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SPLINE APPROXIMATION FOR RETARDED SYSTEMS AND THE RICCATI
EQUATION*

F. KAPPEL" AND D. SALAMON*

Abstract. The purpose of this paper is to introduce a new spline approximation scheme for retarded
functional differential equations. The special feature of this approximation scheme is that it preserves the
product space structure of retarded systems and approximates the adjoint semigroup in a strong sense.
These facts guarantee the convergence of the solution operators for the differential Riccati equation in a
strong sense. Numerical findings indicate a significant improvement in the convergence behaviour over both
the averaging and the previous spline approximation scheme.
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1. Introduction. In this paper we introduce a new spline approximation scheme
for linear time invariant retarded functional differential equations (RFDEs) and estab-
lish a number of convergence results. In particular we show that the approximate
feedback law and the solution of the operator Riccati equation, associated with the
linear quadratic control problem for this class of systems, converge in the uniform
operator topology.

The first step of the general approach is to transform the RFDE

(1.1) (t) Lx, + Bou( t), y( t) Cox(t)

into an abstract Cauchy problem of the form

d
(1.2) --77. v(t) M:v(t) + 3u(t), y(t) (t)

at

in the Hilbert space R" x L2[-h, 0; Rn], h > 0, where M is the infinitesimal generator
of the strongly continuous semigroup 6e(t) which is associated with the uncontrolled
delay equation. For systems of the form (1.2) there exists a general theory of the linear
quadratic control problem of minimizing the cost functional

(1.3) J(u)=((T), c(r))+ [ly(t)l-+lu(t)l2] dt

(see e.g. [9], [14], [19]). The optimal control can be characterized as a feedback law
which is determined by an operator satisfying the differential Riccati equation (in the
case T < oo), respectively, the algebraic Riccati equation (in the case T=o). These
operator Riccati equations involve both the original generator M and its adjoint operator
M*. Therefore, in order to approximate the feedback law and the Riccati operator in
the strong operator topology, we have to approximate both semigroups 6e(t) and *(t)
in the strong operator topology (see [20]).
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For the approximation of the semigroups we use a Galerkin type scheme, i.e., we
define finite dimensional subspaces N of and operators N on N which generate
semigroups Sv(t) on The classical idea is to choose cdom and define

pMp, where pN is the orthogonal projection of onto s. Under appropriate
consistency and stability hypotheses the convergence of 6es(t) to (t) in the strong
operator topology follows.

These ideas have been used by Banks and Kappel [7] for the development of a
spline approximation scheme for RFDEs and have then been applied.to problems of
optimal control and parameter identification e.g. in [3], [6], [8], [27]. In particular,
Kunisch [27] has established weak convergence results for the solution operators of
the differential Riccati equations. Numerical findings in [8] indicate that these operators
indeed do not converge strongly for the spline scheme developed in [7]. The main
reason for this seems to be that the subspace s in [7] has been chosen to be contained
in the domain of M which is different from the domain of M*.

In order to overcome this unequal treatment of SO(t) and S*(t), our idea was to
enlarge the subspace v such that it is neither contained in dom nor in dom M*,
but contains sufficiently many elements of both domains. Of course, in this situation
the approximating operators can no longer be defined by MV=pMp but have to
be defined directly instead (for details see 5.1). As a result we are able to establish
the desired convergence of the solution operators ofthe Riccati equation in theuniform
operator topology for the finite time horizon problem. Despite the fact that in the case
of the infinite time horizon problem our scheme always did converge numerically, we
were not able to prove this convergence following the approach presented in [20]. The
reason is that we do not have the uniform (with respect to N) exponential stability of
the approximating semigroups for our scheme (compare the remarks at the end of

5.3). In this respect the spline approximation scheme differs from the averaging
approximation scheme in [4] for which the uniform exponential stability property has
been established in [38].

In two preliminary sections we collect some basic facts from the state space and
control theory for retarded systems ( 2) and give a short survey on the theory of the
linear quadratic optimal control problem for abstract systems in Hilbert space and for
RFDEs ( 3). In 4.1 we present a general approximation scheme for abstract Cauchy
problems in Banach space. In 4.2 we consider the problem of approximating the
feedback law for the finite time horizon problem following the approach given by
Gibson in [20].

The main part of this paper is 5, where we develop a special spline scheme and
prove convergence results along the general ideas given in 4.1 and 4.2. We also give
the explicit formulae for the matrices which are necessary for the implementation of
our scheme. This scheme has remarkable qualitative properties which will be published
elsewhere.

Finally, in 6 we present some of the many numerical calculations in order to
demonstrate the good behaviour of our scheme and the advantage it offers over both
the averaging approximation scheme [4], [20] and the spline scheme in [7], [8].

2. State space theory for linear hereditary control systems.
2.1. Linear hereditary control systems. We consider the linear hereditary control

system

(2.1a) g(t) Lxt + Bou( t), >- O,

(2.1b) y( t) Cox( t),
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where x(t)R", u(t)R, y(t)R" and xt is defined by xt(s)=x(t+s) for -h<-s<-O,
h > 0. Correspondingly Bo and Co are real matrices of appropriate dimensions and L
is a bounded linear functional C(-h, 0; R")- R" given by

Lch Ac(-h)+ Aol(r)(’) dr, e C(-h, 0; ["),
j=0 h

where 0=ho<...<hp-h and Aj
LE(-h, 0; "’). A solution of (2.1a) is a function x(.)e Loc(-h, c; ") which is
absolutely continuous with LE-derivative on every compact interval [0, T], T> 0, and
satisfies (2.1a) for almost all _-> 0. It is well known that (2.1a) admits a unique solution
x(t) x(t; b, u) for every input u(. e Loc(0, ;) and every initial condition

(2.2) x(0)=, x(r)=’(r), -h<-r<O,

where =(,a)eM2="L2(-h,O;"). Moreover, x(.;,u) depends con-
tinuously on and u on compact intervals, i.e., for any T> 0 there exists a K > 0
such that

sup Ix(t;

where 114 I  lb) ’/= for M= (see e.g. [12], [18]). The fundamental solution
of (2.1a) will be denoted by X(t) and is the n x n matrix valued solution of (2.1a)
which corresponds to u -= 0 and X(0) =/, X(r) 0 for -h _-< r < 0. The Laplace trans-
form of X(. is given by A-I(A), where

A(A AI- L(ca’I)

e_h Ihi- ., Aj Aol (r) e" dr, h C
j=0 -h

is the characteristic matrix of (2.1a). Again it is well known that the forced motion of
(2.1a) (in case =0) can be written as

(2.3) x(t; O, u)= X(t-r)Bou(r) dr, t>-O.

2.2. SemigroulS anti state slaee tleseriltion. Existence, uniqueness and continuous
dependence results for solutions of RFDEs motivate the definition of the state of
system (2.1) to be the pair

(2.4) w(t) (x(t), xt) M2,
which completely describes the past history of the solution at time >- 0. The evolution
of this state is governed by the variation-of-constants formula

(2.5) w(t)=S(t)+ S(t-s)Bu(s) ds, t>-_O,

which is the infinite dimensional version of (2.3). The input operator B’R-> M2 is
given by

Bu Bou, O)

and the semigroup $(. corresponds to the free motion of the system, i.e., S(t) M2-->
M, t-> 0 is defined by

S(t) (x(t; , 0), x,(, 0)), _-> 0, Me.
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The infinitesimal generator of S(. is given by

dom A { M:[ ’ W1’2, 0= 1(0)}
(2.6)

A := (L

where W1’2 denotes the Sobolev space wl’2(-h, 0; Rn). The function w(t) as defined
in (2.5) is a mild solution of the abstract system

lb( t) Aw( t) + Bu( t),

y( t) Cw( t), w(O) dp.

The output operator C M2-) R is defined by C Cork o, b M2.
The operator A* dual to A is explicitly given by (see e.g. [17]):

(2.7)

dom A*= fe M2 fl+ AffOx[_h,_hj]e W,,2,fl(_h)= AffO
j=l

[A*f]=fl(O) + Aof

A*f] (): Affl(z)f -dr[
--dIf (z)+’AjTfo/[_h,_hj](,i. ]

The characteristic function of an interval I is denoted by X.

2.3. Stability, stabilizability and controllability. System (2.1) is said to be stable
if every solution x(t) of the free system (i.e. u(t) 0) tends to zero as goes to infinity.
Equivalently, the semigroup S(. is exponentially stable, i.e.,

Wo lim lln IIS(t)ll sup {Re tr(A)) <0
t-->

(see for instance [22]). The spectrum of A is given by r(A)={A C[detA(A)=0}.
Note that o-(A*) r(A).

