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L A G R A N G I A N  I N T E R S E C T I O N S  
I N  C O N T A C T  G E O M E T R Y  

Y .  E L I A S H B E R G ,  H. H O F E R  AND D. S A L A M O N  

1. I n t r o d u c t i o n  

It is well-known that  all problems of Contact geometry can be reformulated 
as problems of Symplectic geometry. This can be done via symplectization 
(see 2.1 below). In particular, the problem of Lagrangian intersections nat- 
urally arises in connection with several contact geometric questions (see 2.5 
example, and below). However, there is one major difficulty when one tries 
to realize this approach: the symplectizations of contact manifolds are non- 
compact and, what is even worse, non-convex (see [EGrl]). This leads to 
the loss of compactness for the spaces of holomorphic curves and thus cre- 
ates serious difficulties for the traditional Floer homology approach. The 
goal of this paper is to show that this problem can be successfully overcome 
by using an idea from [H]. 

We begin with an exposition of the main notions of contact geometry and 
their symplectic analogues. We develop then an analogue of Floer homol- 
ogy theory for the Lagrangian intersection problem in symplectizations of 
contact manifolds and give applications of this theory to contact geometry. 

There exist other methods for handling similar problems in contact ge- 
ometry. Let us mention here Givental's approach through the, so-called, 
non-linear Maslov index (see [G]), as well as the approach based on the the- 
ory of generating functions and hypersurfaces described in [EGr2]. Kaoru 
Ono ([On]) independently proved a result similar to our Theorem 2.5.4. All 
these methods, and the method considered in this paper, have common as 
well as complementary areas of application. 

A part of this paper was written while the first and third authors visited 
IHES. They thank the institute for its hospitality. 

2. Contac t  G e o m e t r y  

2.1 C o n t a c t  mani fo lds  and their  s y m p l e c t i z a t i o n s .  We recall in this 
section some basic definitions of contact geometry and their symplectic 
counterparts (see also [AG]). Let ~ be a contact structure on a (2n + 1)- 
dimensional manifold M, i.e. ~ is a completely non-integrable tangent plane 



Vo1.5, 1995 L A G R A N G I A N  I N T E R S E C T I O N S  IN C O N T A C T  G E O M E T R Y  245 

distribution of codimension 1. Thus, at least locally, ( can be defined by the 
equation {7 = 0} where the 1-form 7 satisfies the condition 7 A (d~/) n ~ O. 
The global existence of such a form 7 is equivalent to the coorientability 
of (. 

Only cooriented contact structures are considered in this paper. The 
general case requires a l /2-equivariant  analogue of the theory described 
here. 

Let Sr be the (trivial) subbundle of the cotangent bundle T*(M) 
whose fiber over a given point q E M consists of all non-zero linear forms 
from T~(M) which annihilate the hyperplane (q C Tq(M) and define its 
given coorientation. The bundle Sr is a principal R-bundle where the 
action of R is defined by 

A * v = e ~ . v ,  A E R ,  v E S r  

Let us denote by ~r the restriction pdqlsr ) of the canonical form pdq 
on T * M  to Sr C T*M. Then the 2-form We = d~r is a symplectic 
structure on Sr The symplectic manifold (Sr162 is called the 
symplectization of the contact manifold (M, ().  

Let us denote by Xr the vector field on Sr which is we-dual to c~r 
i.e. XcJwr -- c~r The field Xr generates the R-action described above: 

(Xr = eZ~v , ~ E R ,  v E Sr . 

The sections of the bundle Sr ---* M are called contact forms. The 
space of all contact forms will be denoted by Cont(().  

A choice of a contact form 7 e Cont(()  defines a splitting H~ : Sr 
M • R. In terms of this splitting we have 

0 
(~r176  wr176 , X r  ~-~ , 

where 0 E R and we identify 7 defined on M with its pullback on M x R. 
It is useful to observe the following 

PROPOSITION 2.1.1. A fiberwise splitting H : Sr -* M x R has the 
form H~ for a contact form 7 E Cont(()  if  and only if H commutes with 
the R-actions on Sr and M x R. 

A diffeomorphism f : M -* M lifts canonically to a symplectomorphism 
F : T*M --~ T*M. Moreover, F preserves the 1-form pdq as well. If f 
is a contactomorphism of the contact manifold (M, () then F leaves the 
subbundle Sr invariant and thus induces an R-equivariant symplecto- 

morphism Sr --~ Sr We will denote this symplectomorphism by ] 
and call it the symplectization of the contactomorphism f .  
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The converse is also true: any R-equivariant symplectomorphism of Sc M 
has the form ] for a uniquely defined suitable contactomorphism f : (M, ~) --* 
(M, ( ) .  

The vector field X on (M, () is called contact if the flow generated by X 
consists of contactomorphism (M, ~) --* (M, ~). Equivalently, pick a 1-form 
~/E Cont(~). Then the vector field X is contact iff the Lie derivative Lx~/ 
is proportional to 7. 

Each contact vector field X on (M, ~) admits a lift to an R-invariant 
Hamiltonian vector field X on (S<( / ) ,wr  Conversely, each R-invariant 
Hamiltonian vector field Y on (S< (M), wr projects to a contact vector field 
on (M, (). An important  example of a contact vector field is provided 
by the Reeb vector field. Notice that the choice of a contact form 7 E 
Cont(~) defines on M a Hamiltonian flow which is transversal to the contact 
structure (. Indeed, there exists a unique vector field Y tangent to M such 
that  YJd7 = 0 and 3'(Y) -- 1. The vector field Y is called the Reeb vector 
field generated by the contact form 7. The field Y is contact. Indeed, we 
have L y  7 = d(7(Y)) - YJd 7 = O. 

2.2 L e g e n d r l a n ,  Lag rang i an ,  p r e - L a g r a n g i a n .  An n-dimensional sub- 
manifold A C (M, () is called Legendrian if it is tangent to the distribution ~. 
If 7 is a contact form from Cont(~) then A is Legendrian iff alA ---- 0. The 
preimage/~ = 7r-l(A) C ScM under the canonical projection S i M  ~ M 
is an R-invaxiant Lagrangian cone. We call /~ the symplectization of A. 
Conversely, any Lagrangian cone in the symplectization projects onto a 
Legendrian submanifold in (M, (). 

The following notion was suggested to us by D. Bennequin. 
An (n+ 1)-dimensional submanifold n of the (2n+ 1)-dimensional contact 

manifold (M, ~) is called pre-Lagrangian if it satisfies the following two 
conditions: 
- -  L is transverse to ~; 
- -  The distribution ~ O T(L) is integrable and can be defined by a closed 

1-form. 

Remark 2.2.1: It is useful for applications to extend the definition of a 
pre-Lagrangian submanifold allowing certain types of tangency of L and 

instead of their transversality. It will be done in one of our subsequent 
papers. 

The motivation for the term pre-Lagrangian is provided by the following 

PROPOSITION 2.2.2. For any pre^-Langrangian submanifold L C M there 
exists a Lagrangian submanifold L C Sr such that r(L) = L. The coho- 
mology class A E HI(L;R) ,  such that r*)~ --[(~[L], is defined uniquely up 
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to multiplication by a non-zero constant. Conversely, ff  L C M is the (em- 
bedded) image of a Lagrangian submanifold L C Sc M under the projection 
S c M  --. M then L is pre-Lagrangian. 

Proof: By the definition of a pre-Lagrangian submanifold there exists a 
contact form f E Con t ; (M)  whose restriction to L is closed. The required 

lift L of L is the graph of the form filL- Suppose that  f '  e Cont(()  is 
another form whose restriction to L is closed. Then f t [L= f f [L  for a non- 
vanishing function f ,  and we have df A f i l l  = O. Thus the function f must 
be constant on leaves of the foliation fl = 0 on L. If the cohomology class 
A = [filL] is proportional to the integral class from Hi(L; Z) then we can 
think that  A itself is integral and, therefore, f lL  = h* (dO), where h is a map 
L --+ S 1 and the cohomology class of the closed form dO generates Hi(S1). 
Thus the function f is constant on the fibers h - l (0 ) ,  0 E S 1, i.e. f can be 
writ ten as ~ o h for a function ~ : S 1 ---* R. Set C = f s  1 ~dO. Then there 
exists a diffeomorphism g :  S 1 --+ S 1 such that g*(dO) = (~/C)dO. Thus 

and, therefore, the cohomology class [fl'[L] coincides with CA. If A is not 
proportional to an integral class then the foliation defined by the form f on 
L has everywhere dense leaves. This implies that  the function f has to be 
constant on all L. [] 

Thus with any pre-Lagrangian submanifold L C M one can canonically 
associate a projective class of the form A. A curve F C L is called a vanishing 
cycle of L if its homology class annihilates A. Examples of vanishing cycles 
are provided by curves which are contained in a Legendrian submanifold 
of L. 

