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1 Introduction

It has been observed by physicists for a long time that symplectic structures arise
naturally from boundary value problems. For example, the Robbin quotient

V = domD∗/domD,

associated to a symmetric (but not self-adjoint) operator D : domD → H on a
Hilbert space H , carries a symplectic structure

ω(v, w) = 〈D∗v, w〉 − 〈v,D∗w〉.

Self-adjoint extensions of D correspond to Lagrangian subspaces of V and, more-
over, the kernel of D∗ determines such a Lagrangian subspace whenever D has a
closed range. IfD is a symmetric differential operator on a manifold with boundary
then, by partial integration, the form ω is given by an integral over the boundary.
For example, if D is the Hessian of the symplectic action functional on paths in
R2n, then the space V = R2n × R2n corresponds to the two boundary values of
the path and the symplectic structure is (−ω0) ⊕ ω0 where ω0 =

∑

j dxj ∧ dyj is

the standard symplectic structure on R2n. A more interesting example is given by
the Chern-Simons functional on 3-manifolds with boundary and we shall discuss
this in the Section 2.

In another closely related direction there is a formal analogy between sym-
plectic manifolds with symplectomorphisms and Lagrangian submanifolds on the
one hand and oriented Riemann surfaces with orientation preserving diffeomor-
phisms and 3-dimensional bordisms on the other. If Σ is a compact oriented
Riemann surface we denote by Σ̄ the surface with the opposite orientation. Like-
wise we denote by M a symplectic manifold without mentioning the symplectic
form ω explicitly and by M̄ the manifold with reversed symplectic form (i.e. ω is
replaced by −ω). The following diagram summarizes the correspondence.
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oriented Riemann surface Σ symplectic manifold M
Σ̄ M̄

or. pres. diffeomorphism symplectomorphism
Σ = Σ1 ∪ Σ2 M = M1 ×M2

3-mfld Y with ∂Y = Σ Lagrangian submfld L ⊂M
Y = Y1 ∪ Y2 L = L1 × L2 ⊂M1 ×M2

gluing symplectic reduction
∂Y = Σ ∪ Σ̄ ∪ Σ′ L ⊂M × M̄ ×M ′,

∂Y ′ = Σ′ L′ = {x′ ∈ M ′ | ∃x : (x, x, x′) ∈ L}.

This last correspondence between the gluing operation for 3-manifolds with
boundary and symplectic reduction of Lagrangian submanifolds is the most im-
portant one. The manifold Y ′ is obtained from Y by identifying the boundary
components Σ and Σ̄ via the identity map. Similarly, N = ∆×M ′ is a coisotropic
submanifold of M×M̄×M ′ with symplectic quotient M ′, and L′ is obtained from
L via symplectic reduction. Of course, this analogy can be extended to dimensions
other than 2. In the 0-dimensional case where Riemann surfaces are replaced by
points and 3-manifolds with boundary by intervals the correspondence is given by
the symplectic action. In dimension 2 it is given by the Chern-Simons functional
and this will be discussed in the Section 2. In section 3 we shall see that this leads
to a natural extension of Floer homology in the form

HF ∗(Y, L), L ⊂MΣ,

where Y is a 3-manifold with boundary ∂Y = Σ, MΣ denotes the moduli space of
flat SU(2) (or SO(3)) connections over Σ and L ⊂MΣ is a Lagrangian submanifold.
Such groups were also considered by Fukaya [11] but his definition differs slightly
from the one discussed here. Our goal in this note is to explain the definition
of these Floer homology groups and to show how they can be used to prove the
Atiyah-Floer conjecture for Heegard splittings of homology-3-spheres. We shall
only outline the main ideas of the proofs. Details will be published elsewhere.