The control system (2.1) is said to be stabilizable if there exists a control law

(2.8)
u(t)=K(x(t),xt)

Kox(t)+ ffh K,(e’)x(t+z) dr,

where KoGRlxn, KI(" )G L2(-h, 0; ln), such that the closed loop system (2.1), (2.8)
is stable. We have the following important characterization (see [33], [36]).

THEOREM 2.1. The following statements are equivalent:
System (2.1) is stabilizable.

(ii) There exists a K (M2,/) such that the operator A+ BK generates an
exponentially stable Co-semigroup.

(iii) rank [A(A), Bo] n for all A C with Re A _-> 0.
The dual result is the following (see e.g. [10] or [36], [37]):
THEOREM 2.2. The following statements are equivalent:
(i) There exists a H (’, M) such that the operator A+ HC generates an

exponentially stable semigroup.
() for all h C with Re h > O.(ii) rank Co, n

System (2.1) is called detectable if the statements of the previous theorem are
satisfied. A detailed discussion of the duality relations between feedback stabilization
and dynamic observation in the product space framework can be found in [36].
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3. The linear quadratic control problem.
3.1. Control systems in Hilbert spaces. Let us first deal with general linear control

systems in Hilbert spaces , // and described by

b(t) M(t) + u(t), (0)
(3.1)

y(t) c(t).

We assume that (, ), r (, 0) and that M is the infinitesimal generator
of a Co-semigroup Ae(t) on . System (3.1) will be understood in the sense of mild
solutions, i.e., the trajectories of the system are given by

(3.2) v(t):(t)o+ (t-s)3u(s) as, t>-o

for any :vo and any input u(. ) Lo(O, oo; a//).
Let o-//_> 0//and :-> be selfadjoint linear operators satisfying

(, c-g)->O forall

and

with some e > 0. In this section we look at the control problem of minimizing the cost
functional

(3.3) J(u)=(v(T), c-ow(T))+ [ll(t)ll=/(u(t), u(t))] dt,

where (t) is given by (3.2) and T>0 is a fixed final time. For the proof of the
following result see [14] and [19].

THEOREM 3.1. For any Vo there exists a unique control function ff(.)
L2(0, T; o/) which minimizes the cost functional (3.3) under the constraint (3.2). The
optimal control is offeedback form and is given by

(3.4) if(t) _-l.(t)&(t), _>- 0,

where v( t) is the mild solution of the Cauchy problem v (-3-l3*(t))v, v(O)
vo, and -> ( t) () is the unique operator valuedfunction on [0, T] with thefollowing
properties:

(i) (t) is positive semidefinite for every [0, T].
(ii) Thefunction -> t)v is continuous on [0, T] for every v ;, and satisfies the

Riccati integral equation

(t)v 6f*( T- t) c6f( T- t)v

(3.5) + 6*(’- t)[,c_(r)-l,(r)](._ t) d%

O<-_ t<- T, v .
Moreover, the optimal cost is given by

(a) (,o, (O)o).

In [19] it is also shown that (t) satisfies

(3.) ’(t)=*(r-t),(r, t)+ *(r-t)*,(r, t)dt, O <: <- T, v :



SPLINE APPROXIMATION FOR RETARDED SYSTEMS 1087

where (r, t) is the evolution operator given by

(3.7) O(r, t)= oq(r t)w- (7"-- O’)--lg/(O’)(I(o", t) dr,

O<-t<=-<-T, .
Let us now consider the problem of minimizing the cost functional

(3.8) J(u)- [[lo(t)ll=/<u(t), u(t))] at,

where again v(t) is given by (3.2). For this situation the following result has been
proved (see [14], [15], [41]; further references can be found in the survey paper [9]):

THEOREM 3.2. (a) The following statements are equivalent:
(i) For any Vo there exists an input u(. L2(0, oo; o//) such that the correspond-

ing cost J(u) given by (3.8) and (3.2) is finite.
(ii) There exists a positive semidefinite operator (g) satisfying the algebraic

Riccati operator equation

(3.9) (M,, a)+(, Ma)+(, cCa)-(, -l*v) 0

for all a, , dom M.
(b) If the statements under (a) are valid, then there exists a unique optimal control

( t) which is given by the feedback law

(3.10) t(t) --*&(t), _--> O,

where v( t) is the mild solution of the Cauchy problem v (--3*)v, (0)
and is the minimal solution of (3.9). Moreover, the optimal cost is given by

s(a) <o, o>.
(c) Suppose that the statements under (a) are satisfied and let be the minimal

positive semidefinite solution of (3.9). Moreover, let r( t), 0 <= <= T, be the unique positive
semidefinite solution of (3.5) with d O. Then is the strong limit of r(O) as T goes
to infinity.

(d) Suppose that there exists some L(, ) such that the operator
generates an exponentially stable semigroup. Then there exists at most one positive
semidefinite solution of (3.9). Moreover, if such a solution exists, then the closed loop
semigroup generated by M--$0" is exponentially stable.

3.2. Applications to hereditary systems. Let us first apply Theorem 3.1 to system
(5) which is associated to system (2.1) in terms of the state concept introduced in 2.
The cost functional for system (2.1) is assumed to be

S(u) x( T; ok, u) rGoX T; ok, u)
(3.11)

+ [llCox(t; ok, u)ll2/u(t)Ru(t)] dr,

where Rt is positive definite and Go is positive semidefinite. If the
operator G:M-> M is defined by Gb (GoSh, 0), b M, then the cost functional
for system (E) is given by (3.3) (with cg G, C and R, of course). According
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to Theorem 3.1 there exists a unique, positive semidefinite, strongly continuous family
H(. of operators in *(M2) which satisfies the Riccati integral equation

II(t)b S*( T- t)GS( T- t)b

,EM2 0--< t--< T.

Let us now look at the structure of the operator H(t). Due to the product space
structure of the state space M2 we can write

H(t) (Hoo(t) Hol(t))kHo(t) nl(t)

where Hoo(t) is a selfadjoint operator " " which can be represented by a symmetric
matrix and H(t) is a selfadjoint operator L2 L2. The operator Ho(t) can be represen-
ted by a matrix-valued function Ho(t, ")L2(-h, 0;xn). The adjoint operator
ol(t) Ho(t) from L2n is given by

Ho(t) H(t, z)(r) d% e L2.
h

We are mainly interested in the matrices Hoo(t) and Hlo(t, ), which determine the
optimal feedback law

(3.13) a(t)=-R-Bg noo(t)x()+ n(t, ,)x(+,) d
h

for system (2.1). Recall that B* maps e M to Bg4e N.
For the rest ofthis section we assume that system (2.1) is stabilizable and detectable,

so that system () satisfies the assumptions of Theorem 3.2. Hence there exists a
positive semi-definite operator e (M) satisfying the algebraic ccati equation

(3.14) A*+nA-HBR-B*+C*C=O,
e dora A. The equation can be written in this form since every solution of (3.9)

maps dom into dora *, i.e.,

(3.15 range dora A*.

Again the operator H can be written in block form

where Ho Ho maps L into N. Hence the optimal feedback law is of the form

u( --*(x(tl, x,
(3.

h

Finally note that the closed loop system (2.1), (3.16) is stable (Theorem 3.2).

4.1. fifee. In this section we present a general approximation
scheme for linear abstract Cauchy problems restricting ourselves to a situation which
is of sucient generality for our purposes.
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Let be a real Hilbert space with inner product (.,.) and corresponding norm

I1" II. Furthermore let M be the infinitesimal generator of the Co-semigroup 6e(t), -> 0,
on . It is a fundamental result that there exists constants M => 1 and o R such that

ll6e( t)ll < Me0’’, >-- O.