Let us recall that if 6 : S 1 --o L is a loop in a Lagrangian, possibly 
immersed submanifold Lag of a symplectic manifold V then given a sym- 
plectic trivialization of the bundle f*T(V)  one can define the Maslov index 
#(6) (see, for instance, [as1]). Of course, the index #(6) depends on the 
trivialization. However, if A : S 1 x [0, 1] --~ V is a homotopy between the 
loops 60 = A[slx0 : S 1 --~ Lag, and 61 = Als lx l  : S 1 "-'* Lag then the 
difference it(60,61) = # ( 6 0 ) -  #(61) can be invariantly defined. To do this 
one just  needs to trivialize the bundle A*T(V) over S 1 x [0, 1]. 

The procedure of symplectization allows us to define the relative Maslov 
index #(60, 61) for a pair of homotopic loops in a contact manifold provided 
they are contained in its Legendrian or pre-Lagrangian submanifolds. 

2.3 C o n t a c t i z a t i o n  o f  s y m p l e c t i c  man i fo ld s .  If a symplectic manifold 
(N, w) is exact, i.e. w = da, then it can be contactized. The contactization 
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C(N, w) is the manifold M = N x S 1 (or N x [l) endowed with the contact 
form dz - ~. Here we denote by z the projection to the second factor and 
still denote by c~ its pull-back under the projection M --* N. 

However, the contactization can be defined sometimes, even when w is 
not exact. Suppose that  there exists an h > 0 such that  the form w/h  
represents an integral cohomology class [w/h] E H 2 (N). The contactization 
C(N, w), or as it is also called, pre-quantization of the symplectic manifold 
(N,w) can be constructed in this case as follows (see [W]). Let M --~ N be 
a principal circle bundle with the Euler class equal to [w/h]. This bundle 
admits a connection whose curvature form equals w/h.  This connection 
can be viewed as a Sl-invariant 1-form (~ on M. The non-degeneracy of w 
implies that  c~ is a contact form and, therefore ~ = {c~ = 0} is a contact 
structure on M. The contact manifold (M, ~) is, by the definition, the 
contactization C(N, w) of the symplectic manifold (N, w). A change of the 
connection c~ leads to a contactomorphic manifold. However, a change of h 
(for instance, h --* h/2) affects not only the contact structure ~ but  also the 
topology of the manifold M itself. 

2.4 E x a m p l e s .  We give here examples of pre-Lagrangian and Legendrian 
submanifolds. 

2.4.1 S Y M P L E C T I Z A T I O N  O F  T H E  SPACE OF C O N T A C T  E L E M E N T S .  Let 
M = P+T*N be the projectivized cotangent bundle of a n-manifold N,  
or the space of cooriented contact elements of N. Thus a point of M is 
a cooriented tangent hyperplane T C T(V).  The manifold M carries a 
canonical contact structure ~ (see lAG] ) which is uniquely defined by the 
following property: 

The symplectization S;(M)  coincides with T*N \ N,  the symplectic 
form we is the restriction of the canonical symplectic form d(pdq), and the 
[1-action is given by the multiplication by e ~ 

If we fix a Riemannian metric on N then the space P+T*N can be 
identified with the unit cotangent bundle. The restriction of the canonical 
1-form pdq is a contact form for ~. Thus the flow generated by the Reeb 
vector field for this contact form coincides with the geodesic flow. 

Suppose now that  a is a non-vanishing closed 1-form on N.  Then it 
corresponds to a Lagrangian section L~ C T*N \ N = ScM. The im- 
age L~ C M of L~ under the canonical projection ScM --. M is a pre- 
Lagrangian submanifold. The form a defines on La a foliation with Legen- 
drian leaves. If a multiple Ca for a constant C > 0 represents an integer 
cohomology class in Hi(N;  [l) then all leaves of the foliation are closed 
Legendrian submanifolds of M.  

Equivalently, the above example can be rephrased as follows. Suppose 
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that  a closed manifold N can be fibered over the circle S 1 . Let 7r : N --* S 1 
be the pro~ection. Then d r  is a non-vanishing closed 1-form on N and 
its graph L is a Lagrangian submanifold in T*N \ N. Then the image 
L = Ld~ of Ld~ under the projection T * N \ N  ---* PT*N is a pre~Lagrangian 
submanifold in the space of co-oriented contact elements of N.  Notice that  
L is foliated by Legendrian lifts of hypersurfaces 7r-l(T) C N, T E S 1. 

For instance, if N is the torus T n, then the contact manifold M = 
P*T*N admits a splitting M = T n x S n-1 such that each torus T n x p, 
P = (P l , . . .  ,Pn) E S ~-1, is a pre-Lagrangian torus of the form L~ for the 

n non-vanishing closed 1-form c~ = ~ 1  pidqi, qi E S 1. An everywhere dense 
set of these tori can be further split as products T ~-1 x S 1 where all tori 
T n-1 • q, q E S 1, axe Legendrian. 

2.4.2 PRE-LAGRANGIAN SURFACES IN 3-MANIFOLDS. Let (M, ff) be a 
three-dimensional contact manifold and T C M be an embedded 2-torus, 
transversal to ~. The line bundle T(T) fq ~ integrates to a 1-dimensional, 
so-called characteristic foliation ~-r The torus T is pre-Lagrangian if and 
only if the foliation ~-; is diffeomorphic to a linear foliation of the torus 
T ~ R 2 / Z  2. 

Remark 2.~. 1 : The above example indicates that  the class of smoothness 
of the Lagrangian lift can be of crucial importance even in the case of a 
C ~ - s m o o t h  pre-Lagrangian manifold. 

2.4.3 SYMPLECTIZATION OF CONTACTIZATION. Let (N, w) be a symplectic 
manifold with the symplectic form w/h representing an integral cohomology 
class [w/h]. Let (M, ~) be the contactization C(N, w) of the manifold (V, w) 
and c~ be the connection on V as described in w above. 

If L C N is a Lagrangian submanifold then the connection cr over it is 
flat. The pull-back 7r-l(L) C M under the projection 7r : M --* N is a 
pre-Lagrangian submanifold L0 foliated by Legendrian leaves obtained by 
integrating the flat connection over L. If this foliation is a fibration, i.e. 
when the holonomy defined by the connection c~ is integral over L then the 
pre-Lagrangian submanifold L is foliated by closed Legendrian manifolds. 
In particular, this is the case when the connection form is exact over L, i.e. 
the connection over L is trivial. If this condition is satisfied then L is called 
a Bohr-Sommerfeld orbit. In this case the pre-Lagrangian submanifold L0 
is foliated by closed Legendrian lifts of L. These lifts are called sometimes, 
Planckian submanifolds (see [W] and [So]). The integrality of the holonomy 
is independent of the choice of the connection c~ but  the Bohr-Sommerfeld 
condition depends on this choice, unless the image 

Im(HI(L;  R) --* Hi(N; R)) 
is trivial. 



250 Y. ELIASHBERG, H. HOFER AND D. SALAMON GAFA 

2.5 Lagrangian  in tersec t ions  in contact  mani fo lds .  In this section, 
we formulate theorems which give lower bounds for the number of transver- 
sal intersection points of Legendrian and pre-Lagrangian submanifolds of a 
contact manifold. These estimates will be proven in w below as an ap- 
plication of Floer homology theory which we are going to build in the next 
sections. 

2.5.1 I N T E R S E C T I O N S  IN THE SPACE OF C O N T A C T  E L E M E N T S .  Suppose 
that  a closed manifold N admits a Riemannian metric without contractible 
closed geodesics (e.g. a metric of non-positive sectional curvature). Let 
M = P + T * N  be the space of co-oriented contact elements. Suppose that  
there exists a non-vanishing closed 1-form c~ which represents an integral 
class [~] E H i ( N ) .  Let L~ be the pre-Lagrangian submanifold constructed 
in w In other words, L~ is the image of the g r a p h / ~  C T * N  of the 
form c~ under the projection T * N  \ N --, M = P + T * N .  As explained in 
2.4.1, L~ carries a foliation by closed Legendrian leaves. Let A be one of 
the leaves. 