2 Chern-Simons functional

Let Y be a compact 3-manifold with boundary ∂Y = Σ and consider the trivial
bundle Y ×G with structure group G = SU(2) and Lie algebra g = su(2) = Lie(G).
The space A = A(Y ) = Ω1(Y, g) of SU(2)-connections on Y carries a natural 1-
form defined by

α 7→ FA(α) =

∫

Y

〈FA∧α〉 (1)

for α ∈ TAA = Ω1(Y, g). Here 〈ξ, η〉 = trace(ξ∗η) for ξ, η ∈ g and FA ∈ Ω2(Y, g)
denotes the curvature of A. The 1-form (1) is invariant and horizontal with respect
to the action of the gauge group G(Y ) = Map(Y,G). But it is not closed since

dFA(α, β) =

∫

Y

〈dAα∧β〉 −

∫

Y

〈α∧dAβ〉 =

∫

∂Y

〈α∧β〉.

2



This is the standard symplectic structure on the space A(Σ) = Ω1(Σ, g) of con-
nections on Σ. It reflects the failure of the operator ∗dA : Ω1(Y, g) → Ω1(Y, g) to
be self-adjoint. This operator can be interpreted as the differential of the vector
field A 7→ ∗FA on A(Y ) associated to the 1-form F .

In order to obtain a closed 1-form we pick some Lagrangian submanifold
L ⊂ A(Σ) and consider the subspace A(Y,L) ⊂ A(Y ) of those connections on
Y which have boundary values in L. The restriction of F to this space is closed
precisely when L is Lagrangian. Moreover, in order to preserve the invariance of F
under the gauge group we should also assume that L is invariant under the action
of G(Σ) = Map(Σ,G). But this is equivalent to the condition

L ⊂ Aflat(Σ) = {A ∈ A(Σ) |FA = 0}

and thus L determines a Lagrangian submanifold

L =
L

G(Σ)
⊂

Aflat(Σ)

G(Σ)
= MΣ

of the moduli space MΣ of flat SU(2)-connections on Σ. This is a (6g − 6)-
dimensional symplectic manifold (with singularities). We shall assume that L is
simply connected and contains the equivalence class of the zero connection. Note
that in this case the space L is not simply connected, but the fundamental group
of L cancels with that of G(Σ). Now the 1-form F : TA(Y,L) → R is closed. But
since L is not simply connected F is not exact. However, it is the differential of
the multi-valued Chern-Simons functional CS : A(Y,L) → R/4π2Z defined by

CS(A) = 1
2

∫

Y

(

〈A∧dA〉 + 1
3
〈[A ∧ A]∧A〉

)

+

∫ 1

0

∫

Σ

〈A0(t)∧Ȧ0(t)〉 dt.

Here A0(t) ∈ L is a path with A0(0) = 0 and A0(1) = A|Σ. The homotopy class
of this path is not unique and hence the right hand side is only well defined up to
an integer multiple of 4π2.

Now the 3-manifold Y itself also determines a Lagrangian submanifold

LY =
LY

G(Σ)
, LY = {A|Σ |A ∈ Aflat(Y )} .

Note that under the correspondence Y 7→ LY (from bordisms to Lagrangian sub-
manifolds) the summing of 3-mannifolds along common boundaries translates into
symplectic reduction. Note also that the flat connections on Y are in fact the zeros
of the 1-form F = dCS. Hence there is a map

Crit(CS) → LY ∩ L

which assigns to every critical point A ∈ Aflat(Y,L) of CS the equivalence class
[A|Σ] in MΣ = Aflat(Σ)/G(Σ). In some cases, e.g. when Y is a handle body, the
connection A ∈ Aflat(Y ) is uniquely determined (up to gauge equivalence) by A|Σ
and in this case the above map is a bijection.
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3 Floer homology

Let Y be a 3-manifold with boundary ∂Y = Σ and L ⊂ Aflat(Σ) be a Lagrangian
submanifold with simply connected quotient L = L/G(Σ). Then the gradient
flow lines of the Chern-Simons functional CS : A(Y,L) → R/4π2Z are smooth
maps R → Ω1(Y, g)×Ω0(Y, g) : t 7→ (A(t),Ψ(t)) which satisfy the boundary value
problem

Ȧ− dAΨ + ∗FA = 0, A|Σ ∈ L, ∗A|Σ = 0. (2)