In order to approximate the trajectories (t)vo, o , it is a standard idea to
choose a sequence (} of finite dimensional subspaces of with corresponding
orthogonal projections

pN. ._>, N-- 1,2," ",

and to define (in an appropriate way) a sequence {} of linear operators

MN’,’N -->, N-- 1, 2, .
With s and xo we associate the Cauchy problem

bN(t) MxN(t), t-->0,
(4.1)

N (0) =p%o

on . We extend the definition of M to all of by Mx MNpx and define the
Co-semigroup Sf (t), >_- O, on by

6f(t)xo= etxo= e’tpNo+Xo-Pxo, >=O, xo .
The following hypotheses will be used in order to guarantee the desired conver-

gence 6f(t)po- 5e(t)xo:
(H1) lira_,o px x for all :v .
(H2) There exists constants/Q-> 1 and 03 g such that

Ilse’(t)ll --<

for all t->0,:vN and N=l,2,....
(H3) There exists a dense subset D c dom M which is invariant with respect to

5e(t), >= 0, such that
(i) limN-,oo MNpx Mx for all x D, and
(ii) for any x D there exists a function m(., x) Lo(O, 3; R) such that

[[p(t)l[--< m(t; ) a.e. on [0, c)

for all N.
Hypothesis (H2) is equivalent to

(H2*) For any N there exists a norm [[. [IN on oN such that
(i) For some constant//>= 1

llll <- IIll , <- llll, , N 1, 2,. ., and

(ii) for some constant o3 all operators MN-a3I are dissipative on
(, I1" I1) (i.e. I1( I)11, --> ( -,)1111, for v ,/x > 43 or,
in case (, I1" I1) is a Hilbert space with inner product (.,.
<, >,,--< ,;llll, for :v N; cf. [32, Thm. 4.2], [30, p. 244]).

The equivalence of (H2) and (H2*) follows from the well-known relation between
exponential estimates for a semigroup and dissipativity properties of its generator (cf.,
for instance, [32, Thm. 4.3]).
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THEOREM 4.1. Let (H1)-(H3) be satisfied for the sequences , p% M, N= 1,
2,. . Then for all no

(4.2) lim eaNtpo (t)o
N-oo

uniformly for in bounded intervals.
Proof. If ao dom then d/dt(t)o 6e( t)ao. This together with (4.1) implies

(t)ao--N(t)pNo=N(t)[ao--pNo]+ 6eN (t 7")( SCN)(’)0 d%

no dom M, 0 =< t-< T. Let no D. Using (H2), we immediately get

IlSe(t)o-SC’(t)p’oll<=e IIo-poll/ II(-’)Se()oll dz

for 0=< -< T. Then (4.2) follows from (H1), (H3) and Lebesgue’s dominated conver-
gence theorem. Note that 6e(Z)o D for re [0, T]. A density argument using (H2)
completes the proof, lq

The methods in the proof of the previous theorem are well known in connection
with numerical approximation of partial differential equations (see for instance the
proof of the Lax-Richtmyer equivalence theorem in [21]). For delay equations this
approach appears for the first time in [3], [6] and has later on been used in [24]. We
equally well could have used the Trotter-Kato theorem [32].

Next we consider the nonhomogeneous problem

(4.3a) b(t) a(t) + u(t), _--> s,

(4.3b) (s) =o,
where u Loc(S, oo; l) and is a linear operator . The unique mild solution
(t) =(t; S,o, u) of (4.3) is given by

(4.4) a(t)=6f(t-s)ao+ 6f(t-r)u(’) d’, tes.

In addition to the approximating sequence , p, dN, N 1, 2, , introduced
above let us assume that , N 1, 2,..., is a sequence of corresponding input
operators l N. Then we consider the approximating systems

(4.5a) :bN t) sa t) + 31’Cu( t), >= s,
N N(4.5b) (s) p no, no ,

s(.on N with the unique solution N(t)- a t, S, pN0, U) given by

N( =N N(4.6) t) (t--s)pNo+ (t--r)U(") dz, t>-s,

where s(t)" is defined as above.
THEOREM 4.2. Assume that b ), N 1, 2,. ., and ( are Co-semigroups on

such that for constants M >- 1, to

totIlSeN(t)II<-Me t>-o, N= 1,2,...,

andfor all ao

lim N t)pNo 6f( t)ao
N-oo
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uniformly on bounded t-intervals. Furthermore assume that

lim 3 Nsc : for all R I.
N

Then for all vo g, T> 0 and 3’ > 0

lim v(t; s, p r’o, u) (t; s, o, u)

uniformly for O<-- s <- t<--_ T and for u L2(s, T; Rl) with %
We omit the proof of this result since it is only a slight modification of that given

in [4] for a very similar result.
It is clear that in this section without any changes could have been a real Banach

space.

4.2. Approximation of the feedback law in the optimal problem. We restrict our-
selves to the finite time control problem of minimizing the cost functional

(4.7) Js(u)=((T), e(T))+ [[[(t)ll-+u(t)ru(t)] at

associated with the Cauchy problem (4.3). We assume that the operators cg. _.> ,
.__>, c. _.>m are defined as in 3.1. As we have seen in that section (with

obvious modifications for the case when the initial time s is not necessarily zero), the
unique solution of this problem is given by the feedback law

(4.8) u-(t) =--l3*(t)(t, s)ao, s_-< t_-< T,

where (t)" --> is the unique positive semidefinite solution ofthe Riccati differential
equation (3.5) and (t, s) is given by (3.7).

Correspondingly, we consider the sequence of control problems of minimizing

(4.9) J(u)=(vrV(T), -m(T))+ [[l(t)ll2+u(t)u(t)] dt,

where v(t)= v(t; s, pVo, u) is the unique solution of (4.5). The optimal control is
given by the feedback law

2N(t) ----I(jN)*N(t)N(t s)pNo
(4.10)

=--’(3x)*(t)dPx(t, s)ao, s<= <- T,

where the strongly continuous, positive semidefinite operator N(t)" --> and the
strongly continuous evolution operator v(t, s)" -> are defined by the equations

N t)c b’N T-- t)*pNpNdpN T, t)cc
(4.11)

+ v(._ t),pN,CpNdpN(z t)a dt, <- T,

and

(4.12)

v(t, s)= rv(t-s)v- v(t- ’)3v-(3m)*N(’)rv(% S)2 d%

t>_s

for 2 . It follows immediately from (4.11) and the fact that s(t) is selfadjoint that

(4.13) m(t)=plN(t)p, t<= T.
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This in turn implies, by (4.12), that

(4.14) pVN(t, s)= N(t, s)p S <- t<--_ T.

Note that these two facts justify the second equation in (4.12). Moreover, the optimal
cost of (4.9), (4.5) is given by

(4.15) J(t) (no, N(S):o).

We remark that N(t), regarded as an operator on satisfies the following finite
dimensional Riccati differential equation

d(t) + (.r). r (t) + (t)
dt

(4.16) --N(t)3rc-’(3N)*N(t)+pV*pV =0, t T,

(t) =pp.
Obviously, the most interesting question is how the original system (4.3) behaves when
the optimal feedback control (.8) is replaced by the approximate control law

(4.17) (t)=--()*(t)(t, S)o,

where n(t, s) denotes the corresponding closed loop evolution operator on which
is defined by

(t,s):(t-s)- (t-7)-l()*()(,s)d
(4.18)

for and st Z

All the desired convergence results are contained in the next theorem which is a
straight forward consequence of Theorems 6.1-6.3 in [20]. For the convenience of the
reader we present the main ideas of the proof.

THEOREM 4.3. Let us assume that
(i) There exist constants M >-1, to R such that

IIN(t)ll<--_Me% t>--O, N= 1,2,..’;

(ii) For every v

lim N(t)pv (t),
N--

lim ,v(t)*pV Ae(t)*
N-oo

uniformly on [0, T];
(iii) limN_, rv= for every l.

Then, for every no ,
(a) limuJ(a)=limuJ(a)=L(as),
(b) limN (t) Nhm Us (t= fi(t),
(c) limss(t, S)o lim (t, S)o (t, S)o,
(d) lim (S)o (S)o

and the limits are uniform on the domain 0 s Z If range is finite dimensional,
then (s) converes to (s) in the uniform operator topology, uniformly on the interval
[o, T].



SPLINE APPROXIMATION FOR RETARDED SYSTEMS 1093

Proof. Let us introduce the operators s(t):L2(s, T; Rl) "-) , s’.ff ") L2(s, T; RI),
s L2(s, T;) L2(s, T; ) by defining

;(t)u 5f(t-’)u(’) dr,

(4.19) fv (T)* q35( T- s)v+ IT

dr,

T

su (T)*f( T)u + (’)* c*c(’)u dr+u

(4.25) lim
No

uniformly on [0, T].
It follows immediately from (4.22)-(4.25) that (I)N(t, s) converges .strongly to

(I)(t, s). By (4.11) and (3.6), this implies the strong convergence of the Riccati operators
N(s) to (s). Now the convergence result on N(t, s) follows from the inequality

II ’(t, s)v--N t, s) ll

and hence

for usL2(s, T;) and. Of course, u is defined by (u)(t)=u(t), s<=t<= T.
Then it is easy to see that the Fr6chet derivative of Js with respect to u is given by
J’s(u) 2u+2o. Since the optimal control t satisfies J’(ts) =0, this implies

(4.20) fi -;1 o.