T H E O R E M  2.5.1. L e t  ~Pt : M --~ M ,  t E [0, 1], ~0 = Id, be  a con tac t  
i s o t o p y  o f  M such  t h a t  ~1 (A) is t ransversa l  to L~ .  T h e n  

# ~ l ( h )  N L ,  > rank(H, (h ;  Z/2)) . 

In particular, suppose M = T n is the n-torus. Then we have the splitting 
P + T * T  n = T n • S n -1  and all tori T n x a, a E S n- l ,  are pre-Lagrangian. 
For an everywhere dense subset A C S ~-1, the tori T n • a, a E A, are 
foliated by Legendrian (n - 1)-dimensional tori. Let L be one of these pre- 
Lagrangian tori T ~ • a and A, A C L, be one of its Legendrian subtori. Let 
~ : P + T * T  ~ -*  P + T * T  ~, t E [0, 1], be a contact isotopy with ~0 = Id such 
that  ~al (A) is transversal to L. 

Then we have 

COROLLARY 2.5.2. #~al(A) N L _> 2 n-1. 

R e m a r k  2.5.3: A Legendrian submanifold A C M has a neighborhood U 
contactomorphic to the 1-jet space j1 (A). The pre-Lagrangian submanifold 
L N U can be identified under the contactomorphism with the "0-wall" W = 
A • R C JI(A),  i.e. the set of 1-jets of functions with zero differential. 
Thus, Theorem 2.5.1 can be considered as a global version of the well-known 
fact that  A cannot be disjoined with W via a contact isotopy (Chekanov's 
theorem). 

2.5.1 I N T E R S E C T I O N S  IN T H E  SPACE OF P R E - Q U A N T I Z A T I O N .  Let us now 
turn to the situation described in section 2.4.3. Let (N, w) be a symplectic 
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manifold such that  the symplectic form w/h  represents an integral coho- 
mology class [w/h] E U 2 ( / ) .  Let ( i ,  ()  = C(N,  w) be the contactization 
of (N, w) (see 2.4.3 above) and L C N be a Lagrangian submanifold which 
satisfies the Bohr-Sommerfeld condition. Let A1, A1 C M be a Legendrian 
lift of L and A0 = 7r-l(L) be the pre-Lagrangian pull-back of L under the 
projection 7r : M --, N. 

Let ~t : M --, M, t E [0, 1], be a contact isotopy with ~o = Id such that  
~I(A1) is transversal to A0. 

T H E O R E M  2.5.4. Suppose that ~r2(M, A0) = 0. Then 

#~1(A1) n i o  _> rank H.(A1; l / 2 )  . 

For instance, let N be a surface of positive genus, w an area form with 
fN w = 1 and (M, () = C(N,  w) be the contactization with h = 1In. Let 
L C N be a non-contractible Bohr-Sommerfeld orbit, A1 C M its Legen- 
drian lift and A0 = 7r-l(L) C M its pre-Lagrangian pull-back. Then, we 
have 

COROLLARY 2.5.5. For the contact isotopy~t : M --, M,  t E [0, 1], ~0 = Id, 
such that ~1(A1) is transversal to Ao we have 

#wI(A1) ffl Ao _> 2 . 

3. Floer Homology  

3.1 Admiss ib le  Legendrian and pre-Lagrangian submanifolds .  Let 
A0 and A1 be a pre-Lagrangian and a Legendrian submanifold, respectively, 
of a contact manifold (M, ~). We will always assume in what follows that  
the submanifold A1 is connected. 

Let us denote by P(A0,AI)  the space of paths /f : [0, 1] --, M with 
6(0) E A0 and (~(1) E Ai. i component :P0 of the space P(A0, AI) is called 
admissible if it satisfies the following two conditions Pl and P2. 

P l  For any map A :  S 1 x [0,1]--, M such that  A(u,0)  E A0, A(u, 1) E A1, 
and A[~x[o,1] E Po for u E S 1, the curve A[s1 xo is a vanishing cycle on 
A0 (see 2.2). 

P2 For any map A : S 1 x [0, 1] --* M, as in Pl ,  the relative Maslov class 
#(A]sl  xo, A[S~ xl) vanishes (see 2.2). 

LEMMA 3.1.1. The condition Pl implies that for any map F : (D 2, OD 2) -* 
(M, Ao) the curve F[OD2 : OD 2 ~ Ao is a vanishing cycle in Ao. 

P r o o f - A n y  such map can be deformed, keeping the boundary fixed, to a 
map F such that  there exists a map A as in T~I, which can factored as 
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A = F o p where p : S 1 x [0,  1] --4 D 2 is the projection which collapses the 
circle S 1 x 1 to the center of the disc D 2. o 

Of course, existence of an admissible component of the space 7)(A0, A1) 
is a very restrictive condition on manifolds M, A0 and A1. However, there 
is an important  case when it does exist. 

LEMMA 3.1.2. Suppose that A1 C A0 and the boundary homomorphism 

Ir2(M, Ao) --* 7h(Ao) 

is trivial. Then the component ~o C ~~ A1) which contains constant 
paths  from A1 is admissible. 

Proof: The proof follows immediately from the observation that  every loop 
in P0 is homotopic to a loop of constant paths, o 

In order to develop a Floer homology theory for the intersection problem 
of A0 and A1 we fix a path component P0 C P(A0, A1) and impose two severe 
restrictions, including the admissibility of ~0. 

O1 The path component P0 C P(A0, A1) is admissible. 

02 There exists a contact form/~ E Cont(r such that  the flow defined by 
its Reeb vector field Y has no contractible periodic orbits and each orbit 
with two ends on A1 represents a non-trivial class from ~rl(M, A1). 

The set of contact forms/f E Cont(~) which satisfy the condition 02 will 
be denoted by Adm((,  A0, A1). 

Our goal is to define Floer homology groups of the triple A0, Al,Po.  To 
understand the relevance of the component 7~0 note that  every intersection 
point x E A0 N A1 determines a constant path/ i ( t )  - x and these constant 
paths may lie in different path components for different intersection points. 
The Floer homology groups HF.(A0, A1,7~0) will arise from a chain com- 
plex which is generated by all those intersection points which correspond to 
constant paths in :P0- In most of our applications there is only one relevant 
path component which corresponds to all the fixed points and the Floer 
homology groups of all other path components are zero. Hence we shall 
sometimes neglect the dependence on/)0  in our notation when the choice 
of the path component is clear from the context. 

3.2 E x a m p l e s  o f  a d m i s s i b l e  s u b m a n i f o l d s .  We will verify in this 
section that  the conditions O1 and O2 hold in all theorems from section 2.5. 

L E G E N D R I A N  A N D  P R E = L A G R A N G I A N  S U B M A N I F O L D S  IN P+T*N.  Let 
M = P+T*N,  A1 = A and A0 = L~ be as in Theorem 2.5.1. Fix a point ~ E 
A0. Let us denote by p : M ---) N the canonical projection and set q = p(~), 
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S -= p-1 (q). Let us verify that  the boundary homomorphism 7r2(M, Ao) --* 
7rl(ho,4) is trivial. Indeed, let f be a map ( 0 2 , 0 0 2 )  --* (M, Ao) and 
gt : D 2 "-'* N ,  t E [0, 1], be a homotopy of the projection go = P o f to a 
constant map gl to the point q E Q. This homotopy can be lifted, using the 
covering homotopy property, to a homotopy f t  : (D 2, OD 2) ~ ( M ,  Ao). In 
particular, f l  maps D 2 to the sphere S = p - l (q )  and f l ( O D  2) is the point 

= Ao N p- l (q ) .  Thus the conditions of Lemma 3.1.2 are satisfied, and 
therefore the component P0 is admissible. 

To verify the condition 02 take a metric on N without contractible 
closed geodesics. Identifying M = P + T * N  with the unit cotangent bundle 
with respect to this metric we get a contact form 13 on M whose Reeb 
flow is the geodesic flow for the chosen metric. Thus the Reeb flow for the 
form/3 has no contractible periodic orbits. Let q~ : N --* S 1 be the map 
corresponding to the form c~, i.e. (~ = q*(dO). Notice that  the projection 
p : P + T * N  ---* N maps A onto one of the fibers N1 = q~l(point).  Let F 
be a piece of t rajectory of the Reeb flow with two ends on A. Then the 
projection 

( P + T * N ,  A) ~ ( N ,  N1) q~ ( S  1, {point}) 

projects F onto a non-trivial element of ~1(81). Thus F represents a non- 
trivial element of r l  (M, A) which verifies the condition 02. 

L E G E N D R I A N  AND P R E - L A G R A N G I A N  SUBMANIFOLDS IN THE SPACE OF 

CONTACTIZATION. Under the assumptions of Theorem 2.5.4 we have 
lr2(M, A0) -- 0 and thus, according to Lemma 3.1.2, the component P0 C 
P(A0, A1), which contains constant paths from A1, is admissible. 

