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FINITE DIMENSIONAL COMPENSATORS FOR INFINITE DIMENSIONAL
SYSTEMS WITH UNBOUNDED INPUT OPERATORS*

R. F. CURTAINf AND D. SALAMONf

Abstract. This paper contains a design procedure for constructing finite dimensional compensators for
a class of infinite dimensional systems with unbounded input operators. Applications to retarded functional
differential systems with delays in the input or the output variable and to partial differential equations with
boundary input operators are discussed.
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1. Introduction. In 15], 16], 17] Schumacher presented a design procedure for
constructing stabilizing compensators for a class of infinite dimensional systems. The
novel feature was that the compensators were finite dimensional and that they could
be readily numerically calculated from finitely many system parameters. The class
included those systems described by retarded functional differential and partial
differential equations provided that the eigenvectors of the system operators were
complete and provided that the input and output operators were bounded. In [3]
Curtain presented an alternative compensator design which applied to essentially the
same class of systems, except that for the special case of parabolic systems unbounded
input and output operators were allowed. By means of enlarging the state space of
the given distributed boundary control system, Curtain in [2] essentially transformed
the original problem with unbounded control into one with bounded control action
so that the techniques of either [16] or [3] could be applied. The resulting control,
however, was of integral type. Neither of these two compensator designs are applicable
to retarded systems with delays in the control or the observation.

In the present paper we make use of the abstract approach developed by Salamon
[ 14] to extend the results of Schumacher 16] to allow for unbounded control action.
This is done in a direct way without reformulating the original problem into one with
a bounded input operator. In 2 we outline the abstract formulation and prove a
theorem on the existence of a finite dimensional compensator paralleling the develop-
ment in [16]. In 3 the general approach is then applied to retarded functional
differential systems with delays in either the input or the output variables. The conditions
are easy to check and they are quite reasonable, except for the assumption of complete-
ness of the eigenfunctions which seems to be too strong. In a special case we are able
to weaken this assumption.

Finally, in 4, we show how boundary control systems fit into the abstract
framework of 2 and give an example. The results are compared with the approach
in [3].
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2. A general result. We consider the abstract Cauchy problem

(2.1.1) Yc(t) Ax(t) + Bu(t), x(0) Xo X,

(2.1.2) y( t) Cx( t),

on the real, reflexive Banach space X where A: (A)- X is the infinitesimal generator
of a strongly continuous semigroup S(t) on X and C (X, m).

In order to give a precise definition of what we mean by an unbounded input
operator we need an extended state space Z X. For this purpose let us first introduce
the subspace

Z* @x*(A*) X*

endowed with the graph norm of A*. Then Z* becomes a real, reflexive Banach space
and the injection of Z* into X* is continuous and dense. Defining Z to be the dual
space of Z*, we obtain by duality that

XmZ

with a continuous dense injection.
Remarks 2.1. (i) A* can be regarded as a bounded operator from Z* into X*

and S*(t) restricts to a strongly continuous semigroup on Z*. By duality, A extends
to a bounded operator from X into Z. This extension, regarded as an unbounded
operator on Z, is the infinitesimal generator of the extended semigroup S(t) (Z)
(see [14, Lemma 1.3.2]).

(ii) If r(A)= r(A*), then the operator II-A:X--> Z is bijective. Further-
more, this operator commutes with the semigroup $(t) so that it provides a similarity
action between the semigroups S(t) (X) and S(t) (Z).

(iii) It follows from (ii) that the exponential growth rate of the semigroup S(t)
is the same on the state spaces X and Z, i.e.

Oo lim -1 log S( t) ]]:e(x) lim - log []S(t)l[(z).

(iv) It also follows from (ii) that the spectrum of A on the state space X coincides
with the spectrum of A on Z (see [14, Lemma 1.3.2]). Furthermore, the generalized
eigenvectors for both operators are the same, since the eigenvectors of A and Z are
contained in z(A)= X. Finally, the (generalized) eigenvectors of A are complete in
X if and only if they are complete in Z.

We will always assume that B is a bounded, linear operator from R into Z.
However, we want the solutions of (2.1.1) to be in the smaller space X on which the
output operator is defined. Therefore we need the following hypothesis.

(H1) For every T> 0 there exists a constant br > 0such that S(T- s)Bu(s) ds
X and

S( T- s)nu(s) ds --< bllu(.
x

for every u(. LP[0, T; R] where 1 -< p < o. In the following we collect some impor-
tant consequences of (HI) which have been established in [14, 1.3].

Remarks 2.2. (i) (HI) is satisfied if and only if the inequality

IIB*S*(" )X*IIL,tO.T;R,<=

holds for every x*eZ* and every T>O where lip+l/q= 1.
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(ii) If (H1) is satisfied, then

(2.2) x(t) S(t)Xo+ S(t- s)Bu(s) as e x

is the unique strong solution of (2.1.1) for every XoS X and every u(. )s LP[0, T; Rl].
More precisely x(t) is continuous in X on the interval [0, T] and satisfies

x(t) Xo+ lAx(s)+ Bu(s)] ds, 0 < t<-_ T,

where the integral has to be understood is the state space Z. Thus (2.1.1) is satisfied
in the space Z for almost every [0, T].

(iii) If (HI) is satisfied, then for every w(.) c[0, T; X] there exists a unique
x(. ) c[0, T; X] satisfying the equation

x(t)= w(t)+ S(t-s)BFx(s) ds, t>-O.

This solution x(. depends continuously on w(. ).
Moreover hypothesis (H1) implies the following important perturbation result.
THEOREM 2.3. Let F (X; It) be given. Then the following statements hold.
(i) There exists a unique strongly continuous semigroup SF( t) on X satisfying

(2.3) SF(t)x=S(t)x+ S(t-s)BFSF(s) xds

for every x X and every >-O. Its infinitesimal generator is given by

(AF) {x XIAx + BFx X},

AFX Ax + BFx.

