothing the corners. Then Γ is contractible and hence, by a theorem
of Epstein [8], bounds a disc. This proves the claim.
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Now suppose that Λ = (x, y,w) is an (α, β)-trace that satisfies (i) and let
∂Λ =: (x, y, A,B). By the claim, the complement Σ \ (A ∪B) has two com-
ponents, one of which is homeomorphic to the disc. Denote the components
by Σ0 and Σ1. Since Λ is a combinatorial lune, it follows that w only takes
the values zero and one. Hence we may choose the indexing such that

w(z) =

{
0, for z ∈ Σ0 \ (α ∪ β),
1, for z ∈ Σ1 \ (α ∪ β).

We prove that Σ1 is homeomorphic to the disc. Suppose, by contradiction,
that Σ1 is not homeomorphic to the disc. Then Σ is not diffeomorphic to
the 2-sphere and, by the claim, Σ0 is homeomorphic to the disc. By Def-
inition 6.4, there is a smooth map u : D → Σ that satisfies the boundary
condition (33) such that Λu = Λ. Since Σ is not diffeomorphic to the 2-
sphere, the homotopy class of u is uniquely determined by the quadruple
(x, y, A,B) (see Theorem 2.4 above). Since Σ0 is homeomorphic to the disc
we may choose u such that u(D) = Σ0 and hence w(z) = deg(u, z) = 0 for
z ∈ Σ1 \ (α ∪ β), in contradiction to our choice of indexing. This shows that
Σ1 must be homeomorphic to the disc. Let N denote the closure of Σ1:

N := Σ1 = Σ1 ∪ A ∪ B.

Then the orientation of ∂N = A ∪B agrees with the orientation of A and is
opposite to the orientation of B, i.e. N lies to the left of A and to the right
of B. Since the intersection index of A and B at x is +1 and at y is −1, it
follows that the angles of N at x and y are between zero and π and hence N
is a 2-manifold with two corners. Since N is simply connected there exists a
diffeomorphism u : D → N such that

u(−1) = x, u(1) = y, u(D ∩ R) = A, u(D ∩ S1) = B.

This diffeomorphism is the required embedded (α, β)-lune.
We prove that the embedded (α, β)-lune in (ii) is unique up to equivalence.

Let v : D → Σ be another smooth (α, β)-lune such that Λv = Λ. Then v
maps the boundary of D bijectively onto A ∪ B, because A ∩ B = {x, y}.
Moreover, w is the counting function of v and #v−1(z) is constant on each
component of Σ \ (A ∪ B). Hence #v−1(z) = 0 for z ∈ Σ0 and #v−1(z) = 1
for z ∈ Σ1. This shows that v is injective and v(D) = N = u(D). Since u
and v are embeddings the composition ϕ := u−1◦v : D → D is an orientation
preserving diffeomorphism such that ϕ(±1) = ±1. Hence v = u ◦ ϕ is
equivalent to u. This proves Proposition 7.4.
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Lemma 7.5. Assume (H) and let u : D → Σ be a smooth (α, β)-lune.

(i) Let S be a connected component of Σ \ (α ∪ β). If S ∩ u(D) 6= ∅ then
S ⊂ u(D) and S is diffeomorphic to the open unit disc in C.

(ii) Let ∆ be a connected component of D\u−1(α∪β). Then ∆ is diffeomor-
phic to the open unit disc and the restriction of u to ∆ is a diffeomorphism
onto the open set S := u(∆) ⊂ Σ.

Proof. That S ∩ u(D) 6= ∅ implies S ⊂ u(D) follows from the fact that
u is an immersion. That this implies that S is diffeomorphic to the open
unit disc in C follows as in Proposition 6.12. This proves (i). By (i) the
open set S := u(∆) in (ii) is diffeomorphic to the disc and hence is simply
connected. Since u : ∆ → S is a proper covering it follows that u : ∆ → S is
a diffeomorphism. This proves Lemma 7.5.

Let u : D → Σ be a smooth (α, β)-lune. The image under u of the
connected component of D \ u−1(α ∪ β) whose closure contains −1 is called
the left end of u. The image under u of the connected component of
D \ u−1(α ∪ β) whose closure contains +1 is called the right end of u.

Lemma 7.6. Assume (H) and let u be a smooth (α, β)-lune. If there is a
primitive (α, β)-lune with the same left or right end as u it is equivalent to u.

Proof. If u is not a primitive lune its ends have at least three corners. To see
this, walk along D∩R (respectively D∩S1) from −1 to 1 and let z0 (respec-
tively z1) be the first intersection point with u−1(β) (respectively u−1(α)).
Then u(−1), u(z0), u(z1) are corners of the left end of u. Hence the hypothe-
ses of Lemma 7.6 imply that u is a primitive lune. Two primitive lunes with
the same ends are equivalent by Proposition 7.4. This proves Lemma 7.6.

Proposition 7.7. Assume (H) and suppose that Σ is diffeomorphic to the
2-sphere. If u is a smooth (α, β)-lune then Λu satisfies the arc condition.

Proof. The proof is by induction on the number of intersection points of α
and β. It has three steps.

Step 1. Let u be a smooth (α, β)-lune whose (α, β)-trace

Λ = Λu = (x, y,w)

does not satisfy the arc condition. Suppose there is a primitive (α, β)-lune
with endpoints in Σ\{x, y}. Then there is an embedded loop β ′, isotopic to β
and transverse to α, and a smooth (α, β ′)-lune u′ with endpoints x, y such
that Λu′ does not satisfy the arc condition and #(α ∩ β ′) < #(α ∩ β).
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By Proposition 7.4, there exists a primitive smooth (α, β)-lune u0 : D → Σ
whose endpoints x0 := u0(−1) and y0 := u0(+1) are contained in Σ \ {x, y}.
Use this lune to remove the intersection points x0 and y0 by an isotopy
of β, supported in a small neighborhood of the image of u0. More precisely,
extend u0 to an embedding (still denoted by u0) of the open set

Dε := {z ∈ C | Im z > −ε, |z| < 1 + ε}

for ε > 0 sufficiently small such that

u0(Dε) ∩ β = u0(Dε ∩ S
1), u0(Dε) ∩ α = u0(Dε ∩ R).

Choose a smooth cutoff function ρ : Dε → [0, 1] which vanishes near the
boundary and is equal to one on D. Consider the vector field ξ on Σ that
vanishes outside u0(Dε) and satisfies

u∗0ξ(z) = −ρ(z)i.

Let ψt : Σ → Σ be the isotopy generated by ξ and, for T > 0 sufficiently
large, define

β ′ := ψT (β), Λ′ := (x, y, να, νβ′ ,w′).

Here νβ′ : β ′ \ α → Z is the unique one-chain equal to νβ on β \ u0(Dε) and
w′ : Σ \ (α ∪ β ′) → Z is the unique two-chain equal to w on Σ \ u0(Dε).
Since Λ does not satisfy the arc condition, neither does Λ′. Let U ⊂ D be
the union of the components of u−1(u0(Dε)) that contain an arc in D ∩ S1

and define the map u′ : D → Σ by

u′(z) :=

{
ψT (u(z)), if z ∈ U,

u(z), if z ∈ D \ U.

We prove that U ∩ R = ∅. To see this, note that the restriction of u to
each connected component of U is a diffeomorphism onto its image which is
either equal to u0({z ∈ Dε | |z| ≥ 1}) or equal to u0({z ∈ Dε | |z| ≤ 1}) (see
Figure 16 below). Thus

u(U) ∩ (α \ {x0, y0}) ⊂ int(u(U))

and hence U ∩R = ∅ as claimed. This implies that u′ is a smooth (α, β ′)-lune
such that Λu′ = Λ′. Hence Λu′ does not satisfy the arc condition. This proves
Step 1.
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Figure 12: α encircles at least two primitive lunes.

Step 2. Let u be a smooth (α, β)-lune with endpoints x, y and suppose that
every primitive (α, β)-lune has x or y as one of its endpoints. Then Λu

satisfies the arc condition.

Both connected components of Σ\α are discs, and each of these discs contains
at least two primitive (α, β)-lunes. If it contains more than two there is one
with endpoints in Σ \ {x, y}. Hence, under the assumptions of Step 2, each
connected component of Σ \ α contains precisely two primitive (α, β)-lunes.
(See Figure 12.) Thus each connected component of Σ \ (α ∪ β) is either a
quadrangle or a primitive (α, β)-lune and there are precisely four primitive
(α, β)-lunes, two in each connected component of Σ\α. At least two primitive
(α, β)-lunes contain x and at least two contain y. (See Figure 13.)

Figure 13: Four primitive lunes in the 2-sphere.

As Σ is diffeomorphic to S2, the number of intersection points of α and β
is even. Write α∩β = {x0, . . . , x2n−1}, where the ordering is chosen along α,
starting at x0 = x. Then x0 is contained in two primitive (α, β)-lunes, one
with endpoints x0, x2n−1 and one with endpoints x0, x1. Each connected
component of Σ \ α determines an equivalence relation on α ∩ β: distinct
points are equivalent iff they are connected by a β-arc in this component.
Let A be the connected component containing the β-arc from x0 to x2n−1

and B be the connected component containing the β-arc from x0 to x1.
Then xj−1 ∼A x2n−j and xj+1 ∼B x2n−j for j = 1, . . . , n. Thus the only
other intersection point contained in two primitive (α, β)-lunes is y = xn.
Moreover, α and β have opposite intersection indices at xi and xi+1 for each i,
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because the arcs in α from xi−1 to xi and from xi to xi+1 are contained
in different connected components of Σ \ β. Since α and β have opposite
intersection indices at x and y it follows that n is odd. Now the image of a
neighborhood of R ∩ D under u is contained in either A or B. Hence, when
n = 2k+1 ≥ 3, Figure 14 shows that one of the ends of u is a quadrangle and
the other end is a primitive (α, β)-lune, in contradiction to Lemma 7.6. Hence
the number of intersection points is 2n = 2, each component of Σ \ (α ∪ β)
is a primitive (α, β)-lune, and all four primitive (α, β)-lunes contain x and y.
By Lemma 7.6, one of them is equivalent to u. This proves Step 2.

+1

4k+2

4k

+1

+1

−1

Figure 14: α intersects β in 4k or 4k + 2 points.

Step 3. We prove the proposition.

Assume, by contradiction, that there is a smooth (α, β)-lune u such that Λu

does not satisfy the arc condition. By Step 1 we can reduce the number of
intersection points of α and β until there are no primitive (α, β)-lunes with
endpoints in Σ \ {x, y}. Once this algorithm terminates the resulting lune
still does not satisfy the arc condition, in contradiction to Step 2. This proves
Step 3 and Proposition 7.7.

Proof of Theorem 6.5. Let u : D → Σ be a smooth (α, β)-lune with (α, β)-
trace Λu =: (x, y,w) and denote A := u(D ∩ R) and B := u(D ∩ S1). Since
u is an immersion, α and β have opposite intersection indices at x and y,
and hence x 6= y. We must prove that A and B are arcs. It is obvious that
A is an arc whenever α is not compact, and B is an arc whenever β is not
compact. It remains to show that A and B are arcs in the remaining cases.
We prove this in four steps.

Step 1. If α is not a contractible embedded circle then A is an arc.

This follows immediately from Proposition 7.1.
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Step 2. If α and β are contractible embedded circles then A and B are arcs.

If Σ is diffeomorphic to S2 this follows from Proposition 7.7. Hence assume
that Σ is not diffeomorphic to S2. Then the universal cover of Σ is diffeo-
morphic to the complex plane. Choose a universal covering π : C → Σ and
a point x̃ ∈ π−1(x). Choose lifts α̃, β̃ ⊂ C of α, β such that x̃ ∈ α̃ ∩ β̃.

Then α̃ and β̃ are embedded loops in C and u lifts to a smooth (α̃, β̃)-lune
ũ : D → C such that ũ(−1) = x̃. Compactify C to get the 2-sphere. Then,

by Proposition 7.7, the subsets Ã := ũ(D ∩ R) ⊂ α̃ and B̃ := ũ(D ∩ S1) ⊂ β̃
are arcs. Since the restriction of π to α̃ is a diffeomorphism from α̃ to α it
follows that A ⊂ α is an arc. Similarly for B. This proves Step 2.

Step 3. If α is not a contractible embedded circle and β is a contractible
embedded circle then A and B are arcs.

That A is an arc follows from Step 1. To prove that B is an arc choose a
universal covering π : C → Σ with π(0) = x and lifts α̃, β̃, ũ with 0 ∈ α̃ ∩ β̃

and ũ(−1) = 0 as in the proof of Step 2. Then β̃ ⊂ C is an embedded loop

and we may assume without loss of generality that α̃ = R and Ã = [0, a]
with 0 < a < 1. (If α is a noncontractible embedded circle we choose the lift
such that z̃ 7→ z̃ + 1 is a covering transformation and π maps the interval
[0, 1) bijectively onto α; if α is not compact we choose the universal covering

such that π maps the interval [0, a] bijectively onto A and β̃ is transverse
to R, and then replace α̃ by R.) In the Riemann sphere S2 ∼= C = C ∪ {∞}
the real axis α̃ = R compactifies to a great circle. Hence it follows from
Proposition 7.7 that B̃ is an arc. Since π : β̃ → β is a diffeomorphism it
follows that B is an arc. This proves Step 3.

Step 4. If β is not a contractible embedded circle then A and B are arcs.

That B is an arc follows from Step 1 by interchanging α and β and replacing
u with the smooth (β, α)-lune

v(z) := u

(
i− z

1− iz

)
.

If α is not a contractible embedded circle then A is an arc by Step 1. If α
is a contractible embedded circle then A is an arc by Step 3 with α and β
interchanged. This proves Step 4. The assertion of Theorem 6.5 follows from
Steps 2, 3, and 4.
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8 Combinatorial Lunes

In this section we prove Theorems 6.7 and 6.8. Proposition 7.4 establishes the
equivalence of (i) and (iii) in Theorem 6.7 under the additional hypothesis
that Λ = (x, y, A,B,w) satisfies the arc condition and A ∩ B = {x, y}. In
this case the hypothesis that Σ is simply connected can be dropped. The
induction argument for the proof of Theorems 6.7 and 6.8 is the content of
the next three lemmas.

Lemma 8.1. Assume (H) and suppose that Σ is simply connected. Let Λ =
(x, y,w) be a combinatorial (α, β)-lune with boundary ∂Λ = (x, y, A,B) such
that

A ∩ B 6= {x, y}.

Then there exists a combinatorial (α, β)-lune Λ0 = (x0, y0,w0) with boundary
∂Λ0 = (x0, y0, A0, B0) such that w ≥ w0 and

A0 ⊂ A \ {x, y}, B0 ⊂ B \ {x, y}, A0 ∩B = A ∩ B0 = {x0, y0}. (43)

Proof. Let ≺ denote the order relation on A determined by the orientation
from x to y. Denote the intersection points of A and B by

x = x0 ≺ x1 ≺ · · · ≺ xn−1 ≺ xn = y.

Define a function σ : {0, . . . , n − 1} → {1, . . . , n} as follows. Walk along B
towards y, starting at xi and denote the next intersection point encountered
by xσ(i). This function σ is bijective. Let εi ∈ {±1} be the intersection index
of A and B at xi. Thus

ε0 = 1, εn = −1,

n∑

i=0

εi = 0.

Consider the set

I := {i ∈ N | 0 ≤ i ≤ n− 1, εi = 1, εσ(i) = −1}.

We prove that this set has the following properties.

(a) I 6= ∅.

(b) If i ∈ I, i < j < σ(i), and εj = 1, then j ∈ I and i < σ(j) < σ(i).

(c) If i ∈ I, σ(i) < j < i, and εj = 1, then j ∈ I and σ(i) < σ(j) < i.

(d) 0 ∈ I if and only if n ∈ σ(I) if and only if n = 1 = σ(0).

57



To see this, denote by mi the value of w in the right upper quadrant near xi.
Thus

mj = m0 +

j∑

i=1

εi

for j = 1, . . . , n and
mσ(i) = mi + εσ(i) (44)

for i = 0, . . . , n− 1. (See Figure 15.)

m m-1

m m+1

m

m

m

m

m-1 m-1

m m+1

m-1

m-1

Figure 15: Simple arcs.

We prove that I satisfies (a). Consider the sequence

i0 := 0, i1 := σ(i0), i2 := σ(i1), . . . .

Thus the points xi are encountered in the order

x = x0 = xi0 , xi1 , . . . , xin−1 , xin = xn = y

when walking along B from x to y. By (44), we have

εi0 = 1, εin = −1, mik = mik−1
+ εik .

Let k ∈ {0, . . . , n−1} be the largest integer such that εik = 1. Then we have
εσ(ik) = εik+1

= −1 and hence ik ∈ I. Thus I is nonempty.
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We prove that I satisfies (b) and (c). Let i ∈ I such that σ(i) > i. Then
εi = 1 and εσ(i) = −1. Hence

mσ(i) = mi + εσ(i) = mi − 1,

and hence, in the interval i < j < σ(i), the numbers of intersection points
with positive and with negative intersection indices agree. Consider the arcs
Ai ⊂ A and Bi ⊂ B that connect xi to xσ(i). Then A ∩ Bi = {xi, xσ(i)}.
Since Σ is simply connected the piecewise smooth embedded loop Ai − Bi

is contractible. This implies that the complement Σ \ (Ai ∪ Bi) has two
connected components. Let Σi be the connected component of Σ \ (Ai ∪Bi)
that contains the points slightly to the left of Ai. Then any arc on B that
starts at xj ∈ Ai with εj = 1 is trapped in Σi and hence must exit it
through Ai. Hence

xj ∈ Ai, εj = 1 =⇒ xσ(j) ∈ Ai, εσ(j) = −1.