For any such gradient line the connection A+ Ψ dt on the 4-manifold X = Y × R

is a self-dual Yang-Mills instantons with Lagrangian boundary condition on ∂X =
Σ × R. Under suitable conditions on Y and L the Yang-Mills energy of such an
instanton is finite if and only if (in a suitable gauge) there are limits

lim
t→±∞

A(t) = A±, lim
t→±∞

Ψ(t) = 0 (3)

where A± ∈ Aflat(Y,L) are flat connections and hence critical points of CS. If these
limits are regular and nondegenerate (i.e. the extended Hessian is bijective) then
one can prove that the equations (2) and (3) form a well-posed nonlinear elliptic
boundary value problem and so, for a generic metric, the space M(A−, A+) of
solutions modulo gauge equivalence is a finite dimensional manifold of dimension

dimM(A−, A+) = µ(A−) − µ(A+) (mod 8)

for some function µ : Crit∗(Y,L) → Z/8Z on the set of irreducible flat connections
in A(Y,L). Here the dimension depends on the component in the space of paths
in A(Y,L) running from A− to A+, in contrast to the closed case where any two
paths are homotopic and the index ambiguity only comes in after dividing by the
gauge group.

Remark 3.1 The well posedness of (2) and (3) extends to general 4-manifold X
with boundary ∂X = Σ × R and cylindrical ends. The proof involves an estimate
for the operator D = d−A ⊕d∗A : Ω1

L(X, g) → Ω2,−(X, g)⊕Ω0(X, g) where Ω1
L(X, g)

denotes the subset of all α ∈ Ω1(X, g) which satisfy

α|Σ×t ∈ Λ(t) = TA|Σ×t
L, α ◦ ν∂X = 0.

There is an inequality

‖α‖
2
W 1,2 ≤ c

(

‖Dα‖
2
L2 + ‖α‖

2
L2

)

+

∫

∂X

〈dAα∧α〉

and, in view of the Lagrangian boundary conditions, the boundary term can be
estimated by

∣

∣

∣

∣

∫

∂X

〈dAα∧α〉

∣

∣

∣

∣

≤ c ‖α‖
2
L2(∂X) ≤ c′ ‖α‖W 1,2(X) ‖α‖L2(X) .

Now the elliptic estimate ‖α‖W 1,2 ≤ c (‖Dα‖L2 + ‖α‖L2) easily follows. This has
to be combined with elliptic regularity at the boundary to obtain the required
Fredholm theory.
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To obtain finitess in the case where the index difference is 1 we must employ
Uhlenbeck’s compactness theorem in the case of bounded curvature and combine
this with the usual bubbling argument if there is only an L2-bound on the curva-
ture. Such a bound is always guaranteed since

YM(A+ Ψ dt) =

∫ ∞

−∞

∥

∥FA(t)

∥

∥

2

L2(Y )
dt = CS(A−) − CS(A+)

for every solution of (2) and (3). However, bubbling near the boundary produces
nontrivial finite-energy instantons on a half-space

H
4 =

{

x = (x0, x1, x2, x3) ∈ R
4 |x0 ≥ 0

}

which on the boundary R3 = R × R2 are flat on each R2-slice. Such instantons
should have Yang-Mills energy equal to an integer multiple of 8π2.

Conjecture 3.1 Let A =
∑3

j=0Ajdxj ∈ Ω1(H4, g) be a connection such that

F01 = F23, F02 = F31, F03 = F12, A0|∂H4 = 0, F23|∂H4 = 0,

where Fij = ∂iAj − ∂jAi + [Ai, Aj ]. Then either Fij = 0 for all i, j or

YM(A) =
1

2

∫

H4

∑

i<j

|Fij |
2 ≥ 8π2.

The proof will go along the lines of Uhlenbeck’s removable singularity the-
orem. At the time of writing I have not carried out the details. If this holds
then in the case of index difference 1 the space M(A−, A+) will consist of only
finitely many connecting orbits (moduli time shift) and, as in the case of closed
3-manifolds [9, 6], counting these gives rise to a Floer chain complex

CF∗(Y,L) =
⊕

[A]∈A∗

flat
(Y,L)/G(Y )

Z〈A〉

generated by the gauge equivalence classes of irreducible flat connections. The
boundary operator is defined by

∂ 〈A−〉 =
∑

A+

#{M1(A
−, A+)/R} 〈A+〉

where the sum runs over all equivalence classes [A+] ∈ A∗
flat(Y,L)/G(Y ) with

µ(A+) = µ(A−) − 1(mod 8) and M1 denotes the 1-dimensional components of
the moduli space. As in Floer’s original work [9] one uses a gluing theorem to prove
that ∂2 = 0 The resulting Floer cohomology groups are denoted by HF ∗(Y, L) =
H∗(CF, ∂). They are graded modulo 8.