Analogously, we get

(4.21) a --()-17po --()-1 0

where , , are enne as above with (t), , , replaced by u(t), %
p% pUp% respectively. Combining these formulae with (3.7), (4.8) and (4.12),
(4.10), we get

(4.22) (t, S)o (t-S)o- (t);’o,

(4.23) t, S)o t- S)o-(t)()-1o
for every s [0, T] and every [s, T].

We have shown in Theorem 4.2 that (t) converges to (t) in the uniform
operator topology, uniformly for 0 s Z This implies that for every

(4.24) lim
N

uniformly on [0, T] and moreover 11-ll 0, also uniformly on [0, T]. Choosing
e >0 such thatrell2 for sl, we obtain

II  ull  llull, u L=(s, T; N: 1, 2,...
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and Gronwall’s lemma. Thus we have established the statements (c) and (d). Statement
(b) follows from (c) and (d), since the control functions ts, fi, N are given by (4.10),
(4.12), (4.19) respectively. Statement (a) is an immediate consequence of (b) and (d),
since JN(fi)=(o,N(S)o) and Js()=(o,(S)o). If range d is finite
dimensional, then the convergence of N(s) in the uniform operator topology can be
established by analogous considerations as those in the proof of Theorem 4.2 (see [4]),
again by the use of (4.13) and (3.6). D

5. A special approximation scheme.
5.1. General ideas. In this section we present a general idea how to construct

special approximation schemes satisfying the assumptions of 4.
Let the sequence X, N 1, 2,..., of subspaces of M2 be defined by

XN ke M2 k .o o+ ., eij aO, ao, ai.i e R"
i=lj=l

where the "basis elements" ,o, are given by

No (I, 0), (0, eij I),

i.e., xN=Rnx yN with YN =span (e/,..., e,,I)c L2(-h, 0; n). It is clear that
dim XN (pkN + 1)n. We assume that

(5.1)
N Wi,_(_eij [I-hi, -hi-l) h,, -hi-l, ),
Neo (z)=0 for r I-hi,-hi-l).

is right-hand continuous on [-h, 0).Without restriction we may further assume that e 0
Because of the product space structure of the subspaces XN the orthogonal

projections pN. M2XN are given by

pNb (b, "n’Nb 1) for b =(th, b)M2,

where ,r
N is the orthogonal projection L2(-h, 0; [n)_> y. We introduce

ell epk)

and denote by aN(th) col (Olg, OllN1, N .(PkN+lapkN)- the coordinate vector of
an element xN, i.e.,

An easy calculation shows

(5.2) aN(pN$) (QN)-Id s (ok),

where

where q ((e0N, e)L2),k=l,...,kN and I is the n x n identity matrix. For elements in
XN the inner product has the representation

(5.3) (ok, lVf a N dP rQNa N Ok, d/ x.
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Since for elements b=(b,bl)EXV in general b#lim,.o bl(r)and b may
have jumps of arbitrary size at the delay points -hi, it is clear that Xv is not contained
in dom A nor in dom A*. However, the operators A and A* can formally be extended
to all of Xs in the following way:

(5.4) [A]=Ao+ A,(-h,)+ Ao(r)(z) dz,
i=1 h

d+

(5.s)

(5.6)

p-1

+ (r)(b’(-hi)-lim b’(r))
"r h

[A*@]=lio @’(r)+A,
[A*@]l(,r) =Ao(,r)O d+@- (-)

p-I

(5.7) + E 8,(r)(Af@-C"(-h,) + lim @l(r))
r--hi

+ (p(r)(ApT@-- @’(-h))
for b, #, E X, where (i denotes the Dirac delta impulse at -hi, i= 0,..., p. Below
we shall introduce the operators Am and (Am)* by projecting these formal extensions
formally back into the subspace XN. Since jumps of the function components of
elements in XV may occur at r=-h, we have two possible interpretations of (5i as
a functional on X namely the evaluation of either the right-hand or the left-hand
limit at -hi. Correspondingly we introduce the following two types of approximate
delta impulses which can be obtained. We define

(i,N+ N.)//.N+, i= 1,"" ", p,

where

i=0,. .,p-l,

N NQ ’)/i,+--CO1 (0, elNl(--hi), eN(-hi)),
N NQ Ti,_=COI(0, lim e(r),.., lim eN(r)).

The following lemma describes the action of the approximating delta-impulses.
LEMMA 5.1. For any x " and k M2

i.+x, )M X ( 1)(-hi), 1,’’" p,
N
X

T N8,_ ,)=x lim( )(r), i=0,.., p-1.
-h

Proof Using (5.2), (5.3) and the definition of 8N.+, we get

(+X,>M2=(N N N TQNa NY,,+x, P@}m2 (Pr,.+x)
x0, e-h,),..., eg-h,).p6)

=x(6)(-hi).
he proof for is analogous E
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The following definition of the operators As is obtained by formally projecting
NAb as given by (5.4), (5.5) into XN and putting pNi--i,_, i=0,..., p-1.

DEFINITION 5.2. For any b-(b, thl)xs we define

ANb= Ab+,=lA’l(-h’)+ hA(r)l(r) dr,

p--1

+8o.(-1 ())+ 8 i,-((N h,)-lim (T)).
$-- hi

The adjoint operators (A)* are given in
LEMMA 5.3. For any (o,)X the operator (AS)* is given by

(*= (+o o -p--1

ra’+ lim ()-(-h))
h

+,(2o (-hll.

Proo By definition of the adjoint operator we get

((*,) (,

=(0) ao+ a(-h)+ ao(r)(r) dr
i=1 h

+ +(,

p--1

+ E (@, t lim tI(7")))M
,=

N-(b (-h,)
_h

for any b (b, b), (o, ) in XN. By Lemma 5.1 we see

(I]/, ( 1(,.s_(b (-h,)- lim b r)))M

lim lll(’l’)T()l(--hi)--,rli_mh, tl("/’)),
"r’-hi

i-1,...,p-1.

Furthermore,

and

j1 ,/T
N 1

P=,,.= [r;-h,_,lim d/’(r)wdp’(’)-q’(-h,)Wd?’(-h,)]

(Ip) r Aol(r)c’(r) dT"=(Ad/, d’}t2=(’n’N(Ald/), dpl}t.
h
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Altogether we have

((A)*O, b)u= [l O’(7")+Ao]T&

p-1

+ E [A/O+ lim 01(-)-01(-h,)]Td/)’(-h,)

The result now follows using Lemma 5.1.
Note, that (ArV)*O can formally be obtained by projecting A*O as given by (5.6),

N(5.7) into XN but now.putting PNi i,+, 1, , p. Without any additional assump-
tion we have the following.

LEMMA 5.4. Hypothesis (H2) is validfor the sequenceAN, N 1,2, and therefore
also for the sequence (AN)*, N 1, 2,. .

Proof. We introduce an equivalent inner product on M2 by

0

(b, O)g (b)To+ b’(’)Td/l(’)g(") dr, dp, @M,
-h

where the weighting function g is right-hand continuous on [-h, 0) and

g(r) p + 1 for r [-hi, -hi-|), 1," ", p.