Thus we have proved that I satisfies (b). That it satisfies (c) follows by a
similar argument.

We prove that I satisfies (d). Here we use the fact that Λ satisfies (III)
or, equivalently, m0 = 1 and mn = 0. If 0 ∈ I then mσ(0) = m0 + εσ(0) = 0.
Since mi > 0 for i < n this implies σ(0) = n = 1. Conversely, suppose that
n ∈ σ(I) and let i := σ−1(n) ∈ I. Then mi = mn − εσ(i) = 1. Since mi > 1
for i ∈ I \ {0} this implies i = 0. Thus I satisfies (d).

It follows from (a), (b), and (c) by induction that there exists a point
i ∈ I such that σ(i) ∈ {i− 1, i+ 1}. Assume first that σ(i) = i+ 1, denote
by Ai the arc in A from xi to xi+1, and denote by Bi the arc in B from xi
to xi+1. If i = 0 it follows from (d) that xi = x0 = x and xi+1 = xn = y, in
contradiction to A ∩ B 6= {x, y}. Hence i 6= 0 and it follows from (d) that
0 < i < i+ 1 < n. The arcs Ai and Bi satisfy

Ai ∩ B = A ∩Bi = {xi, xi+1}.

Let Di be the connected component of Σ \ (A ∪B) that contains the points
slightly to the left of Ai. This component is bounded by Ai and Bi. Moreover,
the function w is positive on Di. Hence it follows from Propostion 6.12 that
Di is diffeomorphic to the open unit disc in C. Let wi(z) := 1 for z ∈ Di and
wi(z) := 0 for z ∈ Σ \Di. Then the combinatorial lune

Λi := (xi, xi+1, Ai, Bi,wi)

satisfies (43) and wi ≤ w.
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Now assume σ(i) = i− 1, denote by Ai the arc in A from xi−1 to xi, and
denote by Bi the arc in B from xi−1 to xi. Thus the orientation of Ai (from
xi−1 to xi) agrees with the orientation of A while the orientation of Bi is
opposite to the orientation of B. Moreover, we have 0 < i− 1 < i < n. The
arcs Ai and Bi satisfy

Ai ∩ B = A ∩Bi = {xi−1, xi}.

Let Di be the connected component of Σ \ (A ∪B) that contains the points
slightly to the left of Ai. This component is again bounded by Ai and Bi,
the function w is positive on Di, and so Di is diffeomorphic to the open unit
disc in C by Propostion 6.12. Let wi(z) := 1 for z ∈ Di and wi(z) := 0 for
z ∈ Σ \Di. Then the combinatorial lune

Λi := (xi−1, xi, Ai, Bi,wi)

satisfies (43) and wi ≤ w. This proves Lemma 8.1.

Lemma 8.2. Assume (H). Let u be a smooth (α, β)-lune whose (α, β)-trace
Λu = (x, y,w) is a combinatorial (α, β)-lune. Let γ : [0, 1] → D be a smooth
path such that

γ(0) ∈ (D ∩ R) \ {±1}, γ(1) ∈ (D ∩ S1) \ {±1}, u(γ(t)) /∈ A

for 0 < t < 1. Then w(u(γ(t))) = 1 for t near 1.

Proof. Denote A := u(D∩R). Since Λ is a combinatorial (α, β)-lune we have
x, y /∈ u(int(D)). Hence u−1(A) is a union of embedded arcs, each connecting
two points in D ∩ S1. If w(u(γ(t)) ≥ 2 for t close to 1, then γ(1) ∈ D ∩ S1 is
separated from D∩R by one these arcs in D\R. This proves Lemma 8.2.

For each combinatorial (α, β)-lune Λ the integer ν(Λ) denotes the number
of equivalence classes of smooth (α, β)-lunes u with Λu = Λ.

Lemma 8.3. Assume (H) and suppose that Σ is simply connected. Let Λ =
(x, y,w) be a combinatorial (α, β)-lune with boundary ∂Λ = (x, y, A,B) such
that A ∩ B 6= {x, y}. Then there exists an embedded loop β ′, isotopic to
β and transverse to α, and a combinatorial (α, β ′)-lune Λ′ = (x, y,w′) with
boundary ∂Λ′ = (x, y, A,B′) such that

#(A′ ∩ B′) < #(A ∩B), ν(Λ) = ν(Λ′).
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Figure 16: Deformation of a lune.

Proof. By Lemma 8.1 there exists a combinatorial (α, β)-lune

Λ0 = (x0, y0,w0), ∂Λ0 = (x0, y0, A0, B0),

that satisfies w ≥ w0 and (43). In particular, we have

A0 ∩B0 = {x0, y0}

and so, by Proposition 7.4, there is an embedded smooth lune u0 : D → Σ
with bottom boundary A0 and top boundary B0. As in the proof of Step 1 in
Proposition 7.7 we use this lune to remove the intersection points x0 and y0
by an isotopy of B, supported in a small neighborhood of the image of u0.
This isotopy leaves the number ν(Λ) unchanged. More precisely, extend u0
to an embedding (still denoted by u0) of the open set

Dε := {z ∈ C | Im z > −ε, |z| < 1 + ε}

for ε > 0 sufficiently small such that

u0(Dε) ∩ B = u0(Dε ∩ S
1), u0(Dε) ∩A = u0(Dε ∩ R),

u({z ∈ Dε | |z| > 1}) ∩ β = ∅, u({z ∈ Dε |Re z < 0}) ∩ α = ∅.
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Choose a smooth cutoff function ρ : Dε → [0, 1] that vanishes near the
boundary of Dε and is equal to one on D. Consider the vector field ξ on Σ
that vanishes outside u0(Dε) and satisfies

u∗0ξ(z) = −ρ(z)i.

Let ψt : Σ → Σ be the isotopy generated by ξ and, for T > 0 sufficiently
large, define

β ′ := ψT (β), B′ := ψT (B), Λ′ := (x, y, A,B′,w′),

where w′ : Σ \ (α ∪ β ′) → Z is the unique two-chain that agrees with w on
Σ \ u0(Dε). Thus w′ corresponds to the homotopy from A to B determined
by w followed by the homotopy ψt from B to B′. Then Λ′ is a combinatorial
(α, β ′)-lune. If u : D → Σ is a smooth (α, β)-lune let U ⊂ D be the unique
component of u−1(u0(Dε)) that contains an arc in D ∩ S1. Then U does not
intersect D ∩ R. (See Figure 16.) Hence the map u′ : D → Σ, defined by

u′(z) :=

{
ψT (u(z)), if z ∈ U,

u(z), if z ∈ D \ U,

is a smooth (α, β ′)-lune such that Λu′ = Λ′.
We claim that the map u 7→ u′ defines a one-to-one correspondence be-

tween smooth (α, β)-lunes u such that Λu = Λ and smooth (α, β ′)-lunes u′

such that Λu′ = Λ′. The map u 7→ u′ is obviously injective. To prove that it
is surjective we choose a smooth (α, β ′)-lune u′ such that Λu′ = Λ′. Denote
by

U ′ ⊂ D

the unique connected component of u′−1(u0(Dε)) that contains an arc in
D ∩ S1. There are four cases as depicted in Figure 16. In two of these cases
(second and third row) we have u′(U ′)∩α = ∅ and hence U ′ ∩R = ∅. In the
casees where u′(U ′) ∩ α 6= ∅ it follows from an orientation argument (fourth
row) and from Lemma 8.2 (first row) that U ′ cannot intersect D ∩ R. Thus
we have shown that U ′ does not intersect D∩R in all four cases. This implies
that u′ is in the image of the map u 7→ u′. Hence the map u 7→ u′ is bijective
as claimed, and hence

ν(Λ) = ν(Λ′).

This proves Lemma 8.3.
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Proof of Theorems 6.7 and 6.8. Assume first that Σ is simply connected. We
prove that (iii) implies (i) in Theorem 6.7. Let Λ be a combinatorial (α, β)-
lune. By Lemma 8.3, reduce the number of intersection points of Λ, while
leaving the number ν(Λ) unchanged. Continue by induction until reaching an
embedded combinatorial lune in Σ. By Proposition 7.4, such a lune satisfies
ν = 1. Hence ν(Λ) = 1. In other words, there is a smooth (α, β)-lune
u : D → Σ, unique up to equivalence, such that Λu = Λ. Thus we have
proved that (iii) implies (i). We have also proved, in the simply connected
case, that u is uniquely determined by Λu up to equivalence. From now on
we drop the hypothesis that Σ is simply connected.

We prove Theorem 6.8. Let u : D → Σ and u′ : D → Σ be smooth
(α, β)-lunes such that

Λu = Λu′.

Let ũ : D → Σ̃ and ũ′ : D → Σ̃ be lifts to the universal cover such that

ũ(−1) = ũ′(−1).

Then Λeu = Λeu′. Hence, by what we have already proved, ũ is equivalent to
ũ′ and hence u is equivalent to u′. This proves Theorem 6.8.

We prove that (i) implies (ii) in Theorem 6.7. Let u : D → Σ be a smooth
(α, β)-lune and denote by Λu =: (x, y, A,B,w) be its (α, β)-trace. Then
w(z) = #u−1(z) is the counting function of u and hence is nonnegative. For
0 < t ≤ 1 define the curve λt : [0, 1] → RP1 by

du(− cos(πs), t sin(πs))λt(s) := R
∂

∂s
u(− cos(πs), t sin(πs)), 0 ≤ s ≤ 1.

For t = 0 use the same definition for 0 < s < 1 and extend the curve
continuously to the closed interval 0 ≤ s ≤ 1. Then

λ0(s) = du(− cos(πs), 0)−1Tu(− cos(πs),0)α,

λ1(s) = du(− cos(πs), sin(πs))−1Tu(− cos(πs),sin(πs))β,
0 ≤ s ≤ 1.

The Viterbo–Maslov index µ(Λu) is, by definition, the relative Maslov index
of the pair of Lagrangian paths (λ0, λ1), denoted by µ(λ0, λ1) (see Defini-
tion 3.1 above or [39, 30]). Hence it follows from the homotopy axiom for
the relative Maslov index that

µ(Λu) = µ(λ0, λ1) = µ(λ0, λt)

for every t > 0. Choosing t sufficiently close to zero we find that µ(Λu) = 1.
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We prove that (iii) implies (ii) in Theorem 6.7. If Λ = (x, y,w) is a
combinatorial (α, β)-lune, then w ≥ 0 by (I) in Definition 6.6. Moreover, by
the trace formula (37), we have

µ(Λ) =
mx(Λ) +my(Λ)

2
.

It follows from (II) and (III) in Definition 6.6 that mx(Λ) = my(Λ) = 1 and
hence µ(Λ) = 1. Thus we have proved that (iii) implies (ii).

We prove that (ii) implies (iii) in Theorem 6.7. Let Λ = (x, y,w) be
an (α, β)-trace such that w ≥ 0 and µ(Λ) = 1. Denote να := ∂w|α\β and
νβ := −∂w|β\α. Reversing the orientation of α or β, if necessary, we may
assume that να ≥ 0 and νβ ≥ 0. Let εx, εy ∈ {±1} be the intersection indices
of α and β at x, y with these orientations, and let

nα := min να ≥ 0, nβ := min νβ ≥ 0.

As before, denote by mx (respectively my) the sum of the four values of w
encountered when walking along a small circle surrounding x (respectvely y).
Since the Viterbo–Maslov index of Λ is odd, we have εx 6= εy and thus x 6= y.
This shows that Λ satisfies the arc condition if and only if nα = nβ = 0.

We prove that Λ satisfies (II). Suppose, by contradiction, that Λ does not
satisfy (II). Then εx = −1 and εy = 1. This implies that the values of w
near x are given by k, k + nα + 1, k + nα + nβ + 1, k + nβ + 1 for some
integer k. Since w ≥ 0 these numbers are all nonnegative. Hence k ≥ 0 and
hence mx ≥ 3. The same argument shows that my ≥ 3 and, by the trace
formula (37), we have µ(Λ) = (mx(Λ) +my(Λ))/2 ≥ 3, in contradiction to
our hypothesis. This shows that Λ satisfies (II).

We prove that Λ satisfies the arc condition and (III). By (II) we have
εx = 1. Hence the values of w near x in counterclockwise order are given by
kx, kx + nα + 1, kx + nα − nβ, kx − nβ for some integer kx ≥ nβ ≥ 0. This
implies

mx(Λ) = 4kx − 2nβ + 2nα + 1

and, similarly, my(Λ) = 4ky − 2nβ + 2nα + 1 for some integer ky ≥ nβ ≥ 0.
Hence, by the trace formula (37), we have

1 = µ(Λ) =
mx(Λ) +my(Λ)

2
= kx + (kx − nβ) + ky + (ky − nβ) + 2nα + 1.

Hence kx = ky = nα = nβ = 0 and so Λ satisfies the arc condition and (III).
Thus we have shown that (ii) implies (i). This proves Theorem 6.7.
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Example 8.4. The arguments in the proof of Theorem 6.7 can be used to
show that, if Λ is an (α, β)-trace with µ(Λ) = 1, then (I) =⇒ (III) =⇒ (II).
Figure 17 shows three (α, β)-traces that satisfy the arc condition and have
Viterbo–Maslov index one but do not satisfy (I); one that still satisfies (II)
and (III), one that satisfies (II) but not (III), and one that satisfies neither (II)
nor (III). Figure 18 shows an (α, β)-trace of Viterbo–Maslov index two that
satisfies (I) and (III) but not (II). Figure 19 shows an (α, β)-trace of Viterbo–
Maslov index three that satisfies (I) and (II) but not (III).

−1
−1

1
1

1

−1

1
2

Figure 17: Three (α, β)-traces with Viterbo–Maslov index one.

1

Figure 18: An (α, β)-trace with Viterbo–Maslov index two.

1

2

Figure 19: An (α, β)-trace with Viterbo–Maslov index three.

We close this section with two results about lunes that will be useful
below.
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Proposition 8.5. Assume (H) and suppose that α and β are noncontractible
nonisotopic transverse embedded circles and let x, y ∈ α ∩ β. Then there is
at most one (α, β)-trace from x to y that satisfies the arc condition. Hence,
by Theorems 6.5 and 6.8, there is at most one equivalence class of smooth
(α, β)-lunes from x to y.

Proof. Let
α = α1 ∪ α2, β = β1 ∪ β2,

where α1 and α2 are the two arcs of α with endpoints x and y, and similarly
for β. Assume that the quadruple (x, y, α1, β1) is an (α, β)-trace. Then α1 is
homotopic to β1 with fixed endpoints. Since α is not contractible, α2 is not
homotopic to β1 with fixed endpoints. Since β is not contractible, β2 is not
homotopic to α1 with fixed endpoints. Since α is not isotopic to β, α2 is not
homotopic to β2 with fixed endpoints. Hence the quadruple (x, y, αi, βj) is
not an (α, β)-trace unless i = j = 1. This proves Proposition 8.5.

The hypotheses that the loops α and β are not contractible and not
isotopic to each other cannot be removed in Proposition 8.5. A pair of isotopic
circles with precisely two intersection points is an example. Another example
is a pair consisting of a contractible and a non-contractible loop, again with
precisely two intersection points.

Proposition 8.6. Assume (H). If there is a smooth (α, β)-lune then there
is a primitive (α, β)-lune.

Proof. The proof has three steps.

Step 1. If α or β is a contractible embedded circle and α∩ β 6= ∅ then there
exists a primitive (α, β)-lune.

Assume α is a contractible embedded circle. Then, by a theorem of Ep-
stein [9], there exists an embedded closed disc D ⊂ Σ with boundary ∂D = α.
Since α and β intersect transversally, the set D ∩ β is a finite union of arcs.
Let A be the set of all arcs A ⊂ α which connect the endpoints of an arc
B ⊂ D ∩ β. Then A is a nonempty finite set, partially ordered by inclusion.
Let A0 ⊂ α be a minimal element of A and B0 ⊂ D ∩ β be the arc with
the same endpoints as A0. Then A0 and B0 bound a primitive (α, β)-lune.
This proves Step 1 when α is a contractible embedded circle. When β is a
contractible embedded circle the proof is analogous.
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Step 2. Assume α and β are not contractible embedded circles. If there
exists a smooth (α, β)-lune then there exists an embedded (α, β)-lune u such
that u−1(α) = D ∩ R.

Let v : D → Σ be a smooth (α, β)-lune. Then the set

X := v−1(α) ⊂ D

is a smooth 1-manifold with boundary ∂X = v−1(α)∩S1. The interval D∩R

is one component of X and no component of X is a circle. (If X0 ⊂ X is
a circle, then v|X0 : X0 → Σ is a contractible loop covering α finitely many
times. Hence, by Lemma A.3 in the appendix, it would follow that α is a
contractible embedded circle, in contradiction to the hypothesis of Step 2.)
Write

∂X = {eiθ1, . . . , eiθn}, π = θ1 > θ2 > · · · > θn−1 > θn = 0.