Let us check the condition 02. Let us recall that  the contact structure 
on the space M of pre-quantization can be defined by an Sl-invariant 

contact form (~ on the principal S 1-bundle M --* N. The trajectories of the 
Reeb flow for the form c~ are fibers of the fibration. Thus all trajectories 
are closed and all simple closed trajectories axe homotopic. Let F be one 
of the trajectories which is contained in A0. Then f r  c~ ~ 0. Suppose that  
F bounds a disc D C M. Then fD do~ ~ 0 and, therefore, D represents 
a non-trivial element from ~r2(M, A0). This contradicts the assumption of 
Theorem 2.5.4, and, therefore, F, and all its multiples, are non-contractible. 

Notice that a trajectory of the Reeb flow with both ends on A0 has to 
coincide with the periodic orbit F considered above. If F represents a trivial 
element of ~h(M, A1) then it bounds, together with a curve F I C A1, a disc 
D C M, i.e. OD = F U F'. Then 



254 Y. E L I A S H B E R G ,  H. H O F E R  AND D. S A L A M O N  GAFA 

But 7[^1 = 0 and therefore the second integral equals 0. Thus, as in the 
case of the closed orbit, we have fD dee ~ 0 and hence D represents a 
non-trivial element of r2(M, A0) which again contradicts to assumption of 
Theorem 2.5.4. 

3.3 A l m o s t  c o m p l e x  s t r u c t u r e s  on  t h e  s y m p l e c t i z a t i o n .  Suppose 
that  the contact manifold (M, (),  its pre-Lagrangian submanifold A0 and 
Legendrian submanifold A1 satisfy the conditions O1 and 02. Let (V = 
Sr w = we) be the symplectization of (M, ().  

Let us recall that  an almost complex structure J is called compatible 
with w, if the bilinear form (v, w) = w(v, Jw) is a metric, invariant under J.  

A fiberwise splitting H : V -~ M x R is called admissible if it coincides 
at infinity with H7 for an admissible form 7 E Adm(~, A0, A1). 

Notice that  the push-forward (H-1)*ar  of the canonical form ~r on 
Sr can be writ ten as expOTo where 70 6 Cont(~), 8 6 R, and 70 co- 
incides with 7 when 101 is sufficiently large. In other words, the pre-image 
H - I ( M  x @) C Sr t? E R, is the graph of the 1-form exp@70. 

We also have w = H*(d(expt970)) and dH(X; )  = h ~ for a positive 
function h : M • R --* R which is equal to 1 at infinity. 

Having fixed an admissible splitting H : V --* M • R we will not dis- 
tinguish between an almost complex structure J on V and its push-forward 
H.(J )  on M x R. 

An almost complex structure J compatible with w is called admissible for 
(M, ~), A0 and A1 if there exists an admissible splitting H : Sr --~ M • R 
of the space of symplectization such that  

o for each a E R the contact structure ( = {% = 0} on Ma = M • a is 
invariant under J; 

o the vector field J . ~  . belongs to the kernel of the form (g-1)*WlM, = 
d(expOTO)lM~ , a e R; 

o J is invariaut under the R-action at infinity. 

Notice that  the above conditions imply that  all the levels Ma, a E R, are 
J-convex being cooriented by the vector field ~-~0" 

Suppose we are given two admissible structures J and J ' .  Viewing them 
as defined on M • R we say that  a sequence of admissible almost complex 
structures Jn, n = 1 , . . . ,  interpolates between J '  and J if there exists a 
constant N > 0 and an increasing sequence dn --~ cr such that  Jn = J 
on M • [ - d , ,  d,],  J ,  = J '  outside of M • [ - (dn  + N),  d ,  + N], and the 
restrictions Jn IM• coincide up to translations for all n = 1, . . . .  

3.4 A c t i o n  f u n c t i o n a l .  Suppose that  (M,~),A0,A1 and the path com- 
ponent ~Po C 7)(A0,A1) satisfy the condition O1. Let (V,w) be the sym- 
plectizatiou of (M, ~), L1 the symplectization of A1, and L0 a Lagrangian 



Vol.5, 1995 L A G R A N G I A N  I N T E R S E C T I O N S  IN C O N T A C T  G E O M E T R Y  255 

lift of A0. Denote by P ( L o , L 1 )  the space of paths /5 : [0,1] --~ V with 
/5(0) E L0 and /5(1) E L1. Note that  every path  /5 E 7)(Ao,A1) lifts to a 
pa th  6 : [0, 1] --- Y with 6(0) e L0 and 6(1) E L1 and that  the homotopy 
class of the lift is uniquely determined by /5. Hence the pa th  component  
/~o C P(A0, Az) determines a unique pa th  component  in P(L0,  L1) which 
we shall also denote by P0. This slight abuse of notat ion should not create 
any confusion. 

Fix a path/50 E P0 C 7~(L0, L1) and for any other path/5 E P0 choose a 
homotopy/5~ E 7)0, u E [0, 1], which connects/50 with/51 =/5. Set A(u, t) = 
/5~(t) for (u, t) e [0, 1] • [0, 1]. Define now the action 

= / A ' w .  

[0,11 x [0,11 

We will omit/50 in the notat ion for the action when the choice of the base 
pa th  is clear or irrelevant. 

The property O1 ensures that  A~o (t5) does not depend on the choice of 
the homotopy A (but it does depend on the choice of the path/50). 

Critical points of the functional Az 0 are constant paths corresponding 
to the intersection points of Lo and LI. In order to count their number  
we need to define (and compute)  Floer homology groups for the action 
functional A~o. 

3.5 G r a d i e n t  flow. Choose an admissible almost complex structure J on 
V. This choice allows us to define a quasi-K/~hlerian metric on V: 

g(v,  w)  = w(v,  J w )  , v, w E T=(V)  , x e V . 

Given a family J*, t E [0, 1], of admissible almost complex structures, 
we can define a metric on the path  space P(L0,  L1) by the formula 

llv[l 2 = w(v,  J~v)dt  , v E r ~ P ( L o ,  L1) , /5 E 7~(Lo, L1) �9 

The gradient of the symplectic action A~o with respect to this metric on 
P(L0,  L1) is given by 

grad A~o (/5) = - J ~ 6 .  

Thus a gradient flow line is a smooth  map  u : R • [0, 1] ~ V which 
satisfies the partial  differential equation 

Ou Ou 
Os + J ' ( u ) .  = 0 (1) - -  - 8 i  

with boundary  conditions 

u(s ,O) E Lo , u(s ,  1) C L1 for s C n .  (2) 
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When j t  _ j then this is just the usual Cauchy-Riemann equations and, 
therefore, the gradient line u is a J-holomorphic curve in V with boundary 
in L0 U Lt. 

In the general case the gradient trajectories of the action functional can 
also be interpreted as holomorphic curves but in an auxiliary manifold, and 
not in the manifold V itself (comp., for instance, [Gr], [F3] and [SZ]). 

3.6 E n e r g y .  Given a solution u : R x [0, 1] --* V of (1) and (2), the 
symplectic area fB u*w will be denoted by E(u) and called the energy of 
the solution u. When J~ -_- J then the energy E(u) coincides with the area 
of the J-holomorphic curve u computed in terms of the almost Ks 
metric 

g(u,v)  = ~(u,  J v ) .  

The following proposition is standard in Floer homology theory (cf. IF1]) 
and me omit its proof here. 

T H E O R E M  3.6.1. Suppose that Lo and L1 intersect transversally and j t  
is a family of admissible almost complex structures. Let u be a solution of 
(1) and (2) with E(u) < oo. Then there exist the limits 

lim u ( s , t ) = x  •  x • ~ L o M L 1 .  
~-- .4-oo 

We will call such a u a connecting orbit between the two critical points x + 
and x -  of the action functional A~0. The definition of the action functional 
implies that  

E(u) = A~o(X +) - A~o(X-) . 

If j t  = j then a solution u of (1) and (2) of finite energy can be viewed 
as a J-holomorphic disc with boundary in L0 U L1 passing through two 
points x • E L0 N L1. 

A Floer complex can be defined now as usual by counting the connecting 
orbits when the relative Morse index is 1. 