(ii) A*F A* + F’B*: (A*F) Z* X*.
(iii) SF(t) extends to a strongly continuous semigroup on Z and the infinitesimal

generator of the extended semigroup is given by A+ BF: X--> Z.
(iv) Let Xo X and v(. ) LP[O, T; R] be given and let x(. ) c[0, T; X] be the

unique solution of

(2.4)

Then

(2.5)

x(t)=S(t)Xo+ S(t-s)B[Fx(s)+v(s)] ds,

x(t)= SF(t)Xo+ SF(t-s)Bv(s) ds,

O<=t<=T.

O<=t<=T.

(v) Hypothesis (HI) is satisfied with S( t) replaced by SF(t) and SF(t) satisfies

(2.6) SF( t)x S( t)x + SF( s)BFS(s)x ds

for every x X and every >= O.
(vi) Let Xo X and f(. LP[O, T; X] be given and define

(2.7)

Then

(.8)

x(t)= SF(t)Xo+ SF(t--s)f(s) ds, O<__t<_T.

x(t)= S(t)Xo+ S(t-s)[BFx(s)+f(s)] ds, O<_t<=T.
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Proof. Statement (i) has been shown in [14, Thm. 1.3.7] and (ii) follows from
14, Thm. 1.3.9] since the input space is finite-dimensional. By (ii), S*F(t) restricts to a

strongly continuous semigroup on Z*= (A*F) and hence SF(t) extends to a semi-
group on Z. By Remark 2.1(i), the extended semigroup is generated by the adjoint
operator of A*, where A*F is regarded as a bounded operator from Z* into X*. This
proves statement (iii).

In order to establish statement (iv), let us first assume that v(. [0, T; 1] and
let x(. ) [0, T; X] be the unique solution of (2.4). Then it follows from Remark 2.2
(ii) that x(. ) [0, T; Z] and

d
d-t x(t) (A + BF)x( t) + By(t), 0 <= <-_ T.

Hence it follows from (iii) and a classical result in semigroup theory that x(. is given
by (2.5). In general, statement (iv) follows from the fact that the unique solutions of
both (2.4) and (2.5), regarded as continuous functions with values in Z, depend
continuously on v(. ) LP[O, T; l].

It follows immediately from (iv) that (HI) is satisfied with $(t) replaced by SF(t).
NOW let x(t), t--> 0, be defined by the RHS of (2.6). Then it follows from (iv) that

x(t)=S(t)x+ S(t-s)B F Se(s-r)BFS(r)xd’+FS(s)x ds

S(t)x + S(t- s)BFx(s) ds

for >_-0, and hence x(t)= SF( t)x, by the definition of SF(t). This proves statement (v).
Statement (vi) can be established straightforwardly by inserting (2.3) into (2.7)

and interchanging integrals.
The aim of this section is to give sufficient conditions under which system (2.1)

can be stabilized by a finite-dimensional compensator of the form

(2.9.1) (t) Mw( t) Hy( t), w(O) Wo,

(2.9.2) u(t) Kw( t) + v( t),

where MN, H v,,, Ks are suitably chosen matrices. To this end we
need the following well-posedness result for the connected system (2.1), (2.9).

PROPOSITION 2.4. Let (H1) be satisfied. Then for all Xo X, Wo , v(.
L{’oc[0, ; ] there exists a unique solution pair x( t), w( t) of (2.1) and (2.9). is means
that x( t) is continuous in X and absolutely continuous in Z, that (2.1.1) is satisfied for
almost every tO where u(t) is given by (2.9.2) and that w(t) is continuously
differentiable and satisfies (2.9.1) where y( t) is given by (2.1.2).
oo Let us introduce the spaces X X x, Ze Z X Ue X and

the operators S( t) (X), n ( Ue, Ze), Fe (Xe, Ue.) by

0 et
Be= 0 -H Fe=

Then hypothesis (HI) is satisfied with X, Z, S(t), B replaced by Xe, Ze, Se(t), Be,
respectively. Moreover x(t) X and w(t) satisfy (2.1) and (2.9) in the above
sense if and only if the following equation holds for every >= 0

W(t)/’-Se(t)(Xw:)"l-IoSe(t--S)ne[fe(X(S)
This proves the statement of the proposition.



FINITE DIMENSIONAL COMPENSATORS FOR INFINITE DIMENSIONAL SYSTEMS 801

The following hypothesis together with (H1) will turn out to be sufficient for the
existence of a stabilizing, finite dimensional compensator for system (2.1). It generalizes
the approach of Schumacher 15], 16], 17] to systems with unbounded input operators.

(H2) Suppose that there exist operators F (X, Rt), G (R", X) and a finite
dimensional subspace Wc X such that the following conditions are satisfied.

1. The feedback semigroup SF(t) (X), defined by (2.3), is exponentially stable.
2. The observer semigroup S(t) (X), generated by A + GC is exponentially

stable.
3. SF(t) Wc W for all t_->0.

4. Range G W.
If (H2) is satisfied and N dim W, then there exist linear maps

RN satisfying

(2.10) "tr id, ’rrx x, x W.

Moreover, W= (AF) and hence "rrAF is a well defined linear map on ]v. We will
show that the system

vb( t) 7r(AF + GC)w( t) -TrGy( t), w(O) Wo,
(2.11)

u( t) Fw( t),

defines a stabilizing compensator for the Cauchy problem (2.1).
THEOREM 2.5. If (HI), (H2) and (2.10) are satisfied, then the closed loop system

(2.1), (2.11 is exponentially stable.
Proof. By Proposition 2.4, the system (2.1), (2.11) is a well-posed Cauchy problem.

Now let x(t) X, w(t) s be any solution pair of (2.1), (2.11) and define

(2.12) z(t) w(t) x(t) X, ->_ 0.