Then there is a permutation σ ∈ Sn such that the arc of v−1(α) that starts
at eiθj ends at eiθσ(j). This permutation satisfies σ ◦ σ = id, σ(1) = n, and

j < k < σ(j) =⇒ j < σ(k) < σ(j).

Hence, by induction, there exists a j ∈ {1, . . . , n−1} such that σ(j) = j+1.
Let X0 ⊂ X be the submanifold with boundary points eiθj and eiθj+1 and
denote

Y0 :=
{
eiθ | θj+1 ≤ θ ≤ θj

}
.

Then the closure of the domain ∆ ⊂ D bounded byX0 and Y0 is diffeomorphic
to the half disc and ∆ ∩ v−1(α) = X0. Hence there exists an orientation
preserving embedding ϕ : D → D that maps D∩R onto X0 and maps D∩S1

onto Y0. It follows that
u := v ◦ ϕ : D → Σ

is a smooth (α, β)-lune such that

u−1(α) = ϕ−1(∆ ∩ v−1(α)) = ϕ−1(X0) = D ∩ R.

Moreover, Λu = (x, y, A,B,w) with

x := v(eiθj), y := v(eiθj+1), A := v(X0), B := v(Y0).

Since A ∩ B = α ∩ B = {x, y}, it follows from Proposition 7.4 that u is an
embedding. This proves Step 2.
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Step 3. Assume α and β are not contractible embedded circles. If there
exists an embedded (α, β)-lune u such that u−1(α) = D ∩ R then there exists
a primitive (α, β)-lune.

Repeat the argument in the proof of Step 2 with v replaced by u and the set
v−1(α) replaced by the 1-manifold

Y := u−1(β) ⊂ D

with boundary
∂Y = u−1(β) ∩ R.

The argument produces an arc Y0 ⊂ Y with boundary points a < b such that
the closed interval X0 := [a, b] intersects Y only in the endpoints. Hence the
arcs A0 := u(X0) and B0 := u(Y0) bound a primitive (α, β)-lune. This proves
Step 3 and Proposition 8.6.
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III. Floer Homology

9 Combinatorial Floer Homology

We assume throughout this section that Σ is an oriented 2-manifold without
boundary and that α, β ⊂ Σ are noncontractible nonisotopic transverse em-
bedded circles. We orient α and β. There are three ways we can count the
number of points in their intersection:

• The numerical intersection number num (α, β) is the actual num-
ber of intersection points.

• The geometric intersection number geo (α, β) is defined as the min-
imum of the numbers num (α, β ′) over all embedded loops β ′ that are
transverse to α and isotopic to β.

• The algebraic intersection number alg (α, β) is the sum

α · β =
∑

x∈α∩β

±1

where the plus sign is chosen iff the orientations match in the direct
sum TxΣ = Txα⊕ Txβ.

Note that |alg (α, β)| ≤ geo (α, β) ≤ num (α, β).

Theorem 9.1. Define a chain complex ∂ : CF(α, β) → CF(α, β) by

CF(α, β) =
⊕

x∈α∩β

Z2x, ∂x =
∑

y

n(x, y)y, (45)

where n(x, y) denotes the number modulo two of equivalence classes of smooth
(α, β)-lunes from x to y. Then

∂ ◦ ∂ = 0.

The homology group of this chain complex is denoted by

HF(α, β) := ker ∂/im∂

and is called the Combinatorial Floer Homology of the pair (α, β).

Proof. See Section 10 page 81.
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Theorem 9.2. Combinatorial Floer homology is invariant under isotopy:
If α′, β ′ ⊂ Σ are noncontractible transverse embedded circles such that α is
isotopic to α′ and β is isotopic to β ′ then

HF(α, β) ∼= HF(α′, β ′).

Proof. See Section 11 page 84.

Theorem 9.3. Combinatorial Floer homology is isomorphic to the original
analytic Floer homology. In fact, the two chain complexes agree.

Proof. See Section 12 page 100.

Corollary 9.4. If geo (α, β) = num (α, β) there is no smooth (α, β)-lune.

Proof. If there exists a smooth (α, β)-lune then, by Proposition 8.6, there
exists a primitive (α, β)-lune and hence there exists an embedded curve β ′

that is isotopic to β and satisfies num (α, β ′) < num (α, β). This contradicts
our hypothesis.

Corollary 9.5. dimHF(α, β) = geo (α, β).

Proof. By Theorem 9.2 we may assume that num (α, β) = geo (α, β). In
this case there is no (α, β)-lune by Corollary 9.4. Hence the Floer boundary
operator is zero, and hence the dimension of

HF(α, β) ∼= CF(α, β)

is the geometric intersection number geo (α, β).

Corollary 9.6. If geo (α, β) < num (α, β) there is a primitive (α, β)-lune.

Proof. By Corollary 9.5, the Floer homology group has dimension

dim HF(α, β) = geo (α, β).

Since the Floer chain complex has dimension

dim CF(α, β) = num (α, β)

it follows that the Floer boundary operator is nonzero. Hence there exists
a smooth (α, β)-lune and hence, by Proposition 8.6, there exists a primitive
(α, β)-lune.
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Remark 9.7 (Action Filtration). Consider the space

Ωα,β := {x ∈ C∞([0, 1],Σ) | x(0) ∈ α, x(1) ∈ β}

of paths connecting α to β. Every intersection point x ∈ α ∩ β determines
a constant path in Ωα,β and hence a component of Ωα,β . In general, Ωα,β is
not connected and different intersection points may determine different com-
ponents (see [29] for the case Σ = T2). By Proposition A.1 in Appendix A,
each component of Ωα,β is simply connected. Now fix a positive area form ω
on Σ and define a 1-form Θ on Ωα,β by

Θ(x; ξ) :=

∫ 1

0

ω(ẋ(t), ξ(t)) dt

for x ∈ Ωα,β and ξ ∈ TxΩα,β . This form is closed and hence exact. Let

A : Ωα,β → R

be a function whose differential is Θ. Then the critical points of A are the
zeros of Θ. These are the constant paths and hence the intersection points
of α and β. If x, y ∈ α ∩ β belong to the same connected component of Ωα,β

then

A(x)−A(y) =

∫
u∗ω

where u : [0, 1]× [0, 1] → Σ is any smooth function that satisfies

u(0, t) = x(t), u(0, 1) = y(t), u(s, 0) ∈ α, u(s, 1) ∈ β

for all s and t (i.e. the map s 7→ u(s, ·) is a path in Ωα,β connecting x to y).
In particular, if x and y are the endpoints of a smooth lune then A(x)−A(y)
is the area of that lune. Figure 20 shows that there is no upper bound
(independent of α and β in fixed isotopy classes) on the area of a lune.

Proposition 9.8. Define a relation ≺ on α∩β by x ≺ y if and only if there
is a sequence x = x0, x1, . . . , xn = y in α ∩ β such that, for each i, there is a
lune from xi to xi−1 (see Figure 21). Then ≺ is a strict partial order.

Proof. Since there is an (α, β)-lune from xi to xi−1 we have A(xi−1) < A(xi)
for every i and hence, by induction, A(x0) < A(xk).
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Figure 20: A lune of large area.

x x x x x
5 3 2 1 0

x
4

Figure 21: Lunes from xi to xi−1.
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Remark 9.9 (Mod Two Grading). The endpoints of a lune have opposite
intersection indices. Thus we may choose a Z/2Z-grading of CF(α, β) by first
choosing orientations of α and β and then defining CF0(α, β) to be generated
by the intersection points with intersection index +1 and CF1(α, β) to be
generated by the intersection points with intersection index −1. Then the
boundary operator interchanges these two subspaces and we have

alg (α, β) = dimHF0(α, β)− dimHF1(α, β).

Remark 9.10 (Integer Grading). Since each component of the path space
Ωα,β is simply connected the Z/2Z-grading in Remark 9.9 can be refined to
an integer grading. The grading is only well defined up to a global shift and
the relative grading is given by the Viterbo–Maslov index. Then we obtain

alg (α, β) = χ(HF(α, β)) =
∑

i∈Z

(−1)i dimHFi(α, β).

Figure 21 shows that there is no upper or lower bound on the relative index
in the combinatorial Floer chain complex. Figure 22 shows that there is no
upper bound on the dimension of CFi(α, β).

In the case of the 2-torus Σ = T2 = R2/Z2 the shift in the integer grading
can be fixed using Seidel’s notion of a graded Lagrangian submanifold [33].
Namely, the tangent bundle of T2 is trivial so that each tangent space is
equipped with a canonical isomorphism to R2. Hence every embedded circle
α ⊂ T2 determines a map α → RP1 : z 7→ Tzα. A grading of α is a lift of
this map to the universal cover of RP1. A choice of gradings for α and β can
be used to fix an integer grading of the combinatorial Floer homology.

x y
1

y y y y
5432

Figure 22: Lunes from x to yi.
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Remark 9.11 (Integer Coefficients). One can define combinatorial Floer
homology with integer coefficients as follows. Fix an orientation of α. Then
each (α, β)-lune u : D → Σ comes with a sign

ν(u) :=

{
+1, if the arc u|D∩R : D ∩ R → α is orientation preserving,
−1, if the arc u|D∩R : D ∩ R → α is orientation reversing.

Now define the chain complex by

CF(α, β;Z) =
⊕

x∈α∩β

Zx,

and
∂x :=

∑

y∈α∩β

n(x, y;Z)y, n(x, y;Z) :=
∑

[u]

ν(u),

where the sum runs over all equivalence classes [u] of smooth (α, β)-lunes
from x to y. The results of Section 10 show that Theorem 9.1 remains valid
with this refinement, and the results of Section 11 show that Theorem 9.2 also
remains valid. We will not discuss here any orientation issue for the analytic
Floer theory and leave it to others to investigate the validity of Theorem 9.3
with integer coefficients.

10 Hearts

Definition 10.1. Let x, z ∈ α ∩ β. A broken (α, β)-heart from x to z is
a triple

h = (u, y, v)

such that y ∈ α∩β, u is a smooth (α, β)-lune from x to y, and v is a smooth
(α, β)-lune from y to z. The point y is called the midpoint of the heart.
By Theorem 6.8 the broken (α, β)-heart h is uniquely determined by the

septuple

Λh := (x, y, z, u(D ∩ R), v(D ∩ R), u(D ∩ S1), v(D ∩ S1)).

Two broken (α, β)-hearts h = (u, y, z) and h′ = (u′, y′, z′) from x to z are
called equivalent if y′ = y, u′ is equivalent to u, and v′ is equivalent
to v. The equivalence class of h is denoted by [h] = ([u], y, [v]). The set of
equivalence classes of broken (α, β)-hearts from x to z will be denoted by
H(x, z).
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Proposition 10.2. Let h = (u, y, v) be a broken (α, β)-heart from x to z and
write Λh =: (x, y, z, Axy, Ayz, Bxy, Byz). Then exactly one of the following four
alternatives (see Figure 23) holds:

(a) Axy ∩Ayz = {y}, Byz ( Bxy. (b) Axy ∩Ayz = {y}, Bxy ( Byz.

(c) Bxy ∩Byz = {y}, Ayz ( Axy. (d) Bxy ∩Byz = {y}, Axy ( Ayz.

(a)

(c)

(b)

(d)

x x

y
y

zz

x x

z

y

z

y

Figure 23: Four broken hearts.

Proof. The combinatorial (α, β)-lunes Λxy := Λu and Λyz := Λv have bound-
aries

∂Λxy = (x, y, Axy, Bxy), ∂Λyz = (y, z, Ayz, Byz)

and their catenation Λxz := Λxy#Λyz = (x, z,wxy+wyz) has Viterbo–Maslov
index two, by (38). Hence mx(Λxy) +mx(Λyz) +mz(Λxy) +mz(Λyz) = 4, by
the trace formula (37). Since mx(Λxy) = mz(Λyz) = 1 this implies

mx(Λyz) +mz(Λxy) = 2. (46)

By Proposition 9.8 we have x 6= z. Hence x cannot be an endpoint of Λyz.
Thus mx(Λyz) ≥ 2 whenever x ∈ Ayz ∪ Byz and mx(Λyz) ≥ 4 whenever
x ∈ Ayz ∩Byz. The same holds for mz(Λxy). Hence it follows from (46) that
Λxy and Λyz satisfy precisely one of the following conditions.

(a) x /∈ Ayz ∪Byz, z ∈ Bxy \ Axy. (b) x ∈ Byz \ Ayz, z /∈ Axy ∪Bxy.

(c) x /∈ Ayz ∪Byz, z ∈ Axy \Bxy. (d) x ∈ Ayz \Byz, z /∈ Axy ∪Bxy.

This proves Proposition 10.2.
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Let N ⊂ C be an embedded convex half disc such that

[0, 1] ∪ i[0, ε) ∪ (1 + i[0, ε)) ⊂ ∂N, N ⊂ [0, 1] + i[0, 1]

for some ε > 0 and define

H := ([0, 1] + i[0, 1]) ∪ (i+N) ∪ (1 + i− iN).

(See Figure 24.) The boundary of H decomposes as

∂H = ∂0H ∪ ∂1H

where ∂0H denotes the boundary arc from 0 to 1 + i that contains the hor-
izontal interval [0, 1] and ∂1H denotes the arc from 0 to 1 + i that contains
the vertical interval i[0, 1].

H

δ Η0

δ Η1
1+i

0

N

Figure 24: The domains N and H .

Definition 10.3. Let x, z ∈ α ∩ β. A smooth (α, β)-heart of type (ac)
from x to z is an orientation preserving immersion w : H → Σ that satisfies

w(0) = x, w(1 + i) = z, w(∂0H) ( α, w(∂1H) ( β. (ac)

Two smooth (α, β)-hearts w,w′ : H → Σ are called equivalent iff there
exists an orientation preserving diffeomorphism χ : H → H such that

χ(0) = 0, χ(1 + i) = 1 + i, w′ = w ◦ χ.

A smooth (α, β)-heart of type (bd) from x to z is a smooth (β, α)-heart
of type (ac) from z to x. Let w be a smooth (α, β)-heart of type (ac) from x
to y and h = (u, y, v) be a broken (α, β)-heart from x to y of type (a) or (c).
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The broken heart h is called compatible with the smooth heart w if there
exist orientation preserving embeddings ϕ : D → H and ψ : D → H such
that

ϕ(−1) = 0, ψ(1) = 1 + i, (47)

H = ϕ(D) ∪ ψ(D), ϕ(D) ∩ ψ(D) = ϕ(∂D) ∩ ψ(∂D), (48)

u = w ◦ ϕ, v = w ◦ ψ. (49)

Lemma 10.4. Let h = (u, y, v) be a broken (α, β)-heart of type (a), write

Λh =: (x, y, z, Axy, Ayz, Bxy, Byz),

and define Axz and Bxz by

Axz := Axy ∪ Ayz, Bxy =: Bxz ∪ Byz, Bxz ∩ Byz = {z}.

Let w be a smooth (α, β)-heart of type (ac) from x to z that is compatible
with h and let ϕ, ψ : D → H be embeddings that satisfy (47), (48), and (49).
Then

ϕ(eiθ1) = 1 + i, (50)

where θ1 ∈ [0, π] is defined by u(eiθ1) = z, and

ϕ(D) ∩ ψ(D) = ψ(D ∩ S1), (51)

w(∂0H) = Axz, w(∂1H) = Bxz. (52)

Proof. By definition of a smooth heart of type (ac), w(∂0H) is arc in α
connecting x to z and w(∂1H) is an arc in β connecting x to z. Moreover,
by (49),

ϕ(D ∩ R) ∪ ψ(D ∩ R) ⊂ w−1(α), ϕ(D ∩ S1) ∪ ψ(D ∩ S1) ⊂ w−1(β).

Now w−1(α) is a union of disjoint embedded arcs, and so is w−1(β). One of
the arcs in w−1(α) contains ∂0H and one of the arcs in w−1(β) contains ∂1H .
Since ϕ(−1) = 0 ∈ ∂0H and the arc

w ◦ ϕ(D ∩ R) = u(D ∩ R) = Axy

does not contain z we have

ϕ(D ∩ R) ⊂ ∂0H, Axy ⊂ w(∂0H).
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This implies the first equation in (52). Since w◦ϕ(D∩S1) = u(D∩S1) = Bxy

is an arc containing z we have

∂1H ⊂ ϕ(D ∩ S1), w(∂1H) ⊂ Bxy.

This implies the second equation in (52).
We prove (51). Choose θ1 ∈ [0, π] so that u(eiθ1) = z and denote

S0 :=
{
eiθ | 0 ≤ θ ≤ θ1

}
, S1 :=

{
eiθ | θ1 ≤ θ ≤ π

}
,

So that

D ∩ S1 = S0 ∪ S1, u(S0) = Byz, u(S1) = Bxz.

Hence w ◦ ϕ(S1) = u(S1) = Bxz = w(∂1H) and 0 ∈ ϕ(S1) ∩ ∂1H . Since w is
an immersion it follows that

ϕ(S1) = ∂1H, ϕ(eiθ1) = 1 + i = ψ(1).

This proves (50). Moreover, by (49),

w ◦ ϕ(S0) = u(S0) = Byz = v(D ∩ S1) = w ◦ ψ(D ∩ S1)

and 1 + i is an endpoint of both arcs ϕ(S0) and ψ(D ∩ S1). Since w is an
immersion it follows that

ψ(D ∩ S1) = ϕ(S0) ⊂ ϕ(D) ∩ ψ(D).