Remark 3.2 (i) To make these ideas work we must impose certain conditions
on Y and L which guarantee that there are no reducible flat connections
in A(Y,L) other than the equivalence class of the zero connection. Here
reducible means that the kernel of dA : Ω0(Y, g) → Ω1(Y, g) is zero. For
example, we may assume that L = LY ′ where Y ′ is a handlebody with
∂Y ′ = Σ̄ and Y ∪Σ Y

′ is a homology-3-sphere.
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(ii) A connection A ∈ Aflat(Y,L) is called nondegenerate if every α ∈ Ω1(Y, g)
with dAα = d∗Aα = 0 and ∗α|Σ = 0, α|Σ ∈ TAL is equal to zero. If there
are degenerate flat connections then we must choose a perturbation of the
Chern-Simons functional (as in the case of closed 3-manifolds) to obtain
well-defined Floer homology groups.

(iii) The Floer cohomology groups HF ∗(Y, L) are independent of the choice of
the metric and the perturbation used to define them. They depend on the
Lagrangian submanifold L only up to Hamiltonian isotopy. More precisely,
for different choices there are natural isomorphisms of Floer homology.

(iv) In [11] Fukaya proposed an alternative construction of Floer homology groups
on 3-manifolds with boundary.

Conjecture 3.2 If Y = Y0 ∪Σ Y1 is a homology-3-sphere, and Y0 is a handlebody,
then there is a natural isomorphism HF ∗(Y ) ∼= HF ∗(Y1, LY0

). If Y1 is also a
handlebody (i.e. in the case of a Heegard splitting) there is a natural isomorphism

HF ∗(Y ) ∼= HF ∗(Σ × [0, 1], LY0
× LY1

).

At the time of writing the details of the proof have not been carried out.
However, here is the main idea. Choose a map f : Σ× [0, 1] → Y0 which identifies
Σ×{1} with ∂Y0 and shrinks Σ×{0} onto the 1-skeleton of Y0. Then the pullback
of any connection on Y0 onto Σ × {0} is in LY0

(A connection on a 1-manifold is
just given by the holonomy.) The ASD equation on Σ× [0, 1]×R with the pullback
metric then takes the form

∂sA− dAΦ + ∗s(∂tA− dAΨ) = 0, ∂sΨ − ∂tΦ + [Φ,Ψ] + ∗sFA = 0 (4)

where the change of the metric is not in the same conformal class and degenerates
at s = 0. Note that (4) is just the ASD equation on (half of) the closed manifold
Y × R. If, however, we consider the equation on the interval s ≥ ε for some
ε > 0 then we obtain a genuine boundary value problem. The solutions of these
should converge to those on the closed manifold as ε → 0 and this will prove
Conjecture 3.2. Note that the degeneration of the metric at s = 0 is related to the
choice of the Lagrangian boundary condition in LY0

. The case Σ = S2 is slightly
simpler. In this case Y1 = B3 and we can take the map S2 × [0, 1] → B3 : (x, s) 7→
sx. Then the change in the metric is conformal and so the Hodge-∗-operator on
1-forms is independent of s while ∗sFA = s−2∗FA. Similar equations were recently
studied by Fukaya [12].