Then

(2.13) b(t) 7rAFW(t) + 7rGCz(t),

and hence, using rSF(t) erAFt and Theorem 2.3(vi) with f(t)= GCz(t), we get

z(t)= TrSF(t)Wo+ TrSF(t-s)TrGCz(s) ds-x(t)

S(t)wo+ Se(t-s)GC(s) ds-x(t)

S(t)Wo+ S(t- s)[BFw(s)+ GCz(s)] ds

-S(t)xo- S(t-s)Bu(s) ds

S(t)z(O) + S(t- s)GCz(s) ds, >- O.

This implies z(t)=S(t)z(O) and hence, by (2.13), stability of the pair z(t), w(t).
Now the stability of the pair x(t), w(t) follows from (2.12).

Clearly, the hypothesis (H2) is not very useful in the present form since it is rather
difficult to check in concrete examples. Following the ideas of Schumacher [16], we
transform (H2) into an easily verifiable criterion. The basic idea is to approximate G
by generalized eigenvectors of AF and to show that, if A has a complete set of
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generalized eigenvectors and is stabilizable through B, then there exists a stabilizing
feedback operator F which does not destroy the completeness property of A.

More precisely, we need the following assumptions on A.
(H3) The resolvent operator of A is compact and the set A=

{A Ptr(A)lRe A >=-to} is finite for some to > 0.
If (H3) is satisfied, then we may introduce the projection operator

f (I- A)-’ d/PA
2ri .r

where F is a simple rectifiable curve surrounding A but no other eigenvalue of A.
Clearly, PA is a projection operator on both X and Z. Correspondingly we obtain the
decomposition

X =XA@XA, Z =XA(R)ZA,
where XA range PA, ZA= ker PA, XA= zAf") X are invariant subsapces under $(t).
If NA dim XA, we may identify XA with NA and obtain two maps

tA: NA --- XA, ’ITA:Z--NA
with the properties

(2.14) "trAtA id, tA’rrA PA
Then the projection XA(t)= "rrAx(t) of a solution to (2.1) satisfies the finite dimensional
ODE

(2.15)
A(t) AAXA(t) + BAU(t), XA(0) XrAX0,

yA(t) CAXA(t)

where

(2.16) AA ’rrAAtA, BA 7tAB CA CtA.

Now we can replace (H2) by the following stronger conditions which can in many
cases be easily verified. The result has been proved by Schumacher [16] for the case
that range B c X (bounded input operator).

PROPOSITION 2.6. Let the operator A satisfy (H3), assume that the exponential
estimate

(2.17) IIS( t)IxAII(XA) M e-’t, >= O,

holdsfor some M >- 1 and that the reducedfinite dimensional system (2.15) is controllable
and observable. Furthermore, assume that the generalized eigenvectors ofA are complete
in X. Then H2 is satisfied.

Proof. Since (2.15) is controllable, there exists a matrix FA INA such that the
matrix AA+ BAFA is stable. Furthermore, the estimate (2.17) implies that

IIs(t)lz ll z ) <- M e-’t, >-- O,

(Remark 2.1(iii)). It is a well-known result in infinite dimensional systems theory (see
e.g. [5] or [16]) that under these assumptions the closed loop semigroup S(t) Z(Z),
generated by A+ BF: X --> Z with F FAXrA: Z -> l is exponentially stable. By Theorem
2.3, S(t) restricts to a strongly continuous semigroup on X and the operator/.tI- A-
BF:X--> Z provides a similarity action between both semigroups (Remark 2.1(ii)).
Hence the restricted semigroup SF(t)Z(X) is still exponentially stable (Remark
2.1(iii)).



FINITE DIMENSIONAL COMPENSATORS FOR INFINITE DIMENSIONAL SYSTEMS 803

By assumption, the generalized eigenvectors of A are complete in X and hence
they are complete in Z (Remark 2.1(iv)). Therefore it is possible to choose the feedback
matrix FA such that SF(t) is exponentially stable and the generalized eigenvectors of
A+ BF:X- Z are complete in Z (Schumacher [16]). It follows again from the above
similarity argument, that this completeness property carries over to the restricted
operator AF’. (A)X introduced in Theorem 2.3(i).

Now choose GA.NAxm such that AA + GACA is stable and define G AGA:
X. Then it is again a well-known fact from infinite-dimensional linear systems theory
that A+ GC: (A)X generates an exponentially stable semigroup on X (see [5] or
16]). It is also well known that A + GC still generates an exponentially stable semigroup
on X whenever Glide(urn,x) is sufficiently small. Now we make use of the fact that
the generalized eigenvectors of AF are complete in X. This implies that G: R"- X
can be approximated arbitrarily close by an operator G:m . X whose range is spanned
by finitely many generalized eigenvectors of AF. We choose G in such a way that
A+ GC generates a stable semigroup and denote by W the finite dimensional subspace
of X which is invariant under A and generated by those generalized eigenvectors
which span the range of t. Since W is a finite dimensional subspace contained in
(AF) and invariant under AF, the restriction of AF to W is a bounded, linear operator
generating a semigroup Sw(t) on W. Since d/dt Sw(t)x AFSw(t)x, the semigroup
Sw(t) coincides with SF(t) on W. Hence W is also invariant under the semigroup
S(t). We conclude that the operators F:Z-I and t’Rm" X satisfy hypothesis
(H2).

Combining Proposition 2.6 with Theorem 2.5, we obtain a constructive procedure
for designing a finite dimensional compensator for the Cauchy problem (2.1). The
construction is based on the knowledge of the finite dimensional reduced system (2.15)
and on the knowledge of sufficiently many eigenvalues and eigenvectors of the operator
AF. For the case of bounded input operators (range B X) the procedure has been
described in detail by Schumacher [16]. Precisely the same algorithm applies to the
case where range B X.

3. Retarded systems. In this section we apply the abstract result of the previous
section to retarded functional differential equations (RFDE) with delays either in the
input or in the output variable. If delays occur in the input and output variables at
the same time, the RFDE can still be reformulated as an abstract Cauchy problem
(see e.g. Pritchard-Salamon 12]) however, the completeness assumption will no longer
be satisfied.