To prove the converse inclusion, let ζ ∈ ϕ(D) ∩ ψ(D). Then, by definition
of a smooth heart, ζ ∈ ϕ(∂D) ∩ ψ(∂D). If ζ ∈ ϕ(D ∩ R) ∩ ψ(D ∩ R) then
w(ζ) ∈ Axy ∩ Ayz = {y} and hence ζ = ψ(−1) ∈ ψ(D ∩ S1). Now suppose
ζ = ϕ(eiθ) ∈ ψ(D∩R) for some θ ∈ [0, π]. Then we claim that θ ≤ θ1. To see
this, consider the curve ψ(D∩R). By (49), this curve is mapped to Ayz under
w and it contains the point ψ(1) = 1+ i. Hence ψ(D∩R) ⊂ ∂0H \ {0}. But
if θ > θ1 then ϕ(e

iθ) ∈ ∂1H \{1+ i} and this set does not intersect ∂0H \{0}.
Thus we have proved that θ ≤ θ1 and hence ϕ(eiθ) ∈ ϕ(S0) = ψ(D ∩ S1), as
claimed. This proves Lemma 10.4.

Proposition 10.5. (i) Let h = (u, y, v) be a broken (α, β)-heart of type (a)
or (c) from x to z. Then there exists a smooth (α, β)-heart w of type (ac)
from x to z, unique up to equivalence, that is compatible with h.

(ii) Let w be a smooth (α, β)-heart of type (ac) from x to z. Then there exists
precisely one equivalence class of broken (α, β)-hearts of type (a) from x to z
that are compatible with w, and precisely one equivalence class of broken
(α, β)-hearts of type (c) from x to z that are compatible with w.
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Proof. We prove (i). Write

Λh =: (x, y, z, Axy, Ayz, Bxy, Byz)

and assume first that Λh satisfies (a). We prove the existence of [w]. Choose
a Riemannian metric on Σ such that the direct sum decompositions

TyΣ = Tyα⊕ Tyβ, TzΣ = Tzα⊕ Tzβ

are orthogonal and α intersects small neighborhoods of y and z in geodesic
arcs. Choose a diffeomorphism γ : [0, 1] → Byz such that γ(0) = y and
γ(1) = z and let ζ(t) ∈ Tγ(t)Σ be a unit normal vector field pointing to the
right. Then there are orientation preserving embeddings ϕ, ψ : D → H such
that

ϕ(D) = ([0, 1] + i[0, 1]) ∪ (i+N), ϕ(D ∩ R) = [0, 1],

ψ(D) = 1 + i− iN, ψ(D ∩ S1) = 1 + i[0, 1],

and
u ◦ ϕ−1(1 + s+ it) = expγ(t)(sζ(t))

for 0 ≤ t ≤ 1 and small s ≤ 0, and

v ◦ ψ−1(1 + s+ it) = expγ(t)(sζ(t))

for 0 ≤ t ≤ 1 and small s ≥ 0. The function w : H → Σ, defined by

w(z) :=

{
u ◦ ϕ−1(z), if z ∈ ϕ(D),
v ◦ ψ−1(z), if z ∈ ψ(D),

is a smooth (α, β)-heart of type (ac) from x to z that is compatible with h.
We prove the uniqueness of [w]. Suppose that w′ : H → Σ is another

smooth (α, β)-heart of type (ac) that is compatible with h. Let ϕ′ : D → H
and ψ′ : D → H be embeddings that satisfy (47) and (48) and suppose that
w′ is given by (49) with ϕ and ψ replaced by ϕ′ and ψ′. Then

w′ ◦ ϕ′ ◦ ϕ−1(1 + it) = u ◦ ϕ−1(1 + it)

= v ◦ ψ−1(1 + it)

= w′ ◦ ψ′ ◦ ψ−1(1 + it)

for 0 ≤ t ≤ 1 and, by (47) and (50),

ϕ′ ◦ ϕ−1(1 + i) = 1 + i = ψ′ ◦ ψ−1(1 + i).
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Since w′ is an immersion it follows that

ϕ′ ◦ ϕ−1(1 + it) = ψ′ ◦ ψ−1(1 + it) (53)

for 0 ≤ t ≤ 1. Consider the map χ : H → H given by

χ(ζ) :=

{
ϕ′ ◦ ϕ−1(ζ), for ζ ∈ ϕ(D),
ψ′ ◦ ψ−1(ζ), for ζ ∈ ψ(D).

By (53), this map is well defined. Since H = ϕ′(D) ∪ ψ′(D), the map χ is
surjective. We prove that χ is injective. Let ζ, ζ ′ ∈ H such that χ(ζ) = χ(ζ ′).
If ζ, ζ ′ ∈ ϕ(D) or ζ, ζ ′ ∈ ψ(D) then it is obvious that ζ = ζ ′. Hence assume
ζ ∈ ϕ(D) and ζ ′ ∈ ψ(D). Then ϕ′ ◦ϕ−1(ζ) = ψ′ ◦ψ−1(ζ ′) and hence, by (51),

ψ′ ◦ ψ−1(ζ ′) ∈ ψ′(D ∩ S1).

Hence ζ ′ ∈ ψ(D ∩ S1) ⊂ ϕ(D), so ζ and ζ ′ are both contained in ϕ(D),
and it follows that ζ = ζ ′. Thus we have proved that χ : H → H is a
homeomorphism. Since w′ = w◦χ it follows that χ is a diffeomorphism. This
proves (i) in the case (a). The case (c) follows by reversing the orientation
of Σ and replacing u, v, w by

u′ = u ◦ ρ, v′ = v ◦ ρ, w′(ζ) = w(iζ̄), ρ(ζ) =
i+ ζ̄

1 + iζ̄
.

Thus ρ : D → D is an orientation reversing diffeomorphism with fixed points
±1 that interchanges D ∩ R and D ∩ S1. The map H → H : ζ 7→ iζ̄ is
an orientation reversing diffeomorphism with fixed points 0 and 1 + i that
interchanges ∂0H and ∂1H . This proves (i).

We prove (ii). Let w : H → Σ be a smooth (α, β)-heart of type (ac) and
denote

Axz := w(∂0H), Bxz := w(∂1H).

Let γ ⊂ w−1(β) be the arc that starts at 1+i and points into the interior ofH .
Let η ∈ ∂H denote the second endpoint of γ. Since β has no self-intersections
we have y := w(η) ∈ Axz. The arc γ divides H into two components, each
of which is diffeomorphic to D. (See Figure 25.) The component which
contains 0 gives rise to a smooth (α, β)-lune u from x to y and the other
component gives rise to a smooth (α, β)-lune v from y to z. Let

∂Λu =: (x, y, Axy, Bxy), ∂Λv =: (y, z, Ayz, Byz).
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Figure 25: Breaking a heart.

Then
Bxy = Bxz ∪Byz, Byz = w(γ).

By Theorem 6.5, Bxy is an arc. Hence Byz ( Bxy, and hence, by Proposi-
tion 10.2, the broken (α, β)-heart h = (u, y, v) from x to z satisfies (a). It is
obviously compatible with w. A similar argument, using the arc γ′ ⊂ w−1(α)
that starts at 1+ i and points into the interior of H , proves the existence of a
broken (α, β)-heart h′ ∈ H(x, z) that satisfies (c) and is compatible with w.

If h̃ = (ũ, ỹ, ṽ) is any other broken (α, β)-heart of type (a) that is compatible
with w, then it follows from uniqueness in part (i) that w−1(ỹ) = η is the

endpoint of γ, hence ỹ = y, and hence, by Proposition 8.5, h̃ is equivalent
to h. This proves (ii) and Proposition 10.5.

Proof of Theorem 9.1. The square of the boundary operator is given by

∂∂x =
∑

z∈α∩β

nH(x, z)z,

where
nH(x, z) :=

∑

y∈α∩β

n(x, y)n(y, z) = #H(x, z).

By Proposition 10.5, and the analogous result for smooth (α, β)-hearts of
type (bd), there is an involution τ : H(x, z) → H(x, z) without fixed points.
Hence nH(x, z) is even for all x and z and hence ∂ ◦ ∂ = 0. This proves
Theorem 9.1.
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11 Invariance under Isotopy

Proposition 11.1. Let x, y, x′, y′ ∈ α∩β be distinct intersection points such
that

n(x, y) = n(x′, y) = n(x, y′) = 1.

Let u : D → Σ be a smooth (α, β)-lune from x to y and assume that the
boundary ∂Λu =: (x, y, A,B) of its (α, β)-trace satisfies

A ∩ β = α ∩ B = {x, y}.

Then there is no smooth (α, β)-lune from x′ to y′, i.e.

n(x′, y′) = 0.

Moreover, extending the arc from x to y (in either α or β) beyond y, we
encounter x′ before y′ (see Figures 26 and 27) and the two arcs A′ ⊂ α and
B′ ⊂ β from x′ to y′ that pass through x and y form an (α, β)-trace that
satisfies the arc condition.

x y x’y’

Figure 26: No lune from x′ to y′.

x x’ yy’

Figure 27: Lunes from x or x′ to y or y′.

Proof. The proof has three steps.

Step 1. There exist (α, β)-traces Λx′y = (x′, y,wx′y), Λyx = (y, x,wyx), and
Λxy′ = (x, y′,wxy′) with Viterbo–Maslov indices

µ(Λx′y) = 1, µ(Λyx) = −1, µ(Λxy′) = 1

such that
wx′y ≥ 0, wyx ≤ 0, wx,y′ ≥ 0.
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By hypothesis, there exist smooth (α, β)-lunes from x′ to y, from x to y, and
from x to y′. By Theorem 6.7 this implies the existence of combinatorial
(α, β)-lunes Λx′y = (x′, y,wx′y), Λxy = (x, y,wxy), and Λxy′ = (x, y′,wxy′). To
prove Step 1, reverse the direction of Λxy to obtain the required (α, β)-trace
Λyx = (y, x,wyx) with wyx := −wxy.

Step 2. Let Λx′y, Λyx, Λxy′ be as in Step 1. Then

mx′(Λyx) = my′(Λyx) = 0,

mx(Λx′y) = my(Λxy′) = 0,

my′(Λx′y) = mx′(Λxy′) = 0.

(54)

By hypothesis, the combinatorial (α, β)-lune Λxy = Λu has the boundary
∂Λxy = (x, y, A,B) with A ∩ β = α ∩ B = {x, y}. Hence wyx = −wxy

vanishes near every intersection point of α and β other than x and y. This
proves the first equation in (54). By (38), the (α, β)-trace Λx′x := Λx′y#Λyx

has Viterbo–Maslov index index zero. Hence, by the trace formula (37),

0 = mx′(Λx′x) +mx(Λx′x)

= mx′(Λx′y) +mx′(Λyx) +mx(Λx′y) +mx(Λyx)

= mx(Λx′y).

Here the last equation follows from the fact thatmx′(Λyx) = 0,mx′(Λx′y) = 1,
and mx(Λyx) = −1. The equation my(Λxy′) = 0 is proved by an analogous
argument, using the fact that Λyy′ := Λyx#Λxy′ has Viterbo–Maslov index
zero. This proves the second equation in (54). To prove the last equation
in (54) we observe that the catenation

Λx′y′ := Λx′y#Λyx#Λxy′ = (x′, y′,wx′y + wyx + wxy′) (55)

has Viterbo–Maslov index one. Hence, by the trace formula (37),

2 = mx′(Λx′y′) +my′(Λx′y′)

= mx′(Λx′y) +mx′(Λyx) +mx′(Λxy′)

+my′(Λx′y) +my′(Λyx) +my′(Λxy′)

= 2 +mx′(Λxy′) +my′(Λx′y).

Here the last equation follows from the first equation in (54) and the fact
that mx′(Λx′y) = my′(Λxy′) = 1. Since the numbers mx′(Λxy′) and my′(Λx′y)
are nonnegative, this proves the last equation in (54). This proves Step 2.
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Step 3. We prove the Proposition.

Let Λx′y, Λyx, Λxy′ be as in Step 1 and denote

∂Λx′y =: (x′, y, Ax′y, Bx′y),

∂Λyx =: (y, x, Ayx, Byx),

∂Λxy′ =: (x, y′, Axy′ , Bxy′).

By Step 2 we have

x, y′ /∈ Ax′y ∪ Bx′y, x′, y′ /∈ Ayx ∪ Byx, x′, y /∈ Axy′ ∪Bxy′ . (56)

In particular, the arc in α or β from y to x′ contains neither x nor y′. Hence
it is the extension of the arc from x to y and we encounter x′ before y′ as
claimed. It follows also from (56) that the catenation Λx′y′ in (55) satisfies
the arc condition and has boundary arcs

Ax′y′ := Ax′y ∪Ayx ∪Axy′ , Bx′y′ := Bx′y ∪Byx ∪Bxy′ .

Thus x ∈ Ax′y′ and it follows from Step 2 that

mx(Λx′y′) = mx(Λx′y) +mx(Λyx) +mx(Λxy′) = 0.

This shows that the function wx′y′ is not everywhere nonnegative, and hence
Λx′y′ is not a combinatorial (α, β)-lune. By Proposition 8.5 there is no other
(α, β)-trace with endpoints x′, y′ that satisfies the arc condition. Hence
n(x′, y′) = 0. This proves Proposition 11.1

Proof of Theorem 9.2. By composing with a suitable ambient isotopy assume
without loss of generality that α = α′. Furthermore assume the isotopy
{βt}0≤t≤1 with β0 = β and β1 = β ′ is generic in the following sense. There
exists a finite sequence of pairs (ti, zi) ∈ [0, 1]× Σ such that

0 < t1 < t2 < · · · < tm < 1,

α ⋔z βt unless (t, z) = (ti, zi) for some i, and for each i there exists a
coordinate chart Ui → R2 : z 7→ (ξ, η) at zi such that

α ∩ Ui = {η = 0} , βt ∩ Ui =
{
η = −ξ2 ± (t− ti)

}
(57)

for t near ti. It is enough to consider two cases.
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Case 1 is m = 0. In this case there exists an ambient isotopy ϕt such that
ϕt(α) = α and ϕt(β) = βt. It follows that the map CF(α, β) → CF(α, β ′)
induced by ϕ1 : α ∩ β → α ∩ β ′ is a chain isomorphism that identifies the
boundary maps.

In Case 2 we have m = 1, the isotopy is supported near U1, and (57) holds
with the minus sign. Thus there are two intersection points in U1 for t < t1,
no intersection points in U1 for t > t1, and all other intersection points of α
and βt are independent of t. Denote by x, y ∈ α ∩ β the intersection points
that cancel at time t = t1 and choose the ordering such that

n(x, y) = 1. (58)

Then α ∩ β ′ = (α ∩ β) \ {x, y}. We prove in seven steps that

n′(x′, y′) = n(x′, y′) + n(x′, y)n(x, y′) (59)

for x′, y′ ∈ α ∩ β ′, where n(x′, y′) denotes the number of (α, β)-lunes from x′

to y′ and n′(x′, y′) denotes the number of (α, β ′)-lunes from x′ to y′.

Step 1. If there is no (α, β)-trace from x′ to y′ that satisfies the arc condition
then (59) holds.

In this case there is no (α, βt)-trace from x′ to y′ that satisfies the arc condi-
tion for any t. Hence it follows from Theorem 6.5 that n(x′, y′) = n′(x′, y′) = 0
and it follows from Proposition 11.1 that n(x′, y)n(x, y′) = 0. Hence (59)
holds in this case.

Standing Assumptions, Part 1. From now on we assume that there is
an (α, β)-trace from x′ to y′ that satisfies the arc condition. Then there is
an (α, βt)-trace from x′ to y′ that satisfies the arc condition for every t. By
Proposition 8.5, this (α, βt)-trace is uniquely determined by x′ and y′. We
denote it by Λx′y′(t) and its boundary by

∂Λx′y′(t) =: (x′, y′, Ax′y′ , Bx′y′(t)).

Choose a universal covering π : C → Σ so that α̃ = R is a lift of α, the
map z̃ 7→ z̃ + 1 is a covering transformation, and π maps the interval [0, 1)
bijectively onto α. Let

Λ̃x′y′(t) = (x̃′, ỹ′,weΛx′y′(t)
)

be a continuous family of lifts of the (α, βt)-traces to the universal cover

π : C → Σ with boundaries ∂Λ̃x′y′(t) = (x̃′, ỹ′, Ãx′y′, B̃x′y′(t)).
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Step 2. The lift Λ̃x′y′(t) satisfies condition (II) (that the intersection index

of Ãx′y′ and B̃x′y′(t) at x̃′ is +1 and at ỹ′ is −1) and condition (III) (that

the winding numbers of Ãx′y′ − B̃x′y′(t) are zero or one near x̃′ and ỹ′) either
for all values of t or for no value of t.

The intersection indices of Ãx′y′ and B̃x′y′(t) at x̃′ and ỹ′, and the winding

numbers of Ãx′y′ − B̃x′y′(t) near x̃
′ and ỹ′, are obviously independent of t.

Step 3. If one of the arcs Ax′y′(t) and Bx′y′(t) does not pass through U1

then (59) holds.

In this case the winding numbers do not change sign as t varies and hence,
by Step 2, ν(Λx′y′(t)) is independent of t. Hence

n(x′, y′) = n′(x′, y′).

To prove equation (59) in this case, we must show that one of the numbers
n(x′, y) or n(x, y′) vanishes. Suppose otherwise that

n(x′, y) = n(x, y′) = 1.