It is clear that the corresponding norm [[" Ilg on M2 is equivalent to the original norm,

Since (, lg) Xs for any X% we obtain from Lemma 5.1

(x xr,,_ } (p-i) lim (r) i=0,...,p- 1

for x e R" and b e XN. Using this equation and Definition 5.2, we get for & e XN

(AV&, 49)g Aoqb+ Ai)i(-hi)nt- Aol(r)b(") dr
i=1 -h

_p[(0__l0 I(,,/.)]T Izi0 (I(/.)

p--I

+ E (p-i)[dp’(-hi)-,_, b’(r)] T lim &l(.).
"r h

Obviously 7r
N (b g) b g and hence

i__hi_(p-i+l) ( (7")T ("F) dr
i= h

P

--1/2 E (p-i+ I)[ lim 1’(-)l=-14,’(-h,)l=].
i=1 7" h
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Using this and several times the inequality a/3 _-< 1/2o 2 q_1/22, we get for d’ e XN

p

12 ) 2(ANb,)g -< IAol+1/2 IA, +llAo, ll,: I111
i=1

P P Pl!o ithl 2/1/2 Y. I,/,’(-h,)l/ll-- ()1
i=1

p

+1/2 E (p-i+l) lim l,’()l--l’(-h,)l]
i=1 "r’ h

P

+1/2 E (p-i+ l)[14,1(-h,_,)l2- lim 11(7-)12]
i=2 7"’-hi-1

g

with to p/2 +lAd+1/2 Y,= IA, l=+ IIAo[l. This proves (n2*) with II" I1 -II" II for all
N. Since I[Ss(t)ll

In order to verify hypothesis (H3), we need additional assumptions concerning
the convergence propeies of 1, N 1, 2, , for in a suitably restricted subset
of M. Obsee, that we get from (5.1)

P

N,: (ll[_hj,_h_l)),
j=l

where is the ohogonal projection L2(-h, -h_, ) span e I, eI). We
define the sets D and D* by

={6 MI6: 6(0),6 W,(-h, 0; ")},

{6" eM0(-h o W,(Ap + AfoOX[_h,_h,_) e -h, O; n),
j=l

and AoOO d+
W1,2( }- -hi, -hi-i, ), 1,.-. p

Obviously, dom AEc c dom A and dom (A*)2 *dom A*. Fuhermore we put

N Nwhere ll,l is the norm of , considered as an operator M2. We impose the
following hypothesis:
(A) There exists a sequence p(N) with lims p(N)=0 such that for 1,..., p

(i) (l+(S))llf-fl[:+llf-fll=

+ (f-ff

for allfe W’(-h, -h_ ), and

for allfe W’(-h, -h_
LA 5.5. Assume that (A) is satisfied. en the following is true"
a Assumption H1) is satisfied.
(b) For any e D

IIA-11o0(g)llll ., N= 1,2,...,

where o is a constant independent of and N.
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(C) If in addition Aol wl’2(-hi, -hi-l," ), 1, p, then for any *
II(AN)*pNtk A*tk M

P
<- 7op(g) E (11,’11W2"2(-hi,-hi-1;ln) + IIA’[I wl’2(-hi,-hi-l;n)),

i=l

N 1, 2,..., where again o is a constant independent of and N.,

Proo (a) is obvious from (A). In order to prove (b), we put and get,
using (2.6) and Definition 5.2, for e D

IANpN --AIIM
P

Z IAiIII6N--’IIL+IIAo, IIIi6N--’IIL
i=1

+
L

p-1

+11 o N lim N(r)[o,-III 6 ()1+ E i,-]ll (-h,)
i=1

P

E IAilllN-4’ll+llAo, llll4N-4’ll
i=1

+ (6-6’) v

+(N) I(0)-(,)1+ 2 (-h)-4(-h,)l + 2 I(-h) lira
-hi

op(N)ll ’11 w,,
where in the last step we have used assumption (A). Yo is an appropriately chosen
constant.

(c) Using (2.7), Lemma 5.3 and e D(A*), we get

II(A)*p%-A*III ()- ’(0)1

+ N (A@-d+ @N) Aoo+d+ @1 l[
L

p-1
N N N+ II,,+IIIA+ im 6 ()-

r-h

llp,l} T 0 NA (-h)l
(1 (2p I)K(N)) l- N ]IL

II
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Under the given assumptions we have I]/1 E W2"2(-hi, -hi-l; Rn), 1, , p. Therefore
we get from (A), (ii)

--d--d Arlq----dql L2

p

<--_ p(g) E (llAo,,ll v’,=(-,,-,_,;o)+ I1,111W2’2(-hi,-hi_l;n))
i=1

and

p

Top(N) E ([[Ad/Ollw"2(-h,,-h,_,’,U"
i=1

+ 11 w2"2(-h,-hi-1;ln))"

It is clear that under the conditions of Lemma 5.5, hypothesis (H3), (i) is satisfied
for X, pN, a N= 1,2,’’’, if we take D=doma2, and for X, pN, (AN).,
N 1, 2,’" ", if we take D dom (A*)2. The next lemma establishes (H3), (ii).

LEMMA 5.6. Assume that .(A) is satisfied.
(a) There exist constants M >- 1 and to such that for all dom A

IlANpNS(t)[l<--_e"ll, t-->0, N= 1,2,...,

where I1_-I111 + IIall + IIa=ll,
R(b) If in addilion Ao W’2(-h,-h_, 1, ,p, Ihen Ihere exist con-

stants M* >-_ 1 and w such lhat for all 6 dom (A*)a

[[(AN)*pNS*(t)OIIM<-M* e’lOl*, t>--_O, N= 1,2,.’’,

where ,1* -I1,11 / IIa*,ll / II(a*)=,ll
Proof. (a) Since $(. restricted to dom A2 is a Co-semigroup on dom A2 equipped

with the graph norm I" ]2, we have

Is(t)l= Me’]12 -> 0, e dom A2,
with some constants M -> 1, to E . From

k 1, 2, , e dora A, we see that

I111=.=11=, CedomA2.
Therefore, for e dom A

l(S(t))llw,Me’ll, tO

and by Lemma 5.5, (b)

IIApS()II IIAS(t)II + IImpS(t) AS(

Me’llA[I + Top(N)M
M(l+yop(N))e’l12, tO, N=l,2,....
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(b) As in part (a) we have

Is*(t)l* =< Mell*, t-> o, dom (3*)2.

Using (2.7), (A*)= A((O)+Ag,)- d+/dO(Aorlg,- d+/dOOl)) and
d+/dO(AlO-d+/dOl)=ArOl-(l on the intervals [-h,-hi_), i= 1,.",p, it is
not difficult to see that for a constant u  (llAo ll  , IId//dOAolll the following
estimate is valid"

p

111[] wZ,2<_h,_hi_1;R-)_--< :l12* dom (A*)2.
i=1

The rest of the proof is analogous to that for part (a) but now using Lemma 5.5, (c).
From Lemmas 5.4-5.6 it immediately follows that under the assumption specified

in these lemmas Theorem 4.1 applies to the sequences X, pN, A, (AN)., N 1, 2,
3,’’’, defined in this section. The approximating control systems on XN are given
by (compare (4.5) and (4.9))

N t) ANwN t) + BNu( t),

(L;,N) yN(t)=CNwN(t), t>--__O,

w"(O) pNb, bM2

with the cost functional

(5.8) JN(u)=(wN(T), GwN(T))+ [lyN(t)12+u(t)7"Ru(t)] dt,

where the input and output operators are given by

BNu pNBu Bu, u 1,

C Cpcb C, X.
As in 3.2 we assume that R 11 is positive definite, Go nn is positive semidefinite
and G" M2M2 is defined by Gb (Goth, 0). The Riccati operators corresponding
to (EN) and (5.8) satisfy

IIN(t)=pNII(t)Np N, 0 <= <= T,

and (restricted to XN)
d
lIN t) + (AN)*I-IN t) + rlN t)AN

dt

(5.9) --HN(t)BNR-I(BN)*HN(t)+(cN)*cN =0, 0_< <- T,

IIN(T) GN

Here GN is the restriction of G to XN.
It follows from the results of this section that Theorem 4.3 applies to system

with (5.8). More precisely, we have the following theorem which may be considered
as the main result of this paper.

THEOREM 5.7. Let hypothesis (A) be satisfied and assume that Aol
wl’2( hi,-hi-l, for i= 1,’’ ,p. Then

lim IIn(t)-rI’(t)ll 0
N-

uniformly for 0 <- <- T.
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Of course, also assertions (a)-(c) of Theorem 4.3 are true for system (Ev), (5.8)
and (E), (3.1) (or equivalently (2.1), (3.1)).

5.2. Matrix representations. For implementation of a scheme obtained along .the
lines described in the previous section we have to compute matrix representations
[AV], [(AV)*], [BV], [ C] and [G]fthe operators A (AS)*, Bs, Cs and G
respectively, with respect to the basis E How to compute the coordinate vector of
p for M2 has already been shown (see (5.2)).

Define the k xk-matrices h, i= 1,-..,p, and g, i= 1,.-.,p-1, by

lim e() eh= eit e,
& -h,_

i(z)
l,m=l,...,k

g=( ei+.i(z) ei,(-hi)).=.....g

and put

Ay=(Ao,, v
eij l}L2, i= l, p, j !, ks,

N N [] nkaY=(A,e(-h,)+A,, ,A,e,k,,(-h,)+A,g,)

i= 1, ,p, and

fiN=col (lio e(z)I, ,lim e,(z)I) a"k’n.
,r$O

Furthermore, define the (pkv + 1)n x (pkN + 1)n-matrix Hv by

(b)

(c)

(d)

(e)

Ao N N
O Op

On the other hand we get from (5.2) and =/a()
av(AV) (Q)-d (A) (Q)-l(g AsgN)as(),

PROPOSITION 5.8. (a) [A]=(QN)-IH

[(AV)*] (QV)-(HV).