3.1. Retarded systems with output delays. We consider the linear RFDE

( t) Lxt + Bou( t),
(3.1)

y(t) Cx,,

where x(t)", u(t), y(t)" and x, is defined by x,(-)=x(t+-) for -h-< --<_0,
h > 0. Correspondingly Bo is a real n x/-matrix and L and C are bounded linear
functionals on c c[_h, 0; "] with values in " and m, respectively. These can be
written in the form

= an(4,(), c4,= a,(,4,(,l,
-h -h

where r(’) and y(’) are normalized functions of bounded variation, i.e. they vanish
for r _-> 0, are constant for r-<_-h and left continuous for -h < r < 0.
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It is well known that equation (3.1) admits a unique solution x(.)
Loc[-h, c; "] f’) W’c[0, o; n] for every input u(. ) LlPod0, c; ] and every initial
condition of the form

(3.2) x(0) 4), x(r) b l(r), -h <- r -<_ 0,

where b (b, b 1) , x LP[-h, 0; Rn] Mp. Moreover, in these spaces the solution
x(. of (3.1) and (3.2) depends continuously on b and u(. ). This has motivated the
definition of the state of system (3.1) at time >-0 to be the pair

(3.3) ( t) (x( t), xt) Mp.

The evolution of (t) can be described by the variation-of-constants formula

(3.4) (t)=S(t)c+ S(t-s)Bu(s) ds, t>-O,

where B(NI, Mp) maps ueN into the pair Bu=(Bou, O) and S(t)e(Mp) is the
strongly continuous semigroup generated by

@(A) {c MPIc WI’p, b 1(0) b},

Ac (Lob 1,.c 1).
Here WI"p denotes the Sobolev space WI’p[-h, O, "].

We will consider the evolution of the state (3.3) of system (3.1) in the dense
subspace {(b (0), b)lb WI’p } c Mp which we shall identify with WI’p. Then B becomes
an "unbounded" operator ranging in the larger space Mp. However, it follows from
the existence, uniqueness and continuous dependence result for the solutions of (3.1)
and (3.2) that the state (t) of (3.1), (3.2) defines a continuous function in WI"p

provided that b WI"p and u(. L{’o[0, ; R]. Hence, the operators A and B satisfy
hypothesis (HI) with Z Mp and X WI’p. This implies that the state (t) WI’p of
(3.1), (3.2) with b WI"p satisfies the Cauchy problem

d
;(t) A(t) + Bu(t) ;(0) ( G__. WI’p,

dt
(3.5)

v( t) C;( t),

in the sense of Remark 2.2(ii). Of course, the output operator C: WI"p " is given by

c4, ,(,4(), 4, e w1,.
-h

On the state space W’p this operator is bounded.
Remarks 3.1. (i) If the equation

(3.6) r/(r) r/(-h) + A1, -h < r -< e h,

holds for some e > 0, then the generalized eigenfunctions of A are complete in Mp

and in W’p if and only if

(3.7) det A # 0

(see Manitius [9], Salamon [14, Chap. 3]).
(ii) It is well known that the operator A satisfies (H3).
(iii) The exponential growth of the semigroup S(t) on the complementary sub-

space XA corresponding to A {h cr(A)lRe h =>0} is determined by sup {Re h[h
tr(A), Re h < 0} < 0.
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(iv) Let (2.15) denote the reduced finite-dimensional system obtained by spectral
projection of the solutions of (3.5) on the generalized eigenspace XA. Then (2.15) is
controllable itt

(3.8) rank [AI- L(e), Bo] n A A

(Pandolfi [10]) and observable iff

rAI-L(eX)](3.9) rank L C(ex’)
n /)t A

(Bhat-Koivo [1], Salamon [13], [14]).
Combining these facts with Proposition 2.6 and Theorem 2.5, we obtain the

following existence result for a finite dimensional compensator for system (3.1).
THEOREM 3.2. If (3.6)-(3.9) are satisfied, then there exists a finite dimensional

compensator oftheform (2.9) such that the closed loop system (3.1), (2.9) is exponentially
stable.

3.2. Retarded systems with input delays. In this section we consider the RFDE

(3.10)
g(t) Lx, + But,

y(t)=Cox(t),

with general delays in the state and input and no delays in the output variable. This
time Co is a real m x n-matrix and B a bounded linear functional on c[-h, 0, Rt] with
values in Rn given by

,= (,,(,, ,e [-h, 0, ’],
-h

where fl(r) is an n x/-matrix valued, normalized function of bounded variation. Of
course, we can immediately get an existence result for a finite dimensional compensator
for system (3.10) by dualizing Theorem 3.2. However, for reasons to become clear
later, we make use of a direct approach for system (3.10), following the ideas of Vinter
and Kwong [18] (see also Delfour [6], Salamon [14]).

First note that (3.10) admits a unique solution x(.)eLfo[-h, oe, N"]Cl
WI;[0, oe, for every input u(. )e L’o[0, oe; N] and every initial condition of the
form

(3.11)
x(0) th, x(r) bl(r),

u(’) :(’), -h<-r<O,

where b Mp and LP[-h, 0; l]. In order to reformulate system (3.10) as an
evolution equation in a product space, we rewrite (3.10)-(3.11) as

(t)= drl(r)x(t+r)+ d(r)u(t+r)+fl(-t),
(3.12)

y( t) Cox(t), x(O) =fo,

where the pair f= (fO, fl)e Mp, given by

(3.13)

fl(o’) dr(’)4l(z- o’) + dfl(’)(’- o’), -h <_- o_-<0,
-h h
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is regarded as the initial state of system (3.12). The corresponding state at time >-0
is given by

(t)=(x(t),xt)aMp,
(3.14)

x(o’) dn(z)x(t+z-o’)+ d(z)u(t+’-o’)+f(o’-t).