Since n(x, y) = 1, by equation (58), it follows from Proposition 11.1 that the
two arcs from x′ to y′ that pass through U1 form an (α, β)-trace that satisfies
the arc condition. Hence there are two (α, β)-traces from x′ to y′ that satisfy
the arc condition, which is impossible by Proposition 8.5. This contradiction
proves Step 3.
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kk-1
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k+2

k+1

kk+1
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k k

k-1 k-1

k-1 k+1

k

Case 3 Case 4

k-2

k-1 k+1

k+1k-1

Figure 28: The winding numbers of Λ̃x′y′ in Ũ1 for t = 0.
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Standing Assumptions, Part 2. From now on we assume that Ax′y′ and
Bx′y′(t) both pass through U1. Denote by x̃ and ỹ the unique lifts of x and y,

respectively, in Ãx′y′ ∩ B̃x′y′(0).

Under this assumption the winding number of Λ̃x′y′(t) only changes in the

area enclosed by the two arcs in the lift Ũ1 of U1 which contains x̃ and ỹ.
There are four cases, depending on the orientations of the two arcs from x′

to y′. (See Figure 28.) The next step deals with three of these cases.

Step 4. Assume that the orientation of α from x′ to y′ does not agree with
one of the orientations from x′ to y or from x to y′, or else that this holds
for β (i.e. that one of the Cases 1,2,3 holds in Figure 28). Then (59) holds.

In Cases 1,2,3 the pattern of winding numbers shows (for any value of k) that
weΛx′y′(t)

is either nonnegative for all values of t or is somewhere negative for

all values of t. Hence, by Step 2, ν(Λx′y′(t)) is independent of t, and hence
n(x′, y′) = n′(x′, y′). Moreover, by Proposition 11.1, we have that in these
cases n(x, y′)n(x′, y) = 0. Hence (59) holds in the Cases 1,2,3.

Standing Assumptions, Part 3. From now on we assume that Case 4
holds in Figure 28, i.e. that the orientations of α and β from x′ to y′ agree
with the orientations from x′ to y and with the orientations from x to y′.

Step 5. Assume Case 4 and n(x′, y) = n(x, y′) = 1. Then (59) holds.

By Proposition 11.1, we have n(x′, y′) = 0. We must prove that n′(x′, y′) = 1.
Let Λx′y and Λxy′ be the (α, β)-traces from x′ to y, respectively from x to y′,

that satisfy the arc condition and denote their lifts by Λ̃x′y and Λ̃xy′. By (55),

weΛx′y′(0)
(z̃) = weΛx′y

(z̃) + weΛxy′
(z̃) for z̃ ∈ C \ Ũ1. (60)

Thus weΛx′y′(0)
≥ 0 in C \ Ũ1. Moreover, by Theorem 6.7, the lifts Λ̃x′y, Λ̃xy′

have winding numbers zero in the regions labelled by k and k−1 in Figure 28,
Case 4. Hence, by (60), we have k = 0 and hence

weΛx′y′(t)
≥ 0 for t > t1.

Thus we have proved that Λ̃x′y′(t) satisfies (I) for t > t1. Moreover, the
Viterbo–Maslov index is given by

µ(Λ̃x′y′(t)) = µ(Λ̃x′y) + µ(Λ̃xy′)− µ(Λ̃xy) = 1.

Hence, by Theorem 6.7, Λ̃x′y′(t) is a combinatorial lune for t > t1 and we
have n′(x′, y′) = 1.
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Step 6. Assume Case 4 and n′(x′, y′) = 1. Then (59) holds.

The winding numbers of Λ̃x′y′(1) are nonnegative and hence we must have

k ≥ 0 in Figure 28, Case 4. If k > 0 then the winding numbers of Λ̃x′y′(0)
are also nonnegative and hence, by Step 2, n(x′, y′) = 1. Hence, by (58) and
Proposition 11.1, one of the numbers n(x′, y) and n(x, y′) must vanish, and
hence (59) holds when k > 0.

γ
γ-

t=1t=0

+γ

Figure 29: A lune splits.

Now assume k = 0. Then n(x′, y′) = 0 and we must prove that

n(x′, y) = n(x, y′) = 1.

To see this, we choose a smooth (α̃, β̃ ′)-lune

ũ′ : D → C

from x̃′ to ỹ′. Since k = 0 this lune has precisely one preimage in the region
in Ũ1 where there winding number is k + 1 = 1 6= 0 for t = 1. Choose an
embedded arc

γ̃ : [0, 1] → C

in Ũ1 for t = 1 connecting the two branches of α̃ and β̃ ′ such that γ̃ intersects
α̃ and β̃ ′ only at the endpoints (see Figure 29). Then

γ := ũ′
−1
(γ̃)
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divides D into two components. Deform the curve β̃ ′ along γ̃ to a curve
β̃ ′′ that intersects α̃ in two points x̃′′, ỹ′′ ∈ Ũ1. The preimage of β̃ ′′ under
ũ′ contains two arcs γ− and γ+, parallel to γ, in the two components of
D. This results in two half-discs contained in D, and the restriction of ũ to
these two half discs gives rise to two (α̃, β̃ ′′)-lunes, one from x̃′ to ỹ′′ and

one from x̃′′ to ỹ′ (see Figure 29). Moreover β̃ ′′ descends to an embedded
loop in Σ that is isotopic to β through loops that are transverse to α. Hence
n(x′, y) = n(x, y′) = 1, as claimed.

Step 7. Assume Case 4 and n′(x′, y′) = n(x′, y)n(x, y′) = 0. Then (59)
holds.

We must prove that n(x′, y′) = 0. By Step 2, conditions (II) and (III) on

Λ̃x′y′(t) are independent of t and so we have that n(x′, y′) = 0 whenever these

conditions are not satisfied. Hence assume that Λ̃x′y′(t) satisfies (II) and (III)
for every t. If k > 0 in Figure 28 then condition (I) also holds for every t and
hence n(x′, y′) = n′(x′, y′) = 1, a contradiction. If k ≤ 0 in Figure 28 then

Λ̃x′y′(0) does not satisfy (I) and hence n(x′, y′) = 0, as claimed.

Thus we have established (59). Hence, by Lemma C.1, HF(α, β) is isomorphic
to HF(α, β ′). This proves Theorem 9.2.

12 Lunes and Holomorphic Strips

We assume throughout that Σ and α, β ⊂ Σ satisfy hypothesis (H). We
also fix a complex structure J on Σ. A holomorphic (α, β)-strip is a
holomorphic map v : S → Σ of finite energy such that

v(R) ⊂ α, v(R+ i) ⊂ β. (61)

It follows [32, Theorem A] that the limits

x = lim
s→−∞

v(s+ it), y = lim
s→+∞

v(s+ it) (62)

exist; the convergence is exponential and uniform in t; moreover ∂sv and
all its derivatives converge exponentially to zero as s tends to ±∞. Call
two holomorphic strips equivalent if they differ by a time shift. Every
holomorphic strip v has a Viterbo–Maslov index µ(v), defined as follows.
Trivialize the complex line bundle v∗TΣ → S such that the trivialization
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converges to a frame of TxΣ as s tends to −∞ and to a frame of TyΣ as
s tends to +∞ (with convergence uniform in t). Then s 7→ Tv(s,0)α and
s 7→ Tv(s,1)β are Lagrangian paths and their relative Maslov index is µ(v)
(see [39] and [30]).

At this point it is convenient to introduce the notation

MFloer(x, y; J) :=

{
v : S → Σ

∣∣∣∣
v is a holomorphic (α, β)-strip
from x to y with µ(v) = 1

}

time shift

for the moduli space of index one holomorphic strips from x to y up to time
shift. This moduli space depends on the choice of a complex structure J on
Σ. We also introduce the notation

Mcomb(x, y) :=

{
u : D → Σ

∣∣∣∣
u is a smooth (α, β)-lune
from x to y

}

isotopy

for the moduli space of (equivalence classes of) smooth (α, β)-lunes. This
space is independent of the choice of J . We show that there is a bijection
between these moduli spaces for every pair x, y ∈ α ∩ β.

Given a smooth (α, β)-lune u : D → Σ, the Riemann mapping theorem
gives a unique homeomorphism ϕu : D → D such that the restriction of ϕu

to D \ {±1} is a diffeomorphism and

ϕu(−1) = −1, ϕu(0) = 0, ϕu(1) = 1, ϕ∗
uu

∗J = i. (63)

Let g : S → D \ {±1} be the holomorphic diffeomorphism given by

g(s+ it) :=
e(s+it)π/2 − 1

e(s+it)π/2 + 1
. (64)

Then, for every (α, β)-lune u, the composition v := u◦ϕu◦g is a holomorphic
(α, β)-strip.

Theorem 12.1. Assume (H), let x, y ∈ α∩β, and choose a complex structure
J on Σ. Then the map u 7→ u ◦ ϕu ◦ g induces a bijection

Mcomb(x, y) → MFloer(x, y; J) : [u] 7→ [u ◦ ϕu ◦ g] (65)

between the corresponding moduli spaces.

Proof. See page 97 below.
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The proof of Theorem 12.1 relies on the asymptotic analysis of holomor-
phic strips in [32] (see Appendx D for a summary) and on an explicit formula
for the Viterbo–Maslov index. For each intersection point x ∈ α ∩ β we de-
note by θx ∈ (0, π) the angle from Txα to Txβ with respect to our complex
structure J . Thus

Txβ = (cos(θx) + sin(θx)J) Txα, 0 < θx < π. (66)

Fix a nonconstant holomorphic (α, β)-strip v : S → Σ from x to y. Choose a
holomorphic coordinate chart ψy : Uy → C on an open neighborhood Uy ⊂ Σ
of y such that ψy(y) = 0. By [32, Theorem C] (see also Corollary D.2) there
is a complex number cy and a integer νy(v) ≥ 1 such that

ψy(v(s+ it)) = cye
−(νy(v)π−θy)(s+it) +O(e−(νy(v)π−θy+δ)s) (67)

for some δ > 0 and all s > 0 sufficiently close to +∞. The complex num-
ber cy belongs to the tangent space T0(ψy(α ∩ Uy)) and the integer νy(v) is
independent of the choice of the coordinate chart.

Now let us interchange α and β as well as x and y, and replace v by the
(β, α)-holomorphic strip

s+ it 7→ v(−s+ i(1− t))

from y to x. Choose a holomorphic coordinate chart ψx : Ux → C on an
open neighborhood Ux ⊂ Σ of x such that ψx(x) = 0. Using [32, Theorem C]
again we find that there is a complex number cx and an integer νx(v) ≥ 0
such that

ψx(v(s+ it)) = cxe
(νx(v)π+θx)(s+it) + O(e(νx(v)π+θx+δ)s) (68)

for some δ > 0 and all s < 0 sufficiently close to −∞. As before, the complex
number cx belongs to the tangent space T0(ψx(α∩Ux)) and the integer νx(v)
is independent of the choice of the coordinate chart.

Denote the set of critical points of v by

Cv := {z ∈ S | dv(z) = 0} .

It follows from Corollary D.2 (i) that this is a finite set. For z ∈ Cv denote
by νz(v) ∈ N the order to which dv vanishes at z. Thus the first nonzero
term in the Taylor expansion of v at z (in a local holomorphic coordinate
chart on Σ centered at v(z)) has order νz(v) + 1.
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Theorem 12.2. Assume (H) and choose a complex structure J on Σ. Let
x, y ∈ α ∩ β and v : S → Σ be a nonconstant holomorphic (α, β)-strip from
x to y. Then the linearized operator Dv associated to this strip in Floer
theory is surjective. Moreover, the Viterbo–Maslov index of v is equal to the
Fredholm index of Dv and is given by the index formula

µ(v) = νx(v) + νy(v) +
∑

z∈Cv∩∂S

νz(v) + 2
∑

z∈Cv∩int(S)

νz(v). (69)

The right hand side in equation (69) is positive because all summands are
nonnegative and νy(v) ≥ 1.

Proof. See page 97 below.

The surjectivity statement in Theorem 12.2 has been observed by many
authors. A proof for holomorphic polygons is contained in Seidel’s book [34].

We will need a more general index formula (equation (76) below) which
we explain next. Choose a Riemannian metric on Σ that is compatible with
the complex structure J . This metric induces a Hermitian structure on the
pullback tangent bundle v∗TΣ → S and the Hilbert spacesW 1,2(S, v∗TΣ) and
L2(S, v∗TΣ) are understood with respect to this induced structure. These
Hilbert spaces are independent of the choice of the metric on Σ, only their
inner products depend on this choice. The linearized operator

Dv : W
1,2
BC(S, v

∗TΣ) → L2(S, v∗TΣ)

with

W 1,2
BC(S, v

∗TΣ) :=

{
v̂ ∈ W 1,2(S, v∗TΣ)

∣∣∣∣
v̂(s, 0) ∈ Tv(s,0)α ∀s ∈ R

v̂(s, 1) ∈ Tv(s,1)β ∀s ∈ R

}

is given by
Dvv̂ = ∇sv̂ + J∇tv̂

for v̂ ∈ W 1,2
BC(S, v

∗TΣ), where ∇ denotes the Levi-Civita connection. Here
we use the fact that ∇J = 0 because J is integrable. We remark that, first,
this is a Fredholm operator for every smooth map v : S → Σ satisfying (61)
and (62) (where the convergence is exponential and uniformly in t, and ∂sv,
∇s∂sv, ∇s∂tv converge exponentially to zero as s tends to ±∞). Second, the
definition of the Viterbo–Maslov index µ(v) extends to this setting and it
is equal to the Fredholm index of Dv (see [31]) Third, the operator Dv is
independent of the choice of the Riemannian metric whenever v is an (α, β)-
holomorphic strip.
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Next we choose a unitary trivialization

Φ(s, t) : C → Tv(s,t)Σ

of the pullback tangent bundle such that

Φ(s, 0)R = Tv(s,0)α, Φ(s, 1)R = Tv(s,1)β,

and Φ(s, t) = Ψt(v(s, t)) for |s| sufficiently large. Here Ψt, 0 ≤ t ≤ 1,
is a smooth family of unitary trivializations of the tangent bundle over a
neighborhood Ux ⊂ Σ of x, respectively Uy ⊂ Σ of y, such that Ψ0(z)R = Tzα
for z ∈ (Ux ∪ Uy) ∩ α and Ψ1(z)R = Tzβ for z ∈ (Ux ∪ Uy) ∩ β. Then

W := Φ−1W 1,2
BC(S, v

∗TΣ) =
{
ξ ∈ W 1,2(S,C) | ξ(s, 0), ξ(s, 1) ∈ R ∀s ∈ R

}
,

H := Φ−1L2(S, v∗TΣ) = L2(S,C).

The operator DS := Φ−1 ◦Dv ◦ Φ : W → H has the form

DSξ = ∂sξ + i∂tξ + Sξ (70)

where the function S : S → EndR(C) is given by

S(s, t) := Φ(s, t)−1
(
∇sΦ(s, t) + J(v(s, t))∇tΦ(s, t)

)
.

The matrix Φ−1∇sΦ is skew-symmetric and the matrix Φ−1J(v)∇tΦ is sym-
metric. Moreover, it follows from our hypotheses on v and the trivialization
that S converges exponentially and Φ−1∇sΦ as well as ∂sS converge expo-
nentially to zero as as s tends to ±∞. The limits of S are the symmetric
matrix functions

Sx(t) := lim
s→−∞

S(s, t) = Ψt(x)
−1J(x)∂tΨt(x),

Sy(t) := lim
s→+∞

S(s, t) = Ψt(y)
−1J(y)∂tΨt(y).

(71)

Thus there exist positive constants c and ε such that

|S(s, t)− Sx(t)|+ |∂sS(s, t)| ≤ ceεs,

|S(s, t)− Sy(t)|+ |∂sS(s, t)| ≤ ce−εs (72)

for every s ∈ R. This shows that the operator (70) satisfies the hypotheses
of [32, Lemma 3.6]. This lemma asserts the following. Let ξ ∈ W be a
nonzero function in the kernel of DS:

ξ ∈ W, DSξ = ∂sξ + i∂tξ + Sξ = 0, ξ 6= 0.
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Then there exist nonzero functions ξx, ξy : [0, 1] → C and positive real num-
bers λx, λy, C, δ such that

iξ̇x(t) + Sx(t)ξx(t) = −λxξx(t), ξx(0), ξx(1) ∈ R

iξ̇y(t) + Sy(t)ξy(t) = λyξy(t), ξy(0), ξy(1) ∈ R
(73)

and
∣∣ξ(s, t)− eλxsξx(t)

∣∣ ≤ Ce(λx+δ)s, s ≤ 0
∣∣ξ(s, t)− e−λysξy(t)

∣∣ ≤ Ce−(λy+δ)s, s ≥ 0.
(74)

We prove that there exist integers ι(x, ξ) ≥ 0 and ι(y, ξ) ≥ 1 such that

λx = ι(x, ξ)π + θx, λy = ι(y, ξ)π − θy. (75)

Here θx is chosen as above such that

Txβ = exp(θxJ(x))Txα, 0 < θx < π,

and the same for θy. To prove (75), we observe that the function

vx(t) := Ψt(x)ξx(t)

satisfies

J(x)v̇x(t) = −λxvx(t), vx(0) ∈ Txα, vx(1) ∈ Txβ.