4 Atiyah-Floer conjecture

In [8] Floer introduced what is now called Floer homology for Lagrangian intersec-
tions. Assume for simplicity that (M,ω) is a compact simply connected symplectic
manifold which is positive in the sense that the first Chern class c1 = c1(TM)
(with respect to an ω-compatible almost complex structure) is a positive multiple
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of the cohomology class [ω]. We also assume that the minimal Chern number N ,
defined by 〈c1, π2(M)〉 = NZ, is at least 2. Then for any two Lagrangian sub-
manifolds L0, L1 ⊂ M with torsion fundamental group there are Floer homology
groups

HF ∗
symp(L0, L1)

which are graded modulo 2N . In this theory the critical points are the intersection
points x ∈ L0 ∩ L1 and the connecting orbits are J-holomorphic strips u : [0, 1]×
R →M which satisfy

∂su+ J(u)∂tu = 0, u(0, t) ∈ L0, u(1, t) ∈ L1, lim
t→±∞

u(s, t) = x±, (5)

where x± ∈ L0 ∩ L1 and J is an almost complex structure on M which is com-
patible with ω in the sense that 〈ξ, η〉 = ω(Jξ, η) is a Riemannian metric. This
construction requires transversal intersections of the Lagrangian submanifolds and
surjectivity of the linearized Cauchy-Riemann operators. These conditions can be
achieved by a suitable Hamiltonian perturbation and, as before, the resulting Floer
homology groups are indepedent of the almost complex structure and the Hamil-
tonian perturbation used to define them [8, 15].

Now consider the case where M = MΣ is the moduli space of flat SU(2)-
connections on a compact oriented Riemann surface Σ and Li = LYi

for i = 0, 1
where Y0 and Y1 are handlebodies with ∂Y0 = Σ and ∂Y1 = Σ̄. Then the manifold
MΣ is simply connected and positive in the above sense with minimal Chern
number 4. Moreover, the Lagrangian manifolds L0 and L1 are diffeomorphic to
the quotient of SU(2)g by simultaneous conjugacy and hence are obviously simply
connected. However, some care must be taken when extending symplectic Floer
homology to MΣ in view of the singularities. To obtain a well-defined theory we
must assume that Y = Y0∪ΣY1 is a homology-3-sphere so that 0 is the only singular
intersection point of L0 and L1. Another point is to give the right definition
of holomorphic curves when they pass through the singular part of MΣ. The
correct definition should be that they can be represented locally by a smooth map
C → A(Σ) ⊕ Ω0(Σ) ⊕ Ω0(Σ) : s+ it 7→ (A(s, t),Φ(s, t),Ψ(s, t)) such that

∂sA− dAΦ + ∗(∂tA− dAΨ) = 0, FA = 0. (6)

Using local Coulomb gauge in A(Σ), in a neighbourhood of a (possibly singular)
connection A0 = A(0, 0), one can show that every W 1,p-solution of (6) is gauge
equivalent to a smooth solution. One should then be able to use a transversality
argument in the moduli space Aflat(Σ)/G0(Σ) of flat connections modulo pointed
gauge transformations to prove that generic holomorphic curves avoid the singular
set, because it is of codimension larger than 2 if the genus of Σ is at least 3.

As a result there are symplectic Floer cohomology groups for (MΣ, LY0
, LY1

)
whenever Y = Y0 ∪Σ Y1 is a Heegard splitting of a homology-3-sphere and it was
conjectured by Atiyah and Floer that there should be a natural isomorphism

HF ∗(Y ) = HF ∗
symp(MΣ, LY0

, LY1
).

In view of Conjecture 3.2 this reduces to the following.
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Conjecture 4.1 For every Heegard splitting Y = Y0∪ΣY1 of a homology-3-sphere
there is a natural isomorphism of Floer cohomologies

HF ∗(Σ × [0, 1], LY0
× LY1

) ∼= HF ∗
symp(MΣ, LY0

, LY1
).

The proof of Conjecture 4.1 follows the line of argument in [7] for mapping
cylinders. The key idea is to conformally rescale the metric on Σ by a factor ε2 > 0
and prove that in the limit ε→ 0 the ASD instantons on Σ× [0, 1]×R degenerate
into holomorphic curves. More precisely, the ASD equation on Σ× [0, 1]×R with
respect to the rescaled metric takes the form

∂sA− dAΦ + ∗(∂tA− dAΨ) = 0, ∂sΨ − ∂tΦ + [Φ,Ψ] +
1

ε2
∗ FA = 0, (7)

with boundary conditions

A(0, t) ∈ LY0
, A(1, t) ∈ LY1

, Φ(0, t) = Φ(1, t) = 0. (8)