The crucial point for the construction of the theory is the following 
compactness theorem for the solutions of (1) and (2) with bounded energy. 
The proof will be given in w 

T H E O R E M  3.6.2. Assume that the contact manifold (M,~), its pre- 
Lagrangian submanifold Ao and a Legendrian submanifold A1 satisfy the 
hypotheses O1 and 02. Let jr,  t E [0, 1], be a family of admissible almost 
complex structures on the symplectization V. Then for every c > 0 the 
space 

.M r = .M~(Lo, LI; jr)  

of  all smooth solutions u of  the boundary value problem (1) and (2) which 
satisfy the energy bound 
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E(.) <_ c 

is compact (with respect to the topology of uniform convergence with all 
derivatives on compact sets). 

We will need also a slightly stronger Theorem 3.6.3. 

THEOREM 3.6.3. Suppose that a sequence J~, t 6 [0, 1], n = 1 , . . . ,  of 
families of admissible almost complex structures on V interpolates between 
two families of admissible structures ( j , ) t  and jr. Then g/van a sequence 
u ,  E A4C(L0, L1, J~n), n = 1, . . . ,  one can find a subsequence which con- 
verges, uniformly on compact sets, to a solution u E MC( Lo, L1, jr). 

Remark 3.6.4: Theorem 3.6.3 holds even in a stronger form: it is sufficient 
to require that  the sequence J~ converges to j t  uniformly on compact sets. 
However we will not need this stronger version in this paper. 

Notice that the condition O1 prohibits bubbling-off of the solutions at 
boundary points while the bubbling-off at interior points is impossible be- 
cause the symplectic manifold (V, w) is exact. 

Thus, if we knew s priori that all the solutions of (1) and (2) would take 
values in a compact subset of V then the above theorem would follow directly 
from the usual compactness theory for Gromov's pseudoholomorphic curves 
(ef. [Gr] or [MS]). Hence our goal is to prove this bound for solutions from 
A4 ~. The main ingredient to the proof is a rescaling trick which was first 
applied by Hofer in [H]. 

3.7 F l o e r  homology .  Suppose that (M, (), A0 and A1 satisfy the con- 
ditions 01 - 02. Let (V,w),L0, L1 be their symplectic counterparts and 
J* a family of admissible almost complex structures. Pick an admissible 
component P0 C P(A0, A1) and a path 6o 6 P0. Let /~0 be a lift of 60 to 
the space P(Lo, L1). The component of 50 in P(Lo, L1) will be still denoted 
byP0. 

The Floer homology groups 

HF,(A0, A1; J') = HF, (  Lo, LI; jr) = HF, (  Lo, L~, 7)0, J') 

can roughly be described as the middle dimensional homology groups of the 
path space 7)o C P(Lo, L1) (compare [Wi]). They are obtained from the 
gradient flow of the symplectic action 

A : P o  --* R 

as in Floer's original work on Lagrangian intersections in compact symplec- 
tic manifolds [F1-3]. See also [O]. We summarize the main points of Floer's 
construction. 
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Assume tha t  A0 and A1 (and hence L0 and L1) intersect transversally. 
Then  all the critical points of A are nondegenerate.  Given two intersection 
points  x • E Lo M L1 denote by 

,~ l (x - ,  x +) = • ( x - ,  x +, j r )  

the space of all solutions u : B ~ Y of (1) and (2) with limits (3,6.1). 
Linearizing the differential equation (1) gives rise to an operator  

D~ : W~'2(u ' (TV))  --~ L 2 (u ' (TV) )  . 

Here W~'2(u*(TV)) denotes the Sobolev space of all vector fields Y(s , t )  e 
T~(s,oV along u which satisfy the boundary  condition 

Y(O,t) E T~(o,t)Lo , Y(1, t) E T~(1,t)L1 �9 

The  space L 2 (u* (TV))  is defined similarly and 0~  is a Cauchy-Riemann op- 
erator. This operator  is Fredholm whenever L0 and L1 intersect transver- 
sally. Its index is a relative Maslov class and can be defined as follows. 
Given u E .t~t(x-, x +) choose a symplectic trivialization 

r  t) : R 2"+2 --* T~(s,~)V 

of u* (TV)  such tha t  
n 

j=O 

and there exist limits 

lim r  = ~ •  : R 2n+~ --* T ~ •  . 
t--~• 

This gives rise to two Lagrangian paths in R~'*+2: 

~0(t) = r  t)-lT,(o,t)(Lo) 

and 

)~,(t) = O(1, t) -1 (T,(1,t)(L1)) . 

These paths  are transverse at t = +c~ and therefore have a relative Maslov 
index #(A0, kl )  (cf. [f l ]  and [as1]). This index is independent  of the choice 
of the trivialization. The Fredholm index of D ,  agrees with this Maslov 
index 

INDEX D~ = #(u) =/ l (Ao,  ,,~1) 

whenever u satisfies the boundary  condition (2) and the limit condition (3.6.1) 
(el. [Eli and [as2]). 

Now recall that  not all the intersection points from L0 V1 L1, viewed as 
constant  paths,  belong to the component  P0. We denote by (Lo gl L1)o the 
subset of L0 Cl L1 which consists of those intersection points which belong 
to P0. The  condition P2 implies: 
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LEMMA 3.7.1. If x -  = x + E (Lo ML1)0 then p(u) = O. 

The previous lemma shows that there exists a map p : (L0 N L1)0 --~ l 
such that  

INDEX O4 = # ( x - )  - p(x +) 

whenever u and 0 satisfy (2) and (3.6.1). Now everything is as usual. A 
family of admissible almost complex structures j r ,  t E [0, 1], is called regular 
if the operator Du is onto for every u E .A4(x-,x +) and every pair of 
intersection points x + E L0 M L1. By the Sard-Smale theorem the set 

=  CG(L0, L1) 

of regular Jt  is dense in the set of all admissible families. 
The argument is as in [F2] or [SZ]. See also [FSH] for a detailed discussion 

of transversality properties. 

Remark 3.7.2: We need to consider families Jt  rather than individual J 
just to ensure this genericity condition. 

Now for every j t  E TtEG the space ./Pi(x-,x +) is a finite dimensional 
manifold with 

dim.A4(x-,  x +) = # ( x - ) -  #(x+) . 

If # ( x - ) - p ( x  +) = 1 then, by Theorem 3.6.2, the quotient space ./~4(x-, x+)/R 
consists of finitely many orbits and the numbers 

n2(x-, x +) = # M ( x - ,  x+)/R (mod 2) 

determine the Floer chain complex as follows. The chain groups are defined 
by 

CFk =CFk(Lo,L~,Po)= ~ 12(x) . 
~E(LoNL1)o  

and the boundary operator 0 : CFk ---* CFk-1 is given by 

O(x)= ~ n2(x,y)(y) 
~u(y)----k-i 

for x E (L0 M L~)0 with #(x) = k. As in Floer's original proof one uses 
gluing techniques to prove that  0 o 0 = 0 (cf. [F3] and [SZ]). 

The Floer homology groups are now defined as the homology of this chain 
complex 

HF.(Lo, L1; J~) = HF.(Lo, L1, P0; j r )  := H.(CF, O). 

The Floer homology groups depend on the path component P0 but when 
the choice of the path component is clear from the context we shall drop :P0 
from the notation. 
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T H E O R E M  3.7.3. (i) For any two admissible families of almost complex 
structures Jt, ( j , ) t  E Rs there is a natural isomorphism 

HF.(Lo,  L1, :P0; jr) ~ HF.  (Lo, L1, P0; (j ,) t)  . 

(ii) For any j t  E 7"tCG and any compactly supported Hamiltonian isotopy 
Ct, t E [0, 1], there exists a natural  isomorphism 

HF,(Lo,  L1, ~~ j t )  __~ HF,  (r r  r j t )  

where r C 5P(r  r  denotes the component of the path 
t ~-~ c t - l ( 6 ( t ) )  for 6 C P0 C ~~ L1). 