[BV] col (Bo, 0," ., 0)"g’).

[CN Co, 0,’’’, O) e mxn(pkN+l).

Go 0 0

[G] 0 0 0 R"(+)’(+).

0 0 0

oo [A] is characterized by
N CeX.
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Observing

ell e ell
L2 " elm

L2

[(ArV)* (Q)-(H).
For u e l we have

a 1(BNu) a.((Bou, 0)) (QN)-ldN ((Bou 0))

(Qm)-’ col (Bou, O, , O) col (Bo, 0,..", O)u,

which proves the given form of IBm]. The proofs for [Cm] and [Gm] are
analogous.

It is obvious from Proposition 5.8 that [(AV)*]=(Qv)-[AV]Qv. Therefore we
do not get the standard Riccati matrix differential equation if we take everywhere in
(5.9) the matrix representations of the operators involved. In order to overcome this
difficulty we define

(5.10) F(t)=QN[II(T-t)], O<=t<= T,
and get from (5.9) the standard Riccati equation for F(t)

dF [A]rF- + FN[As]
dt

(5.11) r"[’]g-’["]r" +[c]T[crV], 0<--_ t_ T,
r’(0) [G].

Note, that [(BV)*]=[BN] r, [(CU)*]=[CU]T and that IIU(t)*=IIS(t) implies
Frv(t)r F(t).

for all b, 0 Xu,, i.e.,

Lemma 5.1 and (5.2) we obtain by straightforward calculation

In order to prove the representation for [(A’)*], we use (5.3) and get

rQ v VQVas ),a (b) U[(AU)*]a ()=a () ((Av )

=(, (A)*O)=(A, )= a(A)VQa()
a ()[A]Q% () ()() ()
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Equation (5.11) can advantageously be solved using a method due to Casti and
Kailath (see for instance [35, pp. 304 ff.]) which we indicate here for p 1 and Aol 0.
We define

Wo AGo+ GoA- GoBoR-’BGo+ CTo Co
and the 2n x (ks + 1)n-matrices

F, (Wo o
AOo O---------

Then

where

0 A1 F2= 0 0

FN(t) [G]+ L(z)TL2(z)

d N AN N] I[BN TEN(-]L, (t)=L(t)([ ]-[B R- t)),

LY(0) FY, i=,2.

Note that this is a system of 4n2(kN + 1) differential equations compared to the
rt2(kN h- 1)2 differential equations of system (5.11) (in case p= 1, Aol 0).

If in the optimal feedback law (3.13) for the delay system (2.1) we use IIS (t)
instead of H(t) we get the suboptimal controls (compare (4.17))

(5.12) tN (t) -g-1B*II (t)p (v (t), xt"rv), O<=t<_T,

where N(t) is the solution of (2.1) with u(t) ts(t). We introduce the n x n-matrices
I/oN(t), 1-I (t),’’ ", 1-IN(t) by

(5.13) 1-In(t)

and define

P kN
(5 14) I-l(t, z)= II s s

i=lj=l

for -hr0 and 0t Z Then the control law (5.12) takes the following form:

a t) -R-[B][H t)](Q)-d ((; t), ;))

=-R-I(Bff, 0,’’’, O)[H(t)]d(((t),))

(5.15) -R-’Bff{H(t)TN(t)

+ 2 n( ef(,(+,a,
i=ij=l -h

=-R-B Hy(tl;(t)+ Hy(t, z);’(t+z) d,
h
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The additional condition used in [20] in order to prove convergence results
analogous to those contained in Theorem 4.3 for the infinite time horizon problem in
general cannot be satisfied for concrete realizations of the approximation scheme
presented in this section. Especially this condition is not satisfied for the concrete
realization ofthe scheme using spline functions as described in the next section. Despite
this fact we did also numerical computations using the spline scheme for the infinite
time horizon problem (see 6.2). Therefore we conclude this section with a short
description of the equations governing the approximation of this problem. Consider
system (Es) with the cost functional

(5.16) jS(u) [lyS t)12 + u( t) TRu( t)] dt.

The fdback law which minimizes jN(u) subject to (Es) is governed by the Riccati
operator 1-IN which satisfies 1-I n -pSIISpS and (restricted to Xs) the algebraic Riccati
equation

(5.17) (AN)*IIN + [INAN -[INBR-1B*I-IN + C*C =0.

Analogously to (5.10) we define FN= QS[IIS] and obtain the standard algebraic
Riccati matrix equation

(5.18) [A]F +rEA]-rEB]R-I[B]F +[C][C] 0.

Note, that as for the finite time horizon problem, Fs (Fs) T follows from 1-In (1-In) *.
Using l-In instead of II in the feedback law (3.16) we get by analogous computations
as in (5.15) the suboptimal control law

(5.19) aS=-R-1B II;s(t)+ IIl(r):s(t+r) dr t>=O,
h

Nwhere II(z)=YP;1 Yjl (Ilij)reo(z) and the n x n-matrices IIy II s, i=l,...,p,
j= 1,..., ks, are defined by

In

N1-I pk

(compare (5.13) and (5.14)).

5.3. The spline scheme. In this section we give a realization of the scheme
developed in 5.1 by using first order spline functions.

For N 1, 2,... we choose the meshpoints

N ri
ti -hi-1 -j--, i=l,. .,p, j=O,...,N,

where ri hi- hi-1 and define the basis splines

N.< Nfor til 7" < tio

elsewhere,
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(7-- t,_,)

eij (7")’-
(7"-- N

j=l,’’- ,N-I, and

N__(,7-__ ti,-)e(7-) ri

N< Nfor tij 7"< i,j-1,

for N < N
ti,j+ T < [i,j,

elsewhere,

for N < N
tiN 7- <( ti,N_l,

elsewhere,

1,..., p. Note, that compared to 5.1 we slightly have changed the enumeration
Nof the e0 (j running from 0 to N now). We have kN N+ 1 and therefore dim X

(p(N+l)+l)n.
An easy computation shows that the matrices q which determine Q (recall

QrV =diag (I, ql(R)l, qS(R)I) are given by q=(r/N)q where

For the approximating delta impulses we have
LEMMA 5.9. For all N 1, 2,...,

i,+ll N i=l,’’’,p,

,,-II =.0,---, p- 1.

oo Using (5.3) and the definition of i. and Qm we get for any x

+xll=: (r,.+x)Q(Q)-Qri.+x

N r q=-x (0,... 0, s)( @s)- col(0,...,0,
ri

ri

where we have used Amin(q sv) > 1/6. The estimate for iN is analogous. [3
As a consequence of Lemma 5.9 we have

t(N)<(6-) ’/2

min ri.with p
=,...,

PROPOSITION 5.10. Hypothesis (A) is satisfied for the spline scheme with p(N)=
const/N. As a consequence Theorem 5.7 is ,valid for the spline scheme.
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Proof. The following estimates are standard estimates for spline functions:

const
II/-r,/ll<-- N IIfllv,

const

for fe W2’2(-hi,-hi_l; R") (see [39, Thm. 6.5]) and

const

N

forf wl’2(-hi,-hi-1 R’) (see [39, Exercise 6.1]). In order to get the estimate for the
L-norm, we observe that 7rf- where X

N is the cubic type I interpolating spline
for 0(7") I’--h, I_h,f(r) &r dO, z e [-h,-h_] (see, for instance, [39, Proof of Thm.
6.6]). Note, that interpolating cubic splines in [39] are always type I interpolating
splines in the terminology of [1]. Then we.get from [23, Thm. 5.7.1] (with L d/dO
and m =2) or [11, p. 235] (with m r=2, q

.N-for fe W2"2(-hi,-h_l, ). These estimates together with Lemma 5.9 imply (A). 13
NUsing eiN,j(-hi) 1 forj N and =0 forj =0,..., N- 1, lim.’-h, ei+l,j(r)= 1 for

j 0 and =0 for j 1,. ., N, we immediately get

N N N(A/o, ,AiN+Ai),Ai,N_

=col (I, 0,..-, 0),

_l -- 0 0 \

i= 1," ’’,p,

( [](N+I)x(N+I), 1, p,

and

0 1

(N+I)x(N+I) 1, p- 1

Recall Proposition 5.8 for the matrix representations of AN and (A)*.
We conclude this section with some remarks:
(1) As we already mentioned in the Introduction, the spline scheme developed

in this paper has interesting qualitative properties. For instance the relations between
the state concept as defined in (2.4) and the dual state concept which are governed
by the so called structural operator F are preserved under approximation (see [10],
[13], [16], [17], [28] [31]). These results will be published elsewhere (see also [26]).
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(2) Another very important property ofthe spline scheme is that the approximating
systems (EN) are stable, stabilizable or detectable for all N sufficiently large whenever
the delay system has the property (see [26]).