Hence vx(t) = exp(tλxJ(x))vx(0) and this proves the first equation in (75).
Likewise, the function vy(t) := Ψt(y)ξy(t) satisfies J(y)v̇y(t) = λyvy(t) and
vy(0) ∈ Tyα and vy(1) ∈ Tyβ. Hence vy(t) = exp(−tλyJ(y))vy(0), and this
proves the second equation in (75).

Lemma 12.3. Suppose S satisfies the asymptotic condition (72) and let
ξ ∈ W be a smooth function with isolated zeros that satisfies (73), (74),
and (75). Then the Fredholm index of DS is given by the linear index
formula

index(DS) = ι(x, ξ) + ι(y, ξ) +
∑

z∈∂S
ξ(z)=0

ι(z, ξ) + 2
∑

z∈int(S)
ξ(z)=0

ι(z, ξ). (76)

In the second sum ι(z, ξ) denotes the index of z as a zero of ξ. In the first
sum ι(z, ξ) denotes the degree of the loop [0, π] → RP1 : θ 7→ ξ(z + εeiθ)R
when z ∈ R and of the loop [0, π] → RP1 : θ 7→ ξ(z − εeiθ)R when z ∈ R+ i;
in both cases ε > 0 is chosen so small that the closed ε-neighborhood of z
contains no other zeros of ξ.
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Proof. Since ξx and ξy have no zeros, by (73), it follows from equation (74)
that the zeros of ξ are confined to a compact subset of S. Moreover the zeros
of ξ are isolated and so the right hand side of (76) is a finite sum. Now let
ξ0 : S → C be the unique solution of the equation

i∂tξ0(s, t) + S(s, t)ξ0(s, t) = 0, ξ0(s, 0) = 1. (77)

Then

ξ0,x(t) := lim
s→−∞

ξ0(s, t) = Ψt(x)
−1Ψ0(x)1,

ξ0,y(t) := lim
s→+∞

ξ0(s, t) = Ψt(y)
−1Ψ0(y)1.

(78)

Thus the Lagrangian path

R → RP1 : s 7→ ΛS(s) := Rξ(s, 1)

is asymptotic to the subspace Ψ1(x)
−1Txα as s tends to −∞ and to the

subspace Ψ1(y)
−1Tyα as s tends to +∞. These subspaces are both transverse

to R. By the spectral-flow-equals-Maslov-index theorem in [31] the Fredholm
index of DS is equal to the relative Maslov index of the pair (ΛS,R):

index(DS) = µ(ΛS,R). (79)

It follows from (73) and (78) that

ξ0,x(t)

ξx(t)
=
e−iλxt

ξx(0)
,

ξ0,y(t)

ξy(t)
=

eiλyt

ξy(0)
. (80)

Now let U =
⋃

ξ(z)=0 Uz ⊂ S be a union of open discs or half discs Uz of radius
less than one half, centered at the zeros z of ξ, whose closures are disjoint.
Consider the smooth map Λ : S \ U → RP1 defined by

Λ(s, t) := ξ0(s, t)ξ(s, t)R.

By (80) this map converges, uniformly in t, as s tends to ±∞ with limits

Λx(t) := lim
s→−∞

Λ(s, t) = e−iλxtR, Λy(t) := lim
s→+∞

Λ(s, t) = eiλytR. (81)

Moreover, we have

Λ(s, 1) = ξ0(s, 1)R = ΛS(s), (s, 1) /∈ U,

Λ(s, 0) = ξ0(s, 0)R = R, (s, 0) /∈ U.
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If z ∈ int(S) with ξ(z) = 0 then the map Λz := Λ|∂Uz
is homotopic to the

map ∂Uz → RP1 : s + it 7→ ξ(s, t)R. Hence it follows from the definition of
the index ι(z, ξ) that its degree is

deg(Λz : ∂Uz → RP1) = −2ι(z, ξ), z ∈ int(S), ξ(z) = 0. (82)

If z ∈ ∂S with ξ(z) = 0, define the map Λz : ∂Uz → RP 1 by

Λz(s, t) :=

{
ξ0(s, t)ξ(s, t)R, if (s, t) ∈ ∂Uz \ ∂S,
ξ0(s, t)R, if (s, t) ∈ ∂Uz ∩ ∂S.

This map is homotopic to the map (s, t) 7→ ξ(s, t)R for (s, t) ∈ ∂Uz \ ∂S and
(s, t) 7→ R for (s, t) ∈ ∂Uz ∩ ∂S. Hence it follows from the definition of the
index ι(z, ξ) that its degree is

deg(Λz : ∂Uz → RP1) = −ι(z, ξ), z ∈ ∂S, ξ(z) = 0. (83)

Abbreviate ST := [−T, T ] + i[0, 1] for T > 0 sufficiently large. Since the map
Λ : ∂(ST \U) → RP1 extends to ST \U its degree is zero and it is equal to the
relative Maslov index of the pair of Lagrangian loops (Λ|∂(ST∩U),R). Hence

0 = lim
T→∞

µ(Λ|∂(ST \U),R)

= µ(Λy,R)− µ(Λx,R)− µ(ΛS,R)−
∑

z∈S

ξ(z)=0

µ(Λz,R)

= ι(y, ξ) + ι(x, ξ)− µ(ΛS,R) +
∑

z∈∂S
ξ(z)=0

ι(z, ξ) + 2
∑

z∈int(S)
ξ(z)=0

ι(z, ξ).

Here the second equality follows from the additivity of the relative Maslov
index for paths [30]. It also uses the fact that, for z ∈ R+ i with ξ(z) = 0, the
relative Maslov index of the pair (Λz|∂Uz∩(R+i),R) = (ΛS|∂Uz∩(R+i),R) appears
with a plus sign when using the orientation of R+ i and thus compensates for
the intervals in the relative Maslov index −µ(ΛS,R) that are not contained
in the boundary of S \ U . Moreover, for z ∈ R with ξ(z) = 0, the relative
Maslov index of the pair (Λz|∂Uz∩R,R) is zero. The last equation follows from
the formulas (75) and (81) for the first two terms and from (83) and (82)
for the last two terms. With this understood, the linear index formula (76)
follows from equation (79). This proves Lemma 12.3.
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Lemma 12.4. The operator DS is injective whenever index(DS) ≤ 0 and is
surjective whenever index(DS) ≥ 0.

Proof. If ξ ∈ W is a nonzero element in the kernel of DS then ξ satisfies the
hypotheses of Lemma 12.3. Moreover, every zero of ξ has positive index by
the argument in the proof of Theorem C.1.10 in [20, pages 561/562]. Hence
the index of DS is positive by the linear index formula in Lemma 12.3. This
shows that DS is injective whenever index(DS) ≤ 0. If DS has nonnegative
index then the formal adjoint operator η 7→ −∂sη+i∂tη+S

Tη has nonpositive
index and is therefore injective by what we just proved. Since its kernel is the
L2-orthogonal complement of the image ofDS it follows thatDS is surjective.
This proves Lemma 12.4.

Proof of Theorem 12.2. The index formula (69) follows from the linear index
formula (76) in Lemma 12.3 with ξ := Φ−1∂sv. The index formula shows
that Dv has positive index for every nonconstant (α, β)-holomorphic strip
v : S → Σ. Hence Dv is onto by Lemma 12.4. This proves Theorem 12.2.

Proof of Theorem 12.1. The proof has four steps.

Step 1. The map (65) is well defined.

Let u, u′ : D → Σ be equivalent smooth (α, β)-lunes from x to y. Then there
is an orientation preserving diffeomorphism ϕ : D → D such that ϕ(±1) = ±1
and u′ := u ◦ϕ. Consider the holomorphic strips v := u ◦ϕu ◦ g : S → Σ and

v′ := u′ ◦ ϕu′ ◦ g

= u ◦ ϕ ◦ ϕu◦ϕ ◦ g

= v ◦ g−1 ◦ ϕ−1
u ◦ ϕ ◦ ϕu◦ϕ ◦ g.

By the definition of ϕu we have (u ◦ϕu)
∗J = i and (u ◦ϕ ◦ϕu◦ϕ)

∗J = i. (See
equation (63).) Hence the composition ϕ−1

u ◦ϕ ◦ϕu◦ϕ : D \ {±1} → D \ {±1}
is holomorphic and so is the composition g−1 ◦ ϕ−1

u ◦ ϕ ◦ ϕu◦ϕ ◦ g : S → S.
Hence this composition is given by a time shift and this proves Step 1.

Step 2. The map (65) is injective.

Let u, u′ : D → Σ be smooth (α, β)-lunes from x to y and define v := u◦ϕu◦g
and v′ := u′ ◦ ϕu′ ◦ g. (See equations (63) and (64).) Assume that v′ = v ◦ τ
for a translation τ : S → S. Then u′ = u ◦ ϕ, where ϕ : D → D is given
by ϕ|D\{±1} = ϕu ◦ g ◦ τ ◦ g−1 ◦ ϕ−1

u′ and ϕ(±1) = ±1. Since u and u′ are
immersions, it follows that ϕ is a diffeomorphism of D. This proves Step 2.
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Step 3. Every holomorphic (α, β)-strip v : S → Σ from x to y with Viterbo–
Maslov index one is an immersion and satisfies νx(v) = 0 and νy(v) = 1.

This follows immediately from the index formula (69) in Theorem 12.2.

Step 4. The map (65) is surjective.

Let v : S → Σ be a holomorphic (α, β)-strip from x to y with Viterbo–Maslov
index one. By Step 3, v is an immersion and satisfies νx(v) = 0 and νy(v) = 1.
Hence it follows from (67) and (68) that

ψy(v(s+ it)) = cye
−(π−θy)(s+it) +O(e−(π−θy+δ)s), s > T,

ψx(v(s+ it)) = cxe
θx(s+it) +O(e(θx+δ)s), s < −T,

(84)

for T sufficiently large. This implies that the composition

u′ := v ◦ g−1 : D \ {±1} → Σ

(g as in equation (64)) is an immersion and extends continuously to D by
u′(−1) := x and u′(1) := y. Moreover, locally near z = −1, the image of u′

covers only one of the four quadrants into which Σ is divided by α and β and
the same holds near z = 1.

We must prove that there exists a homeomorphism ϕ : D → D such that

(a) ϕ(±1) = ±1 and ϕ(0) = 0,

(b) ϕ restricts to an orientation preserving diffeomorphism of D \ {±1},

(c) the map u := u′ ◦ ϕ−1 : D → Σ is a smooth lune.

Once ϕ has been found it follows from (c) that u◦ϕ = v◦g−1 : D\{±1} → Σ
is holomorphic and hence ϕ∗u∗J = i. Hence it follows from (a) and (b)
that ϕ = ϕu (see equation (63)) and this implies that the equivalence class
[v] ∈ MFloer(x, y; J) belongs to the image of our map (65) as claimed.

To construct ϕ, choose a smooth function λ : R → (1/2,∞) such that

λ(s) =

{
π/2θx, for s ≤ −2,
1, for s ≥ −1,

, λ(s) + λ′(s)s > 0. (85)

(For example define λ(s) := π/θx − 1 + (π/θx − 2) /s for −2 ≤ s ≤ −1 to
obtain a piecewise smooth function and approximate by a smooth function.)
Then the map s 7→ λ(s)s is a diffeomorphism of R. Consider the sets

Kλ :=

{
es+it

∣∣∣∣ 0 ≤ t ≤
π

2λ(s)

}
, K :=

{
es+it

∣∣∣∣ 0 ≤ t ≤
π

2

}
.
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Denote their closures by Kλ := Kλ ∪ {0} and K := K ∪ {0} and define the
homeomorphism ρλ : Kλ → K by ρλ(0) := 0 and

ρλ(e
s+it) := e(s+it)λ(s), es+it ∈ Kλ.

It restricts to a diffeomorphism from Kλ to K and it satisfies ρλ(ζ) = ζπ/2θx

for |ζ | ≤ e−2 and ρλ(ζ) = ζ for |ζ | ≥ e−1. Consider the map

wλ : Kλ → Σ, wλ(ζ) := u′
(
ρλ(ζ)− 1

ρλ(ζ) + 1

)
. (86)

We claim that wλ : Kλ → Σ is a C1 immersion. If ζ := es+it ∈ Kλ with
|ζ | = es ≤ e−2 then by (64)

ρλ(e
s+it)− 1

ρλ(es+it) + 1
=
e(s+it)π/2θx − 1

e(s+it)π/2θx + 1
= g

(
θ−1
x (s+ it)

)
.

Insert this as an argument in u′ and use the formula u′ ◦ g = v to obtain

wλ(e
s+it) = u′

(
ρλ(e

s+it)− 1

ρλ(es+it) + 1

)
= v

(
θ−1
x (s+ it)

)
, s ≤ −2. (87)

Thus

ψx (wλ(ζ)) = ψx

(
v
(
θ−1
x (s+ it)

))

= cxe
s+it +O

(
e1+δ/θx)s

)

= cxζ +O
(
|ζ |1+δ/θx

)

for ζ = es+it ∈ Kλ sufficiently small. (Here the second equation follows
from (84).) Hence the map wλ : Kλ → Σ in (86) is complex differentiable
at the origin and d(ψx ◦ wλ)(0) = cx. Next we prove that the derivative of
wλ is continuous. To see this, recall that ψx ◦wλ and ψx ◦ v are holomorphic
wherever defined and denote their complex derivatives by d(ψx ◦ wλ) and
d(ψx ◦ v). Differentiating equation (87) gives

es+itd(ψx ◦ wλ)(e
s+it) = θ−1

x d(ψx ◦ v)
(
θ−1
x (s+ it)

)
.

By Corollary D.2 (i), e−θx(s+it)d(ψx ◦ v)(s + it) converges uniformly to θxcx
as s tends to −∞. Hence d(ψx ◦ wλ)(ζ) = θ−1

x e−(s+it)d(ψx ◦ v)(θ
−1
x (s + it))

converges to cx = d(ψx ◦ wλ)(0) as ζ = es+it ∈ Kλ tends to zero. Hence wλ is
continuously differentiable near the origin and is a C1 immersion as claimed.
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Now let σλ : Kλ → D \ {1} be any diffeomorphism that satisfies

σλ(ζ) =
ζ − 1

ζ + 1
for |ζ | ≥ 1.

Define ϕ′′ : D → D and u′′ : D → Σ by ϕ′′(1) := 1, u′′(1) := y, and

ϕ′′(z) :=
ρλ(σ

−1
λ (z))− 1

ρλ(σ
−1
λ (z)) + 1

, u′′(z) := u′ ◦ ϕ′′(z) = wλ ◦ σ
−1
λ (z)

for z ∈ D \ {1}. Then ϕ′′ = id on {z ∈ D |Re z ≥ 0}, the map ϕ′′ : D → D

satisfies (a) and (b), and u′′|D\{1} is an orientation preserving C1 immersion.
A similar construction near y yields an orientation preserving C1 immersion
u′′′ = u′ ◦ ϕ′′′ : D → Σ where ϕ′′′ : D → D satisfies (a) and (b). Now
approximate u′′′ in the C1-topology by a smooth lune u = u′ ◦ ϕ : D → Σ to
obtain the required map ϕ. This proves Step 4 and Theorem 12.1.

Proof of Theorem 9.3. By Theorem 12.2, the linearized operator Dv in Floer
theory is surjective for every (α, β)-holomorphic strip v. Hence there is a
boundary operator on the Z2 vector space CF(α, β) as defined by Floer [10,
11] in terms of the mod two count of (α, β)-holomorphic strips. By Theo-
rem 12.1 this boundary operator agrees with the combinatorial one defined
in terms of the mod two count of (α, β)-lunes. Hence the combinatorial Floer
homology of the pair (α, β) agrees with the analytic Floer homology defined
by Floer. This proves Theorem 9.3.

Remark 12.5 (Hearts and Diamonds). We have seen that the combinato-
rial boundary operator ∂ on CF(α, β) agrees with Floer’s boundary operator
by Theorem 12.1. Thus we have two proofs that ∂2 = 0: the combinatorial
proof using broken hearts and Floer’s proof using his gluing construction.
He showed (in much greater generality) that two (α, β)-holomorphic strips of
index one (one from x to y and one from y to z) can be glued together to give
rise to a 1-parameter family of (α, β)-holomorphic strips (modulo time shift)
of index two from x to z. This one parameter family can be continued until
it ends at another pair of (α, β)-holomorphic strips of index one (one from
x to some intersection point y′ and one from y′ to z). These one parameter
families are in one-to-one correspondence to (α, β)-hearts from x to z. This
can be seen geometrically as follows. Each glued (α, β)-holomorphic strip
from x to z has a critical point on the β-boundary near y for a broken heart
of type (a). The 1-manifold is parametrized by the position of the critical
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value. There is precisely one (α, β)-holomorphic strip in this moduli space
without critical point and an angle between π and 2π at z. The critical value
then moves onto the α-boundary and tends towards y′ at the other end of
the moduli space giving a broken heart of type (c) (See Figure 23).

Here is an explicit formula for the gluing construction in the two dimen-
sional setting. Let h = (u, y, v) be a broken (α, β)-heart of type (a) or (b)
from x to z. (Types (c) and (d) are analogous with α and β interchanged.)
Denote the left and right upper quadrants by QL := (−∞, 0) + i(0,∞) and
QR := (0,∞) + i(0,∞). Define diffeomorphisms ψL : QL → D \ ∂D and
ψR : QR → D \ ∂D by

ψL(ζ) :=
1 + ζ

1− ζ
, ψR(ζ) :=

ζ − 1

ζ + 1
.