(iii) For any symplectomorphism f : V --~ V, which commutes at infinity 
with the R-action, there exists a natural isomorphism 

HF.(Lo,  nl,/~0; jr) ~ HF.  (f(Lo), f(L1),  f.7)0; f . J  t) �9 

Proof: Statement (iii) is obvious. The invaxiance under compactly sup- 
ported change of the regular family Jt  is standard in Floer's theory. To 
prove the invariance under Hamiltonian isotopies of the Lagrangian sub- 
manifolds L0 and L1 it is convenient to introduce a Hamiltonian term in 
the action functional ,4. Hence let H t = H t+l : V ~ R be a smooth family 
of compactly supported Hamiltonian functions with corresponding Hamil- 
tonian vector fields X t. Then the critical points of the perturbed action 
functional are solutions x : [0, 1] --* Y of ~(t) = Xt(x( t ) )  with x(0) e L0 
and x(t) E L1 and the gradient flow lines are solutions u : R • [0, 1] ~ V of 

o.u + J'(u)(a,u - x ' ( u ) )  = 0 (3 )  

with the same boundary conditions u(s, O) E Lo and u(s, 1) E L1 (compare 
with equations (1) and (2)). This gives rise to Floer homology groups 
HF,(Lo,L1,T)o; J t ,Ht )  and as in the usual Floer theory one proves that 
these groups axe independent of J and H up to natural isomorphisms. Now 
let Ct : V --* V be a Hamiltonian isotopy generated by X ~ via d r  = XtoCt  
and define v(s, t) = r t)) where u is a solution of (3). Then, by a 
simple calculation, we find that 

O~v "t- r  Jt(v)O~v = 0 

and v(s, 0) e Col(L0),  v(s, 1) �9 r This shows that  there is a natural 
isomorphism 

HF.  (Lo, L1, 7)0; jr, g t) .._, HF.  ( r  i (L0), r 11 (L~), r r  jr, O) 

Thus we have proved (ii) as well as (i) for compactly supported variations of 
the almost complex structure. The only additional thing we need to check 
is that  the groups HF.(Lo,Lx; jr)  and HF,(Lo,L~; (J')~) are isomorphic 
even when j t  and (j , ) t  differ at infinity. 
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There exists a sequence J~, n = 1 , . . . ,  of admissible almost complex 
structures which interpolates between (J~)t and j i .  In view of Theorem 3.6.3 
one can find a compact set K such that all connecting orbits for all Jn t, 
as well as for j r ,  are contained in K. If n is sufficiently large then j t  
coincides with J~ on K. Thus j t  and j t  have the same set of connect- 
ing orbits, and therefore the Floer homology groups HF,(Lo, L1; Jt) and 
HF,(Lo, L1; jr)  coincide. On the other hand, j t coincides with (J ' ) '  
at infinity. Thus we have a canonical isomorphism between the groups 
HF,(Lo, L1; jr) and HF,(Lo, nl;  J~) in view of the argument above while 
the groups HF,(Lo, L1; J~) and HF,(Lo, L1; (J')') axe isomorphic accord- 
ing to the conventional Floer theory. [] 

Theorem 3.7.3 shows, in particular, that we can drop J* from the no- 
tation of Floer homology groups and that the groups HF,(Lo, L1, P0), also 
denoted by HF,(A0, A1,790), are well defined even when A0 and A1 are not 
transversal. It should be noted, however, that  these groups do depend on 
the choice of the admissible path component 790. 

3.8 C o n t a c t  man i fo lds .  Let us return now to the contact environment. 
Theorem 3.7.3 implies 

THEOREM 3.8.1. Suppose that the contact manifold (M,~), the pre- 
Lagrangian submanifold Ao, the Legendrian submanifold A1, and the path 
component 79o C 79(Ao, A1) satisfy the conditions O1 and 02. Then the 
groups 

HF, (A0, A1,790) 

are well deigned and invaxiant under Legendrian isotopy of the submanifold 
A1 as well as under a contactomorphism f : M ---* M, i.e. 

HF,  (f(Ao), f ( h l ) ,  f,79o) = HF,  (Ao, A 1 , 7 9 0 )  �9 

Theorem 3.8.1 has the following standard application for counting the 
number of intersection points #Ao N A1 -- ~Lo N L1. 

THEOREM 3.8.2. Let Ao, A1, and 790 be as in Theorem 3.8.1. Suppose 
that Ao and A1 intersect transversally. Then 

~Ao NAI _> ~(Ao AA1)o _> rankHF,(Ao, AI,PO) . 

In paxticulax, i f  all path components axe admissible, then 

#A0 f) A1 _> ~ rankHF,(Ao, AI, 790) �9 
p0 

We have to impose an additional restriction on A1 and A0 in order to 
be able to compute Floer homology groups HF,(A0, A1). 
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T H E O R E M  3.8.3. Suppose that in addition to the assumptions of Theo- 
rem 3.8.2 we have A1 C Ao. Then there is a natural isomorphism 

H F ,  (A0, AI,P0) --* H,(A1; 1/2)  

where Po denotes the component of the space of constant paths. In partic- 
ular, 

#Ao n Ai > rank(H,(A~;l /2))  

for any Legendrian submanifold All which is Legendrian isotopic to A1 and 
transverse to Ao. 

Proof: As has already been mentioned (see 2.5.3), a neighborhood U of 
the Legendrian submanifold A1 in M is contactomorphic to a neighborhood 
of the 0-section in the 1-jet space JI(A1). This contactomorphism moves 
A0 N U onto the 0-wall W, i.e. the space of 1-jets of functions with 0 dif- 
ferential. Thus a Legendrian submanifold A~, which is Cl-close to A1 and 
transverse to W, corresponds to a Morse function ~ : A1 --+ I~ so that  the 
intersection points of A0 and A t are in one-to-one correspondence with the 
critical points of the function 9. One can explicitly choose a metric on A1 
and an admissible almost complex structure J on the symplectization of M 
in such a way that  the connecting orbits of the action functional would be in 
one-to-one correspondence with the gradient trajectories of the function 
connecting the corresponding critical points of this function. This identifies 
the Floer chain complex CF, (A0, A~) with the Morse chain complex for the 
function ~ (cf. [Sc]) and thus defines a canonical isomorphism between the 
groups U F . ( h 0 ,  A1) and H,(A1 ;Z/2). See [P] for a detailed proof (in the 
general case of clean Lagrangian intersections), o 

Proof of Theorems 2.5.1 and 2.5.4: We already verified in 3.2 the condi- 
tions O1 and 02 in the situation of 2.5.1 and 2.5.4. Thus both statement 
follow from Theorem 3.8.3. D 

3.9 C o m p a c t n e s s .  To clarify the main ideas of the proof we will assume 
in this section that  all considered families of almost complex structures are 
constant. Thus the solutions of (1) and (2) can be treated as holomorphic 
curves for the corresponding almost complex structures. The general case, 
when the almost complex structures may depend on the parameter t, is 
similar, but less geometrically transparent. 

As it was mentioned in Section 3.6 a solution u : B = R x [0, 1] --* V 
from AdO(L0, L1, J) can be equivalently viewed as a J-holomorphic disc in 
V with boundary in L0 U L1. We will employ both points of view. 

The Theorem 3.6.3 is an immediate corollary of the following 

T H E O R E M  3.9.1. Suppose that a contact manifold ( M, ~), a pre-Lagrangian 
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submanifold A0 C M and a Legendrian submanifold A1 C M satisfy the 
conditions 01 and 02. Let (V,w),L1 and Lo be the symplectization of 
(M, ~), A1 and a Lagrangian lift of Ao, respectively. Let Jn, n = 1 , . . . ,  be a 
sequence of admissible almost complex structures on V which interpolates 
between two admissible almost complex structures J'  and J. Let Un : B = 
R x [0, 1] --* V, n = 1 , . . . ,  be a sequence of Jn-holomorphic curves from 
,~4C(Lo, L1, Jn). Then ali discs An = un(B) are contained in a common 
compact set K C V. 

Proof: Set Jo = J', Joo = J. As in 3.3 we will consider the almost complex 
structures J, j t  and Jn, n = 0 , . . . ,  oo, as defined on the product M x R so 
that  the following conditions are satisfied: 

- -  there exists an integer d > 0 such that  J, J'  are invariant under the 
R-action (by translations) outside of M x f -d ,  d]; 

- -  there exists a constant N > 0 and an increasing sequence dn --* oc such 
that  dl = d and for all n < oc we have Jn = J on M x  [-dn,dn] ,  Jn = J '  
outside of M x [-(dn + N ) ,  dn +N] ,  and the restrictions Jn[[-(d,+g),-a,] 
coincide up to translations for all n -- 1 , . . . ;  

- -  for each n -- 0 , . . . ,  cx) the almost complex structure Jn is compatible 
with the symplectic form wn = d(exp 07n,o), 7n,o e Cont((); %,0 = 7 ~  
for [0[ < dn, 7n,o = 70 for [0[ > dn + N,  and "Yn,:l:O:kd, = ~'m,4-O4-d,,~ for 
all m , n  > 1 and 0 > 0; 

- -  for each n = 0 , . . . ,  oo and a E R the contact structure r = {Tn,a, = 0} 

on the level Ma = M x a is invariant under Jn, and Jn " O[M~ belongs 
to the kernel of the form WhiM,. 
The last condition implies, in particular, that  all levels Ma, being coori- 

ented by the vector field o ,  are (pseudo)convex for each of the almost 
complex structures jn.  