It has been shown in [6], [14], [18] that the evolution of this state can be described
by the variation-of-constants formula

(3.15) :(t) Sr*(t)f+ Sr*(t--s)BT*u(s) ds, t>-O.

Here Sr*(t) (Mp) is the adjoint semigroup of Sr(t) P(Mq), l/p+ 1/q 1, which
corresponds to the transposed equation (t)= Lrx, in the sense of 3.1. Since St(t)
restricts to a semigroup on the dense subspace Wl’q c Mq, the adjoint semigroup ST*(t)
extends to the dual space W-I’p= (w’q)* which contains Mp as a dense subspace in
a natural way. The input operator BT* f(R, W-’p) is the adjoint operator of BT

(Wl’q, ) given by

I_BTdd dfl(z)d/’(z)e’, e Wl’qc Mq.
h

Since the infinitesimal generator AT* of ST*(t) and the input operator B T* satisfy the
hypothesis (HI) of 2 with X Mp and Z= W-’p (see Salamon [14]), the state
tic(t) Mp of system (3.12), given by (3.14), defines the unique solution of the abstract
Cauchy problem

at :(t)= aT*:(t) + BT*u( t), fir(O) f Mp,
dt

(3.16)
y( t) Cflr( t),

in the sense of Remark 2.2(ii). Of course, the output operator C: Mp ...m is now
given by

Cf Cof m, f Mp.

in order to make the results of this section more precise, we briefly outline the
construction ofthe reduced system (2.15). For this purpose let XA c WI’p andX W’q

denote the generalized eigenspaces of A and AT, respectively, correspondig to A
{A tr(A)lRe A >= 0}. Since A is a symmetric set, we can choose real bases {bl, ",

or XA and {q,. ", } ofX such that the matrices

[q, bv,,] e wl’p[-h, 0;

[#A’’" #/Na] w"q[-h, O; l"xN"],
satisfy

xltT(0)(I)(0) + T(o’) drl(z)(’r-o’) do.= IRN,,NA.
h

Then rA" RtA -) M’ and 7rA" Me ’* IN’ may be defined by

[aXA]=(0)XA, [AXA]’(r)= dV(Z)(z--r)XA,-h<-tr<=O,
h

I-h
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for XAeRN^ and fsMp, and the matrices AARNAxrcA, BAtvAxl, CAmxA are
given by

A(q(0),) ((0), )AA, BA *7-(r) dfl(r), CA Co(0)
h

(see Salamon [14, 2.4]).
Remarks 3.3. (i) If (3.6) is satisfied for some e > 0, then the eigenfunctions of A7-*

are complete in M’ and in W-I’p if and only if (3.7) holds (see Manitius [9], Salamon
14, Chapter 3]).

(ii) If AA, BA, CA are defined as above, then system (2.15) is controllable iff

(3.17) rank [AI- L(eX), B(eX’)] n VA A

and observable iff

(3.18) rank [XI- L(eX’)]Co
=n VAA

(see Salamon [14]).
THEOREM 3.4. If (3.6)-(3.7) and (3.17)-(3.18) are satisfied, then there exists a

finite-dimensional compensator of theform (2.9), such that the closed loop system (3.10),
(2.9) is exponentially stable.

Remark 3.1(i) and Remark 3.3(i) show that the completeness property of A and
A7-* can be destroyed by arbitrarily small perturbations in the delays (compare Manitius
[9]). However such perturbations would not affect the stability of the closed loop
system (3.1), (2.9) respectively (3.10), (2.9). This indicates that the completeness
assumption is somewhat artifical for the purpose of stabilization by a finite-dimensional
compensator. This assumption can be weakened slightly in the special case ofthe RFDE

(3.19)
( t) Aox( t) + Ax( h) + Bou( t),

y( t) Cox(t),

with a single point delay in the state variable if the state space is chosen to be

X (f M’lf(r) range Ai, -h _<- _-< 0}.

It has been shown by Manitius [9] that the completeness property for the operator
AT"* in this space is equivalent to the rank condition

(3.20) rank [Ao-AIA 0 =n+rankA

for some A C. Therefore we have the following result.
COROLLARY 3.5. If (3.8), (3.18) and (3.20) are satisfied then there exists a finite

dimensional compensator of the form (2.9) such that the closed loop system (3.19), (2.9)
is exponentially stable.

Remark 3.6. This result suggests that it should be possible to weaken the complete-
ness assumption for the general RFDE which would be an important improvement.
Another extension would be an existence result for RFDEs with delays in simul-
taneously the control and the observation. However, it is not obvious how this can be
achieved with the present approach, the main difficulty being the completeness property.

Remark 3.7. Although the main results of this section, Theorems 3.2 and 3.4 are
stated as existence results, we emphasize that the stabilizing compensator can in fact
be constructed using exactly the same procedure as it is explained in detail in [ 16] for
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RFDEs without delays in the external variables. The construction, as outlined in the
proof of Proposition 2.6, involves calculating finitely many eigenvalues and eigenvectors
of A and hence the projected system AA, BA, CA as it is described in 3.2. Then the
matrices FA and GA can be calculated by standard finite dimensional procedures. The
most difficult part of the design lies in finding eigenvectors of A+ BF to generate the
subspace W. The approximation of G- AGA by an operator G with range in W then
reduces to a finite-dimensional linear optimization procedure. This procedure has to
be repeatedmwhile increasing Wmuntil G is close enough to G. The numerical example
for a retarded system examined in [16] gives insight into the details of the design
procedure.

4. Boundary control systems. The purpose of this section is to show how abstract
boundary control systems in Hilbert spaces fit into the framework of 2. When these
results are applied to obtain finite-dimensional compensators for particular classes of
partial differential equations (PDE), there is a considerable overlap with results of
Curtain in [2], [3], [4]. The relation between both approaches will be discussed in
detail at the end of this section.