The extensions of these maps to Möbius transformations of the Riemann
sphere are inverses of each other. Define the map w : QL ∪QR → Σ by

w(ζ) :=

{
u(ψL(ζ)), for ζ ∈ QL,
v(ψR(ζ)), for ζ ∈ QR.

The maps u ◦ ψL and v ◦ ψR send suitable intervals on the imaginary axis
starting at the origin to the same arc on β. Modify u and v so that w extends
to a smooth map on the slit upper half plane H \ i[1,∞), still denoted by w.
Here H ⊂ C is the closed upper half plane. Define ϕε : D → H by

ϕε(z) :=
2εz

1− z2
, z ∈ D, 0 < ε < 1.

This map sends the open set int(D) ∩ QL diffeomorphically onto QL and it
sends int(D)∩QR diffeomorphically onto QR. It also sends the interval i[0, 1]
diffeomorphically onto i[0, ε]. The composition w ◦ ϕε : int(D) → Σ extends
to a smooth map on D denoted by wε : D → Σ. An explicit formula for wε is

wε(z) =





u
(

1−z2+2εz
1−z2−2εz

)
, if z ∈ D and Re z ≤ 0,

v
(

−1+z2+2εz
1+z2+2εz

)
, if z ∈ D and Re z ≥ 0.

The derivative of this map at every point z 6= i is an orientation preserving
isomorphism. Its only critical value is the point

cε := u

(
1 + iε

1− iε

)
= v

(
iε− 1

iε+ 1

)
∈ β.
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Note that cε tends to y = u(1) = v(−1) as ε tends to zero. The composition
of wε with a suitable ε-dependent diffeomorphism S → D \ {±1} gives the
required one-parameter family of glued holomorphic strips.

13 Further Developments

There are many directions in which the theory developed in the present
memoir can be extended. Some of these directions and related work in the
literature are discussed below.

Floer Homology

If one drops the hypothesis that the loops α and β are not contractible and
not isotopic to each other there are three possibilities. In some cases the Floer
homology groups are still well defined and invariant under (Hamiltonian)
isotopy, in other cases invariance under isotopy breaks down, and there are
examples with ∂ ◦ ∂ 6= 0, so Floer homology is not even defined. All these
phenomena have their counterparts in combinatorial Floer homology.

A case in point is that of two transverse embedded circles α, β ⊂ C in
the complex plane. In this case the boundary operator

∂ : CF(α, β) → CF(α, β)

of Section 9 still satisfies ∂ ◦ ∂ = 0. However, ker ∂ = im ∂ and so the
(combinatorial) Floer homology groups vanish. This must be true because
(combinatorial) Floer homology is still invariant under isotopy and the loops
can be disjoined by a translation.

A second case is that of two transverse embedded loops in the sphere
Σ = S2. Here the Floer homology groups are nonzero when the loops inter-
sect and vanish otherwise. An interesting special case is that of two equators.
(Following Khanevsky we call an embedded circle α ⊂ S2 an equator when
the two halves of S2 \ α have the same area.) In this case the combinatorial
Floer homology groups do not vanish, but are only invariant under Hamilto-
nian isotopy. This is an example of the monotone case for Lagrangian Floer
theory (see Oh [21]), and the theory developed by Biran–Cornea applies [5].
For an interesting study of diameters (analogues of equators for discs) see
Khanevsky [17].
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A similar case is that of two noncontractible transverse embedded loops

α, β ⊂ Σ

that are isotopic to each other. Fix an area form on Σ. If β is Hamiltonian
isotopic to α then the combinatorial Floer homology groups do not vanish and
are invariant under Hamiltonian isotopy, as in the case of two equators on S2.
If β is non-Hamiltonian isotopic to α (for example a distinct parallel copy),
then the Floer homology groups are no longer invariant under Hamiltonian
isotopy, as in the case of two embedded circles in S2 that are not equators.
However, if we take account of the areas of the lunes by introducing combi-
natorial Floer homology with coefficients in an appropriate Novikov ring, the
Floer homology groups will be invariant under Hamiltonian isotopy. When
the Floer homology groups vanish it is interesting to give a combinatorial
description of the relevant torsion invariants (see Hutchings–Lee [15, 16]).
This involves an interaction between lunes and annuli.

A different situation occurs when α is not contractible and β is con-
tractible. In this case

∂ ◦ ∂ = id

and one can prove this directly in the combinatorial setting. For example,
if α and β intersect in precisely two points x and y then there is precisely one
lune from x to y and precisely one lune from y to x. They are embedded and
their union is the disc encircled by β rather than a heart as in Section 10. In
the analytical setting this disc bubbles off in the moduli space of index two
holomorphic strips from x to itself. This is a simple example of the obstruc-
tion theory developed in great generality by Fukaya–Oh–Ohta–Ono [13].

Moduli Spaces

Another direction is to give a combinatorial description of all holomorphic
strips, not just those of index one. The expected result is that they are
uniquely determined, up to translation, by their (α, β)-trace

Λ = (x, y,w)

with w ≥ 0, the positions of the critical values, suitable monodromy data,
and the angles at infinity. (See Remark 12.5 for a discussion of the Viterbo–
Maslov index two case.) This can be viewed as a natural generalization of
Riemann–Hurwitz theory. For inspiration see the work of Okounkov and
Pandharipande on the Gromov–Witten theory of surfaces [22, 23, 24, 25].
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The Donaldson Triangle Product

Another step in the program, already discussed in [6], is the combinatorial
description of the product structures

HF(α, β)⊗ HF(β, γ) → HF(α, γ)

for triples of noncontractible, pairwise nonisotopic, and pairwise transverse
embedded loops in a closed oriented 2-manifold Σ. The combinatorial setup
involves the study of immersed triangles in Σ. When the triangle count is infi-
nite, for example on the 2-torus, the definition of the product requires Floer
homology with coefficients in Novikov rings. The proof that the resulting
map

CF(α, β)⊗ CF(β, γ) → CF(α, γ)

on the chain level is a chain homomorphism is based on similar arguments
as in Section 10. The proof that the product on homology is invariant under
isotopy is based on similar arguments as in Section 11. A new ingredient is
the phenomenon that γ can pass over an intersection point of α and β in an
isotopy. In this case the number of intersection points does not change but it
is necessary to understand how the product map changes on the chain level.
The proof of associativity requires the study of immersed rectangles and uses
similar arguments as in Section 10.

In the case of the 2-torus the study of triangles gives rise to Theta-
functions as noted by Kontsevich [18]. This is an interesting, and com-
paratively easy, special case of homological mirror symmetry.

The Fukaya Category

A natural extension of the previous discussion is to give a combinatorial
description of the Fukaya category [13]. A directed version of this category
was described by Seidel [34]. In dimension two the directed Fukaya category
is associated to a finite ordered collection

α1, α2, . . . , αn ⊂ Σ

of noncontractible, pairwise nonisotopic, and pairwise transverse embedded
loops in Σ. Interesting examples of such tuples arise from vanishing cycles
of Lefschetz fibrations over the disc with regular fiber Σ (see [34]).
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The Fukaya category, on the combinatorial level, involves the study of
immersed polygons. Some of the results in the present memoir (such as the
combinatorial techniques in Sections 10 and 11, the surjectivity of the Fred-
holm operator, and the formula for the Viterbo–Maslov index in Section 12)
extend naturally to this setting. On the other hand the algebraic structures
are considerably more intricate for A∞ categories. The combinatorial ap-
proach has been used to compute the derived Fukaya category of a surface
by Abouzaid [1], and to establish homological mirror symmetry for punc-
tured spheres by Abouzaid–Auroux–Efimov–Katzarkov–Orlov [2] and for a
genus two surface by Seidel [35].
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Appendices

A The Space of Paths

We assume throughout that Σ is a connected oriented smooth 2-manifold
without boundary and α, β ⊂ Σ are two embedded loops. Let

Ωα,β := {x ∈ C∞([0, 1],Σ) | x(0) ∈ α, x(1) ∈ β}

denote the space of paths connecting α to β.

Proposition A.1. Assume that α and β are not contractible and that α is
not isotopic to β. Then each component of Ωα,β is simply connected and
hence H1(Ωα,β;R) = 0.

The proof was explained to us by David Epstein [9]. It is based on the
following three lemmas. We identify S1 ∼= R/Z.

Lemma A.2. Let γ : S1 → Σ be a noncontractible loop and denote by

π : Σ̃ → Σ

the covering generated by γ. Then Σ̃ is diffeomorphic to the cylinder.

Proof. By hypothesis, Σ is oriented and has a nontrivial fundamental group.
By the uniformization theorem, choose a metric of constant curvature. Then
the universal cover of Σ is isometric to either R2 with the flat metric or to
the upper half space H2 with the hyperbolic metric. The 2-manifold Σ̃ is a
quotient of the universal cover of Σ by the subgroup of the group of covering
transformations generated by a single element (a translation in the case of
R2 and a hyperbolic element of PSL(2,R) in the case of H2). Since γ is not

contractible, this element is not the identity. Hence Σ̃ is diffeomorphic to the
cylinder.

Lemma A.3. Let γ : S1 → Σ be a noncontractible loop and, for k ∈ Z,
define γk : S1 → Σ by

γk(s) := γ(ks).

Then γk is contractible if and only if k = 0.
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Proof. Let π : Σ̃ → Σ be as in Lemma A.2. Then, for k 6= 0, the loop
γk : S1 → Σ lifts to a noncontractible loop in Σ̃.

Lemma A.4. Let γ0, γ1 : S1 → Σ be noncontractible embedded loops and
suppose that k0, k1 are nonzero integers such that γk00 is homotopic to γk11 .
Then either γ1 is homotopic to γ0 and k1 = k0 or γ1 is homotopic to γ0

−1

and k1 = −k0.

Proof. Let π : Σ̃ → Σ be the covering generated by γ0. Then γ0
k0 lifts to

a closed curve in Σ̃ and is homotopic to γ1
k1 . Hence γ1

k1 lifts to a closed
immersed curve in Σ̃. Hence there exists a nonzero integer j1 such that
γ1

j1 lifts to an embedding S1 → Σ̃. Any embedded curve in the cylinder
is either contractible or is homotopic to a generator. If the lift of γ1

j1 were
contractible it would follow that γ0

k0 is contractible, hence, by Lemma A.3,
k0 = 0 in contradiction to our hypothesis. Hence the lift of γ1

j1 to Σ̃ is not
contractible. With an appropriate sign of j1 it follows that the lift of γ1

j1 is
homotopic to the lift of γ0. Interchanging the roles of γ0 and γ1, we find that
there exist nonzero integers j0, j1 such that

γ0 ∼ γ1
j1, γ1 ∼ γ0

j0

in Σ̃. Hence γ0 is homotopic to γ0
j0j1 in the free loop space of Σ̃. Since the

homotopy lifts to the cylinder Σ̃ and the fundamental group of Σ̃ is abelian,
it follows that

j0j1 = 1.

If j0 = j1 = 1 then γ1 is homotopic to γ0, hence γ
k1
0 is homotopic to γ0

k0 ,
hence γ0

k0−k1 is contractible, and hence k0 − k1 = 0, by Lemma A.3. If
j0 = j1 = −1 then γ1 is homotopic to γ0

−1, hence γ−k1
0 is homotopic to γ0

k0 ,
hence γ0

k0+k1 is contractible, and hence k0 + k1 = 0, by Lemma A.3. This
proves Lemma A.4.

Proof of Proposition A.1. Orient α and β and and choose orientation pre-
serving diffeomorphisms

γ0 : S
1 → α, γ1 : S

1 → β.

A closed loop in Ωα,β gives rise to a map u : S1 × [0, 1] → Σ such that

u(S1 × {0}) ⊂ α, u(S1 × {1}) ⊂ β.
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Let k0 denote the degree of u(·, 0) : S1 → α and k1 denote the degree of
u(·, 1) : S1 → β. Since the homotopy class of a map S1 → α or a map S1 → β
is determined by the degree we may assume, without loss of generality, that

u(s, 0) = γ0(k0s), u(s, 1) = γ1(k1s).

If one of the integers k0, k1 vanishes, so does the other, by Lemma A.3. If they
are both nonzero then γ1 is homotopic to either γ0 or γ−1

0 , by Lemma A.4.
Hence γ1 is isotopic to either γ0 or γ−1

0 , by [8, Theorem 4.1]. Hence α is
isotopic to β, in contradiction to our hypothesis. This shows that

k0 = k1 = 0.

With this established it follows that the map u : S1 × [0, 1] → Σ factors
through a map v : S2 → Σ that maps the south pole to α and the north pole
to β. Since π2(Σ) = 0 it follows that v is homotopic, via maps with fixed north
and south pole, to one of its meridians. This proves Proposition A.1.

B Diffeomorphisms of the Half Disc

Proposition B.1. The group of orientation preserving diffeomorphisms ϕ :
D → D that satisfy ϕ(1) = 1 and ϕ(−1) = −1 is connected.

Proof. Choose ϕ as in the proposition. We prove in five steps that ϕ is
isotopic to the identity.

Step 1. We may assume that dϕ(−1) = dϕ(1) = 1l.

The differential of ϕ at −1 has the form

dϕ(−1) =

(
a 0
0 b

)
.

Let X : D → R2 be a vector field on D that is tangent to the boundary, is
supported in an ε-neighborhood of −1, and satisfies

dX(−1) =

(
log a 0
0 log b

)
.

Denote by ψt : D → D the flow of X . Then dψ1(−1) = dϕ(−1). Replace ϕ
by ϕ ◦ ψ1

−1.
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Step 2. We may assume that ϕ is equal to the identity map near ±1.

Choose local coordinates near −1 that identify a neighborhood of −1 with
a neighborhood of zero in the right upper quadrant Q. This gives rise to a
local diffeomorphism ψ : Q→ Q such that ψ(0) = 0. Choose a smooth cutoff
function ρ : [0,∞) → [0, 1] such that

ρ(r) =

{
1, for r ≤ 1/2,
0, for r ≥ 1,

For 0 ≤ t ≤ 1 define ψt : Q→ Q by

ψt(z) := ψ(z) + tρ(|z|2/ε2))(z − ψ(z)).

Since dψ(0) = 1l this map is a diffeomorphism for every t ∈ [0, 1] provided
that ε > 0 is sufficiently small. Moreover, ψt(z) = ψ(z) for |z| ≥ ε, ψ0 = ψ,
and ψ1(z) = z for |z| ≤ ε/2.

Step 3. We may assume that ϕ is equal to the identity map near ±1 and
on ∂D.

Define τ : [0, π] → [0, π] by

ϕ(eiθ) = eiτ(θ).

Let Xt : D → R2 be a vector field that is equal to zero near ±1 and satisfies

Xt(z + t(ϕ(z)− z)) = ϕ(z)− z

for z ∈ D ∩ R and

Xt(z) = i(τ(θ)− θ)z, z = ei(θ+t(τ(θ)−θ)).

Let ψt : D → D be the isotopy generated by Xt via ∂tψt = Xt ◦ ψt and
ψ0 = id. Then ψ1 agrees with ψ on ∂D and is equal to the identity near ±1.
Replace ϕ by ϕ ◦ ψ1

−1.

Step 4. We may assume that ϕ is equal to the identity map near ∂D.

Write
ϕ(x+ iy) = u(x, y) + iv(x, y).

Then
u(x, 0) = x, ∂yv(x, 0) = a(x).
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Choose a cutoff function ρ equal to one near zero and equal to zero near one.
Define

ϕt(x, y) := ut(x, y) + vt(x, y)

where
ut(x, y) := u(x, y) + tρ(y/ε)(x− u(x, y))

and
vt(x, y) := v(x, y) + tρ(y/ε)(a(x)y − v(x, y)).

If ε > 0 is sufficiently small then ϕt is a diffeomorphism for every t ∈ [0, 1].
Moreover, ϕ0 = ϕ and ϕ1 satisfies

ϕ1(x+ iy) = x+ ia(x)y

for y ≥ 0 sufficiently small. Now choose a smooth family of vector fields
Xt : D → D that vanish on the boundary and near ±1 and satisfy

Xt(x+ i(y + t(a(x)y − y))) = i(a(x)y − y)

near the real axis. Then the isotopy ψt generated by Xt satisfies ψt(x+ iy) =
x+ iy + it(a(x)y − y) for y sufficiently small. Hence ψ1 agrees with ϕ1 near
the real axis. Hence ϕ ◦ ψ1

−1 has the required form near D ∩ R. A similar
isotopy near D ∩ S1 proves Step 4.

Step 5. We prove the proposition.

Choose a continuous map f : D → S2 = C∪{∞} such that f(∂D) = {0} and
f restricts to a diffeomorphism from D \ ∂D to S2 \ {0}. Define ψ : S2 → S2

by
f ◦ ψ = ϕ ◦ f.

Then ψ is a diffeomorphism, equal to the identity near the origin. By a
well known Theorem of Smale [37] (see also [7] and [14]) ψ is isotopic to
the identity. Compose with a path in SO(3) which starts and ends at the
identity to obtain an isotopy ψt : S

2 → S2 such that ψt(0) = 0. Let

Ψt := dψt(0), Ut := Ψt(Ψt
TΨt)

−1/2.