The proof that for ε → 0 the solutions of (7) and (8) converge to those of (6) is
almost word by word the same as in [7]. An important ingredient in the proof
is the observation that the Yang-Mills energy (with respect to the ε-dependent
metric) of a connection Ξ = A+ Φ ds+ Ψ dt which satisfies (7) is given by

YMε(Ξ) =

∫ ∞

−∞

∫ 1

0

(

‖∂sA− dAΦ‖
2
L2(Σ) +

1

ε2
‖FA‖

2
L2(Σ)

)

dsdt.

The main differences in the proof are that, firstly, the estimates on the curvature
in [7], Section 7, must be established near the boundary, secondly, the bubbling
argument requires Conjecture 3.1, and thirdly, care must be taken near the singu-
larities of the moduli space. Details will be carried out elsewhere.

5 Products

There are interesting product structures on Floer cohomology due to Donaldson.
Let (M,ω) be a compact simply connected symplectic manifold which is positive
in the above sense with minimal Chern number N ≥ 2. Then there is a quan-
tum category CM whose objects are the Lagrangian submanifolds L ⊂ M with
torsion fundamental group and whose morphisms are Floer cohomology classes.
Thus Mor(L0, L1) = HF ∗

symp(L0, L1). The composition rule appears as a product
structure

HF ∗
symp(L0, L1) ⊗HF ∗

symp(L1, L2) → HF ∗
symp(L0, L2).

On the chain level this homomorphism is given by counting J-holomorphic trian-
gles. More precisely, one considers J-holomorphic maps u : Ω → M defined on
a domain Ω ⊂ C with three smooth boundary components and three cylindrical
ends which map the boundary components to L0, L1, and L2, respectively, and
in the cylindrical ends converge to intersection points. To obtain a well-defined
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Fredholm theory one can choose Hamiltonian perturbations in the cylindrical ends.
The resulting product is associative in homology but not on the chain level. The
proof of associativity involves domains with four cylindrical ends and leads to the
A∞-category of Fukaya [11].

Now there are similar product structures for homology-3-spheres. If Y0, Y1,
Y2 are three handle bodies with boundary ∂Yi = Σ such that the manifolds Yi∪ Ȳj

are homology-3-spheres for i 6= j then there is a product

HF ∗(Y0 ∪ Ȳ1) ⊗HF ∗(Y1 ∪ Ȳ2) → HF ∗(Y0 ∪ Ȳ2).

This can be defined in terms of ASD instantons on a cobordismX which is obtained
from Ω × Σ by gluing Y0 × R, Y1 × R, Y2 × R to the three boundary components
(which are all diffeomorphic to Σ × R). The natural extension of the Atiyah-
Floer conjecture asserts that these two product structures should correspond under
the isomorphisms of Conjectures 3.2 and 4.1 if in the symplectic case we choose
M = MΣ and Li = LYi

. This can be proved with the same techniques as above.
An interesting special case occurs when the symplectic manifoldM is replaced

by M̄ ×M and L0 = ∆, L1 = graph (φ), L2 = graph (ψφ). This gives rise to Floer
cohomology groups

HF ∗
symp(φ) = HF ∗

symp(M̄ ×M,∆, graph (φ)).

Intuitively, the Floer cohomology of φ can be interpreted as the middle-dimensional
cohomology of the space Ωφ of paths γ : [0, 1] →M with γ(1) = φ(γ(0))

HF ∗
symp(φ) = H

1
2
∞(Ωφ).

These groups are invariant under conjugacy, i.e. HF ∗
symp(φ) = HF ∗

symp(ψ
−1φψ),

and the Donaldson product structure takes the form

HF ∗
symp(φ) ⊗HF ∗

symp(ψ) → HF ∗
symp(ψφ). (9)

In the case φ = ψ = id there is a natural isomorphism HF ∗(id) = H∗(M) (with
the grading made periodic with period 2N) and the above product reduces to
quantum cohomology [17]. (See [13] for an exposition of quantum cohomology.)