Let W, X, U, Y be Hilbert spaces and suppose that

WcX

with a continuous, dense injection. Furthermore, let A ( W, X), F ( W, U), C
(X, Y) be given. Then we consider the boundary control system

d
dt

x(t) Ax(t) x(0) Xo W,
(4.1)

with the output

(4.2)

Fx(t)=u(t), t>-O,

y(t) Cx( t), >- O.

DEFINITION 4.1 (strong solution, well-posedness).
(i) Let u(.) [0, T; U] and Xo W satisfy Fxo u(0). Then a function x(.)

[0, T; W] is said to be a (strong) solution of (4.1) if x(. ) 1[0, T; X] and if (4.1)
is satisfied for every [0, T].

(ii) The boundary control system (4.1) is said to be well-posed if the subspace
{x WIFx 0} is dense in X, if the restriction of A to this subspace is a closed operator
on X, and if for all Xo W and u(.) W1’2[0, T; U] with Fxo= u(0) there exists a

unique solution x(.) [0, t; W] 1[0, T; X] of (4.1) depending continuously on

Xo and u(. ). This means that there exists a constant K > 0 such that the inequality

sup Ilx(t)llw+ sup Ilyc(t)llx<-K IlXoitw+ Ilfi(t)[[bdt
O<=t<=T O-<t<=T

holds for every solution x(t) of (4.1).
Remarks 4.2. Let system (4.1) be well posed.
(i) Taking u(t)--0, it follows from a classical result in semigroup theory (Phillips

11]) that the operator

(4.3) Ax= Ax, (x wlrx:o 
is the infinitesimal generator of a strongly continuous semigroup S(t) on X and that,
for every Xo (A), the function x(t) S(t)Xo is the solution of (4.1) with u(t) -= 0.
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(ii) As in 2 we introduce the dense subspace Z* x.(A*)c X*. Then

XcZ

with a continuous, dense injection, A extends to a bounded operator from X to Z
and S(t) to a strongly continuous semigroup on Z.

(iii) It follows from [14, Lemma 1.3.2(i)] that

{x WlFx 0} x(a) {x X z(a)lax X}

or in other words, if x e X and Ax X, then x e W and Fx =0. Furthermore, the
W-norm on x(A) is equivalent to the graph norm of A [14, Remark 1.3.1(iii)]. This
means that there exists a constant K1 > 0 such that the inequality

[[xll : --< gl[ IIx I1,, / Ilaxllx]
holds for all x e W with Fx 0.

(iv) F is onto. Hence there exists a constant Ko> 0 such that for every u e U there
exists a w e W such that

(4.4) Fw u, wll :-<- goll u .
Let us now construct the input operator B e ( U, Z).
1. Given u e U we may choose w e W such that Fw u since F is onto (Remark

4.2(iv)). For this w e W we define Bu := Aw Aw Z. This expression is well defined
since Fw 0 if and only ifAw Aw (Remark 4.2(iii)). Hence the map B: U --> Z satisfies,
by definition, the equation

(4.5) BFx Ax- Ax, x W.

2. It is easy to see that B is a linear map.
3. Let u e U be given and choose w e W such that (4.4) holds. Then

Ilnullz <--II a- all(,zll wll :-<- golla- all(,zllull u
and therefore B’U--> Z is bounded.

LEMMA 4.3. Let the operators A and B be defined by (4.3) and (4.5), respectively.
Furthermore, let x X and u U satisfy Ax + Bu X. Then

x W, Fx=u, Ax=Ax+Bu.

Furthermore there exists a constant K > 0 such that

Ilxll w-<- g Ellxllx / u u / Ilax + Bu IIx]

for all x X, u U with Ax + Bu X.
Proof. Let x e X and u e U satisfy Ax + Bu X and choose w e W such that (4.4)

holds. Then
A(x- w) Ax + Bu -(A+ BF)w Ax + Bu Awe X.

By Remark 4.2(iii), this implies that x e W and

x : -<- w w / x w w

--< Ilwll w / gEIIx- wll, / IIa(x-
_-<[1 +g Ilidll< :,,, + Kill A I1<:,:,] w :

+ gllxll,, + gllax + Bull,,
<- g Eli u u / x I1,, / ax + Bu x 3,
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Finally, we obtain again from Remark 4.2(iii) that Fx Fw= u and from (4.5) that
Ax Ax + BFx Ax + Bu. [q

The above operators A and B allow us to reformulate the boundary control system
(4.1) as a Cauchy problem of the type (3.1). More precisely, we introduce the following
concept of a weak solution for (4.1).

DEFINITION 4.4 (weak solution). Let the operators A (X, Z) and B ( U, Z)
be defined as above. Moreover, let Xo X and u(.) L2[0, T, U] be given. Then
x(. ) c[0, T; X] fq W1’2[0, T; Z] is said to be a weak solution of (4.1) if

d
dtX(t)=Ax(t)+Bu(t) 0 < < T,

(4.6)
x(0) x0

is satisfied in Z (almost everywhere).
It follows from the definition of the operator B (Remark 4.2(iv)) that every strong

solution x(. ) [0, T; W] f-I c1[0, T; X] of (4.1) is a weak solution in the sense of
Definition 4.4. Moreover we have the following result.

PROPOSrrION 4.5. Suppose that the operator A defined by (4.3) is the infinitesimal
generator of a strongly continuous semigroup S( t) on X and that F ( W, U) is onto.
Furthermore let B ( U, Z) be defined by (4.5). Then the following statements are
equivalent.

System (4.1) is well posed.
(ii) The operators A and B satisfy hypothesis (HI) of 2 with p 2.
(iii) For every Xo Xand every u( L2[0, T; U] there exists a unique weak solution

x(. ) [0, T; X] fq W1’2[0, T; Z] of (4.1) depending continuously on Xo and u(. ).
Moreover, the weak (and in particular the strong) solutions of (4.1) are given by

(4.7) x(t)=S(t)Xo+ S(t-s)Bu(s) dseX, O<=t<-_ T.