Then Ut ∈ SO(2) and U0 = U1 = 1l. Replacing ψt by Ut
−1ψt we may assume

that Ut = 1l and hence Ψt is positive definite for every t. Hence there exists
a smooth path [0, 1] → R2×2 : t 7→ At such that

eAt = Ψt, A0 = A1 = 0.
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Choose a smooth family of compactly supported vector fields Xt : C → C

such that
dXt(0) = At, X0 = X1 = 0.

For every fixed t let χt : S
2 → S2 be the time-1 map of the flow of Xt. Then

χt(0) = 0, dχt(0) = Ψt, χ0 = χ1 = id.

Hence the diffeomorphisms

ψ′
t := ψt ◦ χt

−1

form an isotopy from ψ′
0 = id to ψ′

1 = ψ such that ψ′
t(0) = 0 and dψ′

t(0) = 1l
for every t. Now let ρ : R → [0, 1] be a smooth cutoff function that is equal
to one near zero and equal to zero near one. Define

ψ′′
t (z) := ψ′

t(z) + ρ(|z|/ε)(z − ψ′
t(z)).

For ε > 0 sufficiently small this is an isotopy from ψ′′
0 = id to ψ′′

1 = ψ such
that ψt = id near zero for every t. The required isotopy ϕt : D → D is now
given by f ◦ ψt = ϕt ◦ f. This proves Proposition B.1.

C Homological Algebra

Let P be a finite set and ν : P × P → Z be a function that satisfies
∑

q∈P

ν(r, q)ν(q, p) = 0 (88)

for all p, r ∈ P . Any such function determines a chain complex ∂ : C → C,
where C = C(P ) and ∂ = ∂ν are defined by

C :=
⊕

p∈P

Zp, ∂q :=
∑

p∈P

ν(q, p)p

for q ∈ P . Throughout we fix two elements p̄, q̄ ∈ P such that ν(q̄, p̄) = 1.
Consider the set

P ′ := P \ {p̄, q̄} (89)

and the function ν ′ : P ′ × P ′ → Z defined by

ν ′(q, p) := ν(q, p)− ν(q, p̄)ν(q̄, p) (90)

for p, q ∈ P and denote C ′ := C(P ′) and ∂′ := ∂ν
′

. The following lemma is
due to Floer [11].
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Lemma C.1 (Floer). The endomorphism ∂′ : C ′ → C ′ is a chain complex
and its homology H(C ′, ∂′) is isomorphic to H(C, ∂).

Proof. The proof consists of four steps.

Step 1. ∂′ ◦ ∂′ = 0.

Let r ∈ P ′. Then ∂′ ◦ ∂′r =
∑

p∈P ′ µ′(r, p)p where µ′(r, p) ∈ Z is given by

µ′(r, p) =
∑

q∈P ′

ν ′(r, q)ν ′(q, p)

=
∑

q∈P

(ν(r, q)− ν(r, p̄)ν(q̄, q)) (ν(q, p)− ν(q, p̄)ν(q̄, p))

= 0

for p ∈ P ′. Here the first equation follows from the fact that ν(q̄, p̄) = 1 and
the last equation follows from the fact that ∂ ◦ ∂ = 0.

Step 2. The operator Φ : C ′ → C defined by

Φq := q − ν(q, p̄)q̄ (91)

for q ∈ P ′ is a chain map, i.e.

Φ ◦ ∂′ = ∂ ◦ Φ.

For q ∈ P ′ we have

Φ∂′q =
∑

p∈P ′

ν ′(q, p)Φp

=
∑

p∈P ′

(ν(q, p)− ν(q, p̄)ν(q̄, p)) (p− ν(p, p̄)q̄)

=
∑

p∈P

(ν(q, p)− ν(q, p̄)ν(q̄, p)) (p− ν(p, p̄)q̄)

=
∑

p∈P

(ν(q, p)− ν(q, p̄)ν(q̄, p)) p

= ∂q − ν(q, p̄)∂q̄

= ∂Φq.
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Step 3. The operator Ψ : C → C ′ defined by Ψq = q for q ∈ P ′ and

Ψq̄ := 0, Ψp̄ := −
∑

p∈P ′

ν(q̄, p)p (92)

is a chain map, i.e.
∂′ ◦Ψ = Ψ ◦ ∂.

For q ∈ P ′ we have

Ψ∂q =
∑

p∈P

ν(q, p)Ψp

=
∑

p∈P ′

ν(q, p)p+ ν(q, p̄)Ψp̄

=
∑

p∈P ′

(ν(q, p)− ν(q, p̄)ν(q̄, p)) p

= ∂′q.

Moreover,

Ψ∂q̄ =
∑

p∈P

ν(q̄, p)Ψp =
∑

p∈P ′

ν(q̄, p)p+Ψp̄ = 0 = ∂′Ψq̄,

and

∂′Ψp̄ = −
∑

q∈P ′

ν(q̄, q)∂′q

= −
∑

q∈P ′

∑

p∈P ′

ν(q̄, q) (ν(q, p)− ν(q, p̄)ν(q̄, p)) p

=
∑

p∈P ′

(ν(p̄, p)− ν(p̄, p̄)ν(q̄, p)) p

=
∑

p∈P ′

ν(p̄, p)p+ ν(p̄, p̄)Ψp̄

=
∑

p∈P

ν(p̄, p)Ψp

= Ψ∂p̄.

113



Step 4. The operator Ψ ◦ Φ : C ′ → C ′ is equal to the identity and

id− Φ ◦Ψ = ∂ ◦ T + T ◦ ∂,

where T : C → C is defined by T p̄ = q̄ and Tq = 0 for q ∈ P \ {p̄}.

For q ∈ P ′ we have
ΦΨq = Φq = q − ν(q, p̄)q̄

and hence

q − ΦΨq = ν(q, p̄)q̄ = ν(q, p̄)T p̄ = T∂q = T∂q + ∂Tq.

Moreover,
q̄ − ΦΨq̄ = q̄ = ν(q̄, p̄)T p̄ = T∂q̄ = T∂q̄ + ∂T q̄

and

p̄− ΦΨp̄ = p̄ +
∑

p∈P ′

ν(q̄, p)Φp

= p̄ +
∑

p∈P ′

ν(q̄, p)p−
∑

p∈P ′

ν(q̄, p)ν(p, p̄)q̄

= p̄ +
∑

p∈P ′

ν(q̄, p)p+ ν(q̄, q̄)q̄ + ν(p̄, p̄)q̄

= ∂q̄ + ν(p̄, p̄)q̄

= ∂T p̄ + T∂p̄.

This proves Lemma C.1.

Now let (P,�) be a finite poset. An ordered pair (p, q) ∈ P ×P is called
adjacent if p � q, p 6= q, and

p � r � q =⇒ r ∈ {p, q}.

Fix an adjacent pair (p̄, q̄) ∈ P × P and consider the relation �′ on

P ′ := P \ {p̄, q̄}

defined by

p �′ q ⇐⇒

{
either p � q,
or p̄ � q and p � q̄.

(93)
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Lemma C.2. (P ′,�′) is a poset.

Proof. We prove that the relation �′ is transitive. Let p, q, r ∈ P ′ such that

p �′ q, q �′ r.

There are four cases.

Case 1: p � q and q � r. Then p � r and hence p �′ r.

Case 2: p 6� q and q � r. Then

p̄ � q � r, p � q̄,

and hence p �′ r.

Case 3: p � q and q 6� r. The argument is as in the Case 2.

Case 4: p 6� q and q 6� r. Then

p � q̄, p̄ � r,

and hence p �′ r.
Next we prove that the relation �′ is anti-symmetric. Hence assume that

p, q ∈ P ′ such that p �′ q and q �′ p. We claim that p � q and q � p.
Assume otherwise that p 6� q. Then p̄ � q and p � q̄. Since q �′ p, it follows
that p̄ � p � q̄ and p̄ � q � q̄, and hence {p, q} ⊂ {p̄, q̄}, a contradiction.
Thus we have shown that p � q. Similarly, q � p and hence p = q. This
proves Lemma C.2

A function µ : P → Z is called an index function for (P,�) if

p � q =⇒ µ(p) < µ(q). (94)

Let µ be an index function for P . A function

ν : P × P → Z

is called a connection matrix for (P,�, µ) if it satisfies (88) and

ν(q, p) 6= 0 =⇒ µ(q)− µ(p) = 1, p � q (95)

for p, q ∈ P .
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Lemma C.3. If µ : P → Z is an index function for (P,�) then µ′ := µ|P ′

is an index function for (P ′,�′). Moreover, if ν is a connection matrix for
(P,�, µ) and ν(q̄, p̄) = 1 then ν ′ is a connection matrix for (P ′,�′, µ′).

Proof. We prove that µ′ is an index function for (P ′,�′). Let p′, q′ ∈ P ′ such
that p �′ q. If p � q then µ(p) < µ(q), since µ is an index function for (P,�).
If p 6� q then p � q̄ and p̄ � q, and hence

µ(p) < µ(q̄) = µ(p̄) + 1 ≤ µ(q).

Hence µ′ satisfies (94), as claimed. Next we prove that ν ′ is a connection
matrix for (P ′,�′, µ′). By Lemma C.1, ν ′ satisfies (88). We prove that it
satisfies (95). Let p, q ∈ P ′ such that ν ′(q, p) 6= 0. If ν(q, p) 6= 0 then, since
ν is a connection matrix for (P,�, µ), we have µ(q) − µ(p) = 1 and p �′ q.
If ν(q, p) = 0 then in follows from the definition of ν ′ that ν(q, p̄) 6= 0 and
ν(q̄, p) 6= 0. Hence

µ(q)− µ(p̄) = 1, µ(q̄)− µ(p) = 1, µ(q̄)− µ(p̄) = 1,

and hence
p̄ � q, p � q̄.

It follows again that µ(q) − µ(p) = 1 and p �′ q. Hence ν ′ satisfies (95), as
claimed. This proves Lemma C.3.

D Asymptotic behavior of holomorphic strips

This appendix deals with the asymptotic behaviour of pseudoholomorphic
strips in symplectic manifolds that satisfy Lagrangian boundary conditions.
More precisely, let (M,ω) be a symplectic manifold and

L0, L1 ⊂M

be closed (not necessarily compact) Lagrangian submanifolds that intersect
transversally. Fix a t-dependent family of ω-tame almost complex structures
Jt on M . We consider smooth maps v : S → M that satisfy the boundary
value problem

∂sv + Jt(v)∂tv = 0, v(R) ⊂ L0, v(R+ i) ⊂ L1. (96)
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Theorem D.1. Let v : S → M be a solution of (96). Assume v has finite
energy

E(v) :=

∫

S

v∗ω <∞

and that the image of v has compact closure. Then the following hold.

(i) There exist intersection points x, y ∈ L0 ∩ L1 such that

x = lim
s→−∞

v(s, t), y = lim
s→+∞

v(s, t), (97)

where the convergence is uniform in t. Moreover, ∂sv decays exponentially
in the C∞ topology, i.e. there are positive constants δ and c1, c2, c3, . . . such
that ‖∂su‖Ck([s−1,s+1]×[0,1]) ≤ cke

−δ|s| for all s and k.

(ii) Assume v is nonconstant. Then there exist positive real numbers λx, λy
and smooth paths ηx : [0, 1] → TxM and ηy : [0, 1] → TyM satisfying

Jt(x)∂tηx(t) + λxηx(t) = 0, ηx(0) ∈ TxL0, ηx(1) ∈ TxL1,

Jt(y)∂tηy(t)− λyηy(t) = 0, ηy(0) ∈ TyL0, ηy(1) ∈ TyL1,
(98)

and
ηx(t) = lim

s→−∞
e−λxs∂sv(s, t), ηy(t) = lim

s→+∞
eλys∂sv(s, t), (99)

where the convergence is uniform in t.

(iii) Assume v is nonconstant and let λx, λy > 0 and ηx(t) ∈ TxM and
ηy(t) ∈ TyM be as in (ii). Then there exists a constant δ > 0 such that

v(s, t) = expx

(
1

λx
eλxsηx(t) +Rx(s, t)

)
,

lim
s→−∞

e−(λx+δ)s sup
t
|Rx(s, t)| = 0,

(100)

and

v(s, t) = expy

(
−

1

λy
e−λysηy(t) +Ry(s, t)

)
,

lim
s→+∞

e(λy+δ)s sup
t
|Ry(s, t)| = 0.

(101)

As a warmup the reader is encouraged to verify the signs in (ii) and (iii) in
the linear setting whereM is a symplectic vector space, L0, L1 are transverse
Lagrangian subspaces, Jt = J is a constant ω-tame complex structure, and
v(s, t) = λ−1

x eλxsηx(t), respectively v(s, t) = −λ−1
y e−λysηy(t).
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Proof of Theorem D.1. Assertion (i) is standard (see e.g. [32, Theorem A]).
Assertions (ii) and (iii) are proved in [32, Theorem B] for ω-compatible almost
complex structures Jt. The ω-tame case is treated in [36].

The next corollary summarizes the consequences of Theorem D.1 in the
special case of dimension two. Assume Σ and α, β ⊂ Σ satisfy (H) and fix
a complex structure J on Σ. For x ∈ α ∩ β denote by θx ∈ (0, π) the angle
from Txα to Txβ with respect to our complex structure J so that

Txβ = (cos(θx) + sin(θx)J) Txα, 0 < θx < π.

(See equation (66).) Fix two intersection points x, y ∈ α ∩ β and two holo-
morphic coordinate charts ψx : Ux → C and ψy : Uy → C defined on neigh-
borhoods Ux ⊂ Σ of x and Uy ⊂ Σ of y such that ψx(x) = 0 and ψy(y) = 0.

Corollary D.2. Let v : S → Σ be a nonconstant holomorphic (α, β)-strip
from x to y. Thus v is has finite energy and satisfies the boundary conditions
v(R) ⊂ α and v(R+ i) ⊂ β and the endpoint conditions

lim
s→−∞

v(s+ it) = x, lim
s→+∞

v(s+ it) = y.

(See equation (62).) Then there exist nonzero complex numbers

cx ∈ T0ψx(Ux ∩ α), cy ∈ T0ψy(Uy ∩ α)

and integers νx ≥ 0 and νy ≥ 1 such that the following holds.

(i) Define
λx := νxπ + θx, λy := νyπ − θy. (102)

Then

λxcx = lim
s→−∞

e−λx(s+it)d(ψx ◦ v)(s+ it),

−λycy = lim
s→+∞

eλy(s+it)d(ψy ◦ v)(s+ it),
(103)

where the convergence is uniform in t.

(ii) Let λx, λy > 0 be given by (102). There exists a constant δ > 0 such that

ψx(v(s+ it)) = cxe
λx(s+it) +O(e(λx+δ)s) (104)

for s < 0 close to −∞ and

ψy(v(s+ it)) = cye
−λy(s+it) +O(e−(λy+δ)s) (105)

for s > 0 close to +∞.
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Proof. Define ηx : [0, 1] → TxΣ and ηy : [0, 1] → TyΣ by

dψx(x)ηx(t) := λxcxe
iλxt, dψy(y)ηy(t) := −λycye

−iλyt.

These functions satisfy the conditions in (98) if and only if cx ∈ T0ψx(Ux∩α),
cy ∈ T0ψy(Uy ∩ α), and λx, λy are given by (102) with integers νx ≥ 0 and
νy ≥ 1. Moreover, the limit condition (103) is equivalent to (99). Hence
assertion (i) in Corollary D.2 follows from (ii) in Theorem D.1. With this
understood, assertion (ii) in Corollary D.2 follows immediately from (iii) in
Theorem D.1. This proves the corollary. (For assertion (ii) see also [32,
Theorem C].)
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cancellation formula, 15, 25
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diamonds, 100

embedded lune, 39, 50
end of a lune, 52
endpoints of a lune, 39
equator, 102
equivalent

broken hearts, 74
holomorphic strips, 89
lunes, 39
smooth hearts, 76

existence of a lune, 43

Floer chain complex, 69, 112
Floer homology, 69, 100

analytic, 100

combinatorial, 69
dimension, 70
triangle product, 104

geometric intersection number, 69
grading

integer, 73
mod two, 73

heart
broken, 74
midpoint of, 74
smooth, 76

hearts
and diamonds, 100
compatible, 77
equivalent, 74, 76
of type (ac) and (bd), 76

index formula, 92
index function on a poset, 115
integer

coefficients, 74
grading, 73

intersection number, 69
algebraic, 69
geometric, 69
numerical, 69

isotopy argument, 29

left end of a lune, 52
linear index formula, 94
lune

combinatorial, 43
counting function of, 39
embedded, 39

124



endpoints of, 39
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smooth, 39
uniqueness, 44

lunes
equivalent, 39

Maslov index, 14, 42
midpoint of a heart, 74
mod two grading, 73

numerical intersection number, 69

planar 2-manifold, 16
primitive trace, 50

reduced (α, β)-trace, 23
right end of a lune, 52

smooth
heart, 76
lune, 39

top boundary, 39
trace, 41

(α, β), 9
formula, 5, 15, 42
of u, denoted Λu, 9
reduced, 23
(x, y), 9

traintracks, 12

uniqueness of lunes, 44

Viterbo–Maslov index, 14, 42
cancellation formula, 15, 25
index formula, 92
linear index formula, 94

of a holomorphic strip, 89
of a pair of Lagrangian paths, 14
of an (α, β)-trace, 14, 42
trace formula, 5, 15, 42
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