Let us now specialize further to the case where M = MΣ is the moduli space
of flat connections on the nontrivial SO(3)-bundle P → Σ. The mapping class
group of Σ acts on this space by symplectomorphisms φf : MΣ → MΣ (modulo
some finite ambiguity in the choice of a lift). An automorphism f : P → P also
determines a mapping cylinder Yf and there are corresponding Floer cohomology
groups HF ∗(Yf ), defined in terms of ASD instantons on Yf × R. In [7] it was
shown that there are natural isomorphisms

HF ∗(Yf ) ∼= HF ∗
symp(φf ).

Now there is again a product structure

HF ∗(Yf ) ⊗HF ∗(Yg) → HF ∗(Ygf ) (10)

defined in terms of ASD instantons on suitable 4-dimensional cobordisms. In [16]
it is shown that these agree with the products in (i) under the above isomorphisms.
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Remark 5.1 (i) In his thesis [4] Callahan examines these product structures in
detail and uses them to find examples of symplectomorphisms φf : MΣ →
MΣ which are homotopic to the identity but not symplectically so. In his
examples the automorphism f is generated by a Dehn twist on a loop which
divides Σ into two components.

(ii) There is an alternative way to interprete these product structures (in the
case g = id) by intersecting the spaces of connecting orbits with suitable
submanifolds of finite codimension in either BY = A(Y )/G(Y ) or Ωφ. In the
symplectic context this gives rise to an action

H∗(Ωφ) ⊗HF ∗
symp(φ) → HF ∗

symp(φ).

Intuitively, HF ∗
symp(φ) = H

1
2
∞(Ωφ) and this is the cup-product in Ωφ. The

map Ωφ → M : γ 7→ γ(0) induces a homomorphism H∗(M) → H∗(Ωφ) and
the resulting product H∗(M)⊗HF ∗

symp(φ) → HF ∗
symp(φ) agrees with (9) in

the case ψ = id.

(iii) A loop γ : S1 → Y determines a submanifold Vγ ⊂ BY via Donaldson’s map
µ : H1(Y ) → H3(BY ) and the induced homomorphism of Floer cohomology
appears as the second boundary map in the Fukaya-Floer cohomology groups
HFF ∗(Y, γ) [3]. In the symplectic context these operators correspond to
the action of H∗(Ωφ) on HF ∗

symp(φ). If M = MΣ and φ = φf for some
automorphism f : P → P then a loop γ : S1 → Yf determines a codimension-
2 submanifold Wγ ⊂ Ωφf

and there is a commuting diagram

HF ∗(Yf )
Vγ

→ HF ∗(Yf )
↓ ↓

HF ∗
symp(φf )

Wγ

→ HF ∗
symp(φf )

.

If the loop γ lies entirely in Σ × {0} then these maps can be interpreted in
terms of the product structures (9) and (10) with g = id and ψ = ψg = id.
In [5] Donaldson has computed the quantum cohomology of MΣ for a surface
of genus 2.

(iv) In the instanton case the maps in Floer’s exact sequence can be inter-
preted in terms of the Donaldson product structures [2]. It was proposed by
Donaldson and Callahan [4] that there should be a symplectic analogue of
this exact sequence. In special cases this should be related to Floer’s original
sequence by the Atiyah-Floer conjecture.

(v) There is a related question what the effect of symplectic reduction is on Floer
homology. This should also be related to the quantum product structures
discussed here. An interesting example is provided by surgery on a loop
γ ⊂ Y in a three manifold with boundary ∂Y = Σ. Cut out a neighbourhood
U of γ and write Y = U ∪T (Y − U). Then the disjoint union U ∪ (Y − U)
has three boundary components T ∪ T̄ ∪ ∂Y . Different ways of gluing in U
correspond to different symplectic reductions in MT ∪ M̄T ∪MΣ.

10



(vi) If Y is a three manifold with boundary ∂Y = Σ then the quantum category
CMΣ

acts on the Floer cohomology groups HF ∗(Y, L) via natural product
type maps

HF ∗(Y, L0) ⊗HF ∗
symp(L0, L1) → HF ∗(Y, L1).

This was already observed by Fukaya [11]. So far these product structures
are little understood.
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