(3) In order to use the results of [20] for the infinite time horizon problem, the
approximation scheme should have the following property: If the delay system (2.1)
is stable, i.e. IIs( t)[I----< M e-’, > 0, with M > 1, e > 0, then there exist constants hT/ => 1
and 7 > 0 such that for all N sufficiently large

IlSS t)ll <- ll e-’, t>0.=

It can be shown that this property is not satisfied for our spline scheme (see [26] for
details).

N W1’2( ) can easily be(4) The assumption e,j [[-h,, -h_x) -h,-h_x,
S in the interval [-h,-h,_l). Then the definitionweakened. One can allow jumps of ej

of As has to be modified by adding additional terms containing the approximating
delta impulses corresponding to these additional jumps. This idea has been used in
[34], where a realization of the scheme using piecewise linear functions is investigated.
If one uses stepfunctions then one obtains the well-known averaging scheme.

(5) An important feature of the scheme developed in 5.1 is that due to the
Nproduct space structure of Xs orthogonality of the functions eij, 1,..., p, j

1,... ks, implies orthogonality of the "basis elements"

^N ^N
eo,ei, i-1,...,p, j=l,’",ks.

This property has been exploited in [25] where a very efficient realization of the scheme
by using Legendre polynomials is discussed.

6. Numerical results for the optimal control problem. The spline algorithm presen-
ted in 5.3 was applied to a large number of examples. In this section we present the
numerical findings for some of those examples. The numerical results confirm the
theoretical results in case of the finite time horizon problem. The scheme performs
also very well in case of the infinite time horizon problem. This is shown by two
examples which already have been considered in the literature [8].

6.1. An example with finite final time. This is the problem of minimizing

J(u) 3x )2 1 f=2 (3 +Jo u(t)2dt

subject to

(t)=x(t-1)+u(t), 0_-<t_-< T=3,
(6.1)

( ( 1(0), qsl(t)-- 1.

For this example we have n 1, p 1, Aol=0, Ao Co=0, A1 Bo 1, Go= and
R 1/2. The optimal controls, trajectories and costs were calculated in [5] using the
maximum principle and are given by

-[(t-2)2+3], 0_-<t_-<l,
t(t)=

t(t-3), l_-<t-<2,
-8, 2 _-< _<- 3,
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l+t-6 +(t-2)3+ 0_--<t=<l,

3+t2 [ 3 1)441]---t 4+ (t-l)2 l<_--t<=2,
2 2 +-(t-3 +(t-1)(t-3)2

[547 3 1 1 1
-6 -+ 5( t- 2) +-( t- 2)2 +-( t- 2)3--( t-4)3+-(t-4)

2__< t<_-3,

J() 329t2 where 6
185

60 329

The matrix valued function [IIN(t)], 0 =< <_-3, was computed as indicated in 5.2.
The suboptimal trajectories :N (t) were obtained solving (6.1) with u (t) aN (t), aN (t)
given by (5.15), by a modified Runge-Kutta procedure. Then aN(t) was computed
from (5.15).

The numerical results we obtained are presented in Tables 6.1 and 6.2. We observe
that the error IN(t)- t(t)l is larger around 1 and 2 compared to other points
in [0, 3] because there a(t) has jumps in the derivative whereas aN (t) is continuously
ditterentiable on [0, 3]. In Table 6.2 we didn’t include the values for =0 because
always :N(0)= g(0) for our algorithm.

6.2. Two examples for the infinite time horizon problem. For the examples equation
(5.18) was solved using the Newton-Kleinman algorithm as presented in [35], for
instance. The Lyapunov matrix equation which has to be solved in each step of this
algorithm was solved using the quadratically convergent procedure given by R. A.
Smith [40] (see also [35, p. 297]). The suboptimal trajectories N(t) and controls
tN (t) were calculated as for the example in 6.1 using (5.19). The two examples were
already considered in [8] where the approximation was done based on the spline
algorithm developed in [7].

TABLE 6.1

/4(t) t8(l) al6(t) /(l)

0 -1.9694 -1.9676 -1.9679
0.25 -1.7049 -1.7049 -1.7043
0.5 -1.4740 -1.4758 -1.4760
0.75 -1.2817 -1.2824 -1.2828
1.0 -1.1267 -1.1252 -1.1250
1.25 -0.9882 -0.9832 -0.9846
1.5 -0.8410 -0.8448 -0.8445
1.75 -0.6922 -0.7002 -0.7050
2.0 -0.5885 -0.5769 -0.5704
2.25 -0.5572 -0.5611 -0.5623
2.5 -0.5620 -0.5623 -0.5623
2.75 -0.5623 -0.5623 -0.5623
3.0 -0.5621 -0.5622 -0.5623

-1.9681
-1.7045
-1.4761
-1.2828
-1.1246
-0.9840
-0.8435
-0.7029
-0.5623

-0.5623

J() 1.7338 1.7338 1.7338 1.7338
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TABLE 6.2

;4(t) ;s(t) ;16(t) :(t)

0.25 0.7914 0.7916 0.7916 0.7917
0.5 0.6448 0.6448 0.6448 0.6448
0.75 0.5511 0.5506 0.5507 0.5507
1.0 0.5007 0.5005 0.5005 0.5005
1.25 0.4589 0.4593 0.4595 0.4595
1.5 0.4083 0.4096 0.4094 0.4094
1.75 0.3655 0.3642 0.3646 0.3646
2.0 0.3375 0.3372 0.3371 0.3370
2.25 0.3159 0.3167 0.3168 0.3168
2.5 0.2845 0.2848 0.2848 0.2849
2.75 0.2403 0.2407 0.2408 0.2408
3.0 0.1874 0.1874 0.1874 0.1874

The first example is Example 4.1 in [8] and considers the minimization of

J(u)= [x(t)2+u(t)2] dt

subject to

:(t)=x(t)+x(t-1)+u(t), t>=O,

b=O, b(t)=sinTrt, -1-<_t=<O.

In this case we have n =p 1, Ao A1 Bo Co R 1. In Table 6.3 we give the
values for j(N) and the optimal costs JN=(IIp(b, bl), p(b, bl)) for the
approximating systems (EN) with cost functional (5.16) and the corresponding values
obtained in [8].

In Table 6.4 we show the values of IIv, II IN and for IIv as obtainedin [8]. Since
range II c dom A* (cf. (3.15)), we have AIloob (IIob)(-1) for all b R". There-
fore in case of this example we should have

rly-II--,0 as N-.

In Table 6.5 we give the values for II(z), which governs the distributed feedback in

TABLE 6.3

N j(N) jN j(aN), [8] jN, [8]

4 0.321439 0.321430 0.3272 0.2484
8 0.321439 0.321432 0.3271 0.3027
16 0.321439 0.321430 0.3272 0.3163

TABLE 6.4

4 2.80886 2.77538 2.7940
8 2.809328 2.80096 2.8054
16 2.809390 2.80729 2.8084
32 2.809396 2.80887 2.8091

N II IINN IIoN, [81



SPLINE APPROXIMATION FOR RETARDED SYSTEMS 1111

TABLE 6.5

0 0.63598 0.63683 0.63694 0.63696
0.66132

2 0.68698 0.68764
3 0.71558
4 0.74240 0.74512 0.74553
5 0.77722
6 0.81040 0.81114
7 0.84695
8 0.87064 0.88269 0.88474 0.88517
9 0.92547
10 0.96750 0.96839
11 1.01361
12 1.05757 1.06113 1.06165
13 1.11225
14 1.16491 1.16591
15 1.22238
16 1.26664 1.27879 1.28151 1.28218
17 1.34508
18 1.41048 1.41162
19 1.48157
20 1.54972 1.55463 1.55547
21 1.63314
22 1.71381 1.71512
23 1.80125
24 1.86588 1.88693 1.89104 1.89209
25 1.98748
26 2.08649 2.08802
27 2.19358
28 2.29692 2.30348 2.30477
29 2.42147
30 2.54253 2.54432
31 2.67323
32 2.77538 2.80096 2.80729 2.80887

(6.3), at the knots -j/N, j=0,..., N, for N=4, 8, 16 and 32. We clearly see that
IIN(r) converges uniformly on -1 <--’--<0 as N- o. Note, that II(-) is a continuous
piecewise linear function on [-1, 0] with knots at -j! N, j 0,..., N.