Proof. It is a well-known semigroup theoretic result that the solutions of (4.6),
and therefore the weak solutions of (4.1), are given by (4.7). Furthermore, it follows
from Remark 2.2(ii) that (ii) is equivalent to (iii).

In order to prove that (ii) implies (i), suppose that (H1) is satisfied and let x(t)
be given by (4.7) with Xo W and u(. ) 1[0, T; U] satisfying Fxo u(0). Then it is
a well-known result from semigroup theory that x(.) [0, T; X]fq 1[0, T; Z]
satisfies

(t)=Ax(t)+Bu(t)

S(t)[Axo+ Bu(0)] + S(t-s)Bft(s) ds

S(t)Axo+ S(t-s)Bfi(s) ds, 0 - <- T.

By (H1) and Remark 2.1(ii), this implies that (. ) [0, T; X] and

sup II(t)llx < sup Ils(t)ll<x)llAIl<c,x)llxoll+ blli(" )[[L2[O,T.,U]
O<=t<-- T Ot<-- T

Applying Lemma 4.3 to the term Ax(t)+Bu(t)=(t)X, we obtain that x(.)
c[0, T; W] f) c1[0, T; X] satisfies (4.1). Since every strong solution of (4.1) is given
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by (4.7), x(t) is in fact the unique solution. Furthermore, we obtain from Lemma 4.3
that

Ilx(t)ll w -<- K[[ix(t)[l / Ilu(t)ll u + II(t)llx].
Since

sup x( t) ll --< sup IIS(t)ll.)llidll.,.,)llxoll,+bllu("
O<_t<=T

and
sup Ilu(t)ll Ilrll(w,)llxollw+4Yll(’)llto,;

O<_t<=T

for u(. ) c1[0, T; U] with u(0)= Fxo, this shows that system (4.1) is well posed.
Conversely, suppose that system (4.1) is well posed in the sense of Definition 4.1,

let v(. ) c1[0, T; U] and define

Iox(t)= S(t-s)B v(r) drds, u(t)= v(’r) dr, 0=< t_-< T.

Then x(. ) Cl[0, T; Z] and

Ax(t)+Bu(t)=:i(t)= S(t-s)Bv(s) ds, O<t<_T.

Hence x(.) c1[0, T; X] and we obtain from Lemma 4.3 that x(.) c[0, T; W],
Fx(t) u(t) and Ax(t) Ax(t) + Bu(t). Hence x(t) is a strong solution of (4.1) in the
sense of Definition 4.1(i) and satisfies the inequality

S(T- s)Bv(s) ds II (T)II =< Kllv(. [I,.:’to,; 2.
x

This shows that the operators A and B satisfy the hypothesis (HI).
Having established hypothesis (H1) we are now in a position to apply the

perturbation result of 2 (Theorem 2.2) to the boundary control system (4.1).
COROLLARY 4.6. If system (4.1) is well posed, then the following statements hold.
(i) For every F (X, U) the operator

(4.8) AFX AX,  (AF) (X wlrx Fx}

is the infinitesimal generator of a strongly continuous semigroup SF( t) on X.
(ii) For every Xo (AF) the function x(t)= SF(t)Xo, >--0, is continuous in W,

continuously differentiable in X, and satisfies the closed loop boundary control equations

(4.9)

d
d-- x(t)= Ax(t), x(0) Xo,

Fx(t) Fx( t), >- O,

where the derivative has to be understood in the space X.
(iii) If U isfinite dimensional, then SF (t) extends to a strongly continuous semigroup

on Z whose infinitesimal generator is given by the extended operator A+ BF X Z.
Proof. By Proposition 4.5, the operators A and B defined by (4.3) and (4.5),

respectively, satisfy hypothesis (HI) of 2. Hence it follows from Theorem 2.3(i) that
the operator

AFX Ax + BFx, (AF) {x XIAx + BFx X}

generates a strongly continuous semigroup of X (note that the proof of this result in
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[14, Thm. 1.3.7] does not require U to be finite dimensional). Lemma 4.3 shows that
this operator AF coincides with the one defined by (4.8). This proves statement (i).

In order to prove statement (ii), let Xo (AF) be given and define u(t) FSF(t)Xo,
_-> 0. Then u(t) is continuously differentiable for _-> 0 and satisfies u(0)= Fxo Fxo.

Hence (4.1) admits a unique strong solution x(t), t_>-0, which by definition of the
operators A and B also satisfies (4.6) and is therefore given by (4.7). This implies

x(t)= S(t)Xo+ S(t-s)BFSF(S)Xo ds= S(t)Xo,

by definition of the semigroup S(t).
Statement (iii) is an immediate consequence of Theorem 2.3(iii). 71
So far we have shown that the general theory of 2 also covers abstract boundary

control systems. In particular, we have reformulated the boundary control system (4.1)
in the semigroup theoretic framework with an unbounded input operator. A very similar
approach has been developed by Ho and Russell in [8] under only slightly more
restrictive assumptions. However, [8] does not contain any feedback results and also
the above Proposition 4.5 seems to be new. Furthermore we point out that earlier
results in this direction for various classes of partial differential equations can be
found, e.g., in the classical work by Lions-Magenes [22], in the more recent papers
]y Washburn 19], Lasiecka-Triggiani [20], [21] and in the book by Curtain-Pritchard
[5] (this list is by no means complete). Another general approach has been presented
by Fattorini [7]. In [7] the input operator is bounded, however, there are derivatives
in the input function which do not appear in our approach.

In [2] and [3] Curtain,has used Fattorini’s results for the construction of finite
dimensional compensators which leads to integral terms in the loop. These integral
terms will disappear if we apply the approach of this section to obtain existence results
for finite dimensional compensators. More precisely, we have to assume that the
operators A, B and C, introduced in this section, satisfy hypothesis (H2) of 2, or
respectively, hypothesis (H3) and the assumptions of Proposition 2.6. Under these
conditions it follows readily from Theorem 2.5 that there exists a finite dimensional
compensator of the form (2.9) such that the closed loop system (4.1), (4.2), (2.9) is
exponentially stable.