Without  loss of generality we can also assume that  L0 C M x ( -d ,  d), 
L1 ----= A1 • R. According to Sard's theorem there exists a constant a, arbi- 
trarily close to 1 such that  Un are transversal to Mka for all integers k and 
all n > 1. To simplify the notation we will assume that  a = 1. 

Set f~a,b = M x [a, b]. 
First we observe 

LEMMA 3.9.2. All discs An are contained in 12_~,d. 

Proof: Suppose that  a disc An intersects l)d,o~. Then we have sup Ooun > d. 
The maximum of the function 0In, is achieved in a point p E An because 
un converges to x + at infinity, and, on the other hand, O(x +) < d. Thus 
a = O(p) >_ d. The point p cannot be an interior point of An because this 
would contradict the pseudoconvexity of Ma (maximum principle). Suppose 
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that  p E 0 A , .  Let r be a vector tangent to 0 A ,  at the point p. Then T 
is tangent to L1 and, therefore, T E ~V C Tv(Ma ). By the assumption, r is 
J~-invariant and hence we have J~ .  T E ~p C Tp(Ma). Therefore, the disc 
A~ is tangent to M~ at the boundary point p. But this is again impossible 
in view of pseudoconvexity of M~ (strong maximum principle), v 

Set Cv, = dM(')'n,O), n = 0 , . . . ,  oo. Here d M  denotes the differential with 
respect to the variable x E M. Thus for a point p = (x, a) E M x R we have 

W'~ITp(M• = exp(--a)(dr)*(wlTp(M.)) 

where r is the projection M • R --~ M. 
Denote by ~n the plane field formed by kernels of the form ~ .  It is 

generated by the vector field X = ~00 and the vector field Y~ = J~ �9 X. 
Notice that  Y, is tangent to the level-sets M~ and YnJM~ is proportional to 
the Reeb vector field of the form 7~,~. 

LEMMA 3.9.3. For any J~-holomorphic curve v : C --* M • R we have 

v*&n = hexp(-Oov)v*w,]c  for a function h: C --* [0,1]. 

The function h vanishes only at singular points of v and the points of tan- 
gency of the curve h(C) and the vector field X = o .  

Proof: Outside the branching points of v, the function h is the determinant  
of the projection of v(C) to the contact distribution ~ along the plane field 
~ .  According to the choice of the J~ this is an orthogonal projection which 
is a pointwise complex linear map. Hence, 0 < h < 1 and h vanishes only 
at the points where the vector field X is tangent to v(C). v 

Observe also 

LEMMA 3.9.4. For each n = 1 , . . .  and i > d the domain C i = u~ 1 (~-o~,-i) 
is a union of discs and the following inequality 

0 _< [ u*~n _< e x p ( i ) / u * w ~  < cexp(i)  
Jc  JB 

holds. 

Proof: The first s tatement  of the lemma follows from J . -convexi ty  of the 
levels Ma, similarly to the proof of Lemma 3.9.2. Set P / =  u~l(M_i) and 
R~ = u~X(L1 N f~-oo,-i). Thus OCi~ = pi  U R i .  Taking into the account 
that  %~,0]L1 ---- 0 we get 

Lu on/o �9 Un"[n,O = ~n"fn,--i 
c,. 

f c  u:w" < exp(i) fBu*w"  < cexp(i) " = exp(i) ~, _ 
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Let u be a map B ~ V. A subdomain U C B is called a special domain 
of level k for u if 

- -  U is either a disc or annulus; 
- -  ulu is transversal to M-k U M-~-I; 
- -  u(OU) C M-k U M_k_~ UL1, f(OU AOB) C L1; 
- -  u(OU) NM_j # O for j = k,k + l; 
- -  u(U)  c f~-o~,-~. 

LEMMA 3.9.5. Let U be a special domain of level k for a Jn-holomorphie 
map u : B --* V. Then 

[ u*wn ~_ 2 e x p ( d -  k) [ u*wn < 2 c e x p ( d -  k) = C1 e x p ( - k ) .  
J U  JB 

Proof: Similarly to the proof of 3.9.4 set 

P + = u - l ( M _ k ) ,  P _ = u - l ( M _ k _ l ) ,  R = O U \ ( P + U P _ ) .  

Notice that f (R) C L1 and thus (u*%~,6)[~ -- 0. Thus, properly orienting 
P• we get 

O< fuU*Wn = ~ueXp( -O~  f )u*7= 

= exp(-k)  Iv ,  U*7n,_k + exp( -k  - 1 )  j p  u* 7n,-k-1 ~__ 
- T 

2exp( -k )  f u*~u < 
Jc 

2exp( -k )  / u*&,~ < _< 
J c  

2 e x p ( d -  k) . /n u*w,~ _< 2 c e x p ( d -  k) I 

r'l 

The following combinatorial lemma plays the crucial role in the proof of 
Theorem 3.9.1. 

L EMMA 3.9.6. Suppose that the sequence of J~-holomorphic discs un : B 
V is not contained in any compact set. Then there exists a subsequence un~, 
k = 1, . . . ,  and a sequence Gk, Gk C B, such that 
o Gk is special for un~; 
o fck  U*~nk  ~ O. 

k--+ or 
o Gk is either 

a) on the level j,  d < j < d~  or j >_ d~  + N, and is contained in 
~"~--(j+2) , - j  or 

b) on the level dn~, and is contained i n  ~'~_(dnk+N+l),-dnk+ 1. 
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Proof: According to the assumption, the holomorphic discs An are not con- 
tained in any compact  set. In view of Lemma 3.9.2 one can choose a subse- 
quence unk, k = 1 , . . . ,  such that d ,  k > d +  k + 1 and A,~ n M-k- l -d  ~ ~. 

Let d < i < d + k .  Set ~k = - 0 o u n k  and B~ = C ~ k \ I n t C ~  +1 = 
{i < ~k _< i + 1}. Let B be a component of B~ which has non-empty 
intersections with ~k l ( i )  and ~v~l(i + 1). Then B is a disc, possibly with 

several holes. One gets a saturation B of the domain B by filling either all of 
these holes, or all but  one in such a way that  both  intersections i)B f3 ~-~1 (i) 
and 0/~ r ~ 1 ( i  + 1) are still non-empty. Notice t h a t / ~  is a special domain 
of level i for the map un~. 

For each k > 1 we can find a sequence of these special domains B~, 

j = d , . . . ,  d + k, such tha t /~g  is on the level j and I n t / ~  N I n t / ~  = 0 for 
dTk ~ j  d i # j .  Notice that  I..Ji= a B k C C,~ k. Thus according to 3.9.3 and 3.9.4 we 

have 
k-t-d 

u*k3n  < fc u*,3n. <_cexp(d)=C1, 
j=d  ~ 

where all terms of the sum are positive. Hence, at  least for some of the 
domains Bi  we have < Cl/k. 

Now choose a special domain Gk for unk which has the smallest value of 
fGk U*n~Wn~- among all special domains on levels j e [d, d.~ - 1]U[dnk + Y ,  oo). 

Then we have fG~ u*k3nk < C~/k. Let j = j(k)  be the level of Gk. In 

all cases we have Gk N M-j+I = ~ in view of 3.9.4. If j(k) < d~  or 
j(k) > dnk + N then un~(Gk) does not intersect M-j -2  because otherwise 
we could choose a smaller special domain. By the same reason if j(k) = 
dn~ then unk(Gk) does not intersect M_d~k_N_l and thus Un~(Gk) C 
~ - ( d n ~  + N T 1 ) , - d n  k �9 [] 

Now we apply the trick from [HI. Passing, if necessary, to a snbsequence, 
we can think that all domains Gk were chosen either on the level 

(*) j < dk, or 
(**) j >dtr + N or 

(* * *) j ( k )  = dk. 
Let us denote by  J " , w "  and 3 "  the almost complex structure 

Jn]~_~,_~_~,_~ and the forms Wn]f~_~_~_~,_a~, ~n[a_~_~_~ _ ~ ,  respec- 
tively, translated by the R-action to the domain 12 = f t-d-N-1,-d. Set 
tt = woo, p = 3 ~  in the case (*), # = w0, p = ~0 in the case (**) and 

tt = ~" ,  P = 3 "  in the case ( ,  �9 ,) .  Set also J = J in the case (*), J = J '  

in the  case (**) and J = J "  in the case (* * *). Notice that  J " ,  w" and 
3"  coincide on ~ - d - 1 , - a  with J = J~,woo and 3oo, respectively. Let us 
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translate now holomorphic maps un~ : Gk ---+ V to the same common level 
d. Thus we get a sequence of maps fin~ : Gk --+ fl such that  
- -  each un~ is holomorphic with respect to the almost complex structure 

J; 
- = 0 .  

k--+oo 

We also have 

fo. fo un,/~ exp (j(k)) * l~nkO.)nk 
k k 

and in combination with Lemma 3.9.5 we get 

fG-* u n ~  < 2C1  . 
k 

Let us consider all maps rink as being parametrized by the same unit disc 
A or a fixed annulus A (with a variable eonformal structure). The sequence 
viewed this way will still be denoted by fin~. 