In Tables 6.6 and 6.7 we present the values for tc(t) on 0 -< t-<4 and for v(t)
on 0 =< _-< 3, respectively.

The results of this example show a significant improvement in the qualitative
behavior of our spline scheme compared to the scheme presented in [8]. In both
schemes Hv(r) is a continuous piecewise linear function on [-1, 0]. But in [8] this
function is increasingly oscillatory with increasing N (compare Figs. 4.1-4.4 in [8]),
whereas in our scheme II(-) is strictly monotone and obviously converging in the
supremum norm. This property of our scheme becomes very important if one wants
to implement the approximating feedback law in a real system. Our scheme seems also
to be more accurate as far as approximation of Iloo by IIo and of J() by jN(N) or
JN is concerned.

The next example is Example 4.2 in [8] and considers a simplified model for the
Mach number control loop for the National Transonic Facility at NASA Langley
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TABLE 6.6

a4(t) t8(t)

0 0.86836 0.86817 0.86816
0.25 0.64894 0.64891 0.64891
0.5 0.49650 0.49657 0.49658
0.75 0.35400 0.36400 0.36401
1.0 0.24627 0.24618 0.24618
1.25 0.16154 0.16146 0.16146
1.5 0.10999 0.10993 0.10993
1.75 0.08024 0.08021 0.08021
2.0 0.06015 0.06015 0.06015
2.25 0.04348 0.04347 0.04347
2.5 0.02983 0.02982 0.02982
2.75 0.01996 0.01995 0.01995
3.0 0.01373 0.01372 0.01372
3.25 0.00991 0.00991 0.00991
3.5 0.00729 0.00729 0.00729
3.75 0.00524 0.00523 0.00523
4.0 0.00362 0.00362 0.00362

TABLE 6.7

:4(t) 8(t) ’6(t)

0.25 0.11259 0.11258 0.11258
0.5 0.05332 0.05331 0.05332
0.75 --0.06628 --0.06626 --0.06626
1.0 --0.10850 --0.10846 --0.10846
1.25 --0.06160 --0.06158 --0.06158
1.5 --0.01397 --0.01397 --0.01397
1.75 0.00753 0.00752 0.00752
2.0 0.00178 0.00178 0.00178
2.25 --0.00784 --0.00784 --0.00784
2.5 --0.01030 --0.01029 --0.01029
2.75 --0.00646 --0.00646 --0.00646
3.0 --0.00178 --0.00178 --0.00178

Research Center. For details see [2] or [8]. The problem is to

minimize

J(u): [xT(t)CCox(t)+u2(t)] dt

subject to

(t) 0 1 x(t)+ 0

(6.2) -to
2 -2sCto 0

b col (-0.1, 8.547, 0) --- b l(t),

x(t-0.33)+ u(t),

-0.33 -<_ -<_ 0.
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We have Co= (100, 0, 0), n =3, p= 1, k=-0.0117, so=0.8, to =0.6 and 1/a= 1.964.
Because of the simple structure of this problem it is possible to calculate the true
solution following an idea contained in [29]. If we put for >-0, h 0.33

y(t)=Xl(t+h),

we obtain by a simple calculation

(6.3) SIy(t) 0 0

\y3(t) 0 -co

y2(t) xg(t), y3(t) x3(t),

1 lye(t) + O u(t).
-2w \y3(t) oJ

The cost functional takes the form

(6.4)

where

J(u)= 104 Xl(t)2 dt+ [104yl(t)2+u(t)] dt,

(6.5) Xl(t)=e-atqbl-f-ak e-a(t-)(z-h) dr, O<=t<-_h

is not dependent on u(t) on the interval [0, h]. Therefore minimizing J(u) subject to
(6.2) is equivalent to minimizing

.(U) [104yl(t)2+u(t)2] dt

subject to (6.3) with initial data

(6.6) y(0) x(h), y:(0)= x2(0), y3(0)= x3(0).

The solution of the latter problem is given by the feedback law

t(t) -(0, 0, w2)11o)7(t),
where jT(t) is the solution of (6.3) with u(t)=ff(t) and initial data (6.6). lrIo is the
solution of the algebraic Riccati equation

(6.7) ,’Tfio + -Io, fioBoB[Io+ C[Co O,

where A is the system matrix in (6.5) and Bo, Co are the same as for (6.2).
Equation (6.7) was solved numerically to give

8220.51099 -11.61086 -1.12107I’Io= -11.61086 0.01851 0.00186/.
-1.12107 0.00186 0.00019/

The optimal costs for the original problem are given by (see (6.4))

J(tT) ](t) + 104 2(t) dt

(6.8)
=y(Olflo(O+o (t.

Using (6.5) it is easy to calculate J(). In Table 6.8 we give the values for J(i), J()
and J ={IIp(, l),pN(o, )) and the values available in [8].
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TABLE 6.8

N J(aN) jN /(aN), [8] jN, [8]

4 136.39587 136.40499 136.7354 138.7345
8 136.40094 136.40509 136.7354 138.7624

16 136.40250 136.40521

J(t) 136.40490

Computing J(t) for general initial data (b, bl) by using (6.8), (6.6) and (6.5)
and comparing the result with

J(a) (ck) TIIooCk+ 2(ck) TIIo,4,’ +(61, II,,q’)L,

we immediately obtain an explicit representation of II"

Hoo 0 1 Io 0

0 0 0

1 +10’*1 0 0

0
2a

0 0

0 e r) dr
0 h

ti
1

+ 104k e-ah 0

0

e-a" e
dp (’r) d’r

2

or, equivalently, (Ho*b)(0) H,(0)b with

II O ak 0 Io 0 1
0 0 0

ea
_
104k e-ah ti e a eao

2

-h <- 0<-0, and

(1-I,,bl)(0) a2k2 e 0 0 Io 0

o o/ \o
0 eck(r) d’r

0 h

+ ak2 0 1

0 0 h 2

a(.,-+o

ck(") dr, -h <- 0<-_0.

In Table 6.9 we present the values for Ho, Ho as computed in [8] and Hoo,
whereas in Table 6.10 we give the values for the second row of IIN(--jh/4) and
IIl(-jh/4) for j =0,..., 4. The other rows of these matrices are always zero. Again,
our scheme is more accurate compared to the scheme in [8] and II(0) converges
uniformly on [- h, 0] to II (0).
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TABLE 6.9

N no 1-io, [8]

4

8

16

I-Ioo

8677.02417

-9.81502

-0.94768

8677.02698

-9.81505

-0.94768

8677.03516

-9.81506

-0.94768

-9.81502 -0.94768
0.01851 0.00186/
0.00186 0.00019/

-9.81505 -0.94768
0.01851 0.00186/
0.00186 0.00019/

-9.81506 -0.94768
0.01851 0.00186/
0.00186 0.00019/

8677.02405

-9.81505

-0.94768

-9.81505

0.01851

0.00186

8676.9237 -9.8164 -0.9477
-9.8164 0.0185 0.0019/
-0.9477 0.0019 0.0002/

8676.9829 -9.8154 -0.9477
-9.8154 0.0185 0.0019/
-0.9477 0.0019 0.0002/

-0.94768
0.00186/
0.00019]

TABLE 6.10

-41.39697
-43.83789
-46.37943
-48.97898
51.69006

0.06916
0.06652
0.06334
0.06118
0.05828

0.00668
0.00640
0.00613
0.00590
0.00563

-41.39721
-43.84998
-46.38019
-48.99226
51.69080

0.06917
0.06626
0.06355
0.06093
0.05843

0.00668
0.00640
0.00614
0.00588
0.00564

-41.39727
-43.85012
-46.38036
-48.99246
-51.69102

0.06917
0.06631
0.06358
0.06097
0.05846

0.00668
0.00640
0.00614
0.00589
0.00564

-41.39721
-43.85008
-46.38034
-48.99246
-51.69103

0.06917
0.06632
0.06360
0.06098
0.05847

0.00668
0.00641
0.00614
0.00589
0.00565
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