Starting from (4.1), (4.2), the following problems have to be solved for the
construction of the compensator.

1. Find the operators A and B.
2. Determine the spectrum of the operator A and the reduced subsystem (2.15).
3. Find the stabilizing operators F: X--> U and G" Y-> X.
4. Determine the eigenvalues and eigenvectors of AF to approximate G.

To illustrate this procedure, we consider the heat equation with Neumann boundary
conditions and boundary control which has also been treated in [3] with different
methods.

Example 4.7. Consider the parabolic PDE

(4.10.1) Zt-"’ff-2Z, 0<<1, t>O,

(4.10.2) z:(O, t) u(t), z(1, t) O,

(4.10.3) z(sC, O) Zo(:), 0<:< 1,

(4.10.4) y(t)= c()(, t) d, t>O.

t>0,
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This system can be written in the abstract form (4.1) with

X L:[0, 1], W={b H2[0, 1]l(1)=0}, U=,

a =-;, r=(0),
Z*= @(A*)= (A)= {@ H2[O, 1]1(0 =0= (1)}.

The operator A satisfies (H3) and has a complete set of eigenvectors bo(:) 1,
b,(:) x/ cos ncr:, corresponding to the eigenvalues ho=0, h, -n2, n. In order
to determine the operator B’- Z, let us choose any W such that F 1, e.g.
6()=-(-1)2/2. Then, for every Z*, the following equation holds

B*ff (B*, F&)= (if, BF)= (, a A&)z..z
(, )u -(A*@, ),

1=-- [q(1)(1)- (0)(0)]

1-- (0).

It has been shown in Pritchard-Salamon 12] that these operators A and B satisfy
hypothesis (HI) and therefore system (4.10) is well posed in X L2[0, 1] in the sense
of Definition 4.1 (see Proposition 4.5). The spectral projection of L2[0, 1] onto the
eigenspace XA {abola R} of A corresponding to the unstable part A {0} of the
spectrum is given by

PAb(:) b(r) dr, 0< s < 1.

With the choice of {bo} as a basis of XA, this operator splits into PA ArA, where
rA: L2[0, 1]--) R and A:R--) L2[0, 1] are given by

"trASh 6(7") dT", tAXA(Sc) Xa, 0 -< : <- 1.

Then the reduced finite dimensional system (2.15) is described by the "matrices"

Aa 0, BA --’a"-2, Ca c() d.

This sytem is controllable and obervable if and only if

(4.11) CA

Stabilizing matrices are given e.g. by
2

FA ---, GA -Cx
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so that AA+BAFA=--1/4, AA+GACA=--I. Then the operator A with F=FA’rrA"
L2[0, 1] --> given by

(A) the H2[0, 1]l(1)=0, 6(0)=-- 4’(:) d:

Arab= 1_ .
The eigenvectors and eigenvalues of AF coincide with those of A except for Ao 0
which is now replaced by AF =---. The corresponding normalized eigenfunction is

(s) x/ sin

We will choose W span {b} and the maps

(w)()=qb()w, 0<<1, wl,

(’rrF)() bF(SC)(S) d, b L2[0, 1 ],

So that VrF" L2[0, 1 ]--> W is the orthogonal projection onto W and XrFI,F-- 1.
Let us now consider the case that c(:) : for 0 -< : _-< 1. Then CA 1/2 and we choose

GA =--xrg/2x/, g >0. With this choice the operator G:R-> L2[0, 1] is given by

Gy](:) [AGAy](:)

We replace this operator by

rg
2Y, 0-<:-<1.

,ff
Gy]() [vvGy]() -gyx/ sin- , 0<:<1,=

whose range is in W. Since the perturbed operator A+ GC generates an analytic
semigroup it satisfies the "spectrum determined growth" assumption. Furthermore, its
spectrum is given by

o’(A + (C)= {-oZlg[1-cos o,rr] w318K +’rr2/2n/-n/’rr2w2lsin w’rr, 0) # 0}

if g > O. In the case g < 0 there is an additional positive eigenvalue Ao 0)2> 0 where

e + e-’- 2
g ,o[8K +r/2v+e.,_ e-W

We conclude that A +C generates an exponentially stable semigroup if and only if
g>0. Hence the operators F and satisfy the hypothesis (H2) with the one-
dimensional subspace W= span {F}. In this case the compensator (2.9) is described
by the "matrices"

1 4
M w(AF + GC)F

4
g’

H arG g,

K FA,rrA F --.
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Hence the first order system

(4.12)

v: -- w-g L-- w-y

defines a stablizing compensator for the parabolic PDE (4.10) with c(sc) -= sc if and
only if g > 0.

Remark 4.8. The results of this section show that the abstract framework of {} 2
is general enough to cover both FDEs and PDEs. We mention that the approach of
this section can also be applied to damped hyperbolic systems. Hence this paper
represents a complete generalization of the compensator design of Schumacher [16]
to infinite dimensional systems with unbounded control action. However, the degree
of unboundedness which we can allow for the input/output operators is not as general
as one would desire. For example, for the parabolic PDE (4.10) we cannot allow
simultaneously Neumann boundary control and point observation. Also we cannot
allow Dirichlet boundary control when the output operator is an arbitrary functional
on L2[0, 1]. A general theory which covers these cases would require the consideration
of unbounded output operators as well. The extension of our theory to this case seems
to involve some further difficulties and would be an interesting problem for future
investigations.

Remark 4.9. Using the abstract approach outlined in 2, it is possible to directly
extend the results of Schumacher [15], [17] on tracking and regulation in infinite
dimensions to unbounded control action. A different approach is to use the extended
system formulation discussed in [2], which results in integral control action and this
can be found in Curtain [4].

Note. Stronger results on finite dimensional compensators for some classes of
functional differential equations have recently been developed by Kamen-
Khargonekar-Tannenbaum [23], Nett [24], Logemann [25] using frequency domain
methods.
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