We are now in a position to apply Gromov's compactness theorem (see 
[Crl). 
LEMMA 3.9.7. There exists a subsequence of the sequence rink which con- 

verges uniformly on compact sets to a non-constant J-holomorphic curve 
fio~. The set of  boundary values of the map fioo is contained in L1 U M - d  U 
M - d - 1  and it is smooth at the boundary points  which are reaped into L1. 

This lemma is a standard application of Gromov's theory (see [L] for 
the statement about the set of boundary values) for the case when the se- 
quence rink is defined on the disc A, and would be for the case when it 
is defined on the annuli if we knew s priori that  conformal moduli of the 
annuli were bounded. This is actually the case in our situation (see [La] for 
the proof). However, even without this knowledge Gromov's theory assures 
the convergence to a holomorphic cusp-curve. In our case the cusp degener- 
ation would imply the existence of non-constant J-holomorphic discs with 
boundary values in M - d - 1  U M-d .  The next lemma shows, in particular, 
that  this is impossible. 

LEMMA 3.9.8. Let B be either a disc or an annulus and uoo : IntB --* f] be 
a non-constant J -h~176176 curve with (possibly empty)  boundary such 
that its boundary values are contained L1 N M - d  U M - d - 1 .  Suppose that 
fB  u~oP = O. Then uoo(B) is a cylinder over an integral curve P C M of the 
Reeb vector field of the contact form 70 in the case (**) and of the contact 
form 7oo in the cases ( , )  and (* * *). In other words, 

uo~(B) = P x ( - d  - 1 , - d )  C Int ~ ' ~ - - d - 1 , - d  �9 

The curve P is either a closed orbit or an arc connecting two points  from hi .  
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Proof: According to Lemma 3.9.3 we have u*# = hu*~#, where the func- 
tion h takes values in [0, 1] and vanishes at the points where the vector field 
X is tangent to uo~(B). Therefore the condition fB u*p  = 0 implies that  
h - 0 which means that  u~(B) is a cylinder P x  ( - d - l ,  - d )  C In t~ -d -1 , -d .  
The form/5 on 12-d-1,-d equals dT0 in the case (**) and d7or in the cases 
(*) and (***). Thus the vector field J .  __o is proportional to the Reeb vector 00 
field for the contact forms 70 or 7~ ,  respectively. P is a closed orbit if B is 
an annulus and P is an arc connecting two points of A1 if B is a disc. [] 

Although Lemma 3.9.7 by itself does not provide any information about  
the boundary  smoothness,  or even continuity of the map u~r away from L1, 
we can conclude from 3.8.9 that the curve B ~  is smooth up to the boundary 
and transversal to M-d and M-d-1. This implies that  the (subsequence of 
the) sequence unk converges to ur162 on the closed domain B. In particular, 
the curve P • ( - d )  is a C~- l imi t  of contractible loops in M-d or arcs 
representing the trivial element of ; r l (M-d,  A1 x ( -d ) ) .  Summarizing we 
get that  P C M is a t rajectory of the Reeb vector field of one of the forms 
7o or 7~-  P is either a closed contractible t rajectory or an arc with ends 
on A1 which represents the trivial class from ~I(M, A1). In both  cases we 
get a contradiction with the admissibility of the almost complex structures 
J c c = J o r  J 0 = J ' .  

This concludes the proof of Theorem 3.9.1. 

[AG] 

[EGrl] 

f EGr2] 
F1] 

IF2] 

[F3] 

[f4] 

[FHS] 

[G] 

[Gr] 

[H] 

R e f e r e n c e s  

V.I. ARNOLD, A.B. GIVENTAL, Symplectic geometry, in "Dynamical Systems- 
IV, Encyclopedia of Math. Sciences, Springer, 1990, 1-136. 
Y. ELIASHBERG, M. GROMOV, Convex symplectic manifolds, Proc. of Syrup. 
in Pure Math. 52 (1991), part II, 135-162. 
Y. ELIASHBERG, M. GROMOV, in preparation. 
A. FLOER, A relative Morse index for the symplectic action, Comm. Pure 
Appl. Math. 41 (1988), 393-407. 
A. FLOV.R, The unregularized gradient flow of the symplectic action, Comm. 
Pure Appl. Math. 41 (1988), 775-813. 
A. FLOER, Morse theory for the symplectic action, J. Diff. Geom. 28 (1988), 
513-547. 
A. FLOER, Symplectic fixed points and holomorphic spheres, Comm. Math. 
Phys. 120 (1989), 575-611. 
A. FLOER, H. HOFER, D. SALAMON, Transversality in elliptic Morse theory for 
the symplectic action, to appear in Duke Math. Journal. 
A. GIVENTAL, The non-linear Maslov index, Lect. Notes (London Math. 
Soc.), Cambridge Univ. Press 151 (1990), 35-44. 
M. GaOMOV, Pseudoholomorphic curves in symplectic manifolds, Inv. Math. 
82 (1985), 307-347. 
H. HOFER, Pseudoholomorphic curves in symplectizations with applications 
to the Weinstein conjecture in dimension three, Preprint, Ruhr-Universits 
Bochum, 1993. 



Vol.5, 1 9 9 5  LAGRANGIAN INTERSECTIONS IN CONTACT GEOMETRY 269 

[HS] H. HOFER, D.A. SALAMON, Floer homology and Novikov rings, to appear in 
Floer memorial volume. 

[K] S. KOeAYASHI, Prinicipal fibre bundles with the 1-dimensional toroidal group, 
T6hoku Math. Journal 8 (1956), 29-45. 

[L] F. LABOUmB, Examples of courbes pseudo-holomorphes en gdomdtrie Rie- 
mannienne, in "Holomorphic Curves in Symplectic Geometrie', Birkh/iuser 
Verlag, 1994. 

[La] F. LAUDEHBACH, Orbites periodiques et courbes pseudo-holomorphes, appli- 
cation ~ la conjecture de Weinstein en dinension 3 (d'apr~s H. Hofer at al.), 
Seminaire Bourbaki, exposd 786, Juin 1994. 

[MS] D. McDUFF, D.A. SALAMON, J-holomorphic Curves and Quantum Cohomol- 
ogy, AMS University Lectures Series 6 (1994). 

[O] Y.-G. OH, Floer cohomology of Lagrangian intersections and pseudo-holo- 
morphic discs, Comm. Pure and Appl. Math. 46 (1993), 949-993. 

[On] K. ONO, Legendrian intersections in pre-quantization bundles, Talk at the 
Symplectic Geometry Workshop at the Isaak Newton Institute, Cambridge, 
October 1994. 

[P] M. POZNIAK, Floer homology, Novikov rings, and clean intersections, PhD 
thesis, University of Warwick, 1994. 

[RS1] J.W. ROBBIN, D.A. SALAMON, The Maslov index for paths, Topology, 32 
(1993), 827-844. 

[RS2] J.W. ROB~IN, D.A. SALAMON, The Spectral flow and the Maslov index, to 
appear in Bulletin L.M.S. 

[SZ] D.A. SALAMON, E. Z~.HSDEa, Morse theory for periodic orbits of Hamiltonian 
systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303- 
1360. 

[Sc] M. SCHWAaZ, Morse Homology, Progress in Mathematics 111 (1994), Birk- 
h~user. 

f ~  t J.M. SOUmAU, Groupes Diff~rentiels, Dunod, Paris, 1970. 
A. WV.INSTEIN, Connections of Berry and Hannay type for moving Lagrangian 
submanifolds, Advances in Math. 82 (1990), 133-159. 

[Wi] E. WITTY.N, Morse theory and supersymmetry, J. Diff. Equations 17 (1982), 
661-692. 

Y. Eliashberg 
Dept. of Math. 
Stanford University 
Stanford, CA 94305 
USA 

H. Hofer 
Mathematik 
ETH-Zentrum 
CH-8092 Ziirich 
Switzerland 

D. Salamon 
Mathematics Institute 
University of Warwick 
Coventry CV4 7AL 
Great Britain 

Submitted: October 1994 


